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Abstract 

Microservice architecture has become a popular architecture style in recent years.  

According to a series of surveys conducted by IBM Market Development & Insights in 2021, 

microservices are heavily used in many industries worldwide.  With an increase in the adoption of 

microservice architecture in the development of applications, such as Netflix, Amazon, Uber, 

Ebay, Twitter, DoorDash, Capital One, and Monzo, and the increase in security breaches in 

microservice based systems (e.g., the DoorDash data breaches in 2019 and 2022, Twitter data 

breach in 2022, and compromises to Netflix’s infrastructure), there is a need to examine and 

understand security issues that exist in microservice architectures.   

Security issues within microservice architectures can be summarized with four main points.  

1) Security is often considered as an afterthought, rather than during the early development phases.  

Security considerations are thought of as roadblocks that prevent software from being released on 

time;  2) There are more vulnerabilities per line of code in applications using microservice 

architectures compared with equivalent monolithic applications; 3) Microservices present new 

security challenges that are not present in monolithic applications due to the distributed nature of 

the architecture; communications between microservices are over the network which means a 

request may be susceptible to man-in-the-middle attacks; 4) There is a lack of comprehensive 

knowledge regarding how to build applications using microservice architectures with security in 

mind. 

The goal of the research is two-fold: 1) To study and document security properties that can 

remediate security issues in microservice architectures; and 2) define an effective approach to 

assist software architects in formally defining security properties early on in the software 

development lifecycle.   
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The research examines microservice security from the perspective of industry and 

academia.  The research questions (RQ) are as follows: 

RQ1: What are the security challenges in microservices architecture?  

RQ2: What mechanisms are currently used to address the security challenges in 

microservices architecture?  

RQ3: What approach can enhance the security modeling and specification in microservice 

architectures? 

The result of the research is an extensive review of security challenges and practices related 

to secure microservice architecture that informed the development of a framework that enhances 

the ability of software architects to formally specify security properties.  The resulting framework 

includes the use of decision trees to guide software architects in determining what specific security 

properties should be considered, how different security properties are related can be used together, 

and what additional structural elements (components and connectors) should be considered when 

adding specific security properties.  

The impact of the work is that software vulnerabilities are addressed during early phases 

of software development (architecture and design) rather than later in the software development 

lifecycle.  This helps to significantly reduce costs associated with software defect mitigation.  

Studies have shown that the cost ratio in tackling a software defect, including security 

vulnerabilities, is doubled if defects are discovered during the implementation phase compared to 

the architecture and design phases.  This ratio more than triples if defects are discovered during 

testing.  The work provides comprehensive support in defined security in microservice 

architectures, especially for software architects who have minimal experience in society.         
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Chapter 1: Introduction 

1.1.OVERVIEW 

1.1.1. Motivation 

In today’s society, software has become an integral part of everyday life and is used in 

virtually every application domain.  In particular, microservice architecture has become a popular 

architecture style in recent years [9], and according to a series of surveys conducted by IBM 

Market Development & Insights in 2021 [43], microservices are heavily used in many industries 

worldwide.  It is a popular choice for cloud-based projects due to the scalability in cloud 

environments and flexibility in software development. Software developers are not limited in the 

technology used to build each microservice since microservices are integrated via technology-

agnostic APIs [23].  Some notable examples of major entities that are using microservice 

architectures are:  

▪ In 2010, Netflix transitioned from monolithic architecture to microservice architecture.  It 

started using AWS Amazon to host more than 100 grained services [4].   

▪ Monzo, a financial institution in the United Kingdom, announced its microservices 

deployment.  They have more than 1500 services running in its microservices deployment, 

and they are using network isolation to make their deployment and microservices more 

secure [26].  

▪ In July 2019, Capital One, one of the leading financial institutions in the United States, 

announced its microservices deployment.  It consists of thousands of microservices on 

several thousands of containers and thousands of Amazon Elastic Compute Cloud instants 

[26].   

According to the International Data Corporation [34], by 2022, 90% of all apps will feature 

microservice architectures. 
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As software becomes more prevalent in day-to-day services and activities, software attacks 

are increasing in frequency and severity.  The following are examples of notable vulnerabilities 

and attacks that took place between 2016 and 2022: 

▪ In 2017, Equifax [8, 52] had a data breach that affected at least 145.5 million individuals 

in the U.S. and nearly 1 million people outside the U.S. The breach was caused by a known 

vulnerability in Apache Struts which allowed unauthorized access to user data maintained 

by Equifax. 

▪ In May 2019, Doordash [53] disclosed a data breach that exposed 4.9 million users’ 

personal data. The affected personal data included personal information such as names, 

email addresses, delivery addresses, order history, phone numbers, hashed salted 

passwords, the last four digits of credit card numbers, the last four digits of bank account 

numbers, and about 100000 dashers’ driver’s license numbers.  The affected personal data 

was accessed by an unauthorized third party. 

▪ In August 2022, Doordash [50] announced that one of the third-party vendors that it uses 

was compromised, and an unauthorized party was able gain access to some of DoorDash’s 

internal tools using the stolen credentials of the third-party vendor’s employees.  Personal 

information maintained by DoorDash was affected in this breach.  This included name, 

email address, delivery address, phone numbers, basic order information, and partial 

payment card information. 

▪ In August 2022, Twitter [21] confirmed that 5.4 million users were affected by a July 2022 

data breach. The data breach was caused by a vulnerability in the system which allowed 

anyone without any authentication to obtain a user's twitter internal identifier by providing 

a phone number or email address even after the user has disabled this action in the privacy 

setting [17]. 

▪ Netflix [32] experienced a security breach when one of its subdomains was compromised.  

Adversaries were able to serve any content on netflix.com and tamper with authenticated 
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Netflix subscribers and their data.  The tampering of subscribers and their data was enabled 

due to users’ cookies being accessible from any subdomains. 

 

1.1.2. Problem Statement 

Research shows that architecture and design flaws are leading causes of vulnerabilities in 

software.  According to the IEEE Computer Society’s Center for Secure Design, while a system 

may always have implementation defects, security breaches in many systems are caused by design 

flaws [75].  During its ongoing security push, Microsoft reports more than 50% of the uncovered 

problems are architectural in nature [74].  According to the data published by MITRE, design 

weaknesses represent approximately 75% of the 25 most dangerous software errors and they also 

account for more than one-third of the current 940 known common weakness enumerations.  

Architecture and design flaws represent at least 50% of the total reported vulnerabilities in software 

systems [73].  

There is a lack of consolidated design knowledge on how to build microservice 

applications. With an increase in the adoption of microservice architecture in the development of 

applications and the increase in security breaches in microservice based systems, there is a need 

to examine and understand security issues that exist in microservice architectures.  Security issues 

can be summarized into five main points. 

▪ Security is often considered as an afterthought, rather than during the early development 

phases, despite the increasing number of security breaches and incidents.  This means that 

security aspects of the system are considered after the code has been written. Security 

considerations are thought of as roadblocks that prevent software from being released on 

time [8]. 

▪ There are more vulnerabilities per line of code in microservices than in equivalent 

monolithic applications.  According to the Evolution of the Secure Software Lifecycle 2018 

Application Security Statistics Report, it is reported that for every 100,000 lines of code, 
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there are 39 vulnerabilities in a traditional application.  In comparison, in microservice 

architectures, there are 180 vulnerabilities [48]. 

▪ Microservices present new security challenges that are not present in monolithic 

applications due to the distributed nature of the architecture [18].  An example: 

communications between microservices are over the network which means a request may 

be susceptible to man-in the middle attacks. 

▪ There is a lack of research in the area of microservice security [3, 23].  Microservice 

security is not very well understood in both industry and academia.  There is a lack of 

comprehensive knowledge regarding how to build applications using microservice 

architectures with security in mind. 

▪ IBM Market Development & Insights team [43] describes 53% of the respondents 

to their surveys considers security as one of the roadblocks in adopting or expanding the 

use of microservices in their company despites the advantages offered by microservice 

architectures.  Pereira-Vale, A. et al. [3] and Berardi, D. et al. [23] also state that security 

is one of the main challenges in using microservice architectures to develop complex 

systems. 

 

1.2.RESEARCH GOAL 

The goal of the research is two-fold: 1) to study and document security properties that can 

remediate security issues in microservice architectures; and 2) define an effective approach to 

assist the software architects in formally defining security properties early on in the software 

development lifecycle. The research examines microservice security from the perspective of 

industry and academia. The questions driving the research are as follows: 

RQ1: What are the security challenges in microservices architecture?  

RQ2: What mechanisms are currently used to address the security challenges in 

microservices architecture?  
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RQ3: What approach can enhance the security modeling and specification in microservice 

architectures? 

The expected outcome is a framework that provides sufficient support in formally defining 

security properties and adding structural elements (components and connectors) in the architecture 

that address software vulnerabilities in earlier stages of software development of microservice 

architectures. The intent is to provide a framework with clear guidelines on how to build 

applications using microservice architectures with security in mind.  Such a framework would 

integrate security properties and support software architects regardless of their level of knowledge 

and experience in security. 

 

1.3. SIGNIFICANCE OF THE RESEARCH 

This dissertation defines a framework to support the design of microservice architectures 

and remediate documented security issues.  The framework enhances the ability of software 

architects to formally specify security properties early on in the software development lifecycle.  

It also includes the use of decision trees to guide software architects in determining what specific 

security properties should be considered, how different security properties are related and can be 

used together, and what additional structural elements (components and connectors) should be 

considered when adding specific security properties. These security properties are derived from 

existing security challenges and the corresponding security practices used to address them.  

The impact of the work is that software vulnerabilities are addressed during early phases 

of software development (architecture and design) rather than later in the software development 

lifecycle.  This helps to significantly reduce costs associated with software defect mitigation.  

Studies have shown that the cost ratio in tackling a software defect, including security 

vulnerabilities, is doubled if defects are discovered during the implementation phase compared to 

the architecture and design phases.  This ratio more than triples if defects are discovered during 
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testing.  The work provides comprehensive support in defined security in microservice 

architectures, especially for software architects who have minimal experience in society.   

      

1.4.ORGANIZATION OF DISSERTATION 

This dissertation is organized as follows.  Chapter 2 provides an overview of software 

architecture and microservice architecture.  It also discusses the difference and similarities between 

microservice architecture and service-oriented architecture.  The last section in chapter 2 provides 

an introduction to the Architecture Analysis & Design Language (AADL) and the existing security 

annex.    

Chapter 3 presents the research that was done to create the framework that guides software 

architects in designing microservice architectures with security in mind.  The chapter first presents 

the existing security challenges in microservice architectures.  It is followed by descriptions of 

security practices that are used in the industry and described in literature.  The chapter then presents 

the development of the framework.  

Chapter 4 describes the experiment performed to evaluate the practicality of the framework 

and the observations and results of the experiment conducted in this dissertation.  Chapter 5 

describes related work on security analysis in software architecture and AADL security annex.  

Chapter 6 presents the summary of the work and discussion of future work.    

Appendix A presents the decision trees.  Appendix B presents the survey questions of the 

experiment.  Appendix C presents the survey results from the experiment.  Appendix D presents 

the research study background survey results. 
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Chapter 2: Background 

This chapter is divided into four major sections.  The first section provides a high-level 

overview of software architecture.  The second section introduces microservice architecture.  The 

third section describes the differences and similarities between microservice architecture and 

service-oriented architecture.  The fourth section introduces architectural description languages, 

which are an important mechanism for formally defining security properties. 

 

2.1. OVERVIEW OF SOFTWARE ARCHITECTURE 

Software architecture [9] describes the structure of a system, architecture characteristics 

the system supports, architecture decisions, and architecture principles governing the design and 

evolution over time.  The structure of a system refers to the type of architecture style(s) the system 

is implemented in [9].  The architecture style describes the components of the system, behavior of 

each component, characteristics of the components (properties), and interrelationships among the 

components [34].  Architecture characteristics [9] are the “ilities” or “quality attributes”, such as 

availability, security, performance, and usability, that the system must support.  They specify non-

domain design considerations, influence structural aspects of the design, and are critical to the 

success of the application.  Architecture decisions [9] are rules and constraints that govern how 

the system should be built and what development teams are allowed and not allowed to do, such 

as the presentation layer cannot access the database layer directly in a layered architecture. 

Architecture principles [9] are guidelines or preferred methods given a particular circumstance, 

such as asynchronous messaging between services can yield better performance in a microservice 

architecture, thus use asynchronous messaging whenever is possible. 

When designing a system, software architects will first analyze the requirements in the 

problem domain to identify the architecture characteristics, such as performance, security, and 

availability, that the system needs to support. Based on the identified architecture characteristics 

and their priorities, architects will choose which software architecture styles would be suitable for 
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the problem domain. Examples of software architecture styles are layered architecture, event-

driven architecture, and microservice architecture [9].   

In a layered architecture style [9], components are organized into layers with each layer 

responsible for performing a specific role, such as presentation, business, and database.  Each layer 

provides an abstraction around the work that needs to be done to satisfy a particular business 

request and typically only accepts requests from the immediate layer above it.  Layered 

architecture style is well suited for systems that require high testability and simplicity.   

In an event-driven architecture style [9], components are decoupled, and they receive and 

process events asynchronously.  There are two primary topologies with the event-driven 

architecture: the broker topology and the mediator topology.  The broker topology is made up of 

four primary components: an initiating event, an event broker which contains at least one event 

channel, event processors, and processing events. The event flow begins with the initiating event 

being sent to an event channel in the event broker for processing. An event processor accepts the 

initiating event from the event broker and processes the event.  Once the event processor completes 

the processing, it generates the next processing event and sends it to the event channel 

asynchronously for further processing.  The other event processors listen for the next processing 

event and react to it accordingly.  The process continues until no one is interested in what the final 

event processor did.  The broker topology is great for systems that require extensibility, 

performance, responsiveness, and scalability.  The mediator topology is made up of five 

components: an initiating event, an event queue, and event mediator, event channels, and event 

processors.  The event flow begins with an initiating event being sent to the event queue.  The 

event mediator, which is responsible for the workflow, accepts the initiating event from the event 

queue, creates the corresponding processing events, and sends them to specific event processors 

via dedicated event channels.   The event processors process the processing events and provide 

responses to the event mediator.  The mediator topology is great for systems that require 

recoverability, workflow control, and error handling. 
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2.2. MICROSERVICE ARCHITECTURE 

Microservice architecture has become a very popular architecture style in recent years [9], 

and according to a series of surveys conducted by IBM Market Development & Insights in 2021 

[43], microservices are heavily used in many industries worldwide.  Microservice architecture [65, 

41, 23, 36] is a software architecture style where the software application is built as a composition 

of microservices with each microservice addressing a single business need.  Each microservice 

runs in its own process, and is deployed independently of other microservices.  Microservices 

communicate with each other via lightweight protocols, such as hypertext transfer protocol 

(HTTP).   

Microservice is an independently releasable, deployable, technology agnostic, and business 

domain bounded and scoped component [8, 45].  The implementation details of a microservice are 

hidden.  Data is typically isolated whenever possible.  Coupling, including shared schemas and 

databases used as integration points should be avoided in microservices [9].  Services offered by 

the microservice are only exposed via network endpoints.  Any changes made inside a 

microservice will not affect other microservices.  Once the change is made, a microservice can be 

deployed and released without having to re-deploy other microservices.  This makes each 

microservice independently releasable and deployable [8].   

Each microservice can be implemented in any language and using any technology that best 

suits the purpose of the microservice and development experiences of the development team [11, 

36].  Microservices communicate through lightweight messages via networks [11, 8].  This makes 

microservices technology agnostic.  

Each microservice addresses a single business need.  The size of each microservice should 

be relatively small due to the bounded context [8, 11, 36].  This makes each microservice business 

domain bounded and scoped. 
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2.3. MICROSERVICE ARCHITECTURE VS. SERVICE-ORIENTED ARCHITECTURE 

Microservice architecture has been seen as an evolution of service-oriented architecture 

(SOA).  Richards [55] explains that while it is true that the two architecture styles share some 

characteristics, they have different taxonomy, service ownership model, service granularity, and 

sharing components. The shared characteristics are: a. Both architectures are distributed 

architectures where service components are remotely accessed through remote access protocol, 

such as representational state transfer (REST); b. Both architectures place an emphasis on services 

as their primary architecture components used to implement and perform functionalities.  

Microservice architecture’s taxonomy supports two types of services: functional services 

and infrastructure services.  Functional services are business domain services and infrastructure 

services refer to nonfunctional tasks, such as, authentication, authorization, and monitoring.  

Functional services are accessible externally while infrastructure services are not exposed 

externally. SOA’s taxonomy can have any number of service types; however, it typically supports 

the following four basic types: business services, enterprise services, application services, and 

infrastructure services.  Business services are abstract and coarse-grain services that define the 

core business operations performed at the enterprise level. Enterprise services are concrete and 

coarse-grain services that implement the functionality defined by the business services. There is 

usually a middleware component that bridges the business services and enterprise services 

together.  Application services are fine-grained and application specific services that are bound to 

a specific application context and provide specific business services that are not found at the 

enterprise level.  Infrastructure services refers to nonfunctional tasks.  

Services in microservice architecture are owned by application development teams, 

whereas services in SOA are owned by different business organizations.  Services in SOA require 

coordination between different business organizations.  It significantly increases the amount of 

effort and time required during development, testing, deploying, and maintaining the services.  
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Service granularity in microservice architecture is smaller than SOA.  Services in 

microservice architecture are single-purpose services, whereas, the services in SOA can range in 

size from small application to large product or subsystem.  

SOA is an architecture style that features “share as much as possible”, whereas 

microservice architecture features “share as little as possible”.  SOA maximizes on component 

sharing, whereas, microservice architecture minimizes on sharing.   

After reviewing the similarities and differences between microservice architecture and 

SOA, microservice architecture does share some of the same security challenges that exhibit in 

SOA.  This research only focuses on security challenges and corresponding security mechanisms 

that are in microservice architecture regardless if they are also in SOA. 

 

2.4. ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE (AADL) 

Architecture description language (ADL) is a language used to describe a complex system 

at a high level of abstraction that exposes a system’s structure as a collection of interacting 

components.  It allows software engineers to reason about system properties, such as performance, 

schedulability, and security.   There exists a number of ADLs, such as Aesop, Adage, Darwin, 

Rapide, SADL, UniCon, Wright, C2, Meta H, Acme, and AADL.  The proposed work will be 

documented in AADL.   

Architecture analysis and design language (AADL) [22] is a formal specification language 

that allows software engineers to define software, hardware, and physical system components, 

their interactions, and properties of the components.  With the formal foundations and well-defined 

semantics, it provides software engineers the capability to perform different types of analysis, such 

as performance, security, and data integrity analysis, on the architecture based on standard 

properties.   AADL is also extensible to support annotation of models with user defined and 

analysis-specific properties.    
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An AADL model is composed of component type and component implementation (please 

see Figure 1 and Figure 2).  Component type represents the externally visible characteristics of a 

component, such as name, component category, interfaces, properties, modes, and logical flows.  

Component implementation represents a blueprint of its internal structure in terms of 

subcomponents.  It defines subcomponents, connections, calls, and modes (if they are not defined 

in the component type), details the flows associated with the component type that traverse the 

various subcomponents, and adds or modifies properties that are previously defined in the 

component type.  

 

 
Figure 1: AADL Components and Connectors [80] 
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Figure 2: Component Type and Component Implementation 

An AADL model is composed of the following elements:  

1. Components 

a. Application software components: They refer to the applicative parts of the 

system.  They include process, thread, data, and subprogram. 

b. Execution platform components: They refer to computing hardware and 

physical environment.  They include processor, bus, memory, and device. 

c. System: It represents a composite of software and platform components or 

system components.   

2. Connectors: They include port (data, event, and event data), subprogram, 

parameters, and subcomponent access. 
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3. Properties: They define characteristics of the components and connectors.  Each 

property has a name, a type, and definition (Please refer to Figure 3).  The property 

type specifies the values that can be assigned to the property.  The property 

definition specifies which AADL model elements the property applies to.  

 
Figure 3: Structure of a Property 

Property association is how values are assigned to properties and associated with 

AADL model elements (Please refer to Figure 4). A basic property association is 

made up of a property name, an assignment operator, a constant keyword (optional), 

and property value.  Property value can be a single value whose type matches the 

type specified by the property, or a list of values separated by commas in 

parentheses of the same type if the property has been defined to accept a list. 

Operator +=> can be used to append value to a property that accepts a list of values. 

“In mode” keyword can be used to assign property values that only hold under 

certain conditions.  

 
Figure 4: Property Association 

AADL supports two types of properties: AADL standard properties and user-

defined properties.  AADL standard properties are properties that are defined by 
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the Software Engineering Institute and encompass common attributes for the 

AADL elements.  User-defined properties are new characteristics to the AADL 

elements.  The AADL annex describes a set of properties that augment the core 

AADL language with new elements.   

 

AADL allows introduction of additional properties and property types through 

property sets.  Each property set provides a separate name space (Please see Figure 

5). A property in the property set can be referenced using “::” in the same or another 

property set.  Property declaration defines a new property by declaring a property 

name and by specifying a property type.  “Record” keyword is used when multiple 

fields are defined within a single structure (please refer to Figure 6). “Enumeration” 

keyword is used when a set of literal elements are defined (please refer to Figure 

7). 

 
Figure 5: Property Set Example 

 
Figure 6: Property Declaration using Record 
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Figure 7: Property Declaration using Enumeration 
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Chapter 3: Methodology 

This chapter presents the work that was done to address the research questions: 

▪ RQ1: What are the security challenges in microservices architecture?  

▪ RQ2: What mechanisms are currently used to address the security challenges in 

microservices architecture?  

▪ RQ3: What approach can enhance the security modeling and specification in 

microservice architectures? 

 

3.1. SECURITY CHALLENGES AND SECURITY PRACTICES IN MICROSERVICE ARCHITECTURE 

This section addresses the research questions of the security challenges in microservice 

architectures (RQ1) and their corresponding security practices used and/or proposed to address the 

security challenges (RQ2). The security challenges described in this section are: authentication, 

authorization, logging, larger surface area, communication, patching, data, deployment, and trust. 

 

3.1.1. Authentication 

Authentication is the process of verifying the identity of an entity and checking who it 

claims to be [41].  The following two sections describe the challenges in authentication and the 

security practices used to address the challenges. 

 

3.1.1.1. Challenges 

In a microservice architecture, there are more authentication scenarios to consider 

compared to an equivalent monolithic architecture, such as authenticating end-users accessing 

microservices, authenticating microservices to other microservices, and authenticating external or 

third-party services connecting to microservices via API [13, 63, 36].  This increases the 

complexity in how authentication should be handled in microservice architectures.  
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Ayoub [13] and Fybish [63] state that since authentication is a cross cutting concern that 

affects every microservice in a given microservice architecture, some developers will create global 

authentication logic and assign the authentication responsibility to each microservice in the 

microservice architecture. Having each microservice responsible for more than its intended 

business needs is a violation of the single responsibility principle.  Reusing the same code base 

creates a central code dependency and can negatively impact the technology agnostic aspect of 

microservices.  

Management of credentials can be a challenge since there are significantly more credentials 

representing different user accounts, microservices, databases, and virtual machines compared to 

an equivalent monolithic architecture [63, 25, 8].  Pereira-Vale et al. [3] describes the challenge 

associated with maintenance and storage of authentication information.  If authentication 

information is managed by an authentication microservice, an update is required whenever a new 

microservice or a new user is added. If the authentication information is managed by individual 

microservices, it increases the chances of the information being leaked should there be 

compromises happening to individual microservices.   

 

3.1.1.2. Security Practices 

API Gateway 

Newman [8] suggests that API gateway can be used for coarse-grained authentication, such 

as preventing non-logged in users from accessing microservices, if the gateway can extract 

attributes about the principal as a result of the authentication.  There are a number of issues 

associated with using API gateway for coarse-grained authentication.  Coupling between 

microservices and API gateway will increase since the API gateway needs to know who is allowed 

access to which microservices.  Since all traffic will have to funnel through the API gateway, the 

API gateway became the single point of failure.  The more functionality the API gateway has, the 

greater the attack surface.  Due to the mentioned issues, Newman [8] suggests the use of a gateway 

to handle security between users and services. The gateway can manage handshaking with an 
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identity provider to perform authentication. Once the authentication is complete, the gateway 

passes information about the authenticated user to microservices with the assistance of Shibboleth 

or JSON web token.   

Siriwardena and Dias [26] states that API gateway is the single-entry point to the 

microservice architecture and it provides the following security features: a. expose external-facing 

microservices via API to the client applications; b. work with an authorization server/service, such 

as OAuth, to secure APIs that are exposed at the edge; c. enforce only authenticated client 

applications with valid access tokens are allowed to communicate with microservices.  It is done 

by extracting the access token from the request and introspecting it through the authorization 

server/service.  If the access token is valid, it will forward the request from the client application 

to the appropriate microservice.  The communication between client application and authorization 

server/service will affect the performance of the microservice architecture due to the increase in 

amount of communication.  Alternatively, if the access token received by the gateway is a JSON 

web signature (JSON Web Token (JWT) signed by the authorization server), the gateway can 

verify the token by inspecting its signature.  If the signature is from a trusted party, then the 

information contained in the token is trustworthy.  One of the downsides of using JWT is that the 

gateway won't know if the token has been revoked since the gateway is not verifying the token 

with the authorization server.  To address the revoking token issue, either the authorization server 

will inform the gateway that a token is being revoked or the token will be short-lived and require 

the token to be refreshed frequently.  Another downside is that if the certificate used to verify the 

token is expired, the gateway will not be available to verify the signature of the token.  Extra work 

is required to maintain the issuer's certificate. d. prevents throttling and DOS attacks. 

Fybish [63] describes that API gateway can be used to control authentication for all 

downstream microservices.   The advantage is that it is easy to implement.  The disadvantages are: 

a. less secure because an attacker can gain access to any microservice once he/she bypasses the 

API gateway, b. increase in complexity and what the API gateway should be responsible for since 

the API gateway needs to manage different authentication rules for all microservices, c. API 
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gateway becomes a single point of failure, and d. overheads in process and communication since 

different teams are responsible for the operations and maintenance of the API gateways.   

 

Token-based Authentication 

According to [70, 28, 26], tokens, such as API key and JSON web token (JWT), can be 

used for service-to-service authentication.  API key is a simple bearer token that identifies a service 

and carries authentication information, such as ID and expiry time.  It is generated by a developer 

from a developer portal, and it is sent with the request to a downstream (server) microservice. The 

downstream (server) microservice validates the identity of the upstream (client) microservice 

before processing the request.   

JWT is a bearer token that carries claims about the service, expiry time, audience, and other 

standard JWT claims.  JWT is either signed or encrypted by a symmetric authenticated encryption 

scheme. Validating of tokens will take place before a downstream (server) microservice accepts a 

request from an upstream (client) microservice.   

JWT has the advantage over simple bearer tokens because it can be accepted by many 

different APIs due to the use of public key signatures.  One of the disadvantages of using a bearer 

token is that it can be used by anyone, if captured, until it expires. Therefore, one must secure the 

communication channel with transport layer security (TLS) to reduce the risk of an intruder 

stealing the bearer token.  The second disadvantage is that a portal for generating JWTs is required.  

The third disadvantage is that a mechanism needs to be in place to support revoking of tokens 

when a service retires. [70, 28, 26] 

Madden [70] further suggests having the following four components when using token-

based authentication: client-side token storage, server-side token storage, hash-based message 

authentication code (HMAC) token store, and a standard way to communicate tokens between 

client and server.  Since authentication tokens need to be validated on every request, it is important 

to consider that when selecting which database to use to store the tokens since the database 

transaction for every lookup can be costly.  The recommendation is to use non-relational database 
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backends, such as Redis in-memory key-value store or NoSQL JSON.  To lower the risk of various 

threats, such as tokens being injected to the database, tokens being modified, tokens being deleted, 

and tokens being stolen and replayed to API, the tokens in the database should be stored using 

hash-based message authentication code (HMAC) to protect tokens against tampering and forgery, 

the database should be separated from the API server to ensure that external clients do not have 

direct access to the database, and communication between the database and the API server should 

be protected with TLS.  Each of the components should be classified with a different trust 

boundary.  The other aspect to consider when dealing with tokens is token deletion.  Once a token 

is deleted, it should never come back to life. 

Subramanian and Raj [57] describes how token-based authentication works.  The client 

application makes a request to an authentication server for an access token.  After the 

authentication server validates the mandated credentials from the client application, it issues an 

access token to the client application.  The client application sends the access token in the 

Authorization HTTP header with an API request.  The API gateway validates the access token 

with the authentication server.  Once the access token is validated, the API gateway forwards the 

request along with the access token to the corresponding microservice.   

According to [26], JWT can be used in external to service authentication. An external 

application requests an access token from the security token service (STS). The STS generates a 

JWT which contains user context related to the external application. The external application can 

then use the JWT in an HTTP header when invoking a microservice. 

Yarygina and Bagge [18] describes the use of security tokens such as JWT for user to 

service authentication. Once the user is authenticated by an authentication service within the 

microservice architecture, a security token is generated to represent the client’s identity. The 

security token will be sent to the client via TLS. The client will provide the security token 

whenever it makes a request. The security token along with the request will be passed from one 

microservice to another microservice to complete the request. Upon receiving the security token, 
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a microservice will validate and verify the security token before processing the request. If the 

security token is invalid, the microservice will reject it and stop the request processing. 

 

Certificate-based Authentication 

Mateus-Coelho et al. [4], Siriwardena and Dias [26], Yarygina and Bagge [18], Newman 

[8], and Barabanov and Makrushin [28] suggest the use of certificates along with TLS/MTLS for 

service authentication.  

Certificate-based authentication [35, 14] is a cryptography technique that uses a certificate 

to identify an entity before granting any type of access [60].  A certificate contains information 

about its owner, a public key of the owner, and information about its issuer. The following explains 

how the certificate-based authentication works in a microservice architecture along with 

TLS/MTLS communication protocol.  A microservice needs to request a certificate from a 

certificate authority (CA). It is done by submitting a certificate signing request (CSR) form along 

with its public key to the CA. Once the CA completes the verification process of the information 

on the CSR, it will sign it and send it back to the microservice.  Before communication between 

downstream (server) and upstream (client) microservices can take place, they need to authenticate 

themselves to each other. When the TLS communication protocol is used, the downstream (server) 

microservice will provide its signed certificate along with its public key to the upstream (client) 

microservice.  The upstream (client) microservice will verify the downstream (server)’s certificate 

by checking the signature of the CA who signed it.  If the CA is trusted and the downstream (server) 

microservice’s certificate is valid, the authentication process is complete.  The upstream (client) 

microservice creates a session key that will be encrypted with the downstream (server) 

microservice’s public key.  The downstream (server) microservice decrypts the session key, 

generates an encrypted acknowledgement with the session key, and initiates encrypted 

communication with the upstream (client) microservice.  When the MTLS communication 

protocol is used, an upstream (client) microservice needs to authenticate the downstream (server) 
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microservice and vice versa.  Once the microservices are done verifying each other’s authenticity, 

then they can communicate with each other after exchanging the session key.   

An advantage in using certificate-based authentication is that the certificates MTLS uses 

are time-bound.  In the event that the certificate and the corresponding private key are 

compromised, the vulnerability is limited by the lifetime of the certificates.  A disadvantage is that 

certificate-based authentication is a centralized solution that is not very scalable and the 

implementation can be complex [25].   

  

API Key-based Authentication 

Mateus-Coelho et al. [4] and Newman [8] suggest the use of API keys for service-to-service 

authentication. With API keys, the downstream (server) microservice generates a unique key for 

each of the upstream (client) microservices.  Whenever an upstream (client) microservice makes 

a request to the downstream (server) microservice, the upstream (client) microservice sends the 

request along with a unique key.  The downstream (server) microservice verifies the upstream 

(client) microservice’s key.  If the key is valid, the downstream (server) microservice processes 

the request. If the key is not valid, the downstream (server) microservice rejects the request.   

API key-based authentication is easy to implement and use compared to other types of 

authentication methods.  The authentication is done by including a key in the request and verifying 

the key is valid.  Most developers are familiar with API keys, and therefore, no extra training is 

required.  However, if the key is stolen, any microservices will be able to use it to request all the 

services associated with the key from the downstream (server) microservice as if they are the 

owner of the key. If any of the services involve write, update, or delete access to any data, it can 

be a huge security concern. It is not very secure compared to other technology and it can be leaked 

easily, such as showing up in logs or extracting the API keys from code [49].   To reduce the 

security concern, it is recommended to limit API Key-based authentication for services that 

involve read-only data [44]. 
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Hash-based Message Authentication Code 

Mateus-Coelho et al. [4] suggests the use of hash-based message authentication code 

(HMAC) for service-to-service authentication.  HMAC is a cryptographic technique that uses a 

hash function and a secret key for authentication [31].  HMAC [4, 31] works as follows: The 

downstream (server) and upstream (client) microservices share a secret key and have a mutual 

agreement on how a message digest is calculated.  When the upstream (client) microservice wants 

to send a request to the downstream (server) microservice, the upstream (client) microservice first 

creates a message digest by combining the request and the secret key, and then sends the message 

digest along with the original request to the downstream (server) microservice. Upon receiving the 

message digest and the original request, the downstream (server) microservice calculates a 

message digest by hashing the original request with the secret key that it shares with the upstream 

(client) microservice.  If the calculated value matches the digest sent by the upstream (client) 

microservice, then the data integrity and authenticity of the request is guaranteed. The integrity of 

the request is preserved because the message was not modified in transit. The authenticity of the 

microservice is known because the downstream (server) microservice knows who the upstream 

(client) microservice is. 

OpenID Connect 

Góes de Almeida et al. [41], Banati et al. [25], Mateus-Coelho [4], and Yarygina and Bagge 

[18] mention OpenID Connect (OIDC) as one of the authentication protocols used on top of OAuth 

2.0 used for user authentication in a microservice architecture.  

OIDC [42] is a protocol that provides an identity service layer that sits on top of OAuth 

2.0.  It allows the delegation of the responsibilities of user authentication and claim generation of 

authenticated users and authentication events to authorization servers.  

The following explains how OIDC can be used in a microservice architecture for 

authentication. It begins when a user (end user) wants to access a microservice (relying party).  

The microservice redirects the user to an OpenID provider, which is an authorization server that 

has implemented OIDC.  An OpenID provider is used to authenticate a user and return claims 
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about the authenticated user and authentication event. The user interacts with the OpenID provider 

to get authenticated.  If the authentication is successful, the user is being redirected back to the 

microservice with the authorization code.  From the OpenID provider, the microservice can obtain 

an ID token, access token, and optionally a refresh token with the authorization code.  If the 

microservice needs additional information about the user, it can use the access token at the OpenID 

provider’s userinfo endpoint.  With the ID token, the microservice has proof that the user has been 

authenticated [42].  The microservice can use the ID token to communicate with other 

microservices on the user’s behalf.  The other microservices can validate the signature on the ID 

token with the public key of the OpenID provider before providing a response.   

An ID token is a security token which contains claims about an authenticated user and 

event.  It is used to convey claims to a microservice about an authenticated user and event, and it 

is encoded in JSON Web Token (JWT) format.  The ID token has three parts: header, payload, and 

signature.  The header contains metadata of the token, such as, the type, and the signature algorithm 

used to protect the integrity of the claims in the payload.  The payload contains claims about the 

authenticated user and event.  The signature contains a digital signature created based on the 

payload and the secret key of the OpenID provider.  A microservice can validate the signature on 

the ID token with the public key of the OpenID provider.  It calculates the hash of the payload, 

decrypts the digital signature with the public key of the OpenID provider, and compares the hashes.  

If they match, then the integrity of the claims in the payload is preserved. [42]    

 

Federated Identity Solution 

Rountree [38] and [68] describe the use of federated identity solution to separate user 

authentication from application logic and to delegate authentication to an identity provider.  The 

federated identity solution is composed of two required components: identity provider and service 

provider.  The identity provider is responsible for authenticating entities against its credential store.  

Once authentication is complete, the identity provider will allow access to the user’s identity 

information.  The service provider is responsible for providing services to others based on the 
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user’s identity from the identity provider.  It trusts the user’s identity from the identity provider 

and will not perform additional authentication.   

The following explains how federated identity solution can be used in a microservice 

architecture for authentication.  When a client application wants to access a microservice, the client 

application needs to be authenticated by an identity provider.  The identity provider authenticates 

the client application against its credential store. If the authentication is successful, the identity 

provider will issue a security token that contains claims about the user’s identity.  A security token 

service might transform and augment claims in the token issued by the identity provider, when 

necessary, before the security token is sent to the client application [68].  The client application 

can then use the security token to request service from the service provider.  The service provider 

trusts the claims in the security token and will not perform additional authentication.   

The advantages of using federated identity solution are [38, 68]: 

▪ Identity provider is the only component that has access to user’s credentials.  

Microservice only has access to the user’s identity information provided by the identity 

provide and not the user’s credentials.  In the event that a microservice is compromised, 

no user’s credentials are exposed. 

▪ Authentication is separated from the microservice business logic.  It simplifies the 

development of microservice. 

The disadvantages of using federated identity solution are [38, 68]: 

▪ If the identity provider is compromised or the credential the client application uses to 

log in is compromised, an attacker can gain access to all the microservices the user 

credential has access to. 

▪ The use of federated identity solution requires infrastructure setup, support of extra 

hardware and software, and conformation to the standards followed by other 

organizations.  The cost of using federated identity solution might outweigh its benefits.  

▪ Authentication can be a single point of failure.  
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3.1.2. Authorization 

Authorization is the process of granting an entity permission to do or own something [79].  

An entity can be a person or a system. Each entity should only be able to perform actions on 

microservices it is allowed to.  The following two sections describe the challenges in authorization 

and the security practices used to address the challenges. 

 

3.1.2.1. Challenges 

Managing credentials and their access rights in a microservice architecture is more 

challenging since there are a lot more credentials representing different user accounts, 

microservices, databases, virtual machines, and other components in a microservice architecture 

compared to an equivalent monolithic architecture [8]. There are more authorization scenarios to 

consider in a microservice architecture compared to an equivalent monolithic architecture, such as 

authorizing a microservice to call an API on the user’s behalf and authorizing microservices to 

access other microservices [63, 25].   This increases the complexity in how authorization should 

be handled in microservice architectures.  

Ayoub [13] and Fybish [63] state that since authorization is a cross cutting concern that 

affects every microservice in a given microservice architecture, some developers will create global 

authorization logic and assign the authorization responsibility to each microservice in the 

microservice architecture. Having each microservice responsible for more than its intended 

business needs is a violation of the single responsibility principle.  Reusing the same code base 

creates a central code dependency and can negatively impact the technology agnostic aspect of 

microservices.  Banati et al. [25] states that if a microservice is required to handle authorization at 

the service level and needs to store and administer user’s data, it increases the chances of personal 

information being leaked and accessed by unauthorized entities.  

When it comes to the container-based microservices, maintaining service credentials and 

access control policies can be more challenging.  According to [26], a container-based 
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microservice is immutable meaning that once the container is up, it does not maintain any runtime 

states or any changes made to its file system.  It means that extra steps need to be taken to maintain 

the dynamic list of allowed clients and access control policies and service credentials since service 

credentials would be rotated periodically.   

Newmon [8] describes the confused deputy problem as one of the authorization challenges. 

The confused deputy problem refers to an upstream (client) microservice tricking downstream 

(server) microservices into doing something they should not be doing. 

 

3.1.2.2. Security Practices 

API Gateway 

API gateway can be used to centralize the enforcement of coarse-grain authorization at the 

edge for all downstream (server) microservices [28, 63, 26]. That way, each microservice does not 

have to worry about access control to its services.   

The disadvantages of using API gateway to perform authorization are [20, 63]:  

▪ When the microservice architecture grows, the authorization decisions can get very 

complicated.  If all authorization decisions are put on the API gateway, the API 

gateway can become unmanageable.  

▪ API gateway becomes the single point of failure. 

▪ API gateway is typically owned by the operation teams.  API is owned by 

development teams.  Development teams need to communicate with the operation 

teams whenever an authorization rule requires changing.  It increases the overheads 

in process and communication. 

▪ The use of API gateway can make the microservice architecture less secure when 

an attacker bypasses the API gateway and gains direct access to microservices.   

The advantage of using API gateway to perform authorization is that it is easy to implement 

since it is centralized [63].   
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Security Token 

Yarygina and Bagge [18] suggests the use of security tokens along with access control 

mechanisms for user authorization.  Security tokens can carry authorization information of the 

user.  Based on the authorization information, the system can determine which microservice it can 

request service from. 

Banati et al. [25] describes the use of tokens for user authorization.  After the user has been 

authenticated, the identity and access management component generates a time-sensitive JSON 

Web Token (JWT). The JWT is then appended to every request. Microservices are able to manage 

the users and their rights based on the information specified in the token. 

 

OAuth 2.0 

OAuth 2.0 [16] is an authorization framework that gives applications a way to make API 

requests without the need for users to share their credentials and with limitations on what the 

applications can do.  Microservices do not have to worry about a user's credential when a 

microservice is trying to access features from another microservice on the user’s behalf.  Góes de 

Almeida et al. [41], Banati, A. et al. [25], and Yarygina and Bagge [18] suggest the use of OAuth 

2.0 for authorization in a microservice architecture.  

The following explains how OAuth with proof key for code exchange (PKCE) can be used 

in a microservice architecture for user to service authorization involving client applications, e.g., 

desktop applications, web applications, or mobile applications, that are capable of handling HTTP 

redirects.   If the client application is not registered with the OAuth server, it needs to complete 

the registration first to obtain a pair of credentials, which includes a client application identifier 

and client application secret.  The application secret is only used when a client application is 

capable of keeping a secret.  Some client applications, such as JavaScript applications, cannot keep 

a secret, therefore, the application secret is not used. [16] 

It begins with a user (resource owner) who wants to use an application to access a 

microservice (resource server) on his/her behalf.  The application generates a PKCE secret (code 
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verifier) and hashes it. The generation and hashing of PKCE secret and is done on every request. 

The application redirects the user’s browser to an OAuth server’s authorization endpoint along 

with the hash (code challenge).  Once the user (resource owner) completes the authentication, the 

OAuth server (authorization service) requests confirmation from the user regarding the 

application’s request to access the microservice.  Once the user confirms, the OAuth server 

generates and sends an authorization code to the user’s browser.  The user’s browser then sends 

the authorization code to the application since there is no direct communication between the OAuth 

server and the application.  The application makes a POST request with the authorization code, 

the application ID, the application password, and the plaintext PKCE secret to the OAuth server’s 

token endpoint in exchange for an access token.  The purpose of sending the plaintext PKCE secret 

is to confirm that the sender of this POST request is really the application itself. The OAuth server 

calculates the hash using the PKCE secret and compares it with the hash sent by the user 

previously.  If they match, then the OAuth server knows it is the application who is making the 

request for the access token and sends the application the access token.  The application can then 

communicate with the microservice to access the resource with an access token. The microservice 

verifies the application’s access token with the OAuth server before allowing access to the 

requested resource [16].  The access token is meant for resource access and is not intended to 

convey information about the authentication event or the user.  The authentication step in OAuth 

is used to validate a user's entitlement to give consent to authorize an access request for a resource. 

[42]. 

If an application is an Internet of Things (IoT) device, such as an Apple TV, the device 

authorization flow is used instead.  The flow begins when the user wants to use a primary device 

that requires access to a microservice.  The primary device must be able to make outbound HTTPS 

requests.  The primary device sends an authorization request along with the device ID (client ID) 

to the OAuth server.  The OAuth server sends a device code, end-user code, and a user verification 

universal resource identifier (URI) to the primary device.  The primary device shares the end-user 

code and verification URI with the user.  The user accesses the verification URI on a secondary 
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device.  The secondary device must be capable of supporting user interaction to authenticate and 

authorize API requests to the microservice.  Once the user is authenticated, the OAuth server asks 

for the user for the user code and for authorization of the API call.  The user provides the user code 

and consent.  The primary device continues to poll the OAuth server.  Once the user consents, the 

OAuth server responds to the primary device’s next polling request with an access token and a 

refresh token if applicable.  The primary device can use the access token to call the microservice’s 

API on the user’s behalf. [42] 

The communication involving the user’s browser is considered as the front channel.  Front 

channel passes data via the browser’s address bar as a redirect which is susceptible to request and 

response being modified by malicious parties.  The communication between the application and 

OAuth server is considered as the back channel. Back channel involves HTTPS requests to and 

from application to server, the communication channel is encrypted and cannot be tampered with.  

Refresh token is a special token used to get a new access token without having the user visit the 

OAuth server and to keep the user logged in.  The refresh token is always between application and 

authorization server.  API does not accept refresh tokens [16].  

The use of OAuth in a microservice architecture provides consistency in user experience 

as far as how authorization is handled and how security is managed.  This makes it easier for users 

to identify fake authorization prompts [16].  The drawback in using OAuth is performance due to 

the increased communications between microservices and OAuth server. 

 

Certificates 

Yarygina and Bagge [18] suggests the use of certificates for authorization.  If the 

microservice architecture uses MTLS with a self-hosted public key infrastructure, a certificate 

should be created for each microservice type.  To allow a microservice to have access to another 

microservice, a trust list by certificate type should be established.  By default, no microservice will 

allow access to another microservice.  If one microservice needs to have access to another 

microservice, the microservice needs to be added to another microservice’s trust list prior. 
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Access Control System 

Barabanov et al. [28] describes three different ways in how an access control system can 

be used for service level authorization in a microservice.  In a typical access control system, the 

following components are included: a. Policy administration point (PAP) which allows an 

administrator to define and maintain access control rules via an user interface; b. Policy decision 

point (PDP) which uses access control rules defined in PAP to make access decisions; c. Policy 

enforcement point (PEP) which enforces the access decisions made by the PDP in response to 

incoming requests; and d. Policy information point (PIP) which maintains additional attributes that 

can assist PDP when making access decisions. The three different ways are a. Decentralized 

pattern, b. Centralized pattern with a PDP, and c. Centralized pattern with an embedded PDP. 

When an access control system is implemented using the decentralized pattern, each 

microservice is responsible for making access decisions (PDP) and enforcing the access decisions 

made by the PDP (PEP).  This pattern offers more fine-grained access control because the access 

control rules are more domain specific.  However, the development team must be able to configure 

the access control rules correctly and manual configuration is not scalable.  

When an access control system is implemented using the centralized pattern with a PDP, 

each microservice is responsible for enforcing access control decisions (PEP). The defining of 

access control rules (PAP), the decision making based on access control rules (PDP), and the 

maintenance of additional attributes (PIP) are shared among all microservices in the same 

architecture.  This pattern offers flexibility in managing the access control rules, access decision 

policies, and attribute collection since they are decoupled from the microservices who use them.  

However, the latency suffers due to additional network calls from the microservices to the PDP.  

It is recommended to implement this pattern along with the other patterns to avoid single point of 

failure and to enforce defense in depth principle. 

When an access control system is implemented using the centralized pattern with an 

embedded PDP, each microservice is responsible for making access decisions (PDP) and enforcing 

the access decisions made by the PDP (PEP).  The access control rules (PAP) and attributes (PIP) 
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are defined centrally and are delivered to embedded PDP in the microservice.  Latency is not 

affected by this pattern due to the embedded PDP.  It is recommended to implement this pattern 

along with the other patterns to avoid single point of failure and to enforce defense in depth 

principle and to beware of the approach used to propagate the update from the centralized PAP to 

each microservice. 

 

Centralized Upstream Authorization and Decentralized Authorization 

Newman [8] suggests two mechanisms in addressing the confused deputy problem: a) 

centralized upstream authorization and b) decentralized authorization. Centralized upstream 

authorization refers to all required authorization to be performed as soon as the request is received 

in a system, and once all required authorization is processed, the downstream microservices can 

assume the requests are allowed under the implicit trust principle. The issue with the centralized 

upstream authorization is that the upstream microservice or gateway has knowledge of the 

functionality provided by the downstream microservices and the access control of those 

functionalities. This violates the principle of independent deployability and creates the single point 

of failure.  

Decentralized authorization refers to having the downstream microservice where the 

functionality being requested lives to handle the authorization based on information of the 

requestor.  The issue with decentralized authorization is that microservice has additional 

functionality on top of the single business need it is responsible for.  The other issue is that 

additional information needed to process authorization needs to be passed from one upstream 

microservice to downstream microservice. 
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3.1.3. Logging 

3.1.3.1. Challenges 

When microservices are spread across different platforms, security may be out of the 

control of the microservices owners and completely dependent on the platform environment 

owner.  Collecting the required and necessary information to diagnose what went wrong and 

correlating requests among microservices become challenging [4, 26, 8, 32, 19].  For microservices 

that are deployed using containers, the audit logs are not kept at each node running the 

microservices [26].   

 

3.1.3.2. Security Practices 

The use of distributed tracing systems, such as Jaeger and Zipkin, and logs to keep track 

of essential information that can provide knowledge about exploitation, how the system was used, 

and weak points are proposed [26, 4]. 

Since it is common for microservices to be built with different technologies, it makes the 

structure of the logs and the amount of information collected even more important.  The structure 

of the logs will impact how they need to be parsed and how logs can be combined to represent 

complete requests for analysis.  The amount of information collected will also impact the level of 

difficulty in diagnosing a problem.  It is recommended to collect the following information as a 

minimum: name of the service, name of the logged-in user, IP address, correlation ID, time at 

which the message arrived, time taken, name of the method, call stack, and HTTP code [12]. 

 

3.1.4. Communications 

3.1.4.1. Challenges 

Sun et al. [32] and Henrique et al. [19] describe communication between microservices as 

one of the security challenges in a microservice-based system.  In a microservice-based system, 

microservices are required to communicate with each other over the network in order to complete 



35 

requests.  If the communication between microservices is not secured, it will expose the 

microservice-based system to different types of attacks, such as man-in-the-middle attack and 

session/token hijacking [2, 4].  On top of that, microservices can be developed by different teams.  

Improper interception and inappropriate access can happen if the teams do not agree on the 

communication protocol between microservices.   

 

3.1.4.2. Security Practices 

TLS 

Siriwardena and Dias [26] and Yarygina and Bagge [18] describe the use of transport layer 

security (TLS) to encrypt network traffic between microservices and to protect communication 

between microservices for confidentiality and integrity.  TLS can be used by any application-layer 

protocol to secure communications, such as Java Database Connectivity over TLS and Simple 

Mail Transfer Protocol over TLS.  TLS also provides one way authentication where the 

downstream (server) microservice provides a certificate to the upstream (client) microservice for 

identity verification before the microservices communicate with each other.  

To enable TLS communication, the key provisioning process steps are followed: 1. A 

private and public key pair is generated for each microservice, 2. A certificate-signing request is 

generated and submitted for approval to the team who owns a corporate certificate authority (CA), 

3. A CA-signed certificate is generated for each microservice, and 4. The key pair and certificate 

are deployed with each microservice.  The key provisioning process can be done manually or 

facilitated by a certificate management framework, such as Lemur. 

 

MTLS 

In addition to TLS, Siriwardena and Dias [26] and Yarygina and Bagge [18] also suggests 

the use of mutual transport layer security (MTLS) to encrypt network traffic between 

microservices and to protect communication between microservices for confidentiality and 

integrity.  MTLS also provides two-way authentication where the downstream (server) 



36 

microservice provides a certificate to the upstream (client) microservice for identity verification 

and the upstream (client) microservice provides the downstream (server) microservice for identity 

verification.   

 

3.1.5. Data 

3.1.5.1. Challenges 

In a monolithic architecture, data is typically stored in a centralized database and accessed 

by modules within the architecture when needed.  In a microservice architecture, data is typically 

owned and stored in each microservice.  It is not a requirement that each microservice must own 

and store data.  To fulfill a request in a microservice architecture, it is very common that multiple 

data sets are accessed in various microservices. Comparatively speaking, data moves around an 

architecture more often in a microservice architecture than in a monolithic architecture, and this 

makes securing data more challenging [8].   

 

Data in Transit 

Newman [8] describes four main challenges regarding data in transit.  The first and second 

challenges are about the identity of downstream (server) and upstream (client) microservices.  

Downstream (server) microservice refers to the microservice receiving a call from another 

microservice. Upstream (client) microservice refers to the microservice making a call to another 

microservice.  Newman [8] suggests the need for the upstream (client) microservice to verify the 

identity of the downstream (server) microservice to ensure that the upstream (client) microservice 

is communicating with an authentic microservice.  A malicious party can impersonate a 

downstream (server) microservice in an attempt to steal all the receiving data.  The downstream 

(server) microservice needs to verify the identity of the upstream (client) microservice to ensure it 

is an authentic microservice requesting for service.  A malicious party can impersonate an 

upstream (client) microservice in an attempt to request for data that it does not have access to.  The 

third challenge is about the visibility of data.  When data is sent across the network between an 
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upstream (client) and a downstream (server) microservices and vice versa, it is possible for a 

malicious party to see the data.  The fourth challenge is about data manipulation. When data is sent 

across the network between an upstream (client) and a downstream (server) microservices and vice 

versa, it is possible for a malicious party to manipulate the data. 

 

Data at Rest 

Many of the high-profile security breaches involve attackers acquiring and reading data at 

rest.  Newman [8] states that one of the root causes of security breaches is because data is stored 

in an unencrypted form.  Once a malicious adversary is able to compromise the microservice, 

he/she can have unlimited access to the data stored within the microservice.  Another root cause is 

that there are fundamental flaws with the protective mechanism used on data.   

 

Data Sharing 

In a monolithic application, data is shared via session or can be accessed via a centralized 

database.  In a microservice architecture, data is stored and owned by each microservice.  When a 

downstream (server) microservice needs data about a request, the upstream (client) microservice 

needs to pass the requested data explicitly to the downstream (server) microservice.  It is possible 

that a malicious adversary can modify the data during transit [26].   

There is also a question of how much data should be sent across the network in order to 

fulfill a request and how much data does each microservice require in performing its part of the 

request since it is very rare for a request to be fulfilled by a single microservice in a microservice 

architecture.   

 

3.1.5.2. Security Practices 

TLS and MTLS 

Newman [8] suggests the use of transport layer security (TLS) and mutual transport layer 

security (MTLS) to protect data in transit.  TLS provides encryption of data which prevents data 

from being visible to other unauthorized entities when data is being sent between two 
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microservices.  It also provides authentication of the downstream (server) microservice when two 

microservices are communicating with each other.  The downstream (server) microservice 

provides a certificate to the upstream (client) microservice.  The upstream (client) microservice 

verifies the identity of the downstream (server) microservice before establishing communication 

between microservices.  TLS is recommended when HTTP communication is used.  If both the 

downstream (server) and upstream (client) microservices require authentication, then MTLS 

should be used to protect data in transit.  With MTLS, on top of the downstream (server) 

microservice providing a certificate to the upstream (client) microservice for verification, the 

upstream (client) microservice needs to provide a certificate to the downstream (server) 

microservice for verification before establishing communication between microservices. 

 

MTLS and Service Mesh 

When it comes to the identity of the upstream (client) microservice, Newman [8] suggests 

a number of ways to address the issue.  The downstream (server) microservice can request the 

upstream (client) microservice to provide additional information, such as client-side certificate and 

a shared secret, to prove who it is.  MTLS via certificates and service mesh can also be used to 

handle the authentications between upstream (client) and downstream (server) microservices.   

 

Secure Communication Protocols 

Newman [8] suggests the use of secure communication protocols, such as HTTPS, and 

message authentication code, such as hash-based message authentication code, to guarantee the 

integrity of the data from the upstream (client) microservice. 

 

Encryption 

For protecting the data at rest, data should be encrypted by well-known encryption 

algorithms [8, 4, 26].  Encryption can be done at the disk-level and application-level [26].  

However, Newman [8] points out while it is good to encrypt everything, the downside is 

computational overhead.  He suggests breaking down microservices into more fine-grained 
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microservices, evaluating which data set is critical to the operation and requires storing, and 

identifying which data set contains sensitive information that requires encryption. 

 

JWT 

According to [26, 8, 28, 18], JSON Web Token (JWT) can be used to secure data in transit. 

The JWT is a container that carries contextual data and is passed from one microservice to another 

microservice so that microservices can share context.  Upon receiving the JWT, a microservice 

validates the signature of the JWT before processing the request.  Some microservices will also 

validate the audience field of the JWT.  If the JWT is invalid, the microservice will reject it and 

stop the request processing.   

Yargina and Bagge [18] and Barabanov and Makrushin [28] also suggest the use of security 

tokens such as JWT for propagating user identity throughout the microservices architecture. Once 

the user is authenticated by an authentication service within the microservice architecture, a 

security token is generated to represent the client’s identity. The security token will be sent to the 

client via TLS. The client will provide the security token whenever it makes a request. The security 

token along with the request will be passed from one microservice to another microservice to 

complete the request. Upon receiving the security token, a microservice will validate and verify 

the security token before processing the request. If the security token is invalid, the microservice 

will reject it and stop the request processing. 

There are two types of JWTs.  The first type of JWTs is issued by a security token service 

(STS) that is trusted by all microservices in the same trusted domain governed by the STS. It is 

typically used when authentication is not required between microservices.  Depending on the 

application scenario and the level of trust in the microservice deployment, microservice might 

request a custom JWT to be generated by the STS for each service interaction.   

The second type of JWTs is self-issued by an individual microservice using its own private 

key.  The self-issued JWT is passed as an HTTP header along with the request to the downstream 

(server) microservice over TLS.  The choice of TLS as the communication protocol is to protect 
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the confidentiality and integrity of the communication since JWT is a bearer token and to minimize 

the risk of an attacker stealing the token. The downstream (server) microservice verifies the JWT 

using the upstream (client) microservice’s public key.  Self-issued JWT also offers nonrepudiation 

since the contextual data is bound to the upstream (client) microservice.  Secure data in transit is 

achieved since microservices cannot modify the content carried by the JWTs, and different types 

of validations, e.g., signature and audience, are performed before accepting JWTs.  Siriwardena 

and Dias [26] suggest that self-issued JWT for each service interaction is generally more secure 

than using a shared JWT because the JWT will have a specific audience.  The need to have a JWT 

for each service interaction depends on the level of trust in the microservices deployment.   

Newman [8] mentions three issues to watch out for when it comes to using JWT tokens.  

The first issue is about key management.  In order for a downstream (server) microservice to verify 

a signed JWT token, it needs to have access to the public key of the upstream (client) microservice.  

The downstream (server) microservice needs to know where to find the public key of the upstream 

(client) microservice.  The maintenance of the lifecycle of public keys can become an issue.  The 

downstream (server) microservice needs to figure out when and how often the public key of the 

upstream (client) microservice would change.  The second issue is about expiration of tokens.  

Architects need to understand the impact of long expiration time on tokens and the security of the 

system.  Some processes are asynchronous and might take a long time to complete their tasks, and 

hence the long expiration time on the token.  The last issue is the amount of information each token 

should hold.  Architects need to understand the impact of holding too much information in each 

token and the security of the system.    
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3.1.6. Patching 

3.1.6.1. Challenges 

In July 2017, Equifax [52, 61] disclosed a data breach resulting in personal identifiable 

information of at least 145.5 million individuals in the U.S. and nearly 1 million people outside 

the U.S. being accessed and/or stolen by attackers. The root cause of the breach was caused by a 

known vulnerability in Apache Struts Web Framework that was not patched within Equifax’s 

infrastructure.  The vulnerability allowed attackers to execute commands on affected systems.   

The United States Computer Emergency Readiness Team publicly announced this 

vulnerability two days prior to the attack taking place.  Apache Software Foundation released a 

patch for the vulnerabilities on March 7th, 2017.  Equifax administrators were instructed to apply 

the patch to any vulnerable systems on March 9th, 2017, however, the patch was not applied to 

any of their vulnerable systems.  On March 15th, 2017, the scans performed by Equifax did not 

flag any of the vulnerable systems.  During the same month, Mandiant, a security consulting firm, 

was hired to investigate a series of incidents where criminals used stolen social security numbers 

to log into Equifax sites.  They issued warnings to Equifax about multiple unpatched and 

misconfigured systems.   

Attackers were able to take advantage of the vulnerability in Apache Struts Web 

Framework and gained unauthorized access to Equifax’s online dispute portal.  In subsequent 

months, they were able to access other systems and retrieve personal identifiable information and 

unencrypted usernames and passwords.  The retrieved usernames and passwords were used to 

access additional 48 databases.  The attackers disguised the data as normal network traffic so that 

they were able to remove the data without being detected.    

Equifax’s data breach incident highlights the importance of patching and the potential 

consequences of failing to keep up with patching in one’s infrastructure.  Equifax’s data breach is 

not an isolated incident.  There are many more attacks in which failure to keep up with patches is 
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the leading cause.  As companies continue to develop and deploy complex systems, the challenges 

of keeping up with patching will increase [8].   

Newman [8] describes another challenge with patching that involves the infrastructure and 

software that the microservices run on.  It is important to know who owns the infrastructure and 

software that the microservices run on.  The ownership will impact who is responsible for 

maintaining and patching the infrastructure and software that microservices run on and how often 

they will be patched.  Venčkauskas et al. [47] reports that oftentimes microservices are dependent 

on third-party libraries and services.  If the third-party libraries and services are vulnerable, it can 

have a negative effect on the microservices if they are not patched.  It is important to understand 

the dependencies between microservices and third-party libraries used in the development of 

microservices. 

 

3.1.6.2. Security Practices 

Newman [8] describes the importance of knowing who owns the infrastructure and 

software that microservices run on and assigning the right personnel to maintain and handle the 

patching.  Venčkauskas et al. [47] makes a similar suggestion as Newman but on the third-party 

libraries and services that microservices use in their development. 

 

3.1.7. Deployment 

3.1.7.1. Challenges 

Siriwardena and Dias [26] describes as the deployment of microservices increases in scale, 

it makes it extremely challenging to manage and maintain the security.  Each communication 

channel between microservices requires protection. Each microservice must manage the 

authentication, authorization, revocation, and rotation of the security mechanism when interacting 

with another microservice.  Two major financial institutions in the United States and United 

Kingdom are mentioned to illustrate the deployment scale.  In July 2019, Capital One deployed 
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thousands of microservices on several thousands of containers with thousands of Amazon Elastic 

Compute Cloud instances.  In November 2019, Monzo had more than 1500 services running on its 

microservices deployment.  Without a way to automate security, it makes it extremely different to 

manage microservices in a large-scale deployment. 

Siriwardena and Dias [26] also describes the challenge of maintaining service credentials 

and access control policies in containers.  If a microservice is deployed in a container, the container 

is considered as an immutable container.  The container is booted up from a base configuration. 

Any changes to the files in the file system and the runtime state are not maintained by the container. 

It means that any changes to the clients and access-control policies that were previously updated 

in an instance of a microservice will not be sharable to another instance of the same microservice.  

It creates an issue with how service credentials and access control policies are maintained across 

different instances of the same microservice.      

Torkura et al. [2] states that it is typically for different development teams to be in charge 

of building microservices that serve different business needs.  Development teams will use the 

most appropriate technologies in the development of the microservices based on the team’s 

development experience and the business requirements.  While this development pattern aids 

productivity, it makes managing security more challenging since different technologies have 

different security concerns and vulnerabilities.  The technology agnostic nature of microservices 

also makes vulnerability detection more difficult [67].  Joseph and Chandrasekaran [64] states that 

the number of security capabilities are higher due to the polyglot stack functionality of 

microservices.   

The dynamic deployment of microservices results in constant changes in resource 

parameters, e.g., IP addresses, port numbers, and service endpoints. The constant changes in 

resource parameters poses a challenge in security assessments which are traditionally configured 

for static network resources [2]. 
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3.1.7.2. Security Practices 

Regarding the issue of immutability of containers and how service credentials and access 

control policies are maintained, Siriwardena and Dias [26] suggests the use of a push or a pull 

model.  The service credentials and access control policies are maintained at a policy 

administration endpoint.  With a push model, the policy administration endpoint pushes the 

updates to the microservice at bootup.  With a pull model, the microservice periodically pulls 

updates from the policy administration endpoint.    

 

3.1.8. Trust 

3.1.8.1. Challenges 

Dragoni et al. [36] describes that microservices are often designed to trust each other in a 

microservice architecture.  Microservices architecture is vulnerable to both threats from other hosts 

and threats from components within the boundary of the system [64].  When a malicious adversary 

attacks and gains control of an individual microservice, it can affect other microservices in the 

microservice architecture.  The malicious adversary can manipulate microservices to do what 

he/she wants them to do, escalate privileges on the hosting infrastructure of the microservices, 

listen on any inter-service communication, alter data in transit, lead to full disclosure of other 

microservices, and potentially bring down the entire system [18, 4, 32, 36, 2]. 

Yuqiong et al. [32] describes a real-world example on how trust relationships between 

microservices can have a negative impact on the security of a microservice architecture. A 

subdomain of Netflix was compromised, it led to an adversary having the ability to serve any 

content on netflix.com and ability to tamper with authenticated Netflix subscribers and their data 

since Netflix allowed all users’ cookies to be accessed from any subdomain. 
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3.1.8.2. Security Practices 

Mateus-Coelho et al. [4] discusses the importance of providing layers of security 

throughout an architecture and suggests the use of firewalls, intrusion detection systems, and 

intrusion prevention systems as defense mechanisms on top of other security mechanisms. 

Newman [8] suggests the use of the principle of zero trust where the environment is hostile 

and bad actors could be present to launch an attack and threat modeling to drive the security design 

in a microservice infrastructure. He provides an example of a secure design used in a healthcare 

system where sensitive data is kept.  The data is classified based on their sensitivity level.  

Microservices are classified based on the most sensitive data they use.  Each microservice runs in 

the zone matching the most sensitive data it uses.  Microservices in the same zone can 

communicate without each other.  Microservices in a more secure zone can use microservices in a 

lower secure zone.  

Venčkauskas et al. [47] suggests dividing microservices according to the degree of access 

they need, with stricter security measures for the critical microservices.  That way, the damage can 

be isolated instead of propagated to the rest of the system.   

 

3.1.9. Larger Surface Area 

3.1.9.1. Challenges 

Microservices architecture is a style where a software application is built as a composition 

of microservices, and microservices communicate with each other via APIs over the network.  

Communications between microservices over the network cause exposure to more potential attacks 

than a monolithic application due to the increased number in entry points, and hence increases the 

attack surface area [36, 3, 2, 26, 19, 4, 47].  With the attack surface area being larger, it makes it 

harder to manage security.   
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3.1.9.2. Security Practices 

API Gateway 

Torkura et al. [2] describes the use of continuous security assessments with security 

gateway, dynamic document stores, and security health endpoints to reduce attack surfaces.  

Security gateway serves as a security enforcement point that enforces security policies on 

microservices and infrastructure components.  Each microservice is designed to provide an 

openAPI document.  Dynamic document stores openAPI documents of microservices which 

allows security scanners to extract information for security testing. Security health endpoints 

provide security status and assessment results of microservices.   

 

Zero Trust Model 

Newman [8] suggests the use of the principle of zero trust where the environment is hostile 

and bad actors could be present to launch an attack and threat modeling to drive the security design 

in a microservice infrastructure. He provides an example of a secure design used in a healthcare 

system where sensitive data is kept.  The data is classified based on their sensitivity level.  

Microservices are classified based on the most sensitive data they use.  Each microservice runs in 

the zone matching the most sensitive data it uses.  Microservices in the same zone can 

communicate without each other.  Microservices in a more secure zone can use microservices in a 

lower secure zone. 

 

3.2. DEVELOPMENT OF THE FRAMEWORK FOR SECURITY MODELING AND SPECIFICATION IN 

MICROSERVICE ARCHITECTURES 

This section describes the development of the approach, called Framework for Security 

Modeling and Specification in Microservice Architectures, to enhance the security modeling and 

specifications in microservice architectures (RQ3). The basis for the approach is the review of the 

literature, documentation, and industry practices described in Section 3.1.  The approach leverages 

the security challenges in microservices architecture and integrates the corresponding security 
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practices to create a set of security properties for microservice architectures in AADL and a set of 

decision trees to guide software architects on how to use the security properties when designing a 

secure microservice architecture and what additional structural elements (components and 

connectors) are required to support a secure architecture design.  With the security properties 

annotated on components and connectors, it allows software architects to run analysis and 

simulations at the architecture level to ensure that security architecture characteristics are satisfied.   

The next subsections present the security properties grouped as follows:  general security 

properties, network perimeter related properties, edge level related properties, communication 

related properties, data related properties, log related properties, deployment related properties, 

trust related properties, authentication related properties, and authorization related properties.  The 

decision trees associated with each property can be found in Appendix A. 

 

3.2.1. General Security Properties 

3.2.1.1. SecurityLevelProvided 

▪ Property Name: SecurityLevelProvided 

▪ Description: 

o This property specifies the level of security the component or connector offers. 

o This property is an enumeration with the values of networkPerimeterLevel, 

edgeLevel, serviceLevel, communicationLevel, infrastructureLevel. The semantics 

of the values are:  

▪ networkPerimeterLevel refers to the component offering network perimeter 

security and enforcing network perimeter related security rules.  

▪ edgeLevel refers to the component offering edge security and enforcing 

edge related security rules. 

▪ serviceLevel refers to the component that is representing an individual core 

microservice offering security at the microservice level.  The security rules 



48 

are enforced by the individual core microservices.  Core microservice refers 

to microservice that serves a business purpose in the given problem domain.  

▪ infrastructureLevel refers to the component that is not representing an 

individual core microservice offering security at the microservice level and 

enforcing security rules that will impact one or more individual core 

microservices in the microservice architecture.  Core microservice refers to 

microservice that serves a business purpose in the given problem domain.  

▪ communicationLevel refers to the connector offering communication 

security and enforcing communication related security rules. 

o This property can be specified for abstract, system, process, thread, and connection. 

o This property is derived from the concept of defense in depth concept where 

security should be applied and layered throughout the microservice architecture.  

The concept of defense in depth is described in the following literatures: 

▪ [8] 

▪ [26]. 

▪ Declaration: 

SecurityLevelProvided: enumeration (networkPerimeterLevel, edgeLevel, serviceLevel, 

communicationLevel, infrastructureLevel) applies to (abstract, system, process, thread, 

connection); 

▪ Property Association Example: 

o SecurityLevelProvided => networkPerimeterLevel; 

 

3.2.2. Network Perimeter Related Properties 

3.2.2.1. NetworkPerimeterLevel 

▪ Property Name: NetworkPerimeterLevel 

▪ Description: 
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o This property specifies the type of network perimeter security mechanism that the 

component provides. 

o This property is an enumeration with the values of intrusionDetectionPrevention 

and firewallAccess. The semantics of the values are:  

▪ intrusionDetectionPrevention refers to the ability to detect irregular and 

unusual activities. 

▪ firewallAccess refers to the ability to accept and/or deny requests based on 

IP addresses. 

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the following literatures: 

▪ [8] 

▪ [26]. 

▪ Declaration: 

NetworkPerimeterLevel: enumeration (intrusionDetectionPrevention, firewallAccess) applies 

to (abstract, system, process, thread); 

▪ Property Association Example:  

o NetworkPerimeterLevel => intrusionDetectionPrevention; 

o NetworkPerimeterLevel => firewallAccess; 

 

3.2.3. Edge Level Related Properties 

3.2.3.1. EdgeLevel 

▪ Property Name: EdgeLevel 

▪ Description: 

o This property specifies the type of edge security mechanism that the component 

provides.   
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o This property is an enumeration with the value of APIGateway.  The semantics of 

the value is: 

▪ APIGateway [57, 30, 26] is a reverse proxy that is typically deployed at the 

edge of a system, data center, or as part of each product, line of business, or 

department, or between a public network and demilitarized zone of a private 

network. It serves as an entry point for a defined group of APIs. It decouples 

external APIs from internal microservice APIs and prevents microservices 

from being contacted directly.   

▪ API gateway protects APIs from overuse and abuse, such as with throttle 

limits, it reduces the chance of DoS/DDoS attacks [57, 30] 

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the following literatures: 

▪ [57] 

▪ [30] 

▪ [37] 

▪ [26]. 

▪ Declaration: 

EdgeLevel: enumeration (APIGateway) applies to (abstract, system, process, thread) 

▪ Property Association Example:  

o EdgeLevel => APIGateway; 

 

3.2.3.2. APIRequestPerSecond_type 

▪ Property Name: APIRequestPerSecond_type 

▪ Description: 

o This is a property type that defines the maximum rate of requests a single API can 

receive per second.   
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o This is a property of type “type record” with two fields:  

o APIName: This field is of type aadlstring.  It defines the name of the API that 

fulfills a request.  

o requestPerSecond: This field is of type aadlinteger and must be a positive numeric 

value.  It defines the rate of requests per second for the said API. 

o This property is created to support the structure of the following properties: 

▪ MaxRequestMicroservice 

▪ APIRequestPerSecondMicroserviceName_type. 

▪ Declaration: 

APIRequestPerSecond_type: type record ( 

APIName: aadlstring; 

requestPerSecond: aadlinteger units (perSecond); 

); 

▪ Property Association Example: Not available because it is a property type. 

 

3.2.3.3. APIRequestPerSecondMicroserviceName_type 

▪ Property Name: APIRequestPerSecondMicroserviceName_type 

▪ Description: 

o This is a property type that defines a list of the maximum rate of requests a single 

API can receive per second for all APIs that a microservice has. 

o This is a property of type “type record” with two fields:  

▪ microserviceName:  This field is of type aadlstring. It defines the name of 

the microservice that owns the APIs. 

▪ APIRequest: This field is a list of APIRequestPerSecond_type values. 

o This property is created to support the structure of the following properties: 

▪ MaxRateLimitEdge 



52 

▪ APIRequestPerSecondMicroserviceNameApp_type 

▪ APIRequestPerSecondMicroserviceNameUser_type 

▪ APIRequestPerSecondMicroserviceNameOperation_type. 

▪ Declaration: 

APIRequestPerSecondMicroserviceName_type: type record( 

microserviceName: aadlstring; 

APIRequest: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecond_type; 

); 

▪ Property Association Example: Not available because it is a property type. 

 

3.2.3.4. MaxRateLimitEdge 

▪ Property Name: MaxRateLimitEdge 

▪ Description: 

o This property specifies the rate limiting.  Rate limiting refers to if the rate of 

incoming request exceeds a predefined number of requests per second, the edge 

level security microservice will reject all the incoming requests. It is to handle 

unprecedented surges and to prevent total loss of availability at the edge.  The trade 

off is to serve as many requests as possible instead of encountering service 

unavailability for everyone.   

o This property is a list of APIRequestPerSecondMicroserviceName_type values. 

o This property must include all the APIs that are exposed at the edge. 

o This property can be specified for abstract, system, process, and thread. 

o This property is related to MaxRequestMicroservice. Please refer to 

MaxRequestMicroservice property for more information.  

o This property is derived from the following literatures: 
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▪ [66] 

▪ [26] 

▪ [58]. 

▪ Declaration: 

MaxRateLimitEdge: list of Microservice_Architecture_Security 

Properties:APIRequestPerSecondMicroserviceName_type applies to (abstract, system, 

process, thread); 

▪ Property Association Example: 

o MaxRateLimitEdge =>  

([microserviceName => "n";  

    APIRequest=>  

([APIName => "m"; requestPerSecond=> p perSecond;],  

...,  

[APIName => "q"; requestPerSecond=> r perSecond;])], 

     …,  

  [microserviceName => "a";  

    APIRequest=>  

([APIName => "b"; requestPerSecond=> c perSecond;],  

...,  

[APIName => "d"; requestPerSecond=> e perSecond;])]); 

 -- where n/a is a string that represents the name of the microservice 

 -- where m/b/q/d is a string that represents the name of the API 

-- where p/r/c/e is an integer that represents the maximum number of requests an 

API can process per second 

o MAXRateLimitEdge =>  

([microserviceName => "Order";  

APIRequest=>  
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([APIName => "View_Order"; requestPerSecond=> 45 perSecond;],  

[APIName => "Place_Order"; requestPerSecond=> 45 perSecond;]);], 

[microserviceName => "Catalog";  

APIRequest=>  

([APIName => "View_Catalog"; requestPerSecond=> 45 perSecond;]);]); 

 

3.2.3.5. MaxRequestMicroservice 

▪ Property Name: MaxRequestMicroservice 

▪ Description: 

o This property defines the maximum rate of requests per second that a microservice 

can handle for all the APIs the microservice has.   

o This property is a list of APIRequestPerSecond_type values. 

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the following literatures: 

▪ [26]  

▪ [58]. 

▪ Declaration: 

MaxRequestMicroservice: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecond_type 

applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o maxRequestMicroservice =>  

([APIName => "p", requestPerSecond= q perSecond],     

  ...,                                               

[APIName => "q", requestPerSecond=b perSecond]);  

-- where p/a is a name of the API 
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-- where q/b is an integer representing the maximum number of requests that said API can 

handle per second. 

o MaxRequestMicroservice =>  

([APIName => "View_Order"; requestPerSecond=> 50 perSecond;], 

 [APIName => "Place_Order"; requestPerSecond=> 50 perSecond;]); 

 

3.2.3.6. APIRequestPerSecondMicroserviceNameApp_type 

▪ Property Name: APIRequestPerSecondMicroserviceNameApp_type 

▪ Description: 

o This is a property type that defines a list of the maximum rate of requests a single 

API can receive per second for the APIs that a microservice has exposed at the edge 

for each application type.  

o This is a property of type “type record” with two fields:  

o applicationType: This field is of type aadlstring.  It defines the origin of where the 

external requests come from.  The typical values are web application, mobile 

application, and tablet application.  

o APIRequestMicroservice: This field is a list of 

APIRequestPerSecondMicroserviceName_type. 

o This property is created to support the structure of the following property: 

▪ RequestPerApplicationType. 

▪ Declaration: 

APIRequestPerSecondMicroserviceNameApp_type: type record ( 

 applicationType: aadlstring; 

APIRequestMicroservice: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserv

iceName_type; 
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); 

▪ Property Association Example: Not available because it is a property type. 

 

3.2.3.7. APIRequestPerSecondMicroserviceNameUser_type 

▪ Property Name: APIRequestPerSecondMicroserviceNameUser_type 

▪ Description: 

o This is a property type that defines a list of the maximum rate of requests a single 

API can receive per second for APIs that a microservice has exposed at the edge 

for each user.  

o This is a property of type “type record” with two fields:  

▪ userIdentifier: This field is of type aadlstring.  It defines who is sending the 

external requests.   

▪ APIRequestMicroservice: This field is a list of 

APIRequestPerSecondMicroserviceName_type. 

o This property is created to support the structure of the following property: 

o   RequestPerUser. 

▪ Declaration: 

APIRequestPerSecondMicroserviceNameUser_type: type record( 

 userIdentifier: aadlstring; 

APIRequestUser: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserv

iceName_type; 

); 

▪ Property Association Example: Not available because it is a property type. 
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3.2.3.8. APIRequestPerSecondMicroserviceNameOperation_type 

▪ Property Name: APIRequestPerSecondMicroserviceNameOperation_type 

▪ Description: 

o This is a property type that defines a list of maximum rate of requests an operation 

of an abstracted API can receive per second for APIs that a microservice has 

exposed at the edge. An API can be an abstraction of one or more operations. This 

property allows the regulation of the maximum rate of request to be done at the 

operation level. 

o This is a property of type “type record” with two fields:  

▪ operationName: This field is of type aadlstring.  It defines the name of the 

operation that needs regulation on the maximum rate of requests it can 

process.   

▪ APIRequestMicroservice: This field is a list of 

APIRequestPerSecondMicroserviceName_type. 

o This property is created to support the structure of the following property: 

o   RequestPerOperation. 

▪ Declaration: 

APIRequestPerSecondMicroserviceNameOperation_type: type record ( 

operationName: aadlstring; 

APIRequestOperation: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroservice

Name_type; 

); 

▪ Property Association Example: Not available because it is a property type. 
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3.2.3.9. RequestPerApplicationType 

▪ Property Name: RequestPerApplicationType 

▪ Description: 

o This property specifies the maximum rate of requests per second that the edge 

security component should handle per application type.  If the rate of requests 

exceeds a predefined number of requests per second, the edge level security 

microservice will wait for a duration of time before processing more requests.   

o This property lowers the risk of malicious attacks like denial of service/distributed 

denial of service attacks where targeted resources are being overloaded with traffic 

and unable to perform their responsibilities.   

o This is a property of type “record” with 3 fields: 

▪ description: This field is of type aadlstring.  It provides a description of the 

usage of the property. 

▪ waitTime: This field is of type Time and the values must be positive.  The 

standard Time units are ps (picoseconds), ns (nanoseconds), us 

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr 

(hours).  

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of 

APIRequestPerSecondMicroserviceNameApp_type.   

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the following literature: 

▪ [26] 

▪ [58]. 

▪ Declaration: 

RequestPerApplicationType: record ( 

description: aadlstring; 
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waitTime: Time; 

microservice_API_requestPerSecond_App: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meApp_type; 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o RequestPerApplicationType => [ 

description => "n";  

 waitTime => z sec; 

microservice_API_requestPerSecond_App =>      

([applicationType => "m"; 

APIRequestMicroservice =>       

 ([microserviceName => "a";   

             APIRequest =>  

([APIName => "b";        

requestPerSecond => c perSecond;],   

 ... 

  [APIName => "d";         

requestPerSecond => d perSecond;]);], 

     [microserviceName => "f";                                          

     APIRequest =>  

([APIName => "g";    

 requestPerSecond => h perSecond;],   

... 

[APIName => "i";    

 requestPerSecond => j perSecond;]);]);], 
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[applicationType => "k";                

APIRequestMicroservice =>   

    ([microserviceName => "l";  

     APIRequest =>  

([APIName => "o"; 

  requestPerSecond => p perSecond;], 

   ...    

[APIName =>  "q";  

requestPerSecond => r perSecond;]);]);]);]; 

-- where n is a series of strings that describes limitation of requests at the application level  

-- where m/k is a string that describes the application type 

-- where a/f/l is a string that represents the name of the microservice  

-- where b/d/g/i/o/q is a string that represents the name of the API 

-- where c/e/h/j/p/r/z is an integer in seconds 

o RequestPerApplicationType =>  

[description => "Regulation rate of request by mobile application'";  

 waitTime => 1000 sec; 

 microservice_API_requestPerSecond_App =>  

  ([applicationType => "Mobile application"; 

     APIRequestMicroservice =>  

([microserviceName => "Order"; 

  APIRequest =>  

([APIName => "View_Order";  

requestPerSecond => 50 perSecond;], 

    [APIName => "Place_Order";  

requestPerSecond => 50 perSecond;]);], 

       [microserviceName => "Catalog";  
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APIRequest =>  

([APIName => "View_Catalog";  

requestPerSecond => 50 perSecond;]);]);]);]; 

 

3.2.3.10. RequestPerUser 

▪ Property Name: RequestPerUser 

▪ Description: 

o This property specifies the maximum rate of requests per second that the edge 

security component should handle per user.  If the rate of requests exceeds a 

predefined number of requests per second, the edge level security microservice will 

wait for a duration of time before processing more requests.   

o This property lowers the risk of malicious attacks like denial of service/distributed 

denial of service attacks where targeted resources are being overloaded with traffic 

and unable to perform their responsibilities.   

o This is a property of type “record” with 3 fields: 

▪ description: This field is of type aadlstring.  It provides a description of the 

usage of the property. 

▪ waitTime: This field is of type Time and the values must be positive.  The 

standard Time units are ps (picoseconds), ns (nanoseconds), us 

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr 

(hours).  

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of 

APIRequestPerSecondMicroserviceNameUser_type.   

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the following literature: 

▪ [26] 
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▪ [58]. 

▪ Declaration: 

RequestPerUser: record ( 

description: aadlstring; 

waitTime: Time; 

microservice_API_requestPerSecond_User: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meUser_type; 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o RequestPerUser => [ 

description => "n";  

 waitTime => z sec; 

microservice_API_requestPerSecond_User =>      

([userIdentifier => "m"; 

      APIRequestUser =>   

([microserviceName => "a";                    

APIRequest =>  

([APIName => "b";  

requestPerSecond => c perSecond;],   

       ... 

[APIName => "d";         

requestPerSecond => d perSecond;]);], 

     [microserviceName => "f";                                          

     APIRequest =>  

([APIName => "g";    

 requestPerSecond => h perSecond;],   ...            
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 [APIName => "i";    

 requestPerSecond => j perSecond;]);]);], 

    [userIdentifier => "k";            

         APIRequestUser =>          

     ([microserviceName => "l";  

      APIRequest =>  

([APIName => "o";       

requestPerSecond => p perSecond;],  

  ...    

[APIName => "q";         

requestPerSecond => r perSecond;]);]);]);]; 

-- where n is a series of strings that describes limitation of requests at the user level  

-- where m/k is a string that describes the user identity 

-- where a/f/l is a string that represents the name of the microservice  

-- where b/d/g/i/o/q is a string that represents the name of the API 

-- where c/e/h/j/p/r/z is an integer in seconds 

o RequestPerUser =>  

[description => "Regulation rate of request by user identifier'";  

  waitTime => 1000 sec; 

  microservice_API_requestPerSecond_User =>  

   ([userIdentifier => "abewerwerewrwrwerwerrew"; 

       APIRequestUser =>  

([microserviceName => "Order";    

   APIRequest =>  

([APIName => "View_Order";  

requestPerSecond => 50 perSecond;], 

      [APIName => "Place_Order";  



64 

requestPerSecond => 50 perSecond;]);], 

      [microserviceName => "Catalog";  

  APIRequest =>  

([APIName => "View_Catalog";  

requestPerSecond => 50 perSecond;]);]);]);]; 

 

3.2.3.11. RequestPerOperation 

▪ Property Name: RequestPerOperation 

▪ Description: 

o This property specifies the maximum rate of requests per second that the edge 

security component should handle per operation.  If the rate of requests exceeds a 

predefined number of requests per second, the edge level security microservice will 

wait for a duration of time before processing more requests.   

o This property lowers the risk of malicious attacks like denial of service/distributed 

denial of service attacks where targeted resources are being overloaded with traffic 

and unable to perform their responsibilities.   

o This is a property of type “record” with 3 fields: 

▪ description: This field is of type aadlstring.  It provides a description of the 

usage of the property. 

▪ waitTime: This field is of type Time and the values must be positive.  The 

standard Time units are ps (picoseconds), ns (nanoseconds), us 

(microseconds), ms (milliseconds), sec (seconds), min (minutes), and hr 

(hours).  

▪ APIRequestPerSecondMicroserviceNameApp_type: This field is a list of 

APIRequestPerSecondMicroserviceNameOperation_type.   

o This property can be specified for abstract, system, process, and thread. 
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o This property is derived from the following literatures: 

▪ [26] 

▪ [58]. 

▪ Declaration: 

RequestPerOperation: record ( 

description: aadlstring; 

waitTime: Time; 

microservice_API_requestPerSecond_Op: list of 

Microservice_Architecture_Security_Properties::APIRequestPerSecondMicroserviceNa

meOperation_type; 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o RequestPerOperation => [ 

description => "n";  

waitTime => z sec; 

microservice_API_requestPerSecond_Op =>      

([operationName => "m"; 

     APIRequestOperation =>      

     ([microserviceName => "a";      

                 APIRequest =>  

([APIName => "b";     

   requestPerSecond => c perSecond;],   

    ... 

[APIName => "d";         

requestPerSecond => d perSecond;]);], 

      [microserviceName => "f";                                          

      APIRequest =>  
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([APIName => "g";    

 requestPerSecond => h perSecond;],   ...            

 [APIName => "i";    

 requestPerSecond => j perSecond;]);]);], 

    [userIdentifier => "k";            

      APIRequestOperation =>        

       ([microserviceName => "l";  

      APIRequest =>  

([APIName => "o";       

requestPerSecond => p perSecond;],   

 ...    

[APIName => "q";         

requestPerSecond => r perSecond;]);]);]);]; 

-- where n is a series of strings that describes limitation of requests at the user level  

-- where m/k is a string that describes the user identity 

-- where a/f/l is a string that represents the name of the microservice  

-- where b/d/g/i/o/q is a string that represents the name of the API 

-- where c/e/h/j/p/r/z is an integer in seconds 

o RequestPerUser =>  

[description => "Regulation rate of request by user identifier'";  

  waitTime => 1000 sec; 

  microservice_API_requestPerSecond_Op =>  

   ([operationName => ""; 

       APIRequestMicroservice =>  

([microserviceName => "Order";    

   APIRequest =>  

([APIName => "View_Order";  
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requestPerSecond => 50 perSecond;], 

     [APIName => "Place_Order";  

requestPerSecond => 50 perSecond;]);], 

    [microserviceName => "Catalog";  

        APIRequest =>  

([APIName => "View_Catalog";  

requestPerSecond => 50 perSecond;]);]);]);]; 

 

3.2.3.12. MessagePayloadSizeLimit 

▪ Property Name: MessagePayloadSizeLimit 

▪ Description: 

o This property specifies the maximum message payload size an external application 

can send.   

o This property lowers the risk of malicious attacks like denial of service/distributed 

denial of service attacks where targeted resources are being overloaded with traffic 

and unable to perform their responsibilities.  

o This property is of type aadlinteger with mb as the unit. 

o This property can be specified for data and port. 

o This property is derived from the following literature:  

▪ [58]. 

▪ Declaration: 

MessagePayloadSizeLimit: aadlinteger units (mb) applies to (data, port); 

▪ Property Association Example:  

o MessagePayloadSizeLimit => n;  

-- where n is an integer with units in mb. 

o MessagePayloadSizeLimit => 10 mb; 
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3.2.4. Communication Related Properties 

3.2.4.1. SecureCommunication 

▪ Property Name: SecureCommunication 

▪ Description: 

o This property specifies the communication protocol used between microservices. 

o This property is an enumeration with the values of TLS and MTLS.  The semantics 

of the values are: 

▪ TLS: It stands for transport layer security.   It protects the communication 

between two microservices because the upstream (client) microservice 

knows the identity of the downstream (server) microservice it interacts with. 

Messages are protected for integrity and confidentiality while in transit.   

▪ MTLS: It stands for mutual transport layer security.  It protects the 

communication between two microservices because the upstream (client) 

microservice knows the identity of the downstream (server) microservice it 

is interacting with and the downstream (server) microservice knows the 

identity of the upstream (client) microservice it interacts with.  Messages 

are protected for integrity and confidentiality while in transit. 

o This property can be specified only for connectors. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.4. Communications. 

▪ Declaration: 

SecureCommunication: enumeration (TLS, MTLS) applies to (connection); 

▪ Property Association Example:  

o SecureCommunication => TLS; 

o SecureCommunication => MTLS; 
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3.2.5. Data Related Properties 

3.2.5.1. dbAccessModel 

▪ Property Name: dbAccessMode 

▪ Description: 

o This property specifics the access mode to the database of a microservice. 

o This property is an enumeration with the values of read_only, read_write, 

write_only.  The semantics of the values are: 

▪ read_only refers to read access to the database that is associated with the 

microservice. 

▪ read_write refers to read write access to the database that is associated with 

the microservice. 

▪ write_only refers to write access to the database that is associated with the 

microservice. 

o This property can be specified for data. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.5. Data. 

▪ Declaration: 

dbAccessMode: enumeration (read_only, read_write, write_only) applies to (data); 

▪ Property Association Example:  

o dBAccessMode => n; -- where n is either "read_only, "read_write", or "write_only" 

o dBAccessMode => read_only; 

 

3.2.5.2. DataAtRest 

▪ Property Name: DataAtRest 

▪ Description: 
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o This is a property type that defines the basic building block of data encryption for 

data at rest. 

o This is a property of type “type record” with 4 fields: 

▪ description: This field is of type aadlstring.  It describes the need to encrypt 

or not encrypt a data block. 

▪ dataBlock: This field is of type aadlstring.  It describes the size and scope 

of the data block that might or might not require encryption.  

▪ dataCriticality:  This field is of type aadlinteger and must be a positive 

numeric value.  The higher the value, the more critical the data in the data 

block is. 

▪ atRestEncryption:  This field is an enumeration with the values required and 

not required.  The semantics of the values are: 

• required refers to encryption is required on the specified data block. 

• not_required refers to encryption is not required on the specified 

data block. 

o This property is created to support the structure of the following property: 

▪ DataAtRestEncryption. 

▪ Declaration: 

DataAtRest: type record( 

description: aadlstring; 

dataBlock: aadlstring; 

dataCriticality: aadlinteger; 

atRestEncryption: enumeration (required, not_required); 

); 

▪ Property Association Example: Not available because it is a property type. 
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3.2.5.3. DataAtRestEncryption 

▪ Property Name: DataAtRestEncryption 

▪ Description: 

o This property specifies a list of data blocks and their requirements on encryption. 

o This property is a list of DataAtRest values. 

o This property can be specified for data. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.5. Data. 

▪ Declaration: 

DataAtRestEncryption: list of Microservice_Architecture_Security_Properties::DataAtRest 

applies to (data); 

▪ Property Association Example:  

o DataAtRestEncryption => ( 

[description => "m";  

  dataBlock => "p"; 

  dataCriticality => q;  

atRestEncryption => r;],  

 [description => "s";   

  dataBlock => "t"; 

  dataCriticality => u;  

 atRestEncryption => v;],); 

-- where m/s is a string that describes the need to encrypt or not encrypt a data block. 

-- where p/t is a string that describes the size and scope of the data block that might or 

might not require encryption. 

-- where q/u is an integer that describes the criticality of the data in the data block.  The 

higher the number, the more critical it is. 
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-- where r/v is either "required" or "not_required". 

 

3.2.5.4. MicroserviceDataSensitivity 

▪ Property Name: MicroserviceDataSensitivity 

▪ Description: 

o This property specifies the relationship between microservices from a data 

perspective to facilitate the proper flow of data and communication between 

microservices.   

o Zone is a way to classify microservices within the same trust domain so that 

communication patterns among microservices can be established. Within the same 

trust domain,  

▪ Microservices within the same zone* can communicate with each other.   

▪ Microservice in a higher zone can communicate with microservices that are 

in a lower zone. 

▪ Microservice in a lower zone cannot communicate with microservices that 

are in a higher zone. 

o This is a property of type “record” with 3 fields: 

▪ description: This field is of type aadlstring. It provides a description of the 

usage of the property. 

▪ dataSenstivityLevel: This field is an enumeration with the values of 

publicData, privateData, secretData, and no_Data. The semantics of the 

values are: 

▪ publicData: It refers to data that can be used and accessed by anyone without 

restriction. 

▪ privateData: It refers to data that can only be used and accessed by 

authorized users. 
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▪ secretData: It refers to data that can only be used and accessed by a specific 

list of authorized users. 

▪ no_Data: It refers to the microservice that does not own or store data. 

o This property can be specified for abstract, system, process, and thread. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.5. Data. 

▪ Declaration: 

MicroserviceDataSensitivity: record ( 

description: aadlstring; 

dataSensitivityLevel: enumeration (publicData, privateData, secretData, no_Data); 

microserviceZone: aadlinteger; 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o MicroserviceDataSensitivity => [ 

description => "n";  

dataSensitivityLevel => m;   

microserviceZone => p; 

] 

 -- where n a unique integer corresponding to  the zone 

-- where n is a series of strings that describes the data sensitivity level 

-- where m is either "publicData", "privateData", or  "secretData, no_Data" 

 

3.2.6. Log Related Properties 

3.2.6.1. Log 

▪ Property Name: Log 

▪ Description: 
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o This property specifies the requirements on logging. 

o This is a property of type “record” with 4 fields: 

▪ description: This field is of type aadlstring. It describes the logging needs 

of the microservice. 

▪ logFormat: This field is of type aadlstring. It describes the format 

requirement of the log in facilitating the aggregation of logs and queries 

against aggregated logs. 

▪ logAttribute: This field is of type aadlstring.  It describes the information 

that a microservice should collect, such as correlation ID, date, time in a 

specific format and time zone. 

▪ logLevel: This field is an enumeration with the values of trace, debug, 

information, warning, error, and critical.  The semantics of the values are: 

• trace: It captures all the details of the behavior of the microservice. 

• debug: It captures diagnostic information. 

• information: It captures normal behavior of the microservice. 

• warning: It captures unexpected behavior of the microservice. 

• error: It captures error messages. 

• critical: It captures fatal error messages that cause the crushing of 

the microservice. 

o This property can be specified for abstract, system, process, and thread. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.5. Data. 

▪ Declaration: 

Log: record ( 

 description: aadlstring; 

 logFormat: aadlstring; 

 logAttribute: list of aadlstring; 
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 logLevel: enumeration (trace, debug, information, warning, error, critical); 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o Log => [ 

description => "n"; 

logFormat => "m"; 

logAttribute => ("p", ..., "a"); 

logLevel => q; ) 

]; 

-- where n is a series of strings that describes the details of the log aggregator 

-- where m is a series of strings that describes the structure of the log 

-- where p/a is a series of strings that describes the attributes to log 

-- where q is either "trace", "debug", "information", "warning", "error", or "critical" 

 

3.2.7. Deployment and Patching Related Properties 

3.2.7.1. patch_type 

▪ Property Name: patch_type 

▪ Description: 

o This is a property type that defines the patching frequency of a specific software. 

o This is a property of type “type record” with two fields: 

▪ softwareName: This field is of type aadlstring.  It defines the name of the 

software that requires patching. 

▪ frequency: This field is of type aadlstring.  It defines how often patching is 

request for the said software. 

o This property is created to support the structure of the following property: 

▪ DeploymentType. 
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▪ Declaration: 

patch_type: type record ( 

softwareName: aadlstring; 

frequency: aadlstring; 

); 

▪ Property Association Example: Not available because it is a property type. 

 

3.2.7.2. DeploymentType 

▪ Property Name: DeploymentType 

▪ Description: 

o This property specifies the deployment and patching configuration of a 

microservice. 

o This property is of type “record” with 4 fields: 

▪ description: This field is of type aadlstring.  It describes the deployment and 

patching configuration plan. 

▪ deploymentMechanism: This field is an enumeration with the values 

physical_Machine, virtual_machine, container, platform_as_a_service, and 

function_as_a_service.  The semantics of the values are: 

▪ physical_Machine: Physical machine deployment option refers to 

deploying a single microservice on a physical machine without any layers 

of virtualization or containerization between the microservice and 

underlying hardware.  Deploying multiple microservices on the same 

physical machine violates the isolated execution environment principle. 

▪ virtual_machine: Virtual machine deployment option refers to deploying a 

single microservice on a virtual machine. The virtual machine contains a 

full operating system, kernel, and resources that a microservice can use.   
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▪ container: Container deployment option refers to deploying a single 

microservice on a container. A container contains resources that a 

microservice can use.   

▪ platform_as_a_service: Platform as a service deployment (PaaS) option 

refers to deploying a single microservice on a cloud infrastructure.  Platform 

as service includes infrastructure as a service (IaaS) (computing, 

networking, and storage resources) and resources such as development 

tools, database management systems, middleware,and notification systems 

[56].  The exact amount of resource provided depends on the provider of 

the platform as a service.  Examples of IaaS are AWS, Microsoft Azure, 

and Google Compute Engine.  Examples of PaaS are AWS Elastic 

Beanstalk, Google App Engine, and Heroku. 

▪ function_as_a_service: Function as a service deployment (FaaS) option 

refers to deploying a single microservice as a function on the cloud 

infrastructure.  Example of FaaS is AWS’s Lambda product.   

▪ patchList: This field is a list of patch_type. 

o This property can be specified for abstract, system, process, and thread. 

o This property and the property values are derived from the literatures listed in 

Sections 3.1.6. Patching and 3.1.7. Deployment. 

▪ Declaration: 

DeploymentType: record ( 

description: aadlstring; 

deploymentMechanism: enumeration (physical_Machine, virtual_machine, container, 

platform_as_a_service, function_as_a_service); 

patchList: list of Microservice_Architecture_Security_Properties::patch_type; 

) applies to (abstract, system, process, thread); 

▪ Property Association Example:  
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o DeploymentType => [ 

  description => "n"; 

  deploymentMechanism => m; 

patchList => ( 

[softwareName => p; frequency => q;], 

 ...,  

[softwareName => a; frequency =>b;] 

) 

]; 

-- where n is a series of strings that describes the deployment mechanism of the 

microservice 

-- where m is either "physical _machine", "virtual_machine", "container", 

"platform_as_a_service", or "function_as_a_service" 

-- where p/a is a name of the software that needs to be patched and q/b is the frequency 

in which p/a requires patching.  

o Deployment_Type => [ 

  description => "Deployment and patching configuration of Catalog"; 

deploymentMechanism => virtual_machine; 

patchList => ([softwareName => "PackageX"; frequency => "2 months";]); 

]; 

 

3.2.8. Trust Related Properties 

3.2.8.1. TrustDomain 

▪ Property Name: TrustDomain 

▪ Description: 
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o This property specifies the trust domain a microservice belongs to.  Each 

microservice can only belong to one trust domain. 

o This property is of type aadlinteger and must be a positive number. 

o This property can be specified for abstract, system, process, and thread. 

o This property is derived from the literatures listed in Section 3.1.8. Trust. 

▪ Declaration: 

TrustDomain: aadlinteger applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o TrustDomain => n; -- where n a unique integer corresponding to the trust domain 

o TrustDomain => 2; 

 

3.2.9. Authentication Related Properties 

3.2.9.1. AuthenticationMicroserviceArchitecture 

▪ Property Name: AuthenticationMicroserviceArchitecture 

▪ Description: 

o This property specifies the authentication mechanism used in the microservice 

architecture.  

o This property is an enumeration with the values APIGateway, 

token_based_authentication, certificate_based_authentication, 

API_Key_based_authentication, and federated_based_authentication.  The 

semantics of the values are: 

▪ APIGateway: It refers to the use of API Gateway to handle authentication.  

▪ token_based_authentication: It refers to the use of tokens for 

authentication. 

▪ certificate_based_authentication: It refers to the use of certificates for 

authentication. 
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▪ API_Key_based_authentication: It refers to the use of API keys for 

authentication. 

▪ federated_based_authentication: It refers to the use of federated identity 

solution for authentication. 

o This property can be specified for abstract, system, process, and thread. 

o This property and the property values are derived from the literatures listed in 

Section 3.1.1. Authentication. 

▪ Declaration: 

AuthenticationMicroserviceArchitecture: enumeration (APIGateway, 

token_based_authentication, certificate_based_authentication, 

API_Key_based_authentication, federated_based_authentication) 

applies to (abstract, system, process, thread); 

▪ Property Association Example:  

o AuthenticationMicroserviceArchitecture => certificate_based_authentication; 

 

3.2.10. Authorization Related Properties 

3.2.10.1. AuthorizationMicroserviceArchitecture 

▪ Property Name: AuthorizationMicroserviceArchitecture 

▪ Description: 

o This property specifies the authorization mechanism used in the microservice 

architecture. 

o This property is an enumeration with the values coarse_grained and fine_grained.  

The semantics of the values are: 

▪ coarse_grained typically refers to authorization rules that use a single 

attribute to evaluate a decision to either grant or deny the access, e.g. a 

particular role has access to a particular resource. 
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▪ fine_grained typically refers to authorization rules that use multiple 

attributes to evaluate a decision to either grant or deny the access, e.g. a 

particular role in a particular building has access to a particular resource 

only during a particular duration of time. 

o This property can be specified for abstract, system, process, and thread. 

▪ Declaration: 

AuthorizationMicroserviceArchitecture: enumeration (coarse_grained, fine_grained) applies 

to (abstract, system, process, thread); 

▪ Property Association Example:  

o AuthorizationMicroserviceArchitecture => fine_grained; 

 

3.2.10.2. CoarseGrainedArchitecture 

▪ Property Name: CoarseGrainedAuthorization 

▪ Description: 

o This property specifies the coarse-grained authorization mechanism used in the 

microservice architecture.  

o This property is an enumeration with the value APIGateway.  

o This property can be specified for abstract, system, process, and thread. 

▪ Declaration: 

CoarseGrainedAuthorization: enumeration (APIGateway) applies to (abstract, system, 

process, thread); 

▪ Property Association Example:  

o CoarseGrainedAuthorization => APIGateway; 

 

3.2.10.3. FineGrainedArchitecture 

▪ Property Name: FineGrainedAuthorization 
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▪ Description: 

o This property specifies the fine-grained authorization mechanism used in the 

microservice architecture.  

o This property is an enumeration with the value decentralized and centralized. The 

semantics of the values are: 

▪ decentralized:  When an access control system is implemented using the 

decentralized pattern, each microservice is responsible for making access 

decisions (PDP) and enforcing the access decisions made by the PDP (PEP).  

This pattern offers more fine-grained access control because the access 

control rules are more domain specific.  However, the development team 

must be able to configure the access control rules correctly and manual 

configuration is not scalable.  

▪ centralized: There are two types of centralized access control: a. Centralized 

with PDP- Each microservice is responsible for enforcing access control 

decisions (PEP).  The defining of access control rules (PAP), the decision 

making based on access control rules (PDP), and the maintenance of 

additional attributes (PIP) are shared among all microservices in the same 

architecture. b. Centralized with an embedded PDP- Each microservice is 

responsible for making access decisions (PDP) and enforcing the access 

decisions made by the PDP (PEP).  The access control rules (PAP) and 

attributes (PIP) are defined centrally and are delivered to embedded PDP in 

the microservice.   

o This property can be specified for abstract, system, process, and thread. 

▪ Declaration: 

FineGrainedAuthorization: enumeration (decentralized, centralized) applies to (abstract, 

system, process, thread); 

▪ Property Association Example:  
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o FineGrainedAuthorization => decentralized; 

o FineGrainedAuthorization => centralized; 

 

3.2.10.4. CentralizedFineGrainedAuthorization 

▪ Property Name: CentralizedFineGrainedAuthorization 

▪ Description: 

o This property specifies the centralized fine grained authorization mechanism used 

in the microservice architecture.  

o This property is an enumeration with the value withPDP and withEmbeddedPDP. 

The semantics of the values are: 

▪ withPDP:  Each microservice is responsible for enforcing access control 

decisions (PEP).  The defining of access control rules (PAP), the decision 

making based on access control rules (PDP), and the maintenance of 

additional attributes (PIP) are shared among all microservices in the same 

architecture.  

▪ withEmbeddedPDP: Each microservice is responsible for making access 

decisions (PDP) and enforcing the access decisions made by the PDP (PEP).  

The access control rules (PAP) and attributes (PIP) are defined centrally and 

are delivered to embedded PDP in the microservice.   

o This property can be specified for abstract, system, process, and thread. 

▪ Declaration: 

CentralizedFineGrainedAuthorization: enumeration (withPDP, withEmbeddedPDP) applies to 

(abstract, system, process, thread); 

▪ Property Association Example:  

o CentralizedFineGrainedAuthorization => withPDP; 

o CentralizedFineGrainedAuthorization => withEmbeddedPDP; 



84 

3.2.11. Decision Trees 

Decision trees guide software architects in determining what specific security properties 

should be considered, how different security properties are related and can be used together, and 

what additional structural elements (components and connectors) when adding specific security 

properties.  The decision trees associated with the security properties can be found in Appendix A. 
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Chapter 4: Experiment 

This chapter presents an experiment that was conducted to evaluate whether the framework 

led to an increase in well-justified and articulated security specifications and components in 

microservice architectures.   

 

4.1. DESCRIPTION OF THE EXPERIMENT 

The experiment was designed to assess the hypothesis that use of the framework would 

lead to an increase in well-justified and articulated security specifications and components in 

microservice architectures.  The independent variable was the use of the decision trees, and the 

dependent variable was the scores. The null and research hypotheses are as follows: 

▪ Null Hypothesis: Use of the framework does not lead to an increase in well-justified and 

articulated security specifications and components in microservice architectures. 

▪ Research Hypothesis: Use of the framework leads to a significant increase in well-justified 

and articulated security specifications and components in microservice architectures.  

The participants were undergraduate students from the computer science department at the 

University of Texas at El Paso.  102 participants completed the “Research Study Background 

Survey 2023” prior to the experiment.  The survey was used to gather information about the 

participant’s software engineering background, such as the number of years of experience in 

software architecture, software development, and software security.  Appendix D presents the 

result of the research study background survey.  Most of the participants have 0 to 1 year of 

experience in software architecture and software security.  

Participants were divided into teams of 3 based on their software engineering background 

and assigned to either a control group or a treatment group randomly. Based on the T-tests with 

the alpha level at 5%, power level at 80%, and effect size at 0.866 (for teams of 3), the sample size 

of the control groups should be 18 groups and the sample size of treatment groups should be 18 

groups.  Due to the number of participants available on the day of the experiment, there were a 
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total of 15 teams of 3 in the treatment group and 16 teams of 3 in the control group.  There were 

two teams of 4 and one team of 2.   

For teams that were assigned to the control group, the following procedures were followed: 

▪ Each team received lecture materials on software architecture with an emphasis on 

microservice architecture and security.   

▪ Each team received a problem statement, a predefined microservice architecture based 

on the problem statement, and a survey named “Building Secure Microservice 

Architecture Survey”, and   

▪ Each team was given an hour to complete the survey.  Please see Appendix B for the 

full list of questions included in the survey.  

For teams that were assigned to the treatment group, the following procedures were 

followed: 

▪ Each team received lecture materials on software architecture with an emphasis on 

microservice architecture and security. 

▪ Each team received a problem statement, a predefined microservice architecture based on 

the problem statement, and a survey named “Building Secure Microservice Architecture 

Survey”.   

▪ Each team received the framework on how to design secure microservice architecture, and  

▪ Each team was given an hour to complete the survey.  Please see Appendix B for the full 

list of questions included in the survey. 

 

4.1. EVALUATION PROCESS 

The survey contained a total of 8 questions. Table 1 presents the concepts tested per 

question.    Survey results were analyzed to determine if participants from the treatment groups 

will have a higher success rate in articulating security specifications and components in 
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microservice architecture using the provided framework than the participants from the control 

groups.   

 

Table 1: Survey Questions and Concepts Tested 

Survey 

Question 

Number  

Concepts Tested 

1 a. Trust domain; 

b. Addition of structural elements (components and connectors) and its 

associated properties needed to support the trust domain and communication 

between trust domains;  

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; and 

e. Tested properties: 

1. TrustDomain 

2. SecurityLevelProvided 

3. dbAccessMode 

4. DataAtRestEncryption 

2 a. Deployment and patching; 

b. Data;  

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; 

e. Tested properties:  

1. DeploymentType 

2. patch_type 

3. dbAccessMode 

4. DataAtRestEncryption.   

3 a. Communication; 

b. Addition of structural structural elements (components and connectors) 

and its associated properties needed to support the communications between 

components; 

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; and  

e. Tested properties: 

1. SecurityLevelProvided 
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2. dbAccessMode 

3. DataAtRestEncryption 

4. SecureCommunication. 

4 a. Edge level security 

b. Addition of structural elements (components and connectors)and its 

associated properties needed to support edge security;  

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; and 

e. Tested properties: 

1. SecurityLevelProvided 

2. EdgeLevel 

3. MessagePayloadSizeLimit 

4. APIRequestPerSecond_type 

5. MaxRateLimitEdge 

6. APIRequestPerSecondMicroserviceName_type 

7. RequestPerApplicationType 

8. APIRequestPerSecondMicroserviceNameApp_type 

9. MaxRequestMicroservice. 

5 a. Authorization; 

b. Addition of structural elements (components and connectors)and its 

associated properties needed to support authorization mechanism;Ability to 

identify the need to annotate the properties listed below on components and 

connectors; 

c. Ability to correctly specify the properties listed below on components and 

connectors; and 

d. Tested properties: 

1. AuthorizationMicroserviceArchitecture 

2. FineGrainedAuthorization 

3. CentralizedFineGrainedAuthorization 

4. CoarseGrainedAuthorization 

5. SecurityLevelProvided 

6. dbAccessMode 

7. DataAtRestEncryption. 

6 a. Data;  

b. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

c. Ability to correctly specify the properties listed below on components and 

connectors; and 

d. Tested properties: 

1. MicroserviceDataSensitivity. 
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7 a. Network perimeter level security. 

b. Addition of structural elements (components and connectors)and its 

associated properties needed to support network level security; 

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; and 

e. Tested properties: 

1. SecurityLevelProvided 

2. NetworkPerimeterLevel. 

8 a. Authentication. 

b. Addition of structural elements (components and connectors)and its 

associated properties needed to support authentication mechanism; 

c. Ability to identify the need to annotate the properties listed below on 

components and connectors; 

d. Ability to correctly specify the properties listed below on components and 

connectors; and 

e. Tested properties: 

1. AuthenticationMicroserviceArchitecture 

2. SecurityLevelProvided 

3. dbAccessMode 

4. DataAtRestEncryption. 

 

A set of evaluation criteria around identification and specification of components, 

connectors, and properties was created. Table 2 presents the evaluation criteria used on each 

question.  Table 3 presents the grading scale used in the criteria regarding the identification of 

properties and structural elements (components and connectors).  Table 4 presents the grading 

scale used in the criteria regarding the specification of properties and structural elements 

(components and connectors). 

 

Table 2: Evaluation Criteria 

Question 

No. Evaluation Criteria 

Question 

1 

Ability to identify the need to change the trustDomain property for Order 

microservice 

Ability to specify the trustDomain property for Order microservice 

Ability to identify the need to have a credential microservice in each trust domain 
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Ability to identify TrustDomain property in Credential component 1 

Ability to specify TrustDomain property in Credential component 1 

Ability to identify SecurityLevelProvided property in Credential component 1 

Ability to specify SecurityLevelProvided property in Credential component 1 

Ability to identify dbAccessMode property in Credential component 1 

Ability to specify dbAccessMode property in Credential component 1 

Ability to identify DataAtRestEncryption property in Credential component 1 

Ability to specify DataAtRestEncryption property in Credential component 1 

Question 

2 

Ability to identify the need to specify DeploymentType for Account microservice 

Ability to identify the deploymentMechanism field 

Ability to specify the deploymentMechanism field 

Ability to identify the patchList field 

Ability to correct the patchList field 

Ability to identify DataAtRestEncryption for Account DB component needs update 

Ability to specifiy DataAtRestEncryption for Account DB component  

Question 

3 

Ability to identify SecureCommunication property 

Ability to correctly specifiy SecureCommunication property 

Relationship between SecureCommunication and Certificate Authority Component 

Ability to identify the SecurityLevelProvided property 

Ability to correctly specify securityLevelProvided 

Ability to identify dBAccessModel Property 

Ability to identify DataAtRestEncryption property 

Ability to specify dBAccessModel Property 

Ability to specify DataAtRestEncryption property 

Question 

4 

Ability to identify the need to add a new component at the edge to stop direct 

communication from external applications to microservices 

Ability to identify the securityLeveLProvided for the edge security component 

Ability to correctly specify the SecurityLevelProvided property 

Ability to identify the EdgeLevel property 

Ability to correctly specify the EdgeLevel property 

Ability to identify the MessagePayloadSizeLimit property 

Ability to correctly specify the MessagePayloadSizeLimit property 

Ability to identify the RequestPerApplicationType property  
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Ability to correctly specify the RequestPerApplicationType property 

(microservice_API_requestPerSecondApp) 

Ability to identify the MAXRateLimitEdge property  

Ability to specify the MAXRateLimitEdge property 

Ability to identify the MaxRequestMicroservice Property 

Ability to correctly specify the MaxRequestMicroservice property 

Question 

5 

Ability to identify the need to add PAP 

Ability to identify AuthorizationMicroserviceArchitecture for PAP  

Ability to specify AuthorizationMicroserviceArchitecture for PAP  

Ability to identify FineGrainedAuthorization for PAP 

Ability to specify FineGrainedAuthorization for PAP 

Ability to identify CentralizedAccessControl for PAP 

Ability to specify CentralizedAccessControl for PAP 

Ability to identify SecurityLevelProvided for PAP 

Ability to specify SecurityLevelProvided for PAP 

Ability to identify the need to add PIP 

Ability to identify FineGrainedAuthorization property needs to be updated fr all 

core microservice 

Ability to specify the FineGrainedAuthorization for all core microservice 

Ability to specify the FineGrainedAuthorization for all core microservice 

Ability to identify CentralizedAccessControl property needs to be updated for all 

core microservice 

Ability to specify the CentralizedAccessControl for all core microservice 

Ability to identify dbAccessMode for PAP DB 

Ability to specify dbAccessMode for PAP DB 

Ability to identify DataAtRestEncryption for PAP DB 

Ability to specify DataAtRestEncryption for PAP DB 

Question 

6 

Ability to identify MicroserviceDataSensitivity property for Billing Microservice 

Ability to specify dataSensitivityLevel field for Billing Microservice 

Ability to specify microserviceZone field for Billing Microservice 

Ability to identify MicroserviceDataSensitivity property for Payment Microservice 

Ability to specify dataSensitivityLevel field for Payment Microservice 

Ability to specify microserviceZone field for Payment Microservice 

Ability to identify the need to add an intrusion detection system 
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Question 

7 

Ability to identify SecurityLevelProvided property 

Ability to specify SecurityLevelProvided property 

Ability to identify NetworkPerimeter property 

Ability to specify NetworkPerimeter property 

Question 

8 

Ability to identify the need to add an authentication service for token generation, 

issuing, authentication, and invalidation. 

Ability to identify the AuthenticationMicroserviceArchitecture property 

Ability to specify the AuthenticationMicroserviceArchitecture property 

Ability to identify the SecurityLevelProvided property 

Ability to specify the SecurityLevelProvided property 

Ability to identify dBAccessModel property 

Ability to specify dBAccessModel property 

Ability to identify DataAtRestEncryption property 

Ability to specify DataAtRestEncryption property 

 

Table 3: Grading Scale for Criteria Regarding Identification of Properties and Structural 

Elements 

Grade Definition 

0 The team did not correctly identify properties, components, or connectors.  

5 The team correctly identified properties, components, or connectors 

 

Table 4: Grading Scale for Criteria Regarding Specification of Properties and Structural 

Elements 

Grade Definition 

0 The team did not specify properties, components, or connectors. 

1 The team was able to specify less than half of the properties, components, or 

connectors and most of the values are incorrect. 

2 The team was able to correctly specify less than half of the properties, components, or 

connectors. 

3  The team was able to correctly specify half of the properties, components or 

connectors. 

4 The team was able to correctly specify more than half of the properties, components, 

or connectors. 
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5 The team correctly specified all properties, components, or connectors. 

 

4.3. RESULT OF THE EXPERIMENT 

Appendix C presents the scores received by each team for the survey on a per question 

basis.  Table 5 presents the total score received by the treatment groups for the survey on the 

identification related questions.  Table 6 presents the total score received by the control groups for 

the survey on the identification related questions.  Table 7 presents the total score received by the 

treatment groups for the survey on the specification related questions.  Table 8 presents the total 

score received by the control groups for the survey on the specification related questions. 

 

Table 5: Total Score Received by Treatment Groups for the Survey on Identification Related 

Questions 

Maximum 

Score Per 

Question on 

Identifications 30 20 25 35 50 10 15 25  210 

Treatment 

Group No. Q1_I Q2_I Q3_I Q4_I Q5_I Q6_I Q7_I Q8_I 

Survey Total 

Score for 

Identifications 

for Treatment 

Group 

Normalized 

Total Score for 

Identifications 

(%) 

6 30.00 20.00 5.00 30.00 0.00 0.00 15.00 5.00 105.00 50.00 

19 0.00 20.00 5.00 25.00 40.00 0.00 0.00 0.00 90.00 42.86 

2 5.00 20.00 5.00 20.00 5.00 10.00 15.00 15.00 95.00 45.24 

30 5.00 20.00 20.00 10.00 45.00 10.00 15.00 5.00 130.00 61.90 

3 5.00 15.00 0.00 20.00 45.00 0.00 15.00 15.00 115.00 54.76 

31 5.00 20.00 5.00 10.00 40.00 0.00 0.00 5.00 85.00 40.48 

18 30.00 20.00 25.00 30.00 45.00 5.00 0.00 0.00 155.00 73.81 

32 30.00 20.00 25.00 15.00 45.00 0.00 15.00 25.00 175.00 83.33 

9 5.00 20.00 0.00 10.00 45.00 0.00 5.00 5.00 90.00 42.86 

4 15.00 20.00 15.00 25.00 45.00 10.00 15.00 25.00 170.00 80.95 

8 5.00 20.00 0.00 10.00 50.00 10.00 5.00 5.00 105.00 50.00 

10 5.00 15.00 20.00 25.00 40.00 10.00 15.00 25.00 155.00 73.81 
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22 5.00 20.00 20.00 0.00 45.00 5.00 15.00 0.00 110.00 52.38 

16 5.00 20.00 25.00 30.00 20.00 10.00 15.00 10.00 135.00 64.29 

7 20.00 20.00 0.00 0.00 50.00 0.00 5.00 10.00 105.00 50.00 

         

Average 

Treatment 57.78 

         DEV Treatment 14.36 

 

Table 6: Total Score Received by Control Groups for the Survey on Identification Related 

Questions 

Maximum 

Score Per 

Question on 

Identifications 30 20 25 35 50 10 15 25  210 

Control Group 

No. Q1_I Q2_I Q3_I Q4_I Q5_I Q6_I Q7_I Q8_I 

Total Score for 

Identifications 

for Control 

Group 

Normalized 

Total Score for 

Identifications 

(%) 

25 5.00 15.00 5.00 15.00 5.00 0.00 5.00 0.00 50.00 23.81 

13 5.00 20.00 10.00 25.00 30.00 0.00 15.00 0.00 105.00 50.00 

24 5.00 20.00 5.00 10.00 45.00 0.00 15.00 0.00 100.00 47.62 

28 10.00 5.00 0.00 25.00 40.00 0.00 15.00 0.00 95.00 45.24 

5 5.00 5.00 0.00 0.00 5.00 0.00 5.00 0.00 20.00 9.52 

21 0.00 20.00 5.00 15.00 5.00 0.00 15.00 20.00 80.00 38.10 

27 20.00 0.00 5.00 5.00 40.00 0.00 5.00 20.00 95.00 45.24 

34 5.00 20.00 10.00 25.00 45.00 5.00 15.00 0.00 125.00 59.52 

29 5.00 20.00 5.00 10.00 10.00 0.00 0.00 0.00 50.00 23.81 

11 5.00 20.00 0.00 30.00 40.00 5.00 0.00 15.00 115.00 54.76 

14 5.00 20.00 10.00 30.00 40.00 0.00 15.00 0.00 120.00 57.14 

20 5.00 20.00 0.00 10.00 0.00 0.00 0.00 0.00 35.00 16.67 

33 5.00 20.00 15.00 10.00 5.00 10.00 15.00 25.00 105.00 50.00 

15 5.00 20.00 0.00 15.00 10.00 0.00 15.00 5.00 70.00 33.33 

12 5.00 20.00 5.00 25.00 30.00 5.00 15.00 5.00 110.00 52.38 

1 5.00 5.00 0.00 5.00 5.00 0.00 15.00 0.00 35.00 16.67 

         Average Control 38.99 

         DEV Control 16.19 
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Table 7: Total Score Received by Treatment Groups for the Survey on the Specification Related 

Questions 

Maximum 

Score Per 

Question on 

Specifications 25 15 20 30 40 20 10 20  180 

Group No. Q1_S Q2_S Q3_S Q4_S Q5_S Q6_S Q7_S Q8_S 

Total Score for 

Specifications 

for Treatment 

Group 

Normalized 

Total Score for 

Specifications 

(%) 

6 25 15 3 21 0 0 10 5 79 44 

19 0 13 5 18 30 0 0 0 66 37 

2 5 13 5 10 5 0 10 10 58 32 

30 5 13 5 3 10 0 0 5 41 23 

3 5 10 0 10 5 0 5 5 40 22 

31 5 5 5 0 0 0 0 5 20 11 

18 25 15 20 20 35 10 0 0 125 69 

32 25 5 20 11 35 0 10 20 126 70 

9 0 5 0 3 35 0 0 5 48 27 

4 10 15 10 18 35 0 10 20 118 66 

8 5 13 0 0 40 10 0 5 73 41 

10 5 10 10 18 30 10 10 20 113 63 

22 5 15 15 0 35 10 10 0 90 50 

16 5 15 20 19 6 12 10 10 97 54 

7 5 13 0 0 40 0 5 10 73 41 

         

Average 

Treatment 43.22 

         DEV Treatment 18.49 
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Table 8: Total Score Received by the Control Groups for the Survey on the Specification related 

Questions 

Maximum 

Score Per 

Question on 

Specifications 25 15 20 30 40 20 10 20  180 

Group No. Q1_S Q2_S Q3_S Q4_S Q5_S Q6_S Q7_S Q8_S 

Total Score for 

Specifications 

for Control 

Group 

Normalized 

Total Score for 

Specifications 

(%) 

25 5 10 0 6 5 0 0 0 26 14 

13 5 13 5 14 20 0 10 0 67 37 

24 5 13 0 1 31 0 10 0 60 33 

28 5 5 0 16 26 0 10 0 62 34 

5 5 5 0 0 5 0 0 0 15 8 

21 0 13 0 5 5 0 10 10 43 24 

27 11 0 5 0 35 0 0 11 62 34 

34 5 13 5 4 20 10 10 0 67 37 

29 5 15 5 6 6 0 0 0 37 21 

11 5 13 0 21 30 10 0 6 85 47 

14 5 6 0 17 20 0 10 0 58 32 

20 5 13 5 5 0 0 0 0 28 16 

33 5 13 5 3 5 10 10 20 71 39 

15 5 13 0 4 6 0 10 5 43 24 

12 5 13 5 12 16 10 10 5 76 42 

1 5 5 0 0 5 0 10 5 30 17 

         Average Control 28.82 

         DEV Control 11.36 
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4.4. ANALYSIS OF RESULT 

The analysis was done in two parts.  The first part was to analyze the participants’ ability 

to identify properties and structural elements.  The second part was to analyze the participants’ 

ability to specify properties and structural elements.  Figure 8 shows the comparison of total scores 

for identification of properties and structural elements between treatment and control groups.  

Assuming this is a normal distribution, 84% of the population in the control group will score less 

than average of the treatment group.  A two-sample t-Test assuming unequal variances for 

identification was performed.  The result of the two-sample t-Test assuming unequal variance for 

identification, shown in Figure 9,  indicates that the difference between the scores for the treatment 

and control groups are statistically significant, the null hypothesis should be rejected, and the 

research hypothesis should be accepted.   

 

 
Figure 8:Participant Scores for Identification of Properties and Structural Elements (Average 

with 1 Standard Deviation) 
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Figure 9: Identification: Two Sample t-Test Assuming Unequal Variances 

Figure 10 shows the comparison of total scores for specification of properties and structural 

elements between treatment and control groups.  Assuming this is a normal distribution, 84% of 

the population in the control group will score less than average of the treatment group.  A two-

sample t-Test assuming unequal variances for specification was performed.  The result of the two-

sample t-Test assuming unequal variance for specification, shown in Figure 11, indicates that the 

difference between the scores for the treatment and control groups are statistically significant, the 

null hypothesis should be rejected, and the research hypothesis should be accepted.   
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Figure 10: Participant Scores for Specification of Properties and Structural Elements (Average 

with 1 Standard Deviation) 

 

 
 

Figure 11: Specification: Two Sample t-Test Assuming Unequal Variances 

 

4.5. OBSERVATIONS OF RESULT 

Four observations can be made after analyzing the data collected: 
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 Observation 1: The participants had difficulty in the identification and specification of 

properties and structural element (component or connector) when the property has a dependence 

on a specific structural element.   

 Observation 2:  The participants had difficulty in the identification and specification of 

properties when the property has a dependence on another property.   

 Observation 3:  The participants had difficulty in the identification and specification of the 

scope of properties. 

 Observation 4:  The participants had difficulty in the specification of the properties on the 

appropriate structural element.   
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Chapter 5: Related Work 

5.1. SECURITY ANALYSIS IN SOFTWARE ARCHITECTURE 

This section presents seven approaches for analyzing security in software architecture: 

Architecture Risk Analysis, Security Vulnerability Approach with SAVE, Attack Surface Security 

Analysis, Security Architecture Tradeoff Analysis Method, Architecture Analysis for Security, 

Security Analysis with Acme and Monte Carlo Simulation, and Security Analysis with Information 

Flow Modeling. 

 

5.1.1. Architecture Risk Analysis 

Architectural risk analysis [76,6] (ARA) is a process for identifying flaws in software 

architecture.  It involves examining the required preconditions for vulnerabilities to be exploited 

and evaluating the potential states the system can be in prior to an exploitation.  ARA starts with 

a one-page architecture that describes the system.  The architecture is created by interviewing the 

software architects, developers, and testers.  ARA is guided by three activities: known 

vulnerability analysis (also known as attack resistance analysis), ambiguity analysis, and 

underlying platform vulnerability analysis (also known as underlying framework weakness 

analysis).   

Known vulnerability analysis compares the system’s architecture against any known 

attacks, attack patterns, and known principles for confidentiality, integrity, and availability.  It 

assesses the impact of the applicable attacks on the system, identifies vulnerable areas in the 

architecture, and develops ways to mitigate the risks.  Ambiguity analysis aims to eliminate any 

misunderstandings between requirements and implementation, find weaknesses based on how the 

system works, and expose any invalid assumptions.  It also identifies trust boundaries for function 

and data (trust modeling); privacy and trust issues for data (data sensitivity modeling); and 

attackers and areas of weaknesses from the attackers’ perspectives (threat modeling).  Underlying 

platform vulnerability analysis examines vulnerabilities associated with the application’s 
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execution environment, such as operating system vulnerabilities, network vulnerabilities, platform 

vulnerabilities, and interaction vulnerabilities resulting from the interaction of components.  ARA 

yields a list of weaknesses associated with the architecture.  The analysts rank the weaknesses and 

propose mitigations. 

 

5.1.2. Security Vulnerability Approach with SAVE 

Karppinen, et al. [77] presents the use of Software Architecture Visualization and 

Evaluation (SAVE) to detect security vulnerabilities that violate structural and behavioral patterns 

of a software system.  SAVE [51] is a non-security specific tool that is used to analyze and optimize 

the architecture of implemented software systems.  It can generate static and dynamic architectural 

views from source code and compare the architectures for violations.  SAVE uses static analysis 

techniques to reveal dependencies and couplings between components and dynamic analysis 

techniques to reveal active components in a system’s planned and generated architecture design.   

Karppinen, et al. uses SAVE to generate static and dynamic views of the implemented 

architecture from the source code and compare the implemented architecture against the planned 

architecture.  Comparison of the findings in the architectures can determine if the software system 

is implemented as planned; architecture styles and design patterns are used properly and 

implemented; and security vulnerabilities and hidden functionalities exist.  

 This research shows the potential in discovering vulnerabilities in an implemented system 

by analyzing its architectural design. However, Karppinen, et al. acknowledge that the ability to 

detect vulnerabilities, attacks, and hidden functionalities is limited because prior knowledge of 

how the system is attacked is required.  The effort in collecting and analyzing such data might not 

be feasible. 

 

5.1.3. Attack Surface Security Analysis 

Gennari and Garlan [33] presents the use of attack surface to evaluate security properties 

at architectural level and identify architectural vulnerabilities.  Attack surface is the measure of a 
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system’s exposure to attack.  This work is based on Manadahata and Wing’s work on attack 

surfaces.  Manadahata and Wing [24] have quantified the attack surface in terms of resources used 

by a system to interact with its external environment.  The resources are entry and exit points, 

channels, and untrusted data items.   

To represent security in an architecture, Gennari and Garlan define the mapping of attack 

surface to architectural structures.  Entry and exit points are mapped to ports.  Channels are mapped 

to an architectural connector that connects components outside of the system with components 

inside of the system.  Untrusted data items are mapped to data sources used by the system that 

reside in the environment. AcmeStudio, which uses Acme architectural description language, is 

selected as the architecture modeling environment.  For modeling attack surfaces in Acme, Gennari 

and Garlan defines a new security-focused Acme family and an attack surface plug-in..  The attack 

surface plug-in allows one to specify attack surface properties of architectural elements.  To 

evaluate security at the architecture, the attack surface plug-in measures the attack surface of an 

architectural model and identifies principal contributors to the model’s attack surface.   

 

5.1.4. Security Architecture Tradeoff Analysis Method 

Raza, et al. [78] extends Architecture Tradeoff Analysis Method (ATAM) with security 

characterization to evaluate security aspects of a software architecture.  ATAM is a scenario based 

method used for analysis of architecture against particular quality goals and how quality goals 

trade off against each other.  ATAM consists of the following phases: presentation, investigation 

and analysis, testing, and reporting.  Presentation phrase involves presenting the ATAM process, 

the business drivers, and architecture.  Investigation and analysis phase involves identifying the 

architectural approaches used, generating a quality attribute utility tree and scenarios, and 

analyzing architectural approaches.  Testing phase involves brainstorming and prioritizing 

scenarios and analyzing architectural approaches.  Reporting phase involves presenting the results 

from the analysis of architecture against particular quality goals [54].   
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Quality attribute characterization helps refine the scenarios created during the investigation 

and analysis phase.  A characterization includes the type of stimuli in which an architecture must 

respond, the measurable response of the quality attribute by which its achievement is judged, and 

critical architectural decisions that impact achieving the quality attribute requirement [54].   Raza, 

et al. create the security characterization.  A security stimulus can be a source or type.  A source 

can be an authorized user or unauthorized user.  An unauthorized user can be a hacker or attacker.  

A type can be an internal attack or external attack.  An internal attack refers to accidental access 

to sensitive data.  An external attack can be a network attack, data centered attack, application 

specific attack, or user input attack.  A security parameter can be a resource (component) or 

services.  A resource (component) can be a fire wall, virtual lan, proxy server, DMZ, antivirus, 

certification authority, or operating system.  A service can refer to authentication, authorization, 

access control, intrusion detection, encryption, digital signatures, deception, diversity, or recovery.  

A security response can be passive or active.  A passive response can be protection, prevention, or 

containment.  An active service is a failure recovery.  With the security characterization, ATAM 

can be used to evaluate security aspects of a software architecture following the activities defined 

in the investigation and analysis phase, testing phase, and reporting phase.   

 

5.1.5. Architectural Analysis for Security 

Ryoo, et al. [15] presents the architectural analysis for security (AAFS) method.  AAFS 

consists of three techniques: tactic-oriented architectural analysis (ToAA), pattern-oriented 

architectural analysis (PoAA), and vulnerability-oriented architectural analysis (VoAA).  ToAA 

involves interviewing an architect about whether and how the system addresses each tactic type 

and ranking the tactics used in the system to develop a prioritized list of tactics.  PoAA involves 

reviewing the patterns that are related to the identified tactics with the architect, questioning the 

architect about the existence or use of security patterns and whether the patterns are being 

implemented correctly.   VoAA involves searching for weaknesses resulting from not adopting 
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patterns or not properly implementing the patterns.  The output from VoAA’s phase is a prioritized 

list of potential vulnerabilities. 

 

5.1.6. Security Analysis with Acme and Monte Carlo Simulation 

Garlan and Schmerl [7, 29] demonstrate how Acme architectural description language 

along with Monte Carlo simulation can be used to analyze the security of an architecture.  A threat 

scenario includes threat types, assets, and countermeasures (preventative, monitoring, and 

recovery).  Threat type specifies the possible threat that can affect the system.  Asset is a 

component that can be damaged by a threat and is associated with a monetary value.  Preventative 

countermeasure affects the frequency at which a threat occurs.  Monitoring countermeasure and 

recovery countermeasure reduce the effect of a threat.  The security simulator in AcmeStudio 

performs security simulations based on the threat scenarios.  The security simulation outputs a 

report that includes the threat scenario, threat transaction, the most probable damage value to each 

asset in the threat transaction, and the total damage to the assets in the threat transaction path.  

  

5.1.7. Security Analysis with Information Flow Modeling 

Garg, et al. [71] present an approach that uses STRIDE model to define an Acme Data 

Flow Diagram (DFD) architectural style for security analysis and provide architectural constraints 

that are used to automatically identify STRIDE threats and security vulnerabilities.  The approach 

starts with an architect modeling a DFD of the system.  The architect then specifies properties, 

such as trust level, for each component(connector).  Acme ADL modeling tool checks the DFD 

against structural and security constraints as defined in the Acme DFD architectural style.  The 

architect will get notified If the Acme ADL modeling tool discovers any threats or vulnerabilities. 
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5.2. AADL SECURITY ANNEXES 2019 

The AADL security annex 2019 [59] includes the following property sets: security 

classification property set and security enforcement property set.  The security classification 

property set includes: a. Security clearances (subjects), b. Information security levels (objects), c. 

Security levels (subjects and objects), and d. Trusted classification.  The security enforcement 

property set includes: a. Data security, b. Data security specification, c. Subject authentication, and 

d. Secure flows. 

The property sets provide in the AADL security annex 2019 covers basic security concepts.  

It does not have specific security properties that would cover unique security challenges that exist 

in microservice architectures.  The framework described in this dissertation addresses that. 

 

5.3. SUMMARY 

A number of approaches on how to analyze security in software architecture is presented.  

None of the approaches address the problem from a root cause perspective.  By knowing the root 

causes of vulnerabilities, it can assist architects in developing a software architecture that has fewer 

software weaknesses.  Please see Table 9 for the summary comparison table. 
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Table 9: Summary Comparison Table 

Security Approaches 

Formal 

Specification 

Modeling 

Support 

Threat 

Modeling 

Root Cause 

Analysis 

Architecture Risk Analysis     

Security Vulnerability Approach with 

SAVE   x  

Attack Surface Security Analysis x  x  

Security Architecture Tradeoff 

Analysis Method     

Architectural Analysis for Security     

Security Analysis with Acme and 

Monte Carlo Simulation x Acme x  

Security Analysis with Information 

Flow Modeling x DFD   

AADL Security Annex 2019 x    

Framework for Security Modeling and 

Specification in Microservice 

Architectures x AADL  x 
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Chapter 6: Conclusions 

6.1. SUMMARY OF WORK 

There is a lack of consolidated design knowledge on how to build microservice 

applications. With an increase in the adoption of microservice architecture in the development of 

applications and the increase in security breaches in microservice based systems, there is a need 

to examine and understand security issues that exist in microservice architectures.  This 

dissertation presented the Framework for Security Modeling and Specification in Microservice 

Architectures to enhance the security modeling and specifications in microservice architectures.  

The research questions that drove the research are:  

RQ1: What are the security challenges in microservices architecture?  

RQ2: What mechanisms are currently used to address the security challenges in 

microservices architecture?  

RQ3: What approach can enhance the security modeling and specification in microservice 

architectures? 

The outcome was the framework that provides sufficient support in formally defining 

security properties and adding structural elements in the architecture that address software 

vulnerabilities in earlier stages of software development of microservice architectures.  Please see 

Table 10 for the mapping of security challenges, practices, properties and decision trees). 

An experiment was designed to assess the hypothesis that use of the framework would lead 

to an increase in well-justified and articulated security specifications and components in 

microservice architectures.  The null and research hypotheses were as follows: 

▪ Null Hypothesis: Use of the framework does not lead to an increase in well-justified and 

articulated security specifications and components in microservice architectures. 

▪ Research Hypothesis: Use of the framework leads to a significant increase in well-justified 

and articulated security specifications and components in microservice architectures. 
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The result of the experiment shows that 84% of the population in the control group will 

score less than average of the treatment group.  A two-sample t-Test assuming unequal 

variances was performed.  The result of the two-sample t-Test assuming unequal variance for 

identification indicates that the difference between the scores for the treatment and control 

groups are statistically significant, the null hypothesis should be rejected, and the research 

hypothesis should be accepted.   

This dissertation defines a framework to support the design of microservice architectures 

and remediate documented security issues.  The framework enhances the ability of software 

architects to formally specify security properties early on in the software development 

lifecycle.  It also includes the use of decision trees to guide software architects in determining 

what specific security properties should be considered, how different security properties are 

related and can be used together, and what additional structural elements (components and 

connectors) should be considered when adding specific security properties. These security 

properties are derived from existing security challenges and the corresponding security 

practices used to address them.  

The impact of the work is that software vulnerabilities are addressed during early phases 

of software development (architecture and design) rather than later in the software 

development lifecycle.  This helps to significantly reduce costs associated with software defect 

mitigation.  Studies have shown that the cost ratio in tackling a software defect, including 

security vulnerabilities, is doubled if defects are discovered during the implementation phase 

compared to the architecture and design phases.  This ratio more than triples if defects are 

discovered during testing.  The work provides comprehensive support in defined security in 

microservice architectures, especially for software architects who have minimal experience in 

society.        
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Table 10: Security Challenges, Practices, Properties, and Decision Tree Summary Table 

Security 

Challenges 

Category Security Challenges 

Security 

Practices Security Properties Decision Trees 

Authentication 

Many authentication 

scenarios compared to 

an equivalent monolithic 

architecture and hence 

increase in complexity in 

how authentication 

should be handled. 

API Gateway 

Tokens, such as 

API token and 

JSON web 

token,  

Certificate-

based 

authentication, 

API key-based 

authentication,  

Hash-based 

message 

authentication 

code,  

OpenID 

connect, 

Federated 

Identity 

SecurityLevelProvided, 

EdgeLevel, 

AuthenticationMicroservice

Architecture, 

dbAccessMode, 

DataAtRest, 

DataAtRestEncryption, 

Edge Level Security 

Decision Tree, 

Secure Microservice 

Architecture 

Decision Tree, 

Service Level 

Decision Tree 

Authentication is a cross 

cutting concern that 

affects every 

microservice, some 

developers create global 

authentication logic and 

assign authentication 

responsibility to each 

microservice which is a 

violation of single 

responsibility principle. 

Reusing same code base 

for authentication creates 

a central code 

dependency and 

negatively impact the 

technology agnostic 

aspect of microservices. 

Management of 

credentials is 

challenging since there 

are more credentials. 

If authentication 

information is managed 

by an authentication 

microservice, an update 

is required whenever a 

new microservice or a 

new user is added. 

If the authentication 

information is managed 

by individual 

microservices, it 

increases the chances of 

the information being 

leaked should there be 

compromises happening 
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to individual 

microservices.  

Authorization 

Many authorization 

scenarios compared to 

an equivalent monolithic 

architecture and hence 

increase in complexity in 

how authorization 

should be handled. 

API Gateway, 

Security Token, 

OAuth 2.0, 

Certificates, 

Access Control 

System, 

Decentralized 

authorization, 

Centralized 

Upstream 

Authorization 

AuthorizationMicroservice

Architecture, 

CoarseGrainedAuthorizatio

n, 

FineGrainedAuthorization, 

CentralizedFineGrainedAut

horization, 

Secure Microservice 

Architecture 

Decision Tree, 

Service Level 

Decision Tree, 

Edge Level Security 

Decision Tree 

Authorization is a cross 

cutting concern that 

affects every 

microservice, some 

developers create global 

authorization logic and 

assign authorization 

responsibility to each 

microservice which is a 

violation of single 

responsibility principle. 

Reusing same code base 

for authorization creates 

a central code 

dependency and 

negatively impact the 

technology agnostic 

aspect of microservices. 

Management of 

credentials and their 

access rights is 

challenging since there 

are more credentials. 

If a microservice is 

required to handle 

authorization at the 

service level and needs 

to store and administer 

user’s data, it increases 

the chances of personal 

information being leaked 

and accessed by 

unauthorized entities.  

Confused deputy 

problem refers to an 

upstream (client) 

microservice tricks the 

downstream (server) 

microservices into doing 
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something they shouldn't 

be doing. 

Container-based 

microservice is 

immutable meaning that 

once the container is up, 

it does not maintain any 

runtime states or any 

changes made to its file 

system. It means that 

extra steps need to be 

taken to maintain the 

dynamic list of allowed 

clients and access 

control policies and 

service credentials since 

service credentials 

would be rotated 

periodically.  

Logging 

When microservices are 

spread across different 

platforms, security may 

be out of the control of 

the microservices 

owners and completely 

dependent on the 

platform environment 

owner. 
Use of 

distributed 

tracing system 

Standard log 

structure and 

the amount of 

information 

collected 

Log 

Secure Microservice 

Architecture 

Decision Tree, 

Logging Decision 

Tree 

Collecting the required 

and necessary 

information to diagnose 

what went wrong and 

correlating requests 

among microservices 

become challenging. 

For microservices that 

are deployed using 

containers, the audit logs 

are not kept at each node 

running the 

microservices. 

Communication 

Communication takes 

place over the network 

in order to complete 

requests. TLS, 

MTLS 
SecureCommunication 

Secure Microservice 

Architecture 

Decision Tree, 

Communication 

Decision Tree 

Improper interception 

and inappropriate access 

if teams cannot agree on 

the communication 
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protocol between 

microservices. 

Data 

Data moves around an 

architecture more often 

in a microservice 

architecture than in a 

monolithic architecture, 

and this makes securing 

data more challenging. 

TLS and 

MTLS, 

MTLS and 

Service Mesh, 

Secure 

communication 

protocol, 

Message 

authentication 

code, 

Encryption, 

JWT 

dbAccessMode, 

DataAtRest, 

DataAtRestEncryption, 

MicroserviceDataSensitivity

, 

SecureCommunication 

Secure Microservice 

Architecture 

Decision Tree, 

Data Decision Tree, 

Communication 

Decision Tree 

Identity of downstream 

microservice regarding 

data in transit and 

attempt to steal all 

receiving data. 

Identity of upstream 

microservice regarding 

data in transit and 

attempt to request for 

data that it does not have 

access to. 

Visibility of data when 

data is sent across the 

network. 

Manipulation of data 

when data is sent across 

the network. 

Data stores in 

unencrypted form and 

when an adversary is 

able to compromise a 

microservice with an 

unencrypted data store, 

he/she will have 

unlimited access to the 

data. 

Amount of data will 

each microservice needs 

become questionable 

since a request is 

typically fulfilled by 

more than one 

microservice. 

Patching 

Fail to keep up with 

patching of 

vulnerabilities 
Assign the right 

personnel to 

maintain and 

handle patching 

patch_type, 

DeploymentType 

Secure Microservice 

Architecture 

Decision Tree, 

Deployment and 

Patching Decision 

Tree 

Ownership of the 

infrastructure and 

software that 
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microservice runs on 

affects the ability and 

frequency of patching 

Dependencies between 

microservices and third-

party libraries used in 

the development of 

microservices affect 

frequency of patching. 

Deployment 

Deployment of 

microservices increases 

in scale, it makes it 

extremely challenging to 

manage and maintain the 

security 

Push or pull 

model. The 

service 

credentials and 

access control 

policies are 

maintained at a 

policy 

administration 

endpoint. With 

a push model, 

the policy 

administration 

endpoint pushes 

the updates to 

the 

microservice at 

bootup. With a 

pull model, the 

microservice 

periodically 

pulls updates 

from the policy 

administration 

endpoint.  

The technology agnostic 

nature of microservices 

also makes vulnerability 

detection more difficult. 

Trust 

Microservices are often 

designed to trust each 

other in a microservice 

architecture. When a 

malicious adversary 

attacks and gains control 

of an individual 

microservice, it can 

affect other 

microservices in the 

microservice 

architecture. The 

malicious adversary can 

manipulate 

microservices to do what 

Layers of 

security, 

Zero trust 

model, 

Degree of 

access 

separation 

TrustDomain, 

NetworkPerimeterLevel, 

EdgeLevel, 

MaxRateLimitEdge, 

MaxRequestMicroservice, 

APIRequestPerSecond_type

, 

APIRequestPerSecondMicr

oserviceName_type, 

APIRequestPerSecondMicr

oserviceNameApp_type, 

APIRequestPerSecondMicr

oserviceNameUser_type, 

APIRequestPerSecondMicr

oserviceNameOperation_ty

Secure Microservice 

Architecture 

Decision Tree, 

Network Perimeter 

Level Decision Tree, 

Edge Level Decision 

Tree, 

Service Level 

Decision Tree, 

Trust Decision Tree 
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he/she wants them to do, 

escalate privileges on the 

hosting infrastructure of 

the microservices, listen 

on any inter-service 

communication, alter 

data in transit, lead to 

full disclosure of other 

microservices, and 

potentially bring down 

the entire system. 

pe, 

RequestPerApplicationType

, 

RequestPerUser, 

RequestPerOperation, 

MessagePayloadSizeLimit 

Larger Surface 

Area 

Communications 

between microservices 

over the network cause 

exposure to more 

potential attacks than a 

monolithic application 

due to the increased 

number in entry points, 

and hence increases the 

attack surface area. 

API Gateway, 

Zero Trust 

Model 

EdgeLevel 

Secure Microservice 

Architecture 

Decision Tree, 

Edge Level Decision 

Tree 

With the attack surface 

area being larger, it 

makes it harder to 

manage security. 

 

6.2. FUTURE WORK 

Future work includes enhancing decision trees based on the observations from the 

experiment (please see section 4.5), automating the support provided by the decision trees, 

conducting experiments with practitioners, and enhancing the AADL security annex 2019 with the 

Microservice_Architecture_Security_Properties property set created from this research. 
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Appendix A: Decision Trees 

Appendix A presents the complete set of decision trees.  The decision trees are organized 

as follows: 

1. Key 

2. Instructions on How to Use the Decision Trees 

3. Secure Microservice Architecture Decision Tree 

4. Network Perimeter Level Decision Tree 

5. Edge Level Decision Tree Part 1 of 4 

6. Edge Level Decision Tree Part 2 of 4 

7. Edge Level Decision Tree Part 3 of 4 

8. Edge Level Decision Tree Part 4 of 4 

9. Service Level Decision Tree Part 1 of 3 

10. Service Level Decision Tree Part 2 of 3 

11. Service Level Decision Tree Part 3 of 3 

12. Communication Decision Tree 

13. Logging Decision Tree 

14. Deployment and Patching Decision Tree 

15. Data Decision Tree 

16. Trust Decision Tree. 
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A.1. KEY 

 
Figure 12: Decision Tree Key 
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A.2. INSTRUCTIONS ON HOW TO USE THE DECISION TREES 

 
Figure 13: Instructions on How to Use the Decision Trees 
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A.3. SECURE MICROSERVICE ARCHITECTURE DECISION TREE 

 
Figure 14: Secure Microservice Architecture Decision Tree 
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A.4. NETWORK PERIMETER LEVEL DECISION TREE 

 
Figure 15: Network Perimeter Level Decision Tree 
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A.5. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 4 

 
Figure 16:Edge Level Perimeter Level Decision Tree Part 1 of 4 
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A.6. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 4 

 
Figure 17: Edge Level Perimeter Level Decision Tree Part 2 of 4  
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A.7. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 4 

 
Figure 18: Edge Level Perimeter Level Decision Tree Part 3 of 4 
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A.8. EDGE LEVEL PERIMETER LEVEL DECISION TREE PART 4 OF 4 

 
Figure 19: Edge Level Perimeter Level Decision Tree Part 4 of 4 
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A.9. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 1 OF 3 

 

 
Figure 20: Service Level Perimeter Level Decision Tree Part 1 of 3 
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A.10. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 2 OF 3 

 
Figure 21: Service Level Perimeter Level Decision Tree Part 2 of 3 
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A.11. SERVICE LEVEL PERIMETER LEVEL DECISION TREE PART 3 OF 3 

 
Figure 22: Service Level Perimeter Level Decision Tree Part 3 of 3  
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A.12. COMMUNICATION DECISION TREE 

 
Figure 23: Communication Decision Tree 
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A.13. LOGGING DECISION TREE 

 
Figure 24: Logging Decision Tree  
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A.14. DEPLOYMENT AND PATCHING DECISION TREE 

 
Figure 25: Deployment and Patching Decision Tree 
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A.15. DATA DECISION TREE 

 
Figure 26: Data Decision Tree  
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A.16. TRUST DECISION TREE 

 
Figure 27: Trust Decision Tree 
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Appendix B: Survey Questions 

This section presents the microservice architecture, general instructions and questions 

included in the survey. 

 
Figure 28: Microservice Architecture 
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Appendix C: Survey Results 

Appendix C presents the scores received by each team for the survey on a per question 

basis. 

 

 
Figure 29: Question 1 Scores for Treatment Groups 
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Figure 30: Question 1 Scores for Control Groups 
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Figure 31: Question 2 Scores for Treatment Groups 

 

 
Figure 32: Question 2 Scores for Control Groups 
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Figure 33: Question 3 Scores for Treatment Groups 

 

 
Figure 34: Question 3 Scores for Control Groups 
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Figure 35: Question 4 Scores for Treatment Groups 

 

 
Figure 36: Question 4 Scores for Control Groups 
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Figure 37: Question 5 Scores for Treatment Groups 

 

 
Figure 38: Question 5 Scores for Control Groups 
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Figure 39: Question 6 Scores for Treatment Groups 
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Figure 40: Question 6 Scores for Control Groups 
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Figure 41: Question 7 Scores for Treatment Groups 
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Figure 42: Question 7 Scores for Control Groups 
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Figure 43: Question 8 Scores for Treatment Groups 

 

 
Figure 44: Question 8 Scores for Control Groups 
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Appendix D: Research Study Background Survey Results 

Appendix D presents the result of the research study background survey.   

 

 
Figure 45: Background Survey Result - No. of Years of Experience in Software Architecture 

 

 
Figure 46: Background Survey Result - No. of Years of Experience in Software Security 
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Figure 47: Background Survey Result - No. of Years of Experience in Software Development 
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