
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-05-01

A Framework To Build Secure Microservice Architecture A Framework To Build Secure Microservice Architecture

Wai Yan Elsa Tai Ramirez
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tai Ramirez, Wai Yan Elsa, "A Framework To Build Secure Microservice Architecture" (2023). Open Access
Theses & Dissertations. 3857.
https://scholarworks.utep.edu/open_etd/3857

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3857?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A FRAMEWORK TO BUILD SECURE MICROSERVICE ARCHITECTURE

WAI YAN ELSA TAI RAMIREZ

Doctoral Program in Computer Science

APPROVED:

Ann Q. Gates, Ph.D., Chair

Salamah I. Salamah, Ph.D., Co-Chair

Jaime Acosta, Ph.D.

Michael Pokojovy, Ph.D.

Stephen L. Crites, Jr., Ph.D.

Dean of the Graduate School

Copyright 2023 Wai Yan Elsa Tai Ramirez

Dedication

To my

Dad, Mom, Sister, and Grand-Parents, and

To the loves of my life:

Jon and Jonathan.

A FRAMEWORK TO BUILD SECURE MICROSERVICE ARCHITECTURE

by

WAI YAN ELSA TAI RAMIREZ, M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

May 2023

v

Acknowledgements

First, I want to acknowledge and thank my committee members, Dr. Ann Q. Gates, Dr.

Salamah I. Salamah, Dr. Jaime Acosta, and Dr. Michael Pokojovy. Thank you for serving on my

committee and for all your help, support, and guidance.

I would like to thank Dr. Gates for being my mentor and for being there for me throughout

my entire education. Your feedback and discussions have always been valuable to me, and I

appreciate that you would always make time for me no matter how busy your schedule became. I

will always hold everything you taught me close in my career going forward.

I would like to thank Dr. Salamah for being my mentor. Your guidance was truly

invaluable throughout my work, and I will always appreciate it. Thank you for keeping me

focused, encouraging me, and going above and beyond for me. You have been a great mentor and

a true friend.

I would like to say a special thank you to my father, Wing Kuen Tai, my mother, Fung Mei

Kam, and my sister, Tina Tai. Thank you for always being there for me and supporting me in

every journey I have taken. Thank you for all the sacrifices you’ve made for me so that I could

pursue my dreams.

I would like to thank my husband, Jon Ramirez. Thank you for supporting me and for

being my pillar throughout this journey. Thank you for always being there for me no matter what

happened. You’ve always encouraged me to believe in myself, fight for what I believe in, and

never give up on my dreams. I would not have made it this far if it was not for you.

vi

Abstract

Microservice architecture has become a popular architecture style in recent years.

According to a series of surveys conducted by IBM Market Development & Insights in 2021,

microservices are heavily used in many industries worldwide. With an increase in the adoption of

microservice architecture in the development of applications, such as Netflix, Amazon, Uber,

Ebay, Twitter, DoorDash, Capital One, and Monzo, and the increase in security breaches in

microservice based systems (e.g., the DoorDash data breaches in 2019 and 2022, Twitter data

breach in 2022, and compromises to Netflix’s infrastructure), there is a need to examine and

understand security issues that exist in microservice architectures.

Security issues within microservice architectures can be summarized with four main points.

1) Security is often considered as an afterthought, rather than during the early development phases.

Security considerations are thought of as roadblocks that prevent software from being released on

time; 2) There are more vulnerabilities per line of code in applications using microservice

architectures compared with equivalent monolithic applications; 3) Microservices present new

security challenges that are not present in monolithic applications due to the distributed nature of

the architecture; communications between microservices are over the network which means a

request may be susceptible to man-in-the-middle attacks; 4) There is a lack of comprehensive

knowledge regarding how to build applications using microservice architectures with security in

mind.

The goal of the research is two-fold: 1) To study and document security properties that can

remediate security issues in microservice architectures; and 2) define an effective approach to

assist software architects in formally defining security properties early on in the software

development lifecycle.

vii

The research examines microservice security from the perspective of industry and

academia. The research questions (RQ) are as follows:

RQ1: What are the security challenges in microservices architecture?

RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The result of the research is an extensive review of security challenges and practices related

to secure microservice architecture that informed the development of a framework that enhances

the ability of software architects to formally specify security properties. The resulting framework

includes the use of decision trees to guide software architects in determining what specific security

properties should be considered, how different security properties are related can be used together,

and what additional structural elements (components and connectors) should be considered when

adding specific security properties.

The impact of the work is that software vulnerabilities are addressed during early phases

of software development (architecture and design) rather than later in the software development

lifecycle. This helps to significantly reduce costs associated with software defect mitigation.

Studies have shown that the cost ratio in tackling a software defect, including security

vulnerabilities, is doubled if defects are discovered during the implementation phase compared to

the architecture and design phases. This ratio more than triples if defects are discovered during

testing. The work provides comprehensive support in defined security in microservice

architectures, especially for software architects who have minimal experience in society.

viii

Table of Contents

Dedication .. iii

Acknowledgements ..v

Abstract .. vi

Table of Contents ... viii

List of Tables ... xiii

List of Figures .. xiv

Chapter 1: Introduction ..1

1.1. Overview ..1

1.1.1. Motivation ..1

1.1.2. Problem Statement ...3

1.2. Research Goal ..4

1.3. Significance of the Research ..5

1.4. Organization of Dissertation ..6

Chapter 2: Background ..7

2.1. Overview of Software Architecture ...7

2.2. Microservice Architecture ...9

2.3. Microservice Architecture vs. Service-Oriented Architecture10

2.4. Architecture Analysis and Design Language (AADL) ..11

Chapter 3: Methodology ..17

3.1. Security Challenges and Security Practices in Microservice Architecture17

3.1.1. Authentication ..17

3.1.1.1. Challenges ..17

3.1.1.2. Security Practices ...18

3.1.2. Authorization ...27

3.1.2.1. Challenges ..27

3.1.2.2. Security Practices ...28

3.1.3. Logging ..34

3.1.3.1. Challenges ..34

ix

3.1.3.2. Security Practices ...34

3.1.4. Communications ..34

3.1.4.1. Challenges ..34

3.1.4.2. Security Practices ...35

3.1.5. Data ..36

3.1.5.1. Challenges ..36

3.1.5.2. Security Practices ...37

3.1.6. Patching..41

3.1.6.1. Challenges ..41

3.1.6.2. Security Practices ...42

3.1.7. Deployment ..42

3.1.7.1. Challenges ..42

3.1.7.2. Security Practices ...44

3.1.8. Trust ...44

3.1.8.1. Challenges ..44

3.1.8.2. Security Practices ...45

3.1.9. Larger Surface Area ...45

3.1.9.1. Challenges ..45

3.1.9.2. Security Practices ...46

3.2. Development of the Framework for Security Modeling and Specification in

Microservice Architectures ..46

3.2.1. General Security Properties ...47

3.2.1.1. SecurityLevelProvided ...47

3.2.2. Network Perimeter Related Properties...48

3.2.2.1. NetworkPerimeterLevel ...48

3.2.3. Edge Level Related Properties ...49

3.2.3.1. EdgeLevel ..49

3.2.3.2. APIRequestPerSecond_type ..50

3.2.3.3. APIRequestPerSecondMicroserviceName_type51

3.2.3.4. MaxRateLimitEdge ..52

3.2.3.5. MaxRequestMicroservice ..54

3.2.3.6. APIRequestPerSecondMicroserviceNameApp_type55

3.2.3.7. APIRequestPerSecondMicroserviceNameUser_type56

x

3.2.3.8. APIRequestPerSecondMicroserviceNameOperation_type57

3.2.3.9. RequestPerApplicationType ..58

3.2.3.10. RequestPerUser ..61

3.2.3.11. RequestPerOperation ...64

3.2.3.12. MessagePayloadSizeLimit ...67

3.2.4. Communication Related Properties ...68

3.2.4.1. SecureCommunication ...68

3.2.5. Data Related Properties..69

3.2.5.1. dbAccessModel ..69

3.2.5.2. DataAtRest ...69

3.2.5.3. DataAtRestEncryption ...71

3.2.5.4. MicroserviceDataSensitivity ..72

3.2.6. Log Related Properties ...73

3.2.6.1. Log ...73

3.2.7. Deployment and Patching Related Properties ..75

3.2.7.1. patch_type ..75

3.2.7.2. DeploymentType ..76

3.2.8. Trust Related Properties ...78

3.2.8.1. TrustDomain ..78

3.2.9. Authentication Related Properties ...79

3.2.9.1. AuthenticationMicroserviceArchitecture ...79

3.2.10. Authorization Related Properties ...80

3.2.10.1. AuthorizationMicroserviceArchitecture ..80

3.2.10.2. CoarseGrainedArchitecture..81

3.2.10.3. FineGrainedArchitecture ..81

3.2.10.4. CentralizedFineGrainedAuthorization ...83

3.2.11. Decision Trees ...84

Chapter 4: Experiment ...85

4.1. Description of the Experiment ...85

4.1. Evaluation Process ...86

4.3. Result of the Experiment ...93

4.4. Analysis of Result ..97

xi

4.5. Observations of Result ...99

Chapter 5: Related Work ...101

5.1. Security Analysis in Software Architecture ...101

5.1.1. Architecture Risk Analysis ..101

5.1.2. Security Vulnerability Approach with SAVE..102

5.1.3. Attack Surface Security Analysis ..102

5.1.4. Security Architecture Tradeoff Analysis Method ..103

5.1.5. Architectural Analysis for Security ...104

5.1.6. Security Analysis with Acme and Monte Carlo Simulation105

5.1.7. Security Analysis with Information Flow Modeling105

5.2. AADL Security Annexes 2019 ..106

5.3. Summary ..106

Chapter 6: Conclusions ..108

6.1. Summary of Work..108

6.2. Future Work ...115

References ..116

Appendix A: Decision Trees ..125

A.1. Key ..126

A.2. Instructions on How to Use the Decision Trees ..127

A.3. Secure Microservice Architecture Decision Tree ...128

A.4. Network Perimeter Level Decision Tree ..129

A.5. Edge Level Perimeter Level Decision Tree Part 1 of 4 ..130

A.6. Edge Level Perimeter Level Decision Tree Part 2 of 4 ..131

A.7. Edge Level Perimeter Level Decision Tree Part 3 of 4 ..132

A.8. Edge Level Perimeter Level Decision Tree Part 4 of 4 ..133

A.9. Service Level Perimeter Level Decision Tree Part 1 of 3 ...134

A.10. Service Level Perimeter Level Decision Tree Part 2 of 3 ...135

A.11. Service Level Perimeter Level Decision Tree Part 3 of 3 ...136

A.12. Communication Decision Tree ...137

A.13. Logging Decision Tree..138

A.14. Deployment and Patching Decision Tree..139

xii

A.15. Data Decision Tree ..140

A.16. Trust Decision Tree ...141

Appendix B: Survey Questions ..142

Appendix C: Survey Results ..147

Appendix D: Research Study Background Survey Results ...158

Vita 160

xiii

List of Tables

Table 1: Survey Questions and Concepts Tested .. 87
Table 2: Evaluation Criteria .. 89
Table 3: Grading Scale for Criteria Regarding Identification of Properties and Structural

Elements .. 92
Table 4: Grading Scale for Criteria Regarding Specification of Properties and Structural

Elements .. 92
Table 5: Total Score Received by Treatment Groups for the Survey on Identification Related

Questions... 93

Table 6: Total Score Received by Control Groups for the Survey on Identification Related

Questions... 94
Table 7: Total Score Received by Treatment Groups for the Survey on the Specification Related

Questions... 95
Table 8: Total Score Received by the Control Groups for the Survey on the Specification related

Questions... 96

Table 9: Summary Comparison Table .. 107
Table 10: Security Challenges, Practices, Properties, and Decision Tree Summary Table 110

xiv

List of Figures

Figure 1: AADL Components and Connectors [80] ... 12
Figure 2: Component Type and Component Implementation .. 13
Figure 3: Structure of a Property .. 14
Figure 4: Property Association ... 14
Figure 5: Property Set Example .. 15

Figure 6: Property Declaration using Record ... 15
Figure 7: Property Declaration using Enumeration .. 16
Figure 8:Participant Scores for Identification of Properties and Structural Elements (Average

with 1 Standard Deviation) ... 97
Figure 9: Identification: Two Sample t-Test Assuming Unequal Variances 98
Figure 10: Participant Scores for Specification of Properties and Structural Elements (Average

with 1 Standard Deviation) ... 99
Figure 11: Specification: Two Sample t-Test Assuming Unequal Variances 99

Figure 12: Decision Tree Key ... 126

Figure 13: Instructions on How to Use the Decision Trees .. 127
Figure 14: Secure Microservice Architecture Decision Tree ... 128
Figure 15: Network Perimeter Level Decision Tree ... 129

Figure 16:Edge Level Perimeter Level Decision Tree Part 1 of 4 .. 130

Figure 17: Edge Level Perimeter Level Decision Tree Part 2 of 4 ... 131
Figure 18: Edge Level Perimeter Level Decision Tree Part 3 of 4 ... 132
Figure 19: Edge Level Perimeter Level Decision Tree Part 4 of 4 ... 133

Figure 20: Service Level Perimeter Level Decision Tree Part 1 of 3 ... 134
Figure 21: Service Level Perimeter Level Decision Tree Part 2 of 3 ... 135

Figure 22: Service Level Perimeter Level Decision Tree Part 3 of 3 ... 136
Figure 23: Communication Decision Tree .. 137
Figure 24: Logging Decision Tree .. 138

Figure 25: Deployment and Patching Decision Tree .. 139
Figure 26: Data Decision Tree .. 140

Figure 27: Trust Decision Tree ... 141

Figure 28: Microservice Architecture ... 142
Figure 29: Question 1 Scores for Treatment Groups .. 147

Figure 30: Question 1 Scores for Control Groups .. 148
Figure 31: Question 2 Scores for Treatment Groups .. 149
Figure 32: Question 2 Scores for Control Groups .. 149
Figure 33: Question 3 Scores for Treatment Groups .. 150
Figure 34: Question 3 Scores for Control Groups .. 150

Figure 35: Question 4 Scores for Treatment Groups .. 151
Figure 36: Question 4 Scores for Control Groups .. 151
Figure 37: Question 5 Scores for Treatment Groups .. 152

Figure 38: Question 5 Scores for Control Groups .. 152
Figure 39: Question 6 Scores for Treatment Groups .. 153
Figure 40: Question 6 Scores for Control Groups .. 154
Figure 41: Question 7 Scores for Treatment Groups .. 155

Figure 42: Question 7 Scores for Control Groups .. 156

xv

Figure 43: Question 8 Scores for Treatment Groups .. 157
Figure 44: Question 8 Scores for Control Groups .. 157

Figure 45: Background Survey Result - No. of Years of Experience in Software Architecture 158
Figure 46: Background Survey Result - No. of Years of Experience in Software Security 158
Figure 47: Background Survey Result - No. of Years of Experience in Software Development159

1

Chapter 1: Introduction

1.1.OVERVIEW

1.1.1. Motivation

In today’s society, software has become an integral part of everyday life and is used in

virtually every application domain. In particular, microservice architecture has become a popular

architecture style in recent years [9], and according to a series of surveys conducted by IBM

Market Development & Insights in 2021 [43], microservices are heavily used in many industries

worldwide. It is a popular choice for cloud-based projects due to the scalability in cloud

environments and flexibility in software development. Software developers are not limited in the

technology used to build each microservice since microservices are integrated via technology-

agnostic APIs [23]. Some notable examples of major entities that are using microservice

architectures are:

▪ In 2010, Netflix transitioned from monolithic architecture to microservice architecture. It

started using AWS Amazon to host more than 100 grained services [4].

▪ Monzo, a financial institution in the United Kingdom, announced its microservices

deployment. They have more than 1500 services running in its microservices deployment,

and they are using network isolation to make their deployment and microservices more

secure [26].

▪ In July 2019, Capital One, one of the leading financial institutions in the United States,

announced its microservices deployment. It consists of thousands of microservices on

several thousands of containers and thousands of Amazon Elastic Compute Cloud instants

[26].

According to the International Data Corporation [34], by 2022, 90% of all apps will feature

microservice architectures.

2

As software becomes more prevalent in day-to-day services and activities, software attacks

are increasing in frequency and severity. The following are examples of notable vulnerabilities

and attacks that took place between 2016 and 2022:

▪ In 2017, Equifax [8, 52] had a data breach that affected at least 145.5 million individuals

in the U.S. and nearly 1 million people outside the U.S. The breach was caused by a known

vulnerability in Apache Struts which allowed unauthorized access to user data maintained

by Equifax.

▪ In May 2019, Doordash [53] disclosed a data breach that exposed 4.9 million users’

personal data. The affected personal data included personal information such as names,

email addresses, delivery addresses, order history, phone numbers, hashed salted

passwords, the last four digits of credit card numbers, the last four digits of bank account

numbers, and about 100000 dashers’ driver’s license numbers. The affected personal data

was accessed by an unauthorized third party.

▪ In August 2022, Doordash [50] announced that one of the third-party vendors that it uses

was compromised, and an unauthorized party was able gain access to some of DoorDash’s

internal tools using the stolen credentials of the third-party vendor’s employees. Personal

information maintained by DoorDash was affected in this breach. This included name,

email address, delivery address, phone numbers, basic order information, and partial

payment card information.

▪ In August 2022, Twitter [21] confirmed that 5.4 million users were affected by a July 2022

data breach. The data breach was caused by a vulnerability in the system which allowed

anyone without any authentication to obtain a user's twitter internal identifier by providing

a phone number or email address even after the user has disabled this action in the privacy

setting [17].

▪ Netflix [32] experienced a security breach when one of its subdomains was compromised.

Adversaries were able to serve any content on netflix.com and tamper with authenticated

3

Netflix subscribers and their data. The tampering of subscribers and their data was enabled

due to users’ cookies being accessible from any subdomains.

1.1.2. Problem Statement

Research shows that architecture and design flaws are leading causes of vulnerabilities in

software. According to the IEEE Computer Society’s Center for Secure Design, while a system

may always have implementation defects, security breaches in many systems are caused by design

flaws [75]. During its ongoing security push, Microsoft reports more than 50% of the uncovered

problems are architectural in nature [74]. According to the data published by MITRE, design

weaknesses represent approximately 75% of the 25 most dangerous software errors and they also

account for more than one-third of the current 940 known common weakness enumerations.

Architecture and design flaws represent at least 50% of the total reported vulnerabilities in software

systems [73].

There is a lack of consolidated design knowledge on how to build microservice

applications. With an increase in the adoption of microservice architecture in the development of

applications and the increase in security breaches in microservice based systems, there is a need

to examine and understand security issues that exist in microservice architectures. Security issues

can be summarized into five main points.

▪ Security is often considered as an afterthought, rather than during the early development

phases, despite the increasing number of security breaches and incidents. This means that

security aspects of the system are considered after the code has been written. Security

considerations are thought of as roadblocks that prevent software from being released on

time [8].

▪ There are more vulnerabilities per line of code in microservices than in equivalent

monolithic applications. According to the Evolution of the Secure Software Lifecycle 2018

Application Security Statistics Report, it is reported that for every 100,000 lines of code,

4

there are 39 vulnerabilities in a traditional application. In comparison, in microservice

architectures, there are 180 vulnerabilities [48].

▪ Microservices present new security challenges that are not present in monolithic

applications due to the distributed nature of the architecture [18]. An example:

communications between microservices are over the network which means a request may

be susceptible to man-in the middle attacks.

▪ There is a lack of research in the area of microservice security [3, 23]. Microservice

security is not very well understood in both industry and academia. There is a lack of

comprehensive knowledge regarding how to build applications using microservice

architectures with security in mind.

▪ IBM Market Development & Insights team [43] describes 53% of the respondents

to their surveys considers security as one of the roadblocks in adopting or expanding the

use of microservices in their company despites the advantages offered by microservice

architectures. Pereira-Vale, A. et al. [3] and Berardi, D. et al. [23] also state that security

is one of the main challenges in using microservice architectures to develop complex

systems.

1.2.RESEARCH GOAL

The goal of the research is two-fold: 1) to study and document security properties that can

remediate security issues in microservice architectures; and 2) define an effective approach to

assist the software architects in formally defining security properties early on in the software

development lifecycle. The research examines microservice security from the perspective of

industry and academia. The questions driving the research are as follows:

RQ1: What are the security challenges in microservices architecture?

RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

5

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The expected outcome is a framework that provides sufficient support in formally defining

security properties and adding structural elements (components and connectors) in the architecture

that address software vulnerabilities in earlier stages of software development of microservice

architectures. The intent is to provide a framework with clear guidelines on how to build

applications using microservice architectures with security in mind. Such a framework would

integrate security properties and support software architects regardless of their level of knowledge

and experience in security.

1.3. SIGNIFICANCE OF THE RESEARCH

This dissertation defines a framework to support the design of microservice architectures

and remediate documented security issues. The framework enhances the ability of software

architects to formally specify security properties early on in the software development lifecycle.

It also includes the use of decision trees to guide software architects in determining what specific

security properties should be considered, how different security properties are related and can be

used together, and what additional structural elements (components and connectors) should be

considered when adding specific security properties. These security properties are derived from

existing security challenges and the corresponding security practices used to address them.

The impact of the work is that software vulnerabilities are addressed during early phases

of software development (architecture and design) rather than later in the software development

lifecycle. This helps to significantly reduce costs associated with software defect mitigation.

Studies have shown that the cost ratio in tackling a software defect, including security

vulnerabilities, is doubled if defects are discovered during the implementation phase compared to

the architecture and design phases. This ratio more than triples if defects are discovered during

6

testing. The work provides comprehensive support in defined security in microservice

architectures, especially for software architects who have minimal experience in society.

1.4.ORGANIZATION OF DISSERTATION

This dissertation is organized as follows. Chapter 2 provides an overview of software

architecture and microservice architecture. It also discusses the difference and similarities between

microservice architecture and service-oriented architecture. The last section in chapter 2 provides

an introduction to the Architecture Analysis & Design Language (AADL) and the existing security

annex.

Chapter 3 presents the research that was done to create the framework that guides software

architects in designing microservice architectures with security in mind. The chapter first presents

the existing security challenges in microservice architectures. It is followed by descriptions of

security practices that are used in the industry and described in literature. The chapter then presents

the development of the framework.

Chapter 4 describes the experiment performed to evaluate the practicality of the framework

and the observations and results of the experiment conducted in this dissertation. Chapter 5

describes related work on security analysis in software architecture and AADL security annex.

Chapter 6 presents the summary of the work and discussion of future work.

Appendix A presents the decision trees. Appendix B presents the survey questions of the

experiment. Appendix C presents the survey results from the experiment. Appendix D presents

the research study background survey results.

7

Chapter 2: Background

This chapter is divided into four major sections. The first section provides a high-level

overview of software architecture. The second section introduces microservice architecture. The

third section describes the differences and similarities between microservice architecture and

service-oriented architecture. The fourth section introduces architectural description languages,

which are an important mechanism for formally defining security properties.

2.1. OVERVIEW OF SOFTWARE ARCHITECTURE

Software architecture [9] describes the structure of a system, architecture characteristics

the system supports, architecture decisions, and architecture principles governing the design and

evolution over time. The structure of a system refers to the type of architecture style(s) the system

is implemented in [9]. The architecture style describes the components of the system, behavior of

each component, characteristics of the components (properties), and interrelationships among the

components [34]. Architecture characteristics [9] are the “ilities” or “quality attributes”, such as

availability, security, performance, and usability, that the system must support. They specify non-

domain design considerations, influence structural aspects of the design, and are critical to the

success of the application. Architecture decisions [9] are rules and constraints that govern how

the system should be built and what development teams are allowed and not allowed to do, such

as the presentation layer cannot access the database layer directly in a layered architecture.

Architecture principles [9] are guidelines or preferred methods given a particular circumstance,

such as asynchronous messaging between services can yield better performance in a microservice

architecture, thus use asynchronous messaging whenever is possible.

When designing a system, software architects will first analyze the requirements in the

problem domain to identify the architecture characteristics, such as performance, security, and

availability, that the system needs to support. Based on the identified architecture characteristics

and their priorities, architects will choose which software architecture styles would be suitable for

8

the problem domain. Examples of software architecture styles are layered architecture, event-

driven architecture, and microservice architecture [9].

In a layered architecture style [9], components are organized into layers with each layer

responsible for performing a specific role, such as presentation, business, and database. Each layer

provides an abstraction around the work that needs to be done to satisfy a particular business

request and typically only accepts requests from the immediate layer above it. Layered

architecture style is well suited for systems that require high testability and simplicity.

In an event-driven architecture style [9], components are decoupled, and they receive and

process events asynchronously. There are two primary topologies with the event-driven

architecture: the broker topology and the mediator topology. The broker topology is made up of

four primary components: an initiating event, an event broker which contains at least one event

channel, event processors, and processing events. The event flow begins with the initiating event

being sent to an event channel in the event broker for processing. An event processor accepts the

initiating event from the event broker and processes the event. Once the event processor completes

the processing, it generates the next processing event and sends it to the event channel

asynchronously for further processing. The other event processors listen for the next processing

event and react to it accordingly. The process continues until no one is interested in what the final

event processor did. The broker topology is great for systems that require extensibility,

performance, responsiveness, and scalability. The mediator topology is made up of five

components: an initiating event, an event queue, and event mediator, event channels, and event

processors. The event flow begins with an initiating event being sent to the event queue. The

event mediator, which is responsible for the workflow, accepts the initiating event from the event

queue, creates the corresponding processing events, and sends them to specific event processors

via dedicated event channels. The event processors process the processing events and provide

responses to the event mediator. The mediator topology is great for systems that require

recoverability, workflow control, and error handling.

9

2.2. MICROSERVICE ARCHITECTURE

Microservice architecture has become a very popular architecture style in recent years [9],

and according to a series of surveys conducted by IBM Market Development & Insights in 2021

[43], microservices are heavily used in many industries worldwide. Microservice architecture [65,

41, 23, 36] is a software architecture style where the software application is built as a composition

of microservices with each microservice addressing a single business need. Each microservice

runs in its own process, and is deployed independently of other microservices. Microservices

communicate with each other via lightweight protocols, such as hypertext transfer protocol

(HTTP).

Microservice is an independently releasable, deployable, technology agnostic, and business

domain bounded and scoped component [8, 45]. The implementation details of a microservice are

hidden. Data is typically isolated whenever possible. Coupling, including shared schemas and

databases used as integration points should be avoided in microservices [9]. Services offered by

the microservice are only exposed via network endpoints. Any changes made inside a

microservice will not affect other microservices. Once the change is made, a microservice can be

deployed and released without having to re-deploy other microservices. This makes each

microservice independently releasable and deployable [8].

Each microservice can be implemented in any language and using any technology that best

suits the purpose of the microservice and development experiences of the development team [11,

36]. Microservices communicate through lightweight messages via networks [11, 8]. This makes

microservices technology agnostic.

Each microservice addresses a single business need. The size of each microservice should

be relatively small due to the bounded context [8, 11, 36]. This makes each microservice business

domain bounded and scoped.

10

2.3. MICROSERVICE ARCHITECTURE VS. SERVICE-ORIENTED ARCHITECTURE

Microservice architecture has been seen as an evolution of service-oriented architecture

(SOA). Richards [55] explains that while it is true that the two architecture styles share some

characteristics, they have different taxonomy, service ownership model, service granularity, and

sharing components. The shared characteristics are: a. Both architectures are distributed

architectures where service components are remotely accessed through remote access protocol,

such as representational state transfer (REST); b. Both architectures place an emphasis on services

as their primary architecture components used to implement and perform functionalities.

Microservice architecture’s taxonomy supports two types of services: functional services

and infrastructure services. Functional services are business domain services and infrastructure

services refer to nonfunctional tasks, such as, authentication, authorization, and monitoring.

Functional services are accessible externally while infrastructure services are not exposed

externally. SOA’s taxonomy can have any number of service types; however, it typically supports

the following four basic types: business services, enterprise services, application services, and

infrastructure services. Business services are abstract and coarse-grain services that define the

core business operations performed at the enterprise level. Enterprise services are concrete and

coarse-grain services that implement the functionality defined by the business services. There is

usually a middleware component that bridges the business services and enterprise services

together. Application services are fine-grained and application specific services that are bound to

a specific application context and provide specific business services that are not found at the

enterprise level. Infrastructure services refers to nonfunctional tasks.

Services in microservice architecture are owned by application development teams,

whereas services in SOA are owned by different business organizations. Services in SOA require

coordination between different business organizations. It significantly increases the amount of

effort and time required during development, testing, deploying, and maintaining the services.

11

Service granularity in microservice architecture is smaller than SOA. Services in

microservice architecture are single-purpose services, whereas, the services in SOA can range in

size from small application to large product or subsystem.

SOA is an architecture style that features “share as much as possible”, whereas

microservice architecture features “share as little as possible”. SOA maximizes on component

sharing, whereas, microservice architecture minimizes on sharing.

After reviewing the similarities and differences between microservice architecture and

SOA, microservice architecture does share some of the same security challenges that exhibit in

SOA. This research only focuses on security challenges and corresponding security mechanisms

that are in microservice architecture regardless if they are also in SOA.

2.4. ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE (AADL)

Architecture description language (ADL) is a language used to describe a complex system

at a high level of abstraction that exposes a system’s structure as a collection of interacting

components. It allows software engineers to reason about system properties, such as performance,

schedulability, and security. There exists a number of ADLs, such as Aesop, Adage, Darwin,

Rapide, SADL, UniCon, Wright, C2, Meta H, Acme, and AADL. The proposed work will be

documented in AADL.

Architecture analysis and design language (AADL) [22] is a formal specification language

that allows software engineers to define software, hardware, and physical system components,

their interactions, and properties of the components. With the formal foundations and well-defined

semantics, it provides software engineers the capability to perform different types of analysis, such

as performance, security, and data integrity analysis, on the architecture based on standard

properties. AADL is also extensible to support annotation of models with user defined and

analysis-specific properties.

12

An AADL model is composed of component type and component implementation (please

see Figure 1 and Figure 2). Component type represents the externally visible characteristics of a

component, such as name, component category, interfaces, properties, modes, and logical flows.

Component implementation represents a blueprint of its internal structure in terms of

subcomponents. It defines subcomponents, connections, calls, and modes (if they are not defined

in the component type), details the flows associated with the component type that traverse the

various subcomponents, and adds or modifies properties that are previously defined in the

component type.

Figure 1: AADL Components and Connectors [80]

13

Figure 2: Component Type and Component Implementation

An AADL model is composed of the following elements:

1. Components

a. Application software components: They refer to the applicative parts of the

system. They include process, thread, data, and subprogram.

b. Execution platform components: They refer to computing hardware and

physical environment. They include processor, bus, memory, and device.

c. System: It represents a composite of software and platform components or

system components.

2. Connectors: They include port (data, event, and event data), subprogram,

parameters, and subcomponent access.

14

3. Properties: They define characteristics of the components and connectors. Each

property has a name, a type, and definition (Please refer to Figure 3). The property

type specifies the values that can be assigned to the property. The property

definition specifies which AADL model elements the property applies to.

Figure 3: Structure of a Property

Property association is how values are assigned to properties and associated with

AADL model elements (Please refer to Figure 4). A basic property association is

made up of a property name, an assignment operator, a constant keyword (optional),

and property value. Property value can be a single value whose type matches the

type specified by the property, or a list of values separated by commas in

parentheses of the same type if the property has been defined to accept a list.

Operator +=> can be used to append value to a property that accepts a list of values.

“In mode” keyword can be used to assign property values that only hold under

certain conditions.

Figure 4: Property Association

AADL supports two types of properties: AADL standard properties and user-

defined properties. AADL standard properties are properties that are defined by

15

the Software Engineering Institute and encompass common attributes for the

AADL elements. User-defined properties are new characteristics to the AADL

elements. The AADL annex describes a set of properties that augment the core

AADL language with new elements.

AADL allows introduction of additional properties and property types through

property sets. Each property set provides a separate name space (Please see Figure

5). A property in the property set can be referenced using “::” in the same or another

property set. Property declaration defines a new property by declaring a property

name and by specifying a property type. “Record” keyword is used when multiple

fields are defined within a single structure (please refer to Figure 6). “Enumeration”

keyword is used when a set of literal elements are defined (please refer to Figure

7).

Figure 5: Property Set Example

Figure 6: Property Declaration using Record

16

Figure 7: Property Declaration using Enumeration

17

Chapter 3: Methodology

This chapter presents the work that was done to address the research questions:

▪ RQ1: What are the security challenges in microservices architecture?

▪ RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

▪ RQ3: What approach can enhance the security modeling and specification in

microservice architectures?

3.1. SECURITY CHALLENGES AND SECURITY PRACTICES IN MICROSERVICE ARCHITECTURE

This section addresses the research questions of the security challenges in microservice

architectures (RQ1) and their corresponding security practices used and/or proposed to address the

security challenges (RQ2). The security challenges described in this section are: authentication,

authorization, logging, larger surface area, communication, patching, data, deployment, and trust.

3.1.1. Authentication

Authentication is the process of verifying the identity of an entity and checking who it

claims to be [41]. The following two sections describe the challenges in authentication and the

security practices used to address the challenges.

3.1.1.1. Challenges

In a microservice architecture, there are more authentication scenarios to consider

compared to an equivalent monolithic architecture, such as authenticating end-users accessing

microservices, authenticating microservices to other microservices, and authenticating external or

third-party services connecting to microservices via API [13, 63, 36]. This increases the

complexity in how authentication should be handled in microservice architectures.

18

Ayoub [13] and Fybish [63] state that since authentication is a cross cutting concern that

affects every microservice in a given microservice architecture, some developers will create global

authentication logic and assign the authentication responsibility to each microservice in the

microservice architecture. Having each microservice responsible for more than its intended

business needs is a violation of the single responsibility principle. Reusing the same code base

creates a central code dependency and can negatively impact the technology agnostic aspect of

microservices.

Management of credentials can be a challenge since there are significantly more credentials

representing different user accounts, microservices, databases, and virtual machines compared to

an equivalent monolithic architecture [63, 25, 8]. Pereira-Vale et al. [3] describes the challenge

associated with maintenance and storage of authentication information. If authentication

information is managed by an authentication microservice, an update is required whenever a new

microservice or a new user is added. If the authentication information is managed by individual

microservices, it increases the chances of the information being leaked should there be

compromises happening to individual microservices.

3.1.1.2. Security Practices

API Gateway

Newman [8] suggests that API gateway can be used for coarse-grained authentication, such

as preventing non-logged in users from accessing microservices, if the gateway can extract

attributes about the principal as a result of the authentication. There are a number of issues

associated with using API gateway for coarse-grained authentication. Coupling between

microservices and API gateway will increase since the API gateway needs to know who is allowed

access to which microservices. Since all traffic will have to funnel through the API gateway, the

API gateway became the single point of failure. The more functionality the API gateway has, the

greater the attack surface. Due to the mentioned issues, Newman [8] suggests the use of a gateway

to handle security between users and services. The gateway can manage handshaking with an

19

identity provider to perform authentication. Once the authentication is complete, the gateway

passes information about the authenticated user to microservices with the assistance of Shibboleth

or JSON web token.

Siriwardena and Dias [26] states that API gateway is the single-entry point to the

microservice architecture and it provides the following security features: a. expose external-facing

microservices via API to the client applications; b. work with an authorization server/service, such

as OAuth, to secure APIs that are exposed at the edge; c. enforce only authenticated client

applications with valid access tokens are allowed to communicate with microservices. It is done

by extracting the access token from the request and introspecting it through the authorization

server/service. If the access token is valid, it will forward the request from the client application

to the appropriate microservice. The communication between client application and authorization

server/service will affect the performance of the microservice architecture due to the increase in

amount of communication. Alternatively, if the access token received by the gateway is a JSON

web signature (JSON Web Token (JWT) signed by the authorization server), the gateway can

verify the token by inspecting its signature. If the signature is from a trusted party, then the

information contained in the token is trustworthy. One of the downsides of using JWT is that the

gateway won't know if the token has been revoked since the gateway is not verifying the token

with the authorization server. To address the revoking token issue, either the authorization server

will inform the gateway that a token is being revoked or the token will be short-lived and require

the token to be refreshed frequently. Another downside is that if the certificate used to verify the

token is expired, the gateway will not be available to verify the signature of the token. Extra work

is required to maintain the issuer's certificate. d. prevents throttling and DOS attacks.

Fybish [63] describes that API gateway can be used to control authentication for all

downstream microservices. The advantage is that it is easy to implement. The disadvantages are:

a. less secure because an attacker can gain access to any microservice once he/she bypasses the

API gateway, b. increase in complexity and what the API gateway should be responsible for since

the API gateway needs to manage different authentication rules for all microservices, c. API

20

gateway becomes a single point of failure, and d. overheads in process and communication since

different teams are responsible for the operations and maintenance of the API gateways.

Token-based Authentication

According to [70, 28, 26], tokens, such as API key and JSON web token (JWT), can be

used for service-to-service authentication. API key is a simple bearer token that identifies a service

and carries authentication information, such as ID and expiry time. It is generated by a developer

from a developer portal, and it is sent with the request to a downstream (server) microservice. The

downstream (server) microservice validates the identity of the upstream (client) microservice

before processing the request.

JWT is a bearer token that carries claims about the service, expiry time, audience, and other

standard JWT claims. JWT is either signed or encrypted by a symmetric authenticated encryption

scheme. Validating of tokens will take place before a downstream (server) microservice accepts a

request from an upstream (client) microservice.

JWT has the advantage over simple bearer tokens because it can be accepted by many

different APIs due to the use of public key signatures. One of the disadvantages of using a bearer

token is that it can be used by anyone, if captured, until it expires. Therefore, one must secure the

communication channel with transport layer security (TLS) to reduce the risk of an intruder

stealing the bearer token. The second disadvantage is that a portal for generating JWTs is required.

The third disadvantage is that a mechanism needs to be in place to support revoking of tokens

when a service retires. [70, 28, 26]

Madden [70] further suggests having the following four components when using token-

based authentication: client-side token storage, server-side token storage, hash-based message

authentication code (HMAC) token store, and a standard way to communicate tokens between

client and server. Since authentication tokens need to be validated on every request, it is important

to consider that when selecting which database to use to store the tokens since the database

transaction for every lookup can be costly. The recommendation is to use non-relational database

21

backends, such as Redis in-memory key-value store or NoSQL JSON. To lower the risk of various

threats, such as tokens being injected to the database, tokens being modified, tokens being deleted,

and tokens being stolen and replayed to API, the tokens in the database should be stored using

hash-based message authentication code (HMAC) to protect tokens against tampering and forgery,

the database should be separated from the API server to ensure that external clients do not have

direct access to the database, and communication between the database and the API server should

be protected with TLS. Each of the components should be classified with a different trust

boundary. The other aspect to consider when dealing with tokens is token deletion. Once a token

is deleted, it should never come back to life.

Subramanian and Raj [57] describes how token-based authentication works. The client

application makes a request to an authentication server for an access token. After the

authentication server validates the mandated credentials from the client application, it issues an

access token to the client application. The client application sends the access token in the

Authorization HTTP header with an API request. The API gateway validates the access token

with the authentication server. Once the access token is validated, the API gateway forwards the

request along with the access token to the corresponding microservice.

According to [26], JWT can be used in external to service authentication. An external

application requests an access token from the security token service (STS). The STS generates a

JWT which contains user context related to the external application. The external application can

then use the JWT in an HTTP header when invoking a microservice.

Yarygina and Bagge [18] describes the use of security tokens such as JWT for user to

service authentication. Once the user is authenticated by an authentication service within the

microservice architecture, a security token is generated to represent the client’s identity. The

security token will be sent to the client via TLS. The client will provide the security token

whenever it makes a request. The security token along with the request will be passed from one

microservice to another microservice to complete the request. Upon receiving the security token,

22

a microservice will validate and verify the security token before processing the request. If the

security token is invalid, the microservice will reject it and stop the request processing.

Certificate-based Authentication

Mateus-Coelho et al. [4], Siriwardena and Dias [26], Yarygina and Bagge [18], Newman

[8], and Barabanov and Makrushin [28] suggest the use of certificates along with TLS/MTLS for

service authentication.

Certificate-based authentication [35, 14] is a cryptography technique that uses a certificate

to identify an entity before granting any type of access [60]. A certificate contains information

about its owner, a public key of the owner, and information about its issuer. The following explains

how the certificate-based authentication works in a microservice architecture along with

TLS/MTLS communication protocol. A microservice needs to request a certificate from a

certificate authority (CA). It is done by submitting a certificate signing request (CSR) form along

with its public key to the CA. Once the CA completes the verification process of the information

on the CSR, it will sign it and send it back to the microservice. Before communication between

downstream (server) and upstream (client) microservices can take place, they need to authenticate

themselves to each other. When the TLS communication protocol is used, the downstream (server)

microservice will provide its signed certificate along with its public key to the upstream (client)

microservice. The upstream (client) microservice will verify the downstream (server)’s certificate

by checking the signature of the CA who signed it. If the CA is trusted and the downstream (server)

microservice’s certificate is valid, the authentication process is complete. The upstream (client)

microservice creates a session key that will be encrypted with the downstream (server)

microservice’s public key. The downstream (server) microservice decrypts the session key,

generates an encrypted acknowledgement with the session key, and initiates encrypted

communication with the upstream (client) microservice. When the MTLS communication

protocol is used, an upstream (client) microservice needs to authenticate the downstream (server)

23

microservice and vice versa. Once the microservices are done verifying each other’s authenticity,

then they can communicate with each other after exchanging the session key.

An advantage in using certificate-based authentication is that the certificates MTLS uses

are time-bound. In the event that the certificate and the corresponding private key are

compromised, the vulnerability is limited by the lifetime of the certificates. A disadvantage is that

certificate-based authentication is a centralized solution that is not very scalable and the

implementation can be complex [25].

API Key-based Authentication

Mateus-Coelho et al. [4] and Newman [8] suggest the use of API keys for service-to-service

authentication. With API keys, the downstream (server) microservice generates a unique key for

each of the upstream (client) microservices. Whenever an upstream (client) microservice makes

a request to the downstream (server) microservice, the upstream (client) microservice sends the

request along with a unique key. The downstream (server) microservice verifies the upstream

(client) microservice’s key. If the key is valid, the downstream (server) microservice processes

the request. If the key is not valid, the downstream (server) microservice rejects the request.

API key-based authentication is easy to implement and use compared to other types of

authentication methods. The authentication is done by including a key in the request and verifying

the key is valid. Most developers are familiar with API keys, and therefore, no extra training is

required. However, if the key is stolen, any microservices will be able to use it to request all the

services associated with the key from the downstream (server) microservice as if they are the

owner of the key. If any of the services involve write, update, or delete access to any data, it can

be a huge security concern. It is not very secure compared to other technology and it can be leaked

easily, such as showing up in logs or extracting the API keys from code [49]. To reduce the

security concern, it is recommended to limit API Key-based authentication for services that

involve read-only data [44].

24

Hash-based Message Authentication Code

Mateus-Coelho et al. [4] suggests the use of hash-based message authentication code

(HMAC) for service-to-service authentication. HMAC is a cryptographic technique that uses a

hash function and a secret key for authentication [31]. HMAC [4, 31] works as follows: The

downstream (server) and upstream (client) microservices share a secret key and have a mutual

agreement on how a message digest is calculated. When the upstream (client) microservice wants

to send a request to the downstream (server) microservice, the upstream (client) microservice first

creates a message digest by combining the request and the secret key, and then sends the message

digest along with the original request to the downstream (server) microservice. Upon receiving the

message digest and the original request, the downstream (server) microservice calculates a

message digest by hashing the original request with the secret key that it shares with the upstream

(client) microservice. If the calculated value matches the digest sent by the upstream (client)

microservice, then the data integrity and authenticity of the request is guaranteed. The integrity of

the request is preserved because the message was not modified in transit. The authenticity of the

microservice is known because the downstream (server) microservice knows who the upstream

(client) microservice is.

OpenID Connect

Góes de Almeida et al. [41], Banati et al. [25], Mateus-Coelho [4], and Yarygina and Bagge

[18] mention OpenID Connect (OIDC) as one of the authentication protocols used on top of OAuth

2.0 used for user authentication in a microservice architecture.

OIDC [42] is a protocol that provides an identity service layer that sits on top of OAuth

2.0. It allows the delegation of the responsibilities of user authentication and claim generation of

authenticated users and authentication events to authorization servers.

The following explains how OIDC can be used in a microservice architecture for

authentication. It begins when a user (end user) wants to access a microservice (relying party).

The microservice redirects the user to an OpenID provider, which is an authorization server that

has implemented OIDC. An OpenID provider is used to authenticate a user and return claims

25

about the authenticated user and authentication event. The user interacts with the OpenID provider

to get authenticated. If the authentication is successful, the user is being redirected back to the

microservice with the authorization code. From the OpenID provider, the microservice can obtain

an ID token, access token, and optionally a refresh token with the authorization code. If the

microservice needs additional information about the user, it can use the access token at the OpenID

provider’s userinfo endpoint. With the ID token, the microservice has proof that the user has been

authenticated [42]. The microservice can use the ID token to communicate with other

microservices on the user’s behalf. The other microservices can validate the signature on the ID

token with the public key of the OpenID provider before providing a response.

An ID token is a security token which contains claims about an authenticated user and

event. It is used to convey claims to a microservice about an authenticated user and event, and it

is encoded in JSON Web Token (JWT) format. The ID token has three parts: header, payload, and

signature. The header contains metadata of the token, such as, the type, and the signature algorithm

used to protect the integrity of the claims in the payload. The payload contains claims about the

authenticated user and event. The signature contains a digital signature created based on the

payload and the secret key of the OpenID provider. A microservice can validate the signature on

the ID token with the public key of the OpenID provider. It calculates the hash of the payload,

decrypts the digital signature with the public key of the OpenID provider, and compares the hashes.

If they match, then the integrity of the claims in the payload is preserved. [42]

Federated Identity Solution

Rountree [38] and [68] describe the use of federated identity solution to separate user

authentication from application logic and to delegate authentication to an identity provider. The

federated identity solution is composed of two required components: identity provider and service

provider. The identity provider is responsible for authenticating entities against its credential store.

Once authentication is complete, the identity provider will allow access to the user’s identity

information. The service provider is responsible for providing services to others based on the

26

user’s identity from the identity provider. It trusts the user’s identity from the identity provider

and will not perform additional authentication.

The following explains how federated identity solution can be used in a microservice

architecture for authentication. When a client application wants to access a microservice, the client

application needs to be authenticated by an identity provider. The identity provider authenticates

the client application against its credential store. If the authentication is successful, the identity

provider will issue a security token that contains claims about the user’s identity. A security token

service might transform and augment claims in the token issued by the identity provider, when

necessary, before the security token is sent to the client application [68]. The client application

can then use the security token to request service from the service provider. The service provider

trusts the claims in the security token and will not perform additional authentication.

The advantages of using federated identity solution are [38, 68]:

▪ Identity provider is the only component that has access to user’s credentials.

Microservice only has access to the user’s identity information provided by the identity

provide and not the user’s credentials. In the event that a microservice is compromised,

no user’s credentials are exposed.

▪ Authentication is separated from the microservice business logic. It simplifies the

development of microservice.

The disadvantages of using federated identity solution are [38, 68]:

▪ If the identity provider is compromised or the credential the client application uses to

log in is compromised, an attacker can gain access to all the microservices the user

credential has access to.

▪ The use of federated identity solution requires infrastructure setup, support of extra

hardware and software, and conformation to the standards followed by other

organizations. The cost of using federated identity solution might outweigh its benefits.

▪ Authentication can be a single point of failure.

27

3.1.2. Authorization

Authorization is the process of granting an entity permission to do or own something [79].

An entity can be a person or a system. Each entity should only be able to perform actions on

microservices it is allowed to. The following two sections describe the challenges in authorization

and the security practices used to address the challenges.

3.1.2.1. Challenges

Managing credentials and their access rights in a microservice architecture is more

challenging since there are a lot more credentials representing different user accounts,

microservices, databases, virtual machines, and other components in a microservice architecture

compared to an equivalent monolithic architecture [8]. There are more authorization scenarios to

consider in a microservice architecture compared to an equivalent monolithic architecture, such as

authorizing a microservice to call an API on the user’s behalf and authorizing microservices to

access other microservices [63, 25]. This increases the complexity in how authorization should

be handled in microservice architectures.

Ayoub [13] and Fybish [63] state that since authorization is a cross cutting concern that

affects every microservice in a given microservice architecture, some developers will create global

authorization logic and assign the authorization responsibility to each microservice in the

microservice architecture. Having each microservice responsible for more than its intended

business needs is a violation of the single responsibility principle. Reusing the same code base

creates a central code dependency and can negatively impact the technology agnostic aspect of

microservices. Banati et al. [25] states that if a microservice is required to handle authorization at

the service level and needs to store and administer user’s data, it increases the chances of personal

information being leaked and accessed by unauthorized entities.

When it comes to the container-based microservices, maintaining service credentials and

access control policies can be more challenging. According to [26], a container-based

28

microservice is immutable meaning that once the container is up, it does not maintain any runtime

states or any changes made to its file system. It means that extra steps need to be taken to maintain

the dynamic list of allowed clients and access control policies and service credentials since service

credentials would be rotated periodically.

Newmon [8] describes the confused deputy problem as one of the authorization challenges.

The confused deputy problem refers to an upstream (client) microservice tricking downstream

(server) microservices into doing something they should not be doing.

3.1.2.2. Security Practices

API Gateway

API gateway can be used to centralize the enforcement of coarse-grain authorization at the

edge for all downstream (server) microservices [28, 63, 26]. That way, each microservice does not

have to worry about access control to its services.

The disadvantages of using API gateway to perform authorization are [20, 63]:

▪ When the microservice architecture grows, the authorization decisions can get very

complicated. If all authorization decisions are put on the API gateway, the API

gateway can become unmanageable.

▪ API gateway becomes the single point of failure.

▪ API gateway is typically owned by the operation teams. API is owned by

development teams. Development teams need to communicate with the operation

teams whenever an authorization rule requires changing. It increases the overheads

in process and communication.

▪ The use of API gateway can make the microservice architecture less secure when

an attacker bypasses the API gateway and gains direct access to microservices.

The advantage of using API gateway to perform authorization is that it is easy to implement

since it is centralized [63].

29

Security Token

Yarygina and Bagge [18] suggests the use of security tokens along with access control

mechanisms for user authorization. Security tokens can carry authorization information of the

user. Based on the authorization information, the system can determine which microservice it can

request service from.

Banati et al. [25] describes the use of tokens for user authorization. After the user has been

authenticated, the identity and access management component generates a time-sensitive JSON

Web Token (JWT). The JWT is then appended to every request. Microservices are able to manage

the users and their rights based on the information specified in the token.

OAuth 2.0

OAuth 2.0 [16] is an authorization framework that gives applications a way to make API

requests without the need for users to share their credentials and with limitations on what the

applications can do. Microservices do not have to worry about a user's credential when a

microservice is trying to access features from another microservice on the user’s behalf. Góes de

Almeida et al. [41], Banati, A. et al. [25], and Yarygina and Bagge [18] suggest the use of OAuth

2.0 for authorization in a microservice architecture.

The following explains how OAuth with proof key for code exchange (PKCE) can be used

in a microservice architecture for user to service authorization involving client applications, e.g.,

desktop applications, web applications, or mobile applications, that are capable of handling HTTP

redirects. If the client application is not registered with the OAuth server, it needs to complete

the registration first to obtain a pair of credentials, which includes a client application identifier

and client application secret. The application secret is only used when a client application is

capable of keeping a secret. Some client applications, such as JavaScript applications, cannot keep

a secret, therefore, the application secret is not used. [16]

It begins with a user (resource owner) who wants to use an application to access a

microservice (resource server) on his/her behalf. The application generates a PKCE secret (code

30

verifier) and hashes it. The generation and hashing of PKCE secret and is done on every request.

The application redirects the user’s browser to an OAuth server’s authorization endpoint along

with the hash (code challenge). Once the user (resource owner) completes the authentication, the

OAuth server (authorization service) requests confirmation from the user regarding the

application’s request to access the microservice. Once the user confirms, the OAuth server

generates and sends an authorization code to the user’s browser. The user’s browser then sends

the authorization code to the application since there is no direct communication between the OAuth

server and the application. The application makes a POST request with the authorization code,

the application ID, the application password, and the plaintext PKCE secret to the OAuth server’s

token endpoint in exchange for an access token. The purpose of sending the plaintext PKCE secret

is to confirm that the sender of this POST request is really the application itself. The OAuth server

calculates the hash using the PKCE secret and compares it with the hash sent by the user

previously. If they match, then the OAuth server knows it is the application who is making the

request for the access token and sends the application the access token. The application can then

communicate with the microservice to access the resource with an access token. The microservice

verifies the application’s access token with the OAuth server before allowing access to the

requested resource [16]. The access token is meant for resource access and is not intended to

convey information about the authentication event or the user. The authentication step in OAuth

is used to validate a user's entitlement to give consent to authorize an access request for a resource.

[42].

If an application is an Internet of Things (IoT) device, such as an Apple TV, the device

authorization flow is used instead. The flow begins when the user wants to use a primary device

that requires access to a microservice. The primary device must be able to make outbound HTTPS

requests. The primary device sends an authorization request along with the device ID (client ID)

to the OAuth server. The OAuth server sends a device code, end-user code, and a user verification

universal resource identifier (URI) to the primary device. The primary device shares the end-user

code and verification URI with the user. The user accesses the verification URI on a secondary

31

device. The secondary device must be capable of supporting user interaction to authenticate and

authorize API requests to the microservice. Once the user is authenticated, the OAuth server asks

for the user for the user code and for authorization of the API call. The user provides the user code

and consent. The primary device continues to poll the OAuth server. Once the user consents, the

OAuth server responds to the primary device’s next polling request with an access token and a

refresh token if applicable. The primary device can use the access token to call the microservice’s

API on the user’s behalf. [42]

The communication involving the user’s browser is considered as the front channel. Front

channel passes data via the browser’s address bar as a redirect which is susceptible to request and

response being modified by malicious parties. The communication between the application and

OAuth server is considered as the back channel. Back channel involves HTTPS requests to and

from application to server, the communication channel is encrypted and cannot be tampered with.

Refresh token is a special token used to get a new access token without having the user visit the

OAuth server and to keep the user logged in. The refresh token is always between application and

authorization server. API does not accept refresh tokens [16].

The use of OAuth in a microservice architecture provides consistency in user experience

as far as how authorization is handled and how security is managed. This makes it easier for users

to identify fake authorization prompts [16]. The drawback in using OAuth is performance due to

the increased communications between microservices and OAuth server.

Certificates

Yarygina and Bagge [18] suggests the use of certificates for authorization. If the

microservice architecture uses MTLS with a self-hosted public key infrastructure, a certificate

should be created for each microservice type. To allow a microservice to have access to another

microservice, a trust list by certificate type should be established. By default, no microservice will

allow access to another microservice. If one microservice needs to have access to another

microservice, the microservice needs to be added to another microservice’s trust list prior.

32

Access Control System

Barabanov et al. [28] describes three different ways in how an access control system can

be used for service level authorization in a microservice. In a typical access control system, the

following components are included: a. Policy administration point (PAP) which allows an

administrator to define and maintain access control rules via an user interface; b. Policy decision

point (PDP) which uses access control rules defined in PAP to make access decisions; c. Policy

enforcement point (PEP) which enforces the access decisions made by the PDP in response to

incoming requests; and d. Policy information point (PIP) which maintains additional attributes that

can assist PDP when making access decisions. The three different ways are a. Decentralized

pattern, b. Centralized pattern with a PDP, and c. Centralized pattern with an embedded PDP.

When an access control system is implemented using the decentralized pattern, each

microservice is responsible for making access decisions (PDP) and enforcing the access decisions

made by the PDP (PEP). This pattern offers more fine-grained access control because the access

control rules are more domain specific. However, the development team must be able to configure

the access control rules correctly and manual configuration is not scalable.

When an access control system is implemented using the centralized pattern with a PDP,

each microservice is responsible for enforcing access control decisions (PEP). The defining of

access control rules (PAP), the decision making based on access control rules (PDP), and the

maintenance of additional attributes (PIP) are shared among all microservices in the same

architecture. This pattern offers flexibility in managing the access control rules, access decision

policies, and attribute collection since they are decoupled from the microservices who use them.

However, the latency suffers due to additional network calls from the microservices to the PDP.

It is recommended to implement this pattern along with the other patterns to avoid single point of

failure and to enforce defense in depth principle.

When an access control system is implemented using the centralized pattern with an

embedded PDP, each microservice is responsible for making access decisions (PDP) and enforcing

the access decisions made by the PDP (PEP). The access control rules (PAP) and attributes (PIP)

33

are defined centrally and are delivered to embedded PDP in the microservice. Latency is not

affected by this pattern due to the embedded PDP. It is recommended to implement this pattern

along with the other patterns to avoid single point of failure and to enforce defense in depth

principle and to beware of the approach used to propagate the update from the centralized PAP to

each microservice.

Centralized Upstream Authorization and Decentralized Authorization

Newman [8] suggests two mechanisms in addressing the confused deputy problem: a)

centralized upstream authorization and b) decentralized authorization. Centralized upstream

authorization refers to all required authorization to be performed as soon as the request is received

in a system, and once all required authorization is processed, the downstream microservices can

assume the requests are allowed under the implicit trust principle. The issue with the centralized

upstream authorization is that the upstream microservice or gateway has knowledge of the

functionality provided by the downstream microservices and the access control of those

functionalities. This violates the principle of independent deployability and creates the single point

of failure.

Decentralized authorization refers to having the downstream microservice where the

functionality being requested lives to handle the authorization based on information of the

requestor. The issue with decentralized authorization is that microservice has additional

functionality on top of the single business need it is responsible for. The other issue is that

additional information needed to process authorization needs to be passed from one upstream

microservice to downstream microservice.

34

3.1.3. Logging

3.1.3.1. Challenges

When microservices are spread across different platforms, security may be out of the

control of the microservices owners and completely dependent on the platform environment

owner. Collecting the required and necessary information to diagnose what went wrong and

correlating requests among microservices become challenging [4, 26, 8, 32, 19]. For microservices

that are deployed using containers, the audit logs are not kept at each node running the

microservices [26].

3.1.3.2. Security Practices

The use of distributed tracing systems, such as Jaeger and Zipkin, and logs to keep track

of essential information that can provide knowledge about exploitation, how the system was used,

and weak points are proposed [26, 4].

Since it is common for microservices to be built with different technologies, it makes the

structure of the logs and the amount of information collected even more important. The structure

of the logs will impact how they need to be parsed and how logs can be combined to represent

complete requests for analysis. The amount of information collected will also impact the level of

difficulty in diagnosing a problem. It is recommended to collect the following information as a

minimum: name of the service, name of the logged-in user, IP address, correlation ID, time at

which the message arrived, time taken, name of the method, call stack, and HTTP code [12].

3.1.4. Communications

3.1.4.1. Challenges

Sun et al. [32] and Henrique et al. [19] describe communication between microservices as

one of the security challenges in a microservice-based system. In a microservice-based system,

microservices are required to communicate with each other over the network in order to complete

35

requests. If the communication between microservices is not secured, it will expose the

microservice-based system to different types of attacks, such as man-in-the-middle attack and

session/token hijacking [2, 4]. On top of that, microservices can be developed by different teams.

Improper interception and inappropriate access can happen if the teams do not agree on the

communication protocol between microservices.

3.1.4.2. Security Practices

TLS

Siriwardena and Dias [26] and Yarygina and Bagge [18] describe the use of transport layer

security (TLS) to encrypt network traffic between microservices and to protect communication

between microservices for confidentiality and integrity. TLS can be used by any application-layer

protocol to secure communications, such as Java Database Connectivity over TLS and Simple

Mail Transfer Protocol over TLS. TLS also provides one way authentication where the

downstream (server) microservice provides a certificate to the upstream (client) microservice for

identity verification before the microservices communicate with each other.

To enable TLS communication, the key provisioning process steps are followed: 1. A

private and public key pair is generated for each microservice, 2. A certificate-signing request is

generated and submitted for approval to the team who owns a corporate certificate authority (CA),

3. A CA-signed certificate is generated for each microservice, and 4. The key pair and certificate

are deployed with each microservice. The key provisioning process can be done manually or

facilitated by a certificate management framework, such as Lemur.

MTLS

In addition to TLS, Siriwardena and Dias [26] and Yarygina and Bagge [18] also suggests

the use of mutual transport layer security (MTLS) to encrypt network traffic between

microservices and to protect communication between microservices for confidentiality and

integrity. MTLS also provides two-way authentication where the downstream (server)

36

microservice provides a certificate to the upstream (client) microservice for identity verification

and the upstream (client) microservice provides the downstream (server) microservice for identity

verification.

3.1.5. Data

3.1.5.1. Challenges

In a monolithic architecture, data is typically stored in a centralized database and accessed

by modules within the architecture when needed. In a microservice architecture, data is typically

owned and stored in each microservice. It is not a requirement that each microservice must own

and store data. To fulfill a request in a microservice architecture, it is very common that multiple

data sets are accessed in various microservices. Comparatively speaking, data moves around an

architecture more often in a microservice architecture than in a monolithic architecture, and this

makes securing data more challenging [8].

Data in Transit

Newman [8] describes four main challenges regarding data in transit. The first and second

challenges are about the identity of downstream (server) and upstream (client) microservices.

Downstream (server) microservice refers to the microservice receiving a call from another

microservice. Upstream (client) microservice refers to the microservice making a call to another

microservice. Newman [8] suggests the need for the upstream (client) microservice to verify the

identity of the downstream (server) microservice to ensure that the upstream (client) microservice

is communicating with an authentic microservice. A malicious party can impersonate a

downstream (server) microservice in an attempt to steal all the receiving data. The downstream

(server) microservice needs to verify the identity of the upstream (client) microservice to ensure it

is an authentic microservice requesting for service. A malicious party can impersonate an

upstream (client) microservice in an attempt to request for data that it does not have access to. The

third challenge is about the visibility of data. When data is sent across the network between an

37

upstream (client) and a downstream (server) microservices and vice versa, it is possible for a

malicious party to see the data. The fourth challenge is about data manipulation. When data is sent

across the network between an upstream (client) and a downstream (server) microservices and vice

versa, it is possible for a malicious party to manipulate the data.

Data at Rest

Many of the high-profile security breaches involve attackers acquiring and reading data at

rest. Newman [8] states that one of the root causes of security breaches is because data is stored

in an unencrypted form. Once a malicious adversary is able to compromise the microservice,

he/she can have unlimited access to the data stored within the microservice. Another root cause is

that there are fundamental flaws with the protective mechanism used on data.

Data Sharing

In a monolithic application, data is shared via session or can be accessed via a centralized

database. In a microservice architecture, data is stored and owned by each microservice. When a

downstream (server) microservice needs data about a request, the upstream (client) microservice

needs to pass the requested data explicitly to the downstream (server) microservice. It is possible

that a malicious adversary can modify the data during transit [26].

There is also a question of how much data should be sent across the network in order to

fulfill a request and how much data does each microservice require in performing its part of the

request since it is very rare for a request to be fulfilled by a single microservice in a microservice

architecture.

3.1.5.2. Security Practices

TLS and MTLS

Newman [8] suggests the use of transport layer security (TLS) and mutual transport layer

security (MTLS) to protect data in transit. TLS provides encryption of data which prevents data

from being visible to other unauthorized entities when data is being sent between two

38

microservices. It also provides authentication of the downstream (server) microservice when two

microservices are communicating with each other. The downstream (server) microservice

provides a certificate to the upstream (client) microservice. The upstream (client) microservice

verifies the identity of the downstream (server) microservice before establishing communication

between microservices. TLS is recommended when HTTP communication is used. If both the

downstream (server) and upstream (client) microservices require authentication, then MTLS

should be used to protect data in transit. With MTLS, on top of the downstream (server)

microservice providing a certificate to the upstream (client) microservice for verification, the

upstream (client) microservice needs to provide a certificate to the downstream (server)

microservice for verification before establishing communication between microservices.

MTLS and Service Mesh

When it comes to the identity of the upstream (client) microservice, Newman [8] suggests

a number of ways to address the issue. The downstream (server) microservice can request the

upstream (client) microservice to provide additional information, such as client-side certificate and

a shared secret, to prove who it is. MTLS via certificates and service mesh can also be used to

handle the authentications between upstream (client) and downstream (server) microservices.

Secure Communication Protocols

Newman [8] suggests the use of secure communication protocols, such as HTTPS, and

message authentication code, such as hash-based message authentication code, to guarantee the

integrity of the data from the upstream (client) microservice.

Encryption

For protecting the data at rest, data should be encrypted by well-known encryption

algorithms [8, 4, 26]. Encryption can be done at the disk-level and application-level [26].

However, Newman [8] points out while it is good to encrypt everything, the downside is

computational overhead. He suggests breaking down microservices into more fine-grained

39

microservices, evaluating which data set is critical to the operation and requires storing, and

identifying which data set contains sensitive information that requires encryption.

JWT

According to [26, 8, 28, 18], JSON Web Token (JWT) can be used to secure data in transit.

The JWT is a container that carries contextual data and is passed from one microservice to another

microservice so that microservices can share context. Upon receiving the JWT, a microservice

validates the signature of the JWT before processing the request. Some microservices will also

validate the audience field of the JWT. If the JWT is invalid, the microservice will reject it and

stop the request processing.

Yargina and Bagge [18] and Barabanov and Makrushin [28] also suggest the use of security

tokens such as JWT for propagating user identity throughout the microservices architecture. Once

the user is authenticated by an authentication service within the microservice architecture, a

security token is generated to represent the client’s identity. The security token will be sent to the

client via TLS. The client will provide the security token whenever it makes a request. The security

token along with the request will be passed from one microservice to another microservice to

complete the request. Upon receiving the security token, a microservice will validate and verify

the security token before processing the request. If the security token is invalid, the microservice

will reject it and stop the request processing.

There are two types of JWTs. The first type of JWTs is issued by a security token service

(STS) that is trusted by all microservices in the same trusted domain governed by the STS. It is

typically used when authentication is not required between microservices. Depending on the

application scenario and the level of trust in the microservice deployment, microservice might

request a custom JWT to be generated by the STS for each service interaction.

The second type of JWTs is self-issued by an individual microservice using its own private

key. The self-issued JWT is passed as an HTTP header along with the request to the downstream

(server) microservice over TLS. The choice of TLS as the communication protocol is to protect

40

the confidentiality and integrity of the communication since JWT is a bearer token and to minimize

the risk of an attacker stealing the token. The downstream (server) microservice verifies the JWT

using the upstream (client) microservice’s public key. Self-issued JWT also offers nonrepudiation

since the contextual data is bound to the upstream (client) microservice. Secure data in transit is

achieved since microservices cannot modify the content carried by the JWTs, and different types

of validations, e.g., signature and audience, are performed before accepting JWTs. Siriwardena

and Dias [26] suggest that self-issued JWT for each service interaction is generally more secure

than using a shared JWT because the JWT will have a specific audience. The need to have a JWT

for each service interaction depends on the level of trust in the microservices deployment.

Newman [8] mentions three issues to watch out for when it comes to using JWT tokens.

The first issue is about key management. In order for a downstream (server) microservice to verify

a signed JWT token, it needs to have access to the public key of the upstream (client) microservice.

The downstream (server) microservice needs to know where to find the public key of the upstream

(client) microservice. The maintenance of the lifecycle of public keys can become an issue. The

downstream (server) microservice needs to figure out when and how often the public key of the

upstream (client) microservice would change. The second issue is about expiration of tokens.

Architects need to understand the impact of long expiration time on tokens and the security of the

system. Some processes are asynchronous and might take a long time to complete their tasks, and

hence the long expiration time on the token. The last issue is the amount of information each token

should hold. Architects need to understand the impact of holding too much information in each

token and the security of the system.

41

3.1.6. Patching

3.1.6.1. Challenges

In July 2017, Equifax [52, 61] disclosed a data breach resulting in personal identifiable

information of at least 145.5 million individuals in the U.S. and nearly 1 million people outside

the U.S. being accessed and/or stolen by attackers. The root cause of the breach was caused by a

known vulnerability in Apache Struts Web Framework that was not patched within Equifax’s

infrastructure. The vulnerability allowed attackers to execute commands on affected systems.

The United States Computer Emergency Readiness Team publicly announced this

vulnerability two days prior to the attack taking place. Apache Software Foundation released a

patch for the vulnerabilities on March 7th, 2017. Equifax administrators were instructed to apply

the patch to any vulnerable systems on March 9th, 2017, however, the patch was not applied to

any of their vulnerable systems. On March 15th, 2017, the scans performed by Equifax did not

flag any of the vulnerable systems. During the same month, Mandiant, a security consulting firm,

was hired to investigate a series of incidents where criminals used stolen social security numbers

to log into Equifax sites. They issued warnings to Equifax about multiple unpatched and

misconfigured systems.

Attackers were able to take advantage of the vulnerability in Apache Struts Web

Framework and gained unauthorized access to Equifax’s online dispute portal. In subsequent

months, they were able to access other systems and retrieve personal identifiable information and

unencrypted usernames and passwords. The retrieved usernames and passwords were used to

access additional 48 databases. The attackers disguised the data as normal network traffic so that

they were able to remove the data without being detected.

Equifax’s data breach incident highlights the importance of patching and the potential

consequences of failing to keep up with patching in one’s infrastructure. Equifax’s data breach is

not an isolated incident. There are many more attacks in which failure to keep up with patches is

42

the leading cause. As companies continue to develop and deploy complex systems, the challenges

of keeping up with patching will increase [8].

Newman [8] describes another challenge with patching that involves the infrastructure and

software that the microservices run on. It is important to know who owns the infrastructure and

software that the microservices run on. The ownership will impact who is responsible for

maintaining and patching the infrastructure and software that microservices run on and how often

they will be patched. Venčkauskas et al. [47] reports that oftentimes microservices are dependent

on third-party libraries and services. If the third-party libraries and services are vulnerable, it can

have a negative effect on the microservices if they are not patched. It is important to understand

the dependencies between microservices and third-party libraries used in the development of

microservices.

3.1.6.2. Security Practices

Newman [8] describes the importance of knowing who owns the infrastructure and

software that microservices run on and assigning the right personnel to maintain and handle the

patching. Venčkauskas et al. [47] makes a similar suggestion as Newman but on the third-party

libraries and services that microservices use in their development.

3.1.7. Deployment

3.1.7.1. Challenges

Siriwardena and Dias [26] describes as the deployment of microservices increases in scale,

it makes it extremely challenging to manage and maintain the security. Each communication

channel between microservices requires protection. Each microservice must manage the

authentication, authorization, revocation, and rotation of the security mechanism when interacting

with another microservice. Two major financial institutions in the United States and United

Kingdom are mentioned to illustrate the deployment scale. In July 2019, Capital One deployed

43

thousands of microservices on several thousands of containers with thousands of Amazon Elastic

Compute Cloud instances. In November 2019, Monzo had more than 1500 services running on its

microservices deployment. Without a way to automate security, it makes it extremely different to

manage microservices in a large-scale deployment.

Siriwardena and Dias [26] also describes the challenge of maintaining service credentials

and access control policies in containers. If a microservice is deployed in a container, the container

is considered as an immutable container. The container is booted up from a base configuration.

Any changes to the files in the file system and the runtime state are not maintained by the container.

It means that any changes to the clients and access-control policies that were previously updated

in an instance of a microservice will not be sharable to another instance of the same microservice.

It creates an issue with how service credentials and access control policies are maintained across

different instances of the same microservice.

Torkura et al. [2] states that it is typically for different development teams to be in charge

of building microservices that serve different business needs. Development teams will use the

most appropriate technologies in the development of the microservices based on the team’s

development experience and the business requirements. While this development pattern aids

productivity, it makes managing security more challenging since different technologies have

different security concerns and vulnerabilities. The technology agnostic nature of microservices

also makes vulnerability detection more difficult [67]. Joseph and Chandrasekaran [64] states that

the number of security capabilities are higher due to the polyglot stack functionality of

microservices.

The dynamic deployment of microservices results in constant changes in resource

parameters, e.g., IP addresses, port numbers, and service endpoints. The constant changes in

resource parameters poses a challenge in security assessments which are traditionally configured

for static network resources [2].

44

3.1.7.2. Security Practices

Regarding the issue of immutability of containers and how service credentials and access

control policies are maintained, Siriwardena and Dias [26] suggests the use of a push or a pull

model. The service credentials and access control policies are maintained at a policy

administration endpoint. With a push model, the policy administration endpoint pushes the

updates to the microservice at bootup. With a pull model, the microservice periodically pulls

updates from the policy administration endpoint.

3.1.8. Trust

3.1.8.1. Challenges

Dragoni et al. [36] describes that microservices are often designed to trust each other in a

microservice architecture. Microservices architecture is vulnerable to both threats from other hosts

and threats from components within the boundary of the system [64]. When a malicious adversary

attacks and gains control of an individual microservice, it can affect other microservices in the

microservice architecture. The malicious adversary can manipulate microservices to do what

he/she wants them to do, escalate privileges on the hosting infrastructure of the microservices,

listen on any inter-service communication, alter data in transit, lead to full disclosure of other

microservices, and potentially bring down the entire system [18, 4, 32, 36, 2].

Yuqiong et al. [32] describes a real-world example on how trust relationships between

microservices can have a negative impact on the security of a microservice architecture. A

subdomain of Netflix was compromised, it led to an adversary having the ability to serve any

content on netflix.com and ability to tamper with authenticated Netflix subscribers and their data

since Netflix allowed all users’ cookies to be accessed from any subdomain.

45

3.1.8.2. Security Practices

Mateus-Coelho et al. [4] discusses the importance of providing layers of security

throughout an architecture and suggests the use of firewalls, intrusion detection systems, and

intrusion prevention systems as defense mechanisms on top of other security mechanisms.

Newman [8] suggests the use of the principle of zero trust where the environment is hostile

and bad actors could be present to launch an attack and threat modeling to drive the security design

in a microservice infrastructure. He provides an example of a secure design used in a healthcare

system where sensitive data is kept. The data is classified based on their sensitivity level.

Microservices are classified based on the most sensitive data they use. Each microservice runs in

the zone matching the most sensitive data it uses. Microservices in the same zone can

communicate without each other. Microservices in a more secure zone can use microservices in a

lower secure zone.

Venčkauskas et al. [47] suggests dividing microservices according to the degree of access

they need, with stricter security measures for the critical microservices. That way, the damage can

be isolated instead of propagated to the rest of the system.

3.1.9. Larger Surface Area

3.1.9.1. Challenges

Microservices architecture is a style where a software application is built as a composition

of microservices, and microservices communicate with each other via APIs over the network.

Communications between microservices over the network cause exposure to more potential attacks

than a monolithic application due to the increased number in entry points, and hence increases the

attack surface area [36, 3, 2, 26, 19, 4, 47]. With the attack surface area being larger, it makes it

harder to manage security.

46

3.1.9.2. Security Practices

API Gateway

Torkura et al. [2] describes the use of continuous security assessments with security

gateway, dynamic document stores, and security health endpoints to reduce attack surfaces.

Security gateway serves as a security enforcement point that enforces security policies on

microservices and infrastructure components. Each microservice is designed to provide an

openAPI document. Dynamic document stores openAPI documents of microservices which

allows security scanners to extract information for security testing. Security health endpoints

provide security status and assessment results of microservices.

Zero Trust Model

Newman [8] suggests the use of the principle of zero trust where the environment is hostile

and bad actors could be present to launch an attack and threat modeling to drive the security design

in a microservice infrastructure. He provides an example of a secure design used in a healthcare

system where sensitive data is kept. The data is classified based on their sensitivity level.

Microservices are classified based on the most sensitive data they use. Each microservice runs in

the zone matching the most sensitive data it uses. Microservices in the same zone can

communicate without each other. Microservices in a more secure zone can use microservices in a

lower secure zone.

3.2. DEVELOPMENT OF THE FRAMEWORK FOR SECURITY MODELING AND SPECIFICATION IN

MICROSERVICE ARCHITECTURES

This section describes the development of the approach, called Framework for Security

Modeling and Specification in Microservice Architectures, to enhance the security modeling and

specifications in microservice architectures (RQ3). The basis for the approach is the review of the

literature, documentation, and industry practices described in Section 3.1. The approach leverages

the security challenges in microservices architecture and integrates the corresponding security

47

practices to create a set of security properties for microservice architectures in AADL and a set of

decision trees to guide software architects on how to use the security properties when designing a

secure microservice architecture and what additional structural elements (components and

connectors) are required to support a secure architecture design. With the security properties

annotated on components and connectors, it allows software architects to run analysis and

simulations at the architecture level to ensure that security architecture characteristics are satisfied.

The next subsections present the security properties grouped as follows: general security

properties, network perimeter related properties, edge level related properties, communication

related properties, data related properties, log related properties, deployment related properties,

trust related properties, authentication related properties, and authorization related properties. The

decision trees associated with each property can be found in Appendix A.

3.2.1. General Security Properties

3.2.1.1. SecurityLevelProvided

▪ Property Name: SecurityLevelProvided

▪ Description:

o This property specifies the level of security the component or connector offers.

o This property is an enumeration with the values of networkPerimeterLevel,

edgeLevel, serviceLevel, communicationLevel, infrastructureLevel. The semantics

of the values are:

▪ networkPerimeterLevel refers to the component offering network perimeter

security and enforcing network perimeter related security rules.

▪ edgeLevel refers to the component offering edge security and enforcing

edge related security rules.

▪ serviceLevel refers to the component that is representing an individual core

microservice offering security at the microservice level. The security rules

48

are enforced by the individual core microservices. Core microservice refers

to microservice that serves a business purpose in the given problem domain.

▪ infrastructureLevel refers to the component that is not representing an

individual core microservice offering security at the microservice level and

enforcing security rules that will impact one or more individual core

microservices in the microservice architecture. Core microservice refers to

microservice that serves a business purpose in the given problem domain.

▪ communicationLevel refers to the connector offering communication

security and enforcing communication related security rules.

o This property can be specified for abstract, system, process, thread, and connection.

o This property is derived from the concept of defense in depth concept where

security should be applied and layered throughout the microservice architecture.

The concept of defense in depth is described in the following literatures:

▪ [8]

▪ [26].

▪ Declaration:

SecurityLevelProvided: enumeration (networkPerimeterLevel, edgeLevel, serviceLevel,

communicationLevel, infrastructureLevel) applies to (abstract, system, process, thread,

connection);

▪ Property Association Example:

o SecurityLevelProvided => networkPerimeterLevel;

3.2.2. Network Perimeter Related Properties

3.2.2.1. NetworkPerimeterLevel

▪ Property Name: NetworkPerimeterLevel

▪ Description:

49

o This property specifies the type of network perimeter security mechanism that the

component provides.

o This property is an enumeration with the values of intrusionDetectionPrevention

and firewallAccess. The semantics of the values are:

▪ intrusionDetectionPrevention refers to the ability to detect irregular and

unusual activities.

▪ firewallAccess refers to the ability to accept and/or deny requests based on

IP addresses.

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literatures:

▪ [8]

▪ [26].

▪ Declaration:

NetworkPerimeterLevel: enumeration (intrusionDetectionPrevention, firewallAccess) applies

to (abstract, system, process, thread);

▪ Property Association Example:

o NetworkPerimeterLevel => intrusionDetectionPrevention;

o NetworkPerimeterLevel => firewallAccess;

3.2.3. Edge Level Related Properties

3.2.3.1. EdgeLevel

▪ Property Name: EdgeLevel

▪ Description:

o This property specifies the type of edge security mechanism that the component

provides.

50

o This property is an enumeration with the value of APIGateway. The semantics of

the value is:

▪ APIGateway [57, 30, 26] is a reverse proxy that is typically deployed at the

edge of a system, data center, or as part of each product, line of business, or

department, or between a public network and demilitarized zone of a private

network. It serves as an entry point for a defined group of APIs. It decouples

external APIs from internal microservice APIs and prevents microservices

from being contacted directly.

▪ API gateway protects APIs from overuse and abuse, such as with throttle

limits, it reduces the chance of DoS/DDoS attacks [57, 30]

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literatures:

▪ [57]

▪ [30]

▪ [37]

▪ [26].

▪ Declaration:

EdgeLevel: enumeration (APIGateway) applies to (abstract, system, process, thread)

▪ Property Association Example:

o EdgeLevel => APIGateway;

3.2.3.2. APIRequestPerSecond_type

▪ Property Name: APIRequestPerSecond_type

▪ Description:

o This is a property type that defines the maximum rate of requests a single API can

receive per second.

51

o This is a property of type “type record” with two fields:

o APIName: This field is of type aadlstring. It defines the name of the API that

fulfills a request.

o requestPerSecond: This field is of type aadlinteger and must be a positive numeric

value. It defines the rate of requests per second for the said API.

o This property is created to support the structure of the following properties:

▪ MaxRequestMicroservice

▪ APIRequestPerSecondMicroserviceName_type.

▪ Declaration:

APIRequestPerSecond_type: type record (

APIName: aadlstring;

requestPerSecond: aadlinteger units (perSecond);

);

▪ Property Association Example: Not available because it is a property type.

3.2.3.3. APIRequestPerSecondMicroserviceName_type

▪ Property Name: APIRequestPerSecondMicroserviceName_type

▪ Description:

o This is a property type that defines a list of the maximum rate of requests a single

API can receive per second for all APIs that a microservice has.

o This is a property of type “type record” with two fields:

▪ microserviceName: This field is of type aadlstring. It defines the name of

the microservice that owns the APIs.

▪ APIRequest: This field is a list of APIRequestPerSecond_type values.

o This property is created to support the structure of the following properties:

▪ MaxRateLimitEdge

52

▪ APIRequestPerSecondMicroserviceNameApp_type

▪ APIRequestPerSecondMicroserviceNameUser_type

▪ APIRequestPerSecondMicroserviceNameOperation_type.

▪ Declaration:

APIRequestPerSecondMicroserviceName_type: type record(

microserviceName: aadlstring;

APIRequest: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecond_type;

);

▪ Property Association Example: Not available because it is a property type.

3.2.3.4. MaxRateLimitEdge

▪ Property Name: MaxRateLimitEdge

▪ Description:

o This property specifies the rate limiting. Rate limiting refers to if the rate of

incoming request exceeds a predefined number of requests per second, the edge

level security microservice will reject all the incoming requests. It is to handle

unprecedented surges and to prevent total loss of availability at the edge. The trade

off is to serve as many requests as possible instead of encountering service

unavailability for everyone.

o This property is a list of APIRequestPerSecondMicroserviceName_type values.

o This property must include all the APIs that are exposed at the edge.

o This property can be specified for abstract, system, process, and thread.

o This property is related to MaxRequestMicroservice. Please refer to

MaxRequestMicroservice property for more information.

o This property is derived from the following literatures:

53

▪ [66]

▪ [26]

▪ [58].

▪ Declaration:

MaxRateLimitEdge: list of Microservice_Architecture_Security

Properties:APIRequestPerSecondMicroserviceName_type applies to (abstract, system,

process, thread);

▪ Property Association Example:

o MaxRateLimitEdge =>

([microserviceName => "n";

 APIRequest=>

([APIName => "m"; requestPerSecond=> p perSecond;],

...,

[APIName => "q"; requestPerSecond=> r perSecond;])],

 …,

 [microserviceName => "a";

 APIRequest=>

([APIName => "b"; requestPerSecond=> c perSecond;],

...,

[APIName => "d"; requestPerSecond=> e perSecond;])]);

 -- where n/a is a string that represents the name of the microservice

 -- where m/b/q/d is a string that represents the name of the API

-- where p/r/c/e is an integer that represents the maximum number of requests an

API can process per second

o MAXRateLimitEdge =>

([microserviceName => "Order";

APIRequest=>

54

([APIName => "View_Order"; requestPerSecond=> 45 perSecond;],

[APIName => "Place_Order"; requestPerSecond=> 45 perSecond;]);],

[microserviceName => "Catalog";

APIRequest=>

([APIName => "View_Catalog"; requestPerSecond=> 45 perSecond;]);]);

3.2.3.5. MaxRequestMicroservice

▪ Property Name: MaxRequestMicroservice

▪ Description:

o This property defines the maximum rate of requests per second that a microservice

can handle for all the APIs the microservice has.

o This property is a list of APIRequestPerSecond_type values.

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literatures:

▪ [26]

▪ [58].

▪ Declaration:

MaxRequestMicroservice: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecond_type

applies to (abstract, system, process, thread);

▪ Property Association Example:

o maxRequestMicroservice =>

([APIName => "p", requestPerSecond= q perSecond],

 ...,

[APIName => "q", requestPerSecond=b perSecond]);

-- where p/a is a name of the API

55

-- where q/b is an integer representing the maximum number of requests that said API can

handle per second.

o MaxRequestMicroservice =>

([APIName => "View_Order"; requestPerSecond=> 50 perSecond;],

 [APIName => "Place_Order"; requestPerSecond=> 50 perSecond;]);

3.2.3.6. APIRequestPerSecondMicroserviceNameApp_type

▪ Property Name: APIRequestPerSecondMicroserviceNameApp_type

▪ Description:

o This is a property type that defines a list of the maximum rate of requests a single

API can receive per second for the APIs that a microservice has exposed at the edge

for each application type.

o This is a property of type “type record” with two fields:

o applicationType: This field is of type aadlstring. It defines the origin of where the

external requests come from. The typical values are web application, mobile

application, and tablet application.

o APIRequestMicroservice: This field is a list of

APIRequestPerSecondMicroserviceName_type.

o This property is created to support the structure of the following property:

▪ RequestPerApplicationType.

▪ Declaration:

APIRequestPerSecondMicroserviceNameApp_type: type record (

 applicationType: aadlstring;

APIRequestMicroservice: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserv

iceName_type;

56

);

▪ Property Association Example: Not available because it is a property type.

3.2.3.7. APIRequestPerSecondMicroserviceNameUser_type

▪ Property Name: APIRequestPerSecondMicroserviceNameUser_type

▪ Description:

o This is a property type that defines a list of the maximum rate of requests a single

API can receive per second for APIs that a microservice has exposed at the edge

for each user.

o This is a property of type “type record” with two fields:

▪ userIdentifier: This field is of type aadlstring. It defines who is sending the

external requests.

▪ APIRequestMicroservice: This field is a list of

APIRequestPerSecondMicroserviceName_type.

o This property is created to support the structure of the following property:

o RequestPerUser.

▪ Declaration:

APIRequestPerSecondMicroserviceNameUser_type: type record(

 userIdentifier: aadlstring;

APIRequestUser: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserv

iceName_type;

);

▪ Property Association Example: Not available because it is a property type.

57

3.2.3.8. APIRequestPerSecondMicroserviceNameOperation_type

▪ Property Name: APIRequestPerSecondMicroserviceNameOperation_type

▪ Description:

o This is a property type that defines a list of maximum rate of requests an operation

of an abstracted API can receive per second for APIs that a microservice has

exposed at the edge. An API can be an abstraction of one or more operations. This

property allows the regulation of the maximum rate of request to be done at the

operation level.

o This is a property of type “type record” with two fields:

▪ operationName: This field is of type aadlstring. It defines the name of the

operation that needs regulation on the maximum rate of requests it can

process.

▪ APIRequestMicroservice: This field is a list of

APIRequestPerSecondMicroserviceName_type.

o This property is created to support the structure of the following property:

o RequestPerOperation.

▪ Declaration:

APIRequestPerSecondMicroserviceNameOperation_type: type record (

operationName: aadlstring;

APIRequestOperation: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroservice

Name_type;

);

▪ Property Association Example: Not available because it is a property type.

58

3.2.3.9. RequestPerApplicationType

▪ Property Name: RequestPerApplicationType

▪ Description:

o This property specifies the maximum rate of requests per second that the edge

security component should handle per application type. If the rate of requests

exceeds a predefined number of requests per second, the edge level security

microservice will wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed

denial of service attacks where targeted resources are being overloaded with traffic

and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

▪ description: This field is of type aadlstring. It provides a description of the

usage of the property.

▪ waitTime: This field is of type Time and the values must be positive. The

standard Time units are ps (picoseconds), ns (nanoseconds), us

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr

(hours).

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of

APIRequestPerSecondMicroserviceNameApp_type.

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literature:

▪ [26]

▪ [58].

▪ Declaration:

RequestPerApplicationType: record (

description: aadlstring;

59

waitTime: Time;

microservice_API_requestPerSecond_App: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meApp_type;

) applies to (abstract, system, process, thread);

▪ Property Association Example:

o RequestPerApplicationType => [

description => "n";

 waitTime => z sec;

microservice_API_requestPerSecond_App =>

([applicationType => "m";

APIRequestMicroservice =>

 ([microserviceName => "a";

 APIRequest =>

([APIName => "b";

requestPerSecond => c perSecond;],

 ...

 [APIName => "d";

requestPerSecond => d perSecond;]);],

 [microserviceName => "f";

 APIRequest =>

([APIName => "g";

 requestPerSecond => h perSecond;],

...

[APIName => "i";

 requestPerSecond => j perSecond;]);]);],

60

[applicationType => "k";

APIRequestMicroservice =>

 ([microserviceName => "l";

 APIRequest =>

([APIName => "o";

 requestPerSecond => p perSecond;],

 ...

[APIName => "q";

requestPerSecond => r perSecond;]);]);]);];

-- where n is a series of strings that describes limitation of requests at the application level

-- where m/k is a string that describes the application type

-- where a/f/l is a string that represents the name of the microservice

-- where b/d/g/i/o/q is a string that represents the name of the API

-- where c/e/h/j/p/r/z is an integer in seconds

o RequestPerApplicationType =>

[description => "Regulation rate of request by mobile application'";

 waitTime => 1000 sec;

 microservice_API_requestPerSecond_App =>

 ([applicationType => "Mobile application";

 APIRequestMicroservice =>

([microserviceName => "Order";

 APIRequest =>

([APIName => "View_Order";

requestPerSecond => 50 perSecond;],

 [APIName => "Place_Order";

requestPerSecond => 50 perSecond;]);],

 [microserviceName => "Catalog";

61

APIRequest =>

([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;]);]);]);];

3.2.3.10. RequestPerUser

▪ Property Name: RequestPerUser

▪ Description:

o This property specifies the maximum rate of requests per second that the edge

security component should handle per user. If the rate of requests exceeds a

predefined number of requests per second, the edge level security microservice will

wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed

denial of service attacks where targeted resources are being overloaded with traffic

and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

▪ description: This field is of type aadlstring. It provides a description of the

usage of the property.

▪ waitTime: This field is of type Time and the values must be positive. The

standard Time units are ps (picoseconds), ns (nanoseconds), us

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr

(hours).

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of

APIRequestPerSecondMicroserviceNameUser_type.

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the following literature:

▪ [26]

62

▪ [58].

▪ Declaration:

RequestPerUser: record (

description: aadlstring;

waitTime: Time;

microservice_API_requestPerSecond_User: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meUser_type;

) applies to (abstract, system, process, thread);

▪ Property Association Example:

o RequestPerUser => [

description => "n";

 waitTime => z sec;

microservice_API_requestPerSecond_User =>

([userIdentifier => "m";

 APIRequestUser =>

([microserviceName => "a";

APIRequest =>

([APIName => "b";

requestPerSecond => c perSecond;],

 ...

[APIName => "d";

requestPerSecond => d perSecond;]);],

 [microserviceName => "f";

 APIRequest =>

([APIName => "g";

 requestPerSecond => h perSecond;], ...

63

 [APIName => "i";

 requestPerSecond => j perSecond;]);]);],

 [userIdentifier => "k";

 APIRequestUser =>

 ([microserviceName => "l";

 APIRequest =>

([APIName => "o";

requestPerSecond => p perSecond;],

 ...

[APIName => "q";

requestPerSecond => r perSecond;]);]);]);];

-- where n is a series of strings that describes limitation of requests at the user level

-- where m/k is a string that describes the user identity

-- where a/f/l is a string that represents the name of the microservice

-- where b/d/g/i/o/q is a string that represents the name of the API

-- where c/e/h/j/p/r/z is an integer in seconds

o RequestPerUser =>

[description => "Regulation rate of request by user identifier'";

 waitTime => 1000 sec;

 microservice_API_requestPerSecond_User =>

 ([userIdentifier => "abewerwerewrwrwerwerrew";

 APIRequestUser =>

([microserviceName => "Order";

 APIRequest =>

([APIName => "View_Order";

requestPerSecond => 50 perSecond;],

 [APIName => "Place_Order";

64

requestPerSecond => 50 perSecond;]);],

 [microserviceName => "Catalog";

 APIRequest =>

([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;]);]);]);];

3.2.3.11. RequestPerOperation

▪ Property Name: RequestPerOperation

▪ Description:

o This property specifies the maximum rate of requests per second that the edge

security component should handle per operation. If the rate of requests exceeds a

predefined number of requests per second, the edge level security microservice will

wait for a duration of time before processing more requests.

o This property lowers the risk of malicious attacks like denial of service/distributed

denial of service attacks where targeted resources are being overloaded with traffic

and unable to perform their responsibilities.

o This is a property of type “record” with 3 fields:

▪ description: This field is of type aadlstring. It provides a description of the

usage of the property.

▪ waitTime: This field is of type Time and the values must be positive. The

standard Time units are ps (picoseconds), ns (nanoseconds), us

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr

(hours).

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of

APIRequestPerSecondMicroserviceNameOperation_type.

o This property can be specified for abstract, system, process, and thread.

65

o This property is derived from the following literatures:

▪ [26]

▪ [58].

▪ Declaration:

RequestPerOperation: record (

description: aadlstring;

waitTime: Time;

microservice_API_requestPerSecond_Op: list of

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meOperation_type;

) applies to (abstract, system, process, thread);

▪ Property Association Example:

o RequestPerOperation => [

description => "n";

waitTime => z sec;

microservice_API_requestPerSecond_Op =>

([operationName => "m";

 APIRequestOperation =>

 ([microserviceName => "a";

 APIRequest =>

([APIName => "b";

 requestPerSecond => c perSecond;],

 ...

[APIName => "d";

requestPerSecond => d perSecond;]);],

 [microserviceName => "f";

 APIRequest =>

66

([APIName => "g";

 requestPerSecond => h perSecond;], ...

 [APIName => "i";

 requestPerSecond => j perSecond;]);]);],

 [userIdentifier => "k";

 APIRequestOperation =>

 ([microserviceName => "l";

 APIRequest =>

([APIName => "o";

requestPerSecond => p perSecond;],

 ...

[APIName => "q";

requestPerSecond => r perSecond;]);]);]);];

-- where n is a series of strings that describes limitation of requests at the user level

-- where m/k is a string that describes the user identity

-- where a/f/l is a string that represents the name of the microservice

-- where b/d/g/i/o/q is a string that represents the name of the API

-- where c/e/h/j/p/r/z is an integer in seconds

o RequestPerUser =>

[description => "Regulation rate of request by user identifier'";

 waitTime => 1000 sec;

 microservice_API_requestPerSecond_Op =>

 ([operationName => "";

 APIRequestMicroservice =>

([microserviceName => "Order";

 APIRequest =>

([APIName => "View_Order";

67

requestPerSecond => 50 perSecond;],

 [APIName => "Place_Order";

requestPerSecond => 50 perSecond;]);],

 [microserviceName => "Catalog";

 APIRequest =>

([APIName => "View_Catalog";

requestPerSecond => 50 perSecond;]);]);]);];

3.2.3.12. MessagePayloadSizeLimit

▪ Property Name: MessagePayloadSizeLimit

▪ Description:

o This property specifies the maximum message payload size an external application

can send.

o This property lowers the risk of malicious attacks like denial of service/distributed

denial of service attacks where targeted resources are being overloaded with traffic

and unable to perform their responsibilities.

o This property is of type aadlinteger with mb as the unit.

o This property can be specified for data and port.

o This property is derived from the following literature:

▪ [58].

▪ Declaration:

MessagePayloadSizeLimit: aadlinteger units (mb) applies to (data, port);

▪ Property Association Example:

o MessagePayloadSizeLimit => n;

-- where n is an integer with units in mb.

o MessagePayloadSizeLimit => 10 mb;

68

3.2.4. Communication Related Properties

3.2.4.1. SecureCommunication

▪ Property Name: SecureCommunication

▪ Description:

o This property specifies the communication protocol used between microservices.

o This property is an enumeration with the values of TLS and MTLS. The semantics

of the values are:

▪ TLS: It stands for transport layer security. It protects the communication

between two microservices because the upstream (client) microservice

knows the identity of the downstream (server) microservice it interacts with.

Messages are protected for integrity and confidentiality while in transit.

▪ MTLS: It stands for mutual transport layer security. It protects the

communication between two microservices because the upstream (client)

microservice knows the identity of the downstream (server) microservice it

is interacting with and the downstream (server) microservice knows the

identity of the upstream (client) microservice it interacts with. Messages

are protected for integrity and confidentiality while in transit.

o This property can be specified only for connectors.

o This property and the property values are derived from the literatures listed in

Section 3.1.4. Communications.

▪ Declaration:

SecureCommunication: enumeration (TLS, MTLS) applies to (connection);

▪ Property Association Example:

o SecureCommunication => TLS;

o SecureCommunication => MTLS;

69

3.2.5. Data Related Properties

3.2.5.1. dbAccessModel

▪ Property Name: dbAccessMode

▪ Description:

o This property specifics the access mode to the database of a microservice.

o This property is an enumeration with the values of read_only, read_write,

write_only. The semantics of the values are:

▪ read_only refers to read access to the database that is associated with the

microservice.

▪ read_write refers to read write access to the database that is associated with

the microservice.

▪ write_only refers to write access to the database that is associated with the

microservice.

o This property can be specified for data.

o This property and the property values are derived from the literatures listed in

Section 3.1.5. Data.

▪ Declaration:

dbAccessMode: enumeration (read_only, read_write, write_only) applies to (data);

▪ Property Association Example:

o dBAccessMode => n; -- where n is either "read_only, "read_write", or "write_only"

o dBAccessMode => read_only;

3.2.5.2. DataAtRest

▪ Property Name: DataAtRest

▪ Description:

70

o This is a property type that defines the basic building block of data encryption for

data at rest.

o This is a property of type “type record” with 4 fields:

▪ description: This field is of type aadlstring. It describes the need to encrypt

or not encrypt a data block.

▪ dataBlock: This field is of type aadlstring. It describes the size and scope

of the data block that might or might not require encryption.

▪ dataCriticality: This field is of type aadlinteger and must be a positive

numeric value. The higher the value, the more critical the data in the data

block is.

▪ atRestEncryption: This field is an enumeration with the values required and

not required. The semantics of the values are:

• required refers to encryption is required on the specified data block.

• not_required refers to encryption is not required on the specified

data block.

o This property is created to support the structure of the following property:

▪ DataAtRestEncryption.

▪ Declaration:

DataAtRest: type record(

description: aadlstring;

dataBlock: aadlstring;

dataCriticality: aadlinteger;

atRestEncryption: enumeration (required, not_required);

);

▪ Property Association Example: Not available because it is a property type.

71

3.2.5.3. DataAtRestEncryption

▪ Property Name: DataAtRestEncryption

▪ Description:

o This property specifies a list of data blocks and their requirements on encryption.

o This property is a list of DataAtRest values.

o This property can be specified for data.

o This property and the property values are derived from the literatures listed in

Section 3.1.5. Data.

▪ Declaration:

DataAtRestEncryption: list of Microservice_Architecture_Security_Properties::DataAtRest

applies to (data);

▪ Property Association Example:

o DataAtRestEncryption => (

[description => "m";

 dataBlock => "p";

 dataCriticality => q;

atRestEncryption => r;],

 [description => "s";

 dataBlock => "t";

 dataCriticality => u;

 atRestEncryption => v;],);

-- where m/s is a string that describes the need to encrypt or not encrypt a data block.

-- where p/t is a string that describes the size and scope of the data block that might or

might not require encryption.

-- where q/u is an integer that describes the criticality of the data in the data block. The

higher the number, the more critical it is.

72

-- where r/v is either "required" or "not_required".

3.2.5.4. MicroserviceDataSensitivity

▪ Property Name: MicroserviceDataSensitivity

▪ Description:

o This property specifies the relationship between microservices from a data

perspective to facilitate the proper flow of data and communication between

microservices.

o Zone is a way to classify microservices within the same trust domain so that

communication patterns among microservices can be established. Within the same

trust domain,

▪ Microservices within the same zone* can communicate with each other.

▪ Microservice in a higher zone can communicate with microservices that are

in a lower zone.

▪ Microservice in a lower zone cannot communicate with microservices that

are in a higher zone.

o This is a property of type “record” with 3 fields:

▪ description: This field is of type aadlstring. It provides a description of the

usage of the property.

▪ dataSenstivityLevel: This field is an enumeration with the values of

publicData, privateData, secretData, and no_Data. The semantics of the

values are:

▪ publicData: It refers to data that can be used and accessed by anyone without

restriction.

▪ privateData: It refers to data that can only be used and accessed by

authorized users.

73

▪ secretData: It refers to data that can only be used and accessed by a specific

list of authorized users.

▪ no_Data: It refers to the microservice that does not own or store data.

o This property can be specified for abstract, system, process, and thread.

o This property and the property values are derived from the literatures listed in

Section 3.1.5. Data.

▪ Declaration:

MicroserviceDataSensitivity: record (

description: aadlstring;

dataSensitivityLevel: enumeration (publicData, privateData, secretData, no_Data);

microserviceZone: aadlinteger;

) applies to (abstract, system, process, thread);

▪ Property Association Example:

o MicroserviceDataSensitivity => [

description => "n";

dataSensitivityLevel => m;

microserviceZone => p;

]

 -- where n a unique integer corresponding to the zone

-- where n is a series of strings that describes the data sensitivity level

-- where m is either "publicData", "privateData", or "secretData, no_Data"

3.2.6. Log Related Properties

3.2.6.1. Log

▪ Property Name: Log

▪ Description:

74

o This property specifies the requirements on logging.

o This is a property of type “record” with 4 fields:

▪ description: This field is of type aadlstring. It describes the logging needs

of the microservice.

▪ logFormat: This field is of type aadlstring. It describes the format

requirement of the log in facilitating the aggregation of logs and queries

against aggregated logs.

▪ logAttribute: This field is of type aadlstring. It describes the information

that a microservice should collect, such as correlation ID, date, time in a

specific format and time zone.

▪ logLevel: This field is an enumeration with the values of trace, debug,

information, warning, error, and critical. The semantics of the values are:

• trace: It captures all the details of the behavior of the microservice.

• debug: It captures diagnostic information.

• information: It captures normal behavior of the microservice.

• warning: It captures unexpected behavior of the microservice.

• error: It captures error messages.

• critical: It captures fatal error messages that cause the crushing of

the microservice.

o This property can be specified for abstract, system, process, and thread.

o This property and the property values are derived from the literatures listed in

Section 3.1.5. Data.

▪ Declaration:

Log: record (

 description: aadlstring;

 logFormat: aadlstring;

 logAttribute: list of aadlstring;

75

 logLevel: enumeration (trace, debug, information, warning, error, critical);

) applies to (abstract, system, process, thread);

▪ Property Association Example:

o Log => [

description => "n";

logFormat => "m";

logAttribute => ("p", ..., "a");

logLevel => q;)

];

-- where n is a series of strings that describes the details of the log aggregator

-- where m is a series of strings that describes the structure of the log

-- where p/a is a series of strings that describes the attributes to log

-- where q is either "trace", "debug", "information", "warning", "error", or "critical"

3.2.7. Deployment and Patching Related Properties

3.2.7.1. patch_type

▪ Property Name: patch_type

▪ Description:

o This is a property type that defines the patching frequency of a specific software.

o This is a property of type “type record” with two fields:

▪ softwareName: This field is of type aadlstring. It defines the name of the

software that requires patching.

▪ frequency: This field is of type aadlstring. It defines how often patching is

request for the said software.

o This property is created to support the structure of the following property:

▪ DeploymentType.

76

▪ Declaration:

patch_type: type record (

softwareName: aadlstring;

frequency: aadlstring;

);

▪ Property Association Example: Not available because it is a property type.

3.2.7.2. DeploymentType

▪ Property Name: DeploymentType

▪ Description:

o This property specifies the deployment and patching configuration of a

microservice.

o This property is of type “record” with 4 fields:

▪ description: This field is of type aadlstring. It describes the deployment and

patching configuration plan.

▪ deploymentMechanism: This field is an enumeration with the values

physical_Machine, virtual_machine, container, platform_as_a_service, and

function_as_a_service. The semantics of the values are:

▪ physical_Machine: Physical machine deployment option refers to

deploying a single microservice on a physical machine without any layers

of virtualization or containerization between the microservice and

underlying hardware. Deploying multiple microservices on the same

physical machine violates the isolated execution environment principle.

▪ virtual_machine: Virtual machine deployment option refers to deploying a

single microservice on a virtual machine. The virtual machine contains a

full operating system, kernel, and resources that a microservice can use.

77

▪ container: Container deployment option refers to deploying a single

microservice on a container. A container contains resources that a

microservice can use.

▪ platform_as_a_service: Platform as a service deployment (PaaS) option

refers to deploying a single microservice on a cloud infrastructure. Platform

as service includes infrastructure as a service (IaaS) (computing,

networking, and storage resources) and resources such as development

tools, database management systems, middleware,and notification systems

[56]. The exact amount of resource provided depends on the provider of

the platform as a service. Examples of IaaS are AWS, Microsoft Azure,

and Google Compute Engine. Examples of PaaS are AWS Elastic

Beanstalk, Google App Engine, and Heroku.

▪ function_as_a_service: Function as a service deployment (FaaS) option

refers to deploying a single microservice as a function on the cloud

infrastructure. Example of FaaS is AWS’s Lambda product.

▪ patchList: This field is a list of patch_type.

o This property can be specified for abstract, system, process, and thread.

o This property and the property values are derived from the literatures listed in

Sections 3.1.6. Patching and 3.1.7. Deployment.

▪ Declaration:

DeploymentType: record (

description: aadlstring;

deploymentMechanism: enumeration (physical_Machine, virtual_machine, container,

platform_as_a_service, function_as_a_service);

patchList: list of Microservice_Architecture_Security_Properties::patch_type;

) applies to (abstract, system, process, thread);

▪ Property Association Example:

78

o DeploymentType => [

 description => "n";

 deploymentMechanism => m;

patchList => (

[softwareName => p; frequency => q;],

 ...,

[softwareName => a; frequency =>b;]

)

];

-- where n is a series of strings that describes the deployment mechanism of the

microservice

-- where m is either "physical _machine", "virtual_machine", "container",

"platform_as_a_service", or "function_as_a_service"

-- where p/a is a name of the software that needs to be patched and q/b is the frequency

in which p/a requires patching.

o Deployment_Type => [

 description => "Deployment and patching configuration of Catalog";

deploymentMechanism => virtual_machine;

patchList => ([softwareName => "PackageX"; frequency => "2 months";]);

];

3.2.8. Trust Related Properties

3.2.8.1. TrustDomain

▪ Property Name: TrustDomain

▪ Description:

79

o This property specifies the trust domain a microservice belongs to. Each

microservice can only belong to one trust domain.

o This property is of type aadlinteger and must be a positive number.

o This property can be specified for abstract, system, process, and thread.

o This property is derived from the literatures listed in Section 3.1.8. Trust.

▪ Declaration:

TrustDomain: aadlinteger applies to (abstract, system, process, thread);

▪ Property Association Example:

o TrustDomain => n; -- where n a unique integer corresponding to the trust domain

o TrustDomain => 2;

3.2.9. Authentication Related Properties

3.2.9.1. AuthenticationMicroserviceArchitecture

▪ Property Name: AuthenticationMicroserviceArchitecture

▪ Description:

o This property specifies the authentication mechanism used in the microservice

architecture.

o This property is an enumeration with the values APIGateway,

token_based_authentication, certificate_based_authentication,

API_Key_based_authentication, and federated_based_authentication. The

semantics of the values are:

▪ APIGateway: It refers to the use of API Gateway to handle authentication.

▪ token_based_authentication: It refers to the use of tokens for

authentication.

▪ certificate_based_authentication: It refers to the use of certificates for

authentication.

80

▪ API_Key_based_authentication: It refers to the use of API keys for

authentication.

▪ federated_based_authentication: It refers to the use of federated identity

solution for authentication.

o This property can be specified for abstract, system, process, and thread.

o This property and the property values are derived from the literatures listed in

Section 3.1.1. Authentication.

▪ Declaration:

AuthenticationMicroserviceArchitecture: enumeration (APIGateway,

token_based_authentication, certificate_based_authentication,

API_Key_based_authentication, federated_based_authentication)

applies to (abstract, system, process, thread);

▪ Property Association Example:

o AuthenticationMicroserviceArchitecture => certificate_based_authentication;

3.2.10. Authorization Related Properties

3.2.10.1. AuthorizationMicroserviceArchitecture

▪ Property Name: AuthorizationMicroserviceArchitecture

▪ Description:

o This property specifies the authorization mechanism used in the microservice

architecture.

o This property is an enumeration with the values coarse_grained and fine_grained.

The semantics of the values are:

▪ coarse_grained typically refers to authorization rules that use a single

attribute to evaluate a decision to either grant or deny the access, e.g. a

particular role has access to a particular resource.

81

▪ fine_grained typically refers to authorization rules that use multiple

attributes to evaluate a decision to either grant or deny the access, e.g. a

particular role in a particular building has access to a particular resource

only during a particular duration of time.

o This property can be specified for abstract, system, process, and thread.

▪ Declaration:

AuthorizationMicroserviceArchitecture: enumeration (coarse_grained, fine_grained) applies

to (abstract, system, process, thread);

▪ Property Association Example:

o AuthorizationMicroserviceArchitecture => fine_grained;

3.2.10.2. CoarseGrainedArchitecture

▪ Property Name: CoarseGrainedAuthorization

▪ Description:

o This property specifies the coarse-grained authorization mechanism used in the

microservice architecture.

o This property is an enumeration with the value APIGateway.

o This property can be specified for abstract, system, process, and thread.

▪ Declaration:

CoarseGrainedAuthorization: enumeration (APIGateway) applies to (abstract, system,

process, thread);

▪ Property Association Example:

o CoarseGrainedAuthorization => APIGateway;

3.2.10.3. FineGrainedArchitecture

▪ Property Name: FineGrainedAuthorization

82

▪ Description:

o This property specifies the fine-grained authorization mechanism used in the

microservice architecture.

o This property is an enumeration with the value decentralized and centralized. The

semantics of the values are:

▪ decentralized: When an access control system is implemented using the

decentralized pattern, each microservice is responsible for making access

decisions (PDP) and enforcing the access decisions made by the PDP (PEP).

This pattern offers more fine-grained access control because the access

control rules are more domain specific. However, the development team

must be able to configure the access control rules correctly and manual

configuration is not scalable.

▪ centralized: There are two types of centralized access control: a. Centralized

with PDP- Each microservice is responsible for enforcing access control

decisions (PEP). The defining of access control rules (PAP), the decision

making based on access control rules (PDP), and the maintenance of

additional attributes (PIP) are shared among all microservices in the same

architecture. b. Centralized with an embedded PDP- Each microservice is

responsible for making access decisions (PDP) and enforcing the access

decisions made by the PDP (PEP). The access control rules (PAP) and

attributes (PIP) are defined centrally and are delivered to embedded PDP in

the microservice.

o This property can be specified for abstract, system, process, and thread.

▪ Declaration:

FineGrainedAuthorization: enumeration (decentralized, centralized) applies to (abstract,

system, process, thread);

▪ Property Association Example:

83

o FineGrainedAuthorization => decentralized;

o FineGrainedAuthorization => centralized;

3.2.10.4. CentralizedFineGrainedAuthorization

▪ Property Name: CentralizedFineGrainedAuthorization

▪ Description:

o This property specifies the centralized fine grained authorization mechanism used

in the microservice architecture.

o This property is an enumeration with the value withPDP and withEmbeddedPDP.

The semantics of the values are:

▪ withPDP: Each microservice is responsible for enforcing access control

decisions (PEP). The defining of access control rules (PAP), the decision

making based on access control rules (PDP), and the maintenance of

additional attributes (PIP) are shared among all microservices in the same

architecture.

▪ withEmbeddedPDP: Each microservice is responsible for making access

decisions (PDP) and enforcing the access decisions made by the PDP (PEP).

The access control rules (PAP) and attributes (PIP) are defined centrally and

are delivered to embedded PDP in the microservice.

o This property can be specified for abstract, system, process, and thread.

▪ Declaration:

CentralizedFineGrainedAuthorization: enumeration (withPDP, withEmbeddedPDP) applies to

(abstract, system, process, thread);

▪ Property Association Example:

o CentralizedFineGrainedAuthorization => withPDP;

o CentralizedFineGrainedAuthorization => withEmbeddedPDP;

84

3.2.11. Decision Trees

Decision trees guide software architects in determining what specific security properties

should be considered, how different security properties are related and can be used together, and

what additional structural elements (components and connectors) when adding specific security

properties. The decision trees associated with the security properties can be found in Appendix A.

85

Chapter 4: Experiment

This chapter presents an experiment that was conducted to evaluate whether the framework

led to an increase in well-justified and articulated security specifications and components in

microservice architectures.

4.1. DESCRIPTION OF THE EXPERIMENT

The experiment was designed to assess the hypothesis that use of the framework would

lead to an increase in well-justified and articulated security specifications and components in

microservice architectures. The independent variable was the use of the decision trees, and the

dependent variable was the scores. The null and research hypotheses are as follows:

▪ Null Hypothesis: Use of the framework does not lead to an increase in well-justified and

articulated security specifications and components in microservice architectures.

▪ Research Hypothesis: Use of the framework leads to a significant increase in well-justified

and articulated security specifications and components in microservice architectures.

The participants were undergraduate students from the computer science department at the

University of Texas at El Paso. 102 participants completed the “Research Study Background

Survey 2023” prior to the experiment. The survey was used to gather information about the

participant’s software engineering background, such as the number of years of experience in

software architecture, software development, and software security. Appendix D presents the

result of the research study background survey. Most of the participants have 0 to 1 year of

experience in software architecture and software security.

Participants were divided into teams of 3 based on their software engineering background

and assigned to either a control group or a treatment group randomly. Based on the T-tests with

the alpha level at 5%, power level at 80%, and effect size at 0.866 (for teams of 3), the sample size

of the control groups should be 18 groups and the sample size of treatment groups should be 18

groups. Due to the number of participants available on the day of the experiment, there were a

86

total of 15 teams of 3 in the treatment group and 16 teams of 3 in the control group. There were

two teams of 4 and one team of 2.

For teams that were assigned to the control group, the following procedures were followed:

▪ Each team received lecture materials on software architecture with an emphasis on

microservice architecture and security.

▪ Each team received a problem statement, a predefined microservice architecture based

on the problem statement, and a survey named “Building Secure Microservice

Architecture Survey”, and

▪ Each team was given an hour to complete the survey. Please see Appendix B for the

full list of questions included in the survey.

For teams that were assigned to the treatment group, the following procedures were

followed:

▪ Each team received lecture materials on software architecture with an emphasis on

microservice architecture and security.

▪ Each team received a problem statement, a predefined microservice architecture based on

the problem statement, and a survey named “Building Secure Microservice Architecture

Survey”.

▪ Each team received the framework on how to design secure microservice architecture, and

▪ Each team was given an hour to complete the survey. Please see Appendix B for the full

list of questions included in the survey.

4.1. EVALUATION PROCESS

The survey contained a total of 8 questions. Table 1 presents the concepts tested per

question. Survey results were analyzed to determine if participants from the treatment groups

will have a higher success rate in articulating security specifications and components in

87

microservice architecture using the provided framework than the participants from the control

groups.

Table 1: Survey Questions and Concepts Tested

Survey

Question

Number

Concepts Tested

1 a. Trust domain;

b. Addition of structural elements (components and connectors) and its

associated properties needed to support the trust domain and communication

between trust domains;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors; and

e. Tested properties:

1. TrustDomain

2. SecurityLevelProvided

3. dbAccessMode

4. DataAtRestEncryption

2 a. Deployment and patching;

b. Data;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors;

e. Tested properties:

1. DeploymentType

2. patch_type

3. dbAccessMode

4. DataAtRestEncryption.

3 a. Communication;

b. Addition of structural structural elements (components and connectors)

and its associated properties needed to support the communications between

components;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors; and

e. Tested properties:

1. SecurityLevelProvided

88

2. dbAccessMode

3. DataAtRestEncryption

4. SecureCommunication.

4 a. Edge level security

b. Addition of structural elements (components and connectors)and its

associated properties needed to support edge security;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors; and

e. Tested properties:

1. SecurityLevelProvided

2. EdgeLevel

3. MessagePayloadSizeLimit

4. APIRequestPerSecond_type

5. MaxRateLimitEdge

6. APIRequestPerSecondMicroserviceName_type

7. RequestPerApplicationType

8. APIRequestPerSecondMicroserviceNameApp_type

9. MaxRequestMicroservice.

5 a. Authorization;

b. Addition of structural elements (components and connectors)and its

associated properties needed to support authorization mechanism;Ability to

identify the need to annotate the properties listed below on components and

connectors;

c. Ability to correctly specify the properties listed below on components and

connectors; and

d. Tested properties:

1. AuthorizationMicroserviceArchitecture

2. FineGrainedAuthorization

3. CentralizedFineGrainedAuthorization

4. CoarseGrainedAuthorization

5. SecurityLevelProvided

6. dbAccessMode

7. DataAtRestEncryption.

6 a. Data;

b. Ability to identify the need to annotate the properties listed below on

components and connectors;

c. Ability to correctly specify the properties listed below on components and

connectors; and

d. Tested properties:

1. MicroserviceDataSensitivity.

89

7 a. Network perimeter level security.

b. Addition of structural elements (components and connectors)and its

associated properties needed to support network level security;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors; and

e. Tested properties:

1. SecurityLevelProvided

2. NetworkPerimeterLevel.

8 a. Authentication.

b. Addition of structural elements (components and connectors)and its

associated properties needed to support authentication mechanism;

c. Ability to identify the need to annotate the properties listed below on

components and connectors;

d. Ability to correctly specify the properties listed below on components and

connectors; and

e. Tested properties:

1. AuthenticationMicroserviceArchitecture

2. SecurityLevelProvided

3. dbAccessMode

4. DataAtRestEncryption.

A set of evaluation criteria around identification and specification of components,

connectors, and properties was created. Table 2 presents the evaluation criteria used on each

question. Table 3 presents the grading scale used in the criteria regarding the identification of

properties and structural elements (components and connectors). Table 4 presents the grading

scale used in the criteria regarding the specification of properties and structural elements

(components and connectors).

Table 2: Evaluation Criteria

Question

No. Evaluation Criteria

Question

1

Ability to identify the need to change the trustDomain property for Order

microservice

Ability to specify the trustDomain property for Order microservice

Ability to identify the need to have a credential microservice in each trust domain

90

Ability to identify TrustDomain property in Credential component 1

Ability to specify TrustDomain property in Credential component 1

Ability to identify SecurityLevelProvided property in Credential component 1

Ability to specify SecurityLevelProvided property in Credential component 1

Ability to identify dbAccessMode property in Credential component 1

Ability to specify dbAccessMode property in Credential component 1

Ability to identify DataAtRestEncryption property in Credential component 1

Ability to specify DataAtRestEncryption property in Credential component 1

Question

2

Ability to identify the need to specify DeploymentType for Account microservice

Ability to identify the deploymentMechanism field

Ability to specify the deploymentMechanism field

Ability to identify the patchList field

Ability to correct the patchList field

Ability to identify DataAtRestEncryption for Account DB component needs update

Ability to specifiy DataAtRestEncryption for Account DB component

Question

3

Ability to identify SecureCommunication property

Ability to correctly specifiy SecureCommunication property

Relationship between SecureCommunication and Certificate Authority Component

Ability to identify the SecurityLevelProvided property

Ability to correctly specify securityLevelProvided

Ability to identify dBAccessModel Property

Ability to identify DataAtRestEncryption property

Ability to specify dBAccessModel Property

Ability to specify DataAtRestEncryption property

Question

4

Ability to identify the need to add a new component at the edge to stop direct

communication from external applications to microservices

Ability to identify the securityLeveLProvided for the edge security component

Ability to correctly specify the SecurityLevelProvided property

Ability to identify the EdgeLevel property

Ability to correctly specify the EdgeLevel property

Ability to identify the MessagePayloadSizeLimit property

Ability to correctly specify the MessagePayloadSizeLimit property

Ability to identify the RequestPerApplicationType property

91

Ability to correctly specify the RequestPerApplicationType property

(microservice_API_requestPerSecondApp)

Ability to identify the MAXRateLimitEdge property

Ability to specify the MAXRateLimitEdge property

Ability to identify the MaxRequestMicroservice Property

Ability to correctly specify the MaxRequestMicroservice property

Question

5

Ability to identify the need to add PAP

Ability to identify AuthorizationMicroserviceArchitecture for PAP

Ability to specify AuthorizationMicroserviceArchitecture for PAP

Ability to identify FineGrainedAuthorization for PAP

Ability to specify FineGrainedAuthorization for PAP

Ability to identify CentralizedAccessControl for PAP

Ability to specify CentralizedAccessControl for PAP

Ability to identify SecurityLevelProvided for PAP

Ability to specify SecurityLevelProvided for PAP

Ability to identify the need to add PIP

Ability to identify FineGrainedAuthorization property needs to be updated fr all

core microservice

Ability to specify the FineGrainedAuthorization for all core microservice

Ability to specify the FineGrainedAuthorization for all core microservice

Ability to identify CentralizedAccessControl property needs to be updated for all

core microservice

Ability to specify the CentralizedAccessControl for all core microservice

Ability to identify dbAccessMode for PAP DB

Ability to specify dbAccessMode for PAP DB

Ability to identify DataAtRestEncryption for PAP DB

Ability to specify DataAtRestEncryption for PAP DB

Question

6

Ability to identify MicroserviceDataSensitivity property for Billing Microservice

Ability to specify dataSensitivityLevel field for Billing Microservice

Ability to specify microserviceZone field for Billing Microservice

Ability to identify MicroserviceDataSensitivity property for Payment Microservice

Ability to specify dataSensitivityLevel field for Payment Microservice

Ability to specify microserviceZone field for Payment Microservice

Ability to identify the need to add an intrusion detection system

92

Question

7

Ability to identify SecurityLevelProvided property

Ability to specify SecurityLevelProvided property

Ability to identify NetworkPerimeter property

Ability to specify NetworkPerimeter property

Question

8

Ability to identify the need to add an authentication service for token generation,

issuing, authentication, and invalidation.

Ability to identify the AuthenticationMicroserviceArchitecture property

Ability to specify the AuthenticationMicroserviceArchitecture property

Ability to identify the SecurityLevelProvided property

Ability to specify the SecurityLevelProvided property

Ability to identify dBAccessModel property

Ability to specify dBAccessModel property

Ability to identify DataAtRestEncryption property

Ability to specify DataAtRestEncryption property

Table 3: Grading Scale for Criteria Regarding Identification of Properties and Structural

Elements

Grade Definition

0 The team did not correctly identify properties, components, or connectors.

5 The team correctly identified properties, components, or connectors

Table 4: Grading Scale for Criteria Regarding Specification of Properties and Structural

Elements

Grade Definition

0 The team did not specify properties, components, or connectors.

1 The team was able to specify less than half of the properties, components, or

connectors and most of the values are incorrect.

2 The team was able to correctly specify less than half of the properties, components, or

connectors.

3 The team was able to correctly specify half of the properties, components or

connectors.

4 The team was able to correctly specify more than half of the properties, components,

or connectors.

93

5 The team correctly specified all properties, components, or connectors.

4.3. RESULT OF THE EXPERIMENT

Appendix C presents the scores received by each team for the survey on a per question

basis. Table 5 presents the total score received by the treatment groups for the survey on the

identification related questions. Table 6 presents the total score received by the control groups for

the survey on the identification related questions. Table 7 presents the total score received by the

treatment groups for the survey on the specification related questions. Table 8 presents the total

score received by the control groups for the survey on the specification related questions.

Table 5: Total Score Received by Treatment Groups for the Survey on Identification Related

Questions

Maximum

Score Per

Question on

Identifications 30 20 25 35 50 10 15 25 210

Treatment

Group No. Q1_I Q2_I Q3_I Q4_I Q5_I Q6_I Q7_I Q8_I

Survey Total

Score for

Identifications

for Treatment

Group

Normalized

Total Score for

Identifications

(%)

6 30.00 20.00 5.00 30.00 0.00 0.00 15.00 5.00 105.00 50.00

19 0.00 20.00 5.00 25.00 40.00 0.00 0.00 0.00 90.00 42.86

2 5.00 20.00 5.00 20.00 5.00 10.00 15.00 15.00 95.00 45.24

30 5.00 20.00 20.00 10.00 45.00 10.00 15.00 5.00 130.00 61.90

3 5.00 15.00 0.00 20.00 45.00 0.00 15.00 15.00 115.00 54.76

31 5.00 20.00 5.00 10.00 40.00 0.00 0.00 5.00 85.00 40.48

18 30.00 20.00 25.00 30.00 45.00 5.00 0.00 0.00 155.00 73.81

32 30.00 20.00 25.00 15.00 45.00 0.00 15.00 25.00 175.00 83.33

9 5.00 20.00 0.00 10.00 45.00 0.00 5.00 5.00 90.00 42.86

4 15.00 20.00 15.00 25.00 45.00 10.00 15.00 25.00 170.00 80.95

8 5.00 20.00 0.00 10.00 50.00 10.00 5.00 5.00 105.00 50.00

10 5.00 15.00 20.00 25.00 40.00 10.00 15.00 25.00 155.00 73.81

94

22 5.00 20.00 20.00 0.00 45.00 5.00 15.00 0.00 110.00 52.38

16 5.00 20.00 25.00 30.00 20.00 10.00 15.00 10.00 135.00 64.29

7 20.00 20.00 0.00 0.00 50.00 0.00 5.00 10.00 105.00 50.00

Average

Treatment 57.78

 DEV Treatment 14.36

Table 6: Total Score Received by Control Groups for the Survey on Identification Related

Questions

Maximum

Score Per

Question on

Identifications 30 20 25 35 50 10 15 25 210

Control Group

No. Q1_I Q2_I Q3_I Q4_I Q5_I Q6_I Q7_I Q8_I

Total Score for

Identifications

for Control

Group

Normalized

Total Score for

Identifications

(%)

25 5.00 15.00 5.00 15.00 5.00 0.00 5.00 0.00 50.00 23.81

13 5.00 20.00 10.00 25.00 30.00 0.00 15.00 0.00 105.00 50.00

24 5.00 20.00 5.00 10.00 45.00 0.00 15.00 0.00 100.00 47.62

28 10.00 5.00 0.00 25.00 40.00 0.00 15.00 0.00 95.00 45.24

5 5.00 5.00 0.00 0.00 5.00 0.00 5.00 0.00 20.00 9.52

21 0.00 20.00 5.00 15.00 5.00 0.00 15.00 20.00 80.00 38.10

27 20.00 0.00 5.00 5.00 40.00 0.00 5.00 20.00 95.00 45.24

34 5.00 20.00 10.00 25.00 45.00 5.00 15.00 0.00 125.00 59.52

29 5.00 20.00 5.00 10.00 10.00 0.00 0.00 0.00 50.00 23.81

11 5.00 20.00 0.00 30.00 40.00 5.00 0.00 15.00 115.00 54.76

14 5.00 20.00 10.00 30.00 40.00 0.00 15.00 0.00 120.00 57.14

20 5.00 20.00 0.00 10.00 0.00 0.00 0.00 0.00 35.00 16.67

33 5.00 20.00 15.00 10.00 5.00 10.00 15.00 25.00 105.00 50.00

15 5.00 20.00 0.00 15.00 10.00 0.00 15.00 5.00 70.00 33.33

12 5.00 20.00 5.00 25.00 30.00 5.00 15.00 5.00 110.00 52.38

1 5.00 5.00 0.00 5.00 5.00 0.00 15.00 0.00 35.00 16.67

 Average Control 38.99

 DEV Control 16.19

95

Table 7: Total Score Received by Treatment Groups for the Survey on the Specification Related

Questions

Maximum

Score Per

Question on

Specifications 25 15 20 30 40 20 10 20 180

Group No. Q1_S Q2_S Q3_S Q4_S Q5_S Q6_S Q7_S Q8_S

Total Score for

Specifications

for Treatment

Group

Normalized

Total Score for

Specifications

(%)

6 25 15 3 21 0 0 10 5 79 44

19 0 13 5 18 30 0 0 0 66 37

2 5 13 5 10 5 0 10 10 58 32

30 5 13 5 3 10 0 0 5 41 23

3 5 10 0 10 5 0 5 5 40 22

31 5 5 5 0 0 0 0 5 20 11

18 25 15 20 20 35 10 0 0 125 69

32 25 5 20 11 35 0 10 20 126 70

9 0 5 0 3 35 0 0 5 48 27

4 10 15 10 18 35 0 10 20 118 66

8 5 13 0 0 40 10 0 5 73 41

10 5 10 10 18 30 10 10 20 113 63

22 5 15 15 0 35 10 10 0 90 50

16 5 15 20 19 6 12 10 10 97 54

7 5 13 0 0 40 0 5 10 73 41

Average

Treatment 43.22

 DEV Treatment 18.49

96

Table 8: Total Score Received by the Control Groups for the Survey on the Specification related

Questions

Maximum

Score Per

Question on

Specifications 25 15 20 30 40 20 10 20 180

Group No. Q1_S Q2_S Q3_S Q4_S Q5_S Q6_S Q7_S Q8_S

Total Score for

Specifications

for Control

Group

Normalized

Total Score for

Specifications

(%)

25 5 10 0 6 5 0 0 0 26 14

13 5 13 5 14 20 0 10 0 67 37

24 5 13 0 1 31 0 10 0 60 33

28 5 5 0 16 26 0 10 0 62 34

5 5 5 0 0 5 0 0 0 15 8

21 0 13 0 5 5 0 10 10 43 24

27 11 0 5 0 35 0 0 11 62 34

34 5 13 5 4 20 10 10 0 67 37

29 5 15 5 6 6 0 0 0 37 21

11 5 13 0 21 30 10 0 6 85 47

14 5 6 0 17 20 0 10 0 58 32

20 5 13 5 5 0 0 0 0 28 16

33 5 13 5 3 5 10 10 20 71 39

15 5 13 0 4 6 0 10 5 43 24

12 5 13 5 12 16 10 10 5 76 42

1 5 5 0 0 5 0 10 5 30 17

 Average Control 28.82

 DEV Control 11.36

97

4.4. ANALYSIS OF RESULT

The analysis was done in two parts. The first part was to analyze the participants’ ability

to identify properties and structural elements. The second part was to analyze the participants’

ability to specify properties and structural elements. Figure 8 shows the comparison of total scores

for identification of properties and structural elements between treatment and control groups.

Assuming this is a normal distribution, 84% of the population in the control group will score less

than average of the treatment group. A two-sample t-Test assuming unequal variances for

identification was performed. The result of the two-sample t-Test assuming unequal variance for

identification, shown in Figure 9, indicates that the difference between the scores for the treatment

and control groups are statistically significant, the null hypothesis should be rejected, and the

research hypothesis should be accepted.

Figure 8:Participant Scores for Identification of Properties and Structural Elements (Average

with 1 Standard Deviation)

98

Figure 9: Identification: Two Sample t-Test Assuming Unequal Variances

Figure 10 shows the comparison of total scores for specification of properties and structural

elements between treatment and control groups. Assuming this is a normal distribution, 84% of

the population in the control group will score less than average of the treatment group. A two-

sample t-Test assuming unequal variances for specification was performed. The result of the two-

sample t-Test assuming unequal variance for specification, shown in Figure 11, indicates that the

difference between the scores for the treatment and control groups are statistically significant, the

null hypothesis should be rejected, and the research hypothesis should be accepted.

99

Figure 10: Participant Scores for Specification of Properties and Structural Elements (Average

with 1 Standard Deviation)

Figure 11: Specification: Two Sample t-Test Assuming Unequal Variances

4.5. OBSERVATIONS OF RESULT

Four observations can be made after analyzing the data collected:

100

 Observation 1: The participants had difficulty in the identification and specification of

properties and structural element (component or connector) when the property has a dependence

on a specific structural element.

 Observation 2: The participants had difficulty in the identification and specification of

properties when the property has a dependence on another property.

 Observation 3: The participants had difficulty in the identification and specification of the

scope of properties.

 Observation 4: The participants had difficulty in the specification of the properties on the

appropriate structural element.

101

Chapter 5: Related Work

5.1. SECURITY ANALYSIS IN SOFTWARE ARCHITECTURE

This section presents seven approaches for analyzing security in software architecture:

Architecture Risk Analysis, Security Vulnerability Approach with SAVE, Attack Surface Security

Analysis, Security Architecture Tradeoff Analysis Method, Architecture Analysis for Security,

Security Analysis with Acme and Monte Carlo Simulation, and Security Analysis with Information

Flow Modeling.

5.1.1. Architecture Risk Analysis

Architectural risk analysis [76,6] (ARA) is a process for identifying flaws in software

architecture. It involves examining the required preconditions for vulnerabilities to be exploited

and evaluating the potential states the system can be in prior to an exploitation. ARA starts with

a one-page architecture that describes the system. The architecture is created by interviewing the

software architects, developers, and testers. ARA is guided by three activities: known

vulnerability analysis (also known as attack resistance analysis), ambiguity analysis, and

underlying platform vulnerability analysis (also known as underlying framework weakness

analysis).

Known vulnerability analysis compares the system’s architecture against any known

attacks, attack patterns, and known principles for confidentiality, integrity, and availability. It

assesses the impact of the applicable attacks on the system, identifies vulnerable areas in the

architecture, and develops ways to mitigate the risks. Ambiguity analysis aims to eliminate any

misunderstandings between requirements and implementation, find weaknesses based on how the

system works, and expose any invalid assumptions. It also identifies trust boundaries for function

and data (trust modeling); privacy and trust issues for data (data sensitivity modeling); and

attackers and areas of weaknesses from the attackers’ perspectives (threat modeling). Underlying

platform vulnerability analysis examines vulnerabilities associated with the application’s

102

execution environment, such as operating system vulnerabilities, network vulnerabilities, platform

vulnerabilities, and interaction vulnerabilities resulting from the interaction of components. ARA

yields a list of weaknesses associated with the architecture. The analysts rank the weaknesses and

propose mitigations.

5.1.2. Security Vulnerability Approach with SAVE

Karppinen, et al. [77] presents the use of Software Architecture Visualization and

Evaluation (SAVE) to detect security vulnerabilities that violate structural and behavioral patterns

of a software system. SAVE [51] is a non-security specific tool that is used to analyze and optimize

the architecture of implemented software systems. It can generate static and dynamic architectural

views from source code and compare the architectures for violations. SAVE uses static analysis

techniques to reveal dependencies and couplings between components and dynamic analysis

techniques to reveal active components in a system’s planned and generated architecture design.

Karppinen, et al. uses SAVE to generate static and dynamic views of the implemented

architecture from the source code and compare the implemented architecture against the planned

architecture. Comparison of the findings in the architectures can determine if the software system

is implemented as planned; architecture styles and design patterns are used properly and

implemented; and security vulnerabilities and hidden functionalities exist.

 This research shows the potential in discovering vulnerabilities in an implemented system

by analyzing its architectural design. However, Karppinen, et al. acknowledge that the ability to

detect vulnerabilities, attacks, and hidden functionalities is limited because prior knowledge of

how the system is attacked is required. The effort in collecting and analyzing such data might not

be feasible.

5.1.3. Attack Surface Security Analysis

Gennari and Garlan [33] presents the use of attack surface to evaluate security properties

at architectural level and identify architectural vulnerabilities. Attack surface is the measure of a

103

system’s exposure to attack. This work is based on Manadahata and Wing’s work on attack

surfaces. Manadahata and Wing [24] have quantified the attack surface in terms of resources used

by a system to interact with its external environment. The resources are entry and exit points,

channels, and untrusted data items.

To represent security in an architecture, Gennari and Garlan define the mapping of attack

surface to architectural structures. Entry and exit points are mapped to ports. Channels are mapped

to an architectural connector that connects components outside of the system with components

inside of the system. Untrusted data items are mapped to data sources used by the system that

reside in the environment. AcmeStudio, which uses Acme architectural description language, is

selected as the architecture modeling environment. For modeling attack surfaces in Acme, Gennari

and Garlan defines a new security-focused Acme family and an attack surface plug-in.. The attack

surface plug-in allows one to specify attack surface properties of architectural elements. To

evaluate security at the architecture, the attack surface plug-in measures the attack surface of an

architectural model and identifies principal contributors to the model’s attack surface.

5.1.4. Security Architecture Tradeoff Analysis Method

Raza, et al. [78] extends Architecture Tradeoff Analysis Method (ATAM) with security

characterization to evaluate security aspects of a software architecture. ATAM is a scenario based

method used for analysis of architecture against particular quality goals and how quality goals

trade off against each other. ATAM consists of the following phases: presentation, investigation

and analysis, testing, and reporting. Presentation phrase involves presenting the ATAM process,

the business drivers, and architecture. Investigation and analysis phase involves identifying the

architectural approaches used, generating a quality attribute utility tree and scenarios, and

analyzing architectural approaches. Testing phase involves brainstorming and prioritizing

scenarios and analyzing architectural approaches. Reporting phase involves presenting the results

from the analysis of architecture against particular quality goals [54].

104

Quality attribute characterization helps refine the scenarios created during the investigation

and analysis phase. A characterization includes the type of stimuli in which an architecture must

respond, the measurable response of the quality attribute by which its achievement is judged, and

critical architectural decisions that impact achieving the quality attribute requirement [54]. Raza,

et al. create the security characterization. A security stimulus can be a source or type. A source

can be an authorized user or unauthorized user. An unauthorized user can be a hacker or attacker.

A type can be an internal attack or external attack. An internal attack refers to accidental access

to sensitive data. An external attack can be a network attack, data centered attack, application

specific attack, or user input attack. A security parameter can be a resource (component) or

services. A resource (component) can be a fire wall, virtual lan, proxy server, DMZ, antivirus,

certification authority, or operating system. A service can refer to authentication, authorization,

access control, intrusion detection, encryption, digital signatures, deception, diversity, or recovery.

A security response can be passive or active. A passive response can be protection, prevention, or

containment. An active service is a failure recovery. With the security characterization, ATAM

can be used to evaluate security aspects of a software architecture following the activities defined

in the investigation and analysis phase, testing phase, and reporting phase.

5.1.5. Architectural Analysis for Security

Ryoo, et al. [15] presents the architectural analysis for security (AAFS) method. AAFS

consists of three techniques: tactic-oriented architectural analysis (ToAA), pattern-oriented

architectural analysis (PoAA), and vulnerability-oriented architectural analysis (VoAA). ToAA

involves interviewing an architect about whether and how the system addresses each tactic type

and ranking the tactics used in the system to develop a prioritized list of tactics. PoAA involves

reviewing the patterns that are related to the identified tactics with the architect, questioning the

architect about the existence or use of security patterns and whether the patterns are being

implemented correctly. VoAA involves searching for weaknesses resulting from not adopting

105

patterns or not properly implementing the patterns. The output from VoAA’s phase is a prioritized

list of potential vulnerabilities.

5.1.6. Security Analysis with Acme and Monte Carlo Simulation

Garlan and Schmerl [7, 29] demonstrate how Acme architectural description language

along with Monte Carlo simulation can be used to analyze the security of an architecture. A threat

scenario includes threat types, assets, and countermeasures (preventative, monitoring, and

recovery). Threat type specifies the possible threat that can affect the system. Asset is a

component that can be damaged by a threat and is associated with a monetary value. Preventative

countermeasure affects the frequency at which a threat occurs. Monitoring countermeasure and

recovery countermeasure reduce the effect of a threat. The security simulator in AcmeStudio

performs security simulations based on the threat scenarios. The security simulation outputs a

report that includes the threat scenario, threat transaction, the most probable damage value to each

asset in the threat transaction, and the total damage to the assets in the threat transaction path.

5.1.7. Security Analysis with Information Flow Modeling

Garg, et al. [71] present an approach that uses STRIDE model to define an Acme Data

Flow Diagram (DFD) architectural style for security analysis and provide architectural constraints

that are used to automatically identify STRIDE threats and security vulnerabilities. The approach

starts with an architect modeling a DFD of the system. The architect then specifies properties,

such as trust level, for each component(connector). Acme ADL modeling tool checks the DFD

against structural and security constraints as defined in the Acme DFD architectural style. The

architect will get notified If the Acme ADL modeling tool discovers any threats or vulnerabilities.

106

5.2. AADL SECURITY ANNEXES 2019

The AADL security annex 2019 [59] includes the following property sets: security

classification property set and security enforcement property set. The security classification

property set includes: a. Security clearances (subjects), b. Information security levels (objects), c.

Security levels (subjects and objects), and d. Trusted classification. The security enforcement

property set includes: a. Data security, b. Data security specification, c. Subject authentication, and

d. Secure flows.

The property sets provide in the AADL security annex 2019 covers basic security concepts.

It does not have specific security properties that would cover unique security challenges that exist

in microservice architectures. The framework described in this dissertation addresses that.

5.3. SUMMARY

A number of approaches on how to analyze security in software architecture is presented.

None of the approaches address the problem from a root cause perspective. By knowing the root

causes of vulnerabilities, it can assist architects in developing a software architecture that has fewer

software weaknesses. Please see Table 9 for the summary comparison table.

107

Table 9: Summary Comparison Table

Security Approaches

Formal

Specification

Modeling

Support

Threat

Modeling

Root Cause

Analysis

Architecture Risk Analysis

Security Vulnerability Approach with

SAVE x

Attack Surface Security Analysis x x

Security Architecture Tradeoff

Analysis Method

Architectural Analysis for Security

Security Analysis with Acme and

Monte Carlo Simulation x Acme x

Security Analysis with Information

Flow Modeling x DFD

AADL Security Annex 2019 x

Framework for Security Modeling and

Specification in Microservice

Architectures x AADL x

108

Chapter 6: Conclusions

6.1. SUMMARY OF WORK

There is a lack of consolidated design knowledge on how to build microservice

applications. With an increase in the adoption of microservice architecture in the development of

applications and the increase in security breaches in microservice based systems, there is a need

to examine and understand security issues that exist in microservice architectures. This

dissertation presented the Framework for Security Modeling and Specification in Microservice

Architectures to enhance the security modeling and specifications in microservice architectures.

The research questions that drove the research are:

RQ1: What are the security challenges in microservices architecture?

RQ2: What mechanisms are currently used to address the security challenges in

microservices architecture?

RQ3: What approach can enhance the security modeling and specification in microservice

architectures?

The outcome was the framework that provides sufficient support in formally defining

security properties and adding structural elements in the architecture that address software

vulnerabilities in earlier stages of software development of microservice architectures. Please see

Table 10 for the mapping of security challenges, practices, properties and decision trees).

An experiment was designed to assess the hypothesis that use of the framework would lead

to an increase in well-justified and articulated security specifications and components in

microservice architectures. The null and research hypotheses were as follows:

▪ Null Hypothesis: Use of the framework does not lead to an increase in well-justified and

articulated security specifications and components in microservice architectures.

▪ Research Hypothesis: Use of the framework leads to a significant increase in well-justified

and articulated security specifications and components in microservice architectures.

109

The result of the experiment shows that 84% of the population in the control group will

score less than average of the treatment group. A two-sample t-Test assuming unequal

variances was performed. The result of the two-sample t-Test assuming unequal variance for

identification indicates that the difference between the scores for the treatment and control

groups are statistically significant, the null hypothesis should be rejected, and the research

hypothesis should be accepted.

This dissertation defines a framework to support the design of microservice architectures

and remediate documented security issues. The framework enhances the ability of software

architects to formally specify security properties early on in the software development

lifecycle. It also includes the use of decision trees to guide software architects in determining

what specific security properties should be considered, how different security properties are

related and can be used together, and what additional structural elements (components and

connectors) should be considered when adding specific security properties. These security

properties are derived from existing security challenges and the corresponding security

practices used to address them.

The impact of the work is that software vulnerabilities are addressed during early phases

of software development (architecture and design) rather than later in the software

development lifecycle. This helps to significantly reduce costs associated with software defect

mitigation. Studies have shown that the cost ratio in tackling a software defect, including

security vulnerabilities, is doubled if defects are discovered during the implementation phase

compared to the architecture and design phases. This ratio more than triples if defects are

discovered during testing. The work provides comprehensive support in defined security in

microservice architectures, especially for software architects who have minimal experience in

society.

110

Table 10: Security Challenges, Practices, Properties, and Decision Tree Summary Table

Security

Challenges

Category Security Challenges

Security

Practices Security Properties Decision Trees

Authentication

Many authentication

scenarios compared to

an equivalent monolithic

architecture and hence

increase in complexity in

how authentication

should be handled.

API Gateway

Tokens, such as

API token and

JSON web

token,

Certificate-

based

authentication,

API key-based

authentication,

Hash-based

message

authentication

code,

OpenID

connect,

Federated

Identity

SecurityLevelProvided,

EdgeLevel,

AuthenticationMicroservice

Architecture,

dbAccessMode,

DataAtRest,

DataAtRestEncryption,

Edge Level Security

Decision Tree,

Secure Microservice

Architecture

Decision Tree,

Service Level

Decision Tree

Authentication is a cross

cutting concern that

affects every

microservice, some

developers create global

authentication logic and

assign authentication

responsibility to each

microservice which is a

violation of single

responsibility principle.

Reusing same code base

for authentication creates

a central code

dependency and

negatively impact the

technology agnostic

aspect of microservices.

Management of

credentials is

challenging since there

are more credentials.

If authentication

information is managed

by an authentication

microservice, an update

is required whenever a

new microservice or a

new user is added.

If the authentication

information is managed

by individual

microservices, it

increases the chances of

the information being

leaked should there be

compromises happening

111

to individual

microservices.

Authorization

Many authorization

scenarios compared to

an equivalent monolithic

architecture and hence

increase in complexity in

how authorization

should be handled.

API Gateway,

Security Token,

OAuth 2.0,

Certificates,

Access Control

System,

Decentralized

authorization,

Centralized

Upstream

Authorization

AuthorizationMicroservice

Architecture,

CoarseGrainedAuthorizatio

n,

FineGrainedAuthorization,

CentralizedFineGrainedAut

horization,

Secure Microservice

Architecture

Decision Tree,

Service Level

Decision Tree,

Edge Level Security

Decision Tree

Authorization is a cross

cutting concern that

affects every

microservice, some

developers create global

authorization logic and

assign authorization

responsibility to each

microservice which is a

violation of single

responsibility principle.

Reusing same code base

for authorization creates

a central code

dependency and

negatively impact the

technology agnostic

aspect of microservices.

Management of

credentials and their

access rights is

challenging since there

are more credentials.

If a microservice is

required to handle

authorization at the

service level and needs

to store and administer

user’s data, it increases

the chances of personal

information being leaked

and accessed by

unauthorized entities.

Confused deputy

problem refers to an

upstream (client)

microservice tricks the

downstream (server)

microservices into doing

112

something they shouldn't

be doing.

Container-based

microservice is

immutable meaning that

once the container is up,

it does not maintain any

runtime states or any

changes made to its file

system. It means that

extra steps need to be

taken to maintain the

dynamic list of allowed

clients and access

control policies and

service credentials since

service credentials

would be rotated

periodically.

Logging

When microservices are

spread across different

platforms, security may

be out of the control of

the microservices

owners and completely

dependent on the

platform environment

owner.
Use of

distributed

tracing system

Standard log

structure and

the amount of

information

collected

Log

Secure Microservice

Architecture

Decision Tree,

Logging Decision

Tree

Collecting the required

and necessary

information to diagnose

what went wrong and

correlating requests

among microservices

become challenging.

For microservices that

are deployed using

containers, the audit logs

are not kept at each node

running the

microservices.

Communication

Communication takes

place over the network

in order to complete

requests. TLS,

MTLS
SecureCommunication

Secure Microservice

Architecture

Decision Tree,

Communication

Decision Tree

Improper interception

and inappropriate access

if teams cannot agree on

the communication

113

protocol between

microservices.

Data

Data moves around an

architecture more often

in a microservice

architecture than in a

monolithic architecture,

and this makes securing

data more challenging.

TLS and

MTLS,

MTLS and

Service Mesh,

Secure

communication

protocol,

Message

authentication

code,

Encryption,

JWT

dbAccessMode,

DataAtRest,

DataAtRestEncryption,

MicroserviceDataSensitivity

,

SecureCommunication

Secure Microservice

Architecture

Decision Tree,

Data Decision Tree,

Communication

Decision Tree

Identity of downstream

microservice regarding

data in transit and

attempt to steal all

receiving data.

Identity of upstream

microservice regarding

data in transit and

attempt to request for

data that it does not have

access to.

Visibility of data when

data is sent across the

network.

Manipulation of data

when data is sent across

the network.

Data stores in

unencrypted form and

when an adversary is

able to compromise a

microservice with an

unencrypted data store,

he/she will have

unlimited access to the

data.

Amount of data will

each microservice needs

become questionable

since a request is

typically fulfilled by

more than one

microservice.

Patching

Fail to keep up with

patching of

vulnerabilities
Assign the right

personnel to

maintain and

handle patching

patch_type,

DeploymentType

Secure Microservice

Architecture

Decision Tree,

Deployment and

Patching Decision

Tree

Ownership of the

infrastructure and

software that

114

microservice runs on

affects the ability and

frequency of patching

Dependencies between

microservices and third-

party libraries used in

the development of

microservices affect

frequency of patching.

Deployment

Deployment of

microservices increases

in scale, it makes it

extremely challenging to

manage and maintain the

security

Push or pull

model. The

service

credentials and

access control

policies are

maintained at a

policy

administration

endpoint. With

a push model,

the policy

administration

endpoint pushes

the updates to

the

microservice at

bootup. With a

pull model, the

microservice

periodically

pulls updates

from the policy

administration

endpoint.

The technology agnostic

nature of microservices

also makes vulnerability

detection more difficult.

Trust

Microservices are often

designed to trust each

other in a microservice

architecture. When a

malicious adversary

attacks and gains control

of an individual

microservice, it can

affect other

microservices in the

microservice

architecture. The

malicious adversary can

manipulate

microservices to do what

Layers of

security,

Zero trust

model,

Degree of

access

separation

TrustDomain,

NetworkPerimeterLevel,

EdgeLevel,

MaxRateLimitEdge,

MaxRequestMicroservice,

APIRequestPerSecond_type

,

APIRequestPerSecondMicr

oserviceName_type,

APIRequestPerSecondMicr

oserviceNameApp_type,

APIRequestPerSecondMicr

oserviceNameUser_type,

APIRequestPerSecondMicr

oserviceNameOperation_ty

Secure Microservice

Architecture

Decision Tree,

Network Perimeter

Level Decision Tree,

Edge Level Decision

Tree,

Service Level

Decision Tree,

Trust Decision Tree

115

he/she wants them to do,

escalate privileges on the

hosting infrastructure of

the microservices, listen

on any inter-service

communication, alter

data in transit, lead to

full disclosure of other

microservices, and

potentially bring down

the entire system.

pe,

RequestPerApplicationType

,

RequestPerUser,

RequestPerOperation,

MessagePayloadSizeLimit

Larger Surface

Area

Communications

between microservices

over the network cause

exposure to more

potential attacks than a

monolithic application

due to the increased

number in entry points,

and hence increases the

attack surface area.

API Gateway,

Zero Trust

Model

EdgeLevel

Secure Microservice

Architecture

Decision Tree,

Edge Level Decision

Tree

With the attack surface

area being larger, it

makes it harder to

manage security.

6.2. FUTURE WORK

Future work includes enhancing decision trees based on the observations from the

experiment (please see section 4.5), automating the support provided by the decision trees,

conducting experiments with practitioners, and enhancing the AADL security annex 2019 with the

Microservice_Architecture_Security_Properties property set created from this research.

116

References

1. IDC FutureScape: Worldwide IT Industry 2019 Predictions. (2018). IDC.

https://www.idc.com/getdoc.jsp?containerId=US44403818

2. Torkura, K., Sukmana, M., & Meinel, C. (2017). Integrating Continuous Security Assessments

in Microservices and Cloud Native Applications. 171–180.

https://doi.org/10.1145/3147213.3147229

3. Pereira-Vale, A., Fernandez, E. B., Monge, R., Astudillo, H., & Márquez, G. (2021). Security

in microservice-based systems: A Multivocal literature review. 103, 102200.

https://doi.org/10.1016/j.cose.2021.102200

4. Mateus-Coelho, N., Cruz-Cunha, M., & Ferreira, L. G. (2021). Security in Microservices

Architectures. 181, 1225–1236. https://doi.org/10.1016/j.procs.2021.01.320

5. He, X., & Yang, X. (2017). Authentication and Authorization of End User in Microservice

Architecture. 910(1), 12060. https://doi.org/10.1088/1742-6596/910/1/012060

6. McGraw, G. (n.d.). Software Security Touchpoint: Architectural Risk Analysis.

7. Schmerl, B., Gennari, J., & Garlan, D. (2006). Architecture-based Simulation for Security and

Performance.

8. Newman, S. (2021). Building Microservices, 2nd Edition. O’Reilly Media, Incorporated.

https://learning.oreilly.com/library/view/building-microservices-2nd/9781492034018/

9. Richards, M., & Ford, N. (2020). Fundamentals of Software Architecture. O’Reilly Media,

Incorporated. https://learning.oreilly.com/library/view/fundamentals-of-

software/9781492043447/

117

10. Weber, S., Karger, P., & Paradkar, A. (2005). A software flaw taxonomy: Aiming tools at

security. 30, 1–7.

11. Baresi, L., & Garriga, M. (2020). Microservices: The Evolution and Extinction of Web

Services? (A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera, & A.

Sadovykh (Eds.); pp. 3–28). Springer International Publishing.

https://doi.org/10.1007/978-3-030-31646-4_1

12. Kanjilal, J. (2021, November 3). Logging Microservices: The Challenges and Solutions.

https://www.developer.com/design/logging-microservices/

13. Ayoub, M. (2018, April 24). Microservices Authentication and Authorization Solutions.

14. An overview of the SSL or TLS handshake. (2023). https://www.ibm.com/docs/en/ibm-

mq/7.5?topic=ssl-overview-tls-handshake

15. Ryoo, J., Kazman, R., & Anand, P. (2015). Architectural Analysis for Security (pp. 52–59).

IEEE Security & Privacy, vol. 13, no. 6.

16. Parecki, A. (2021, September 2). Hands-on introduction to OAuth 2.0. O’Reilly Media,

Incorporated. https://learning.oreilly.com/live-events/hands-on-introduction-to-oauth-

20/0636920328384/

17. Powell, O. (2022, November 25). IOTW: Twitter accused of covering up data breach that

affects millions.

18. Yarygina, T., & Bagge, A. H. (2018). Overcoming Security Challenges in Microservice

Architectures. 11–20. https://doi.org/10.1109/SOSE.2018.00011

118

19. Henrique, W., Almeida, C., De Aguiar Monteiro, L., Hazin, R. R., Cavalcanti De Lima, A., &

Ferraz, F. S. (n.d.). Survey on Microservice Architecture -Security, Privacy and

Standardization on Cloud Computing Environment.

20. Lakshminarayanan, S. (2019). AppSecCali 2019 - Authorization in Micro Services World

Kubernetes, ISTIO and Open Policy Agent.

https://www.youtube.com/watch?v=UnXjwCWgBKU

21. Twitter. (2022, August 5). An incident impacting some accounts and private information on

Twitter.

22. Feiler, P., & Gluch, D. (2012). Model-Based Engineering with AADL: An Introduction to the

SAE Architecture Analysis & Design Language. Addison-Wesley Professional.

23. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A., Montesi, F., & Prandini, M. (2022).

Microservice security: a systematic literature review (Vol. 7). PeerJ.

https://doi.org/10.7717/peerj-cs.779

24. Manadhata, P., & Wing, J. (2011). An Attack Surface Metric (pp. 371–386). IEEE Trans.

Software Eng. 37.

25. Banati, A., Kail, E., Karoczkai, K., & Kozlovszky, M. (2018). Authentication and authorization

orchestrator for microservice-based software architectures. In Proceedings of the 41st

International Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO).

26. Siriwardena, P., & Dias, N. (2022). Microservices Security in Action. Manning Publications

Co. https://learning.oreilly.com/library/view/microservices-security-in/9781617295959/

119

27. Greenberg, A. (2016, August 1). The Jeep Hackers Are Back to Prove Car Hacking Can Get

Much Worse.

28. Barabanov, A., & Makrushin, D. (2020). Authentication and Authorization in Microservice-

Based Systems: Survey of Architecture Patterns. 4(38), 32–43.

https://doi.org/10.21681/2311-3456-2020-04-32-43

29. Garlan, D., & Schmerl, B. (2007). Architecture-driven modelling and analysis (pp. 3–17).

Proceedings of the eleventh Australian workshop on Safety critical systems and software -

Volume 69 (SCS ’06), Tony Cant (Ed.), Vol. 69. Australian Computer Society, Inc.

30. Gough, J., Bryant, D., & Auburn, M. (2022). Mastering API Architecture. O’Reilly Media,

Inc. https://learning.oreilly.com/library/view/mastering-api-architecture/9781492090625/

31. HMAC (Hash-Based Message Authentication Codes) Definition. (2023). Okta.

https://www.okta.com/identity-101/hmac/

32. Yuqiong, S., Nanda, S., & Jaeger, T. (2015). Security-as-a-Service for Microservices-Based

Cloud Applications. 50–57. https://doi.org/10.1109/CloudCom.2015.93

33. Gennari, J., & Garlan, D. (2012). Measuring Attack Surface in Software Architecture (cmu-

isr-11-121). CMU.

34. Garlan, D., & Perry, D. (1995). Introduction to the Special Issue on Software Architecture

(Vol. 21, Issue 4, pp. 269–274).

35. How SSL and TLS provide identification, authentication, confidentiality, and integrity. (2023).

IBM. https://www.ibm.com/docs/en/ibm-mq/7.5?topic=ssl-how-tls-provide-

authentication-confidentiality-integrity

120

36. Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: Yesterday, Today, and Tomorrow (pp. 195–216). Springer

International Publishing. https://doi.org/10.1007/978-3-319-67425-4_12

37. Siriwardena, P. (2019). Advanced API Security: OAuth 2.0 and Beyond. Apress.

https://learning.oreilly.com/library/view/advanced-api-security/9781484220504/

38. Rountree, D. (2012). Federated Identity Primer. Syngress.

https://learning.oreilly.com/library/view/federated-identity-primer/9780124071896/

39. Rehman, S., & Mustafa, K. (2009). Research on software design level security vulnerabilities

(pp. 1–5). SIGSOFT Softw. Eng. Notes 34, 6.

40. Santos, J. C. S., Tarrit, K., & Mirakhorli, M. (2017). A Catalog of Security Architecture

Weaknesses. 220–223. https://doi.org/10.1109/ICSAW.2017.25

41. Góes de Almeida, M., & Canedo, E. D. (2022). Authentication and Authorization in

Microservices Architecture: A Systematic Literature Review. 12(6).

https://doi.org/10.3390/app12063023

42. Wilson, Y., & Hingnikar, A. (2022). Solving Identity Management in Modern Applications:

Demystifying OAuth 2, OpenID Connect, and SAML 2. O’Reilly Media, Incorporated.

https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/

43. IBM Market Development Insights Team, . (2021). Microservices in the enterprise, 2021: Real

benefits, worth the challenges. IBM.

44. Gaither, D. (2022). API Keys: API Authentication Methods & Examples.

https://blog.stoplight.io/api-keys-best-practices-to-authenticate-apis

121

45. Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice Architecture.

O’Reilly Media, Incorporated. https://learning.oreilly.com/library/view/microservice-

architecture/9781491956328/

46. Delange, J. (2016). AADL Security Annex Draft. Software Engineering Institute, Carnegie

Mellon University.

47. Venčkauskas, A., Kukta, D., Grigaliūnas, Š., & Brūzgienė, R. (2023). Enhancing

Microservices Security with Token-Based Access Control Method. 23(6), 3363.

https://doi.org/10.3390/s23063363

48. Security, W. (2018). The Evolution of the Secure Software Lifecycle 2018 Application

Security Statistics Report (WhiteHat Security).

49. Lindau, D. (2020, June 23). The Difference Between HTTP Auth, API Keys, and OAuth.

50. DoorDash. (2022, August 25). How we’re responding to a third-party vendor phishing incident.

51. Duszynski, S., Knodel, J., & Lindvall, M. (2009). SAVE: Software Architecture Visualization

and Evaluation. 323–324.

52. Office, U. S. G. A. (2018). DATA PROTECTION Actions Taken by Equifax and Federal

Agencies in Response to the 2017 Breach Report. United States Government

Accountability Office.

53. DoorDash. (2019, September 27). Important security notice about your DoorDash account.

54. Clements, P., Kazman, M., & Klein, M. (2011). Evaluating Software Architectures – Methods

and Case Studies. Software Engineering Institute.

122

55. Richards, M. (2015). Microservices vs. Service-Oriented Architecture. O’Reilly Media,

Incorporated. https://learning.oreilly.com/library/view/microservices-vs-service-

oriented/9781491975657/cover.html

56. Zettler, K. (n.d.). Platform as a service. Retrieved August 18, 2022, from

https://www.atlassian.com/microservices/cloud-computing/platform-as-a-service

57. Subramanian, H., & Raj, P. (2019). Hands-On RESTful API Design Patterns and Best

Practices. Packt. https://learning.oreilly.com/library/view/hands-on-restful-

api/9781788992664/

58. API Gateway Security. (n.d.). solo.io. https://www.solo.io/topics/api-gateway/api-gateway-

security/

59. Gluch, D. (2019). AADL Security Annex. Software Engineering Institute, Carnegie Mellon

University.

60. Marvin, M. (2022, August 10). Filling the Access Security Gap With Certificate-Based

Authentication. https://www.portnox.com/blog/certificate-based-authentication/

61. Fruhlinger, J. (2020, February 12). Equifax data breach FAQ: What happened, who was

affected, what was the impact? https://www.csoonline.com/article/3444488/equifax-data-

breach-faq-what-happened-who-was-affected-what-was-the-impact.html

62. Santos, J. C. S. (2016). Toward Establishing a Catalog of Security Architecture Weaknesses”,

Department of Software Engineering. Rochester Institute of Technology.

63. Fybish, R. (2022, February 3). Authentication in Microservices: Approaches and Techniques.

123

64. Joseph, C. T., & Chandrasekaran, K. (2019). Straddling the crevasse: A review of microservice

software architecture foundations and recent advancements. 49(10), 1448–1484.

https://doi.org/10.1002/spe.2729

65. Lewis, J., & Fowler, M. (2014, March 25). Microservices. A definition of this new

architectural term .

66. API Gateway: What Is It And Why Is It Essential in Microservices Architecture? (n.d.).

traefiklabs. https://traefik.io/glossary/api-gateway-101/

67. Torkura, K. A., Sukmana, M. I. H., Feng Cheng, & Meinel, C. (2017). Leveraging Cloud

Native Design Patterns for Security-as-a-Service Applications. 90–97.

https://doi.org/10.1109/SmartCloud.2017.21

68. Federated Identity Pattern. (n.d.). Microsoft. https://learn.microsoft.com/en-

us/azure/architecture/patterns/federated-identity

69. Symantec. (2016). Internet Security Threat Report.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

70. Madden, N. (2021). API Security in Action. Manning Publications.

https://learning.oreilly.com/library/view/api-security-in/9781617296024/

71. Garg, K., Garlan, D., & Schmerl, B. (2004). Architecture Based Information Flow Analysis

for Software Security. Carnegie Mellon University.

72. Penhale, C. (n.d.). Secure Your Container-Based Microservices with Client Certificate

Authentication. Openlogic.

124

73. Santos, J. C. S., Tarrit, K. and Mirakhorli, M. (2017). A Catalog of Security Architecture

Weaknesses. IEEE International Conference on Software Architecture Workshops

(ICSAW), Gothenburg, pp. 220-223.

74. McGraw, G. (2006). Software Security: Building Security In, Addison-Wesley Professional.

75. Arce, I., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon, D., Kern, C., Kohno, T.,

Landwehr, C., McGraw, G., Schoenfield, B., Seltzer, M., Spinellis, D., Tarandach, I., West,

J. (2014) Avoiding the top 10 software security design flaws, Technical report IEEE

Computer Society's Center for Secure Design.

76. Peterson, G., Hope, P., Lavenfar, S. (2005). Architectural Risk Analysis, Cigital,

https://www.us-cert.gov/bsi/articles/best-practices/architectural-risk-

analysis/architectural-risk-analysis.

77. Karppinen, K., Lindvall, M., Yonkwa, L. (2008). Detecting Security Vulnerabilities with

Software Architecture Analysis Tools. IEEE International Conference on Software Testing

Verification and Validation Workshop, Lillehammer, Norway.

78. Raza, A., Abbas, H., Yngstrom, L., Hemani, A. (2009). Security characterization for evaluation

of software architectures using ATAM. International Conference on Information and

Communication Technologies, Karachi, pp. 241-246.

79. Bass, L., Clements, P., Kazman, R. (2012, September). Software Architecture in Practice,

Third Edition. Addison-Wesley Professional.

https://learning.oreilly.com/library/view/software-architecture-in/9780132942799/

80. Modeling System Architectures using Architecture Analysis and Design Language (AADL).

(2015, December). Software Engineering Institute, Carnegie Mellon University.

125

Appendix A: Decision Trees

Appendix A presents the complete set of decision trees. The decision trees are organized

as follows:

1. Key

2. Instructions on How to Use the Decision Trees

3. Secure Microservice Architecture Decision Tree

4. Network Perimeter Level Decision Tree

5. Edge Level Decision Tree Part 1 of 4

6. Edge Level Decision Tree Part 2 of 4

7. Edge Level Decision Tree Part 3 of 4

8. Edge Level Decision Tree Part 4 of 4

9. Service Level Decision Tree Part 1 of 3

10. Service Level Decision Tree Part 2 of 3

11. Service Level Decision Tree Part 3 of 3

12. Communication Decision Tree

13. Logging Decision Tree

14. Deployment and Patching Decision Tree

15. Data Decision Tree

16. Trust Decision Tree.

126

A.1. KEY

Figure 12: Decision Tree Key

127

A.2. INSTRUCTIONS ON HOW TO USE THE DECISION TREES

Figure 13: Instructions on How to Use the Decision Trees

128

A.3. SECURE MICROSERVICE ARCHITECTURE DECISION TREE

Figure 14: Secure Microservice Architecture Decision Tree

129

A.4. NETWORK PERIMETER LEVEL DECISION TREE

Figure 15: Network Perimeter Level Decision Tree

130

A.5. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 4

Figure 16:Edge Level Perimeter Level Decision Tree Part 1 of 4

131

A.6. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 4

Figure 17: Edge Level Perimeter Level Decision Tree Part 2 of 4

132

A.7. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 4

Figure 18: Edge Level Perimeter Level Decision Tree Part 3 of 4

133

A.8. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 4 OF 4

Figure 19: Edge Level Perimeter Level Decision Tree Part 4 of 4

134

A.9. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 3

Figure 20: Service Level Perimeter Level Decision Tree Part 1 of 3

135

A.10. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 3

Figure 21: Service Level Perimeter Level Decision Tree Part 2 of 3

136

A.11. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 3

Figure 22: Service Level Perimeter Level Decision Tree Part 3 of 3

137

A.12. COMMUNICATION DECISION TREE

Figure 23: Communication Decision Tree

138

A.13. LOGGING DECISION TREE

Figure 24: Logging Decision Tree

139

A.14. DEPLOYMENT AND PATCHING DECISION TREE

Figure 25: Deployment and Patching Decision Tree

140

A.15. DATA DECISION TREE

Figure 26: Data Decision Tree

141

A.16. TRUST DECISION TREE

Figure 27: Trust Decision Tree

142

Appendix B: Survey Questions

This section presents the microservice architecture, general instructions and questions

included in the survey.

Figure 28: Microservice Architecture

143

144

145

146

147

Appendix C: Survey Results

Appendix C presents the scores received by each team for the survey on a per question

basis.

Figure 29: Question 1 Scores for Treatment Groups

148

Figure 30: Question 1 Scores for Control Groups

149

Figure 31: Question 2 Scores for Treatment Groups

Figure 32: Question 2 Scores for Control Groups

150

Figure 33: Question 3 Scores for Treatment Groups

Figure 34: Question 3 Scores for Control Groups

151

Figure 35: Question 4 Scores for Treatment Groups

Figure 36: Question 4 Scores for Control Groups

152

Figure 37: Question 5 Scores for Treatment Groups

Figure 38: Question 5 Scores for Control Groups

153

Figure 39: Question 6 Scores for Treatment Groups

154

Figure 40: Question 6 Scores for Control Groups

155

Figure 41: Question 7 Scores for Treatment Groups

156

Figure 42: Question 7 Scores for Control Groups

157

Figure 43: Question 8 Scores for Treatment Groups

Figure 44: Question 8 Scores for Control Groups

158

Appendix D: Research Study Background Survey Results

Appendix D presents the result of the research study background survey.

Figure 45: Background Survey Result - No. of Years of Experience in Software Architecture

Figure 46: Background Survey Result - No. of Years of Experience in Software Security

0 to 1 year 1 to 2 years 2 to 3 years 3 to 4 years > 4 years

Series1 71 26 4 1 0

0

20

40

60

80

N
o

. o
f

P
ar

ti
ci

p
an

ts

No. of Years of Experience in Software Architecture

Background Survey Result - No. of Years of Experience in
Software Architecture

Series1

0 to 1 year 1 to 2 years 2 to 3 years 3 to 4 years > 4 years

Series1 90 10 1 1 0

0

10

20

30

40

50

60

70

80

90

100

N
o

. o
f

P
ar

ti
ci

p
an

ts

No. of Years of Experience in Software Security

Background Survey Result - No. of Years of Experience in
Software Security

159

Figure 47: Background Survey Result - No. of Years of Experience in Software Development

0 to 1 year 1 to 2 years 2 to 3 years 3 to 4 years > 4 years

Series1 29 40 15 16 2

0

10

20

30

40

50

N
o

. o
f

P
ar

ti
ci

p
an

ts

No. of Years in Software Development

Background Survey Result - No. of Years of Experience in
Software Development

160

Vita

Wai Yan Elsa Tai Ramirez received her Bachelors of Science (Summa Cum Laude) in

Computer Science from The University of Texas at El Paso in the Spring 2004. She received her

Master of Science in Computer Science from The University of Texas at El Paso in Spring 2007.

In the fall of 2013, she entered the Ph.D. program in Computer Science under the guidance of Dr.

Ann Gates. Elsa has 15 years of experience in software requirements engineering and software

engineering. Domains she worked in include: audiology, speech-language pathology, digital

marketing, telecommunication, cybersecurity, geology, and student success. She completed the

Certification in Effective College Instruction by The Association of College and University

Educators and The American Council on Education and South East Asia Patent Drafting

Participation and Completion Certificate from Fédération Internationale des Conseil en Propriété

Industrielle (FICPI) Academy of Education.

While pursuing her Ph.D. degree, she worked as a lecturer and taught the following

courses: Software Engineering I: Requirements Engineering (Part 1 of the Software Engineering

capstone course undergraduate level), Advanced Object-Oriented Programming (undergraduate

level) Software Requirements Engineering (graduate level), and Software Architecture and Design

(graduate level).

During her time at UTEP, she received the CAHSI-Google Dissertation Award.

Contact Information: wyetai@utep.edu

This dissertation was typed by Wai Yan Elsa Tai Ramirez.

mailto:wyetai@utep.edu

	A Framework To Build Secure Microservice Architecture
	Recommended Citation

	ThesisAndDissertationDocumentTemplate

