University of Texas at El Paso

ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-05-01

A Framework To Build Secure Microservice Architecture

Wai Yan Elsa Tai Ramirez
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Tai Ramirez, Wai Yan Elsa, "A Framework To Build Secure Microservice Architecture" (2023). Open Access
Theses & Dissertations. 3857.

https://scholarworks.utep.edu/open_etd/3857

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact Iweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3857?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A FRAMEWORK TO BUILD SECURE MICROSERVICE ARCHITECTURE

WAI YAN ELSA TAI RAMIREZ

Doctoral Program in Computer Science

APPROVED:

Ann Q. Gates, Ph.D., Chair

Salamah I. Salamah, Ph.D., Co-Chair

Jaime Acosta, Ph.D.

Michael Pokojovy, Ph.D.

Stephen L. Crites, Jr., Ph.D.
Dean of the Graduate School

Copyright 2023 Wai Yan Elsa Tai Ramirez

Dedication
Tomy
Dad, Mom, Sister, and Grand-Parents, and
To the loves of my life:

Jon and Jonathan.

A FRAMEWORK TO BUILD SECURE MICROSERVICE ARCHITECTURE

WAI YAN ELSA TAI RAMIREZ, M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of
The University of Texas at El Paso
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science
THE UNIVERSITY OF TEXAS AT EL PASO
May 2023

Acknowledgements

First, I want to acknowledge and thank my committee members, Dr. Ann Q. Gates, Dr.
Salamah I. Salamah, Dr. Jaime Acosta, and Dr. Michael Pokojovy. Thank you for serving on my
committee and for all your help, support, and guidance.

I would like to thank Dr. Gates for being my mentor and for being there for me throughout
my entire education. Your feedback and discussions have always been valuable to me, and |
appreciate that you would always make time for me no matter how busy your schedule became. 1
will always hold everything you taught me close in my career going forward.

I would like to thank Dr. Salamah for being my mentor. Your guidance was truly
invaluable throughout my work, and I will always appreciate it. Thank you for keeping me
focused, encouraging me, and going above and beyond for me. You have been a great mentor and
a true friend.

| would like to say a special thank you to my father, Wing Kuen Tai, my mother, Fung Mei
Kam, and my sister, Tina Tai. Thank you for always being there for me and supporting me in
every journey | have taken. Thank you for all the sacrifices you’ve made for me so that I could
pursue my dreams.

| would like to thank my husband, Jon Ramirez. Thank you for supporting me and for
being my pillar throughout this journey. Thank you for always being there for me no matter what
happened. You’ve always encouraged me to believe in myself, fight for what I believe in, and

never give up on my dreams. | would not have made it this far if it was not for you.

Abstract

Microservice architecture has become a popular architecture style in recent years.
According to a series of surveys conducted by IBM Market Development & Insights in 2021,
microservices are heavily used in many industries worldwide. With an increase in the adoption of
microservice architecture in the development of applications, such as Netflix, Amazon, Uber,
Ebay, Twitter, DoorDash, Capital One, and Monzo, and the increase in security breaches in
microservice based systems (e.g., the DoorDash data breaches in 2019 and 2022, Twitter data
breach in 2022, and compromises to Netflix’s infrastructure), there is a need to examine and
understand security issues that exist in microservice architectures.

Security issues within microservice architectures can be summarized with four main points.
1) Security is often considered as an afterthought, rather than during the early development phases.
Security considerations are thought of as roadblocks that prevent software from being released on
time; 2) There are more vulnerabilities per line of code in applications using microservice
architectures compared with equivalent monolithic applications; 3) Microservices present new
security challenges that are not present in monolithic applications due to the distributed nature of
the architecture; communications between microservices are over the network which means a
request may be susceptible to man-in-the-middle attacks; 4) There is a lack of comprehensive
knowledge regarding how to build applications using microservice architectures with security in
mind.

The goal of the research is two-fold: 1) To study and document security properties that can
remediate security issues in microservice architectures; and 2) define an effective approach to
assist software architects in formally defining security properties early on in the software

development lifecycle.

vi

The research examines microservice security from the perspective of industry and
academia. The research questions (RQ) are as follows:

RQ1: What are the security challenges in microservices architecture?

RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The result of the research is an extensive review of security challenges and practices related
to secure microservice architecture that informed the development of a framework that enhances
the ability of software architects to formally specify security properties. The resulting framework
includes the use of decision trees to guide software architects in determining what specific security
properties should be considered, how different security properties are related can be used together,
and what additional structural elements (components and connectors) should be considered when
adding specific security properties.

The impact of the work is that software vulnerabilities are addressed during early phases
of software development (architecture and design) rather than later in the software development
lifecycle. This helps to significantly reduce costs associated with software defect mitigation.
Studies have shown that the cost ratio in tackling a software defect, including security
vulnerabilities, is doubled if defects are discovered during the implementation phase compared to
the architecture and design phases. This ratio more than triples if defects are discovered during
testing. The work provides comprehensive support in defined security in microservice

architectures, especially for software architects who have minimal experience in society.

vil

Table of Contents

DIEUICALION ...ttt ettt b et et s ettt e st e st b et e st e b e s b eneene e b et eneeneeseneens il
ACKNOWIEAZEMENLS.......viiiieiiiieiieeie ettt ettt et e et e et e e saeeeabeessaeenbeesssesnseennneenseennes v
YN 0113 v T APPSR vi
TabLE OF CONLENLSeeiuiieeieeiiieiie ettt ettt et et e st e et e e ssaeeabeestaeenseessaesaseensaeenseenseesnseas viii
] A0 G 21 o) (<SSP RU TSR xiil
LSt OF FIGUIES ...ttt ettt ettt e et e be e s abeessaeeabeenseeesbeeseesnseenseeenseennes Xiv
Chapter 1: INrOAUCTIONveiiiiie ettt e et e e e te e e e taeesaaeesabaeesssaeesssaeesaseeensseeennnes 1
L.10 OVEIVIBW ..oniiiee ettt sttt ettt et b et ebe e 1
1.1.1. IMOTIVALION.....eieiiieeiiie et et e eeite e et e e e tteeeteeesbaeeeasaeessseeeesseeessseeessseeensseaenns 1

1.1.2. Problem Statementcc.oecieriieiiierieeieee et 3

1.2, RESEAICN GOAIoueeiiiiieeteetee ettt 4

1.3. Significance of the RESEAICH.........cc.occviiiiiieieceeeeeeeee e 5

1.4. Organization Of DISSErtatiONncccevuerieiieriiiiieieeieeee ettt s e 6
Chapter 2: BacKroundcc.oiiiiiiiiiiiciiie ettt et e e et e e s tee e s bee e s aeeesnseeennseeennes 7
2.1. Overview of Software ArChiteCturec.cooieiiiiiiiiiieieeee e 7

2.2. MICToServiCe ATCRILECIUIEcuviieiiieeiiieeieeetee et e et etee e ettt e e eaee et eesnbeeennseeennee s 9

2.3. Microservice Architecture vs. Service-Oriented Architecture..........ccoeeveeeiierieriieennene 10

2.4. Architecture Analysis and Design Language (AADL)ooevveeeciiiecieeeieeeee e 11
Chapter 3: MethOdOLOZYooiuiiiiiiiiieiiee ettt ettt et saee et eessaeebeesaeeens 17
3.1. Security Challenges and Security Practices in Microservice Architecture.................... 17

3 1.1, AUthENtiCAtIONeeiiieiiieciie ettt et sttt et e ens 17

R T 0 B B 1 -1 1)Y USSR 17

3.1.1.2. SeCUIity PraCtiCeS.....ceiiieiieeiiieiieeiie ettt 18

3.1.2. AULNOTIZATION ...eveieiiie ettt e et e et e e et e e e taeeeteeesssaeensseeensseeensseeenns 27

3 12,1, ChalleNgeS ...ccvieeiiieiieeie ettt ettt 27

3.1.2.2. SeCUIItY PraCtiCeS....cccuviiiiiieeiieeciie ettt e e e s 28

313, LOZING .ttt ettt ettt ettt et e ettt e et e et e b e e bt e enbe e aeeenbeensaeenseennneens 34

3.1.3. 1. Challen@es......uveeeeiieeiie ettt e e e s 34

3.1.3.2. SeCUIItY PraCtiCeS....cccuviiiiiieiiieeciie ettt e e s 34

3. 1.4, COMMUINICATIONS ...veueienieeitentienieritesteete et e st ete st e st eteeiee bt enbesaeesseenbeebeenseensenaeens 34
3.1.4.1. Challen@eS.......eeeiviieeiieeciie ettt e et e et e e e e seaeeenanee s 34
3.1.4.2. SeCUIItY PraCtiCeS.....eeiiiiiieeiiieiieeie ettt ettt 35

T R TR D T - RS STRUTRSRSSRRPI 36
3 15,1, ChalleNgeS ...ccveeeeiieiiecieeiieee ettt et et 36
3.1.5.2. SECUIILY PraCtiCeS....cccuviiiiieeeiiieeciie ettt e e s 37

301,60, PAtCRING.viiiiieiiieiieceeee et ettt ettt et et e e eensaeeneeeane e 41
3.1.6.1. Challengescueeeueieiieeiieeiieee et e 41
3.1.6.2. SeCUIItY PraCtiCeS....uueiiiiiiieiiieiieeie ettt ettt e 42

3.1 7. DEPLOYMENL.....eiitiiiiieiieeie ettt ettt ettt ettt et e et e saeesateesnneens 42
3.1.7. 1. Challen@eSvveeeeeiieeiie ettt e e s 42
3.1.7.2. Security PractiCes........coveevuiriiriiiiiniieniieieeitete ettt 44

B8 TTUSE ettt ettt ettt et s e e 44
3.1.8.1. Challen@Esc..eeouieieriieieeieeteee et 44
3.1.8.2. SeCUIItY PraCtiCes.....ccuuiiiiiieiiieeciie ettt e 45

3.1.9. Larger SUIface ATCa........c.oecuiiiiieiiieiiieieeee ettt ettt 45
3.1.9.1. Challen@es.......eeeeviieeiieeeiie ettt e et e e s 45
3.1.9.2. Security PractiCes........covervuiriiriiiiiniieniieieeieete ettt 46

3.2. Development of the Framework for Security Modeling and Specification in

MIiCIOSETVICE ATCRILECTUIESeeutiiiiieiieeiie ettt ettt ettt ettt ettt e e seee et e e 46

3.2.1. General Security PrOPETIEScc.eieviieeiiieeiiie ettt e 47
3.2.1.1. SecurityLevelProvided...........ccooveiiiiiiiniiiiieie e 47

3.2.2. Network Perimeter Related Properties..........cceovveevvieecieeeciiieeieeeie e 48
3.2.2.1. NetworkPerimeterLevel.........cccoceriiniiiiniiniiiicceeeeeee 48

3.2.3. Edge Level Related Properties........ccveiiieeiiieeiiieeiieeiieeeee et 49
3.2.3. 1. EAELEVEL ..o 49
3.2.3.2. APIRequestPerSecond typecccceciieeiiieeiiieeiieeeieeeee e 50
3.2.3.3. APIRequestPerSecondMicroserviceName type.........cccceeeveeruvereveennenne. 51
3.2.3.4. MaxRateLimitEd@e.........ccceeeiiieiiiieieceeeeeeeeeeeee e 52
3.2.3.5. MaxXxRequeStMICIOSEIVICEcevueeruiieiieriieeieesiteeieeeiieeteeseveeieesieeeseee e 54
3.2.3.6. APIRequestPerSecondMicroserviceNameApp type......ccceeevveerveeernnennn 55
3.2.3.7. APIRequestPerSecondMicroserviceNameUser type..........ccceeveenneenee. 56

X

3.2.3.8. APIRequestPerSecondMicroserviceNameOperation_type.................... 57

3.2.3.9. RequestPerApplicationTYPecevuveeiieeiieiieeieeieeeeeeeeee et 58

3.2.3.10. ReqQUEStPEIUSETcciieiiiiieeiiiee ettt e e e 61

3.2.3.11. RequestPerOperationccceeecueeriieeieenieenieenieeeie et 64

3.2.3.12. MessagePayloadSizeLimit........cccccccueeeiiieeiiieeiieeeieecee e 67

3.2.4. Communication Related Propertiesccceoveeiiienieeiiienieeieesieeeesve e 68
3.2.4.1. SecureCoOmMMUNICAtIONeerueietieriieetiesiteeieesiteebeesiee e e setesbeesaeeenaee e 68

3.2.5. Data Related Properti€s..........cccuieruieriieiieeiierieeieesiee et eite e esieeereeseneevee e e 69
3.2.5.1. ABACCESSMOAEL........ooiiiaiieiieiee e 69

3.2.5.2. DataATREST ..coueiiiiiiiieiieee e 69

3.2.5.3. DataAtReStENCTYPHIONeeiiiiiieiiieiiee e 71

3.2.5.4. MicroserviceDataSensitiVitycccueerreereeerieenieeiienieeieeereeiee e 72

3.2.6. Log Related Properti€s.......cc.eeriieiieiiiiiieeieeiie ettt 73

R TR T B 150 T USRS 73

3.2.7. Deployment and Patching Related Properties............coceveevieriiniiiinicncnncnnns 75

R IR B o 110] o B ' oL USRS 75

3.2.7.2. DeploymentTyPe.cccccvueiiirieniieiiniiesieeie ettt 76

3.2.8. Trust Related Properti€s........cceiviieriieeiiieeiie ettt 78
3.2.8.1. TruStDOMAIN ...coevieiieiiiieiieeeeee et e 78

3.2.9. Authentication Related Propertiesccoeccvveeeiieeiiieeiieeeieeeie e 79
3.2.9.1. AuthenticationMicroservice ATrChiteCture.ceoueevuveereeeneeenieenieeieene 79

3.2.10. Authorization Related Properties..........ceoveeeriieeiiieeiieeeiieeeiee e 80
3.2.10.1. AuthorizationMicroservice Architecturec.ceveeeeneenienieneennennne. 80

3.2.10.2. CoarseGrained ArchiteCture.coceeviiiiiienieiiienieeeeee e 81

3.2.10.3. FineGrained ArchiteCture.cooueriiriiiiniieiecieseeeeeeee e 81

3.2.10.4. CentralizedFineGrained Authorizationcccceevieeieenieiieeneccieenne. 83

3.2.11. DECISION TTEES ...vveneieutiiieiieiieeitesie ettt sttt ettt ettt et sbe b 84
Chapter 4: EXPETIMENToeiiiiiiiiieeiieecteeecteeestee ettt eeeaeeeateeesaeessaaeeesaeesssaeessseeensseesnnseesssseennns 85
4.1. Description of the EXPerimentcccocieriieiieiieeiieeie ettt 85
4.1. Evaluation PTOCESSeeiuiiiiiiiiieiiee ettt sttt 86
4.3. Result of the EXPerimentc.ccccveiiieiiiiiiieiieeieeiieee ettt 93
4.4, ANalysiS OF RESUIL.....cccviiiiiiiiiie ettt e e e e 97

4.5, ODSEIVALIONS OF RESUIL.cceennee ettt e e e e e et e e e e e e e e e e eeeraaaeeaeaeaes 99

Chapter 5: Related WOTKcoouiiiiiiiiiieece et s 101
5.1. Security Analysis in Software ArchiteCture...........coccvveeviieeiiiieeiieeie e 101
5.1.1. Architecture Risk ANalySisc.ccciiriiriiiiniieiierie e 101

5.1.2. Security Vulnerability Approach with SAVE..........cooiiiiiiiiieeeeeeee, 102

5.1.3. Attack Surface Security ANalysiscccocierieeiiierieiiienie e 102

5.1.4. Security Architecture Tradeoff Analysis Method...........cccuveeeiieiiiienciieenieen, 103

5.1.5. Architectural Analysis fOr SECUIILYccoevvieiiierieiiiierieeeerte e 104

5.1.6. Security Analysis with Acme and Monte Carlo Simulation...........c.cccccceueee. 105

5.1.7. Security Analysis with Information Flow Modelingcccccoeevirneniennene. 105

5.2. AADL Security AnNexes 2019c..cooiriiiiiiiiiiiieieneestceeeee et 106

BTN TN 101041 0 1y 2RSSR 106
Chapter 6: CONCIUSIONSeiiuiiiiieeiieetie ettt ettt et e et e st e et e e bt e eabeesseesabeesseeenbeenseesnseas 108
6.1. SUMMATY Of WOTK...coeiiiiiiiei e e e e 108

0.2. FULUTE WOTK ...ttt ettt e eaneas 115
RETEIEIICES ...ttt et st ettt et et e bt e 116
AppendixX A: DeCISION TTEES.....ccuiruiiiiiiiriieieeieeeee ettt sttt 125
Y B (S, OSSPSR 126

A.2. Instructions on How to Use the Decision Trees..........ccoecueeriiiiiienieeiiienieeiieieeieee 127

A.3. Secure Microservice Architecture Decision TTeecccceevieriiieiiiiiieenieniieenieeieene 128

A.4. Network Perimeter Level Decision TTeeccccoeeverieniiiiiienieniecieneeseeeeeeeee 129

A.5. Edge Level Perimeter Level Decision Tree Part 1 of 4cccoeeiiieiiiiniiiieeeee 130

A.6. Edge Level Perimeter Level Decision Tree Part 2 of 4ccocoiieiiiiiniininiinieee 131

A.7. Edge Level Perimeter Level Decision Tree Part 3 of 4ccceeeiieeiiieniiieeieeeee 132

A.8. Edge Level Perimeter Level Decision Tree Part 4 of 4cccooieiiiiiniininiinienee 133

A.9. Service Level Perimeter Level Decision Tree Part 1 of 3. 134
A.10. Service Level Perimeter Level Decision Tree Part 2 of 3.......cccooviviniiniiieniennne 135
A.11. Service Level Perimeter Level Decision Tree Part 3 of 3........cccceiiiiiiniiiniin 136
A.12. Communication Decision TTEEcecueviiriiriinieiiiiienieece e 137
A.13. Logging DeciSION TTEC.......ccccuiiiiiiiiiiieeciieeeiie et e erteeeteeestaeeseaeeesaeesaeeeeaeeesaeeenns 138
A.14. Deployment and Patching Decision TTee.........cccecveriieiienieriiieiieeieesie e 139

xi

ALLS. Data DECISION TTEE. ..o e e e e e e e et e e e e e e e e e e eeaaaans 140

ALT6. Trust DECISION TTEE......evuieiiiiiiriieitiete ittt sttt sttt 141
Appendix B: SUrvey QUESTIONS.ciiiiiiiiiieeciieeeiieeeiieesiee et eeseteeetaeeeeaeessaeessaeessseeessseeensseens 142
Appendix C: SUIVEY RESUILScc.ciiiiiiiieiiecieeeeee ettt e 147
Appendix D: Research Study Background Survey Results.........ccccoeeviieiiiieciiecieeeieeeee e 158
Vita 160

xil

List of Tables

Table 1: Survey Questions and Concepts TeSted..........eevvuiieeiiieriieeciieeeie e 87
Table 2: Evaluation CrIteTia.......cccoiiiriiiiieieieietesteeteete ettt sttt 89
Table 3: Grading Scale for Criteria Regarding Identification of Properties and Structural
EIEIMENLS....c..eoiiiiiiiiiiieteeet ettt ettt b ettt ettt a et 92
Table 4: Grading Scale for Criteria Regarding Specification of Properties and Structural
EIEIMENLS....c..eoiiiiiiiiitirteete ettt ettt b et b ettt ae e 92
Table 5: Total Score Received by Treatment Groups for the Survey on Identification Related
QUESLIONS. ...t et ettt ettt e ettt e ettt e e et e e e tbeeeetae e e taeeesaeeeasaeeessaeesssseeasseeeessaeessseseassaeensseeesseeenssesans 93
Table 6: Total Score Received by Control Groups for the Survey on Identification Related
QUESEIONS. ...t eeiiee ettt ettt e ettt e e ett e e e etbeeeetaeeeeaseeetaeeeasaeeeasaeeeaseeeasseeeeasaeeasseeeasseeensseeensseesnsseeans 94
Table 7: Total Score Received by Treatment Groups for the Survey on the Specification Related
QUESEIONS. ...t eeiiee ettt ettt ee e ettt e e et e e e etteeeetaeeeetseeetaeeeasaeeeasaeeeasseeasseeeeasaeeasseeeasseeeesseeesseeensseeans 95
Table 8: Total Score Received by the Control Groups for the Survey on the Specification related
QUESEIONS. ...t eeitieeetiee ettt e ettt e e ett e e e etteeeetaeeeeaseeesaeeeaaeeeasaeesasseeesseeeeaseeeasseeeasseeeeaseeensseeensseeans 96
Table 9: Summary Comparison Tableccccoiviiiiiiiiiiiiiieceece e 107
Table 10: Security Challenges, Practices, Properties, and Decision Tree Summary Table........ 110

xiil

List of Figures

Figure 1: AADL Components and Connectors [80]........cccueerueeerieeeiiieeiieeeiieesieeesveeesveesnveeens 12
Figure 2: Component Type and Component Implementationceceeveeverieneenenieneenennenn. 13
Figure 3: Structure 0f @ PrOPEITYcooouiiiieiieeie ettt esnaeeea 14
Figure 4: Property ASSOCIATIONc.eeevieriieeiieitiesteetieeteettesteesteesbeesseesseesseessseesssesnseesssessseensnes 14
Figure 5: Property Set EXaAmPIe........cooiiiiiiieiiiiecie ettt e e e snaeeen 15
Figure 6: Property Declaration using Recordcooevioiiiiiiniiniiiiiieieeseeeeeeee e 15
Figure 7: Property Declaration using ENUMETationc.cccccueeeiiiieiiiieeiieeeiee e esvee e 16
Figure 8:Participant Scores for Identification of Properties and Structural Elements (Average
with 1 Standard Deviation)cceoiiiiiiiiiiiiiee ettt 97
Figure 9: Identification: Two Sample t-Test Assuming Unequal Variances..........c.ccccoevveenveenne.. 98
Figure 10: Participant Scores for Specification of Properties and Structural Elements (Average
With 1 Standard DeVIation)cccuieriiieiiieiieiie ettt ettt et eebeesaaeebeesaseenseenenas 99
Figure 11: Specification: Two Sample t-Test Assuming Unequal Variancesccceceeeueeenee. 99
Figure 12: Decision Tre€ KEYooiiiiiiiiiiiiiieieeeseeee ettt 126
Figure 13: Instructions on How to Use the Decision TTeescccccveeveriineenienieneenicnicneenns 127
Figure 14: Secure Microservice Architecture DeciSion TIeeccoceevervierienienieneenienieneeens 128
Figure 15: Network Perimeter Level Decision Tree.........ccoovviiiieiiiiiienieiiieieeeeee e 129
Figure 16:Edge Level Perimeter Level Decision Tree Part 1 of 4.........ccocoviiiininiiiiniences 130
Figure 17: Edge Level Perimeter Level Decision Tree Part 2 of 4.........cccooeiviniiniininincnnns 131
Figure 18: Edge Level Perimeter Level Decision Tree Part 3 of 4........ccocoiiiniiiiiininicene 132
Figure 19: Edge Level Perimeter Level Decision Tree Part 4 of 4.........cccooeeviiiniiiinincnnns 133
Figure 20: Service Level Perimeter Level Decision Tree Part 1 of 3.......ccoooeeiiiiiininiinn 134
Figure 21: Service Level Perimeter Level Decision Tree Part 2 of 3.........ccceoiviiniiiinincnnns 135
Figure 22: Service Level Perimeter Level Decision Tree Part 3 of 3.......ccoooiiiiiiiiininicnnn 136
Figure 23: Communication DeciSion TIEE..........ccceriirirriiriiriiieeieiieeiestesieeie et 137
Figure 24: Logging DeciS1on TTeE........cocuiiiuiiiiiiiiiiiieiiee ettt 138
Figure 25: Deployment and Patching Decision TIee........c.cccoceevuiriiniiiiiniineiieeienecicniesieeeenn 139
Figure 26: Data DeciSIon TTEE.........coviiiiiiiiiiiieieeeete et 140
Figure 27: Trust DECISION TTEEcc.eeiivuiiiiiiiiriiiieeteeteete ettt sttt s 141
Figure 28: MicCroService ATChItECIUIEccuviireiieeiiieeciieecieeeetee et ere e et e e s e e eveeeaneeeneeas 142
Figure 29: Question 1 Scores for Treatment GIOUPScc.eevueeriierieeiienieeiienieeeiee e eeee e 147
Figure 30: Question 1 Scores for Control GrOUPSccevvveerieeeriieeiieecre e eeree e 148
Figure 31: Question 2 Scores for Treatment GrOUPScc.eeveereiierieeieenieeiienie e see e 149
Figure 32: Question 2 Scores for Control GrOUPSeeevvveerieeeiiieeieeeire et esiee e e 149
Figure 33: Question 3 Scores for Treatment GrOUPScc.eeveeeiiierieeiieniieeiienieeiee e 150
Figure 34: Question 3 Scores for Control GrOUPSc.ceevveeerieeeriieeieeeee e e e 150
Figure 35: Question 4 Scores for Treatment GIOUPSc.eeveeriierieeiieniieeieenieeree e eeee e 151
Figure 36: Question 4 Scores for Control GrOUPSc.ceevveeerieeeriieeieee et esree e 151
Figure 37: Question 5 Scores for Treatment GIOUPScc.eevveeriierieeiieenieeieeeiie e e e 152
Figure 38: Question 5 Scores for Control GrOUPSc.eeeeveeerieeeiieeeieeeie e eereeeeree e 152
Figure 39: Question 6 Scores for Treatment GIOUPScc.eevveeeiierieeiiienieeiieniieeiee e e eene 153
Figure 40: Question 6 Scores for Control GIOUPSc..cevvveerieeeriieeeiiee et eeree e 154
Figure 41: Question 7 Scores for Treatment GrOUPScc.eevveeeiierieeiienieeiienieeiee e eiee e 155
Figure 42: Question 7 Scores for Control GIOUPSeecvveerieeeiieeeieee e eeieeeeree e eeaeeeeeeees 156

Xiv

Figure 43: Question 8 Scores for Treatment GrOUPSccveeeveeerieeeiieeeiieeeieeeereeeevee e 157
Figure 44: Question 8 Scores for Control GIrOUPScceeeveerieriiierieeiieneeeieeseeeree e ereeeaee e 157
Figure 45: Background Survey Result - No. of Years of Experience in Software Architecture 158
Figure 46: Background Survey Result - No. of Years of Experience in Software Security....... 158
Figure 47: Background Survey Result - No. of Years of Experience in Software Development159

XV

Chapter 1: Introduction
1.1.OVERVIEW

1.1.1. Motivation

In today’s society, software has become an integral part of everyday life and is used in
virtually every application domain. In particular, microservice architecture has become a popular
architecture style in recent years [9], and according to a series of surveys conducted by IBM
Market Development & Insights in 2021 [43], microservices are heavily used in many industries
worldwide. It is a popular choice for cloud-based projects due to the scalability in cloud
environments and flexibility in software development. Software developers are not limited in the
technology used to build each microservice since microservices are integrated via technology-
agnostic APIs [23]. Some notable examples of major entities that are using microservice
architectures are:

= In 2010, Netflix transitioned from monolithic architecture to microservice architecture. It
started using AWS Amazon to host more than 100 grained services [4].

= Monzo, a financial institution in the United Kingdom, announced its microservices
deployment. They have more than 1500 services running in its microservices deployment,
and they are using network isolation to make their deployment and microservices more

secure [26].

= In July 2019, Capital One, one of the leading financial institutions in the United States,
announced its microservices deployment. It consists of thousands of microservices on
several thousands of containers and thousands of Amazon Elastic Compute Cloud instants

[26].

According to the International Data Corporation [34], by 2022, 90% of all apps will feature

microservice architectures.

As software becomes more prevalent in day-to-day services and activities, software attacks

are increasing in frequency and severity. The following are examples of notable vulnerabilities

and attacks that took place between 2016 and 2022:

In 2017, Equifax [8, 52] had a data breach that affected at least 145.5 million individuals
in the U.S. and nearly 1 million people outside the U.S. The breach was caused by a known
vulnerability in Apache Struts which allowed unauthorized access to user data maintained
by Equifax.

In May 2019, Doordash [53] disclosed a data breach that exposed 4.9 million users’
personal data. The affected personal data included personal information such as names,
email addresses, delivery addresses, order history, phone numbers, hashed salted
passwords, the last four digits of credit card numbers, the last four digits of bank account
numbers, and about 100000 dashers’ driver’s license numbers. The affected personal data
was accessed by an unauthorized third party.

In August 2022, Doordash [50] announced that one of the third-party vendors that it uses
was compromised, and an unauthorized party was able gain access to some of DoorDash’s
internal tools using the stolen credentials of the third-party vendor’s employees. Personal
information maintained by DoorDash was affected in this breach. This included name,
email address, delivery address, phone numbers, basic order information, and partial
payment card information.

In August 2022, Twitter [21] confirmed that 5.4 million users were affected by a July 2022
data breach. The data breach was caused by a vulnerability in the system which allowed
anyone without any authentication to obtain a user's twitter internal identifier by providing
a phone number or email address even after the user has disabled this action in the privacy
setting [17].

Netflix [32] experienced a security breach when one of its subdomains was compromised.

Adversaries were able to serve any content on netflix.com and tamper with authenticated

Netflix subscribers and their data. The tampering of subscribers and their data was enabled

due to users’ cookies being accessible from any subdomains.

1.1.2. Problem Statement

Research shows that architecture and design flaws are leading causes of vulnerabilities in
software. According to the IEEE Computer Society’s Center for Secure Design, while a system
may always have implementation defects, security breaches in many systems are caused by design
flaws [75]. During its ongoing security push, Microsoft reports more than 50% of the uncovered
problems are architectural in nature [74]. According to the data published by MITRE, design
weaknesses represent approximately 75% of the 25 most dangerous software errors and they also
account for more than one-third of the current 940 known common weakness enumerations.
Architecture and design flaws represent at least 50% of the total reported vulnerabilities in software
systems [73].

There 1s a lack of consolidated design knowledge on how to build microservice
applications. With an increase in the adoption of microservice architecture in the development of
applications and the increase in security breaches in microservice based systems, there is a need
to examine and understand security issues that exist in microservice architectures. Security issues
can be summarized into five main points.

= Security is often considered as an afterthought, rather than during the early development
phases, despite the increasing number of security breaches and incidents. This means that
security aspects of the system are considered after the code has been written. Security
considerations are thought of as roadblocks that prevent software from being released on
time [8].
= There are more vulnerabilities per line of code in microservices than in equivalent
monolithic applications. According to the Evolution of the Secure Software Lifecycle 2018

Application Security Statistics Report, it is reported that for every 100,000 lines of code,

there are 39 vulnerabilities in a traditional application. In comparison, in microservice
architectures, there are 180 vulnerabilities [48].

Microservices present new security challenges that are not present in monolithic
applications due to the distributed nature of the architecture [18]. An example:
communications between microservices are over the network which means a request may
be susceptible to man-in the middle attacks.

= There is a lack of research in the area of microservice security [3, 23]. Microservice
security is not very well understood in both industry and academia. There is a lack of
comprehensive knowledge regarding how to build applications using microservice
architectures with security in mind.

. IBM Market Development & Insights team [43] describes 53% of the respondents
to their surveys considers security as one of the roadblocks in adopting or expanding the
use of microservices in their company despites the advantages offered by microservice
architectures. Pereira-Vale, A. et al. [3] and Berardi, D. et al. [23] also state that security
is one of the main challenges in using microservice architectures to develop complex

systems.

1.2.RESEARCH GOAL

The goal of the research is two-fold: 1) to study and document security properties that can

remediate security issues in microservice architectures; and 2) define an effective approach to

assist the software architects in formally defining security properties early on in the software

development lifecycle. The research examines microservice security from the perspective of

industry and academia. The questions driving the research are as follows:

RQ1: What are the security challenges in microservices architecture?
RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The expected outcome is a framework that provides sufficient support in formally defining
security properties and adding structural elements (components and connectors) in the architecture
that address software vulnerabilities in earlier stages of software development of microservice
architectures. The intent is to provide a framework with clear guidelines on how to build
applications using microservice architectures with security in mind. Such a framework would
integrate security properties and support software architects regardless of their level of knowledge

and experience in security.

1.3. SIGNIFICANCE OF THE RESEARCH

This dissertation defines a framework to support the design of microservice architectures
and remediate documented security issues. The framework enhances the ability of software
architects to formally specify security properties early on in the software development lifecycle.
It also includes the use of decision trees to guide software architects in determining what specific
security properties should be considered, how different security properties are related and can be
used together, and what additional structural elements (components and connectors) should be
considered when adding specific security properties. These security properties are derived from
existing security challenges and the corresponding security practices used to address them.

The impact of the work is that software vulnerabilities are addressed during early phases
of software development (architecture and design) rather than later in the software development
lifecycle. This helps to significantly reduce costs associated with software defect mitigation.
Studies have shown that the cost ratio in tackling a software defect, including security
vulnerabilities, is doubled if defects are discovered during the implementation phase compared to

the architecture and design phases. This ratio more than triples if defects are discovered during

testing. The work provides comprehensive support in defined security in microservice

architectures, especially for software architects who have minimal experience in society.

1.4.ORGANIZATION OF DISSERTATION

This dissertation is organized as follows. Chapter 2 provides an overview of software
architecture and microservice architecture. It also discusses the difference and similarities between
microservice architecture and service-oriented architecture. The last section in chapter 2 provides
an introduction to the Architecture Analysis & Design Language (AADL) and the existing security
annex.

Chapter 3 presents the research that was done to create the framework that guides software
architects in designing microservice architectures with security in mind. The chapter first presents
the existing security challenges in microservice architectures. It is followed by descriptions of
security practices that are used in the industry and described in literature. The chapter then presents
the development of the framework.

Chapter 4 describes the experiment performed to evaluate the practicality of the framework
and the observations and results of the experiment conducted in this dissertation. Chapter 5
describes related work on security analysis in software architecture and AADL security annex.
Chapter 6 presents the summary of the work and discussion of future work.

Appendix A presents the decision trees. Appendix B presents the survey questions of the
experiment. Appendix C presents the survey results from the experiment. Appendix D presents

the research study background survey results.

Chapter 2: Background

This chapter is divided into four major sections. The first section provides a high-level
overview of software architecture. The second section introduces microservice architecture. The
third section describes the differences and similarities between microservice architecture and
service-oriented architecture. The fourth section introduces architectural description languages,

which are an important mechanism for formally defining security properties.

2.1. OVERVIEW OF SOFTWARE ARCHITECTURE

Software architecture [9] describes the structure of a system, architecture characteristics
the system supports, architecture decisions, and architecture principles governing the design and
evolution over time. The structure of a system refers to the type of architecture style(s) the system
is implemented in [9]. The architecture style describes the components of the system, behavior of
each component, characteristics of the components (properties), and interrelationships among the
components [34]. Architecture characteristics [9] are the “ilities” or “quality attributes”, such as
availability, security, performance, and usability, that the system must support. They specify non-
domain design considerations, influence structural aspects of the design, and are critical to the
success of the application. Architecture decisions [9] are rules and constraints that govern how
the system should be built and what development teams are allowed and not allowed to do, such
as the presentation layer cannot access the database layer directly in a layered architecture.
Architecture principles [9] are guidelines or preferred methods given a particular circumstance,
such as asynchronous messaging between services can yield better performance in a microservice
architecture, thus use asynchronous messaging whenever is possible.

When designing a system, software architects will first analyze the requirements in the
problem domain to identify the architecture characteristics, such as performance, security, and
availability, that the system needs to support. Based on the identified architecture characteristics

and their priorities, architects will choose which software architecture styles would be suitable for

the problem domain. Examples of software architecture styles are layered architecture, event-
driven architecture, and microservice architecture [9].

In a layered architecture style [9], components are organized into layers with each layer
responsible for performing a specific role, such as presentation, business, and database. Each layer
provides an abstraction around the work that needs to be done to satisfy a particular business
request and typically only accepts requests from the immediate layer above it. Layered
architecture style is well suited for systems that require high testability and simplicity.

In an event-driven architecture style [9], components are decoupled, and they receive and
process events asynchronously. There are two primary topologies with the event-driven
architecture: the broker topology and the mediator topology. The broker topology is made up of
four primary components: an initiating event, an event broker which contains at least one event
channel, event processors, and processing events. The event flow begins with the initiating event
being sent to an event channel in the event broker for processing. An event processor accepts the
initiating event from the event broker and processes the event. Once the event processor completes
the processing, it generates the next processing event and sends it to the event channel
asynchronously for further processing. The other event processors listen for the next processing
event and react to it accordingly. The process continues until no one is interested in what the final
event processor did. The broker topology is great for systems that require extensibility,
performance, responsiveness, and scalability. The mediator topology is made up of five
components: an initiating event, an event queue, and event mediator, event channels, and event
processors. The event flow begins with an initiating event being sent to the event queue. The
event mediator, which is responsible for the workflow, accepts the initiating event from the event
queue, creates the corresponding processing events, and sends them to specific event processors
via dedicated event channels. The event processors process the processing events and provide
responses to the event mediator. The mediator topology is great for systems that require

recoverability, workflow control, and error handling.

2.2. MICROSERVICE ARCHITECTURE

Microservice architecture has become a very popular architecture style in recent years [9],
and according to a series of surveys conducted by IBM Market Development & Insights in 2021
[43], microservices are heavily used in many industries worldwide. Microservice architecture [65,
41, 23, 36] is a software architecture style where the software application is built as a composition
of microservices with each microservice addressing a single business need. Each microservice
runs in its own process, and is deployed independently of other microservices. Microservices
communicate with each other via lightweight protocols, such as hypertext transfer protocol
(HTTP).

Microservice is an independently releasable, deployable, technology agnostic, and business
domain bounded and scoped component [8, 45]. The implementation details of a microservice are
hidden. Data is typically isolated whenever possible. Coupling, including shared schemas and
databases used as integration points should be avoided in microservices [9]. Services offered by
the microservice are only exposed via network endpoints. Any changes made inside a
microservice will not affect other microservices. Once the change is made, a microservice can be
deployed and released without having to re-deploy other microservices. This makes each
microservice independently releasable and deployable [8].

Each microservice can be implemented in any language and using any technology that best
suits the purpose of the microservice and development experiences of the development team [11,
36]. Microservices communicate through lightweight messages via networks [11, 8]. This makes
microservices technology agnostic.

Each microservice addresses a single business need. The size of each microservice should
be relatively small due to the bounded context [8, 11, 36]. This makes each microservice business

domain bounded and scoped.

2.3. MICROSERVICE ARCHITECTURE VS. SERVICE-ORIENTED ARCHITECTURE

Microservice architecture has been seen as an evolution of service-oriented architecture
(SOA). Richards [55] explains that while it is true that the two architecture styles share some
characteristics, they have different taxonomy, service ownership model, service granularity, and
sharing components. The shared characteristics are: a. Both architectures are distributed
architectures where service components are remotely accessed through remote access protocol,
such as representational state transfer (REST); b. Both architectures place an emphasis on services
as their primary architecture components used to implement and perform functionalities.

Microservice architecture’s taxonomy supports two types of services: functional services
and infrastructure services. Functional services are business domain services and infrastructure
services refer to nonfunctional tasks, such as, authentication, authorization, and monitoring.
Functional services are accessible externally while infrastructure services are not exposed
externally. SOA’s taxonomy can have any number of service types; however, it typically supports
the following four basic types: business services, enterprise services, application services, and
infrastructure services. Business services are abstract and coarse-grain services that define the
core business operations performed at the enterprise level. Enterprise services are concrete and
coarse-grain services that implement the functionality defined by the business services. There is
usually a middleware component that bridges the business services and enterprise services
together. Application services are fine-grained and application specific services that are bound to
a specific application context and provide specific business services that are not found at the
enterprise level. Infrastructure services refers to nonfunctional tasks.

Services in microservice architecture are owned by application development teams,
whereas services in SOA are owned by different business organizations. Services in SOA require
coordination between different business organizations. It significantly increases the amount of

effort and time required during development, testing, deploying, and maintaining the services.

10

Service granularity in microservice architecture is smaller than SOA. Services in
microservice architecture are single-purpose services, whereas, the services in SOA can range in
size from small application to large product or subsystem.

SOA is an architecture style that features “share as much as possible”, whereas
microservice architecture features “share as little as possible”. SOA maximizes on component
sharing, whereas, microservice architecture minimizes on sharing.

After reviewing the similarities and differences between microservice architecture and
SOA, microservice architecture does share some of the same security challenges that exhibit in
SOA. This research only focuses on security challenges and corresponding security mechanisms

that are in microservice architecture regardless if they are also in SOA.

2.4. ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE (AADL)

Architecture description language (ADL) is a language used to describe a complex system
at a high level of abstraction that exposes a system’s structure as a collection of interacting
components. It allows software engineers to reason about system properties, such as performance,
schedulability, and security. There exists a number of ADLs, such as Aesop, Adage, Darwin,
Rapide, SADL, UniCon, Wright, C2, Meta H, Acme, and AADL. The proposed work will be
documented in AADL.

Architecture analysis and design language (AADL) [22] is a formal specification language
that allows software engineers to define software, hardware, and physical system components,
their interactions, and properties of the components. With the formal foundations and well-defined
semantics, it provides software engineers the capability to perform different types of analysis, such
as performance, security, and data integrity analysis, on the architecture based on standard
properties. AADL is also extensible to support annotation of models with user defined and

analysis-specific properties.

11

An AADL model is composed of component type and component implementation (please
see Figure 1 and Figure 2). Component type represents the externally visible characteristics of a
component, such as name, component category, interfaces, properties, modes, and logical flows.
Component implementation represents a blueprint of its internal structure in terms of
subcomponents. It defines subcomponents, connections, calls, and modes (if they are not defined
in the component type), details the flows associated with the component type that traverse the

various subcomponents, and adds or modifies properties that are previously defined in the

component type.

Modeling System Architectures Using AADL | Module 1
. -
AADL: Components and Connections
e Component Category
Component type ..-.............--" 7 * data E
identifier B PPPTTILL b fesu ram (grou 3
« component category ****"" [geeasassasssssansas 3 i. thr?;rdog gpp'i)lcation
* prototype : features : * « thread group :
* extends {component_type} : *port 3 A 5 * process 3
*features wwssssnssssssns --.-----)E * port group f- i« memory
» flow specification i ° parameter . i -~ device atform
L™ properties \ SIS accosn [& + (virtual) procesSor
K - I : * subprogram : *(virtual) bus .
» implements Sevsesesssesessanures . ayaem g
s pt e 1 t-abstract COmMposite :
P yp is one of s .
Properties \ | Package
* standard . Component implementation . public
* user defined . 5 == .
« . identifier | component classifier
o . + extends {component implementation} . private
s % « refines type component classifier
.
. X +SUDCOMPONENtS wm = == o == = o= -I
.
b' (X * connections a.,,
.
Property set %, ||l seanences e Connections
property types s, | - modes o treaa,) sy * data
property definitions *J * flow impkmentation & end-to-end flows ") « event
property values - propenies"‘ * event data
* port group
‘: - * access
: modes
i mode transitions 3 g
: mode configurations more detai |$>
Sessssssasesssasssnsnsnns ssssssssssnannnns
Version 2 reference
© 2015 Carnegie Mellon University 46

Figure 1: AADL Components and Connectors [80]

12

package CarSystem
public

with SEI;

with Actuator;

with UserlInterface;

with SoftwareApps;

with HardwarePlatform;

system Car
properties Component

SEl::WeightLimit => 1.0kg; [Type

end Car;

system implementation Car.impl

subcomponents
wrs: device Actuator::WheelRotationSensor;
ui: device Userlnterface::Userlnput;
ud: device UserInterface::UserDisplay;
bp: device Actuator::BrakePedal;
eng: device Actuator::Engine;
ca: device Actuator::CarActuator;
ccSystem: system SoftwareApps::CruiseControl.impl; Component
abs: system SoftwareApps::AntilockBrake; s Implementation
scs: system SoftwareApps::StablilityControl;
cc_mcu: system HardwarePlatform::cc_mcu;

connections
Car_impl_new_connection: port wrs.wrs_cc -> ccSystem.wrs_cc;
Car_impl_new_connection2: port ui.ui_cc -> ccSystem.ui_cc;
Car_impl_new_connection3: port bp.bp_cc -> ccSystem.bp_cc;
Car_impl_new_connection4: port ccSystem.cc_ud -> ud.cc_ud;
Car_impl_new_connection5: port ccSystem.cc_ca -> ca.cc_ca;

-

end Car.impl;
end CarSystem;

Figure 2: Component Type and Component Implementation
An AADL model is composed of the following elements:

1. Components

a. Application software components: They refer to the applicative parts of the

system. They include process, thread, data, and subprogram.

b. Execution platform components: They refer to computing hardware and

physical environment. They include processor, bus, memory, and device.

c. System: It represents a composite of software and platform components or

system components.

2. Connectors: They include port (data, event, and event data), subprogram,

parameters, and subcomponent access.

13

3. Properties: They define characteristics of the components and connectors. Each
property has a name, a type, and definition (Please refer to Figure 3). The property
type specifies the values that can be assigned to the property. The property

definition specifies which AADL model elements the property applies to.

AADL —
Property Name Property Type Keyword Property Definition
- A N7 & N V0 8 A

networkPerimeterLevel: enumeration (intrusionDetectionPrevention, firewallAccess) applies to (abstract, system, process, thread);

Figure 3: Structure of a Property
Property association is how values are assigned to properties and associated with
AADL model elements (Please refer to Figure 4). A basic property association is
made up of a property name, an assignment operator, a constant keyword (optional),
and property value. Property value can be a single value whose type matches the
type specified by the property, or a list of values separated by commas in
parentheses of the same type if the property has been defined to accept a list.
Operator +=> can be used to append value to a property that accepts a list of values.
“In mode” keyword can be used to assign property values that only hold under

certain conditions.

Property Associations:

Property Assignment Property Value
NaITG Operator e
r NN ki

<property name> => <property value>; -- For property with a single value.
<property name> => (<property value>, ..., <property value>); -- For property with a list of values and the values are separated by commas.
<property name> => [<property name> => <property value>; ... <property name> => <property value>;]; -- For property with record declaration

Figure 4: Property Association
AADL supports two types of properties: AADL standard properties and user-

defined properties. AADL standard properties are properties that are defined by

14

the Software Engineering Institute and encompass common attributes for the
AADL elements. User-defined properties are new characteristics to the AADL
elements. The AADL annex describes a set of properties that augment the core

AADL language with new elements.

AADL allows introduction of additional properties and property types through
property sets. Each property set provides a separate name space (Please see Figure
5). A property in the property set can be referenced using “::” in the same or another
property set. Property declaration defines a new property by declaring a property
name and by specifying a property type. “Record” keyword is used when multiple
fields are defined within a single structure (please refer to Figure 6). “Enumeration”

keyword is used when a set of literal elements are defined (please refer to Figure

7).

Property set name
A

r N\
property set Microservice_Architecture_Security Properties is

DataAtRest: type record(
description: aadlstring;
dataBlock: aadlstring;
dataCriticality: aadlinteger;
atRestEncryption: enumeration (required, not_required););

Type
Declaration

DataAtRestEncryption: list of I\\/Iicroservice_Architecture_Security_Propertieﬁ::DataAtRest applies to (data);

v
end Microservice_Architecture_Security Properties; Namespace Property Type

Figure 5: Property Set Example

Declaration for the "RequestPerApplicationType" property

RequestPerApplicationType: record (

Field within a record —t— description: aadlstring;

waitTime: Time;

microservice_API_requestPerSecond_App: list of

Microservice_Architecture_Security _Properties::APIRequestPerSecondMicroserviceNameApp_type;

);

Figure 6: Property Declaration using Record

15

Declaration for the "SecurityLevelProvided" property

securityLevelProvided: enumeration (networkPerimeterLevel, edgelLevel, serviceLevel,
communicationLevel, infrastructureLevel) applies to (abstract, system, process, thread, connection);

Figure 7: Property Declaration using Enumeration

16

Chapter 3: Methodology

This chapter presents the work that was done to address the research questions:
= RQI: What are the security challenges in microservices architecture?
= RQ2: What mechanisms are currently used to address the security challenges in
microservices architecture?
= RQ3: What approach can enhance the security modeling and specification in

microservice architectures?

3.1. SECURITY CHALLENGES AND SECURITY PRACTICES IN MICROSERVICE ARCHITECTURE

This section addresses the research questions of the security challenges in microservice
architectures (RQ1) and their corresponding security practices used and/or proposed to address the
security challenges (RQ2). The security challenges described in this section are: authentication,

authorization, logging, larger surface area, communication, patching, data, deployment, and trust.

3.1.1. Authentication

Authentication is the process of verifying the identity of an entity and checking who it
claims to be [41]. The following two sections describe the challenges in authentication and the

security practices used to address the challenges.

3.1.1.1. Challenges

In a microservice architecture, there are more authentication scenarios to consider
compared to an equivalent monolithic architecture, such as authenticating end-users accessing
microservices, authenticating microservices to other microservices, and authenticating external or
third-party services connecting to microservices via API [13, 63, 36]. This increases the

complexity in how authentication should be handled in microservice architectures.

17

Ayoub [13] and Fybish [63] state that since authentication is a cross cutting concern that
affects every microservice in a given microservice architecture, some developers will create global
authentication logic and assign the authentication responsibility to each microservice in the
microservice architecture. Having each microservice responsible for more than its intended
business needs is a violation of the single responsibility principle. Reusing the same code base
creates a central code dependency and can negatively impact the technology agnostic aspect of
microservices.

Management of credentials can be a challenge since there are significantly more credentials
representing different user accounts, microservices, databases, and virtual machines compared to
an equivalent monolithic architecture [63, 25, 8]. Pereira-Vale et al. [3] describes the challenge
associated with maintenance and storage of authentication information. If authentication
information is managed by an authentication microservice, an update is required whenever a new
microservice or a new user is added. If the authentication information is managed by individual
microservices, it increases the chances of the information being leaked should there be

compromises happening to individual microservices.

3.1.1.2. Security Practices

API Gateway

Newman [8] suggests that API gateway can be used for coarse-grained authentication, such
as preventing non-logged in users from accessing microservices, if the gateway can extract
attributes about the principal as a result of the authentication. There are a number of issues
associated with using API gateway for coarse-grained authentication. Coupling between
microservices and API gateway will increase since the API gateway needs to know who is allowed
access to which microservices. Since all traffic will have to funnel through the API gateway, the
API gateway became the single point of failure. The more functionality the API gateway has, the
greater the attack surface. Due to the mentioned issues, Newman [8] suggests the use of a gateway

to handle security between users and services. The gateway can manage handshaking with an

18

identity provider to perform authentication. Once the authentication is complete, the gateway
passes information about the authenticated user to microservices with the assistance of Shibboleth
or JSON web token.

Siriwardena and Dias [26] states that API gateway is the single-entry point to the
microservice architecture and it provides the following security features: a. expose external-facing
microservices via API to the client applications; b. work with an authorization server/service, such
as OAuth, to secure APIs that are exposed at the edge; c. enforce only authenticated client
applications with valid access tokens are allowed to communicate with microservices. It is done
by extracting the access token from the request and introspecting it through the authorization
server/service. If the access token is valid, it will forward the request from the client application
to the appropriate microservice. The communication between client application and authorization
server/service will affect the performance of the microservice architecture due to the increase in
amount of communication. Alternatively, if the access token received by the gateway is a JSON
web signature (JSON Web Token (JWT) signed by the authorization server), the gateway can
verify the token by inspecting its signature. If the signature is from a trusted party, then the
information contained in the token is trustworthy. One of the downsides of using JWT is that the
gateway won't know if the token has been revoked since the gateway is not verifying the token
with the authorization server. To address the revoking token issue, either the authorization server
will inform the gateway that a token is being revoked or the token will be short-lived and require
the token to be refreshed frequently. Another downside is that if the certificate used to verify the
token is expired, the gateway will not be available to verify the signature of the token. Extra work
is required to maintain the issuer's certificate. d. prevents throttling and DOS attacks.

Fybish [63] describes that API gateway can be used to control authentication for all
downstream microservices. The advantage is that it is easy to implement. The disadvantages are:
a. less secure because an attacker can gain access to any microservice once he/she bypasses the
API gateway, b. increase in complexity and what the API gateway should be responsible for since

the API gateway needs to manage different authentication rules for all microservices, c¢. API

19

gateway becomes a single point of failure, and d. overheads in process and communication since

different teams are responsible for the operations and maintenance of the API gateways.

Token-based Authentication

According to [70, 28, 26], tokens, such as API key and JSON web token (JWT), can be
used for service-to-service authentication. API key is a simple bearer token that identifies a service
and carries authentication information, such as ID and expiry time. It is generated by a developer
from a developer portal, and it is sent with the request to a downstream (server) microservice. The
downstream (server) microservice validates the identity of the upstream (client) microservice
before processing the request.

JWT is a bearer token that carries claims about the service, expiry time, audience, and other
standard JWT claims. JWT is either signed or encrypted by a symmetric authenticated encryption
scheme. Validating of tokens will take place before a downstream (server) microservice accepts a
request from an upstream (client) microservice.

JWT has the advantage over simple bearer tokens because it can be accepted by many
different APIs due to the use of public key signatures. One of the disadvantages of using a bearer
token is that it can be used by anyone, if captured, until it expires. Therefore, one must secure the
communication channel with transport layer security (TLS) to reduce the risk of an intruder
stealing the bearer token. The second disadvantage is that a portal for generating JWTs is required.
The third disadvantage is that a mechanism needs to be in place to support revoking of tokens
when a service retires. [70, 28, 26]

Madden [70] further suggests having the following four components when using token-
based authentication: client-side token storage, server-side token storage, hash-based message
authentication code (HMAC) token store, and a standard way to communicate tokens between
client and server. Since authentication tokens need to be validated on every request, it is important
to consider that when selecting which database to use to store the tokens since the database

transaction for every lookup can be costly. The recommendation is to use non-relational database

20

backends, such as Redis in-memory key-value store or NoSQL JSON. To lower the risk of various
threats, such as tokens being injected to the database, tokens being modified, tokens being deleted,
and tokens being stolen and replayed to API, the tokens in the database should be stored using
hash-based message authentication code (HMAC) to protect tokens against tampering and forgery,
the database should be separated from the API server to ensure that external clients do not have
direct access to the database, and communication between the database and the API server should
be protected with TLS. Each of the components should be classified with a different trust
boundary. The other aspect to consider when dealing with tokens is token deletion. Once a token
is deleted, it should never come back to life.

Subramanian and Raj [57] describes how token-based authentication works. The client
application makes a request to an authentication server for an access token. After the
authentication server validates the mandated credentials from the client application, it issues an
access token to the client application. The client application sends the access token in the
Authorization HTTP header with an API request. The API gateway validates the access token
with the authentication server. Once the access token is validated, the API gateway forwards the
request along with the access token to the corresponding microservice.

According to [26], JWT can be used in external to service authentication. An external
application requests an access token from the security token service (STS). The STS generates a
JWT which contains user context related to the external application. The external application can
then use the JWT in an HTTP header when invoking a microservice.

Yarygina and Bagge [18] describes the use of security tokens such as JWT for user to
service authentication. Once the user is authenticated by an authentication service within the
microservice architecture, a security token is generated to represent the client’s identity. The
security token will be sent to the client via TLS. The client will provide the security token
whenever it makes a request. The security token along with the request will be passed from one

microservice to another microservice to complete the request. Upon receiving the security token,

21

a microservice will validate and verify the security token before processing the request. If the

security token is invalid, the microservice will reject it and stop the request processing.

Certificate-based Authentication

Mateus-Coelho et al. [4], Siriwardena and Dias [26], Yarygina and Bagge [18], Newman
[8], and Barabanov and Makrushin [28] suggest the use of certificates along with TLS/MTLS for
service authentication.

Certificate-based authentication [35, 14] is a cryptography technique that uses a certificate
to identify an entity before granting any type of access [60]. A certificate contains information
about its owner, a public key of the owner, and information about its issuer. The following explains
how the certificate-based authentication works in a microservice architecture along with
TLS/MTLS communication protocol. A microservice needs to request a certificate from a
certificate authority (CA). It is done by submitting a certificate signing request (CSR) form along
with its public key to the CA. Once the CA completes the verification process of the information
on the CSR, it will sign it and send it back to the microservice. Before communication between
downstream (server) and upstream (client) microservices can take place, they need to authenticate
themselves to each other. When the TLS communication protocol is used, the downstream (server)
microservice will provide its signed certificate along with its public key to the upstream (client)
microservice. The upstream (client) microservice will verify the downstream (server)’s certificate
by checking the signature of the CA who signed it. If the CA is trusted and the downstream (server)
microservice’s certificate is valid, the authentication process is complete. The upstream (client)
microservice creates a session key that will be encrypted with the downstream (server)
microservice’s public key. The downstream (server) microservice decrypts the session key,
generates an encrypted acknowledgement with the session key, and initiates encrypted
communication with the upstream (client) microservice. When the MTLS communication

protocol is used, an upstream (client) microservice needs to authenticate the downstream (server)

22

microservice and vice versa. Once the microservices are done verifying each other’s authenticity,
then they can communicate with each other after exchanging the session key.

An advantage in using certificate-based authentication is that the certificates MTLS uses
are time-bound. In the event that the certificate and the corresponding private key are
compromised, the vulnerability is limited by the lifetime of the certificates. A disadvantage is that
certificate-based authentication is a centralized solution that is not very scalable and the

implementation can be complex [25].

API Key-based Authentication

Mateus-Coelho et al. [4] and Newman [8] suggest the use of API keys for service-to-service
authentication. With API keys, the downstream (server) microservice generates a unique key for
each of the upstream (client) microservices. Whenever an upstream (client) microservice makes
a request to the downstream (server) microservice, the upstream (client) microservice sends the
request along with a unique key. The downstream (server) microservice verifies the upstream
(client) microservice’s key. If the key is valid, the downstream (server) microservice processes
the request. If the key is not valid, the downstream (server) microservice rejects the request.

API key-based authentication is easy to implement and use compared to other types of
authentication methods. The authentication is done by including a key in the request and verifying
the key is valid. Most developers are familiar with API keys, and therefore, no extra training is
required. However, if the key is stolen, any microservices will be able to use it to request all the
services associated with the key from the downstream (server) microservice as if they are the
owner of the key. If any of the services involve write, update, or delete access to any data, it can
be a huge security concern. It is not very secure compared to other technology and it can be leaked
easily, such as showing up in logs or extracting the API keys from code [49]. To reduce the
security concern, it is recommended to limit API Key-based authentication for services that

involve read-only data [44].

23

Hash-based Message Authentication Code

Mateus-Coelho et al. [4] suggests the use of hash-based message authentication code
(HMAC) for service-to-service authentication. HMAC is a cryptographic technique that uses a
hash function and a secret key for authentication [31]. HMAC [4, 31] works as follows: The
downstream (server) and upstream (client) microservices share a secret key and have a mutual
agreement on how a message digest is calculated. When the upstream (client) microservice wants
to send a request to the downstream (server) microservice, the upstream (client) microservice first
creates a message digest by combining the request and the secret key, and then sends the message
digest along with the original request to the downstream (server) microservice. Upon receiving the
message digest and the original request, the downstream (server) microservice calculates a
message digest by hashing the original request with the secret key that it shares with the upstream
(client) microservice. If the calculated value matches the digest sent by the upstream (client)
microservice, then the data integrity and authenticity of the request is guaranteed. The integrity of
the request is preserved because the message was not modified in transit. The authenticity of the
microservice is known because the downstream (server) microservice knows who the upstream

(client) microservice is.
OpenID Connect

Goes de Almeida et al. [41], Banati et al. [25], Mateus-Coelho [4], and Yarygina and Bagge
[18] mention OpenlD Connect (OIDC) as one of the authentication protocols used on top of OAuth
2.0 used for user authentication in a microservice architecture.

OIDC [42] is a protocol that provides an identity service layer that sits on top of OAuth
2.0. It allows the delegation of the responsibilities of user authentication and claim generation of
authenticated users and authentication events to authorization servers.

The following explains how OIDC can be used in a microservice architecture for
authentication. It begins when a user (end user) wants to access a microservice (relying party).
The microservice redirects the user to an OpenlD provider, which is an authorization server that

has implemented OIDC. An OpenlD provider is used to authenticate a user and return claims

24

about the authenticated user and authentication event. The user interacts with the OpenID provider
to get authenticated. If the authentication is successful, the user is being redirected back to the
microservice with the authorization code. From the OpenlD provider, the microservice can obtain
an ID token, access token, and optionally a refresh token with the authorization code. If the
microservice needs additional information about the user, it can use the access token at the OpenlD
provider’s userinfo endpoint. With the ID token, the microservice has proof that the user has been
authenticated [42]. The microservice can use the ID token to communicate with other
microservices on the user’s behalf. The other microservices can validate the signature on the ID
token with the public key of the OpenID provider before providing a response.

An ID token is a security token which contains claims about an authenticated user and
event. It is used to convey claims to a microservice about an authenticated user and event, and it
is encoded in JSON Web Token (JWT) format. The ID token has three parts: header, payload, and
signature. The header contains metadata of the token, such as, the type, and the signature algorithm
used to protect the integrity of the claims in the payload. The payload contains claims about the
authenticated user and event. The signature contains a digital signature created based on the
payload and the secret key of the OpenlD provider. A microservice can validate the signature on
the ID token with the public key of the OpenlD provider. It calculates the hash of the payload,
decrypts the digital signature with the public key of the OpenlD provider, and compares the hashes.

If they match, then the integrity of the claims in the payload is preserved. [42]

Federated Identity Solution
Rountree [38] and [68] describe the use of federated identity solution to separate user
authentication from application logic and to delegate authentication to an identity provider. The
federated identity solution is composed of two required components: identity provider and service
provider. The identity provider is responsible for authenticating entities against its credential store.
Once authentication is complete, the identity provider will allow access to the user’s identity

information. The service provider is responsible for providing services to others based on the

25

user’s identity from the identity provider. It trusts the user’s identity from the identity provider
and will not perform additional authentication.

The following explains how federated identity solution can be used in a microservice
architecture for authentication. When a client application wants to access a microservice, the client
application needs to be authenticated by an identity provider. The identity provider authenticates
the client application against its credential store. If the authentication is successful, the identity
provider will issue a security token that contains claims about the user’s identity. A security token
service might transform and augment claims in the token issued by the identity provider, when
necessary, before the security token is sent to the client application [68]. The client application
can then use the security token to request service from the service provider. The service provider
trusts the claims in the security token and will not perform additional authentication.

The advantages of using federated identity solution are [38, 68]:

= Identity provider is the only component that has access to user’s credentials.

Microservice only has access to the user’s identity information provided by the identity
provide and not the user’s credentials. In the event that a microservice is compromised,
no user’s credentials are exposed.

= Authentication is separated from the microservice business logic. It simplifies the

development of microservice.

The disadvantages of using federated identity solution are [38, 68]:

= [f the identity provider is compromised or the credential the client application uses to

log in is compromised, an attacker can gain access to all the microservices the user
credential has access to.

= The use of federated identity solution requires infrastructure setup, support of extra

hardware and software, and conformation to the standards followed by other
organizations. The cost of using federated identity solution might outweigh its benefits.

= Authentication can be a single point of failure.

26

3.1.2. Authorization

Authorization is the process of granting an entity permission to do or own something [79].
An entity can be a person or a system. Each entity should only be able to perform actions on
microservices it is allowed to. The following two sections describe the challenges in authorization

and the security practices used to address the challenges.

3.1.2.1. Challenges

Managing credentials and their access rights in a microservice architecture is more
challenging since there are a lot more credentials representing different user accounts,
microservices, databases, virtual machines, and other components in a microservice architecture
compared to an equivalent monolithic architecture [8]. There are more authorization scenarios to
consider in a microservice architecture compared to an equivalent monolithic architecture, such as
authorizing a microservice to call an API on the user’s behalf and authorizing microservices to
access other microservices [63, 25]. This increases the complexity in how authorization should
be handled in microservice architectures.

Ayoub [13] and Fybish [63] state that since authorization is a cross cutting concern that
affects every microservice in a given microservice architecture, some developers will create global
authorization logic and assign the authorization responsibility to each microservice in the
microservice architecture. Having each microservice responsible for more than its intended
business needs is a violation of the single responsibility principle. Reusing the same code base
creates a central code dependency and can negatively impact the technology agnostic aspect of
microservices. Banati et al. [25] states that if a microservice is required to handle authorization at
the service level and needs to store and administer user’s data, it increases the chances of personal
information being leaked and accessed by unauthorized entities.

When it comes to the container-based microservices, maintaining service credentials and

access control policies can be more challenging. According to [26], a container-based

27

microservice is immutable meaning that once the container is up, it does not maintain any runtime
states or any changes made to its file system. It means that extra steps need to be taken to maintain
the dynamic list of allowed clients and access control policies and service credentials since service
credentials would be rotated periodically.

Newmon [8] describes the confused deputy problem as one of the authorization challenges.
The confused deputy problem refers to an upstream (client) microservice tricking downstream

(server) microservices into doing something they should not be doing.

3.1.2.2. Security Practices

API Gateway
API gateway can be used to centralize the enforcement of coarse-grain authorization at the
edge for all downstream (server) microservices [28, 63, 26]. That way, each microservice does not
have to worry about access control to its services.
The disadvantages of using API gateway to perform authorization are [20, 63]:
= When the microservice architecture grows, the authorization decisions can get very
complicated. If all authorization decisions are put on the API gateway, the API
gateway can become unmanageable.
= API gateway becomes the single point of failure.
= API gateway is typically owned by the operation teams. API is owned by
development teams. Development teams need to communicate with the operation
teams whenever an authorization rule requires changing. It increases the overheads
in process and communication.
= The use of API gateway can make the microservice architecture less secure when
an attacker bypasses the API gateway and gains direct access to microservices.
The advantage of using API gateway to perform authorization is that it is easy to implement

since it is centralized [63].

28

Security Token

Yarygina and Bagge [18] suggests the use of security tokens along with access control
mechanisms for user authorization. Security tokens can carry authorization information of the
user. Based on the authorization information, the system can determine which microservice it can
request service from.

Banati et al. [25] describes the use of tokens for user authorization. After the user has been
authenticated, the identity and access management component generates a time-sensitive JSON
Web Token (JWT). The JWT is then appended to every request. Microservices are able to manage

the users and their rights based on the information specified in the token.

OAuth 2.0

OAuth 2.0 [16] is an authorization framework that gives applications a way to make API
requests without the need for users to share their credentials and with limitations on what the
applications can do. Microservices do not have to worry about a user's credential when a
microservice is trying to access features from another microservice on the user’s behalf. Goes de
Almeida et al. [41], Banati, A. et al. [25], and Yarygina and Bagge [18] suggest the use of OAuth
2.0 for authorization in a microservice architecture.

The following explains how OAuth with proof key for code exchange (PKCE) can be used
in a microservice architecture for user to service authorization involving client applications, e.g.,
desktop applications, web applications, or mobile applications, that are capable of handling HTTP
redirects. If the client application is not registered with the OAuth server, it needs to complete
the registration first to obtain a pair of credentials, which includes a client application identifier
and client application secret. The application secret is only used when a client application is
capable of keeping a secret. Some client applications, such as JavaScript applications, cannot keep
a secret, therefore, the application secret is not used. [16]

It begins with a user (resource owner) who wants to use an application to access a

microservice (resource server) on his/her behalf. The application generates a PKCE secret (code

29

verifier) and hashes it. The generation and hashing of PKCE secret and is done on every request.
The application redirects the user’s browser to an OAuth server’s authorization endpoint along
with the hash (code challenge). Once the user (resource owner) completes the authentication, the
OAuth server (authorization service) requests confirmation from the user regarding the
application’s request to access the microservice. Once the user confirms, the OAuth server
generates and sends an authorization code to the user’s browser. The user’s browser then sends
the authorization code to the application since there is no direct communication between the OAuth
server and the application. The application makes a POST request with the authorization code,
the application ID, the application password, and the plaintext PKCE secret to the OAuth server’s
token endpoint in exchange for an access token. The purpose of sending the plaintext PKCE secret
is to confirm that the sender of this POST request is really the application itself. The OAuth server
calculates the hash using the PKCE secret and compares it with the hash sent by the user
previously. If they match, then the OAuth server knows it is the application who is making the
request for the access token and sends the application the access token. The application can then
communicate with the microservice to access the resource with an access token. The microservice
verifies the application’s access token with the OAuth server before allowing access to the
requested resource [16]. The access token is meant for resource access and is not intended to
convey information about the authentication event or the user. The authentication step in OAuth
is used to validate a user's entitlement to give consent to authorize an access request for a resource.
[42].

If an application is an Internet of Things (IoT) device, such as an Apple TV, the device
authorization flow is used instead. The flow begins when the user wants to use a primary device
that requires access to a microservice. The primary device must be able to make outbound HTTPS
requests. The primary device sends an authorization request along with the device ID (client ID)
to the OAuth server. The OAuth server sends a device code, end-user code, and a user verification
universal resource identifier (URI) to the primary device. The primary device shares the end-user

code and verification URI with the user. The user accesses the verification URI on a secondary

30

device. The secondary device must be capable of supporting user interaction to authenticate and
authorize API requests to the microservice. Once the user is authenticated, the OAuth server asks
for the user for the user code and for authorization of the API call. The user provides the user code
and consent. The primary device continues to poll the OAuth server. Once the user consents, the
OAuth server responds to the primary device’s next polling request with an access token and a
refresh token if applicable. The primary device can use the access token to call the microservice’s
API on the user’s behalf. [42]

The communication involving the user’s browser is considered as the front channel. Front
channel passes data via the browser’s address bar as a redirect which is susceptible to request and
response being modified by malicious parties. The communication between the application and
OAuth server is considered as the back channel. Back channel involves HTTPS requests to and
from application to server, the communication channel is encrypted and cannot be tampered with.
Refresh token is a special token used to get a new access token without having the user visit the
OAuth server and to keep the user logged in. The refresh token is always between application and
authorization server. API does not accept refresh tokens [16].

The use of OAuth in a microservice architecture provides consistency in user experience
as far as how authorization is handled and how security is managed. This makes it easier for users
to identify fake authorization prompts [16]. The drawback in using OAuth is performance due to

the increased communications between microservices and OAuth server.

Certificates
Yarygina and Bagge [18] suggests the use of certificates for authorization. If the
microservice architecture uses MTLS with a self-hosted public key infrastructure, a certificate
should be created for each microservice type. To allow a microservice to have access to another
microservice, a trust list by certificate type should be established. By default, no microservice will
allow access to another microservice. If one microservice needs to have access to another

microservice, the microservice needs to be added to another microservice’s trust list prior.

31

Access Control System

Barabanov et al. [28] describes three different ways in how an access control system can
be used for service level authorization in a microservice. In a typical access control system, the
following components are included: a. Policy administration point (PAP) which allows an
administrator to define and maintain access control rules via an user interface; b. Policy decision
point (PDP) which uses access control rules defined in PAP to make access decisions; c. Policy
enforcement point (PEP) which enforces the access decisions made by the PDP in response to
incoming requests; and d. Policy information point (PIP) which maintains additional attributes that
can assist PDP when making access decisions. The three different ways are a. Decentralized
pattern, b. Centralized pattern with a PDP, and c. Centralized pattern with an embedded PDP.

When an access control system is implemented using the decentralized pattern, each
microservice is responsible for making access decisions (PDP) and enforcing the access decisions
made by the PDP (PEP). This pattern offers more fine-grained access control because the access
control rules are more domain specific. However, the development team must be able to configure
the access control rules correctly and manual configuration is not scalable.

When an access control system is implemented using the centralized pattern with a PDP,
each microservice is responsible for enforcing access control decisions (PEP). The defining of
access control rules (PAP), the decision making based on access control rules (PDP), and the
maintenance of additional attributes (PIP) are shared among all microservices in the same
architecture. This pattern offers flexibility in managing the access control rules, access decision
policies, and attribute collection since they are decoupled from the microservices who use them.
However, the latency suffers due to additional network calls from the microservices to the PDP.
It is recommended to implement this pattern along with the other patterns to avoid single point of
failure and to enforce defense in depth principle.

When an access control system is implemented using the centralized pattern with an
embedded PDP, each microservice is responsible for making access decisions (PDP) and enforcing

the access decisions made by the PDP (PEP). The access control rules (PAP) and attributes (PIP)

32

are defined centrally and are delivered to embedded PDP in the microservice. Latency is not
affected by this pattern due to the embedded PDP. It is recommended to implement this pattern
along with the other patterns to avoid single point of failure and to enforce defense in depth
principle and to beware of the approach used to propagate the update from the centralized PAP to

each microservice.

Centralized Upstream Authorization and Decentralized Authorization

Newman [8] suggests two mechanisms in addressing the confused deputy problem: a)
centralized upstream authorization and b) decentralized authorization. Centralized upstream
authorization refers to all required authorization to be performed as soon as the request is received
in a system, and once all required authorization is processed, the downstream microservices can
assume the requests are allowed under the implicit trust principle. The issue with the centralized
upstream authorization is that the upstream microservice or gateway has knowledge of the
functionality provided by the downstream microservices and the access control of those
functionalities. This violates the principle of independent deployability and creates the single point
of failure.

Decentralized authorization refers to having the downstream microservice where the
functionality being requested lives to handle the authorization based on information of the
requestor. The issue with decentralized authorization is that microservice has additional
functionality on top of the single business need it is responsible for. The other issue is that
additional information needed to process authorization needs to be passed from one upstream

microservice to downstream microservice.

33

3.1.3. Logging

3.1.3.1. Challenges

When microservices are spread across different platforms, security may be out of the
control of the microservices owners and completely dependent on the platform environment
owner. Collecting the required and necessary information to diagnose what went wrong and
correlating requests among microservices become challenging [4, 26, 8, 32, 19]. For microservices
that are deployed using containers, the audit logs are not kept at each node running the

microservices [26].

3.1.3.2. Security Practices

The use of distributed tracing systems, such as Jaeger and Zipkin, and logs to keep track
of essential information that can provide knowledge about exploitation, how the system was used,
and weak points are proposed [26, 4].

Since it is common for microservices to be built with different technologies, it makes the
structure of the logs and the amount of information collected even more important. The structure
of the logs will impact how they need to be parsed and how logs can be combined to represent
complete requests for analysis. The amount of information collected will also impact the level of
difficulty in diagnosing a problem. It is recommended to collect the following information as a
minimum: name of the service, name of the logged-in user, IP address, correlation ID, time at

which the message arrived, time taken, name of the method, call stack, and HTTP code [12].

3.1.4. Communications

3.1.4.1. Challenges

Sun et al. [32] and Henrique et al. [19] describe communication between microservices as
one of the security challenges in a microservice-based system. In a microservice-based system,

microservices are required to communicate with each other over the network in order to complete

34

requests. If the communication between microservices is not secured, it will expose the
microservice-based system to different types of attacks, such as man-in-the-middle attack and
session/token hijacking [2, 4]. On top of that, microservices can be developed by different teams.
Improper interception and inappropriate access can happen if the teams do not agree on the

communication protocol between microservices.

3.1.4.2. Security Practices

TLS

Siriwardena and Dias [26] and Yarygina and Bagge [18] describe the use of transport layer
security (TLS) to encrypt network traffic between microservices and to protect communication
between microservices for confidentiality and integrity. TLS can be used by any application-layer
protocol to secure communications, such as Java Database Connectivity over TLS and Simple
Mail Transfer Protocol over TLS. TLS also provides one way authentication where the
downstream (server) microservice provides a certificate to the upstream (client) microservice for
identity verification before the microservices communicate with each other.

To enable TLS communication, the key provisioning process steps are followed: 1. A
private and public key pair is generated for each microservice, 2. A certificate-signing request is
generated and submitted for approval to the team who owns a corporate certificate authority (CA),
3. A CA-signed certificate is generated for each microservice, and 4. The key pair and certificate
are deployed with each microservice. The key provisioning process can be done manually or

facilitated by a certificate management framework, such as Lemur.

MTLS
In addition to TLS, Siriwardena and Dias [26] and Yarygina and Bagge [18] also suggests
the use of mutual transport layer security (MTLS) to encrypt network traffic between
microservices and to protect communication between microservices for confidentiality and

integrity. MTLS also provides two-way authentication where the downstream (server)

35

microservice provides a certificate to the upstream (client) microservice for identity verification
and the upstream (client) microservice provides the downstream (server) microservice for identity

verification.

3.1.5. Data

3.1.5.1. Challenges

In a monolithic architecture, data is typically stored in a centralized database and accessed
by modules within the architecture when needed. In a microservice architecture, data is typically
owned and stored in each microservice. It is not a requirement that each microservice must own
and store data. To fulfill a request in a microservice architecture, it is very common that multiple
data sets are accessed in various microservices. Comparatively speaking, data moves around an
architecture more often in a microservice architecture than in a monolithic architecture, and this

makes securing data more challenging [8].

Data in Transit

Newman [8] describes four main challenges regarding data in transit. The first and second
challenges are about the identity of downstream (server) and upstream (client) microservices.
Downstream (server) microservice refers to the microservice receiving a call from another
microservice. Upstream (client) microservice refers to the microservice making a call to another
microservice. Newman [8] suggests the need for the upstream (client) microservice to verify the
identity of the downstream (server) microservice to ensure that the upstream (client) microservice
is communicating with an authentic microservice. A malicious party can impersonate a
downstream (server) microservice in an attempt to steal all the receiving data. The downstream
(server) microservice needs to verify the identity of the upstream (client) microservice to ensure it
is an authentic microservice requesting for service. A malicious party can impersonate an
upstream (client) microservice in an attempt to request for data that it does not have access to. The
third challenge is about the visibility of data. When data is sent across the network between an

36

upstream (client) and a downstream (server) microservices and vice versa, it is possible for a
malicious party to see the data. The fourth challenge is about data manipulation. When data is sent
across the network between an upstream (client) and a downstream (server) microservices and vice

versa, it is possible for a malicious party to manipulate the data.

Data at Rest
Many of the high-profile security breaches involve attackers acquiring and reading data at
rest. Newman [8] states that one of the root causes of security breaches is because data is stored
in an unencrypted form. Once a malicious adversary is able to compromise the microservice,
he/she can have unlimited access to the data stored within the microservice. Another root cause is

that there are fundamental flaws with the protective mechanism used on data.

Data Sharing

In a monolithic application, data is shared via session or can be accessed via a centralized
database. In a microservice architecture, data is stored and owned by each microservice. When a
downstream (server) microservice needs data about a request, the upstream (client) microservice
needs to pass the requested data explicitly to the downstream (server) microservice. It is possible
that a malicious adversary can modify the data during transit [26].

There is also a question of how much data should be sent across the network in order to
fulfill a request and how much data does each microservice require in performing its part of the
request since it is very rare for a request to be fulfilled by a single microservice in a microservice

architecture.

3.1.5.2. Security Practices

TLS and MTLS
Newman [8] suggests the use of transport layer security (TLS) and mutual transport layer
security (MTLS) to protect data in transit. TLS provides encryption of data which prevents data
from being visible to other unauthorized entities when data is being sent between two

37

microservices. It also provides authentication of the downstream (server) microservice when two
microservices are communicating with each other. The downstream (server) microservice
provides a certificate to the upstream (client) microservice. The upstream (client) microservice
verifies the identity of the downstream (server) microservice before establishing communication
between microservices. TLS is recommended when HTTP communication is used. If both the
downstream (server) and upstream (client) microservices require authentication, then MTLS
should be used to protect data in transit. With MTLS, on top of the downstream (server)
microservice providing a certificate to the upstream (client) microservice for verification, the
upstream (client) microservice needs to provide a certificate to the downstream (server)

microservice for verification before establishing communication between microservices.

MTLS and Service Mesh
When it comes to the identity of the upstream (client) microservice, Newman [8] suggests
a number of ways to address the issue. The downstream (server) microservice can request the
upstream (client) microservice to provide additional information, such as client-side certificate and
a shared secret, to prove who it is. MTLS via certificates and service mesh can also be used to

handle the authentications between upstream (client) and downstream (server) microservices.

Secure Communication Protocols
Newman [8] suggests the use of secure communication protocols, such as HTTPS, and
message authentication code, such as hash-based message authentication code, to guarantee the

integrity of the data from the upstream (client) microservice.

Encryption
For protecting the data at rest, data should be encrypted by well-known encryption
algorithms [8, 4, 26]. Encryption can be done at the disk-level and application-level [26].
However, Newman [8] points out while it is good to encrypt everything, the downside is

computational overhead. He suggests breaking down microservices into more fine-grained

38

microservices, evaluating which data set is critical to the operation and requires storing, and

identifying which data set contains sensitive information that requires encryption.

JWT

According to [26, 8, 28, 18], ISON Web Token (JWT) can be used to secure data in transit.
The JWT is a container that carries contextual data and is passed from one microservice to another
microservice so that microservices can share context. Upon receiving the JWT, a microservice
validates the signature of the JWT before processing the request. Some microservices will also
validate the audience field of the JWT. If the JWT is invalid, the microservice will reject it and
stop the request processing.

Yargina and Bagge [18] and Barabanov and Makrushin [28] also suggest the use of security
tokens such as JWT for propagating user identity throughout the microservices architecture. Once
the user is authenticated by an authentication service within the microservice architecture, a
security token is generated to represent the client’s identity. The security token will be sent to the
client via TLS. The client will provide the security token whenever it makes a request. The security
token along with the request will be passed from one microservice to another microservice to
complete the request. Upon receiving the security token, a microservice will validate and verify
the security token before processing the request. If the security token is invalid, the microservice
will reject it and stop the request processing.

There are two types of JWTs. The first type of JWTs is issued by a security token service
(STS) that is trusted by all microservices in the same trusted domain governed by the STS. It is
typically used when authentication is not required between microservices. Depending on the
application scenario and the level of trust in the microservice deployment, microservice might
request a custom JWT to be generated by the STS for each service interaction.

The second type of JWTs is self-issued by an individual microservice using its own private
key. The self-issued JWT is passed as an HTTP header along with the request to the downstream

(server) microservice over TLS. The choice of TLS as the communication protocol is to protect

39

the confidentiality and integrity of the communication since JWT is a bearer token and to minimize
the risk of an attacker stealing the token. The downstream (server) microservice verifies the JWT
using the upstream (client) microservice’s public key. Self-issued JWT also offers nonrepudiation
since the contextual data is bound to the upstream (client) microservice. Secure data in transit is
achieved since microservices cannot modify the content carried by the JWTs, and different types
of validations, e.g., signature and audience, are performed before accepting JWTs. Siriwardena
and Dias [26] suggest that self-issued JWT for each service interaction is generally more secure
than using a shared JWT because the JWT will have a specific audience. The need to have a JWT
for each service interaction depends on the level of trust in the microservices deployment.
Newman [8] mentions three issues to watch out for when it comes to using JWT tokens.
The first issue is about key management. In order for a downstream (server) microservice to verify
a signed JWT token, it needs to have access to the public key of the upstream (client) microservice.
The downstream (server) microservice needs to know where to find the public key of the upstream
(client) microservice. The maintenance of the lifecycle of public keys can become an issue. The
downstream (server) microservice needs to figure out when and how often the public key of the
upstream (client) microservice would change. The second issue is about expiration of tokens.
Architects need to understand the impact of long expiration time on tokens and the security of the
system. Some processes are asynchronous and might take a long time to complete their tasks, and
hence the long expiration time on the token. The last issue is the amount of information each token
should hold. Architects need to understand the impact of holding too much information in each

token and the security of the system.

40

3.1.6. Patching

3.1.6.1. Challenges

In July 2017, Equifax [52, 61] disclosed a data breach resulting in personal identifiable
information of at least 145.5 million individuals in the U.S. and nearly 1 million people outside
the U.S. being accessed and/or stolen by attackers. The root cause of the breach was caused by a
known vulnerability in Apache Struts Web Framework that was not patched within Equifax’s
infrastructure. The vulnerability allowed attackers to execute commands on affected systems.

The United States Computer Emergency Readiness Team publicly announced this
vulnerability two days prior to the attack taking place. Apache Software Foundation released a
patch for the vulnerabilities on March 7th, 2017. Equifax administrators were instructed to apply
the patch to any vulnerable systems on March 9th, 2017, however, the patch was not applied to
any of their vulnerable systems. On March 15th, 2017, the scans performed by Equifax did not
flag any of the vulnerable systems. During the same month, Mandiant, a security consulting firm,
was hired to investigate a series of incidents where criminals used stolen social security numbers
to log into Equifax sites. They issued warnings to Equifax about multiple unpatched and
misconfigured systems.

Attackers were able to take advantage of the vulnerability in Apache Struts Web
Framework and gained unauthorized access to Equifax’s online dispute portal. In subsequent
months, they were able to access other systems and retrieve personal identifiable information and
unencrypted usernames and passwords. The retrieved usernames and passwords were used to
access additional 48 databases. The attackers disguised the data as normal network traffic so that
they were able to remove the data without being detected.

Equifax’s data breach incident highlights the importance of patching and the potential
consequences of failing to keep up with patching in one’s infrastructure. Equifax’s data breach is

not an isolated incident. There are many more attacks in which failure to keep up with patches is

41

the leading cause. As companies continue to develop and deploy complex systems, the challenges
of keeping up with patching will increase [8].

Newman [8] describes another challenge with patching that involves the infrastructure and
software that the microservices run on. It is important to know who owns the infrastructure and
software that the microservices run on. The ownership will impact who is responsible for
maintaining and patching the infrastructure and software that microservices run on and how often
they will be patched. Venckauskas et al. [47] reports that oftentimes microservices are dependent
on third-party libraries and services. If the third-party libraries and services are vulnerable, it can
have a negative effect on the microservices if they are not patched. It is important to understand
the dependencies between microservices and third-party libraries used in the development of

microservices.

3.1.6.2. Security Practices

Newman [8] describes the importance of knowing who owns the infrastructure and
software that microservices run on and assigning the right personnel to maintain and handle the
patching. Venckauskas et al. [47] makes a similar suggestion as Newman but on the third-party

libraries and services that microservices use in their development.

3.1.7. Deployment

3.1.7.1. Challenges

Siriwardena and Dias [26] describes as the deployment of microservices increases in scale,
it makes it extremely challenging to manage and maintain the security. Each communication
channel between microservices requires protection. Each microservice must manage the
authentication, authorization, revocation, and rotation of the security mechanism when interacting
with another microservice. Two major financial institutions in the United States and United

Kingdom are mentioned to illustrate the deployment scale. In July 2019, Capital One deployed

42

thousands of microservices on several thousands of containers with thousands of Amazon Elastic
Compute Cloud instances. In November 2019, Monzo had more than 1500 services running on its
microservices deployment. Without a way to automate security, it makes it extremely different to
manage microservices in a large-scale deployment.

Siriwardena and Dias [26] also describes the challenge of maintaining service credentials
and access control policies in containers. If a microservice is deployed in a container, the container
is considered as an immutable container. The container is booted up from a base configuration.
Any changes to the files in the file system and the runtime state are not maintained by the container.
It means that any changes to the clients and access-control policies that were previously updated
in an instance of a microservice will not be sharable to another instance of the same microservice.
It creates an issue with how service credentials and access control policies are maintained across
different instances of the same microservice.

Torkura et al. [2] states that it is typically for different development teams to be in charge
of building microservices that serve different business needs. Development teams will use the
most appropriate technologies in the development of the microservices based on the team’s
development experience and the business requirements. While this development pattern aids
productivity, it makes managing security more challenging since different technologies have
different security concerns and vulnerabilities. The technology agnostic nature of microservices
also makes vulnerability detection more difficult [67]. Joseph and Chandrasekaran [64] states that
the number of security capabilities are higher due to the polyglot stack functionality of
microservices.

The dynamic deployment of microservices results in constant changes in resource
parameters, e.g., I[P addresses, port numbers, and service endpoints. The constant changes in
resource parameters poses a challenge in security assessments which are traditionally configured

for static network resources [2].

43

3.1.7.2. Security Practices

Regarding the issue of immutability of containers and how service credentials and access
control policies are maintained, Siriwardena and Dias [26] suggests the use of a push or a pull
model. The service credentials and access control policies are maintained at a policy
administration endpoint. With a push model, the policy administration endpoint pushes the
updates to the microservice at bootup. With a pull model, the microservice periodically pulls

updates from the policy administration endpoint.

3.1.8. Trust

3.1.8.1. Challenges

Dragoni et al. [36] describes that microservices are often designed to trust each other in a
microservice architecture. Microservices architecture is vulnerable to both threats from other hosts
and threats from components within the boundary of the system [64]. When a malicious adversary
attacks and gains control of an individual microservice, it can affect other microservices in the
microservice architecture. The malicious adversary can manipulate microservices to do what
he/she wants them to do, escalate privileges on the hosting infrastructure of the microservices,
listen on any inter-service communication, alter data in transit, lead to full disclosure of other
microservices, and potentially bring down the entire system [18, 4, 32, 36, 2].

Yugiong et al. [32] describes a real-world example on how trust relationships between
microservices can have a negative impact on the security of a microservice architecture. A
subdomain of Netflix was compromised, it led to an adversary having the ability to serve any
content on netflix.com and ability to tamper with authenticated Netflix subscribers and their data

since Netflix allowed all users’ cookies to be accessed from any subdomain.

44

3.1.8.2. Security Practices

Mateus-Coelho et al. [4] discusses the importance of providing layers of security
throughout an architecture and suggests the use of firewalls, intrusion detection systems, and
intrusion prevention systems as defense mechanisms on top of other security mechanisms.

Newman [8] suggests the use of the principle of zero trust where the environment is hostile
and bad actors could be present to launch an attack and threat modeling to drive the security design
in a microservice infrastructure. He provides an example of a secure design used in a healthcare
system where sensitive data is kept. The data is classified based on their sensitivity level.
Microservices are classified based on the most sensitive data they use. Each microservice runs in
the zone matching the most sensitive data it uses. Microservices in the same zone can
communicate without each other. Microservices in a more secure zone can use microservices in a
lower secure zone.

Venckauskas et al. [47] suggests dividing microservices according to the degree of access
they need, with stricter security measures for the critical microservices. That way, the damage can

be isolated instead of propagated to the rest of the system.

3.1.9. Larger Surface Area

3.1.9.1. Challenges

Microservices architecture is a style where a software application is built as a composition
of microservices, and microservices communicate with each other via APIs over the network.
Communications between microservices over the network cause exposure to more potential attacks
than a monolithic application due to the increased number in entry points, and hence increases the
attack surface area [36, 3, 2, 26, 19, 4, 47]. With the attack surface area being larger, it makes it

harder to manage security.

45

3.1.9.2. Security Practices

API Gateway
Torkura et al. [2] describes the use of continuous security assessments with security
gateway, dynamic document stores, and security health endpoints to reduce attack surfaces.
Security gateway serves as a security enforcement point that enforces security policies on
microservices and infrastructure components. Each microservice is designed to provide an
openAPI document. Dynamic document stores openAPI documents of microservices which
allows security scanners to extract information for security testing. Security health endpoints

provide security status and assessment results of microservices.

Zero Trust Model

Newman [8] suggests the use of the principle of zero trust where the environment is hostile
and bad actors could be present to launch an attack and threat modeling to drive the security design
in a microservice infrastructure. He provides an example of a secure design used in a healthcare
system where sensitive data is kept. The data is classified based on their sensitivity level.
Microservices are classified based on the most sensitive data they use. Each microservice runs in
the zone matching the most sensitive data it uses. Microservices in the same zone can
communicate without each other. Microservices in a more secure zone can use microservices in a

lower secure zone.

3.2. DEVELOPMENT OF THE FRAMEWORK FOR SECURITY MODELING AND SPECIFICATION IN

MICROSERVICE ARCHITECTURES

This section describes the development of the approach, called Framework for Security
Modeling and Specification in Microservice Architectures, to enhance the security modeling and
specifications in microservice architectures (RQ3). The basis for the approach is the review of the
literature, documentation, and industry practices described in Section 3.1. The approach leverages

the security challenges in microservices architecture and integrates the corresponding security

46

practices to create a set of security properties for microservice architectures in AADL and a set of
decision trees to guide software architects on how to use the security properties when designing a
secure microservice architecture and what additional structural elements (components and
connectors) are required to support a secure architecture design. With the security properties
annotated on components and connectors, it allows software architects to run analysis and
simulations at the architecture level to ensure that security architecture characteristics are satisfied.

The next subsections present the security properties grouped as follows: general security
properties, network perimeter related properties, edge level related properties, communication
related properties, data related properties, log related properties, deployment related properties,
trust related properties, authentication related properties, and authorization related properties. The

decision trees associated with each property can be found in Appendix A.

3.2.1. General Security Properties

3.2.1.1. SecurityLevelProvided

= Property Name: SecurityLevelProvided
= Description:

o This property specifies the level of security the component or connector offers.

o This property is an enumeration with the values of networkPerimeterLevel,
edgeLevel, serviceLevel, communicationLevel, infrastructureLevel. The semantics
of the values are:

= networkPerimeterLevel refers to the component offering network perimeter
security and enforcing network perimeter related security rules.

= edgeLevel refers to the component offering edge security and enforcing
edge related security rules.

= serviceLevel refers to the component that is representing an individual core

microservice offering security at the microservice level. The security rules

47

are enforced by the individual core microservices. Core microservice refers
to microservice that serves a business purpose in the given problem domain.
= infrastructureLevel refers to the component that is not representing an
individual core microservice offering security at the microservice level and
enforcing security rules that will impact one or more individual core
microservices in the microservice architecture. Core microservice refers to
microservice that serves a business purpose in the given problem domain.
= communicationLevel refers to the connector offering communication
security and enforcing communication related security rules.
o This property can be specified for abstract, system, process, thread, and connection.
o This property is derived from the concept of defense in depth concept where
security should be applied and layered throughout the microservice architecture.
The concept of defense in depth is described in the following literatures:
= [8]
= [26].
= Declaration:
SecurityLevelProvided: enumeration (networkPerimeterLevel, edgelLevel, serviceLevel,
communicationLevel, infrastructureLevel) applies to (abstract, system, process, thread,
connection);
= Property Association Example:

o SecurityLevelProvided => networkPerimeterLevel;

3.2.2. Network Perimeter Related Properties

3.2.2.1. NetworkPerimeterLevel

= Property Name: NetworkPerimeterLevel

= Description:

48

o This property specifies the type of network perimeter security mechanism that the
component provides.
o This property is an enumeration with the values of intrusionDetectionPrevention
and firewallAccess. The semantics of the values are:
= intrusionDetectionPrevention refers to the ability to detect irregular and
unusual activities.
= firewallAccess refers to the ability to accept and/or deny requests based on
IP addresses.
o This property can be specified for abstract, system, process, and thread.
o This property is derived from the following literatures:
= [8]
= [26].
= Declaration:
NetworkPerimeterLevel: enumeration (intrusionDetectionPrevention, firewallAccess) applies
to (abstract, system, process, thread);
= Property Association Example:
o NetworkPerimeterLevel => intrusionDetectionPrevention;

o NetworkPerimeterLevel => firewallAccess;

3.2.3. Edge Level Related Properties

3.2.3.1. EdgeLevel

= Property Name: EdgelLevel
= Description:
o This property specifies the type of edge security mechanism that the component

provides.

49

o This property is an enumeration with the value of APIGateway. The semantics of
the value is:
= APIGateway [57, 30, 26] is a reverse proxy that is typically deployed at the
edge of a system, data center, or as part of each product, line of business, or
department, or between a public network and demilitarized zone of a private
network. It serves as an entry point for a defined group of APIs. It decouples
external APIs from internal microservice APIs and prevents microservices
from being contacted directly.
= API gateway protects APIs from overuse and abuse, such as with throttle
limits, it reduces the chance of DoS/DDoS attacks [57, 30]
o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literatures:

= [57]
= [30]
= [37]
= [26].

= Declaration:
EdgeLevel: enumeration (APIGateway) applies to (abstract, system, process, thread)
= Property Association Example:

o EdgeLevel => APIGateway;

3.2.3.2. APIRequestPerSecond_type

= Property Name: APIRequestPerSecond type
= Description:
o This is a property type that defines the maximum rate of requests a single API can

receive per second.

50

o This is a property of type “type record” with two fields:
o APIName: This field is of type aadlstring. It defines the name of the API that
fulfills a request.
o requestPerSecond: This field is of type aadlinteger and must be a positive numeric
value. It defines the rate of requests per second for the said APL
o This property is created to support the structure of the following properties:
»= MaxRequestMicroservice
= APIRequestPerSecondMicroserviceName _type.
= Declaration:
APIRequestPerSecond type: type record (
APIName: aadlstring;
requestPerSecond: aadlinteger units (perSecond);
)i

= Property Association Example: Not available because it is a property type.

3.2.3.3. APIRequestPerSecondMicroserviceName_type

= Property Name: APIRequestPerSecondMicroserviceName type
= Description:
o This is a property type that defines a list of the maximum rate of requests a single
API can receive per second for all APIs that a microservice has.
o This is a property of type “type record” with two fields:
= microserviceName: This field is of type aadlstring. It defines the name of
the microservice that owns the APIs.
= APIRequest: This field is a list of APIRequestPerSecond type values.
o This property is created to support the structure of the following properties:

= MaxRateLimitEdge

51

= APIRequestPerSecondMicroserviceNameApp_type
= APIRequestPerSecondMicroserviceNameUser type

= APIRequestPerSecondMicroserviceNameOperation_type.

Declaration:

APIRequestPerSecondMicroserviceName _type: type record(

);

microserviceName: aadlstring;
APIRequest: list of

Microservice Architecture Security Properties:: APIRequestPerSecond type;

Property Association Example: Not available because it is a property type.

3.2.3.4. MaxRateLimitEdge

Property Name: MaxRateLimitEdge
Description:

o This property specifies the rate limiting. Rate limiting refers to if the rate of

incoming request exceeds a predefined number of requests per second, the edge
level security microservice will reject all the incoming requests. It is to handle
unprecedented surges and to prevent total loss of availability at the edge. The trade
off is to serve as many requests as possible instead of encountering service
unavailability for everyone.

This property is a list of APIRequestPerSecondMicroserviceName type values.
This property must include all the APIs that are exposed at the edge.

This property can be specified for abstract, system, process, and thread.

This property is related to MaxRequestMicroservice. Please refer to
MaxRequestMicroservice property for more information.

This property is derived from the following literatures:

52

= [66]
= [26]
= [58].
= Declaration:
MaxRateLimitEdge: list of Microservice Architecture Security
Properties: APIRequestPerSecondMicroserviceName type applies to (abstract, system,
process, thread);
= Property Association Example:
o MaxRateLimitEdge =>
([microserviceName => "n";
APIRequest=>
([APIName => "m"; requestPerSecond=> p perSecond;],

ceey

[APIName =>"q"; requestPerSecond=> r perSecond;])],
[microserviceName => "a";
APIRequest=>
([APIName => "b"; requestPerSecond=> ¢ perSecond;],
[APIName => "d"; requestPerSecond=> e perSecond;])]);
-- where n/a is a string that represents the name of the microservice
-- where m/b/q/d is a string that represents the name of the API
-- where p/r/c/e is an integer that represents the maximum number of requests an
API can process per second
o MAXRateLimitEdge =>
([microserviceName => "Order";

APIRequest=>
53

([APIName => "View_Order"; requestPerSecond=> 45 perSecond;],
[APIName => "Place Order"; requestPerSecond=> 45 perSecond;]);],
[microserviceName => "Catalog";
APIRequest=>

([APIName => "View_Catalog"; requestPerSecond=> 45 perSecond;]);]);

3.2.3.5. MaxRequestMicroservice

* Property Name: MaxRequestMicroservice
= Description:
o This property defines the maximum rate of requests per second that a microservice
can handle for all the APIs the microservice has.
o This property is a list of APIRequestPerSecond type values.
o This property can be specified for abstract, system, process, and thread.
o This property is derived from the following literatures:
= [26]
= [58].
= Declaration:
MaxRequestMicroservice: list of
Microservice Architecture Security Properties:: APIRequestPerSecond type
applies to (abstract, system, process, thread);
= Property Association Example:
o maxRequestMicroservice =>
([APIName => "p", requestPerSecond= q perSecond],
[APIName =>"q", requestPerSecond=b perSecond));

-- where p/a is a name of the API

54

-- where g/b is an integer representing the maximum number of requests that said API can
handle per second.
o MaxRequestMicroservice =>
([APIName => "View_Order"; requestPerSecond=> 50 perSecond;],

[APIName => "Place Order"; requestPerSecond=> 50 perSecond;]);

3.2.3.6. APIRequestPerSecondMicroserviceNameApp_type

= Property Name: APIRequestPerSecondMicroserviceNameApp_type
= Description:

o This is a property type that defines a list of the maximum rate of requests a single
API can receive per second for the APIs that a microservice has exposed at the edge
for each application type.

o This is a property of type “type record” with two fields:

o applicationType: This field is of type aadlstring. It defines the origin of where the
external requests come from. The typical values are web application, mobile
application, and tablet application.

o APIRequestMicroservice: This field is a list of
APIRequestPerSecondMicroserviceName _type.

o This property is created to support the structure of the following property:

= RequestPerApplicationType.
= Declaration:
APIRequestPerSecondMicroserviceNameApp_type: type record (
applicationType: aadlstring;
APIRequestMicroservice: list of
Microservice Architecture Security Properties:: APIRequestPerSecondMicroserv

iceName type;

55

)

= Property Association Example: Not available because it is a property type.

3.2.3.7. APIRequestPerSecondMicroserviceNameUser_type

* Property Name: APIRequestPerSecondMicroserviceNameUser type

= Description:

(@]

o

o

This is a property type that defines a list of the maximum rate of requests a single
API can receive per second for APIs that a microservice has exposed at the edge
for each user.
This is a property of type “type record” with two fields:
= userldentifier: This field is of type aadlstring. It defines who is sending the
external requests.
= APIRequestMicroservice: This field is a list of
APIRequestPerSecondMicroserviceName type.
This property is created to support the structure of the following property:

RequestPerUser.

= Declaration:

APIRequestPerSecondMicroserviceNameUser type: type record(

);

userldentifier: aadlstring;
APIRequestUser: list of
Microservice Architecture Security Properties:: APIRequestPerSecondMicroserv

iceName type;

= Property Association Example: Not available because it is a property type.

56

3.2.3.8. APIRequestPerSecondMicroserviceNameQOperation_type

= Property Name: APIRequestPerSecondMicroserviceNameOperation_type
= Description:

o This is a property type that defines a list of maximum rate of requests an operation
of an abstracted API can receive per second for APIs that a microservice has
exposed at the edge. An API can be an abstraction of one or more operations. This
property allows the regulation of the maximum rate of request to be done at the
operation level.

o This is a property of type “type record” with two fields:

= operationName: This field is of type aadlstring. It defines the name of the
operation that needs regulation on the maximum rate of requests it can
process.
= APIRequestMicroservice: This field is a list of
APIRequestPerSecondMicroserviceName type.
o This property is created to support the structure of the following property:
o RequestPerOperation.
= Declaration:
APIRequestPerSecondMicroserviceNameOperation_type: type record (

operationName: aadlstring;

APIRequestOperation: list of

Microservice Architecture Security Properties:: APIRequestPerSecondMicroservice

Name _type;

)i

= Property Association Example: Not available because it is a property type.

57

3.2.3.9. RequestPerApplicationType

= Property Name: RequestPerApplicationType
= Description:

o This property specifies the maximum rate of requests per second that the edge
security component should handle per application type. If the rate of requests
exceeds a predefined number of requests per second, the edge level security
microservice will wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed
denial of service attacks where targeted resources are being overloaded with traffic
and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

= description: This field is of type aadlstring. It provides a description of the
usage of the property.
= waitTime: This field is of type Time and the values must be positive. The
standard Time units are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr
(hours).
= APIRequestPerSecondMicroserviceNameApp type: This field is a list of
APIRequestPerSecondMicroserviceNameApp_type.
o This property can be specified for abstract, system, process, and thread.
o This property is derived from the following literature:
= [206]
= [58].
= Declaration:
RequestPerApplicationType: record (

description: aadlstring;

58

waitTime: Time;
microservice API requestPerSecond App: list of
Microservice Architecture Security Properties:: APIRequestPerSecondMicroserviceNa
meApp_type;
) applies to (abstract, system, process, thread);
= Property Association Example:
o RequestPerApplicationType => [
description => "n";
waitTime => z sec;
microservice API requestPerSecond App =>
([applicationType => "m";
APIRequestMicroservice =>
([microserviceName => "a";
APIRequest =>
([APIName => "b";

requestPerSecond => ¢ perSecond;],

[APIName => "d";
requestPerSecond => d perSecond;));],
[microserviceName => "{";
APIRequest =>
([APIName => "g";

requestPerSecond => h perSecond;],

[APIName => "i";

requestPerSecond => j perSecond;]);]);],

59

[applicationType => "k";
APIRequestMicroservice =>
([microserviceName => "1";
APIRequest =>
([APIName => "o";

requestPerSecond => p perSecond;],

[APIName => "q";
requestPerSecond => r perSecond;]);]);1);1;
-- where n is a series of strings that describes limitation of requests at the application level
-- where m/k is a string that describes the application type
-- where a/f/l is a string that represents the name of the microservice
-- where b/d/g/1/0/q is a string that represents the name of the API
-- where c/e/h/j/p/t/z is an integer in seconds
o RequestPerApplicationType =>
[description => "Regulation rate of request by mobile application";
waitTime => 1000 sec;
microservice_ API requestPerSecond App =>
([applicationType => "Mobile application";
APIRequestMicroservice =>
([microserviceName => "Order";
APIRequest =>
([APIName => "View Order";
requestPerSecond => 50 perSecond;],
[APIName => "Place Order";
requestPerSecond => 50 perSecond;]);],

[microserviceName => "Catalog";

60

APIRequest =>
([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;));]);]);];

3.2.3.10. RequestPerUser

= Property Name: RequestPerUser
= Description:

o This property specifies the maximum rate of requests per second that the edge
security component should handle per user. If the rate of requests exceeds a
predefined number of requests per second, the edge level security microservice will
wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed
denial of service attacks where targeted resources are being overloaded with traffic
and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

= description: This field is of type aadlstring. It provides a description of the
usage of the property.
= waitTime: This field is of type Time and the values must be positive. The
standard Time wunits are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr
(hours).
= APIRequestPerSecondMicroserviceNameApp type: This field is a list of
APIRequestPerSecondMicroserviceNameUser type.
o This property can be specified for abstract, system, process, and thread.
o This property is derived from the following literature:

= [26]

61

= [58].
= Declaration:
RequestPerUser: record (
description: aadlstring;
waitTime: Time;
microservice API requestPerSecond User: list of
Microservice Architecture Security Properties:: APIRequestPerSecondMicroserviceNa
meUser_type;
) applies to (abstract, system, process, thread);
= Property Association Example:
o RequestPerUser => |
description => "n";
waitTime => z sec;
microservice_ API requestPerSecond User =>
([userldentifier => "m";
APIRequestUser =>
([microserviceName => "a";
APIRequest =>
([APIName => "b";

requestPerSecond => ¢ perSecond;],

[APIName => "d";
requestPerSecond => d perSecond;));],
[microserviceName => "{";
APIRequest =>
([APIName =>"g";

requestPerSecond => h perSecond;],

62

[APIName => "i";
requestPerSecond => j perSecond;]);]);],
[userldentifier => "k";
APIRequestUser =>
([microserviceName => "1";
APIRequest =>
([APIName => "o";

requestPerSecond => p perSecond;],

[APIName =>"q";
requestPerSecond => r perSecond;]);]);1);1;
-- where n is a series of strings that describes limitation of requests at the user level
-- where m/k is a string that describes the user identity
-- where a/f/l is a string that represents the name of the microservice
-- where b/d/g/1/0/q is a string that represents the name of the API
-- where c/e/h/j/p/t/z is an integer in seconds
o RequestPerUser =>
[description => "Regulation rate of request by user identifier';
waitTime => 1000 sec;
microservice_ API requestPerSecond User =>
([userldentifier => "abewerwerewrwrwerwerrew";
APIRequestUser =>
([microserviceName => "Order";
APIRequest =>
([APIName => "View Order";
requestPerSecond => 50 perSecond;],

[APIName => "Place Order";
63

requestPerSecond => 50 perSecond;]);],

[microserviceName => "Catalog";

APIRequest =>

([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;]);]);]);];

3.2.3.11. RequestPerOperation

= Property Name: RequestPerOperation

= Description:

o This property specifies the maximum rate of requests per second that the edge

security component should handle per operation. If the rate of requests exceeds a

predefined number of requests per second, the edge level security microservice will

wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed

denial of service attacks where targeted resources are being overloaded with traffic

and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

description: This field is of type aadlstring. It provides a description of the
usage of the property.

waitTime: This field is of type Time and the values must be positive. The
standard Time wunits are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr
(hours).

APIRequestPerSecondMicroserviceNameApp type: This field is a list of

APIRequestPerSecondMicroserviceNameOperation_type.

o This property can be specified for abstract, system, process, and thread.

64

o This property is derived from the following literatures:
= [26]
= [58].
= Declaration:
RequestPerOperation: record (
description: aadlstring;
waitTime: Time;
microservice API requestPerSecond Op: list of
Microservice Architecture Security Properties:: APIRequestPerSecondMicroserviceNa
meOperation_type;
) applies to (abstract, system, process, thread);
= Property Association Example:
o RequestPerOperation => [
description => "n";
waitTime => z sec;
microservice_ API requestPerSecond Op =>
([operationName => "m";
APIRequestOperation =>
([microserviceName => "a";
APIRequest =>
([APIName => "b";

requestPerSecond => ¢ perSecond;],

[APIName => "d";
requestPerSecond => d perSecond;));],
[microserviceName => "{";

APIRequest =>
65

([APIName =>"g";
requestPerSecond => h perSecond;],
[APIName => "i";
requestPerSecond => j perSecond;]);]);],
[userldentifier => "k";
APIRequestOperation =>

([microserviceName => "1";

APIRequest =>
([APIName => "o";

requestPerSecond => p perSecond;],

[APIName =>"q";
requestPerSecond => r perSecond;));]);]1);1;
-- where n is a series of strings that describes limitation of requests at the user level
-- where m/k is a string that describes the user identity
-- where a/f/l is a string that represents the name of the microservice
-- where b/d/g/1/0/q is a string that represents the name of the API
-- where c/e/h/j/p/t/z is an integer in seconds
o RequestPerUser =>
[description => "Regulation rate of request by user identifier'";
waitTime => 1000 sec;
microservice_ API requestPerSecond Op =>
([operationName => "";
APIRequestMicroservice =>
([microserviceName => "Order";

APIRequest =>

([APIName => "View Order";
66

requestPerSecond => 50 perSecond;],
[APIName => "Place_Order";
requestPerSecond => 50 perSecond;]);],
[microserviceName => "Catalog";
APIRequest =>
([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;]);]);1);];

3.2.3.12. MessagePayloadSizeLimit

* Property Name: MessagePayloadSizeLimit
= Description:

o This property specifies the maximum message payload size an external application
can send.

o This property lowers the risk of malicious attacks like denial of service/distributed
denial of service attacks where targeted resources are being overloaded with traffic
and unable to perform their responsibilities.

o This property is of type aadlinteger with mb as the unit.

o This property can be specified for data and port.

o This property is derived from the following literature:

= [58].
= Declaration:
MessagePayloadSizeLimit: aadlinteger units (mb) applies to (data, port);
= Property Association Example:

o MessagePayloadSizeLimit => n;

-- where n is an integer with units in mb.

o MessagePayloadSizeLimit => 10 mb;

67

3.2.4. Communication Related Properties

3.2.4.1. SecureCommunication

= Property Name: SecureCommunication

= Description:

o This property specifies the communication protocol used between microservices.

o This property is an enumeration with the values of TLS and MTLS. The semantics

of the values are:

TLS: It stands for transport layer security. It protects the communication
between two microservices because the upstream (client) microservice
knows the identity of the downstream (server) microservice it interacts with.
Messages are protected for integrity and confidentiality while in transit.

MTLS: It stands for mutual transport layer security. It protects the
communication between two microservices because the upstream (client)
microservice knows the identity of the downstream (server) microservice it
is interacting with and the downstream (server) microservice knows the
identity of the upstream (client) microservice it interacts with. Messages

are protected for integrity and confidentiality while in transit.

o This property can be specified only for connectors.

o This property and the property values are derived from the literatures listed in

Section 3.1.4. Communications.

= Declaration:

SecureCommunication: enumeration (TLS, MTLS) applies to (connection);

= Property Association Example:

o SecureCommunication => TLS;

o SecureCommunication => MTLS;

68

3.2.5. Data Related Properties

3.2.5.1. dbAccessModel

* Property Name: dbAccessMode
= Description:
o This property specifics the access mode to the database of a microservice.
o This property is an enumeration with the values of read only, read write,
write_only. The semantics of the values are:
= read_only refers to read access to the database that is associated with the
microservice.
= read_write refers to read write access to the database that is associated with
the microservice.
= write_only refers to write access to the database that is associated with the
microservice.
o This property can be specified for data.
o This property and the property values are derived from the literatures listed in
Section 3.1.5. Data.
= Declaration:
dbAccessMode: enumeration (read only, read write, write only) applies to (data);
= Property Association Example:
o dBAccessMode => n; -- where n is either "read_only, "read_write", or "write_only"

o dBAccessMode => read only;

3.2.5.2. DataAtRest

= Property Name: DataAtRest

= Description:

69

o This is a property type that defines the basic building block of data encryption for
data at rest.
o This is a property of type “type record” with 4 fields:
= description: This field is of type aadlstring. It describes the need to encrypt
or not encrypt a data block.
= dataBlock: This field is of type aadlstring. It describes the size and scope
of the data block that might or might not require encryption.
= dataCriticality: This field is of type aadlinteger and must be a positive
numeric value. The higher the value, the more critical the data in the data
block is.
= atRestEncryption: This field is an enumeration with the values required and
not required. The semantics of the values are:
e required refers to encryption is required on the specified data block.
e not required refers to encryption is not required on the specified
data block.
o This property is created to support the structure of the following property:
= DataAtRestEncryption.
= Declaration:
DataAtRest: type record(
description: aadlstring;
dataBlock: aadlstring;
dataCriticality: aadlinteger;
atRestEncryption: enumeration (required, not_required);
)i

= Property Association Example: Not available because it is a property type.

70

3.2.5.3. DataAtRestEncryption

= Property Name: DataAtRestEncryption
= Description:
o This property specifies a list of data blocks and their requirements on encryption.
o This property is a list of DataAtRest values.
o This property can be specified for data.
o This property and the property values are derived from the literatures listed in
Section 3.1.5. Data.
= Declaration:
DataAtRestEncryption: list of Microservice Architecture Security Properties::DataAtRest
applies to (data);
= Property Association Example:
o DataAtRestEncryption => (
[description => "m";
dataBlock => "p";
dataCriticality => q;
atRestEncryption =>r;],
[description =>"s";
dataBlock =>"t";
dataCriticality => u;
atRestEncryption => v;],);
-- where m/s is a string that describes the need to encrypt or not encrypt a data block.
-- where p/t is a string that describes the size and scope of the data block that might or
might not require encryption.
-- where g/u is an integer that describes the criticality of the data in the data block. The

higher the number, the more critical it is.

71

-- where 1/v is either "required" or "not required".

3.2.5.4. MicroserviceDataSensitivity

= Property Name: MicroserviceDataSensitivity
= Description:

o This property specifies the relationship between microservices from a data
perspective to facilitate the proper flow of data and communication between
microservices.

o Zone is a way to classify microservices within the same trust domain so that
communication patterns among microservices can be established. Within the same
trust domain,

= Microservices within the same zone* can communicate with each other.

= Microservice in a higher zone can communicate with microservices that are
in a lower zone.

= Microservice in a lower zone cannot communicate with microservices that
are in a higher zone.

o This is a property of type “record” with 3 fields:

= description: This field is of type aadlstring. It provides a description of the
usage of the property.

= dataSenstivityLevel: This field is an enumeration with the values of
publicData, privateData, secretData, and no Data. The semantics of the
values are:

= publicData: It refers to data that can be used and accessed by anyone without
restriction.

= privateData: It refers to data that can only be used and accessed by

authorized users.

72

= secretData: It refers to data that can only be used and accessed by a specific
list of authorized users.
= no_Data: It refers to the microservice that does not own or store data.
o This property can be specified for abstract, system, process, and thread.
o This property and the property values are derived from the literatures listed in
Section 3.1.5. Data.
= Declaration:
MicroserviceDataSensitivity: record (
description: aadlstring;
dataSensitivityLevel: enumeration (publicData, privateData, secretData, no_Data);
microserviceZone: aadlinteger;
) applies to (abstract, system, process, thread);
= Property Association Example:
o MicroserviceDataSensitivity => |
description => "n";
dataSensitivityLevel => m;
microserviceZone => p;
]
-- where n a unique integer corresponding to the zone
-- where n is a series of strings that describes the data sensitivity level

-- where m is either "publicData", "privateData", or "secretData, no Data"

b

3.2.6. Log Related Properties

3.2.6.1. Log

= Property Name: Log

= Description:

73

o This property specifies the requirements on logging.

o This is a property of type “record” with 4 fields:

= description: This field is of type aadlstring. It describes the logging needs

of the microservice.

= JogFormat: This field is of type aadlstring. It describes the format

requirement of the log in facilitating the aggregation of logs and queries

against aggregated logs.

= JogAttribute: This field is of type aadlstring. It describes the information

that a microservice should collect, such as correlation ID, date, time in a

specific format and time zone.

= JogLevel: This field is an enumeration with the values of trace, debug,

information, warning, error, and critical. The semantics of the values are:

trace: It captures all the details of the behavior of the microservice.
debug: It captures diagnostic information.

information: It captures normal behavior of the microservice.
warning: It captures unexpected behavior of the microservice.
error: It captures error messages.

critical: It captures fatal error messages that cause the crushing of

the microservice.

o This property can be specified for abstract, system, process, and thread.

o This property and the property values are derived from the literatures listed in

Section 3.1.5. Data.

Declaration:

Log: record (

description: aadlstring;

logFormat: aadlstring;

logAttribute: list of aadlstring;

74

logLevel: enumeration (trace, debug, information, warning, error, critical);

) applies to (abstract, system, process, thread);
= Property Association Example:

o Log=>]

description => "n";

logFormat =>"m";

logAttribute => ("p", ..., "a");

logLevel =>q;)

l;

-- where n is a series of strings that describes the details of the log aggregator

-- where m is a series of strings that describes the structure of the log

-- where p/a is a series of strings that describes the attributes to log

nn nn nmn

-- where q is either "trace", "debug", "information", "warning", "error", or "critical"

3.2.7. Deployment and Patching Related Properties

3.2.7.1. patch_type

= Property Name: patch_type
= Description:
o This is a property type that defines the patching frequency of a specific software.
o This is a property of type “type record” with two fields:
= softwareName: This field is of type aadlstring. It defines the name of the
software that requires patching.
= frequency: This field is of type aadlstring. It defines how often patching is
request for the said software.
o This property is created to support the structure of the following property:

= DeploymentType.

75

= Declaration:

patch_type: type record (
softwareName: aadlstring;
frequency: aadlstring;

);

= Property Association Example: Not available because it is a property type.

3.2.7.2. DeploymentType

= Property Name: DeploymentType
= Description:
o This property specifies the deployment and patching configuration of a
microservice.
o This property is of type “record” with 4 fields:
= description: This field is of type aadlstring. It describes the deployment and
patching configuration plan.
= deploymentMechanism: This field is an enumeration with the values
physical Machine, virtual machine, container, platform as a service, and
function_as a service. The semantics of the values are:
= physical Machine: Physical machine deployment option refers to
deploying a single microservice on a physical machine without any layers
of virtualization or containerization between the microservice and
underlying hardware. Deploying multiple microservices on the same
physical machine violates the isolated execution environment principle.
= virtual machine: Virtual machine deployment option refers to deploying a
single microservice on a virtual machine. The virtual machine contains a

full operating system, kernel, and resources that a microservice can use.

76

Declaration:

container: Container deployment option refers to deploying a single
microservice on a container. A container contains resources that a
microservice can use.

platform as a service: Platform as a service deployment (PaaS) option
refers to deploying a single microservice on a cloud infrastructure. Platform
as service includes infrastructure as a service (laaS) (computing,
networking, and storage resources) and resources such as development
tools, database management systems, middleware,and notification systems
[56]. The exact amount of resource provided depends on the provider of
the platform as a service. Examples of [aaS are AWS, Microsoft Azure,
and Google Compute Engine. Examples of PaaS are AWS Elastic
Beanstalk, Google App Engine, and Heroku.

function_as_a service: Function as a service deployment (FaaS) option
refers to deploying a single microservice as a function on the cloud
infrastructure. Example of FaaS is AWS’s Lambda product.

patchList: This field is a list of patch_type.

o This property can be specified for abstract, system, process, and thread.
o This property and the property values are derived from the literatures listed in

Sections 3.1.6. Patching and 3.1.7. Deployment.

DeploymentType: record (

description: aadlstring;
deploymentMechanism: enumeration (physical Machine, virtual machine, container,
platform_as a service, function _as a service);

patchList: list of Microservice Architecture Security Properties::patch type;

) applies to (abstract, system, process, thread);

Property Association Example:

77

o DeploymentType => [
description => "n";
deploymentMechanism => m;
patchList => (
[softwareName => p; frequency => q;],

[softwareName => a; frequency =>b;]

l;
-- where n is a series of strings that describes the deployment mechanism of the
microservice
-- where m 1is either "physical machine", "virtual machine", "container",
"platform_as a service", or "function_as a_ service"
-- where p/a is a name of the software that needs to be patched and q/b is the frequency
in which p/a requires patching.
o Deployment Type => [
description => "Deployment and patching configuration of Catalog";
deploymentMechanism => virtual machine;

patchList => ([softwareName => "PackageX"; frequency => "2 months";]);

3.2.8. Trust Related Properties

3.2.8.1. TrustDomain

Property Name: TrustDomain

Description:

78

o This property specifies the trust domain a microservice belongs to. Each
microservice can only belong to one trust domain.
o This property is of type aadlinteger and must be a positive number.
o This property can be specified for abstract, system, process, and thread.
o This property is derived from the literatures listed in Section 3.1.8. Trust.
= Declaration:
TrustDomain: aadlinteger applies to (abstract, system, process, thread);
= Property Association Example:
o TrustDomain => n; -- where n a unique integer corresponding to the trust domain

o TrustDomain => 2;

3.2.9. Authentication Related Properties

3.2.9.1. AuthenticationMicroserviceArchitecture

= Property Name: AuthenticationMicroserviceArchitecture
= Description:
o This property specifies the authentication mechanism used in the microservice
architecture.
o This property is an enumeration with the values APIGateway,
token based authentication, certificate based authentication,
API Key based authentication, and federated based authentication. The
semantics of the values are:
= APIGateway: It refers to the use of API Gateway to handle authentication.
= token based authentication: It refers to the use of tokens for
authentication.
= certificate_based authentication: It refers to the use of certificates for

authentication.

79

= API Key based authentication: It refers to the use of API keys for
authentication.
= federated based authentication: It refers to the use of federated identity
solution for authentication.
o This property can be specified for abstract, system, process, and thread.
o This property and the property values are derived from the literatures listed in
Section 3.1.1. Authentication.
= Declaration:
AuthenticationMicroserviceArchitecture: enumeration (APIGateway,
token based authentication, certificate based authentication,
API Key based authentication, federated based authentication)
applies to (abstract, system, process, thread);
= Property Association Example:

o AuthenticationMicroserviceArchitecture => certificate based authentication;

3.2.10. Authorization Related Properties

3.2.10.1. AuthorizationMicroserviceArchitecture

= Property Name: AuthorizationMicroserviceArchitecture
= Description:
o This property specifies the authorization mechanism used in the microservice
architecture.
o This property is an enumeration with the values coarse grained and fine grained.
The semantics of the values are:
= coarse grained typically refers to authorization rules that use a single
attribute to evaluate a decision to either grant or deny the access, e.g. a

particular role has access to a particular resource.

80

» fine grained typically refers to authorization rules that use multiple
attributes to evaluate a decision to either grant or deny the access, e.g. a
particular role in a particular building has access to a particular resource
only during a particular duration of time.
o This property can be specified for abstract, system, process, and thread.

= Declaration:

AuthorizationMicroserviceArchitecture: enumeration (coarse grained, fine grained) applies

to (abstract, system, process, thread);

= Property Association Example:

o AuthorizationMicroserviceArchitecture => fine grained;
3.2.10.2. CoarseGrainedArchitecture

= Property Name: CoarseGrained Authorization

= Description:
o This property specifies the coarse-grained authorization mechanism used in the
microservice architecture.
o This property is an enumeration with the value APIGateway.
o This property can be specified for abstract, system, process, and thread.
= Declaration:
CoarseGrainedAuthorization: enumeration (APIGateway) applies to (abstract, system,
process, thread);
= Property Association Example:

o CoarseGrainedAuthorization => APIGateway;
3.2.10.3. FineGrainedArchitecture
= Property Name: FineGrainedAuthorization

81

Description:

o This property specifies the fine-grained authorization mechanism used in the

microservice architecture.

o This property is an enumeration with the value decentralized and centralized. The

semantics of the values are:

decentralized: When an access control system is implemented using the
decentralized pattern, each microservice is responsible for making access
decisions (PDP) and enforcing the access decisions made by the PDP (PEP).
This pattern offers more fine-grained access control because the access
control rules are more domain specific. However, the development team
must be able to configure the access control rules correctly and manual
configuration is not scalable.

centralized: There are two types of centralized access control: a. Centralized
with PDP- Each microservice is responsible for enforcing access control
decisions (PEP). The defining of access control rules (PAP), the decision
making based on access control rules (PDP), and the maintenance of
additional attributes (PIP) are shared among all microservices in the same
architecture. b. Centralized with an embedded PDP- Each microservice is
responsible for making access decisions (PDP) and enforcing the access
decisions made by the PDP (PEP). The access control rules (PAP) and
attributes (PIP) are defined centrally and are delivered to embedded PDP in

the microservice.

o This property can be specified for abstract, system, process, and thread.

Declaration:

FineGrainedAuthorization: enumeration (decentralized, centralized) applies to (abstract,

system, process, thread);

Property Association Example:

82

o FineGrainedAuthorization => decentralized;

o FineGrainedAuthorization => centralized;

3.2.10.4. CentralizedFineGrainedAuthorization

= Property Name: CentralizedFineGrainedAuthorization
= Description:
o This property specifies the centralized fine grained authorization mechanism used
in the microservice architecture.
o This property is an enumeration with the value withPDP and withEmbeddedPDP.
The semantics of the values are:
= withPDP: Each microservice is responsible for enforcing access control
decisions (PEP). The defining of access control rules (PAP), the decision
making based on access control rules (PDP), and the maintenance of
additional attributes (PIP) are shared among all microservices in the same
architecture.
= withEmbeddedPDP: Each microservice is responsible for making access
decisions (PDP) and enforcing the access decisions made by the PDP (PEP).
The access control rules (PAP) and attributes (PIP) are defined centrally and
are delivered to embedded PDP in the microservice.
o This property can be specified for abstract, system, process, and thread.
= Declaration:
CentralizedFineGrained Authorization: enumeration (withPDP, withEmbeddedPDP) applies to
(abstract, system, process, thread);
= Property Association Example:
o CentralizedFineGrained Authorization => withPDP;

o CentralizedFineGrained Authorization => withEmbeddedPDP;

83

3.2.11. Decision Trees

Decision trees guide software architects in determining what specific security properties
should be considered, how different security properties are related and can be used together, and
what additional structural elements (components and connectors) when adding specific security

properties. The decision trees associated with the security properties can be found in Appendix A.

84

Chapter 4: Experiment

This chapter presents an experiment that was conducted to evaluate whether the framework
led to an increase in well-justified and articulated security specifications and components in

microservice architectures.

4.1. DESCRIPTION OF THE EXPERIMENT

The experiment was designed to assess the hypothesis that use of the framework would
lead to an increase in well-justified and articulated security specifications and components in
microservice architectures. The independent variable was the use of the decision trees, and the
dependent variable was the scores. The null and research hypotheses are as follows:

= Null Hypothesis: Use of the framework does not lead to an increase in well-justified and
articulated security specifications and components in microservice architectures.

= Research Hypothesis: Use of the framework leads to a significant increase in well-justified
and articulated security specifications and components in microservice architectures.

The participants were undergraduate students from the computer science department at the
University of Texas at El Paso. 102 participants completed the “Research Study Background
Survey 2023 prior to the experiment. The survey was used to gather information about the
participant’s software engineering background, such as the number of years of experience in
software architecture, software development, and software security. Appendix D presents the
result of the research study background survey. Most of the participants have 0 to 1 year of
experience in software architecture and software security.

Participants were divided into teams of 3 based on their software engineering background
and assigned to either a control group or a treatment group randomly. Based on the T-tests with
the alpha level at 5%, power level at 80%, and effect size at 0.866 (for teams of 3), the sample size
of the control groups should be 18 groups and the sample size of treatment groups should be 18

groups. Due to the number of participants available on the day of the experiment, there were a

85

total of 15 teams of 3 in the treatment group and 16 teams of 3 in the control group. There were
two teams of 4 and one team of 2.
For teams that were assigned to the control group, the following procedures were followed:
= FEach team received lecture materials on software architecture with an emphasis on
microservice architecture and security.
= Each team received a problem statement, a predefined microservice architecture based
on the problem statement, and a survey named “Building Secure Microservice
Architecture Survey”, and
= Each team was given an hour to complete the survey. Please see Appendix B for the
full list of questions included in the survey.
For teams that were assigned to the treatment group, the following procedures were
followed:
= FEach team received lecture materials on software architecture with an emphasis on
microservice architecture and security.
= Each team received a problem statement, a predefined microservice architecture based on
the problem statement, and a survey named “Building Secure Microservice Architecture
Survey”.
= FEach team received the framework on how to design secure microservice architecture, and
= FEach team was given an hour to complete the survey. Please see Appendix B for the full

list of questions included in the survey.

4.1. EVALUATION PROCESS

The survey contained a total of 8 questions. Table 1 presents the concepts tested per
question. Survey results were analyzed to determine if participants from the treatment groups

will have a higher success rate in articulating security specifications and components in

86

microservice architecture using the provided framework than the participants from the control
groups.
Table 1: Survey Questions and Concepts Tested
Survey Concepts Tested
Question
Number
1 a. Trust domain;
b. Addition of structural elements (components and connectors) and its
associated properties needed to support the trust domain and communication
between trust domains;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors; and
e. Tested properties:
1. TrustDomain
2. SecurityLevelProvided
3. dbAccessMode
4. DataAtRestEncryption
2 a. Deployment and patching;
b. Data;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors;
e. Tested properties:
1. DeploymentType
2. patch type
3. dbAccessMode
4. DataAtRestEncryption.
3 a. Communication;
b. Addition of structural structural elements (components and connectors)
and its associated properties needed to support the communications between
components;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors; and
e. Tested properties:

1. SecurityLevelProvided

87

2. dbAccessMode
3. DataAtRestEncryption
4. SecureCommunication.

a. Edge level security
b. Addition of structural elements (components and connectors)and its
associated properties needed to support edge security;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors; and
e. Tested properties:
1. SecurityLevelProvided
2. EdgeLevel
3. MessagePayloadSizeLimit
4. APIRequestPerSecond type
5. MaxRateLimitEdge
6. APIRequestPerSecondMicroserviceName type
7. RequestPerApplicationType
8. APIRequestPerSecondMicroserviceNameApp type
9. MaxRequestMicroservice.
a. Authorization;
b. Addition of structural elements (components and connectors)and its

associated properties needed to support authorization mechanism;Ability to
identify the need to annotate the properties listed below on components and
connectors;

c. Ability to correctly specify the properties listed below on components and
connectors; and
d. Tested properties:

1. AuthorizationMicroserviceArchitecture

2. FineGrainedAuthorization

3. CentralizedFineGrained Authorization

4. CoarseGrainedAuthorization

5. SecurityLevelProvided

6. dbAccessMode

7. DataAtRestEncryption.
a. Data;
b. Ability to identify the need to annotate the properties listed below on
components and connectors;
c. Ability to correctly specify the properties listed below on components and
connectors; and
d. Tested properties:

1. MicroserviceDataSensitivity.

88

7 a. Network perimeter level security.
b. Addition of structural elements (components and connectors)and its
associated properties needed to support network level security;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors; and
e. Tested properties:
1. SecurityLevelProvided
2. NetworkPerimeterLevel.
8 a. Authentication.
b. Addition of structural elements (components and connectors)and its
associated properties needed to support authentication mechanism,;
c. Ability to identify the need to annotate the properties listed below on
components and connectors;
d. Ability to correctly specify the properties listed below on components and
connectors; and
e. Tested properties:

1. AuthenticationMicroserviceArchitecture
2. SecurityLevelProvided

3. dbAccessMode

4. DataAtRestEncryption.

A set of evaluation criteria around identification and specification of components,

connectors, and properties was created. Table 2 presents the evaluation criteria used on each

question. Table 3 presents the grading scale used in the criteria regarding the identification of

properties and structural elements (components and connectors). Table 4 presents the grading

scale used in the criteria regarding the specification of properties and structural elements

(components and connectors).

Table 2: Evaluation Criteria

Question
No.

Evaluation Criteria

Question
1

Ability to identify the need to change the trustDomain property for Order
microservice

Ability to specify the trustDomain property for Order microservice

Ability to identify the need to have a credential microservice in each trust domain

89

Ability to identify TrustDomain property in Credential component 1

Ability to specify TrustDomain property in Credential component 1

Ability to identify SecurityLevelProvided property in Credential component 1

Ability to specify SecurityLevelProvided property in Credential component 1

Ability to identify dbAccessMode property in Credential component 1

Ability to specify dbAccessMode property in Credential component 1

Ability to identify DataAtRestEncryption property in Credential component 1

Ability to specify DataAtRestEncryption property in Credential component 1

Question
2

Ability to identify the need to specify DeploymentType for Account microservice

Ability to identify the deploymentMechanism field

Ability to specify the deploymentMechanism field

Ability to identify the patchList field

Ability to correct the patchList field

Ability to identify DataAtRestEncryption for Account DB component needs update

Ability to specifiy DataAtRestEncryption for Account DB component

Question
3

Ability to identify SecureCommunication property

Ability to correctly specifiy SecureCommunication property

Relationship between SecureCommunication and Certificate Authority Component

Ability to identify the SecurityLevelProvided property

Ability to correctly specify securityLevelProvided

Ability to identify dBAccessModel Property

Ability to identify DataAtRestEncryption property

Ability to specify dBAccessModel Property

Ability to specify DataAtRestEncryption property

Question
4

Ability to identify the need to add a new component at the edge to stop direct
communication from external applications to microservices

Ability to identify the securityLeveLProvided for the edge security component

Ability to correctly specify the SecurityLevelProvided property

Ability to identify the EdgeLevel property

Ability to correctly specify the EdgeLevel property

Ability to identify the MessagePayloadSizeLimit property

Ability to correctly specify the MessagePayloadSizeLimit property

Ability to identify the RequestPerApplicationType property

90

Ability to correctly specify the RequestPerApplicationType property
(microservice API requestPerSecondApp)

Ability to identify the MAXRateLimitEdge property

Ability to specify the MAXRateLimitEdge property

Ability to identify the MaxRequestMicroservice Property

Ability to correctly specify the MaxRequestMicroservice property

Question
5

Ability to identify the need to add PAP

Ability to identify AuthorizationMicroserviceArchitecture for PAP

Ability to specify AuthorizationMicroserviceArchitecture for PAP

Ability to identify FineGrainedAuthorization for PAP

Ability to specify FineGrainedAuthorization for PAP

Ability to identify CentralizedAccessControl for PAP

Ability to specify CentralizedAccessControl for PAP

Ability to identify SecurityLevelProvided for PAP

Ability to specify SecurityLevelProvided for PAP

Ability to identify the need to add PIP

Ability to identify FineGrained Authorization property needs to be updated fr all
core microservice

Ability to specify the FineGrainedAuthorization for all core microservice

Ability to specify the FineGrained Authorization for all core microservice

Ability to identify CentralizedAccessControl property needs to be updated for all
core microservice

Ability to specify the CentralizedAccessControl for all core microservice

Ability to identify dbAccessMode for PAP DB

Ability to specify dbAccessMode for PAP DB

Ability to identify DataAtRestEncryption for PAP DB

Ability to specify DataAtRestEncryption for PAP DB

Question
6

Ability to identify MicroserviceDataSensitivity property for Billing Microservice

Ability to specify dataSensitivityLevel field for Billing Microservice

Ability to specify microserviceZone field for Billing Microservice

Ability to identify MicroserviceDataSensitivity property for Payment Microservice

Ability to specify dataSensitivityLevel field for Payment Microservice

Ability to specify microserviceZone field for Payment Microservice

Ability to identify the need to add an intrusion detection system

91

Ability to identify SecurityLevelProvided property

Question |Ability to specify SecurityLevelProvided property

7

Ability to identify NetworkPerimeter property

Ability to specify NetworkPerimeter property

Question

8

Ability to identify the need to add an authentication service for token generation,
issuing, authentication, and invalidation.

Ability to identify the AuthenticationMicroserviceArchitecture property

Ability to specify the AuthenticationMicroserviceArchitecture property

Ability to identify the SecurityLevelProvided property

Ability to specify the SecurityLevelProvided property

Ability to identify dBAccessModel property

Ability to specify dBAccessModel property

Ability to identify DataAtRestEncryption property

Ability to specify DataAtRestEncryption property

Table 3: Grading Scale for Criteria Regarding Identification of Properties and Structural

Elements
Grade Definition
0 The team did not correctly identify properties, components, or connectors.
5 The team correctly identified properties, components, or connectors

Table 4: Grading Scale for Criteria Regarding Specification of Properties and Structural

Elements
Grade Definition

0 The team did not specify properties, components, or connectors.

1 The team was able to specify less than half of the properties, components, or
connectors and most of the values are incorrect.

2 The team was able to correctly specify less than half of the properties, components, or
connectors.

3 The team was able to correctly specify half of the properties, components or
connectors.

4 The team was able to correctly specify more than half of the properties, components,

or connectors.

92

5 The team correctly specified all properties, components, or connectors.

4.3. RESULT OF THE EXPERIMENT

Appendix C presents the scores received by each team for the survey on a per question
basis. Table 5 presents the total score received by the treatment groups for the survey on the
identification related questions. Table 6 presents the total score received by the control groups for
the survey on the identification related questions. Table 7 presents the total score received by the
treatment groups for the survey on the specification related questions. Table 8 presents the total

score received by the control groups for the survey on the specification related questions.

Table 5: Total Score Received by Treatment Groups for the Survey on Identification Related

Questions
Maximum
Score Per
Question on
Identifications | 30 | 20 | 25 | 35 | 50 | 10 | 15 | 25 210
Survey Total
Score for Normalized
Identifications | Total Score for
Treatment for Treatment | Identifications
Group No. |Q1 1|1Q2 I|Q3 I|Q4 I{Q5 I|Q6 I|Q7 1|Q8 1 Group (%)
6 30.00({20.00(5.00 {30.00(0.00 | 0.00 [15.00(5.00 105.00 50.00
19 0.00 |120.00(5.00 {25.00|40.00(0.00 | 0.00 | 0.00 90.00 42.86
2 5.00 (20.00(5.00 [20.00| 5.00 |10.00|15.00|15.00 95.00 45.24
30 5.00 {20.00]20.00110.00|45.00(10.00{15.00| 5.00 130.00 61.90
3 5.00 [15.00(0.00 [20.00|45.00]| 0.00 |15.00]|15.00 115.00 54.76
31 5.00 [20.00(5.00 {10.00|40.00] 0.00 | 0.00 | 5.00 85.00 40.48
18 30.00120.00{25.00]30.00|45.00(5.00 | 0.00 | 0.00 155.00 73.81
32 30.00({20.00(25.00(15.00({45.00(0.00 [15.00(25.00 175.00 83.33
9 5.00 120.00(0.00 {10.00|45.00(0.00 | 5.00 | 5.00 90.00 42.86
4 15.00{20.00]15.00125.00|45.00|10.00(15.00(25.00 170.00 80.95
8 5.00 120.00(0.00 {10.00|50.00({10.00| 5.00 | 5.00 105.00 50.00
10 5.00 115.00({20.00{25.00140.00{10.00|15.00(25.00 155.00 73.81

93

22 5.00 120.00{20.00| 0.00 |45.00(5.00 |15.00(0.00 110.00 52.38

16 5.00 120.00({25.00{30.00/20.00{10.00|15.00(10.00 135.00 64.29

7 20.00{20.00| 0.00 | 0.00 {50.00] 0.00 | 5.00 |10.00 105.00 50.00
Average

Treatment 57.78

DEYV Treatment 14.36

Table 6: Total Score Received by Control Groups for the Survey on Identification Related

Questions
Maximum
Score Per
Question on
Identifications | 30 | 20 | 25 | 35 | 50 | 10 | 15 | 25 210
Total Score for | Normalized
Identifications | Total Score for
Control Group for Control Identifications
No. Q1 I|Q2 I{Q3 I{Q4 1|05 1|1Q6 11Q7 1|Q8 I Group (%)
25 5.00 (15.00(5.00 | 15.00| 5.00 | 0.00 | 5.00 | 0.00 50.00 23.81
13 5.00 120.00|10.00{25.00{30.00(0.00 {15.00(0.00 105.00 50.00
24 5.00 120.00| 5.00 {10.00{45.00(0.00 {15.00(0.00 100.00 47.62
28 10.00| 5.00 | 0.00 |25.00|40.00(0.00 | 15.00| 0.00 95.00 45.24
5 5.00 | 5.00 | 0.00 | 0.00 | 5.00 | 0.00 [5.00 | 0.00 20.00 9.52
21 0.00 {20.00| 5.00 | 15.00(5.00 | 0.00 |15.00]|20.00 80.00 38.10
27 20.00| 0.00 | 5.00 | 5.00 |40.00] 0.00 | 5.00 |20.00 95.00 45.24
34 5.00 (20.00(10.00]25.00|45.00(5.00 | 15.00| 0.00 125.00 59.52
29 5.00 (20.00(5.00 |10.00/10.00{ 0.00 | 0.00 | 0.00 50.00 23.81
11 5.00 {20.00| 0.00 {30.00{40.00(5.00 [0.00 [15.00 115.00 54.76
14 5.00 (20.00(10.00]30.00|40.00(0.00 | 15.00| 0.00 120.00 57.14
20 5.00 120.00| 0.00 {10.00{ 0.00 | 0.00 [0.00 | 0.00 35.00 16.67
33 5.00 (20.00(15.00]10.00| 5.00 [10.00(15.00|25.00 105.00 50.00
15 5.00 120.00| 0.00 {15.00{10.00| 0.00 [15.00(5.00 70.00 33.33
12 5.00 120.00| 5.00 {25.00{30.00| 5.00 {15.00(5.00 110.00 52.38
1 5.00 | 5.00 | 0.00 | 5.00 | 5.00 | 0.00 |15.00| 0.00 35.00 16.67
Average Control 38.99
DEYV Control 16.19

94

Table 7: Total Score Received by Treatment Groups for the Survey on the Specification Related

Questions
Maximum
Score Per
Question on
Specifications | 25 15 | 20 | 30 | 40 | 20 10 | 20 180
Total Score for| Normalized
Specifications |Total Score for
for Treatment | Specifications
Group No. [Q1_S[{Q2 S|Q3 S|Q4 S[Q5 S|Q6 _S|Q7 _S(Q8 S Group (%)
6 25 15 3 21 0 0 10 5 79 44
19 0 13 5 18 30 0 0 0 66 37
2 5 13 5 10 5 0 10 10 58 32
30 5 13 5 3 10 0 0 5 41 23
3 5 10 0 10 5 0 5 5 40 22
31 5 5 5 0 0 0 0 5 20 11
18 25 15 20 20 35 10 0 0 125 69
32 25 5 20 11 35 0 10 20 126 70
9 0 5 0 3 35 0 0 5 48 27
4 10 15 10 18 35 0 10 20 118 66
8 5 13 0 0 40 10 0 5 73 41
10 5 10 10 18 30 10 10 20 113 63
22 5 15 15 0 35 10 10 0 90 50
16 5 15 20 19 6 12 10 10 97 54
7 5 13 0 0 40 0 5 10 73 41
Average
Treatment 43.22
DEV Treatment 18.49

95

Table 8: Total Score Received by the Control Groups for the Survey on the Specification related

Questions
Maximum
Score Per
Question on
Specifications | 25 | 15 | 20 | 30 | 40 [20 | 10 | 20 180
Total Score for| Normalized
Specifications | Total Score for
for Control | Specifications
Group No. |Q1_S|Q2_S[(Q3_S[Q4_S|Q5_S|Q6_S(Q7_S|Q8_S Group (%)
25 5 10 0 6 5 0 0 0 26 14
13 5 13 5 14 20 0 10 0 67 37
24 5 13 0 1 31 0 10 0 60 33
28 5 5 0 16 26 0 10 0 62 34
5 5 5 0 0 5 0 0 0 15 8
21 0 13 0 5 5 0 10 10 43 24
27 11 0 5 0 35 0 0 11 62 34
34 5 13 5 4 20 10 10 0 67 37
29 5 15 5 6 6 0 0 0 37 21
11 5 13 0 21 30 10 0 6 85 47
14 5 6 0 17 20 0 10 0 58 32
20 5 13 5 5 0 0 0 0 28 16
33 5 13 5 3 5 10 10 20 71 39
15 5 13 0 4 6 0 10 5 43 24
12 5 13 5 12 16 10 10 5 76 42
1 5 5 0 0 5 0 10 5 30 17
Average Control 28.82
DEYV Control 11.36

96

4.4. ANALYSIS OF RESULT

The analysis was done in two parts. The first part was to analyze the participants’ ability
to identify properties and structural elements. The second part was to analyze the participants’
ability to specify properties and structural elements. Figure 8 shows the comparison of total scores
for identification of properties and structural elements between treatment and control groups.
Assuming this is a normal distribution, 84% of the population in the control group will score less
than average of the treatment group. A two-sample t-Test assuming unequal variances for
identification was performed. The result of the two-sample t-Test assuming unequal variance for
identification, shown in Figure 9, indicates that the difference between the scores for the treatment
and control groups are statistically significant, the null hypothesis should be rejected, and the

research hypothesis should be accepted.

Participant Scores for Identification of Properties and Structural Elements
(Average with 1 Standard Deviation)

80
70

60

Average of Participant Score
P
[=]

38.99

1

B Treatment Group M Control Group

Figure 8:Participant Scores for Identification of Properties and Structural Elements (Average
with 1 Standard Deviation)

97

t-Test: Two-Sample Assuming Unequal Variances

Normalized Total Score for Identifications for ~ Normalized Total Score for Identifications for

Treatment Groups (%) Control Groups (%)
Mean 57.778 38.988125
Variance 206.0391171 262.1645763
Observations 15 16
Hypothesized Mean Difference 0
df 29
t Stat 3.42363581
P(T<=t) one-tail 0.000931045
t Critical one-tail 1.699127027
P(T<=t) two-tail 0.001862089
t Critical two-tail 2.045229642

Figure 9: Identification: Two Sample t-Test Assuming Unequal Variances
Figure 10 shows the comparison of total scores for specification of properties and structural
elements between treatment and control groups. Assuming this is a normal distribution, 84% of
the population in the control group will score less than average of the treatment group. A two-
sample t-Test assuming unequal variances for specification was performed. The result of the two-
sample t-Test assuming unequal variance for specification, shown in Figure 11, indicates that the
difference between the scores for the treatment and control groups are statistically significant, the

null hypothesis should be rejected, and the research hypothesis should be accepted.

98

Participant Scores for Specification of Properties and Structural Elements
(Average with 1 Standard Deviation)

70

60

50

40

30

Average of Participant Scores

20

10

1

W Treatment Group M Control Group

Figure 10: Participant Scores for Specification of Properties and Structural Elements (Average
with 1 Standard Deviation)

t-Test: Two-Sample Assuming Unequal Variances

Normalized Total Score for Specifications ~ Normalized Total Score for Specifications for Control

for Treatment (%) Groups (%)
Mean 43.33333333 28.6875
Variance 342.0952381 125.8291667
Observations 15 16
Hypothesized Mean Difference 0
df 23
t Stat 2.644554009
P(T<=t) one-tail 0.007242816
t Critical one-tail 1.713871528
P(T<=t) two-tail 0.014485632
t Critical two-tail 2.06865761

Figure 11: Specification: Two Sample t-Test Assuming Unequal Variances

4.5. OBSERVATIONS OF RESULT

Four observations can be made after analyzing the data collected:

99

Observation 1: The participants had difficulty in the identification and specification of
properties and structural element (component or connector) when the property has a dependence
on a specific structural element.

Observation 2: The participants had difficulty in the identification and specification of
properties when the property has a dependence on another property.

Observation 3: The participants had difficulty in the identification and specification of the
scope of properties.

Observation 4: The participants had difficulty in the specification of the properties on the

appropriate structural element.

100

Chapter 5: Related Work

5.1. SECURITY ANALYSIS IN SOFTWARE ARCHITECTURE

This section presents seven approaches for analyzing security in software architecture:
Architecture Risk Analysis, Security Vulnerability Approach with SAVE, Attack Surface Security
Analysis, Security Architecture Tradeoff Analysis Method, Architecture Analysis for Security,
Security Analysis with Acme and Monte Carlo Simulation, and Security Analysis with Information

Flow Modeling.

5.1.1. Architecture Risk Analysis

Architectural risk analysis [76,6] (ARA) is a process for identifying flaws in software
architecture. It involves examining the required preconditions for vulnerabilities to be exploited
and evaluating the potential states the system can be in prior to an exploitation. ARA starts with
a one-page architecture that describes the system. The architecture is created by interviewing the
software architects, developers, and testers. ARA is guided by three activities: known
vulnerability analysis (also known as attack resistance analysis), ambiguity analysis, and
underlying platform vulnerability analysis (also known as underlying framework weakness
analysis).

Known vulnerability analysis compares the system’s architecture against any known
attacks, attack patterns, and known principles for confidentiality, integrity, and availability. It
assesses the impact of the applicable attacks on the system, identifies vulnerable areas in the
architecture, and develops ways to mitigate the risks. Ambiguity analysis aims to eliminate any
misunderstandings between requirements and implementation, find weaknesses based on how the
system works, and expose any invalid assumptions. It also identifies trust boundaries for function
and data (trust modeling); privacy and trust issues for data (data sensitivity modeling); and
attackers and areas of weaknesses from the attackers’ perspectives (threat modeling). Underlying

platform vulnerability analysis examines vulnerabilities associated with the application’s

101

execution environment, such as operating system vulnerabilities, network vulnerabilities, platform
vulnerabilities, and interaction vulnerabilities resulting from the interaction of components. ARA
yields a list of weaknesses associated with the architecture. The analysts rank the weaknesses and

propose mitigations.

5.1.2. Security Vulnerability Approach with SAVE

Karppinen, et al. [77] presents the use of Software Architecture Visualization and
Evaluation (SAVE) to detect security vulnerabilities that violate structural and behavioral patterns
of a software system. SAVE [51] is a non-security specific tool that is used to analyze and optimize
the architecture of implemented software systems. It can generate static and dynamic architectural
views from source code and compare the architectures for violations. SAVE uses static analysis
techniques to reveal dependencies and couplings between components and dynamic analysis
techniques to reveal active components in a system’s planned and generated architecture design.

Karppinen, et al. uses SAVE to generate static and dynamic views of the implemented
architecture from the source code and compare the implemented architecture against the planned
architecture. Comparison of the findings in the architectures can determine if the software system
is implemented as planned; architecture styles and design patterns are used properly and
implemented; and security vulnerabilities and hidden functionalities exist.

This research shows the potential in discovering vulnerabilities in an implemented system
by analyzing its architectural design. However, Karppinen, et al. acknowledge that the ability to
detect vulnerabilities, attacks, and hidden functionalities is limited because prior knowledge of
how the system is attacked is required. The effort in collecting and analyzing such data might not

be feasible.

5.1.3. Attack Surface Security Analysis

Gennari and Garlan [33] presents the use of attack surface to evaluate security properties
at architectural level and identify architectural vulnerabilities. Attack surface is the measure of a

102

system’s exposure to attack. This work is based on Manadahata and Wing’s work on attack
surfaces. Manadahata and Wing [24] have quantified the attack surface in terms of resources used
by a system to interact with its external environment. The resources are entry and exit points,
channels, and untrusted data items.

To represent security in an architecture, Gennari and Garlan define the mapping of attack
surface to architectural structures. Entry and exit points are mapped to ports. Channels are mapped
to an architectural connector that connects components outside of the system with components
inside of the system. Untrusted data items are mapped to data sources used by the system that
reside in the environment. AcmeStudio, which uses Acme architectural description language, is
selected as the architecture modeling environment. For modeling attack surfaces in Acme, Gennari
and Garlan defines a new security-focused Acme family and an attack surface plug-in.. The attack
surface plug-in allows one to specify attack surface properties of architectural elements. To
evaluate security at the architecture, the attack surface plug-in measures the attack surface of an

architectural model and identifies principal contributors to the model’s attack surface.

5.1.4. Security Architecture Tradeoff Analysis Method

Raza, et al. [78] extends Architecture Tradeoff Analysis Method (ATAM) with security
characterization to evaluate security aspects of a software architecture. ATAM is a scenario based
method used for analysis of architecture against particular quality goals and how quality goals
trade off against each other. ATAM consists of the following phases: presentation, investigation
and analysis, testing, and reporting. Presentation phrase involves presenting the ATAM process,
the business drivers, and architecture. Investigation and analysis phase involves identifying the
architectural approaches used, generating a quality attribute utility tree and scenarios, and
analyzing architectural approaches. Testing phase involves brainstorming and prioritizing
scenarios and analyzing architectural approaches. Reporting phase involves presenting the results

from the analysis of architecture against particular quality goals [54].

103

Quality attribute characterization helps refine the scenarios created during the investigation
and analysis phase. A characterization includes the type of stimuli in which an architecture must
respond, the measurable response of the quality attribute by which its achievement is judged, and
critical architectural decisions that impact achieving the quality attribute requirement [54]. Raza,
et al. create the security characterization. A security stimulus can be a source or type. A source
can be an authorized user or unauthorized user. An unauthorized user can be a hacker or attacker.
A type can be an internal attack or external attack. An internal attack refers to accidental access
to sensitive data. An external attack can be a network attack, data centered attack, application
specific attack, or user input attack. A security parameter can be a resource (component) or
services. A resource (component) can be a fire wall, virtual lan, proxy server, DMZ, antivirus,
certification authority, or operating system. A service can refer to authentication, authorization,
access control, intrusion detection, encryption, digital signatures, deception, diversity, or recovery.
A security response can be passive or active. A passive response can be protection, prevention, or
containment. An active service is a failure recovery. With the security characterization, ATAM
can be used to evaluate security aspects of a software architecture following the activities defined

in the investigation and analysis phase, testing phase, and reporting phase.

5.1.5. Architectural Analysis for Security

Ryoo, et al. [15] presents the architectural analysis for security (AAFS) method. AAFS
consists of three techniques: tactic-oriented architectural analysis (ToAA), pattern-oriented
architectural analysis (PoAA), and vulnerability-oriented architectural analysis (VoAA). ToAA
involves interviewing an architect about whether and how the system addresses each tactic type
and ranking the tactics used in the system to develop a prioritized list of tactics. PoAA involves
reviewing the patterns that are related to the identified tactics with the architect, questioning the
architect about the existence or use of security patterns and whether the patterns are being

implemented correctly. VoAA involves searching for weaknesses resulting from not adopting

104

patterns or not properly implementing the patterns. The output from VoAA’s phase is a prioritized

list of potential vulnerabilities.

5.1.6. Security Analysis with Acme and Monte Carlo Simulation

Garlan and Schmerl [7, 29] demonstrate how Acme architectural description language
along with Monte Carlo simulation can be used to analyze the security of an architecture. A threat
scenario includes threat types, assets, and countermeasures (preventative, monitoring, and
recovery). Threat type specifies the possible threat that can affect the system. Asset is a
component that can be damaged by a threat and is associated with a monetary value. Preventative
countermeasure affects the frequency at which a threat occurs. Monitoring countermeasure and
recovery countermeasure reduce the effect of a threat. The security simulator in AcmeStudio
performs security simulations based on the threat scenarios. The security simulation outputs a
report that includes the threat scenario, threat transaction, the most probable damage value to each

asset in the threat transaction, and the total damage to the assets in the threat transaction path.

5.1.7. Security Analysis with Information Flow Modeling

Garg, et al. [71] present an approach that uses STRIDE model to define an Acme Data
Flow Diagram (DFD) architectural style for security analysis and provide architectural constraints
that are used to automatically identify STRIDE threats and security vulnerabilities. The approach
starts with an architect modeling a DFD of the system. The architect then specifies properties,
such as trust level, for each component(connector). Acme ADL modeling tool checks the DFD
against structural and security constraints as defined in the Acme DFD architectural style. The

architect will get notified If the Acme ADL modeling tool discovers any threats or vulnerabilities.

105

5.2. AADL SECURITY ANNEXES 2019

The AADL security annex 2019 [59] includes the following property sets: security
classification property set and security enforcement property set. The security classification
property set includes: a. Security clearances (subjects), b. Information security levels (objects), c.
Security levels (subjects and objects), and d. Trusted classification. The security enforcement
property set includes: a. Data security, b. Data security specification, c. Subject authentication, and
d. Secure flows.

The property sets provide in the AADL security annex 2019 covers basic security concepts.
It does not have specific security properties that would cover unique security challenges that exist

in microservice architectures. The framework described in this dissertation addresses that.

5.3. SUMMARY

A number of approaches on how to analyze security in software architecture is presented.
None of the approaches address the problem from a root cause perspective. By knowing the root
causes of vulnerabilities, it can assist architects in developing a software architecture that has fewer

software weaknesses. Please see Table 9 for the summary comparison table.

106

Table 9: Summary Comparison Table

Security Approaches

Formal
Specification

Modeling
Support

Threat
Modeling

Root Cause
Analysis

Architecture Risk Analysis

Security Vulnerability Approach with
SAVE

Attack Surface Security Analysis

Security Architecture Tradeoff
Analysis Method

Architectural Analysis for Security

Security Analysis with Acme and
Monte Carlo Simulation

Acme

Security Analysis with Information
Flow Modeling

DFD

AADL Security Annex 2019

Framework for Security Modeling and
Specification in Microservice
Architectures

AADL

107

Chapter 6: Conclusions

6.1. SUMMARY OF WORK

There is a lack of consolidated design knowledge on how to build microservice
applications. With an increase in the adoption of microservice architecture in the development of
applications and the increase in security breaches in microservice based systems, there is a need
to examine and understand security issues that exist in microservice architectures. This
dissertation presented the Framework for Security Modeling and Specification in Microservice
Architectures to enhance the security modeling and specifications in microservice architectures.
The research questions that drove the research are:

RQ1: What are the security challenges in microservices architecture?

RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The outcome was the framework that provides sufficient support in formally defining
security properties and adding structural elements in the architecture that address software
vulnerabilities in earlier stages of software development of microservice architectures. Please see
Table 10 for the mapping of security challenges, practices, properties and decision trees).

An experiment was designed to assess the hypothesis that use of the framework would lead
to an increase in well-justified and articulated security specifications and components in
microservice architectures. The null and research hypotheses were as follows:

= Null Hypothesis: Use of the framework does not lead to an increase in well-justified and
articulated security specifications and components in microservice architectures.
= Research Hypothesis: Use of the framework leads to a significant increase in well-justified

and articulated security specifications and components in microservice architectures.

108

The result of the experiment shows that 84% of the population in the control group will
score less than average of the treatment group. A two-sample t-Test assuming unequal
variances was performed. The result of the two-sample t-Test assuming unequal variance for
identification indicates that the difference between the scores for the treatment and control
groups are statistically significant, the null hypothesis should be rejected, and the research
hypothesis should be accepted.

This dissertation defines a framework to support the design of microservice architectures
and remediate documented security issues. The framework enhances the ability of software
architects to formally specify security properties early on in the software development
lifecycle. It also includes the use of decision trees to guide software architects in determining
what specific security properties should be considered, how different security properties are
related and can be used together, and what additional structural elements (components and
connectors) should be considered when adding specific security properties. These security
properties are derived from existing security challenges and the corresponding security
practices used to address them.

The impact of the work is that software vulnerabilities are addressed during early phases
of software development (architecture and design) rather than later in the software
development lifecycle. This helps to significantly reduce costs associated with software defect
mitigation. Studies have shown that the cost ratio in tackling a software defect, including
security vulnerabilities, is doubled if defects are discovered during the implementation phase
compared to the architecture and design phases. This ratio more than triples if defects are
discovered during testing. The work provides comprehensive support in defined security in
microservice architectures, especially for software architects who have minimal experience in

society.

109

Table 10: Security Challenges, Practices, Properties, and Decision Tree Summary Table

Security
Challenges Security

Category Security Challenges Practices Security Properties Decision Trees
Many authentication
scenarios compared to
an equivalent monolithic
architecture and hence
increase in complexity in
how authentication
should be handled.
Authentication is a cross
cutting concern that
affects every
microservice, some
developers create global
authentication logic and
assign a_ut.h_entlcatlon API Gateway
responsibility to each

. . o Tokens, such as
microservice which is a
olati £ sinol API token and
viofa 10%91.tsmg.e - JSON web
responsibility principle. token,
Reusing same code base |Certificate- . . .
for authentication creates [pased 1ic(eicurlityLivelProv1ded, IE)dg.e Lev;l Security
a central code authentication, geL.evel, . . ccision 1ree,
d d d AuthenticationMicroservice |Secure Microservice
. ependency an API key-based .)
Authentication ivelv i h S Architecture, Architecture
negatively impact the authentication, dbA Med Decision T
technology agnostic Hash-based ccessMode, ecision Tree,
aspect of microservices. |message DataAtRest, . SeI’V}ge Level
S DataAtRestEncryption, Decision Tree
Management of authentication
credentials is code,
challenging since there |OpenID
are more credentials. connect,
If authentication Feder-ated
Identity

information is managed
by an authentication
microservice, an update
is required whenever a
new microservice or a
new user is added.

If the authentication
information is managed
by individual
microservices, it
increases the chances of
the information being
leaked should there be
compromises happening

110

to individual
microservices.

Authorization

Many authorization
scenarios compared to
an equivalent monolithic
architecture and hence
increase in complexity in
how authorization
should be handled.

Authorization is a cross
cutting concern that
affects every
microservice, some
developers create global
authorization logic and
assign authorization
responsibility to each
microservice which is a
violation of single
responsibility principle.

Reusing same code base
for authorization creates
a central code
dependency and
negatively impact the
technology agnostic
aspect of microservices.

Management of
credentials and their
access rights is
challenging since there
are more credentials.

If a microservice is
required to handle
authorization at the
service level and needs
to store and administer
user’s data, it increases
the chances of personal
information being leaked
and accessed by
unauthorized entities.

Confused deputy
problem refers to an
upstream (client)
microservice tricks the
downstream (server)
microservices into doing

API Gateway,
Security Token,
OAuth 2.0,
Certificates,
Access Control
System,
Decentralized
authorization,
Centralized
Upstream
Authorization

AuthorizationMicroservice
Architecture,
CoarseGrainedAuthorizatio
n’
FineGrainedAuthorization,
CentralizedFineGrainedAut
horization,

Secure Microservice
Architecture
Decision Tree,
Service Level
Decision Tree,

Edge Level Security
Decision Tree

111

something they shouldn't
be doing.

Container-based
microservice is
immutable meaning that
once the container is up,
it does not maintain any
runtime states or any
changes made to its file
system. It means that
extra steps need to be
taken to maintain the
dynamic list of allowed
clients and access
control policies and
service credentials since
service credentials
would be rotated
periodically.

When microservices are
spread across different
platforms, security may
be out of the control of
the microservices
owners and completely
dependent on the

platform environment |{jge of
owner. distributed : .
)) . Secure Microservice
Collecting the required |tracing system .
Architecture
. and necessary Standard log .
Logging . . . Log Decision Tree,
information to diagnose |structure and . 7.
Logging Decision
what went wrong and the amount of Tree
correlating requests information
among microservices collected
become challenging.
For microservices that
are deployed using
containers, the audit logs
are not kept at each node
running the
microservices.
Communication takes
place over the network . .
in order to complete SecEr.e Microservice
L requests. TLS L Arc iitecture
Communication - - MTI:S SecureCommunication Decision Tree,
Improper interception Communication

and inappropriate access
if teams cannot agree on
the communication

Decision Tree

112

protocol between
microservices.

Data moves around an
architecture more often
In a microservice
architecture than in a
monolithic architecture,
and this makes securing
data more challenging.

Identity of downstream
microservice regarding
data in transit and
attempt to steal all
receiving data.

Identity of upstream
microservice regarding
data in transit and

TLS and

attempt to request for MTLS,

data that it does not have |MTLS and

access to. Service Mesh, |dbAccessMode, Secure Microservice

Visibility of data when |Secure DataAtRest, Architecture

data is sent across the communication |DataAtRestEncryption, Decision Tree,
Data . . L. -

network. protocol, MicroserviceDataSensitivity | Data Decision Tree,

Manipulation of data Message , Communication

when data is sent across |2uthentication |SecureCommunication Decision Tree

the network. code,

- Encryption,

Data stores in JWT

unencrypted form and

when an adversary is

able to compromise a

microservice with an

unencrypted data store,

he/she will have

unlimited access to the

data.

Amount of data will

each microservice needs

become questionable

since a request is

typically fulfilled by

more than one

microservice.

Fail to keep up with Secure Microservice

patching of Assign the right Architecture
Patching vulnerabilities per§onpel to patch_type, Decision Tree,

Ownership of the maintain and DeploymentType Deployment and

infrastructure and
software that

handle patching

Patching Decision
Tree

113

microservice runs on
affects the ability and
frequency of patching

Dependencies between
microservices and third-
party libraries used in
the development of
microservices affect
frequency of patching.

Deployment of
microservices increases
in scale, it makes it
extremely challenging to
manage and maintain the
security

Push or pull
model. The
service
credentials and
access control
policies are
maintained at a
policy
administration
endpoint. With
a push model,

the policy
Deployment administration
endpoint pushes
the updates to
the
microservice at
bootup. With a
pull model, the
microservice
periodically
The technology agnostic |pulls updates
nature of microservices |from the policy
also makes vulnerability |administration
detection more difficult. |endpoint.
Microservices are often TrustDomain,
designed to trust each NetworkPerimeterLevel,
other in a microservice EdgeLevel, Secure Microservice
architecture. When a MaxRateLimitEdge, Architecture
malicious adversary Layers of MaxRequestMicroservice, Decision Tree
attacks and gains control |security, APIRequestPerSecond_type 2
of an individual Zero trust , Network P-er.lrneter
. . . |Level Decision Tree,
microservice, it can model, APIRequestPerSecondMicr ..
. Edge Level Decision
affect other Degree of oserviceName type, Tree
microservices in the access APIRequestPerSecondMicr Service Level
microservice separation oserviceNameApp_type, Decision Tree
architecture. The APIRequestPerSecondMicr Trust Decisior; Tree
malicious adversary can oserviceNameUser _type,
manipulate APIRequestPerSecondMicr
Trust microservices to do what oserviceNameOperation ty

114

he/she wants them to do,

escalate privileges on the

hosting infrastructure of
the microservices, listen
on any inter-service
communication, alter
data in transit, lead to
full disclosure of other
microservices, and
potentially bring down
the entire system.

pe,
RequestPerApplicationType

RequestPerUser,
RequestPerOperation,
MessagePayloadSizeLimit

Larger Surface
Area

Communications
between microservices
over the network cause
exposure to more
potential attacks than a
monolithic application
due to the increased
number in entry points,
and hence increases the
attack surface area.

With the attack surface
area being larger, it
makes it harder to
manage security.

API Gateway,
Zero Trust
Model

EdgeLevel

Secure Microservice
Architecture
Decision Tree,

Edge Level Decision
Tree

6.2. FUTURE WORK

Future work includes enhancing decision trees based on the observations from the

experiment (please see section 4.5), automating the support provided by the decision trees,

conducting experiments with practitioners, and enhancing the AADL security annex 2019 with the

Microservice Architecture Security Properties property set created from this research.

115

References

IDC FutureScape: Worldwide IT Industry 2019 Predictions. (2018). IDC.

https://www.idc.com/getdoc.jsp?containerld=US44403818

. Torkura, K., Sukmana, M., & Meinel, C. (2017). Integrating Continuous Security Assessments
in Microservices and Cloud Native Applications. 171-180.

https://doi.org/10.1145/3147213.3147229

. Pereira-Vale, A., Fernandez, E. B., Monge, R., Astudillo, H., & Marquez, G. (2021). Security
in microservice-based systems: A Multivocal literature review. 103, 102200.

https://doi.org/10.1016/j.cose.2021.102200

. Mateus-Coelho, N., Cruz-Cunha, M., & Ferreira, L. G. (2021). Security in Microservices

Architectures. 181, 1225-1236. https://doi.org/10.1016/j.procs.2021.01.320

. He, X., & Yang, X. (2017). Authentication and Authorization of End User in Microservice

Architecture. 910(1), 12060. https://doi.org/10.1088/1742-6596/910/1/012060
. McGraw, G. (n.d.). Software Security Touchpoint: Architectural Risk Analysis.

. Schmerl, B., Gennari, J., & Garlan, D. (2006). Architecture-based Simulation for Security and

Performance.

. Newman, S. (2021). Building Microservices, 2nd Edition. O’Reilly Media, Incorporated.

https://learning.oreilly.com/library/view/building-microservices-2nd/9781492034018/

. Richards, M., & Ford, N. (2020). Fundamentals of Software Architecture. O’Reilly Media,
Incorporated. https://learning.oreilly.com/library/view/fundamentals-of-

software/9781492043447/

116

10. Weber, S., Karger, P., & Paradkar, A. (2005). A software flaw taxonomy: Aiming tools at

security. 30, 1-7.

11. Baresi, L., & Garriga, M. (2020). Microservices: The Evolution and Extinction of Web
Services? (A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera, & A.
Sadovykh (Eds.); pp. 3-28). Springer International Publishing.

https://doi.org/10.1007/978-3-030-31646-4_1

12. Kanjilal, J. (2021, November 3). Logging Microservices: The Challenges and Solutions.

https://www.developer.com/design/logging-microservices/
13. Ayoub, M. (2018, April 24). Microservices Authentication and Authorization Solutions.

14. An overview of the SSL or TLS handshake. (2023). https://www.ibm.com/docs/en/ibm-

mq/7.5?topic=ssl-overview-tls-handshake

15. Ryoo, J., Kazman, R., & Anand, P. (2015). Architectural Analysis for Security (pp. 52-59).

IEEE Security & Privacy, vol. 13, no. 6.

16. Parecki, A. (2021, September 2). Hands-on introduction to OAuth 2.0. O’Reilly Media,
Incorporated. https://learning.oreilly.com/live-events/hands-on-introduction-to-oauth-

20/0636920328384/

17. Powell, O. (2022, November 25). IOTW: Twitter accused of covering up data breach that

affects millions.

18. Yarygina, T., & Bagge, A. H. (2018). Overcoming Security Challenges in Microservice

Architectures. 11-20. https://doi.org/10.1109/SOSE.2018.00011

117

19. Henrique, W., Almeida, C., De Aguiar Monteiro, L., Hazin, R. R., Cavalcanti De Lima, A., &
Ferraz, F. S. (n.d.). Survey on Microservice Architecture -Security, Privacy and

Standardization on Cloud Computing Environment.

20. Lakshminarayanan, S. (2019). AppSecCali 2019 - Authorization in Micro Services World
Kubernetes, ISTIO and Open Policy Agent.

https://www.youtube.com/watch?v=UnXjwCWgBKU

21. Twitter. (2022, August 5). An incident impacting some accounts and private information on

Twitter.

22. Feiler, P., & Gluch, D. (2012). Model-Based Engineering with AADL: An Introduction to the

SAE Architecture Analysis & Design Language. Addison-Wesley Professional.

23. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A., Montesi, F., & Prandini, M. (2022).
Microservice security: a systematic literature review (Vol. 7). Peerl.

https://doi.org/10.7717/peerj-cs.779

24. Manadhata, P., & Wing, J. (2011). An Attack Surface Metric (pp. 371-386). IEEE Trans.

Software Eng. 37.

25. Banati, A., Kail, E., Karoczkali, K., & Kozlovszky, M. (2018). Authentication and authorization
orchestrator for microservice-based software architectures. In Proceedings of the 41st
International Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO).

26. Siriwardena, P., & Dias, N. (2022). Microservices Security in Action. Manning Publications

Co. https://learning.oreilly.com/library/view/microservices-security-in/9781617295959/

118

217.

28.

29.

30.

31.

32.

33.

34.

35.

Greenberg, A. (2016, August 1). The Jeep Hackers Are Back to Prove Car Hacking Can Get

Much Worse.

Barabanov, A., & Makrushin, D. (2020). Authentication and Authorization in Microservice-
Based Systems: Survey of Architecture Patterns. 4(38), 32-43.

https://doi.org/10.21681/2311-3456-2020-04-32-43

Garlan, D., & Schmerl, B. (2007). Architecture-driven modelling and analysis (pp. 3-17).
Proceedings of the eleventh Australian workshop on Safety critical systems and software -

Volume 69 (SCS ’06), Tony Cant (Ed.), Vol. 69. Australian Computer Society, Inc.

Gough, J., Bryant, D., & Auburn, M. (2022). Mastering API Architecture. O’Reilly Media,

Inc. https://learning.oreilly.com/library/view/mastering-api-architecture/9781492090625/

HMAC (Hash-Based Message Authentication Codes) Definition. (2023). Okta.

https://www.okta.com/identity-101/hmac/

Yugiong, S., Nanda, S., & Jaeger, T. (2015). Security-as-a-Service for Microservices-Based

Cloud Applications. 50-57. https://doi.org/10.1109/CloudCom.2015.93

Gennari, J., & Garlan, D. (2012). Measuring Attack Surface in Software Architecture (cmu-

isr-11-121). CMU.

Garlan, D., & Perry, D. (1995). Introduction to the Special Issue on Software Architecture

(Vol. 21, Issue 4, pp. 269-274).

How SSL and TLS provide identification, authentication, confidentiality, and integrity. (2023).
IBM. https://www.ibm.com/docs/en/ibm-mg/7.5?topic=ssl-how-tls-provide-

authentication-confidentiality-integrity

119

36

37.

38.

39

40

41

42

43

44,

. Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: Yesterday, Today, and Tomorrow (pp. 195—

International Publishing. https://doi.org/10.1007/978-3-319-67425-4 12

216). Springer

Siriwardena, P. (2019). Advanced API Security: OAuth 2.0 and Beyond. Apress.

https://learning.oreilly.com/library/view/advanced-api-security/9781484220504/

Rountree, D. (2012). Federated Identity Primer.

Syngress.

https://learning.oreilly.com/library/view/federated-identity-primer/9780124071896/

. Rehman, S., & Mustafa, K. (2009). Research on software design level security vulnerabilities

(pp. 1-5). SIGSOFT Softw. Eng. Notes 34, 6.

. Santos, J. C. S., Tarrit, K., & Mirakhorli, M. (2017). A Catalog of Security Architecture

Weaknesses. 220-223. https://doi.org/10.1109/ICSAW.2017.25

. GoOes de Almeida, M., & Canedo, E. D. (2022). Authentication and Authorization in

Microservices Architecture: A Systematic Literature ~ Review. 12(6).

https://doi.org/10.3390/app12063023

. Wilson, Y., & Hingnikar, A. (2022). Solving ldentity Management in Modern Applications:

Demystifying OAuth 2, OpenID Connect, and SAML 2. O’Reilly Media, Incorporated.

https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/

. IBM Market Development Insights Team, . (2021). Microservices in the enterprise, 2021: Real

benefits, worth the challenges. IBM.

Gaither, D. (2022). APl Keys: APl Authentication Methods

https://blog.stoplight.io/api-keys-best-practices-to-authenticate-apis

120

& Examples.

45. Nadareishvili, 1., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice Architecture.
O’Reilly Media, Incorporated. https://learning.oreilly.com/library/view/microservice-

architecture/9781491956328/

46. Delange, J. (2016). AADL Security Annex Draft. Software Engineering Institute, Carnegie

Mellon University.

47. Venckauskas, A., Kukta, D., Grigalilinas, S., & Bruzgiené, R. (2023). Enhancing
Microservices Security with Token-Based Access Control Method. 23(6), 3363.

https://doi.org/10.3390/s23063363

48. Security, W. (2018). The Evolution of the Secure Software Lifecycle 2018 Application

Security Statistics Report (WhiteHat Security).
49. Lindau, D. (2020, June 23). The Difference Between HTTP Auth, APl Keys, and OAuth.
50. DoorDash. (2022, August 25). How we’re responding to a third-party vendor phishing incident.

51. Duszynski, S., Knodel, J., & Lindvall, M. (2009). SAVE: Software Architecture Visualization

and Evaluation. 323-324.

52. Office, U. S. G. A. (2018). DATA PROTECTION Actions Taken by Equifax and Federal
Agencies in Response to the 2017 Breach Report. United States Government

Accountability Office.
53. DoorDash. (2019, September 27). Important security notice about your DoorDash account.

54. Clements, P., Kazman, M., & Klein, M. (2011). Evaluating Software Architectures — Methods

and Case Studies. Software Engineering Institute.

121

55

56.

57

58

59

60

61

62

63

. Richards, M. (2015). Microservices vs. Service-Oriented Architecture. O’Reilly Media,
Incorporated. https://learning.oreilly.com/library/view/microservices-vs-service-

oriented/9781491975657/cover.html

Zettler, K. (n.d.). Platform as a service. Retrieved August 18, 2022, from

https://www.atlassian.com/microservices/cloud-computing/platform-as-a-service

. Subramanian, H., & Raj, P. (2019). Hands-On RESTful API Design Patterns and Best
Practices. Packt. https://learning.oreilly.com/library/view/hands-on-restful-

api/9781788992664/

. APl Gateway Security. (n.d.). solo.io. https://www.solo.io/topics/api-gateway/api-gateway-

security/

. Gluch, D. (2019). AADL Security Annex. Software Engineering Institute, Carnegie Mellon

University.

. Marvin, M. (2022, August 10). Filling the Access Security Gap With Certificate-Based

Authentication. https://www.portnox.com/blog/certificate-based-authentication/

. Fruhlinger, J. (2020, February 12). Equifax data breach FAQ: What happened, who was
affected, what was the impact? https://www.csoonline.com/article/3444488/equifax-data-

breach-fag-what-happened-who-was-affected-what-was-the-impact.html

. Santos, J. C. S. (2016). Toward Establishing a Catalog of Security Architecture Weaknesses”,

Department of Software Engineering. Rochester Institute of Technology.

. Fybish, R. (2022, February 3). Authentication in Microservices: Approaches and Techniques.

122

64. Joseph, C. T., & Chandrasekaran, K. (2019). Straddling the crevasse: A review of microservice
software architecture foundations and recent advancements. 49(10), 1448-1484.

https://doi.org/10.1002/spe.2729

65. Lewis, J., & Fowler, M. (2014, March 25). Microservices. A definition of this new

architectural term .

66. APl Gateway: What Is It And Why Is It Essential in Microservices Architecture? (n.d.).

traefiklabs. https://traefik.io/glossary/api-gateway-101/

67. Torkura, K. A., Sukmana, M. I. H., Feng Cheng, & Meinel, C. (2017). Leveraging Cloud
Native Design Patterns for Security-as-a-Service Applications. 90-97.

https://doi.org/10.1109/SmartCloud.2017.21

68. Federated Identity Pattern. (n.d.). Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/patterns/federated-identity

69. Symantec. (2016). Internet Security Threat Report.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

70. Madden, N. (2021). APl Security in Action. Manning Publications.

https://learning.oreilly.com/library/view/api-security-in/9781617296024/

71. Garg, K., Garlan, D., & Schmerl, B. (2004). Architecture Based Information Flow Analysis

for Software Security. Carnegie Mellon University.

72. Penhale, C. (n.d.). Secure Your Container-Based Microservices with Client Certificate

Authentication. Openlogic.

123

73. Santos, J. C. S., Tarrit, K. and Mirakhorli, M. (2017). A Catalog of Security Architecture
Weaknesses. IEEE International Conference on Software Architecture Workshops

(ICSAW), Gothenburg, pp. 220-223.
74. McGraw, G. (2006). Software Security: Building Security In, Addison-Wesley Professional.

75. Arce, |., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon, D., Kern, C., Kohno, T.,
Landwehr, C., McGraw, G., Schoenfield, B., Seltzer, M., Spinellis, D., Tarandach, 1., West,
J. (2014) Avoiding the top 10 software security design flaws, Technical report IEEE

Computer Society's Center for Secure Design.

76. Peterson, G., Hope, P., Lavenfar, S. (2005). Architectural Risk Analysis, Cigital,
https://www.us-cert.gov/bsi/articles/best-practices/architectural-risk-

analysis/architectural-risk-analysis.

77. Karppinen, K., Lindvall, M., Yonkwa, L. (2008). Detecting Security Vulnerabilities with
Software Architecture Analysis Tools. IEEE International Conference on Software Testing

Verification and Validation Workshop, Lillehammer, Norway.

78. Raza, A., Abbas, H., Yngstrom, L., Hemani, A. (2009). Security characterization for evaluation
of software architectures using ATAM. International Conference on Information and

Communication Technologies, Karachi, pp. 241-246.

79. Bass, L., Clements, P., Kazman, R. (2012, September). Software Architecture in Practice,
Third Edition. Addison-Wesley Professional.

https://learning.oreilly.com/library/view/software-architecture-in/9780132942799/

8

o

. Modeling System Architectures using Architecture Analysis and Design Language (AADL).

(2015, December). Software Engineering Institute, Carnegie Mellon University.

124

Appendix A: Decision Trees

Appendix A presents the complete set of decision trees. The decision trees are organized
as follows:
1. Key
2. Instructions on How to Use the Decision Trees

3. Secure Microservice Architecture Decision Tree

4. Network Perimeter Level Decision Tree
5. Edge Level Decision Tree Part 1 of 4
6. Edge Level Decision Tree Part 2 of 4
7. Edge Level Decision Tree Part 3 of 4

8. Edge Level Decision Tree Part 4 of 4

9. Service Level Decision Tree Part 1 of 3
10. Service Level Decision Tree Part 2 of 3
11. Service Level Decision Tree Part 3 of 3
12. Communication Decision Tree

13. Logging Decision Tree

14. Deployment and Patching Decision Tree
15. Data Decision Tree

16. Trust Decision Tree.

125

A.1.KEY

G|

Information

*Core
Microservice

<property name> => [<property name> => <property value>;

An oval represents a start or

end point of a flowchart. A symbol representing a comment

Adotted line rounded rectangle . A line represents a connector
represents a boundary of a between different shapes
flowchart

Adisplay symbol represents Atr_langle represents a merge
information about the process. action

*Core microservice refers to the
microservice that serves a business
purpose in the given problem domain.

Key
Process Arounded rectangle represents Pink Text Pink text within a process represents the declaration of a property.
a process.
Blue text within a process represents property iati A property consists of a property name, an assignment operator, and a
A diamond represents a value or a list of values or a record to be assigned to the property.
decision point. Blue Text
P <property name> => <property value>; -- For property with a single value.
<prapery name> => (<property value>, ..., <property value=); - For property with a list of values and the values are separated by commas.

.. <property name> => <property value>:]; -- For property with record declaration

Figure 12: Decision Tree Key

126

A.2. INSTRUCTIONS ON HOW TO USE THE DECISION TREES

Instructions on how to use the decision trees:
a. A key which explains all the symbols used in the decision trees s provided
b. Please start with the “Secure Microservice Architecture Decision” and lallow the paths based on your answers to questions in the decision tree.

Figure 13: Instructions on How to Use the Decision Trees

127

A.3. SECURE MICROSERVICE ARCHITECTURE DECISION TREE

Secure Microservice Architecture Decision Tree
Start of the Secure Microservice
Architecture Decision Tree

The goal of this work is to guide software architects in applying and layering security throughout the microservice architecture in order to protect the system,
data, and information.

Using the concept of defense in depth, the following are the areas of concerns:

a. Network perimeter security aims to lower the risk of network-related attacks and to detect irregular and unusual activities in a micreservice architecture.
b. Edge level security aims to secure APIs that are exposed at the edge and protect APIs from overuse and abuse.

c. Service level security aims to lower the risk of security attacks between/among internal microservices.

d. Communication level security aims to protect the communication channel between microservices and communication coming into the microservice
architecture.

e. Logging

f. Deployment and patching

g. Data

h. Trust

Network Periméter Level

Visit the network
perimeter level
decision tree.

Which area of concerns would you like to focus on?

Trust

Edge Level Deployment
and

Palching

Data

Logging

Service Level Communication Level

Visit the trust
decision tree.

Visit the

data
‘%E&é::::g?n‘j:‘::' Visit the service level Visit the Visit the dep?g:f,l,[,g:: and decision
are a total of 4 edge flowcharts. There are communication logging patching tree.
level decision tree a total 0173 service level decision decision tree decision tree.
i level decision tree. tree.

Are there other area of concerns
you would like to review?

End of the Secure Microservice
Architecture Decision Tree

Figure 14: Secure Microservice Architecture Decision Tree

128

A.4. NETWORK PERIMETER LEVEL DECISION TREE

" Network Perimeter Level Decision Tree

Start of the Network Perimeter
Level Decision Tree

Network perimeter level is the frst line of defense in terms of
Security. Network perimeter security aims 10 lower the risk of network-
related atiacks and to detect irregular and unusual activies in @
microservice architecture

. There shoult be at least on network perimeter security component that would lower the risk of
nenwork aacks in the micraservice architecuure.

b Depending on the infrastructure and environment, there can be more than cne microservice responsible for

uring the network perime

secy eter.
<. The typical network perimeter security components are firewall and intrusion detection system.

Microservice architecture’
Tave at least one network perimeter
for

securily o

that
lowering the sk of network
anacks?

ves.

the networs
perimeter security microservice
have the * L jided” an

1. Connect external appiication(s) 1o the network perimeter security microsenvice.

. Add a network perimeter security micioservice that will be responsibie for lowering the risk of network attacks.

. Connect network perimeter security mi n edge level securiy
microservice, please visit the edge level decision trees.

For more information on the edge level security

for lowering the risk of network attacks:
Declaration for the “SecurityLevelProvided proper
applies to (abstract, system, process, thread, connection):

Declaration for the "NetworkPerimeter” property
evel

. Add the "SecurityLevelProvided™ and "NetworkPerimeter” properties (o the network perimeter security microservice that is respensiblz

rty
securityl avalProvided: enumeraton (retworkPerimeter evel, edgelevel. servicel avel, communicatont evel, infrastructurel avel)

“networkPerimeter” properties
correctly specified?

Does the microservice
architecture have any additional

applies (o (abstracy, system, process, thread);

Property Associatiol

properties

NetworkPerimeterL evel => firewallAccess;

SecurityLevelProvided => networkPerimeterLevel;

nenwork perimeter security
microservices?

ves.

For monhtor: at de
e network permeter
security component
do?

For detect
abnormal actvities

Does the
network perimeter security
microservice have th
“securityl evelProvided" and
‘netvorkPermeter" propertes,
correctly specified?

Does the prodlem domain
require another network perimeter
security microsenvice?

Yen
L]

End of Network Level
Security Decision Tree

Add the NetworkPenmeter property 1o the natwork perimeter security
microservice that is responsible for detecting abnormal activities:

Declaration for the "SecuritylevelProvided” property
securiyls (retworkP evel,
edgelevel, Level, 5 itasiniokinalavl
applies (o (abstract, system, process, thread, connection)

Declaration for the “NetworkPerimeter” property
networkPerimeterl evel: enumeration (inrusionDetectionPrevention,
firawallAccess) applies to (abstract, system, process, threac);

Property Assaciation:

propertes
‘SecuriyLevelProvided => networkPerimeterLevel;
evel = intrusionD: n

. Add a new network perimeter security microservice

b. Add the "SecurityLevelProvided” property 1o the new network perimeter security microservice.

<. Connect external appication(s) (o the network perimeter security microsenvice.

d. Connect network perimeter security microservice to edge level security microservice. For more information on
the edge level security microservice, please visil the edge lavel decision trees.

Declaration for the "SecurityLevelProvided" property

securityl

twvorkP evel, edgeLevel, senicaloval ionLevel,

infrastructureLevel) applies to (abstract, system, process, thread, connection)

Property Association:

properies
SecurityLevelProvided => networkPerimeterl evel

i

What does the
rew natwork perimeter securify
component do?

For menioring 1P taffic

Far detecting abnormal sctivities

Add the NetworkPerimeter” property to the network perimeter security
microservice that is responsible for lowering the risk of network attacks:

Declaration for the "NetworkPerimeter”

Add the NetworkPerimeter” propery (0 the network perimeter securty
microsenvice that is responsible for detecting abnormal activities:

Declaration for the "NetworkPerimeter” property

evel: (it =
firewallAccess) applies 10 (abstract, system, process, thread):

Property Association:

properties.
NetvorkPerimeterl_evel => firewallAccess:

ovel (intrusionDe
firewallAccess) applies 10 (abstract, system, process, thread);

Property Association:

properties
twor evel

inirusionDetect ;

Merge

Figure 15: Network Perimeter Level Decision Tree

129

A.5. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 4

Start of Edge Level
Decision Tree Part 1 of 4

Edge Level Decision Tree Part 1 of 4

*Core microservice refers to the microservice that
serves a business purpose in the given problem
domain.

Edge level is the second line of defense in terms of security. Edge level security aims to
secure APIs that are exposed at the edge and protect APIs from overuse and abuse.

!

a. There should be at least one edge level security microservice in the microservice architecture.
b. The typical edge level security component is an APl gateway.

!

Does the microservice
architecture have at least one edge
level security component?

Yes

Does the
edge level security
microservice have the
"SecurityLevelProvided" and
"NetworkPerimeter"
properties correctly
specified?

Yes

the microservice
architecture have any
additional edge level security
microservices?

a. Add a edge level security microservice that will be responsible for securing APIs
that are exposed at the edge and protect APIs from overuse and abuse.

b. Connect a network perimeter security microservice to the edge level security
lo—-| microservice. Please see the network perimeter level decision tree for more
information about the network perimeter security microservice.

c. Connect edge level security microservice to the core microservices* that expose
APIs at the edge.

a. Add the "SecurityLevelProvided" and "EdgeLevel" properties to the edge level
security microservice:

Declaration for the "SecurityLevelProvided"” property
SecurityLevelProvided: enumeration (networkPerimeterlLevel, edgeLevel,
serviceLevel, communicationLevel, infrastructureLevel) applies to (abstract,
system, process, thread, connection);

lo——| Declaration for the "EdgeLevel” property
EdgeLevel: enumeration (APIGateway) applies to (abstract, system, process,
thread);

Property Association:
properties

SecurityLevelProvided => edgelLevel;
EdgeLevel=> APIGateway;

Depending on the infrastructure,

End of Edge Level Decision
Tree Part 1 of 4. Please
proceed to Edge Level Decision
Tree Part 2 of 4.

the problem
domain require another
edge level security
microservice?

an organization, there can be more
No-»(than one microservice responsible for

securing APIs that are exposed at the
edge and protecting APIs from

Yes

Figure 16:Edge Level Perimeter Level Decision Tree Part 1 of 4

130

A.6. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 4

T e e e e T e T T T T T T T T T Tedge Lewed Declsion Tree Partzota T T oo o oommmmmmmmmmmm e e e

o g Lo
[pscison T bt .4

Mnuw-m)

Thacs a1 T 563 o s o re sed 5 ok 0 430 o et
T Rain Uy secens, oo osge

e P —"
T o e of e e e e e of e g se e e v ey s

i 13 e e e ot et s
[P T =
.
Seiconraa e . e e
——s]
e gy
- gy
J T ——
it
e et e s e
¥
BT Tp——
e 1 1N, e A TS e
adhmeL g o of Meresroce_ e Secly._Prom i A e e Sectolicosanbesln. e aoies o bt e, e i)
Frspaty Asssiaon
s
et et s -
" [T [rT— al
e ceiame = 4 B - L Wb o e
T —
e i = v
e ar v s f measores e o g
e
e e bt 5 o s e
T
. o eppeacn, . T meenes
"
e PR By 8 G008 7R ST T
. < spessie s
oy e e acx
TROTIng e -
T T — o e g g ot g et
. e aers
. pa— [p— g oy . oo v
e, = o - speies, Pese ek s =
e it for sentereg end rguisirg e neotng T L iarmason.
. apay 4 s o~ 4 Tt rsosn o ahed o B one e sed e s IS Onciaration 111 AN P ARSI DoAY
sparicn. s e 0. e Wapares. Pessa v e 2
oy oy B T pea—
Py
Declarstin o the “Raguesthrtcuiar peasery Beclratan e e Raetberies prapey et AR ———
e Temp— L e e T a—
v s ittoueviesasres: coduting
i O oot o oo, sS4y ot APV i 3

B
cxericesiame o o e appieato e aaslsuiy

Chieie teeuey Fiopmivs AP Recueee e mi s ehace e,

a1 i patisAscactors_Secenty_Froparies AIiscumfectocsnd ype

T e n T ———y

el
e 4

A SEDIMIO T TSR RGN BE V3¢ 1Dl a7 SO TESE T E ECYE crpton sadas
o e e e i T .
e A regarseciacard rpp

e 8 A B e SIS AR

T
s S SRy Sape AR S e e 15 . Prmseren: AP rape i e 5.
x

isessnite, AP osuealhir St On b1
Wiuasnie uthtestus_Serul;_Papeten APNeqesP Soconibirua

etlamepe alon_ype

) oaph 1 (oo, s, roceia, Broad A eeresasens_agn v

[—
e ien = Hemtpian =, TR —
- il)
e A s s O = [y . [
T i D ot petncnay)
Do = i — et = v
S T [——
QU =3 (AFame T3 W IeRIesPeeca 0 T2 € preteront:| e Seeang < ¢ phrteeond | APEequest = [APIName == 'y’
et b pctnconsy
- R o FemuesiarSerord => ¢ porSacond], Iaroae <> 7,
[oo —
[t —————— P—))
i it >]
s o 7. e e S riids RR— ol
" ~ i - ! I Dse v ame < T
g > Frvany= gt = A
ool i | pcseara) e o p pcsocnt}
. ‘
e e s 2 e v tacet] [e—— A .
A rat e > [l > it ——
T — e v
LI e s o g s s 8 pptin vl
- pedmrek]
o et P s PPl f P i
eneria e rarme of e recsaare " wheverd 1= merSecond)01 e BpUL 1 st al ersenis e rae af e A9
o koo o4 e o 00 B
e o s g s s i o o ol

[
g a1 4. et (0 a0 ks
e e 4 8 s iR o o A
e S 5t v 4 st

08 70 MSTRAOR DS IILITT BEPATY 100 0608 w4t BESLI%y TITONGEE,

e et

Dastaratin tor ths “UnsssgaPyiosdSiart Ima” progrty
AeS 5 Pey el . il Unr (V] oAt 0 it B0t

Prwsery fases it

pasetos
Wbt Poyi bR = . — et 1 1 s i 0 B,

Figure 17: Edge Level Perimeter Level Decision Tree Part 2 of 4
131

A.7. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 4

human or another system

. Orgaicatots deciion

fype of

e anmesn AP oty |

g arother mcroservee,

e -
domain at the edge?
==

ot

¥

‘& Add the following microservices in each domain:

1. A new microservice wah database (o represent an deniy
provider. The identiy provider componen & responsile for

. Add a database and the

a

iy

respor 2
for generatig, issuing, authentcating, and ivalksasng 1okens. g =
edge level securty microsenvcels): o b Add the i dcerpbpaiacn i
Declaration for the
b, Add the “AuthenticationVicrosenviceArchieciure”, and
AstarcamoreosanicsNchnt mum *or_ Deciaration for the
Ga scaie_based_ Declaration for the

Suieaton, AP oy, besed_ e
federaind_based

“AuthenticationMicroserviceArchitocture” property.

‘system, process, throa);
Property Association

propertes.
‘AuthendcationticrossrviceArchitecture => API_Gateway.

Gateway. tken_based_thntcaton,cartcat | based_
authentcation, _based_authenucaion,
i gusdlgir e gy Y
systam, process, tread),

Declaration for the *SecurityLevelPravided” property

property
re: enumeration (AP
tcato |

ropresent the (dentty providor and secult token service:

Declaration for the
=AuthenticationMicroserviceArchitecture” property

Declaration for the “SecurityLevelProvided” property

‘edgel eve, servicel eves, communicatonL evel,

b
have the *SecurityLevelProvided” property set 10 “edgeLevel"as.
previously instructed.

o Lovel,
nirasmctureLevel) appiies o (abstract, sysiem, process,
P ton);

c. Add the
propertes 1o the database componen associated with the
microservice:

Declasation for the “dBAccessMode property
‘JBACEOSSMOde: enumeraion (read_ony, read_wie,
wike_only) apoles to (data);

progerties
Actarpcatonhicossnicedichinctrs = han bused.

Sy mvarodded <> nresarsLave

system, process,

‘Gaeway, token_based_i cenficate_based_
authentication, AP key_based_authentcabon,
foderated_based_authentcaton) apples 1o (absact,
system, process, Uvead),

Dectaration for the

“SecurityLevelProvided property
‘SecusiyLevelProvided. enumeration (networkPerimeterLevel,

‘edgeLevel serviceLevel,
Infrasiructurel evel) appies 0 (ST, System, pIocess,
throad, connecton),

Property Association

properves.
‘AuthentcatiosbcrosenviceATchnciure => foderated based
authentication:

property
oy, read_write,

< Agdthe and
property mcoserves:

DatatRest:type record microservice: = = <. Add the “dBAccessModer” and “DataAtRestEncrypion”
escrpton aadising, Declaration for the “dBAccessMode” property properes he datsase component assocaled w e
daaBlock aadisring 4 _ony, read_wie, mictoservce
dataCri write_only) applies to (data);
attestEncrypton: enumoraton (requred. not_roquired), Declaration forthe “dBAccessMode™

) DataARe o e

est type recor e hes o (Gaal;
.- 8 _only) appies o (daa)
heroservice_Archecture_Securty_Properes. DataAtRest descripion: aadistring. 3
apptes o (data) datalock, s GoiaCriscasty. aadinieger.
GuaCracaity. aadinceger aestEncrybion enumerabon (required, not_tequed)
Property Association: lﬁolehcrywun ‘enumeration (required. not_required); %
]
propertes DaARestEncrypton kst of
iBAccosMode = ostEncrypoon It of Mcroservice_Arthtincture_Securty_Proportes: DataAiRest
oaAlReetncaypon =5 Mictoservice_Architecture_Securty_Properties: DataAtRest apples to (data),
(doscripton => " dataBlock > applos o (data):
dtaCricaity => G, lRes(Enerypbon =>). Property Associaton:
{descripion <> °s; GataBiock = properves
dataCrtcalty => u; -amfwvwm—wn dBAccesMode => .
DuakestEnenion > (
- where n is ether “read_only, ‘read_write”, or “write_ |=-=mmm ", dataBlock =

_only”
= where m i 810G it descrbes th need o anypt o ot
‘encrypt a data

data block that might of might not requse encrypion
~utere.

“The high A
-~ where 1V is eitver “required" or "not_requred”.

where n is either ‘read_on, “read_wie’, or “Wie_only”

> 9
4 atRestEncrypion =>),

{description => 5", datalock => T,
dataCrcaity => u; >vl.);

‘Where n & ether Tead_only, “read_write" or “wrie_ony"

~where n s either “read_only, ‘read_wrkte" of “wikte_only"
~ where.

data block that might or might not require encrypion.

encrypt & data block
otthe

the

“required or ot_requed”

oh 3
~where o is esher ‘required” or "not_required”
a

nigh 3
= “requited” or ot_required”.

Note:
token service ino one component.
. Connect the edge security component 1 the new

L

Doat

above?,

End of Edge Level Decision Tree Pant 3

\ Tree Parta of 4)

s o bt e s s i e S e ! e s g s S a m S e S e

Figure 18: Edge Level Perimeter Level Decision Tree Part 3 of 4

132

———————— e)

A.8. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 4 OF 4

|r_ Edge Level Decision Tree Part 4 of 4
| Start of Edge Level

Decision Tree Part 4 of 4
| Edge authorization refers to the process of verifying the access right of an end user at the

edge of a system. An end user can be a system accessing a microservice on behalf of a
| human or another system.
There are two types of authorization based on the granularity required:
| a. Coarse-grained autharization: It requires a lower level of specificity in granting or denying access.
| b. Fine-grained authorization: It has the ability to grant or deny access based on multiple conditions.
| Does the microservice
| architecture have an existing ™
authorization mechanism at the

| edge?
| ves
I ¥

Does every microservice
| related to the autherization
| mechanism at the edge have the e

“AuthorizationMicroserviceArchitecture” and type of autharization
| “CoarseGrainedAuthorization" properties meghamsm is appropriate for the
correctly specified? given problem domain at the
| edge?
| Coarse-grained Policy Fine-grained Policy Enforcement
| Enforcement Required Policy Required \
| Add a database (if it does not exist already) and the If fine-grained policy enforcement policy is
| "AutharizationMicroserviceArchitecture” and required, please see the service level
| n(ﬁsz::i::;]edAulhunzallun properties to the edge level security authorization mechanism.
| Declaration for the "AuthorizationMicroserviceArchitecture”
property
| AuthorizationMicroserviceArchitecture: enumeration
| (coarse_grained, fine_grained) applies to (abstract, system,
process, thread);
Declaration for the "CoarseGrainedAuthorization" property
| CoarseGrainedAuthorization: enumeration (APIGateway) applies io
| (abstract, system, process, thread);
| Property Association
| properties
| AuthorizationMicroserviceArchitecture => coarse_grained;
CoarseGrainedAuthorization => AP|Gateway;

l ‘ ; Merge ;
| Y
| nd of Edge Level
| on Tree Part 4 of 4
- - -

Figure 19: Edge Level Perimeter Level Decision Tree Part 4 of 4

133

A.9. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 3

—_—— — — — — — — —_——— ——— D= —— ——— — —— — —— — — —

— e o o — — — — — — — — — — — — — — (O —— — — —— — — — —— — — — — — — — — —

Service Level Decision Tree Part 1 of 3

Start of Service Level *Core microservice refers to the microservice that
Decision Tree Part 1 of 3 serves a business purpose in the given problem
domain.

Service level is the third line of defense in terms of security. Service level security aims to
lower the risk of security attacks between/among internal microservices.

'

a. In order for the edge level security microservice to enforce the rate of requests
requirements, each core microservice* needs to identify the maximum rate of request per
second it can process for every API of the said core microservice

b. The maximum rate of request per second of each core microservice must be greater than
the rate of requests specified in the edge level security microservice

Add the "MaxRequestMicroservice" property to the core microservice*:

Declaration for the "MaxRequestMicroservice" property

APIRequestPerSecond_type: type record (

APIName: aadlstring;

requestPerSecond: aadlinteger units (perSecond);
)

Does every core
microservice* have the
"MaxRequestMicroservice" property
correctly specified?

MaxRequestMicroservice: list of
Microservice_Architecture_Security_Properties::APIRequestPerSecond_type
applies to (abstract, system, process, thread);

Property Association:

properties
maxRequestMicroservice => (JAPIName => "p", requestPerSecond = q perSecond)],

[APIName => "g", requestPerSecond =b perSecond]);
-- where p/a is a name of the API
-- where g/b is an integer representing the maximum number of requests that said API can
handle per second

End of Service Level Decision
Tree Part 1 of 3. Please proceed to
Service Level Decision Tree Part 2
of 3.

Figure 20: Service Level Perimeter Level Decision Tree Part 1 of 3

134

—_—,— e — e e e e e ——— e —— —

A.10. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 3

St of Service Level
Deceion Tree Pan 2 of 3

e are s ypes ofstbntcaton mecharsns
hat

Service Level Decision Tree Part 2 of 3

ushenticaton servce i the mictoservee arehtoctrn.

. The austheniication service wi bo rEsponsbie for authentcating
credensias and generaing and Ssuing iEns.

<. Roview the “AuthentcatonMicrosenvceArchtecture” and

Sahenicaton
‘approprato for tho ghvan problem
‘omain o the service lever?

*Core microservice refers o the microservce that
Serves & busEss pupose i e Gven probier
Gomain.

b. The cerficate authoray is esponsible or fssung, signig, and revoking
cortficatos.

. A the “AuthensicatonMicrosenvicoArchioctre” and

< Addthe ana”

o

cersficate authorey

bout the usar, tan an AP koy.

represent the authenticaton senvice:

cortfcate authorty in the microservice archtectur.

property

token_based_autnentcaton, cerifcaie_based._ outhenicator
APi_Key_based_a federaid.baced ahenieston)
apples o (absiact system, process, hvead)

for the "SecurtyLovelPravided” property

b, . Sgning, and revoking
corttcates.

< Roview tho "AuhenteatonM ercserniceAehectute” and

represent the cerficate authrty:

securylevProve

property

rgeLevel clevel
i 1 {anevac s process, eeat onmecion
Property Association

properies.
Authes

JcatontciosenviceAehiscu
‘SecurtyLevolProvided => infrastuctureLevel

n_hasod_suthenticaton, coritcato_based_authentcaton,
Ky b bercabontadeait ot sbembesor g s

(abstract, sysiem, process, iveac),

Declaration for the *SecurityLevelProvided property
‘secuntyLevelProwder enumerabon (retworkPermelerl evel, edgeleve.

proper

property

token_based_suthendicaton, certficats: based_aishen
Ky i mrmcabontodarnind. b, mbnbcaoniopoies ©
{abivact system, process, hresd),

Declaration o the “SecurtyLevlProvited” proparty

avePmded cumarston (rbaPerivlrt vl wdjaLe
SNl CoRUILEVS, ARV S
{eac sy, poces, s, comnecioy

Property Association
propersies
Ao erosaniceATBC - carile_based, wupecaton
SocurtyleverProvided => frastuciuroLevel

foken, rercaion, i, bsed.nentcsin,
AP Key.basedaanerdeason,lederied. bese. amercason)agies
(e syt rocess, evou

Declaration for the “SecurityLevelProvided” property
oL ovaProvdes enemartn ewoPamowr v, cdgeove,
servcelevel,
sysiom, process. tvead, connection),

Property Association

popartes
niceArchiecture <> AP|_Key_based_authenicaton.
foooivpesticmbom g lomirtp

o Add e and v

Love
(atatiac, sysien. process, e, conecoon),

Property Association

propertes
‘AuthonticacontcrosonviceAtchicture => corticate_based_auhendcason
SecurtyLeveiProvided => inrastuctureLevel,

oclaration for the “dBAccesshode” property
dBAccessode: enumeratian (read_ony, read_wrte, wete_only) applies 1o
(data)

Deciaration for the “DataAtRestEncryption” property
Coament ypa reco

dataCricaly nadinine

atRestEncrypion: enumerston (requred, not_required);)

OmaAResErnpton: st
re_Securiy._Propertes: DataAtRest apples 10

idesrpton >, caaock
iy 5 . Soseryon 3.)

s either “read_onty, ‘read_wrae",or “wrie_only”
Whore s i a sing that describes tha noed 10 GnGrYX O ot encrypla
e lock,

it ormghi s rguescreyion

~ wharo ha deseribes the critcalty of

Hock. The hgher e rumber, e mre ccal 16
Wharo 1V 5 othor “required of ol._focuired,

o data n the data

. Add e
database componen: associated wih the microservice:
Declaration for the “dAccessMode” property
dBAczessiode. enumeraton (ad oy, resd wee, wre o) epples ©
(data)

o
Gancrucaty sacmioge,
aiResiEncryption. enumeraton (qured. not_requed).).

DataARestEncrypeon st of
Wictosetvice_Archecture_Securtty_Propertes DaiaARess agpies 1o (dsta)

Property Association:

properses
@@Accestode => 1.

%" dataBlock => T
& esEepon = v)

where 1 s ethe “tead_only, read_wrke", o e,
b s 68 g 1t deocrbes e ned 0 e or ok encrypa data
block.

mght of mght ot equre encrypion.

The higher the number,
e i 8 ot Ve o LT

Ky provider mcrosenvie.

o
represent certicate siahorty.

Figure 21: Service Level Perimeter Level Decision Tree Part 2 of 3

135

A.11. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 3

- g
[pT—— ~Cate camevce e o the mcserven
Occzen Tve Par § 863 e+ Bikrons PLB0R T i BT
i

anwr

There are s ypes of S e s zaten echaay
. Cocenmaizes.

Moworer,
408 P contgutatn i s sculabe.
s Cenvaized (see exsianuton beow)
Toes e mevoserves
wentectre e an eusiing
o e gaed
o apsropiax fr he pesbie
"
There are s tpes of cenmalioed access convel.
a Comwatrod wen POP
A, wene
b Contatrnd wn an embecdise DO
eclaration for e “SecursyLeveirzsidea’ praserty 3
ety Leio g, Eme e e eeere. eeteel ade by 2 209 (PFP).
0T, YR, COTACABI GV 43T LT oV S5 T
(emaeact syvom precess. hrvad comeceny e moserece.

DO——

e e ooy }

e o o o ¥ S sy
e o

eyt
Oeclarabion or the rizaton” preparty
rechenedAsreston emaetriton decerdond worslced polon Declaration to the “SecusityLevelProvided” progerty
%o (Masact s, pocess, Svendy. Sy, OURS erL Tt e TS e el e SR
e e, e e e 1 (sbmtact sy woress Srend
Propery Associasen camecson)
ooty
frvired o
{sscinct, sywiem procees. tread)
y
" cenezed:
v poce trras)
Propery Asseciaien
posmetun

-
T
Aot v hevecture < b 3 wed
Fiecransenenaon => ceroaloed

W ype of service
T
Corat e e G
14 1 o eomain?
N e | [
b rs
20 01 00 now
ak ree rew rsserices mwrtioed 0 st
Declarsion o the“Socurtylovereveed” re
senveeion,
et vt seestove, TemcatenL Ve, WA v ahpIeS 8 (e P, oo, SO,
mm..q.m oo o spses & {amec, s, oot Svond Jrie—

aragerty
eArcraEcie e [ONSE Wared. foe gianed)
(sastacs syvom. procons, eat)

el Koot o AN
aputens (sbwiac, syvers process. tread)
Cociarabon for the FinaGrameskisborizaion property

Dactaratan for e ¥ eGrameAiiren taton preparty

sywem, pocess, teead)
sywem pocess, tress)

) e b, e pocess. Toons)

1o (abatec syem orecess. resal:
Freparey Assscianion

oo
Secu iy oniDoded - e s
Ao rsecure = fre_gares,
[riiiehmicstes i ing
L

eclarabion fer the “emAccersilode” sruperty
EAeentios oot Do4d. o ond 4T, ey} NS0 (4t}

meairy sadivivger e, vet v} |
AR rerypn e foeaten (saured. sot isaes), |

e 8 o

Owakthesscypron it of o, Setizry Proputes DashTes sopet s (awa)
MR _Achrsctie_Gararty_Properses DuaNTiest agples 6 (4]
Preperty Arsociation
Prepery Avsocaten
moseries
propertes. @sccesunte =
rrecestioss -

Dummstrenpn o

DwatiReuEseysn - ((St >
ercihon - T Gaaiech <> ', v e L
auaCtiealty => @ sRestscypren = 1]

(ot s ¥ gualioes <» -
>, Gwaciteadty => . asusEncrysoen <> vl §

escrpnen > 5" data
GaraCicaity = . sRewEnCTyIEEN <>)}

Where 15 e Yend_ary, Tend wate”, o ooy
i

Wheen 13 st o e, oncs W, o e oty e
nom

[v oqere orewor. where 94 3 an ger et deserines ihe erTary of o dat 19 dece bock T B

~ W 5% 1 o1 g 0 eSS T YRGS S 1 dutn 1 T Gwia BOGK. TheIogoer | | £ rambes, e mice cicad k4

the murbec i e ieal d & where 1 5 e e o v

Where Uy s einer eaues o “ve seaured”

. ‘ i

ot
eGeaisedAererization aroperty o v o
Cortralzeck maGlaneaero/raten enmeraton (wITFO= - s
) sapies 12 (sswiracs, sysm grecess, treas) B e 5 o, v e e -
Property Assaciscon. Toapey Atondiedon
opmies .
e I i G aliedT e oAt 2o > sEraeaaPOP.

Do wteers
ave e

oy comeery speched?

S

(e

| pressn ity

L o o i e e o o e e e e o T T - — " - T~ S o~ - -

Figure 22: Service Level Perimeter Level Decision Tree Part 3 of 3

136

A.12. COMMUNICATION DECISION TREE

e 7777 communication Decision Tree T T

“Core oSG refens 1o e Nicosenvie Tt
serves & business purpose In the given problem

Dectaration for the "dBAccesshiode” praperty
danpsessiiode: enumeration (read_only, 1esd_urhe, urite_oni) pplles to (data);

Dues the micmserics that
recponsible [generaling and sy
Centicates In arder fof micrasenvices 1o be gble 0 ue Declaration for the “DamAtRestEncryption" proporty
LSS DaRAIREST tbe recond(
descrigton: aadisiring:

o
*SecuriylevelProvided”, "B AccessMode’, and
“DataAResIENCTyplion” properties comactly
exilied?

damciicality: aadinteger:
siRestEncryplion: anumeration (recuired rot requirec))

DatAAtRESIERCPIoN: BS1 of Mcrosandce_Archilectie_Seculy_PIopemies:DAAAREs: pples o (dats);

Proparty Assoclation:

e

propeties
Ent af the Communication OBACCESMONE =5 1
Level Decision Tree DatBAtReSENCyption = {
deseription = ‘', detalosk = g’

daraCritcalit => ; atRiestE ncryprion =>r]
[description dataBla:
daraCritcality == u; etestenchyption

— whers nis sither "read_only. "raad_wiits, or wiita_only
Wit s s sing e deseribes 1he ned o encryBl or ol encayt a dat Block,
— where: (it 15 a s et descrines the st

‘and senpe of (he daka biock 1At might oF might not requie encrypban.
the datz in The higher the number,

reprzsenta venlica

| domain
| i
| anhitesture. Usi i i protsct
| foi
Fommunkalions’
| e ot e
| {cannectors) have the Trpe of
| *SacureCommurication” ot S s
property domair
| spe
Commuricaton e an exernal

| soplcaian (exerml compone] v v e
| A i i i et
! ot
| ¥ Add " and
| FPTT P —— SecurtyL el Provided” pIODAIES 10 the connector:

*SecurityLavelp ouidect propenas ta the connastor Dectaration for the
| oy tequired between

DBclaration for the "SecUrGCOmMURICAtION™ Prope e emmunieaton: enumersian (115, campanants? o
| cureCarnmunication: snurioraiion (TLS, MTLS) P e et
| appless 10 (connection) ‘ g
| Daclaration for the ® sty Providad® properey Declaration for the "Securityl evelProvided” § 1 -

mm}_mﬁﬂm‘s“';“m;'w' o property . A0 the “SecuriyLecelProAded” praperty 1 e
stwikPudmeterLoeel, sdgeLevel, sriosoul annecizr
! T Khcotion Lo, WAL oL i Apphen 13 {netyurkPorinetol el edgolovol Add the *SecureCammunication’ and b. Add the *SecureCommunicaion” property to the
| siract, system, pracess, tiread, connection); Ri"::m“‘ -Lim'l';':'"‘““'lf“';'mh‘:- . "SecurityLevalProvidsd” propertes (o e conmector: connector as long as it doesn't viokde any other
! Infrestructurel evel) apples o (sbstract, system cansiraints Imposed by fhe probie doain:
| Property Association: process, thiaa, connscton) Declaration for the “SecureGommunication” praperty possd bre
| SecureCommunication: enumeration (TLS, MTLS) Declaration for the “SecureCommunication” property
. Property Association: appies o (connector securaCammuRicatan: snumeraton (LS, MTLS)
| SecurCommunication = LTLS: ” B . applios 1o (connocton)
SecurityLeuelPoided — properies Deciaration for the “SecurttyLEvelProvided® property
| =8 securiyLevelProided: enumeration Declarsiion far the “SecurlyLevelPravided” property
| SecurityL vl ke edgeLeved, serviceLevel, ‘securityLevelProvided: enumeration
vel) applis ta (networkPesimetsrievel, edoslevel, serviceLavel,
| m (abstracy, systom, process, throad, connoction); communication Level, mfrastucturel evel) applies o
| Y (AbsUact syslem, p0oess, read, connection);
Property nssoclation:
Property Assoclation:
| IMTLS i5 a cartificats based communication proacal. it o
| Toaukes o Micruservive arsfiteciure 1o have a Micoservcs thatis secursCommunicaton == TLS proporties
respansibie for genersiing and lssuing verlMcales I mismservices il SewuityLeveiProvided => communicationLeve; secure Communlcation == MTLS:
| the misrasenice archltecture. Sty LeveIPIded = cOmmUnICATNL v,
| e,/
|
& hgaa o g, sigring, ard
| unking certicales.,
| he
Ticrosarie architsciue b Addthe perty” rope .

| have a miaroserice hat s

suing th property
| conificaies in ordar for crossrvices o s (eI, EXIQEL e, SendCELEUS, communksaion Level, INESTUCALIEL vel) AppIIES T

e ale: 10 e TLS/MTLS &5 (sbstract, syste, process, threed, connection)

| communicaion
| d Proparty Association:
| proprties.
| ";‘ SecurltylevelProvided = infrastucture Level;
| . Add the" I and” * propertiss to
|

Figure 23: Communication Decision Tree

137

A.13. LOGGING DECISION TREE

e e

I
|
|
|
|
|
|
I
!
|
I
I
I
I
|
|
!
I
|
I
|
|
|
I
|
I
I
I
I
|
|
I
I
|
|
|
|
I
I
I
I
I
I
I
I
I
|
|
|
|
|
|
I
|
!
I
|
I
|
|
|
|
|
I
I
|
|
|
i
I
|
|
|
|
I
|
|
|
|
|
|
|
I
!
I
I
1
I
I
I
I
|
I
|
I

Start 14 e Lnggin
Oesision Tres

" Logging Decision Tree

st il
diststiunod nanuro of 10 crchmcturs,
ke -
hivs an msum bpamy
mechanks
3 Willhe micrasendce
fzsd
woprcachig It logging?
Does the euisting logging
NGt iGITSECH? vr
o Adi e nd "Log’ proparty
roprasent a oq sqaregaler,
A e "L y ET—

Deciasanon for he “Secuilly. SvelPIevI0ed" pope

rty
(ot retestrel, el o, ek e,

Declsration for the “Lag" progarty
Log: recond
descripion: adting,

Bt bt ol adlerlogs.
eaumerntan (ace. debup, informason, warming, armor, crdcal)
)appes s (umm syalen. process. bresd),

Proparty Aszaciwion:

peopertion
SscurtyLevelPravidad = irfrasTucireLever
L

gAimute <> ("
IogLeval = q;

- where n i & eeries o the
Whits e :nvwv_ st sl e st o e g

- mmms ether race”, “debug”. “INormaioT 'vun\lrw' “amoe, o ormcar

sstem, procass, thread,

Oeclartion far the *SecaritylevelPravided” property

svel adgeLevel, sarviceLavel
runCban e, lrtCTeLevel) appiis 1o (absact ayste precess, tread
i)

c

Onctaration far the “Log” property.
Log: rocond (
Sasciption: eadiszing
BgFomaE asditng
TogAnrib: sk of aassting;
gLevel enumernion (Wece, Betug, Rermation. wning. e1iar, citica);
) g (ahess, . oz,)

Property Assoctation:

peoperes
SacarlyLovpPIOAded «> Inrastritirelavel
tog=>|

dasciipticn =
VgFomss => 17

ogAarbs
ogLevel = q)
Wirete 15 & serke of S2n thal descben e Setals of e fog aggiegalor
- whore ivs of rir 5 the
[~ whete plis s a seriea of atfings Fiat Gascrbee the aliibutes 1o g
wha Q15 elther "Wace”, "Gebu, "ol WAITNG'. "6rior. o *Oltkar

. paa e g e

Orctartion fo
A

" aHACCesalote” praperty
ot erumpranion [o, 19 i, v enly) appies w (Gl

Oactarston for i ~OuAiestEncrysin’” property
OumAtRast
oipioe: nammq

‘sReUERCTypion: enumenin (requited, nod_tequiied);),

DaEAWEStETGIYPON: lis of Microsanice_Archtectire_Secaity_Pregeres-Dataatest
appre 19 (i)

Prcperty Assoclation:

oeonaries

anAccesMode = 1,
DaaAReFscryginn 2>

b on = "y, datal 3
“alaZically = §, AReSERcypEan = 1]

deseripton = s, damaBlook < T
“dRtASHBCally <> & MRESERCYpION «> 3,)

- were i altter ‘vead _caly. “read_wthe. oc “itke_caly’

VAR TV 5 3 S0 1TAC ST s (e 1 IGIYTL XK GOCIYER A Gt DI
— where oft 5 2 string thet describss 18 S0 and 550pS of e Gata Hack thal might or Mt Nt
equite encryption,

et s s aws Inteser 3t drescribies the crifcaviy of g1 da o the dieea biock. The bigher the:
e the more orical L.

WRIE 1V 1 ! TEGEE” Ot al_ferdred’

ld. Conneet

coprenent a .anmm Acuapng

Doas f1o problemn domsn
tequIe MmAare faN ane MICIeeriCE With

ntatise el nepuesent = g
agpregaar?
o
¥
(R the "Ly proputy
Dectacstion for the "Iq" propeny
Log: typa i
desarpren: mxsmng [+

fogForimat axdsy)
fopttit: ot of aaclareg:
%S e o e
) sowlies 0 (abmct, ydver, proeass, o]

evar, citizal).

Praperty Assoclatian:

ipropenies
[t

IooAulbe = (3, - "0
lagLeve! = q:)
1

-~ whers 1 5 @ 3eres 0f stings trat Cescraes the Setals of the I0p sogregenr
il s el g 9 e s B b

- whors pia i 3 soree of stings that dazcibos the ansbuss tolog
e B e o e S W -ca. O B

Do all idcroseices L

Loy’ property
Conect specitet

Eng of the Logoiag
Decinon Tree

e]

|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|

s s G i e S i s e e s) e e e i).

Figure 24: Logging Decision Tree

138

A.14. DEPLOYMENT AND PATCHING DECISION TREE

Deployment and Patching Decision Tree
Start of the Deployment and
Patching Decision Tree

It is important to understand the layers of infrastructure and any third party software that your microservice runs on. Any
vulnerabilities that exist in the infrastructure and/or third party software used in your microservice can make your microservice vulnerable to
different types of attacks. Itis important to document the deployment mechanism, the use of third party software, and the frequency of patching.

If your microservice runs on infrastructure and third party software that you are in charge of, then you will be responsible for managing and patching all
those layers and third party software. If your microservice runs on public infrastructure, then you are relying on your providers to manage and
maintain the patches.

Add the "DeploymentType" property to every microservice.

Declaration for the "DeploymentType" property
patch_type: type record (
softwareName: aadlstring;
frequency: aadistring;

DeploymentType: record (
description: aadlstring;
deploymentMechanism: enumeration (physical_Machine, virtual_machine, container,
platform_as_a_service, function_as_a_service);
patchList: list of Microservice_Architecture_Security_Properties::patch_type;;
) applies to (abstract, system, process, thread);

Does every microservice have
the "DeploymentType" property correctly

ied?
specified? Property Association:

properties
DeploymentType
description =
Yes deploymentMechanism => m;
patchList => ([softwareName => p; frequency => q;], ..., [softwareName => a; frequency =>b;]);

-- where n is a series of strings that describes the deployment mechanism of the microservice

-- where m is either "physical _machine", "virtual_machine", "container", "platform_as_a_service", or
“function_as_a_service"

-- where p/a is a name of the software that needs to be patched and g/b is the frequency in which p/a
requires patching.

"

End of the Deployment and
Patching Decision Tree

Figure 25: Deployment and Patching Decision Tree

139

A.15. DATA DECISION TREE

Data Decision Tree
Start of Data on Tree

Within the same trust domain, itis important to establish the proper fiow of data and communication between microsenvices:
a. Mictoservices within the same zone* can communicate with each other,
b, Microservice in a higher zone can communicare with microservices that are in a lower zone.,
c. Microservice in a lower zone cannol communicate with microservices that are in a higher zone.

*Core microservice refers to the microservice that
serves a business purpose in the given problem
domain,

*Zone is a way to classify microservices within the same trust domain so that communication partem among microServices can be established.

a. Add the "Microservice DataSensitivity” property to the core microservice*,
b. Each core microservice* can only belong to one zone.

Declaration for the "MicroserviceDataSensitivity" property
MicroserviceDataSensitvity: record [
description: aad|string;
dataSensitivityLevel: enumeration (publicData, privateDara, secretData,
no_Dala);
microserviceZone: aadlinteger;
0=) applies to (abstract, system, process, thread);

Does every core
microservice* have the
“MicroserviceDataSensitivity” property
correctly specified?
Property Association;

properties
MicroserviceDataSensitvity == |
description => "n”; - where n is a series of strings that describes
the data sensitivity level
dalaSensilivityLevel == m; -- where m is either "publicData”,
"privateData’, or "secretData, no_Data"
microserviceZone == p; - where n a unique integer corresponding to
the zone |

When securing data, it is important to consider the data in transit and data at rest,
a., For data in Iransit, data integrity and confidentiality is achieved via communication protocol, Please
see the communication flowchart for more details.
b, For clata at rest, it is important 1o censicer encrypting the data depending on the sensitivity of data
and the type of access the microservice who owns the data has

Add the "dBAccessModel” and "DataMRestEncryption” properties o the
microservice with database:

D for the "dBA property
dBAccessMode: enumeration (read _only, read write, write_only)
applies to (data);

. Does every Declaration for the "DataAtRestEncryption” property
microservice with databases DataAtRest: lype record(

have the "dB ssMode” and Ho- description; aadistring;

"DataAtRestEncryption” properties dataBlock: aadlstring;

comectly specified? dataCriticality; aadlinteger,

atRestEncryption: enumeration (required, not_required);):

DataAtRestEncryption: list of
Microservice_Architecture_Security Properiies:DataAiRest applies to
¥ (data);

Property Association:

properties
dBAccesMode == m;
DatasrRestEncryprion == (
[description == "'m"; dalaBlock => "p"
dataCriticality => g; atRestEncryption == r;],

[description == "s"; dataBlock == "t";
dataCriticality == u; atRestEncryption ==],):

-- where n is either “read_only, "read_write", ar "write_only"

-- where m/s is a string that describes the need to encrypt or not encrypt a
data hlock.

-- where pit is a string that describes the size and scope of the data block
that might or might not reguire encryplion

-- where gfu is an integer that describes the criticality of the data in the data
block, The higher the number, the more critical it is.

-- where riv is either "required” or "not_required”.

Figure 26: Data Decision Tree

140

A.16. TRUST DECISION TREE

e 7 TwstDecisionTree
*Core microservice refers 1o the microservice that

Start of Trust Decision Tree S0V 2 BUSINESS PUTPOSA I e gven problem

Yy ' the Y ly galr of the other
and manipulate them anpway helshe wants.

I

. Add the “TrustDomain” property to each core microservice”.

b, 0
Declaration for the *TrustDomain®
TrustDomain: aasinteger !al*mm(m system, process, thread);
Property Assoclation:
properses

.~ Wivere 1 & unkjue integer

i credental from the other tiust
coghonde .) o
trust domain,

. AG & new microservice wih databas that i responsiole fof issuing. verifying, and
L The

¥

b, Add the “TrustDomain® an *SecurityLevelPravided” proparties 1o the new

fssuing. 0.

far the "TrustDomain” property
TrustDomain: aadinteger apples to (absiact, system, process. Eiroad);

Declaration for the "SecurityLevelProvided” progerty

ovol, odgeLovel,
sovcolinel Compms inhasyactisoLoved) appies to (sbstiact,
system, process, thvesd, connection);

Association:
A the “bustDomain'” and “SecuriyLevelProvided” s
" 3 properties
i, vy e gveing crmdrmi for o TrustDomain => 1 ~ where 1 a unkue ineges ConespENGng t the: bust domain
TS’ Bt we o Ot SecuritylevelProviced => infrastructareLevel
Geclaration for the Trustomain” property < Adg e
TrsiDoman aadimieger appiies © (apstract ‘component associated with me microsenvice:
system, process. thread).
3 Declaration for the "dBAccessMode” property
Coes every micioservice Declaration for the “SecurityLevelProvided” BACcessMode: enumeration (read_ony. read_wiite, write_only) appiies 10 (data);
that is responsible for issiing, propery
B each erumaration Declaration for the "DataAtRestEncryption” property
rust doman have the “TrustDomain” and (networiPerimeterLevel, edgelevel DataAtRest type recotd(
"SecurtyleveiProvided conecty serviceLevel, communicatanLevel, descripton: sadistring:
‘specified? infrastrucuueLevel) appies to (shavact, dotaBiock: aadsving;
system, process, thread, connectan); dataCritcaity. oadinieger;
atRestEncypton’ eaumeration (required, nat_recuired))
Property Association; e o
- DateAtRestEncrypoon. Ist
peopert Miciosenvice_Archisciue_ Secity Propven:Disssision 0 (dota)
TrustDomain => 1 - where n.a unique nteger et e ;
s correspanaing 1o the st domain Property Association:
SocuityLevelProvided => inrastnctureLevel,
properties

tode =>

={
{descripion => ", dataBlock => ',
=aq

=1

A the “busiDomain” and “SecuriyLevelPiovled” propertes (o {deseription =>"s"; dataBlock => T
domei. GataCricallty => u; MROSUENCIYPIOn => v,)
Declaration for the *Trustoomain® property - Is either " n ito", 0 “wn
e e s il oty oy b IO
process, svead) block.

Where i S & sting that describes the size and scope of the dsta biock that might of

Declaration for the 'Sﬂlrnyl.mlﬂ' property ""uﬂl ot require encrypson
. where g is an nteger tha describes the critcality of the data in the data biock
posom s sromiepuacinared et ™ ,v,;'ﬂ e b e o CEed X
infrstructureLovel) spplies o (sbsvact, sysiom, process, ~wheve oV 1 either “raquired or ot required”,
tvead, connecton); g
a s .
Property Association: i it isswing, verifying,
crodantals
TrustDomam => n; - where n a Unique mtager comesponding
1© the trust domain
SecurityLevelProvided => edgeLevel.

the.
RIS

the probler
-mwmmmmu
1ty miczossrvice

restict

8. Adk a edge leve securty ¢
respansibie for filer g requests,
b. Add the “tustDemin” and "securityL evelProvided” propertios to the new
microsenice.
Declasation for the "TrustDonain® property

TrustDeenain: asdinteger apples (0 (ebstract. system, frocess. thread);

PRl Rkl IR, Srivaty

edgeLovel,
sewael.avel mwumlmn'.um ahasvuctureLevel) an (abstract
system, prosess, tread, connection);

Property Association:
properties
ThilDooidn = 1 - wisle 2 i e ‘Sonesponding 10 the tiust domain
mmmml > edgeLevel

c. rity i fic
APl that are exposed 1o anoder &usk doman,

Figure 27: Trust Decision Tree

141

Appendix B: Survey Questions

This section presents the microservice architecture, general instructions and questions

included in the survey.

Figure 2: Key

Figure 1: Jonathan's Bakery Microservice Archites

Figure 28: Microservice Architecture

General instructions:

1. Each question below presents a unique set of facts (optional) and requirements.

2. Please use the microservice architecture provided in Figure 1 to respond to each question. Link to the
microservice architecture: https://minersutep-

my.sharepoint.com/:b:/g/personal/wyetai utep edu/Ed5lqgxGKARLsa0VIgzqwgoBHIcMMIORaAJRvpd27jJ3cg?
e=10%fp

3. Note that each question does not use any information from the previous question.

1. Please enter your group number. *

Enter your answer

2. There should be a total of 3 members per group (some groups will have 4 members per group). Please
state the first and last names of all your group members. *

Enter your answer

142

3. Requirements:

1. Checkout microservice and Order microservice belong to the same trust domain.

2. Billing microservice belongs to a different trust domain.

3. In order for a customer to pay for the purchase, Checkout microservice needs to communicate
with Order microservice and Billing microservice.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated
properties) to satisfy the requirements.

2. Justify your answer.

*

4. Facts:

1. Development Team A will be in charge of the development of Account microservice.
2. Development Team B will be in charge of the development of Inventory microservice.
3. Development Team A and Development Team B use different technology stacks.

Requirements:

1. Account microservice will be running on a virtual machine. The operating system in the virtual
machine will require an update every two weeks.

2. Data stored in Account microservice will require encryption at the disk level.

3. Inventory microservice will be running on AWS.

4. Data stored in Inventory microservice will require encryption at the disk level.

5. Account and Inventory microservices will be developed from scratch without using any third party
libraries.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated
properties) to satisfy the requirements.

2. Justify your answer.

143

5. Requirements

1. Catalog microservice and Promotion microservice belong to the same trust domain.

2. Catalog microservice makes a request to Promotion microservice.

3. Catalog microservice needs to verify the identity of Promotion microservice to make sure it is
communicating with an authentic service.

4, Promotion microservice does not need to verify the identity of Catalog microservice.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated
properties) to satisfy the requirements.

2. Justify your answer.

*

6. Requirements:

1. The Mobile client interacts with Catalog microservice.

2. Catalog microservice has two APIs: Provide_Pastry_Nutrition_Information and
Update_Pastry_Availability.

3. Provide_Pastry_Nutrition_Information is a public APl and can handle a maximum of 20 requests
per second.

4, Update_Pastry_Availability is an API that is only accessible by internal microservices and can
handle a maximum of 5 requests per second.

5. The mobile client should not send more than 2GB of data to Catalog microservice.

6. The mobile client should not send more than 10 requests per second to the Catalog microservice.
If the rate of request is more than 10 requests per second, the system will wait for 5 mins before
processing anymare requests from the mobile client.

7. If the rate of request exceeds 15 requests per second, the system will error out and reject all
requests to the Catalog microservice from the mobile client.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated
properties) to satisfy the requirements.

2. Justify your answer.

144

7. Fact:

1. The microservice architecture currently supports decentralized authorization mechanism.

Requirement:

1. The microservice architecture needs to be updated to support centralized authorization

mechanism with latency being one of the constraints.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated
properties) to satisfy the requirements.

2. Justify your answer.

*

8. Requirements:

1. Billing microservice stores credit transaction data.
2. Payment Gateway microservice acts an adapter to facilitate communications between the

external third party payment system and Billing microservice.
3. The microservice architecture needs to guarantee that Billing Microservice shall never accept
communication from another microservice with the same trust domain (current or future) that

does not share the same data sensitivity level.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated

properties) to satisfy the requirements.
2. Justify your answer.

145

9. Fact:

1. According to the defense in depth principle, security should be applied and layered throughout

the microservice architecture in order to protect the system, data, and information.

Requirement:

1. The company wants to strengthen the level of security at the network level.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated

properties) to satisfy the requirements.
2. Justify your answer.

*

10. Requirements:

1. The company wants an authentication mechanism that allows carrying of user identity from
external applications to microservices and between microservices.
2. The support of disk level encryption of data is required.

Instructions:

1. Referring to the microservice architecture presented in figure 1, describe any changes that you
would make to the components (and associated properties) and connectors (and associated

properties) to satisfy the requirements.

2. Justify your answer.

146

Appendix C: Survey Results

Appendix C presents the scores received by each team for the survey on a per question

basis.
Testing the concept of trust Testing the addition of the sti 1] p and its iated properties needed to support the trust domain and communication between trust
domain domain
Ability to Ability to
identify the identify the Ability to Ability to Ability to Ability to
need to Ability to need to identify specify identify specify Ability to Ability to
change the specify the have a TrustDomain TrustDomain securitylevel securitylevel identify specify
Group trustDomain trustDomain credential propertyin property in Provided Provided dbAccessMode dbAccessMode Ability to identify Ability to specify
No/Evaluation property for property for microservice Credential Credential property in property in property in property in DataAtRestEncryption DataAtRestEncryption
Criteria for Order Order in each trust component component Credential Credential Credential Credential property in Credential property in Credential
Question1 microservice microservice domain 1 1 component1 component1l componentl component1 component 1 component 1
6 5 5 5 5 5 5 5 5 5 5 5
19 o] Q 0 0 o Q 0 o 0 0 Q
2 5 5 0 0 0 o] 0 o 0 0 0
30 5 5 0 0 o 0 0 0 0 o] a
3 5 E 0 0 Q Q 0 o 0 0 Q
31 5 5 0 o] 0 o 0 0 0 o] 0
18 5 5 5 5 5 5 5 5 5 5 5
32 S k] 5 3 5 3 5 5 5 5 5
9 5 o 0 o] o o 0 0 0 o] 0
4 5 5 5 0 0 5 5 o 0 0 1]
8 5 5 0 0 a] 0 0 0 0 a
10 5 5 0 o] o o 0 0 0 o] o
22 5 5 0 0 0 o] 0 o 0 0 0
16 5 5 0 0 a] 0 0 0 0 a
7 5 E 5 0 o 5 0 5 0 0 Q

Figure 29: Question 1 Scores for Treatment Groups

147

Testing the concept of Testing the addition of the structural component and its associated properties needed to support the
trust domain

Ability to
identify
the need

trust domain and communication between trust domain

Abilityto Abilityto Abilityto Abilityto Abilityto Abilityto Ability to

Ability to

Ability to

Ability to

to change specify identify identify specify identify specify identify specify identify specify
the the the need TrustDom TrustDom securityle securityle dbAccess dbAccess DataAtRes DataAtRes
trustDoma trustDoma to havea ain ain velProvide velProvide Mode Mode tEncryptio tEncryptio
in in credential property property dproperty d property property property nproperty nproperty
Group property property microservi in in in in in in in in
No/Evaluation for Order for Order ceineach Credential Credential Credential Credential Credential Credential Credential Credential
Criteria for microservi microservi trust componen COmponen cCOmMponen cCOMponen COMponen cCOmMponen componen componen
Question1 ce ce domain t1 t1 t1 t1 t1 t1 t1 t1
25|5 5 0 0 0 0 0 0 0 0 0
135 5 0 0 0 0 0 0 0 0 0
24 5 5 0 0 0 0 0 0 0 0 0
28 0 0 5 5 5 0 0 0 0 0 0
55 5 0 0 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0 0 0 0
27|5 5 5 5 5 5 1 0 0 0 0
345 5 0 0 0 0 0 0 0 0 0
29|15 5 0 0 0 0 0 0 0 0 0
115 5 0 0 0 0 0 0 0 0 0
14 5 5 0 0 0 0 0 0 0 0 0
205 5 0 0 0 0 0 0 0 0 0
335 5 0 0 0 0 0 0 0 0 0
155 5 0 0 0 0 0 0 0 0 0
12 5 5 0 0 0 0 0 0 0 0 0
15 5 0 0 0 0 0 0 0 0 0

Figure 30: Question 1 Scores for Control Groups

148

Testing the concept of DataAtRestEncryption

Testing the concept of deployment and patching property

Ability to
identify the need Ability to Ability to Ability to identify
Group to specify identify the specifythe Ability to Abilityto DataAtRestEncryption Ability to specifiy
No/Evaluation DeploymentType deployment deployment identifythe correct the for Account DB DataAtRestEncryption
Criteria for for Account Mechanism Mechanism patchlList patchlList component needs for Account DB
Question 2 microservice field field field field update component

6 5 5 5 5 5 5 5

19 5 5 5 5 3 5 5

2 5 5 5 5 3 5 5

30 5 5 5 5 3 5 5

3 5 5 5 0 0 5 5

31 5 5 0 5 0 5 5

18 5 5 5 5 5 5 5

32 5 5 0 5 0 5 5

9 5 5 0 5 0 5 5

5 5 5 5 5 5 5

5 5 5 5 3 5 5

10 5 5 5 0 0 5 5

22 5 5 5 5 5 5 5

16 5 5 5 5 5 5 5

7 5 5 5 5 3 5 5

Figure 31: Question 2 Scores for Treatment Groups

Testing the concept of

Testing the concept of deployment and patching DataAtRestEncryption property

Ability to
Ability to identify
identify the need Ability to Ability to DataAtRestEncry
to specify identify the specifythe Ability to Ability to ption for Ability to specifiy
DeploymentType deployment deployment identifythe correctthe Account DB DataAtRestEncryptio
Group No/Evaluation for Account Mechanism Mechanism patchList patchList component n for Account DB
Criteria for Question 2 microservice field field field field needs update component
25 5 5 5 0 0 5 5
13 5 5 5 5 3 5 5
24 5 5 5 5 3 5 5
28 0 0 0 0 0 5 5
5 0 0 0 0 0 5 5
21 5 5 5 5 3 5 5
27 0 0 0 0 0 0 0
34 5 5 5 5 3 5 5
29 5 5 5 5 5 5 5
11 5 5 5 5 3 5 5
14 5 5 0 5 1 5 5
20 5 5 5 5 3 5 5
33 5 5 5 5 3 5 5
15 5 5 5 5 3 5 5
12 5 5 5 5 3 5 5
1 0 0 0 0 0 5 5

Figure 32: Question 2 Scores for Control Groups

149

Testing the concept of

communication, the

understanding of the

secureCommunication property Testing the addition of the structural component and its associated properties needed to support the

Ability to
Ability to correctly
Group identify specifiy Relationship between Ability to Ability to
No/Evaluation SecureCommu SecureCommu SecureCommunication Ability to identify the Ability to correctly identify Ability to identify specify Ability to specifiy
Criteria for nication nication and Certifcate SecuritylevelProvide specify dBAccessModel DataAtRestEncryption dBAccessModel DataAtRestEncryption
Question3 property property Authority Component d property securityLevelProvided Property property Property property
6 5 3 0 0 o o o 0 0
19 5 5 0 0 o o] 0 0
2 5 5 0 0 0 0 0 0 ' 0
30 o] 0 5 5 5 5 5 o o
3 o] 0 o 0 0 0 0 o o
31 5 5] 0 0 0 0 o 0
1 18 5 5 5 5 5 5 5 5 | 5
32 5 5 5 5 5 5 5 5 5
9 o 0 o 0 Q 0 4] o o
a 5 5 5 5 5 0 0 0 [0
8 o 0 o 0 Q 0 1] o o
10 o 0 5 5 o 5 5 5 5
22 0 0 5 5 5 5 5 5 5
16 5 5 5 5 5 5 5 5 | 5
7 0 0 0 0 0] 0 0 0

Figure 33: Question 3 Scores for Treatment Groups

Testing the concept of
communication, the

understanding of the Testing the addition of the structural component and its associated properties needed to support the communication
secureCommunication property between components

Relationship
Ability to between
correctly SecureCommu Ability to Ability to
Group identify specifiy nication and identify the correctly Ability to identify Ability to
No/Evaluation SecureCommu SecureCommu Certifcate SecurityLevelPr specify identify DataAtRestEncr specify Ability to specify
Criteria for nication nication Authority ovided securityLevelPr dBAccessMode yption dBAccessMode DataAtRestEncryption
Question 3 property property Component property ovided | Property property | Property property

25 5 0 0 0 0 0 0 0
13 0 0 5 5 5 0 0 0 0
24 5 0 0 0 0 0 0 o] 0
28 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
21 5 0 0 0 0 0 0 0 0
27 5 5 0 0 0 0 0 0 0
34 0 0 5 5 5 0 0 o] 0
29 5 5 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
14 0 0 5 5 0 0 0 o] 0
20 0 5 0 0 0 0 0 0 0
33 5 5 5 5 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0
12 5 5 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 o] 0

Figure 34: Question 3 Scores for Control Groups

150

Testing the MaxRateLimittdge

Testing the concept of edge security and the structural addition to support edge security Testing the MessagePayl oadSizeLimit property Testing the RequestPerApplicationType property property Testing the MaxRequestMicroservice property
Ability to identify
St
new component at Ability ta correctly
the edge to stop. specify the
direct Ability to RequestPerApplica
Group comm ion Ability toidentify the Ability to correctly Ability ta carrectly Ability to correctly tionType property Ability to Ability to Ability to correctly
Noftvalustion from external securitylevel Provided specifiy the. identify the specify the ility 1o i f specify the Ability t (microservice_API_ identifythe specfythe Ability to identify the specify the
Criteria for applications to for the edge security SecuritylevelProvide Edgelevel Edgelevel MessagePayloadSizelimit MessagePayloadSizelimit RequestPerApplicationType requestPerSecond MAXRatelimitf MAXRatelimitf MaxRequestMicroservice MaxRequestMicroservice
Question 4 microservices component d property property property property property property App) dge property dge property Property property
6 5 5 3 5 5 5 5 5 3 5 3 0
19 5 5 5 5 5 5 5 0 o 5 3 o 0
2 5 5 5 5 5 0 0 0 o 5 o 0 0
30 0 o o 0 o 5 0 0 o 5 3 0 0
3 5 o o 0 o 5 5 0 o 5 o 5 5
31 5 o o o o o o o o 5 o a L]
18 5 5 3 5 5 5 4 5 3 5 3 o 0
32 0 o o 0 o 5 5 5 3 5 3 0 0
9 0 o o 0 o 0 0 0 o 5 o 5 3
4 5 s 5 s 5 5 5 0 o 5 3 0 [
I 8 0 o o 0 o 0 0 5 o 5 o 0 o
10 H 5 5 5 5 5 5 o o 5 £ a L]
22 0 o 0 o L o o o o o o a 0
16 5 5 5 5 5 5 3 5 3 5 3 a 0
7 0 0 a o a o] 4] 0 o 0 a 0
Figure 35: Question 4 Scores for Treatment Groups
Testing the Testing the Testing the

Testing the concept of edge security and the

addition edge oadsizeLimit RequestPerApplicationType ~ Testing the MaxRatelimitEdge MaxRequestMicroservice

security property property property property

Ability to

identify the

need to add a Ability to

new correctly

component at specify the

the edge to Al Ability to Ability to RequestPerApp Ability to

stop direct identify the correctly Ability to Ability to correctly Ability to licationType Ability to correctly

Group communication securitylevelPr specifiy the Ability to correctly identifythe specify the entifythe property Ability to Ability to identifythe specify the
No/Evaluation from external ovided forthe SecuritylevelPr identifythe specify the MessagePayloa MessagePayloa RequestPerApp (microservice_ identifythe specify the MaxRequestMi MaxRequestMi
Criteriafor applications to edge security ovided Edgelevel Edgelevel dSizeLimit dSizeLimit licationType API_requestPer MAXRatelimitE MAXRatelimitE croservice croservice
Question 4 micraservices component property property property property property property SecondApp) dge property dge property Property property

25 5 5 1 1] 0 5 5 0 0 0 0 0
13 5 5 5 5 5 5 3 o [+] 5 1 Q Q
24 5 0 0 o o o o 5 1 0 0 0 0
28 5 5 5 5 5 5 5 0 o 5 1 0 0
5 [}]]] o o o o o 0 a Q [}
21]] 0 0 0 5 3 5 1 5 1 0 0
27 o o o o 0 o o o o 5 Q Q o
34 5 5 1 o] o 5 1 5 1 0 a 5 1
29 [}]]] o 5 3 o] 5 3 Q [}
11 5 5 5 5 5 5 5 5 3 5 3 0 0
14 5 5 5 5 5 5 5 5 1 a Q 5 1
20 5 5 5 o]] o o o o] 0 a a 0
33 Q Q o] 4] 0 0 0 0 0 5 0 5 3
15 5 o]] o 5 3 o o 5 1 Q Q
12 5 5 5 5 5 5 1 5 1 0 0 0 0
1 2] 1] 4] 1] 0 5 0 0 0 0 0 0 0

Figure 36: Question 4 Scores for Control Groups

151

Testing the

structural

addition to

support the use Testing the structural Testing the structural

of Testing the impact of addition to support addition to support

EmbeddedPDP changes of the Testing the impact of the use of the use of

as the value for Authorizati i i b of the EmbeddedPDP as the EmbeddedPDP as the

authorizationM rchitecture property have AuthorizationMicroserviceAr value for value for

icroserviceArchi on chitecture property have on izati i izati
Testing the structural addition to support the use of EmbeddedPDP as the value for tecture i i Cs i ontrol

authorizationMicroserviceArchitecture property - PAP property property. property - PAP property - PAP
Ability to

lentify identify
fineGrained CentralizedA
Ability to Ability to Authorizatio ccessControl Ability to Abilityto Ability to
identify identify Abilityto identify identify Ability to nproperty specifythe property specifythe Abilityto identify specify
Group Abilityto Authorizatio Authorizatio FineGraine specify Centralize specify securityl specify needstobe fineGrainedA needstobe CentralizedAce identify DataAtRes DataAtRes
No/Evaluatio identifythe nMicroservic nMicroservic dAuthoriz FineGrained dAccessC Centralized evelProvi securityle Ability to updated fr uthorization updated for essControl for dbAccess tEncryptio tEncryptio
n Criteria for needtoadd eArchitectur eArchitectur ationfor Authorizatio ontrol for AccessCont ded for velProvide identify the all core for all core all core all core Mode for nforPAP n for PAP
Question5 PAP e for PAP e for PAP PAP n for PAP PAP rol for PAP PAP d for PAP need to add PIP microservice microservice microservice microservice PAP DB DB DB
6 0 [0 0 0 0 0 0 [0 0 0 0 0 0 0 0 0
19 5 5 5 H 5 5 5 5 5 H 0 5 5 5 5
2 0] 0 o 0 0 0 0] 0 5 5 0 0 0] 0 0
30 5 5 0 H 5 5 0 5 0 H 5 5 0 0 5 0 H 0
3 5 5 0 H 0 5 0 5] H 5 5 0 0 5 0 5 0
31 5 5 0 H 0 5 0 5 0 H 0 0 0 0 5 0 5 0
18 5 5 5 5 5 5 5 5 5 H 5 5 0 0 5 5 5 5
32 5 5 5 H 5 5 5 5 5 H 5 5 0 0 5 5 5 5
9 5 5 5 5 5 5 5 5 5 5 5 5 0 0 5 5 5 5
4 5 5 5 5 5 5 5 5 5 H 5 5 0 0 5 5 5 5
8 5 5 5 5 5 5 5 5 5 H 5 5 5 5 5 5 5 5
10 5 5 5 H 5 5 5 5 5 H 0 0 0 0 5 5 5 5
2 5 5 5 5 5 5 5 5 5 5 5 5 0 0 5 5 5 5
16 5 o 0 0 0 0 0 0 o H 5 5 5 1 0 0 0 0
7 B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Testing the Testing the Testing the
Testing the Testing the impact of structural structural
structural impact of changes of the addition to addition to
addition to changes of the izati support the
support the use AuthorizationMi MicraserviceAr use of use of
of EmbeddedPDP croserviceArchit chitecture EmbeddedPDP EmbeddedPDP
as the value for ecture property property have as the value for as the value for
authorizationMic have on on authorizationh authorizationM
roserviceArchitec FineGrai Centrali icroservi icroservicerch
Testing the structural addition to support the use of EmbeddedPDP as the value for ture property - orization essControl itecture itecture
i i i - PAP PIP property property property - PAP property - PAP

Ability to Ability to
Ability to identify identify
Abilityto specify Ability to Ability to fineGraineduth Ability to CentralizedAce Ability to
Group Abilityto identify authorizati Abilityto specfy Abilityto specify Abilityto Abilityto orization specifythe essControl specify the Ability to Ability to

No/Evaluat identify authorizatio onMicroser identify fineGraine identify centralized identify specify property needs fineGrainedAut property needs CentralizedAcc Ability to Ability to identify specify
ion Criteria the need nMicroservi viceArchite fineGrained dAuthoriza centralized AccessCon securitylev securityle Ability to identify to be updated fr horization for to be updated essControl for identify specify DataAtRestEncr DataAtRestEncr|

for to add ceArchitect cture for Authorizatio tion for AccessContr trol for elProvided velProvid theneedtoadd all core all core for all core all core. dbAccessMode dbAccessMode yption for PAP yption for PAP
Question 5 PAP ure for PAP PAP n for PAP PAP ol for PAP PAP for PAP ed for PAP PIP microservice microservice microservice microservice for PAP DB for PAP DB DB

o
&

cwoloowwuowuoowuluo
cwoloewunowuoewunle

o woloeowwunuowuoeswuloes
cwoloowwuowuoowuluao
o woloocululowuoowulnuo
cwelsewmunsnueswulns
o~ oloocwwuoouocowuluos
o woloocwwuwuowuoowuloos
cwoloewuowuee e ule

o wooowwuowoloowuluo
cowuwnoowuuununeuln

e e mne e nnnnnn e wln

wowooowwuoooowuluos
weroeewnere oo e wuln

ccoloewelewuleseales
oo oloocoocloouooeoolos
c o oloowolowuoo e ulos
c o olocooocwuoos o wulos

Figure 38: Question 5 Scores for Control Groups

152

Testing the concept of data and

Microservice_Data_Sensitivity property for Testing the understanding of
Billing microservice zone in the same trust domain
Ability to Ability to
identify Ability to Ability to identify Ability to Ability to
MicroserviceDa specify specify MicroserviceDa specify specify
Group taSensitivity dataSensitivity microserviceZo taSensitivity dataSensitivity microserviceZo
No/Evaluation property for Level field for ne field for property for Level field for ne field for
Criteria for Billing Billing Billing Payment Payment Payment
Question 6 Microservice Microservice Microservice Microservice Microservice Microservice
6 0 0 0 0 0 0
19 0 0 0 0 0 0
2 5 0 0 5 0 0
30 5 0 0 5 0 0
3 0 0 0 0 0 0
31 0 0 0 0 0 0
18 5 5 5 0 0 0
32 0 0 0 0 0 0
0 0 0 0 0 0
4 5 0 0 5 0 0
5 0 5 5 0 5
10 5 5 5 5 0 0
22 5 5 5 0 0 0
16 5 5 5 5 1 1
7 0 0 0 0 0 0

Figure 39: Question 6 Scores for Treatment Groups

153

Testing the concept of data and

Microservice_Data_Sensitivity property for Testing the understanding of
Billing microservice zone in the same trust domain
Ability to Ability to

identify Ability to Ability to identify Ability to Ability to

MicroserviceDa specify specify MicroserviceDa specify specify
taSensitivity dataSensitivity microserviceZo taSensitivity dataSensitivity microserviceZo
Group No/Evaluation property for Level field for ne field for property for Level field for ne field for

Criteria for Question Billing Billing Billing Payment Payment Payment
6 Microservice Microservice Microservice Microservice Microservice Microservice

25 0 0 0 0 0 0

13 0 0 0 0 0 0

24 0 0 0 0 0 0

28 0 0 0 0 0 0

5 0 0 0 0 0 0

21 0 0 0 0 0 0

27 0 0 0 0 0 0

34 5 5 5 0 0 0

29 0 0 0 0 0 0

11 5 5 5 0 0 0

14 0 0 0 0 0 0

20 0 0 0 0 0 0

33 5 5 5 5 0 0

15 0 0 0 0 0 0

12 5 5 5 0 0 0

1 0 0 0 0 0 0

Figure 40: Question 6 Scores for Control Groups

154

Testing the structural addition of a network level security component and its
associated properties

Ability to
identify the
Group GEELRGELLET) Ability to Ability to Ability to Ability to
No/Evaluation intrusion identify specifiy identify specifiy
Criteria for detection securityLevelPr Securitylevel networkPerime NetworkPerim
Question 7 system ovided property ter eter property

6 5 5 5 5 5

19 0 0 0 0 0

2 5 5 5 5 5

30 5 5 0 5 0

3 5 5 0 5 5

31 0 0 0 0 0

18 0 0 0 0 0

32 5 5 5 5 5

9 5 0 0 0 0

5 5 5 5 5

8 5 0 0 0 0

10 5 5 5 5 5

22 5 5 5 5 5

16 5 5 5 5 5

7 5 0 5 0 0

Figure 41: Question 7 Scores for Treatment Groups

155

Testing the structural addition of a network level security component and its associated
properties

Ability to
identify the
Group need to add an Ability to Ability to
No/Evaluation intrusion identify specifiy Ability to specifiy
Criteria for detection securityLevelPr Securitylevel Ability to identify NetworkPerimeter
Question 7 system ovided property networkPerimeter property
25
13
24

28

o

21
27
34
29
11
14
20
33
15
12

v ;oo o Lo Lt ;t;n ;o
v ;oo o Lo utn o uu ;o
b ;| OO O Lo Lo ;o Ww

;oL o o Lkl L ;t Lk n
OO O Lo Ll O Lt O

5 5 5

Figure 42: Question 7 Scores for Control Groups

156

Testing the structural addition of a authentication component and its associated properties

Ability to
identify the
need to add an
authentication
service for
token Ability to
generation, identify the specify the Ability to Ability to
Group issuing, authentication authentication Ability to Ability to Ability to identify specify
No/Evaluation authentication, MicroserviceAr MicroserviceAr identify the specify the identify specify DataAtRestEncr DataAtRestEncr
Criteria for and chitecture chitecture Securitylevel Securitylevel dBAccessMode dBAccessMode yption yption
Question 8 invalidation. property property property property | property | property property property
6 0 0 0 0 0 0 0 5 5
19 0 0 0 0 0 0 0 0 0
2 5 5 5 0 0 0 0 5 5
30 0 0 0 0 0 0 0 5 5
3 0 5 0 5 0 0 0 5 5
31 0 0 0 0 0 0 0 5 5
18 0 0 0 0 0 0 0 0 0
32 5 5 5 5 5 5 5 5 5
9 0 0 0 0 0 0 0 5 5
4 5 5 5 5 5 5 5 5 5
8 0 0 0 0 0 0 0 5 5
10 5 5 5 5 5 5 5 5 5
22 0 0 0 0 0 0 0 0 0
16 0 o] 0 0 0 5 5 5 5
7 0 0 0 0 0 5 5 5 5

Figure 43: Question 8 Scores for Treatment Groups

Testing the structural addition of a authentication component and its associated properties

Ability to
identify the
LEELRGELLIET
authentication
service for
token Ability to Ability to
Group generation, identify the specify the Ability to Ability to
No/Evaluati issuing, authentication authentication Ability to Ability to Ability to Ability to identify specify
on Criteria authentication, MicroserviceAr MicroserviceAr identify the specify the identify specify DataAtRestEncr DataAtRestEncr
for Question and chitecture chitecture Securitylevel Securitylevel dBAccessMode dBAccessMode yption yption
8 invalidation. property property property property | property | property property property
25 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
21 0 5 0 5 0 5 5 5 5
27 5 5 5 0 0 5 5 5 1
34 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
11 5 5 1 0 0 0 0 5 5
14 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0
33 5 5 5 5 5 5 5 5 5
15 0 0 0 0 0 0 0 5 5
12 0 0 0 0 0 0 0 5 5
1 0 0 0 0 0 0 0 0 5

Figure 44: Question 8 Scores for Control Groups

157

Appendix D: Research Study Background Survey Results

Appendix D presents the result of the research study background survey.

Background Survey Result - No. of Years of Experience in
Software Architecture

80
2
c
® 60
S
£ 40
©
o
$ I
o
=2 —

0to 1year 1to 2 years 2 to 3 years 3 to 4 years >4 years
m Seriesl 71 26 4 1 0

No. of Years of Experience in Software Architecture

m Seriesl

Figure 45: Background Survey Result - No. of Years of Experience in Software Architecture

Background Survey Result - No. of Years of Experience in
Software Security

100
90
80
70
60
50
40
30
20
10

No. of Participants

0to1year 1to 2 years 2 to 3 years 3 to 4 years >4 years
M Seriesl 90 10 1 1 0

No. of Years of Experience in Software Security

Figure 46: Background Survey Result - No. of Years of Experience in Software Security

158

Background Survey Result - No. of Years of Experience in
Software Development

50
2
S 40
2
S 30
£
& 20
—
o
Z O I
0to1year 1to 2 years 2 to 3 years 3 to 4 years >4 years
M Seriesl 29 40 15 16 2

No. of Years in Software Development

Figure 47: Background Survey Result - No. of Years of Experience in Software Development

159

Vita

Wai Yan Elsa Tai Ramirez received her Bachelors of Science (Summa Cum Laude) in
Computer Science from The University of Texas at El Paso in the Spring 2004. She received her
Master of Science in Computer Science from The University of Texas at El Paso in Spring 2007.
In the fall of 2013, she entered the Ph.D. program in Computer Science under the guidance of Dr.
Ann Gates. Elsa has 15 years of experience in software requirements engineering and software
engineering. Domains she worked in include: audiology, speech-language pathology, digital
marketing, telecommunication, cybersecurity, geology, and student success. She completed the
Certification in Effective College Instruction by The Association of College and University
Educators and The American Council on Education and South East Asia Patent Drafting
Participation and Completion Certificate from Fédération Internationale des Conseil en Propriété
Industrielle (FICPI) Academy of Education.

While pursuing her Ph.D. degree, she worked as a lecturer and taught the following
courses: Software Engineering I: Requirements Engineering (Part 1 of the Software Engineering
capstone course undergraduate level), Advanced Object-Oriented Programming (undergraduate
level) Software Requirements Engineering (graduate level), and Software Architecture and Design
(graduate level).

During her time at UTEP, she received the CAHSI-Google Dissertation Award.

Contact Information: wyetai@utep.edu

This dissertation was typed by Wai Yan Elsa Tai Ramirez.

160

mailto:wyetai@utep.edu

	A Framework To Build Secure Microservice Architecture
	Recommended Citation

	ThesisAndDissertationDocumentTemplate

