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ABSTRACT 

Computational biophysics is an interdisciplinary subject that uses numerical algorithms to 

study the physical principles underlying biological phenomena and processes. Electrostatic 

interactions play an important role in computational molecular biophysics and their potential 

impact on disease mechanisms. At distances larger than several Angstroms, electrostatic 

interactions dominate all other forces, while the alteration of short-range electrostatic pairwise 

interactions can also have significant effects. The dual nature of electrostatic interactions, being 

dominant at long-range and specific at short-range, underscores their profound implications for 

wild-type structure and function. Any disruption of the complex electrostatic network of 

interactions may abolish wild-type functionality and could be the dominant factor contributing to 

pathogenicity.  

During my doctoral research, I utilized a diverse range of multi-scale computational 

techniques, such as structural modeling, molecular dynamics simulations, and electrostatic 

analysis, to investigate various biological phenomena. My research involved studying the kinetic 

cycle of myosin and the activation mechanism of Janus Kinases (JAKs). Additionally, I built upon 

my prior experience developing the Hybridizing Ions Treatment (HIT) method by implementing 

machine learning to create an improved and more user-friendly version of HIT, called HIT-2. 

Sudden cardiac death is responsible for half of all deaths related to cardiovascular diseases. 

Understanding the mechanism of the kinetic cycle of cardiac myosin is crucial for developing 

protective measures and drugs for the heart. The change in state from rigor to post-rigor is key to 

explaining the binding and dissociation of myosin. Using β-cardiac myosin in rigor and post-rigor 

states, I modeled actomyosin complexes and found that there are fewer interactions and lower 

electrostatic binding strength in the post-rigor state compared to the rigor state. In the post-rigor 
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state, there were higher levels of free binding energy, fewer salt bridges, and fewer hydrogen 

bonds, resulting in a lower binding affinity compared to the rigor state. This decrease in binding 

affinity creates important conditions for the dissociation of myosin from the actin filament. The 

findings of this study on the mechanism of the myosin kinetic cycle provide a novel direction for 

future research on genetic diseases. 

The family of Janus Kinases associated the JAK-STAT signaling pathway plays a vital role 

in the regulation of various cellular processes. A model of the inhibited full-length JAK1 and the 

energies of JAK1 with Tyrosine Kinase domain (TK) at different positions were calculated. Also, 

dynamic programming was applied to find the energetically smoothest path. Through a comparison 

of the energetically smoothest paths of the different mutations, the reasons why these mutations 

lead to negative or positive regulation of JAK1 activation are illustrated. Besides, the effects of 

phosphorylation of tyrosine in TK on activation process and ATP hydrolysis are also investigated 

and studied.      

Hybridizing Ions Treatment-2 (HIT-2) is used to model biomolecule-bound ions using the 

implicit solvation model. By modeling ions, HIT-2 allows the user to calculate important 

electrostatic features of the biomolecules. HIT-2 applies an efficient algorithm to calculate the 

position of bound ions from molecular dynamics simulations. Modeling parameters were 

optimized by machine learning methods from thousands of datasets. The optimized parameters 

produced results with errors lower than 0.2 Å. The testing results in molecular dynamics 

simulations also proved that HIT-2 can effectively identify bound ion types, numbers, and 

positions. HIT-2 can significantly improve electrostatic calculations for many problems in 

computational biophysics. 
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CHAPTER 1: ELECTROSTATICS IN COMPUTATIONAL BIOPHYSICS 

1.1 Introduction  

In this chapter, we consider the role of electrostatics on the structure and function of 

biological macromolecules and summarize the specific features that manifest electrostatic 

interactions. We refer to electrostatic interactions that result from charged atoms, including the 

atoms of water molecules. This allows us to attribute these specific features and their disruption 

caused by missense mutations to molecular mechanisms implicated in diseases. We focused on 

computational findings; however, when possible, these findings are backed up by experimental 

observations. The review emphasizes recent investigations to assess current interest in this field.  

The electrostatic features in biological molecules are described in this review within three 

functions: long-range effects [1, 2]; short-range effects[3-5]; and pH-dependent effects[6-8]. The 

long-range electrostatic force is the main force making biomolecules travel and bind to other 

biomolecules over a long distance[1, 9]. Due to the limitations of current computing, it is 

challenging to simulate long-range electrostatics in molecular dynamic simulations. Therefore, 

many efforts have been proposed and developed for simulations involving long-range electrostatic 

interactions[2, 9]. Long-range effects are introduced in Section 2.1. Such algorithms of long-range 

electrostatics are widely used in biological problems, such as protein–protein interactions [10-12], 

protein–DNA/RNA interactions[13], etc. Short-range interactions, including salt bridges and 

hydrogen bonds, which are favorable interactions in terms of Coulombic energy, are present 

inside/among the macromolecules, serving as an important feature contributing to macromolecular 

architecture. Short-range effects frequently contribute to receptor–ligand binding [14, 15] and to 

the specificity of the binding mode[16, 17]. The pH-optimum is the particular pH at which 

biological activity, macromolecular stability, and binding are best optimized[18]. It originates 



 

2 

from the pKa values of the ionizable groups, indicating the importance of assigning correct 

protonation states in molecular dynamics simulations [19-23]. Recent contributions to modeling 

pH-dependent phenomena are shown in Section 2.3. Constant pH MD (CpHMD) approaches are 

an efficient tool to explore the effects of pH on biomolecular stability[24] and binding[25]. 

Electrostatics plays a crucial role in biomolecular stability and binding. Thus, mutations 

causing deviation of electrostatic properties may influence macromolecular thermodynamics, 

resulting in dysfunctional biomolecules. Mutations can either delete or reverse a charge, and these 

changes are expected to cause serious effects on both long- and short-range interactions[26, 27]. 

Recent works on salt-bridge disruption and hydrogen-bond disruption[28, 29] are shown in chapter 

1.3. The last section is about drug discovery, and we focus on computational works that indicate 

the role of salt bridges and hydrogen bonds[30-33] to identify efficient drugs. This includes 

inhibitor screening methods for hepatitis C virus[34, 35], insulin amyloid fibril[36], and antibiotics 

against SARS-CoV-2[37, 38]. The goal of this review is to highlight the role of electrostatics in 

the field of computational biophysics and related disease mechanisms. Electrostatics is related to 

various molecular mechanisms for wild-type functionality and disease causality [27, 39]. 

Electrostatic features are the key component in drug de-sign according to short- and long-range 

effects. Another prominent representation of the role of electrostatics is pH-dependence, which 

typically originates from both long- and short-range electrostatic interactions. Overall, many 

biological processes at the molecular level are strongly affected by electrostatics, which should be 

seriously considered in any atomistic-level studies.  

1.2 Electrostatics of wild-type biological macromolecules  

The role of electrostatics in wild-type biological macromolecules is considered on three 

levels: (a) long-range effects, i.e. interactions that do not involve physical contact between 
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interacting entities; (b) short-range effects, i.e. interaction involving physical contacts as the 

formation of salt-bridge or hydrogen bond; and (c) pH-dependent phenomena, which involve a 

mixture of long- and short-range effects (Fig. 1.1) 
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Figure 1.1: Electrostatic features of wild-type biological macromolecules. a. The electric field lines 

between JAK3 kinase domain and ATP. The kinase domain and ATP were separated by 15 Å to show the 

interactions[40] (The structure is constructed by I-TASSER[41] to model the missing loops) b. The 

electric field lines between barnase and barstar (PDB: 1BRS[42]). The two proteins were separated by 10 

Å to show the interactions. c. The salt bridges in 8S α-Globulin (PDB: 2CV6[43]). The missing loops of 

the 8S α-Globulin are modeled by SWISS-MODEL[44]. The salt bridge pair of ASP326-ARG37 is buried 

inside the protein while the GLU205-LYS203 is on the surface of the protein. d. The hydrogen bonds in 

Angiotensin-Converting Enzyme 2 (ACE2)(PDB: 6LZG[45]). The hydrogen bonds of THR445-THR276 

and ASN397-TYR421 are inside of the protein while the GLU160-SER155 are surface-exposed. e. The β-

Lactoglobulin dimer formed in pH 4. f. The β-Lactoglobulin monomer formed in pH 7 (PDB:6FXB[46]). 

1.2.1 Long-range electrostatic effects 

The electrostatic force is a long-range force that dominates all other forces when there is 

no physical contact between the molecules. It is also a universal force in molecular biology since 

all atoms carry partial charge and thus are subject to electrostatic interactions. Because of that, 

electrostatics is expected to play a key role in steering interacting partners toward their binding 

position (Fig. 1.1a, b - electric field lines demonstrate long-range attraction between the partners). 

However, computational modeling of such a process, especially if the interacting partners are far 

apart from each other, is quite computationally demanding. Indeed, in typical molecular dynamics 

(MD) simulations one applies cut-offs of long-range interactions in order to speed up the 

calculations[1]. This is valid also for studies aiming at the protein folding process, particularly the 

modeling of unfolded state. Recent work demonstrated that the unfolded state's structural 

characteristics are more strongly dependent on the cut-offs and Evald sum implementation (a 

method for computing long-range interactions)[47].  

To overcome such limitations, a hybrid method involving DelPhi[48-51] (a popular 

Poisson-Boltzmann equation solver) and steered MD was developed. The method, termed DelPhi-

Force MD (DFMD)[10, 52], was successfully applied to dock substrates to an enzyme[2] and a 
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biomolecule onto another biomolecule (such as barstar onto barnase)[10]. It was demonstrated that 

such an approach allows one to take advantage of the MD protocol to sample different 

conformations while simultaneously adding electrostatic force based guidance of the ligand toward 

the correct binding pocket/interface[2]. Moreover, it was shown that the DFMD can successfully 

dock to barnase even if the initial positions and orientations of both are completely different from 

the correct ones[10].  

Of particular interest are cases involving highly charged large biological objects as 

microtubules. Microtubules are highly negatively charged long objects that serve as highways for 

various transport (cargo) proteins such as kinesin and dynein. The cargo proteins walk on 

microtubules, and one could expect that their walking is influenced by the long-range electrostatic 

interactions. Indeed, computationally it was shown that there are strong electrostatic interactions 

between microtubule and microtubule binding domains of both kinesin[53] and dynein[54]. The 

same observation was made for G-actin and myosin (Fig. 1.2c). These computational findings were 

experimentally confirmed in a study of a series of mutants at the dynein Microtube Binding 

Domain (MTBD)-microtubule-binding interface to neutral residues. It was discovered that the 

altered MTBDs' binding affinity for microtubules has significantly increased. Furthermore, it was 

discovered that the binding and unbinding rates of MTBDs to microtubules were significantly 

impacted by charge screening by free ions in solution. These findings show the importance of long-

range electrostatic interactions in controlling the dynein-microtubule affinity[55]. 

The role of electrostatics in providing guiding force for macromolecular binding was 

demonstrated in a series of examples, where one uses the experimental structure of the complex 

and calculates the electrostatic force generated by one of the partners on the other one. The 

examples included homodimer, calmodulin, protein-DNA/RNA complexes and quinone in the 
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reaction center protein[56]. Furthermore, the electrostatic interactions were found to be a crucial 

factor for viruses’ assemblies (Fig. 1.2a). Many studies have proved that the electrostatic 

interactions among capsomers of the virus provide attractive forces for the viral capsid 

assembly[57, 58]. 

 

Figure 1.2: Long-range electrostatic effects. a. Electrostatic features surrounding a viral capsid (PDB ID: 

5J36[59]). The electrostatic potential and electric field lines on the surface of the viral capsid illustrate the 

electrostatic interactions among the capsomer proteins. b. The torque in barnase-barstar binding, where 

the barstar was separated by 20 Å and rotated by 90॰ to show the torque on the barstar. c. The electric 

field lines on myosin-actin complex, where the myosin and actin were separated by 15 Å to show the 

electric field lines. d. The relationship between the electrostatic force and distance in protein-protein 

interactions. The blue one is alpha-tubulin while the orange one is beta-tubulin.  
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The electrostatic force not only guides the binding partners toward their association, but 

also assures that their interfaces are properly oriented[52] (Fig. 1.2b). This is demonstrated for 

cases where the binding partners are deliberately improperly oriented prior to simulations, such 

that their interfaces are not aligned. The electrostatic force generates torque that reorients the 

partners in a proper orientation. This was demonstrated in a series of examples including barnase-

barstar[10], dynein-microtubule[12], and capsomer-capsomer interactions in viral capsid 

assembly[58].   

As mentioned above, the long-range electrostatic interactions provide a guiding force that 

drives the partners together, however, this force is not uniform and changes as a function of the 

distance between the partners. It was demonstrated that the electrostatic force profiles (force as a 

function of distance) can be grouped into four distinctive categories[11]. In some cases, 

electrostatics favors the binding, in others it opposes it. The most intriguing case is so termed the 

“soft landing” case such that at large distances electrostatic force attracts the partners, but just prior 

physical contact occurs, the electrostatics opposes the binding and just assures soft binding[11] 

(Fig. 1.2 d). Soft landing may help two binding partners to contact each other in sufficient time, 

so that they can adjust the configurations at the binding interfaces to avoid atom-atom clash and 

form hydrogen bonds and salt bridges. 

Of particular interest are cases involving intrinsically disordered proteins (IDP). Thus, 

computational and experimental analysis of the cell-cycle regulator p27 was demonstrated that 

long-range electrostatic forces acting on enriched charges of IDPs could speed up protein-protein 

encounter through "electrostatic steering" and simultaneously time, promote "folding-competent" 

encounter topologies to increase the efficiency of IDP folding upon encounter[60]. Another study 
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done on three IDPs, forming complexes also outlined the importance of electrostatics. They carried 

topology-based coarse-grained simulations and projected identical electrostatically accelerated 

encounter and folding mechanisms for all three complexes. These findings were consistent with 

earlier research of the charge distributions in known IDP complexes, which indicates that 

electrostatic interactions play a significant role in facilitating effective coupled binding and folding 

for quick specific identification[61]. Similarly, a computational alanine scanning has been 

performed for SARS-CoV-2 Spike and Human ACE2 Proteins. The residues identified with 

significance in binding and other residues in proximity were studied further through molecular 

mechanics-based protein binding free energy change prediction methods[62] 

1.2.2 Short-range electrostatic effects 

While at large distances between interacting atoms the electrostatics manifest its role via 

direct charge-charge interactions, in the case of short distance when there is contact between 

interacting partners, the electrostatics contribution is more complex. It still involves direct charge-

charge interactions, which could be very strong at Angstrom scale distances, however, another 

important factor is solvation energy (strictly speaking the short-range effects are results from the 

electrostatic interactions, orbital relaxation and Pauli-repulsion). In terminology of continuum 

electrostatics, the balance is maintained by Coulombic interactions and desolvation penalty. Thus, 

a salt-bridge or a hydrogen bond, which are favorable interactions in terms of Coulombic energy, 

may not be contributing to the macromolecular stability or binding, due to overcompensation 

coming from desolvation penalty (Fig. 1.1c-d: the salt bridge pair of ASP326-ARG37 is buried 

inside the protein while the GLU205-LYS203 is on the surface of the protein. The hydrogen bonds 

of THR445-THR276 and ASN397-TYR421 are inside of the protein while the GLU160-SER155 

are surface-exposed). However, such unfavorable salt-bridges and hydrogen bonds may still be 
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present in the macromolecular universe and will be an important structural feature contributing to 

macromolecular architecture. Such short-range interactions are frequently found to contribute to 

receptor-ligand binding, and the specificity of the binding mode. Below we outline such short-

range electrostatic interactions for specific cases found computationally and if possible, backed up 

with experimental observations.  

Polarization of interacting atoms is particularly important when the interactions are short-

range interactions. Thus, the impact of electronic polarization on homogeneous and heterogeneous 

amyloid oligomers using the Drude Oscillator model (a model considering each atom to be a point 

particle with partial a charge during the simulation) was recently investigated. The system of 

interest was made of two amyloids i.e., amyloid-β (Aβ) and islet amyloid polypeptide (IAPP), 

which are involved in the pathology of Alzheimer's disease and Type 2 Diabetes Mellitus. It was 

found that the most stable system was homogenous A-16-22, which gained stability from salt 

bridge formation and reduced polarization in hydrophobic residues[62]. Similarly, another study 

investigated β-strand rich oligomers with Drude force field and found that structural rearrangement 

occurred causing some loss of β-strand structure in favor of random coil content for all oligomers. 

It was outlined that low polarization in hydrophobic residues and salt bridge formation contribute 

to the stability of Homogenous Aβ16−22[16].  

Short-range interactions are a key factor that contributes to macromolecular stability and 

thus received significant interest. The interplay between favorable direct interactions and 

desolvation penalty. Thus, a recent study reported an investigation of the role of two salt bridges 

in ubiquitin: surface-exposed salt bridge (SB1:K11-E34) and buried salt bridge (SB2:K27-D52). 

It was shown that if the SB1 is broken, the mechanical stability of ubiquitin increases slightly, but 

when the SB2 is broken, the stability reduces significantly[63].  Stability and activity are 
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typically related and thus a study on a particular G-protein coupled receptor (GPCR), the 

cannabinoid receptor 1 (CB1), indicated that the switching mechanisms involves a salt bridge, the 

D263-K328 salt-bridge, that contributes to the stability of CB1[64]. Salt bridge involvement in the 

activation mechanisms of calcium dependent protein kinase-1 further elucidates the role of short-

range interactions in molecular biology. Recent work focused on calcium dependent protein 

kinase-1 of Plasmodium falciparum (PfCDPK1) and explored the possibility of allosteric 

inhibition of this kinase. It is shown how on truncation of CAD in PfCDPK1, a conserved salt-

bridge required for stabilizing the kinase domain in active state is disrupted and the kinase domain 

adopts inactive conformation[64]. Similarly, the role of a salt bridge, the His59-Asp103, in human 

granzyme B (hGzmB) was studied. It was shown that Asp103-Arg216 forms a salt bridge upon 

activation, breaking the His59-Asp103 hydrogen bond and enlarging the active site to aid in 

substrate binding[65]. Furthermore, short-range interactions are implicated in protein-protein 

binding and mutations may be disease-related. This was investigated for SARS-CoV-2's infectivity 

to figure out if the infectivity is enhanced by naturally occurring mutations. The structural 

dynamics of the RBD-spike protein mutation enhancing ACE2-binding were computed in silico 

to achieve this. Due to better interfacial stability of the RBD -strand surrounding the ACE2 across 

salt bridge hotspots, the ones in the RBD region showed a stronger affinity to ACE2[14]. A related 

study investigated the mutations (S477N-E484K) in the receptor-binding domain (RBD) of spike 

protein. The binding affinity of ACE2-RBD was examined using a protein docking and all-atom 

simulations technique. According to the investigation, the mutant modifies the hydrogen bonding 

network and binds more strongly than the wild type[14]. 

Short-range interactions are essential for gating and transport, and frequently are involved 

in selectivity. This was demonstrated in the case of the potassium channel, where it was observed 
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that S42 mutations in the pore helix significantly slow down the shutting of this filter gate, an 

effect that is unrelated to the amino acid's creation of a hydrogen bond at this location[66]. The 

role of salt bridges in conformational changes needed for the mitochondrial ADP/ATP carrier 

(AAC), which alternates between cytosol-open (c-) and matrix-open (m-) states to export ATP and 

import ADP was investigated via molecular dynamics simulations. It was shown that short-range 

interactions are critical for the functioning of the carrier[67].  

The hydrogen bonds are frequently involved in catalysis and in overall function of 

biological macromolecules. Thus, it was demonstrated that wild type hydrogen bond network is 

crucial for the activity alpha/beta hydrolase domain-containing 5 (ABHD5), also known as CGI-

58, which is the activator of adipose triglyceride lipase (ATGL). Indeed, computational modeling 

showed that the mutations of E41, R116, and G328 disrupt the hydrogen bonding network with 

surrounding residues and inhibit membrane targeting or ATGL activation[68]. Another study 

focused on the T cell receptor's interaction with the peptide major histocompatibility complex and 

showed that hydrogen bonds and Lennard-Jones contacts, which are physicochemical aspects of 

the TCR-pMHC dynamic bond strength, are correlated with the immunogenic response brought 

on by the particular peptide in the MHC groove[69]. Hydrogen bonds are essential in catalytic 

reactions involving proton transfer. This was demonstrated for the breakdown of uracil, where the 

nucleoside triphosphate cyclohydrolase (UrcA) catalyzes the two-step hydrolysis of uridine 

triphosphate (UTP). MD simulations showed that the hydrogen bond interaction helps the reaction 

intermediate undergo spontaneous conformation overturn in the active site of UrcA[70]. 

Perhaps the hydrogen bonds are the most important for water molecule arrangement. Since 

the physiological environment of all biological macromolecules is the water phase, the properties 

of the water medium affect their stability and functionality. This inspired investigations on 
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understanding short-range interactions between neighboring water molecules. Since the 

interactions occur at very short distances, one needs to apply quantum mechanical approaches. 

Thus, recent work focused on the implications of nuclear quantum fluctuations on equilibrium and 

dynamical properties relating to bifurcation routes in hydrogen-bond dimers of water and 

ammonia. It was shown that the classical over-the-hill approach is substituted with a tunneling-

controlled mechanism that, from the perspective of the path integral, can be modeled as 

coordinated inter-basin migrations of polymer beads[71]. The application of quantum mechanical 

approaches was further extended to probe the development of neighboring hydrogen bonds with 

water molecules. It was demonstrated that there is a direct mechanism for the emergence of short-

range structural fluctuations in the hydrogen bond network of liquid water, which shows that the 

time development of neighboring hydrogen bonds is closely connected[72, 73].   

Hydrogen bonds and salt bridges are important for receptor-ligand interactions, including 

drug-like molecules binding to the corresponding targets. Recent work explored this topic and 

applied MD simulations with MMPBSA approaches to study the stability of histone deacetylase 

inhibitors’ effects on the stability of histone deacetylase like proteins (HDLP). The result showed 

that the stability HDLP-CBHA (m-Carboxycinnamic acid bis-hydroxamide (CBHA) is higher than 

the free HDLP enzyme. The higher stability was contributed by the increased number of hydrogen 

bonds[15]. Similarly, the computational modeling of a prospective drug, the dorzagliatin, 

interactions with human glucokinase activator (GKA). The results showed that dorzagliatin can 

create the characteristic hydrogen bonds of GKA with Arg63, making a tight binding hydrogen 

bond network around dorzagliatin[74]. Even in the case of DNA, a computational study indicated 

that the hydrogen bonds, being the main interaction constraining the variability of the linkers, are 

enhanced slightly with DNA twist number[75]. Another study carried out MD simulations to study 
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riboswitches and found that the binding domain in riboswitch is stable for molecule recognition 

and binding and the switching base pairings are co-evolved in the translation state[76]. 

Electrostatic interactions were shown to be a crucial factor for reversing the dysfunctional p53 and 

thus avoiding tumor progression. The N-terminal transactivation domain (TAD) of p53 can 

regulate cell apoptosis by interacting with the transcriptional adaptor zinc-binding 2 (Taz2) domain 

of p300. It was demonstrated that electrostatic interactions govern the affinity of the p300 Taz2–

p53 TAD2 complex[17]. 

1.2.3 pKa calculations and pH-dependent phenomena (long- and short-range effects) 

Almost all biological processes are pH-dependent, which indicates the crucial role of 

hydrogen ion concentration for the living systems[77, 78]. This is manifested as pH-dependence 

of catalysis, stability, binding affinity, and conformational flexibility[78, 79]. Typically there is a 

particular pH at which the biological activity, macromolecular stability and binding are best 

optimized, termed pH-optimum[18]. The pH-dependence originates from the pKa’s of the 

ionizable groups, both ionizable amino acids and nucleic acids, and thus indicates the importance 

of assigning correct protonation states prior to any modeling or introducing pH in molecular 

dynamics simulations (constant pH MD[80-84]). Below we outline recent contributions on 

modeling pH-dependent phenomena. It is well understood that pH and conformational changes are 

coupled and in recent time many researchers apply constant pH MD (CpHMD) approaches to 

model the effect of pH on protein stability[85], binding[86], dynamics[87] and reactivity[88]. 

Additional complexity, if one investigates membrane proteins,  comes from the presence of lipid 

bilayer[89] . Thus, the pKa’s of ionizable groups may undergo pKa shift as proteins insert into the 

membrane [90]. In parallel, significant amount of work was completed using either pre-defined 

conformational space[91]; or mimicking the conformational stability via Gaussian-based smooth 
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dielectric function[92] ; Furthermore, there are methods that use coarse-grained lattice-based 

model of proteins and train the model on existing experimental data[93], and the treecode-

accelerated boundary integral solver[94]. 

In terms of long- and short-range electrostatic interactions discussed above, the pH-

dependent phenomena originate from a mixture of both. Thus, a recent computational study of a 

particular protein (Apolipophorin-III) which associates with a lipid disk demonstrated that the 

association is strongly pH-dependent, but there are no direct interactions between titratable group 

of Apolipophorin-III and charged lipid head groups[95]. In contrast, another study on cyclic 

dipeptides showed that pKa of side chains of lysine increases for cyclic dipeptides compared to 

the linear ones and this was attributed to short-range[96]. The interplay between short- and long-

range electrostatic interactions was demonstrated in study of virus assembly. It was outlined that 

both the stability and the binding affinity of the E protein are pH independent in pH range 6 to 10, 

and this is a result of a network of interactions[97]. The short- and long-range interactions are 

specifically important in treating water phase, either explicitly or implicitly, particularly when one 

deals with water channels or wires inside biological macromolecules where the water flexibility is 

highly reduced as compared with bulk water. Thus, water molecules in the Gramicidin A (gA) 

channel were investigated to probe the effect of different approaches and computational 

techniques. It was concluded that the MCCE and Drude analysis led to a small net dipole moment 

as the water molecules change orientation within the channel[98]. 

The pH-dependence is also pronounced in allosteric regulation. recent work reported 

combined experimental with computation investigations and showed that allostericity in pH-

switching protein is guided by coupling throughout the protein, featuring a large network of 

hydrophobic interactions that work in concert with key electrostatic interactions[99].  
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1.3 Electrostatics, disease mechanisms and in silico drug discovery 

It was outlined that electrostatics play a crucial role in macromolecular stability and 

binding. Therefore, any deviation of wild type electrostatic properties would have profound effects 

on macromolecular thermodynamics, and thus may result in a dysfunctional biological 

macromolecule. Furthermore, if the biological macromolecule is important for the wild type 

functioning of the cell, its dysfunction could cause disease. Indeed, as demonstrated in the 

literature, there is a linkage between the effect of missense mutations on protein stability or 

interactions and the propensity the mutation to be photogenic[100, 101]. Mutations that either 

delete a charge, or reverse a charge, are expected to cause dramatical effect on both long- and 

short-range interactions and thus to have high propensity to be disease-causing[102, 103]. Below 

we outline recent papers that model the effect of disease-causing mutations on atomic scale, 

including disruption of salt bridges and hydrogen bonds, and in silico design of drugs that could 

mitigate the disease-causing effect[28, 104]. 
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Figure 1.3: The effects of mutations on electrostatic features. a. Mutation of E196K formed a new salt-

bridge between GLU and LYS in prion protein (PDB: 7DWV[105]). b. Mutation of D196G (SARS-COV-

2 spike protein) caused the loss of hydrogen bond between THR and ASP (PDB: 7KMS[106]). c. The pH 

dependence of folding free energy for the melanosome of oculocutaneous albinism-2[8]. d. The image 

shows the p53 protein-DNA and 1-[2-(1,3-benzodioxol-5-yl) pyrazolo[1,5-a] pyrazin-4-yl]-3-

piperidinamine. All mutations in a, b, d are achieved using Chimera[107]. 

  

1.3.1 Salt-bridge disruption 

In the previous section we emphasized on the important role that salt bridges play for 

stability and interactions of biological macromolecules. However, it should be clarified that the 

expectation is that disruption of buried salt bridges should be more deleterious than of surface 

exposed one (unless they participate in binding a partner). Even more, due to the plasticity of 

biological macromolecules, even a mutation within buried salt bridge may not cause large change 

of the stability, because the macromolecule can rearrange and accommodate the change[102].  

Because electrostatic interactions are long-range interactions, the deleterious effect may 

involve charged amino acids situated far apart from each other. Thus, a recent paper modeled the 

electrostatic component of the force acting between a kinesin motor domain and tubulin. The 

receiver operating characteristic method is used to show that variations in the electrostatic 

component of the binding force can distinguish between disease-causing and non-disease-causing 

mutations detected in the human kinesin motor domain. The prediction rate of 0.843 area under 

the ROC curve owing to a change in the amplitude of the electrostatic force alone is notable 

because diseases may result from a variety of causes unrelated to kinesin-microtubule 

binding[108].Disruption of intermolecular interactions was implicated in another disease, the 

prion disease. It was proposed that pairs of amino acids from opposing subunits form four salt 

bridges to stabilize the zigzag interface of the two protofibrils. The results provided structural 

evidence of the diverse prion strains and highlighted the importance of familial mutations in 
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inducing different strains. Electrostatics plays an essential role in formation of other complexes 

such as the virulence factor ESAT-6. This is related to mycobacterium tuberculosis (Mtb), which 

is a leading death-causing bacterial pathogen. ESAT-6 is hypothesized to form an oligomer for 

membrane insertion of Mtb as well as rupturing[109].  

1.3.2 Hydrogen bond disruptions 

Hydrogen bonds are essential for maintaining 3D structure of biological macromolecules 

and formation of macromolecular complexes. The disruption of wild type hydrogen bonds by 

mutations may or may not be deleterious. The same considerations apply as outlined for salt 

bridges above. Below we outline recent works on this subject.  

The binding and dissociation between myosin and actin filaments is crucial for heart 

protection and drug development. It is demonstrated that the loss of hydrogen bonds significantly 

promotes the detachment of myosin from actin filament, causing the state changes from rigor state 

to post-rigor state[110]. Polyglutamine tracts are the regions of low sequence complexity 

frequently found in transcription factors. The length of tracts is related with transcriptional activity 

and expansion beyond specific thresholds is the cause of polyglutamine disorders. The 

conformation of the polyQ tract of the androgen receptor is associated with spinobulbar muscular 

atrophy, depending on its length. This sequence folds into a helical structure, which is stabilized 

by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl 

groups. Its helicity directly correlates with tract length. These unusual hydrogen bonds are 

bifurcated with the conventional hydrogen bonds stabilizing α-helices[111]. TDP-43 is an essential 

RNA-binding protein forming aggregates in almost all cases of sporadic amyotrophic lateral 

sclerosis (ALS), frontotemporal lobar dementia (FTLD) and other neurodegenerative diseases. 

TDP-43 aggregates have a self-templating, amyloid-like structure. This segment adopts a beta-
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hairpin structure that forms an amyloid-like structure. This conformer is stabilized by a special 

class of hyper cooperative hydrogen bonding[112]. Moreover, Amyloid fibrils of α-synuclein are 

the histological hallmarks of Parkinson’s disease, dementia with Lewy bodies and multiple system 

atrophy. The H50Q mutation results in two novel polymorphs of α-synuclein: narrow and wide 

fibrils, formed from either one or two protofilaments, respectively. These structures reveal new 

structural elements, including a hydrogen-bond network and surprising new protofilament 

arrangements[113].  

1.3.3 pH-dependence alteration 

Biological macromolecules have evolved to function at a particular pH and any deviation 

of wild type pH-dependent properties as stability and binding may cause diseases. Such changes 

could be caused by mutations involving titratable groups and less frequently by mutations causing 

conformational changes and thus affecting pKa’s of titratable residues. Even a mutation that 

involves the same polarity residues, such as Arg to His, could be disease causing. Indeed, since 

the intracellular pH of most cancers is constitutively higher than that of normal cells and enhances 

proliferation and cell survival, substitution of Arg with His, dramatically changes activity of 

mutant proteins at high pHs[114-116].  

The altered pH-dependent properties of biological macromolecules are manifested not only 

in cancer, but also in many other diseases. Thus, a recent work computationally studied the pH-

dependent stability of several melanosome membrane proteins. It was found that disease-causing 

variants impact the pH dependence of melanosome proteins[117]. Substitution of wild type His 

with Gln was found to alter the functioning of CLIC2 protein and to cause X-linked channelopathy 

with cardiomegaly[118]. 



 

19 

The Covid-19 pandemic prompted many investigations on the molecular mechanisms of 

disease and effect of mutations. Recent work on severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), causative agent of the Covid-19 pandemic, is thought to release its RNA genome 

at either the cell surface or within endosomes, the balance being dependent on spike protein 

stability, and the complement of receptors, co-receptors, and proteases. The investigator performed 

pKa calculations on a set of structures for spike protein ectodomain and fragments from SARS-

CoV-2 and other coronaviruses. It is predicted that a particular aspartic acid contributes to a pH-

dependence of the open/closed equilibrium[119]. Another work applied multi-scale computational 

approaches to study the electrostatic features of spike (S) proteins for SARS-CoV and SARS-CoV-

2.  It was demonstrated that the complex structures of hACE2 and the S proteins of SARS-

CoV/SARS-CoV-2 are stable at pH values ranging from 7.5 to 9[120]. A plausible route which 

variants can alter viral properties is the transition between receptor binding domain (RBD) up and 

down forms of the SARS-CoV-2 spike protein trimer. The work predicted that pH-dependence in 

the mild acidic range, with stabilization of the locked form as pH reduces from 7.5 to 5[121]. 

1.4 In silico drug discovery 

Here we do not attempt to outline the work in the general field of drug discovery, rather 

we focus on investigations of molecular effects of disease-causing mutations or seeking inhibitors 

from natural compounds. In the last case, we emphasize on works that manifest the role of salt-

bridges and hydrogen bonds to identify efficient inhibitors.  

Once the effect of disease-causing mutation is revealed, it is tempting to seek a small 

molecule, a potential drug, which can mitigate the effect, which frequently involves electrostatic 

alteration. This is affordable because genotypes aggregate into several phenotypes only. Thus, a 

particular drug is supposed to be efficient for many genotypes within the same gene. Indeed, in 
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case of Rett syndrome, most of the top frequency disease-causing mutations were experimentally 

and computationally shown to result in lowering the affinity of MeCP2 to the cognate DNA, while 

not affecting protein stability[122, 123]. Similarly, many genotypes, many mutations in spermine 

synthase gene, which cause Snyder-Robinson syndrome, were found to affect spermine synthase 

homo-dimerization, and thus the electrostatic funnel that guides the substrate to the active site[32, 

124-126]. This resulted in investigations that proposed drugs capable of mitigating disease-causing 

effect[28, 104, 127]. The most common approach of developing drugs is to design inhibitors. Such 

a design requires considering long- and short-range electrostatic effects. Recent study carried out 

residue study to investigate tyrosine kinase enzyme inhibitors. The result showed that a pair of 

aspartic residues, providing negative potential, plays an important role providing attractive 

interactions in the binding site of the enzyme[128].  

Hepatitis C Virus (HCV) is affecting millions of people worldwide. Existing drugs have 

different efficiencies against different genotypes of HCV. This prompted a computational 

investigation to select the most efficient inhibitor against the most prevalent genotype in South 

Asia and it was shown that short-range hydrogen bonds are the most contributing factor for the 

binding energy[129]. Molecular docking was utilized in another study to identify inhibitors of 

insulin amyloid fibril formation. It was elucidated that hydrogen bonds play a crucial role in the 

interactions between the ligands and insulin[36]. Molecular dynamics and MMPBSA methods 

were also used to probe the effect of inhibitors. This was done in case of histone deacetylase-like 

proteins and was shown that the affinity increases with the increase of hydrogen bonds[15]. 

Similarly, inhibitors against cyclin G associated kinase involved in hepatitis C virus entry into host 

cells, were studied and short-range interactions analyzed[34]. The importance of hydrogen bonds 

was demonstrated in a study of amoxicillin, widely known as an antibiotic, to bind to COVID-19 
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protein in Mpro protease[37]. Another study focused on the observation that SARS-CoV-2 

entrance to the host cells occurs via interaction between receptor binding domain (RBD) of the 

spike (S) protein on the virus with the angiotensin-converting enzyme 2 (ACE2) receptor. Thus, 

the authors took a peptide consisting of residues 19–48 of ACE2 as the wild-type peptide along 

with six mutants. It was shown that short-range interactions are essential for selecting the best 

compound[38]. Other plausible inhibitors of SARS-CoV-2 were also suggested by targeting 

proteins crucial for SARSCoV-2 infection and cytokine storm[130]. The role of electrostatic 

interactions was demonstrated in another study where inhibitors against DNA 

methyltransferase[131]. Short-range interactions were analyzed to identify inhibitors against 

acetylcholinesterase, is a key enzyme enhancing the cognitive disorder, leading to Alzheimer’s 

disease[132]. Aminoquinolines bind to hemoglobin, and thus prevent the degradation of 

hemoglobin, while by binding to parasitic tissue, aminoquinolines diminish the parasitic strength 

of causing malaria. The role of hydrogen bonds in these association events was investigated and 

shown that the number of hydrogen bonds differ depending on the target[93].   

1.5 Conclusion  

The review outlined recent contributions emphasizing on the role of electrostatics in the 

field of computational molecular biophysics and disease mechanism. It was outlined that the 

electrostatics is still a hot topic, and it is implicated in various molecular mechanisms for wild type 

functionality and disease causality. Furthermore, the electrostatic considerations are frequently the 

key component in drug design to mitigate the disease mechanisms. While an attempt was made to 

group the contributions according to short- and long-range effects, due to the complex nature of 

electrostatic interactions, frequently both cases are present in the biological systems. A prominent 

manifestation of the role of electrostatics in molecular biology is the pH-dependence, which 
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typically originates from mixture of long- and short-range electrostatic interactions. Overall, the 

electrostatics appears to be involved in many processes at molecular level and should be 

considered in any study dealing with atomistic level of details. 
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CHAPTER 2: FORCE AND ENERGY ANALYSIS ON MOLECULAR MECHANISMS OF 

CARDIAC ACTOMYOSIN STATE TRANSFORMING 

2.1 Introduction 

Sudden cardiac death (SCD) contributes to half of all deaths from cardiovascular 

diseases[133]. Hypertrophic cardiomyopathy (HCM), the main cause of SCD[134, 135], is a 

polygenic disease[136], afflict at least one in 500 people[137]. In addition to SCD, HCM causes 

embolic stroke and heart failure in young and middle-aged people. To date, genetic research has 

located 33 HCM-related genes; MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and 

MYL3 have been categorized as definitive[138]. These definitive genes encode human cardiac 

sarcomeres, including myosin-binding protein C (MyBP-C), β-cardiac myosin, cardiac troponin 

T, troponin I, tropomyosin, cardiac actin, and myosin light chain 2 and 3. β-cardiac myosin, a type 

of motor protein, is assembled to form myosin filaments (thick filaments). These periodically 

overlap with actin filaments to form the basic unit of contraction[139]. The actin filament (thin 

filament) is composed of globular actin (G-actin)[140], tropomyosin (Tpm), troponin, and MyBP-

C[141]. Binding between thick and thin filaments is caused by the hydrophobic interactions 

between the myosin heavy chains with G-actins[142, 143]. Tropomyosins, two pairs of long helix 

chains on the two sides of the thin filament regulate the exposure of the binding interface of G-

actins[144, 145]. Movement of the Tpms is regulated by the troponin complex, a transformable 

protein including troponin I, troponin T, and Tpm-binding subunit[144]. The complex is regulated 

by the concentration of Ca2+ and moves Tpms into open, close, or blocked states[144, 145]. 

In the kinetic cycle, the instantaneous increase of Ca2+ concentration causes a huge 

conformational change in the troponin complex with azimuthal movement of the Tpm[144], 

exposing the binding interface of the G-actins. Then, the myosins approach and bind to the actin 
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filament. The binding state between the thin filaments and the myosin is called the rigor state. In 

this state, both Pi and MgADP are released, forming a nucleotide-free state with a strong binding. 

Once Pi and MgADP have been released, ATP rapidly rebinds to the myosin, causing 

conformational change and dissociation[146, 147], known as the recovery stroke. Meanwhile, 

myosin hydrolyzes ATP into ADP and Pi, but does not release them directly[148]. In this state, 

the pre-powerstroke (PPS), myosin is ready to undergo the powerstroke process. Release of Pi, the 

initial step in powerstroke, is followed by the release of MgADP, which closes the cleft of the 

myosin motor domain and forms a strong binding between the myosin and actin filaments. After 

the release of MgADP, myosin reaches the rigor state. It restarts ATP binding and hydrolysis, 

waiting for the next kinetic cycle[147].   

The powerstroke and recovery stroke are the two fundamental processes in the kinetic 

cycle. The powerstroke has attracted many investigators, whose studies range from the release of 

Pi[149]and MgADP[150, 151] to the lever arm movement[152, 153], making the mechanism of 

the powerstroke much clearer than before. However, far fewer studies on the recovery stroke 

exist[154]. The powerstroke and recovery stroke are similar mechanisms beneath opposite 

phenomena. Transformation of myosin from the rigor to post-rigor state is the initial step for the 

recovery stroke. The necessity of the post-rigor state for the detachment of myosin needs more 

study. Knowledge of structural differences between the rigor and post-rigor states is the 

fundamental analysis for understanding the importance of the post-rigor state. The energetic and 

electrostatic analyses are crucial in understanding binding and dissociation.   

Here we used SWISS-MODEL[155] and Chimera[107] to build human β -cardiac 

actomyosin complexes in rigor and post-rigor states for structural comparison. Afterward, we ran 

Molecular Dynamic (MD) simulations and calculated the electrostatic features and free binding 
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energy to explore the differences between the rigor and post-rigor states, revealing the mechanism 

of the dissociation. The results showed that the actomyosin complex in the post-rigor state 

possesses a lower binding affinity compared with that in the rigor state. The energy analysis also 

confirmed that post-rigor state myosin is not suitable for binding compared with that in the rigor 

state. These changes of actomyosin complex in the post-rigor states provide more suitable 

conditions for the detachment of myosin. This study shows the importance of the post-rigor state 

for myosin detachment and sheds light on the mechanism of dissociation of the actomyosin 

complex. 

2.2 Method 

2.2.1 Modeling and MD simulations 

The model of β-cardiac myosin in rigor state was built using a template of rigor-like squid 

myosin S1 (PDB: 3I5G[156]) based on the sequence of β-cardiac myosin[157] through the SWISS-

MODEL[155]. The sequence identity is 62.41%. The rigor myosin model was then assembled with 

cardiac actin filament (PDB: 5NOJ[145]) based on the actomyosin complex model of 5JLH[143] 

to build β-cardiac actomyosin complex in the rigor state through model alignment by 

Chimera[107]. The model of β-cardiac myosin in the post-rigor state was taken from the Protein 

Data Bank (PDB: 6FSA[157]). The missing cardiomyopathy loop and strut domain were built 

according to SWISS-MODEL[155].  Then the β-cardiac myosin in post-rigor state and cardiac 

actin filament were taken to build β-cardiac actomyosin complex in the post-rigor state, using the 

actomyosin complex model of 5JLH[143].  

The solvation box of the TIP3P water model[158] with 150 mM of NaCl was built by 

Visual Molecular Dynamics[159] (VMD). The MD simulations were applied by NAMD 

2.12[160]. In MD simulations, the end residue (Leu 807) of the myosin and the residues in actin 
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filament which were 10 Å from the myosin were restrained. The initial temperature and pH were 

set at 300 K and 7.0, respectively. The periodic boundary conditions and CHARMM 36[161] force 

field were applied to the systems. 20,000 steps of minimization were applied ahead of the 50 ns 

simulations. All simulations were repeated twice more. 

2.2.2 Electrostatic potential calculation 

After simulations, the frames at 50 ns of the actomyosin complexes in rigor and post-rigor 

states were taken for electrostatic potential calculations. The electrostatic potential calculations 

were performed using Delphi[48]. The myosin motor domain and actin filament were 

separated[162] by 20 Å. The charge and the radius of atoms were calculated by the force field 

CHARMM36 and assigned by pdb2pqr[163]. The resolution was set as 1.5 grid/Å, and the 

dielectric constants were set at 2.0 and 80.0 for protein and water, respectively. The probe radius 

for generating the protein surface was 1.4 Å, and the protein filling percentage in the calculation 

box was 70%. The concentration of NaCl was set at 0.15 M, and the boundary condition for the 

Poisson Boltzmann equation was set as the dipolar boundary condition. The calculated electrostatic 

potential on surfaces was visualized by Chimera[107]. VMD[159] was used to show the 

electrostatic field lines. In both visualizations, the color range was set from red to blue, 

corresponding to the potential range from -1.0 to 1.0 kT/e.  

2.2.3 Electrostatic force 

The electrostatic force on the myosin motor domain was calculated by DelphiForce[164] 

every 0.05 ns in the last 20 ns of MD simulations (30 ns to 50 ns). The parameters for electrostatic 

force calculation were the same as those for potential calculation. Then the electrostatic force was 

split into the binding component (Eq. 2.1) and the sliding component (Eq. 2.2). 

𝐹𝐵𝑖 = 𝐹𝑖 ∙ cos 𝛼𝑖 .……………………………………………………………… (2.1) 
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𝐹𝑆𝑖 = 𝐹𝑖 ∙ sin 𝛼𝑖 …………………………………………………… (2.2) 

Where the 𝐹𝐵𝑖  and 𝐹𝑆𝑖  are the binding component and sliding component in the 𝑖𝑡ℎ 

frame, respectively. 𝐹𝑖 is the total electrostatic force on myosin at the 𝑖𝑡ℎ frame. The 𝛼𝑖 is the 

angle between the total force and the axis, which passed the mass centers of the myosin motor 

domain and actin filament in the 𝑖𝑡ℎ frame.  

2.2.4 MM/PBSA free binding energy calculation 

The binding energy (∆𝐸𝑏𝑖𝑛𝑑) is calculated by equation 3.3, which was applied to coulombic 

binding energy, Van der Waals binding energy, polar and non-polar solvation binding energy. 

∆𝐸𝑏𝑖𝑛𝑑 = 𝐸𝑎𝑐𝑡𝑜𝑚𝑦𝑜𝑠𝑖𝑛 − 𝐸𝑚𝑦𝑜𝑠𝑖𝑛 − 𝐸𝑎𝑐𝑡𝑖𝑛.………………………………….…… (2.3) 

where the ∆𝐸𝑏𝑖𝑛𝑑 is the binding energy (electrostatic, Van der Waals, polar or non-polar 

solvation binding energy). 𝐸𝑎𝑐𝑡𝑜𝑚𝑦𝑜𝑠𝑖𝑛 is the corresponding energy of the actomyosin complex 

while 𝐸𝑚𝑦𝑜𝑠𝑖𝑛 and 𝐸𝑎𝑐𝑡𝑖𝑛 are the corresponding energy of the myosin and the actin filament, 

respectively.  

The free binding energy ∆𝐸𝑡𝑜𝑡𝑎𝑙_𝑏𝑖𝑛𝑑 was calculated by equation 2.4. 

∆𝐸𝑡𝑜𝑡𝑎𝑙_𝑏𝑖𝑛𝑑 = ∆𝐸𝑐𝑏𝑖𝑛𝑑 + ∆𝐸𝑣𝑏𝑖𝑛𝑑 + ∆𝐸𝑝𝑏𝑖𝑛𝑑 + ∆𝐸𝑛𝑝𝑏𝑖𝑛𝑑……..…………... (2.4) 

∆𝐸𝑡𝑜𝑡𝑎𝑙_𝑏𝑖𝑛𝑑  represents free binding energy. ∆𝐸𝑐𝑏𝑖𝑛𝑑, ∆𝐸𝑣𝑏𝑖𝑛𝑑 , ∆𝐸𝑝𝑏𝑖𝑛𝑑, and ∆𝐸𝑛𝑝𝑏𝑖𝑛𝑑  

represent coulombic binding energy, Van der Waals binding energy, polar and non-polar solvation 

binding energy, respectively. The coulombic energy and polar solvation energy were calculated 

by Delphi[48]. The Van der Waals energy was calculated by NAMD 2.12[160]. The non-polar 

solvation energy was calculated by solvent-accessible surface area (SASA) by equation 2.5.  

𝐸𝑛𝑝 =  𝛼 ∙ 𝑆𝐴𝑆𝐴 + 𝛽 ……………………………………………... (2.5) 

where 𝐸𝑛𝑝 is the non-polar solvation energy, 𝛼 = 0.0054 and β = 0.92 kcal/mol. The 

SASA is the solvent-accessible surface area, which was calculated by NACCESS[165].  
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2.2.5 Salt bridges and hydrogen bonds. 

The salt bridges and hydrogen bonds analyses were performed by VMD based on 1000 

frames from the simulations of 30 to 50 ns. The cut-off distance for salt bridges analysis was set 

as 4 Å[166] while the cut-off distance and angle for hydrogen bonds analysis were set as 3.5 Å 

and 20°[142, 167].  

2.3 Results and Discussion 

2.3.1 Structural analysis 

In previous works on myosin V[168], the ATP hydrolysis led to the opening of the cleft, 

which is called the post-rigor state. In the post-rigor state, the myosin detaches from the actin 

filament[154]. The conformational change in the myosin from rigor to the post-rigor state includes 

the movements of cardiomyopathy (CM) loop, Loop 3, and Loop 4[143, 154]. The conformational 

changes caused by ATP hydrolysis between the rigor and post-rigor states are shown in Fig. 2.1a. 

The cleft is open in the post-rigor state and closed in the rigor state. The simulations for the 

actomyosin complex in the rigor state reached stability after 10 ns while those in the post-rigor 

state reached stability after 30 ns (Fig. 2.1b). The separated RMSF (each 10 ns for a stage) were 

also calculated to indicate the stabilization of the structure. In both complexes, the stages 4 and 5 

(Fig. 2.1cd) shows the lowest RMSF which means the structure is stabilized. It is consistent with 

the result of RMSD. Besides, the slight movement of post-rigor state myosin motor domain was 

also observed (Fig. 2.1g). It indicates the instability of the post-rigor state. 

The RMSF analysis for the myosin is shown in Fig. 2.1e. The residues with high RMSF 

were GLN 571, THR 211, and GLN 734 in the rigor state myosin. The high RMSF of these 

residues is because of the formation of loops, which are very flexible (marked in Fig. 2.1h). The 

GLN 571 is on loop 2, which is located on the interface and possesses high flexibility.  
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Figure 2.1: The structural analysis for both rigor and post-rigor sate in MD simulations. a. Structural 

comparison between the myosin motor domains in rigor (forest green) and post-rigor (orange). b. The 

RMSD (A) of actomyosin in rigor and post-rigor state for triple pairs of simulations. cd. RMSFs of Cα in 

rigor (c) and post-rigor (d) models were calculated by each 10 ns in 5 stages. e. RMSF of Cα in rigor and 

post-rigor models. eg. The structural comparison between the structures at the 0 ns (pink and orange) and 

50 ns (green and cyan) in rigor (e) and post-rigor (g) models. h. Rigor model with marked residues with 

high RMSF.   

2.3.2 Electrostatic potential surface calculation 

We took the structures of actomyosin complexes in the rigor and post-rigor states from the 

last frame (50 ns) for calculations of electrostatic potential. The electrostatic potential surfaces the 

electrostatic field lines are shown in Fig. 2.2. The myosin and actin filament in both figures were 

separated by 20 Å for better visualization of the interfaces. The myosin-binding interface is 

positively charged while the actin-binding interface is negatively charged (Fig. 2.2abef). 
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Compared with the myosin-binding interface in the rigor stage, the positively charged area 

decreased in the post-rigor state (Fig. 2.2ab). By contrast, the actin-binding interface was not 

affected by state changes. In Fig. 2.2ef, tropomyosins are also negatively charged. They can 

interact with the positively charged myosin, contributing to electrostatic attraction. We further 

rendered the electrostatic field lines by VMD[169]. The decreased positively charged area in the 

myosin-binding interface directly caused fewer interactions with actin filament in the post-rigor 

state. The decrease in interactions is shown in Fig. 2.2dh. Consistent with the electrostatic potential 

surface, the tropomyosins (Tpms) also interacts with the myosin. This reflects our previous work 

on interactions between Tpms and myosins[170]. In detail, the electrostatic field lines between the 

myosin motor domain and tropomyosin are even denser than those with G-actin, especially in the 

post-rigor state. The electrostatic interactions between myosin and actin filaments are thought to 

be important contributors to the binding or movements of myosin in the kinetic cycles. The 

weakened interactions in the post-rigor state contributed to the dissociation of actomyosin 

complex. 

 

Figure 2.2: The coulombic potential surface and field lines of the actomyosin in states of rigor and post-

rigor. aecg. The actomyosin complex in rigor state. bdfh. The actomyosin complex in post-rigor state.  
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2.3.3 Electrostatic force analysis 

In the rigor state, the actin filament acts an electrostatic force of 125.11 kT/e on the myosin; 

the electrostatic force decreases to 73.52 kT/e in the post-rigor state (Fig. 2.3a,). In Fig. 2.3cf, the 

forces were analyzed as the binding and sliding components (Eq. 2.1 and 2.2). From rigor to the 

post-rigor state, the binding component decreases (Fig. 2.3c) (from 120.24 kT/e to 61.62kT/e) 

along with the decrease of the total force. By contrast, there is no obvious difference for the sliding 

component (Fig. 2.3f) from rigor to post-rigor state. Combined with analyses of the surfaces of 

electrostatic potential, the conformational changes in myosin from rigor to post-rigor state shrink 

the positively charged area and decrease the interactions with actin filament. The decrease of the 

interaction further suggested the decrease of the electrostatic binding force. The decrease in 

binding helps detach the myosin from the actin filament.  
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Figure 2.3 The electrostatic force analysis and free energy analysis. a. The total electrostatic force on 

between myosin motor domain and actin filament. b. The free energy between myosin motor domain and 

actin filament. c. The binding component of electrostatic force. d. The columbic binding energy. e The 

Van der waals binding energy. f. The sliding component of electrostatic force. g. The polar solvation 

binding energy. h. The Non-polar solvation binding energy. 

2.3.4 Free binding energy calculation 

In addition to testing the electrostatic features, we further tested the free binding energy by 

MM/PBSA[171, 172]. The MM/PBSA may result in higher binding energy than expectation, but 

the comparisons of relative binding energy are reliable. In Fig. 2.3b and Table 3.1, the actomyosin 

complex in rigor state is at a lower state (-124.25 kcal/mol) than that in post-rigor state (-

114.78kcal/mol). The difference infers that binding in the rigor state is stronger than that post-

rigor state. To further analyze the contributions among each component, the electrostatic, Van der 

Waals, polar and non-polar solvation binding energy were separately calculated (Eq. 2.4). Results 

are shown in Table 2.1 and Fig. 2.4degh. Van der Waals and solvation binding energy were lower 

in rigor state; this is preferable for binding. The polar solvation binding energy contributes most 

to the rigor state, which is 22.18 kcal/mol lower than in post-rigor state. The difference is due to 

the conformational change of the post-rigor myosin, which decreases the area of the interface while 

extending the solvent-accessible surface area. 

Table 2.1: Free binding energy (kcal/mol) 

 
Electrostatic binding 

energy 

Van der Waals 

binding energy 

Polar solvation 

binding energy 

Non-polar solvation 

binding energy 
Free binding energy 

 Rigor 
Post-

Rigor 
Rigor 

Post-

Rigor 
Rigor 

Post-

Rigor 
Rigor 

Post-

Rigor 
Rigor 

Post-

Rigor 

Average -1631.87 -1646.70 -80.83 -79.56 1603.37 1625.55 -14.91 -14.06 -124.25 -114.78 

SD 58.86 52.18 14.12 8.73 51.92 48.26 0.82 0.88 14.28 13.81 
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3.3.5 Salt bridges and hydrogen bonds. 

To better understand the reason for the decrease in binding affinity between rigor and post-

rigor, the salt bridges and hydrogen bonds from the last 20 ns were calculated by VMD. The results 

are shown in Tables 2.2 and 2.3. In the rigor state, there were eight salt bridges with occupancy 

higher than 0.5 and three salt bridges with occupancy higher than 0.9. By contrast, in the post-

rigor state, there were five salt bridges with occupancy higher than 0.5 and one salt bridge with 

occupancy higher than 0.9. The positions of salt bridges with higher occupancy (> 0.8) are shown 

in Fig. 2.4. Most salt bridges in rigor state disappeared in post-rigor state. However, the salt bridge 

(GLU 574-ARG 95) also appeared in the post-rigor state, and the occupancy was increased. 

Similarly, in the rigor state, a salt bridge formed by LYS 367 and GLU 180 (Tpm X while the LYS 

367 in post-rigor formed a salt bridge with GLU 184 (Tpm X). These changes in salt bridges and 

related residues are related to the transformation from rigor state to post-rigor state. In rigor state 

(Table 2.3), there were nine hydrogen bonds with occupancy higher than 0.5 and one hydrogen 

bond with occupancy higher than 0.9. By contrast, there were six hydrogen bonds in the post-rigor 

state with occupancy higher than 0.5 and no hydrogen bonds with occupancy higher than 0.9. In 

summary, more salt bridges and hydrogen bonds appear in the rigor state than in the post-rigor 

state. The fewer salt bridges and fewer hydrogen bonds infer the higher binding energy and 

instability in the post-rigor state, contributing to the detachment of the myosin from the actin 

filament. 
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Figure 2.4: The high-occupancy (> 0.8) salt bridges pairs between myosin motor domain and actin 

filament in rigor (a) and post-rigor (b). 

Tables 2.2: The salt bridges between myosin motor domain and actin filament. 
Rigor  Post-Rigor 

Myosin Occupancy actin filament  Myosin Occupancy Actin filament 

LYS367 ** 0.994 GLU180 Tpm X  LYS570 ** 0.993 GLU100 G-actin E 

LYS413 ** 0.958 ASP175 Tpm Y  GLU574 * 0.869 ARG95 G-actin E 

GLU632 ** 0.936 ARG95 G-actin C  LYS640 * 0.836 ASP24 G-actin C 

GLU574 * 0.734 ARG95 G-actin E  LYS367 * 0.728 GLU184 Tpm X 

LYS639 * 0.721 ASP25 G-actin C  ARG369 * 0.545 GLU192 Tpm X 

LYS397 * 0.682 GLU173 Tpm X  LYS635 * 0.441 ASP25 G-actin C 

GLU370 * 0.532 ARG178 Tpm Y  LYS542 0.283 GLU167 G-actin C 

ARG403 * 0.519 GLU164 Tpm Y  GLU409 0.272 ARG178 Tpm Y 

ARG369 0.229 GLU181 Tpm Y  LYS635 0.183 GLU334 G-actin C 

GLU371 0.054 LYS328 G-actin C  LYS640 0.009 ASP25 G-actin C 

LYS365 0.032 GLU184 Tpm X  ARG369 0.002 GLU195 Tpm X 

ASP554 0.024 LYS50 G-actin E      

LYS639 0.021 ASP24 G-actin C      

GLU632 0.02 ARG28 G-actin C      

ARG567 0.015 GLU99 G-actin E      

ARG369 0.013 ASP311 G-actin C      

**: > 0.90 

*: > 0.50 

 

Tables 2.3: The high-occupancy (>0.1) hydrogen bonds between myosin motor domain and actin 

filament. 
Rigor  Post-Rigor 
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Donor Acceptor Occupancy  Donor Acceptor Occupancy 

G-actin C ARG95 Myosin GLU632 ** 0.90  G-actin E ARG95 Myosin GLU574 0.83 

G-actin C SER350 Myosin GLU536 0.82  Myosin LYS570 G-actin E GLU100 0.79 

G-actin C SER350 Myosin GLU536 0.82  G-actin C THR351 Myosin GLU536 0.78 

Myosin LYS367 Tpm-X GLU180 0.71  G-actin C THR351 Myosin GLU536 0.77 

G-actin E ARG95 Myosin GLU574 0.71  Myosin ARG369 Tpm-X GLU192 0.65 

Tpm-Y ARG178 Myosin GLU370 0.68  Myosin LYS640 G-actin C ASP24 0.50 

Myosin SER643 G-actin C ASP25 0.65  Myosin LYS367 Tpm-X GLU184 0.48 

Myosin ARG369 Tpm-Y GLU181 0.55  Tpm-Y ARG178 Myosin GLU409 0.33 

Myosin ARG403 Tpm-Y GLU164 0.53  Myosin ASN568 G-actin E GLU100 0.31 

Myosin LYS639 G-actin C ASP25 0.44  Myosin LYS635 G-actin C ASP25 0.27 

Myosin TYR410 Tpm-Y GLU163 0.40  G-actin E GLN49 Myosin ASP554 0.27 

Myosin LYS413 Tpm-Y ASP175 0.38  G-actin C SER350 Myosin SER532 0.17 

Myosin-LYS397 Tpm-X GLU173 0.33  Myosin LYS542 G-actin C GLU167 0.16 

G-actin C ARG28 Myosin GLU632 0.33  Myosin LYS635 G-actin C GLU334 0.13 

Myosin-LYS640 G-actin C ASP24 0.32  Myosin ARG369 Tpm-X GLU195 0.12 

G-actin E GLN49 Myosin ASP554 0.27  G-actin E ARG95 Myosin HSD576 0.10 

Myosin-LYS639 G-actin C GLY23 0.14     

2.4 Conclusion 

The actomyosin complex includes a myosin and an actin filament. We assembled 

actomyosin complexes in rigor and post rigor states respectively. Electrostatic features were 

calculated to analyze the difference between the two states. The MM/PBSA, salt bridges, and 

hydrogen bonds were also calculated to specify the differences between the two states. The results 

show that the positively charged area in the myosin interface decreases from rigor to post-rigor 

state, causing fewer interactions and lower electrostatic binding strength. In the MM/PBSA, free 

binding energy is higher in the post-rigor state. It infers that the post-rigor state is less conducive 

than the rigor state to the binding process. The post-rigor state’s fewer salt bridges and hydrogen 

bonds also suggest lower binding affinity between the myosin domain and the actin filament. 

However, the free binding energy and the electrostatic binding force in post-rigor were still 

supportive of binding between the myosin and the actin filament. Generally, detachments were not 

seen in the simulations without the application of external forces. It suggests the detachment 

between the myosin and actin filament is assisted by other forces. These forces could be from the 
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lever arms, the light chain, myosin-binding protein C[173], etc. Our findings show that binding 

affinity is lower in post-rigor state than that in rigor state. It is the important character for the 

dissociation of actomyosin complexes. In the future, we aim to simulate the whole kinetic circle 

of myosin and to deeply analyze the functions of key residues. 

  



 

37 

CHAPTER 3: IMPLEMENT MACHINE LEARNING ALGORITHMS TO TREAT BOUND 

IONS IN BIOMOLECULES 

3.1 Introduction  

Electrostatic features are essential for the proper functioning of biomolecules because the 

electrostatic character of the molecule plays significant roles in biomolecular 

binding/repelling[109, 174, 175], ion transport[176], and structural stability[177]. Nevertheless, 

electrostatic calculation in silico is a challenging topic in computational biophysics due to the 

presence of ions.  Ions contribute to the complexity of the environment around biomolecules. 

Highly charged biomolecules, such as nucleic acids, globular proteins, and motor proteins tend to 

attract ions with opposite charges to balance the net charge in a local environment. The bound ions 

significantly affect electrostatic potential on biomolecular surfaces, which further influences the 

interactions of this molecule with other molecules.  

At present, there are two models that can handle ions and water surrounding biomolecules: 

the explicit solvent model and the implicit solvent model. The explicit model is widely applied in 

all-atom molecular dynamics (MD) simulations when the goal is to simulate ions and H2O 

(TIP3P[178], TIP4P[179]) explicitly—that is, with coordinates for each water and ion atom. The 

explicit model neutralizes highly charged biomolecules by adding unbalanced amounts of cations 

and anions in the modeled system. However, the electrostatic calculations by the explicit model 

may consider billions of atoms in hundreds of frames (each frame including the coordinates of the 

protein, water, and ions). This approach is extremely memory-intensive and time-consuming. 

Therefore, the implicit solvent model seems to be more suitable to handle ions and water 

surrounding biomolecules. Implicit solvent models include Poisson-Boltzmann (PB) model[180] 

and Generalized Born (GB) model[181]. In both models, the ionic environment of biomolecules 
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is treated homogeneously by setting dielectric constants for biomolecules and solutions. The 

implicit method avoids the energy calculations for ions and water in solutions[48, 182]. Compared 

with the explicit method, the implicit model has the obvious advantage of accelerating electrostatic 

calculations on biomolecules. However, the homogeneous treatment of the solvent ignores local 

effects of bound ions. The homogenous solvent is not realistic in many situations—especially for 

highly charged biomolecules. In some cases, even though the net charge of a biomolecule is 

neutral, the charge distribution on the surface of the biomolecule is not. In detail, the interfaces 

between biomolecules are often highly charged, for binding or repelling other molecules. Those 

charged areas in biomolecules may cause nonhomogeneous ionic distribution. Overall, the 

homogeneous treatment of solutions has the limitation of ignoring this feature of highly charged 

biomolecules.  

To solve the above difficulties when treating highly charged biomolecules, we proposed a 

Hybridizing Ions Treatment (HIT) method[50, 183] for representing ions in implicit solvation 

calculations. HIT method adds explicitly bound ions into the implicit solvent model for the 

electrostatic calculation. The core idea behind this method is using the frames of MD simulations 

to calculate the position of bound ions via clustering. Compared with prediction methods by 

coordination numbers[184], geometries[185], or electrostatic potentials[182, 186], HIT 

calculations are more reliable. This is because HIT uses the results from all-atom MD simulations 

to do calculations. Most popular MD programs, such as NAMD[160] and GROMACS[187], take 

the majority of intermolecular forces acting on a system, including Van der Waals (VDW) forces 

and electrostatic forces, into consideration. Nevertheless, the HIT method has difficulties handling 

biomolecules with significant movement. It also has trouble treating multi-component systems 
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simultaneously. Overall, HIT worked well in previous test cases, but sometimes calculations were 

computationally expensive and program input was unfriendly for users.    

Here we report HIT-2, a new version of the Hybridizing Ions Treatment method to combine 

bound ions and implicit solvent solutions for accurate electrostatic calculations. This method does 

not require the setting of a cube size or the type and number of bound ions, unlike the first version 

of HIT[50]. We observed two issues when we developed HIT at first stage: redundancy and 

incorrect calculation[50]. Redundancy means two or more calculated ion positions are close to one 

real position of bound ions while an incorrect calculation means the calculated position is far away 

(over 5 Å) from the real position. Redundancy occurs because HIT cuts a binding site into several 

pieces equally or approximately equally, and then the two or more segments, which are treated as 

multiple binding sites. Because HIT only selected bound ions according to ranking of occupancy, 

redundancy further causes the last correct results to be abandoned. This results in incorrect 

calculations. In HIT-2, we applied an iteration technique to handle redundancy and incorrect 

calculations. Iteration ensures a binding site is fully encompassed within a cube by increasing the 

cube size, so eliminating redundancy and subsequent incorrect calculations. Furthermore, we 

defined several independent parameters and prepared tools to train and test HIT-2 by machine 

learning methods.   

Several machine learning methods were applied to optimize HIT-2 parameters. We 

developed a Random Ions Generation Tool (RIGT) to generate 3888 cases for parameter 

optimization via machine learning. To ensure the accuracy of ion distributions in RIGT, the 

Maxwell Boltzmann distribution was applied to simulate ionic distributions. After classification 

and optimization, the best parameters were found and applied to test real datasets (real explicit 

MD simulations). We tested HIT-2 in proteins with bound Ca2+/Zn2+ to further validate the 
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accuracy of the bound ions’ positions. Also, we applied HIT-2 on proteins and nucleic acids to 

validate the broad applicability. Moreover, we improved HIT-2 so that it is also able to handle 

biomolecules with significant conformational changes. Lastly, we applied HIT-2 to predict the 

binding position for signal ions (Ca2+) in troponins to exhibit the wide applicability of this method. 

The results showed it is a very promising tool in computational biophysics and related fields.  

3.2 Methods 

3.2.1 Dataset 

3.2.1.1 Random ions training sets 

A water box with ions simulation was prepared by NAMD[160] to observe the velocity 

distribution of ions. The velocity of ions in the x, y, and z directions was calculated in pm/ns 

(Å/0.01 ns) and fitted to a Maxwell Boltzmann distribution[188]. The Maxwell Boltzmann 

distribution (Eq. 3.4) was first defined and used for describing particle speeds in idealized gases. 

Here we applied it to fit ions moving in solvation boxes.  

          𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 ……………………… (3.4) 

Where the v is the ion’s speed and vx, vy, and vz is the speed component in the x, y, and z 

directions. The v conforms to a Chi-squared distribution while the vx, vy, and vz conform to a normal 

distribution. Here we took the unit of pm/ns as the ion’s speed in simulation. The result was applied 

for ion generation in the Random Ions Generation Tool (RIGT).  

RIGT is the tool designed to generate abundant ionic simulations for HIT-2 testing. It can 

quickly generate a series of trajectories of ions’ simulation for a certain time. The ions trajectories 

were further combined by RIGT to generate an ionic cloud file (In PDB format). Here in our 

experiment, the solution was 150 mM NaCl. 10 Na+ and 10 Cl- were trapped in a sphere with 

random diameters of 0 - 5 Å. Maxwell Boltzmann distribution was applied to the velocity of ions 
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to better simulate each frame of the ionic cloud. Here, the interval is 0.01 ns for saving frames of 

the ionic cloud. 54 datasets were generated with random simulation times (0.05 ns – 40 ns).  

3.2.1.2 Testing sets in MD simulations 

A random ions testing set is solvated by a 150 Å × 150 Å × 150 Å solvation box with 150 

mM NaCl with 10 K+ and 10 Cl- restrained to simulate the bound ions. Cysteine dioxygenase 

(PDB: 5L0S)[189] and Factor VIIa with bound Ca2+  (PDB: 5PB2)[190] were used for Ca2+ 

testing while insulin with bound Zn2+ (PDB: 1ZEH)[191] was used for Zn2+ testing. Moreover, 

DNA(PDB: 5J2M)[192] and RNA(PDB: 4TNA)[193] with bound ions are were also tested by 

HIT-2. The membrane protein BamA (PDB: 4K3B)[194] was simulated to include biomolecules 

which exhibit marked conformational changes. Additionally, we also conducted actin filament 

simulations to further explore the potential ability of HIT-2 for the search of signal ions and 

corresponding binding sites. A piece of actin filament with troponins (PDB: 6KN8)[144] was 

chosen as the model for simulations. The missing loops in these structures were made up by Swiss-

model[195]. The solvation was achieved by VMD[159]/CHARMM-GUI[196] using TIP3P[178]. 

The membrane of BamA was constructed by the CHAMRMM-GUI membrane builder[197]. MD 

Simulations were performed on NAMD 2.12[160]. The electrostatic potential was calculated by 

Delphi[48] using the CHARMM36m[198] forcefield while charges were assigned by 

pdb2pqr[199]. For all models, the minimization was 10000 steps and followed by 10.2 ns 

simulations using NAMD 2.12. The simulations include two steps. The first is equilibration (0.2 

ns), and the second is production run. NPT was used for the equilibration and NVT was applied in 

the production run. In equilibration, the constraint was applied to the entire protein/nucleic 

acids/membrane with the harmonic restraints (no restraints on hydrogens). In the production run, 

all atoms were no longer restrained in a certain position. In both simulations, the 
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CHARMM36m[198] was applied as the force field. The temperature was set as 310 K (controlled 

with a Langevin thermostat with the damping constant as 1.0) and the time step was set as 2fs/step. 

The PME (full-system periodic electrostatics) was applied in the simulation. The production run 

of simulations for BamA is 100 ns.  

3.2.2 Algorithm 

3.2.2.1 Preparation, solvation box cutting, and ion counting 

After MD simulations, the relative positions of ions are calculated using the mass center of 

biomolecules in the corresponding frame. Then ions in all frames are aligned together by their 

relative positions, forming an ionic cloud (Fig. 3.1ab). The cube size (The side length of each cube) 

is initialized to 3 Å. Based on the initialized cube size, the ionic cloud is cut into several cubes 

(Fig. 3.1c). The ions in each cube are counted to calculate the filling ratio (Eq. 4.1 and Fig. 1d).   

𝑅𝑓 =
𝑛𝑖𝑐

𝑛𝑓
 …………………………………………………………….……… (3.1) 

Where the 𝑅𝑓  represents the filling ratio, 𝑛𝑖𝑐  represents the number of ions in the 

corresponding cube, and the 𝑛𝑓 represents the number of frames. 
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Figure 3.1:  The flow chart and schematic graph of the algorithm. a. The flow chart of HIT-2. b. The 

preparation of the ionic cloud. c. The ionic cloud cutting partition step. d. The calculation of the filling 

ratio for each cube. e. Removing ions from the ionic cloud after binding site calculations and then 

increasing the cube size for the next iteration. In this diagram, the filling ratio threshold is set as 0.8. In e, 

the cubes with filling ratio higher 0.8 are regarded as binding sites and all ions in corresponding cubes 

will be removed from ionic cloud before the next iteration. The iterations will run until the cube size is 

bigger than 10 Å.    

3.2.2.2 Screening and ionic cloud updating  

If the filling ratio is higher than a given threshold (filling ratio threshold), the corresponding 

cube is selected as a binding site, where the mass center is calculated by equation 3.2, representing 

the position of the bound ion (Eq. 3.1). The ions in the selected cubes are then removed from the 

ionic cloud (Fig. 3.1e). Then the cube size increases by a given step size (Å). The step size means 

the increment of the cube size in iterations. The updated ionic cloud and cube size are further used 

in the iterations until the cube size is bigger than 10 Å. The filling ratio threshold and step size are 

important parameters to be optimized by machine learning methods.  

𝑃⃗ =
𝛴𝑣⃗ 𝑖

𝑛𝑖𝑐
……………………………………………………………………… (3.2) 

Where the 𝑃⃗  represents the position of bound ions and the 𝑣 𝑖 represents the positions of 

all ions in the selected cubes.     

3.2.2.3 Structural alignment   

After iterations of screening and ionic cloud updating, the positions of bound ions are logged and 

aligned to the biomolecular structure in the target frame by equation (3.3).  The output is the 

biomolecule with bound ions in PDB format in the target frame (nth frame decided by users). 

 𝑃⃗ 𝑜 = 𝑃⃗ 𝑏 + 𝑃⃗ …………………………………………………………………… (3.3) 

Where the 𝑃⃗ 𝑜 and 𝑃⃗ 𝑏 represent the output positions of bound ions and the mass center of the 

biomolecules.  
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3.2.3 Algorithm Testing  

Based on the RIGT, 54 simulation results (0.05 ns to 40 ns) are prepared for testing. In 

each dataset, HIT-2 applied different step sizes (0.05 to 1 Å) and filling ratio thresholds (0.5 to 

0.99) for testing. In total, 3888 cases were generated including the results generated by HIT-2. We 

define success and failure in the section below and for all successful cases, the error was calculated 

for further optimization.  

3.2.3.1 Classification and optimization  

First, we defined strict criteria for success to describe the results from HIT-2. These are 

two conditions: 1, the number of calculated bound cations/anions should be the same as the 

real bound cation/anions; 2, the distance between each pair (calculated bound ion and real 

bound ion) should be smaller than 5 Å. If these conditions are not met, the result is a failure. To 

find what parameters (simulation time, step size, and filling ratio thresholds) lead to success, we 

applied Logistic Regression (LR)[200], Classification and Regression Tree (CART)[201], 

Random Forest (RF)[202], and Artificial Neural Networks (ANN)[203] to address the binary 

classification problem (success/failure). methods. The number of cases is 3888 with a train/test 

split of 0.7/0.3.  For all successful cases with simulation time over 2 ns, we further tested the 

distance between our calculations and targets. The average distance of all pairs was measured and 

regarded as an average error for further analysis. The contributions made by simulation time, step 

size, and filling ratio thresholds to average error are analyzed.  Additionally, the run time of HIT-

2 is highly related to step size and simulation time so we also consider these criteria when 

determining optimal parameters. The run times of HIT-2 for different cases are also measured and 

compared with the average error for step size and simulation time optimization.  
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After classifications, quantitative analysis was applied to understand the relationship 

between error and related parameters. In successful cases, the number and type of calculated bound 

ions are same as that of real bound ions. Each cases includes 20 pairs of real bound ions and 

calculated bound ions. We consider the distance between the real and calculated ions as the error 

and calculate this value for the 20 pairs. The average error was plotted against simulation time, 

filling ratio and step size for quantitative analysis. Moreover, we also calculated the running time 

of HIT-2 to further optimize the parameters for users. The PC used for this optimization was a 

Dell-XPS with Intel I7 processor (i7-11700-2.5GHz) and 16GB memory.  

3.3 Results  

3.3.1 The workflow of HIT-2 

HIT-2 involves 4 steps: preparation, ionic cloud cutting, screening, and position alignment 

(Fig. 3.1a). In the preparation step, the relative positions of all ions in all frames from MD 

simulations are calculated and combined into an ionic cloud (Fig. 3.1b). In the ionic cloud cutting 

step, the ionic cloud is cut into several cubes (Fig. 3.1c). Afterward, the ions are counted and 

divided by the number of frames to calculate the filling ratio of each cube (Fig. 3.1d). If the filling 

ratios are larger than the threshold (filling ratio threshold), those cubes are regarded as binding 

sites. The mass centers of the binding area are the positions of bound ions (Fig. 3.1e). The ions in 

the binding sites are removed from the ionic cloud before the next iteration. In the next iteration, 

the size of the cube is increased by the step size. In the alignment step, the positions of bound ions 

are calculated by the relative positions of bound ions and the mass center of biomolecules (Fig. 

3.1a). The simulation time, the filling ratio threshold, and the step size are three crucial parameters 

affecting the results of HIT-2. We further optimized these parameters by employing several 

classification machine learning methods with different parameters.    
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3.3.2 Classification 

HIT-2 requires certain conditions to find bound ions from simulations. The three 

parameters, including filling ratio, step size, and simulation times are set as inputs, and the 

success/failure is set as an output. Several machine learning methods were applied to obtain a 

better model to search the parameter space for successful results. Here, we define two very strict 

criteria for success: 1, the number of calculated bound cations/anions must be the same as the 

number of real bound cation/anions; 2, the distance between each pair (a calculated bound ion and 

the corresponding real bound ion) must be shorter than 5 Å.  

Fig. 3.2a illustrates the ROC of Logistic Regression (LR)[200], Classification and 

Regression Tree (CART) [201, 204], Random Forest (RF)[202], and Artificial Neural Network 

(ANN)[203]. LR has an accuracy of 84% with 0.83 Area Under the Curve (AUC) while the RF, 

CART, and ANN have high accuracy of around 95%. Among these methods, the ANN possesses 

the highest AUC (0.97) and the highest accuracy (95%). We further used the ANN model to predict 

the result from different input parameters (simulation time, filling ratio threshold, and step size). 

Millions of cases were generated by the ANN model to show the relationship between different 

parameters and results. Fig. 3.2b shows the predicted success rate by different filling ratio 

thresholds and simulation times. After the 5 ns simulation, the success rate for different filling 

ratio thresholds (≥0.55) is nearly 100%. The success rate is highly related to the simulation time. 

This is because ideal ionic clouds are formed when simulations reach equilibrium. The longer 

simulations produce more stable equilibria. Among different filling ratio thresholds, the thresholds 

of 0.95 and 1.00 first reached a 100% success rate after 1 ns. Fig. 3.2c show the success rate 

predicted by ANN with different step sizes and simulation times. The step size is the increment of 

cube size in iterations. Intuitively, a smaller step size should lead to more accurate results. The 
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result shows that when the step size is increased to 1 Å, only 50% of calculations were correct 

(even when the simulation time is greater than 20 ns). With the decrease in step size, a higher 

success rate is achieved. When the step size is lower than 0.2 Å, there is no significant difference. 

Indeed, all simulations with a step size lower than 0.2 Å reached a near 100% success rate after 1 

ns. In summary, for most simulations a filling ratio of 0.95 and step size of 0.2 Å is enough to get 

a nearly 100% success rate after running for 1 ns.  

 
Figure 3.2: The comparison among several machine learning methods and the results generated by ANN. 

a. The ROC results of Logistic Regression, Random Forest, CART, and ANN. b. The success rate 

predicted by ANN with different filling ratio thresholds (step size = 0.05). c. The success rate predicted 

by ANN with different step sizes (The filling ratio is 1.00).  

5.3.3 Optimization 

Due to the very strict criteria for success, the condition of success is enough for HIT-2 to 

get reliable results. However, we are interested in improving HIT-2 performance as much as 

possible and we were not satisfied with “just success”. The error (distance between calculated 
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bound ions and real bound ions) should be further quantified to optimize the parameters for users. 

The average error shown in Fig. 3.3 demonstrates how HIT-2 may still be improved. The 

relationship between the filling ratio threshold and average error is shown in Figure 3.3a. The 

average error is decreased when filling ratio threshold increases. Average error reaches a minimum 

when the filling ratio threshold is 0.95. When the filling ratio is increased to 0.99, error slightly 

increases. In the generated datasets, there is no escape or rebinding of ions in the binding sites. In 

this case, the ideal situation (equilibrium system) will cause the lowest error to appear at the point 

of filling ratio equal to 100%. However, in most cases, an equilibrium simulation cannot be 

practically achieved because such simulations are time-consuming.  In our error analysis, the 

lowest value appeared when the filling ratio equaled 0.95. The filling ratio is approximately equal 

to the occurrence frequency of bound ions. In nature, bound ions sometimes are too mobile to be 

bound tightly, resulting in a frequency of occurrence lower than 100%. In this case, researchers 

can choose a better filling ratio for their studies. Additionally, testing with a range of filling ratio 

thresholds is also a good idea to distinguish the strength of different bound ions. With that said, 

we remark that the filling ratio should always be higher than 0.5; otherwise, a binding site would 

be treated as two binding sites and this would likely cause incorrect calculations [50].  
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Figure 3.3: The average error and running time plotted against filling ratio, step size, and simulation time.  

a. The average error against the filling ratio. b. The run time and average error against the step size (the 

filling ratio is 0.99). c. The run time and average error against simulation time (the step size is 0.2 Å). d. 

The heat map of average error with different filling ratio thresholds and simulation times (the step size is 

0.05 Å). 

Step size and simulation time are highly related to the accuracy and the running time of 

HIT-2. With a decrease in step size, the average error linearly decreased until 0.01 Å at the point 

of step size = 0.2 Å. When the step size is lower than 0.2 Å, the average error begins to increase 

(Fig. 3.3b). This is because the screening step (Algorithm section) may count several free ions or 

miss several bound ions from the ionic cloud. A small step size (<0.2 Å) leads to more screening 

iterations and may cover more unrelated ions into consideration, causing the bias. This error can 

be reduced by performing long MD simulations. Moreover, a smaller step size also requires 

calculations be performed for many small cubes which significantly increases the computational 

cost of HIT-2. From Fig 5.3b., we see that when step size is lower than 0.2 Å, the run time increase 
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from 3 min to a maximum of 10 min (Fig. 3.3b). Therefore, the 0.2 Å step size is the best choice 

for most users. By contrast, after 5 ns, longer simulation contributes less to error minimization. 

The average error decreases with an increase of simulation time (Fig. 3.3c). The simulation time 

and the HIT-2 run time are linearly related because simulation time is equivalent to the number of 

frames, which affects the preparation of the ionic cloud (Algorithm section). Compared to the 

filling ratio and step sizes, the simulation time is not that highly related to error minimization. 

However, simulation time is highly related to the success rate, which is fundamental to error 

minimization. So at least 5 ns simulations with a frequency of less than 10000 fs/frame are 

suggested to get accurate results.  

The heat map showing average error against simulation time and filling ratio is shown in 

Fig. 2d. Simulations longer than 30 ns have an average error lower than 0.02 Å. The average error 

decreases dramatically with when the filling ratio increases because the ions in the dataset are 

100% bound. Overall, the highest average error is 0.03 Å, which means the average error for any 

pair is lower than 0.6 Å (0.03 Å x 20 = 0.6 Å, all error happened at a bound ion) if the calculation 

succeeds. Also, we observe that the presence of red peaks diminishes with an increase in simulation 

time. Additionally, at higher simulation times, the error decreases more smoothly with an increase 

in the filling ratio. Thus, longer simulations can reduce the standard deviations for average errors, 

making the results more reliable.      

5.3.4 Testing and Application 

In the random ions simulations from NAMD, 10 Na+ and 10 Cl- are restrained to simulate 

bound ions. The calculations by HIT-2 tested the ionic cloud from 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 

10 ns. Notably, from 0.5 ns onward, the calculations from HIT-2 are successful. We further 

analyzed the average errors and the associated standard deviations (Fig. 3.4). We observe the errors 
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and standard deviations decreased with the increase in simulation time. These results are consistent 

with the above analysis, further proving the accuracy of HIT-2. 

 
Figure 3.4: The results from NAMD testing set by different simulation time (0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10 ns), where the target chloride ions, sodium ions, calculated chloride ions, calculated sodium ions are 

colored red, blue, orange, and green, respectively. All real bound ions are found by HIT-2 and covered by 

calculated bound ions. l. The results from the NAMD testing set (average error is the average distance 

among 20 pairs of calculated bound cations/anions). 

 

In X-ray crystallography experiments, ions are co-crystalized with a macromolecule and 

are thus resolved as a part of the structure. For our tests, we chose the X-ray structure from the 

PDB bank (5L0S[189], 5PB2[190], and 1ZEH[191]) to do accuracy testing for HIT-2 to determine 

the positions of Ca2+ and Zn2+. The errors associated with our predictions for Ca2+ are 3.26 Å and 

0.88 Å (Fig. 3.5ef) and those for Zn2+ are 0.18 Å and 1.26Å (Fig. 3.4). All calculations are 

successful (error < 5 Å), but the error exceeds our expectations. The main reason is that the binding 

area may be bigger than the training sets, causing the bound ions to have a wider active region. In 
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addition to this result, we observe HIT-2 also works for other biomolecules, including DNA/RNA 

(Fig. 3.5gh) and biomolecules with significant conformational changes (Fig. 3.5jkl). In short, 

without inputting the number and name of bound ions, HIT-2 directly found the correct number 

and positions of the ions with an error lower than 4 Å for various in vitro systems.   

 
Figure 3.5: Tests and applications of HIT-2. a. The results from bound Zn2+ testing for the protein (PDB: 

1ZEH) b. The electrostatic surface without bound ions. c. The electrostatic surface with real bound ions. 

d. The electrostatic surface with calculated bound ions. e. The calculated and real bound Ca2+ in protein 

(PDB: 5L0S). f. The calculated and real bound Ca2+ in protein (PDB: 5PB2). g. The structure of HIV-

DNA with bound potassium ions. h. The structure of tRNA with bound potassium ions. the light blue 

balls represent the bound potassium ions. i. The structure of the actin filament with bound calcium ions 

was produced by HIT-2. jkl. Example of HIT-2 multiple tests for proteins with conformational changes. 

We further colored the surface of 1ZEH by electrostatic potential (Fig. 3.5a-d), with and 

without bound ions. The binding sites without bound Zn2+ are negatively charged (Fig. 3.5b). In 

vitro, the bound Zn2+ imparted a positively charge to the surface of the protein (Fig. 3.5d). 

Similarly, with HIT-2, the bound calculated Zn2+ also applied a positive charge (Fig. 3.5c).  
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Some bound ions such as Ca2+ also play vital roles in intracellular signaling, such as muscle 

contractions. Here we simulate with a piece of actin-filament with a troponin complex (including 

troponin I, troponin C, and troponin T), globular-actins (G-actin), and tropomyosin. Three bound 

calcium ions (Fig. 3.5i) were found by HIT-2 with two of these being located inside the G-actins 

and tropomyosin and the other attached to the troponin. These results are consistent with previous 

studies that show troponin is a receptor for calcium ions. [205]. Moreover, the calcium is not only 

bound to troponin but also attached to the whole actin filament. The conformational changes of 

the actin filament could be affected by the coverage of calcium ions on the actin filament. It 

requires further deep analysis and experimental support.  

3.4 Discussion 

Bound ions are crucial for the function of highly charged biomolecules. The current 

implicit solvation model has many limitations when applied to highly charged biomolecules. To 

solve this problem, our previous work, HIT, was developed, and works by hybridizing bound ions 

with the implicit solvent model to improve electrostatic calculations.  

Because the clustering algorithm in our previous version of HIT is computationally 

expensive, we sought to make improvements. Here, we abandoned the clustering method in HIT 

and employed machine learning approaches in HIT-2. Also, the newest HIT-2 tool is more user-

friendly by eliminating the need to specify cube size and the type and number of bound ions. 

To validate our work, we tested HIT-2 on DNA, RNA, and membrane-bound proteins. 

Also, we showed HIT-2 can be applied to biomolecules that undergo significant conformational 

changes, and biomolecules with multiple components. Expectedly, our work shows HIT-2 can also 

be used for predicting the location of signal ions and associated receptors. Specifically, we 

demonstrated HIT-2 can locate the position of Ca2+ in a troponin complex.  
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In conclusion, HIT-2 is useful for dealing with difficult biological problems that cannot be 

resolved by experimentation. However, there are some limitations of HIT-2. First, it performs very 

well in binary systems with one type of cation and one type of anion, but when multiple types of 

cations and anions are involved, the problem would require multiple uses of HIT-2. Second, while 

HIT-2 is able to handle the movement of biomolecules in simulations, it cannot handle rotations. 

The rotated biomolecules should be aligned first in VMD or other software before the use of HIT-

2. In spite of these problems, HIT-2 is a useful tool for users who are studying highly charged 

biomolecular systems. 
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CHAPTER 4: PHOSPHORYLATION OF TYROSINE 841 WITHIN THE JAK3 KINASE 

DOMAIN PROMOTES AN ACTIVATED JH1 STATE 

4.1 Introduction 

The Janus Kinase (JAK) family are intracellular tyrosine kinases, including JAK1, JAK2, 

JAK3, and Tyrosine Kinase 2 (TYK2)[206, 207]. They are involved in cytokine signaling via the 

phosphorylation of Signal Transducers and Activators of Transcription (STATs)[208] through the 

JAK/STAT pathway. When cytokines bind to their specific receptors, it causes the receptors to 

dimerize and activate JAK kinases to phosphorylate the receptor. This phosphorylation creates a 

docking site for Signal Transducers and Activators of Transcription (STATs) to bind. Once the 

STATs are bound, they are also phosphorylated, dimerized, and translocate into the nucleus where 

they bind to DNA and regulate the expression of cytokine-responsive genes[209, 210]. The 

JAK/STAT signaling pathway is critical for the normal functioning of hematopoietic cells, which 

are responsible for the production and maturation of blood cells. Dysregulation of this pathway 

has been associated with various hematological malignancies, including leukemia, lymphoma, and 

myeloproliferative neoplasms. Additionally, mutations in JAK genes have been identified in 

several types of cancers, such as myelofibrosis and acute lymphoblastic leukemia [211-213]. 

Understanding the mechanisms underlying the JAK/STAT pathway can provide insights into the 

development of new therapies for these diseases [214]. 

JAKs contain 4 fundamental domains, a carboxyl-terminal kinase domain (JH1), an 

anterior pseudokinase domain (JH2), Src Homology 2 (SH2), and Four-point-one, Ezrin, Radixin, 

Moesin (FERM). JH1 is the domain with catalytic ability while JH2 lacks catalytic activity but 

possesses regulatory function[207]. The JAK1, JAK2, and TYK2 are ubiquitously found in 

different cell lineages[215, 216] while JAK3 is expressed primarily in cells of the immune 
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system[207, 217-219]. In the JH1 domain, several phosphorylation sites were discovered that 

regulate catalytic activity positively or negatively. Tyrosines 980 and 981 (Y980 and Y981) in 

JAK3 were discovered to be autophosphorylated. The kinase activity is positively regulated by 

phosphorylated tyrosine 980 (pY980) and negatively regulated by pY981[220]. The 

phosphorylations of Y904 and Y939 were also shown to positively promote JAK3 signal 

transduction.  The effects of phosphorylation of the latter residues were found to be associated 

with the optimal usage of ATP and promote STAT5 activity[221]. Correspondingly, 

autophosphorylation of homologous JAK2 sites was also found on Y868, Y972, and Y966. It 

proved the universality and importance of tyrosine phosphorylation on JAKs. Recently, we found 

and reported a new tyrosine phosphorylation site, JAK3-Y841. It positively regulates the catalytic 

activity in the activation of JAK3.  

The biological evidence for the regulation of JAK by phosphorylation and 

dephosphorylation is solid and clear[218, 222]. However, due to technical limitations, previous 

studies faced difficulties in providing structural details of the effects, including the chemical and 

physical reasons for the activation of kinases. The challenges of revealing the biological process 

of activation on kinase are mainly due to the lack of quantitative analyses. Now, based on 

computational methods and advanced software, we can perform molecular dynamic (MD) 

simulations[160] to examine the impact on protein structure. The phosphorylation effects on 

conformational changes, electrostatic forces, and binding energies can be further studied. In this 

work, we focused on the ATP hydrolysis process and analyzed the binding between ATP/ADP and 

JAK3-JH1 in Y841/pY841 states. The results show that the binding affinities between JH1-Y841 

and ATP/ADP are similar, which may cause difficulties in releasing ADP. They also suggest that 

the JH1-Y841 is not the optimal stage for ATP hydrolysis. By contrast, JAK3-pY841 has a higher 
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binding affinity to ATP than ADP, which is essential for the kinase to function normally by binding 

ATP and releasing ADP. Moreover, based on the full-length JAKs structure[223] and the 

autoinhibited state of JH1 and JH2[224], we successfully modeled the full-length structure of 

JAK3 in the autoinhibited state. We found that pY841 also weakened the binding between JH1 

and JH2, showing higher sliding force on JH1. They could promote the JH1 flip to the activated 

position and expose the ATP binding pocket.  

4.2 Method 

4.2.1 JAK3 Modeling 

The autoinhibited/activated full-length JAK3 structure was built through SWISS-

MOLDEL by the dimerized full-length JAK1 structure (PDB: 7T6F[223]) and autoinhibited JH1-

JH2 dimer (PDB: 4OLI[224]). The phosphorylation of Y841 (pY841) was built by CHARMM-

GUI[196]. Autoinhibited full-length JAK3 structure with Y841 (FY841) and pY841(FpY841) 

simulations were performed to study the effects of pY841 on the JH1 in the autoinhibited state. 

The JH1-Y841 and JH1-pY841 were separated from whole structure to study the effects of pY841 

on ATP/ADP hydrolysis. The JH1 domain with Y841/pY841 was combined with ATP/ADP to 

build 6 models, including two non-bound models (JH1-Y841 and JH1-pY841) two models bound 

to ATP (ATP-JH1-Y841 and ATP-JH1-pY841), and two models bound to ADP (ADP-JH1-Y841 

and ADP-JH1-pY841). The ATP or ADP was aligned into the ATP-binding pocket of the JH1 

domain (The phosphate groups were outside while the adenosine was inside[225]). The model 

used for alignment of ATP/ADP is JAK3 JH1 with inhibitor (PDB: 5TTV)[226]. We aligned the 

adenines of ATP/ADP to the inhibitor in 5TTV to form the JH1-ATP/ADP complexes. 
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4.2.2 Molecular dynamics simulation 

For the simulations of each model, the force field applied is CHARMM36m[198]. Models 

were solvated by TIP3P [178] via CHARMM-GUI[196]. 150 mM KCl was set to ionize the 

system. Periodic boundary conditions and the long-range electrostatic interactions with particle 

mesh Ewald[9] were performed during simulations. The temperature was set at 310 K, using a 

Langevin thermostat with a damping coefficient of 1/ps. The pressure was set to 1 atm using a 

Nosé–Hoover Langevin piston barostat with a decay period of 25 fs. Simulations were performed 

after 10,000-step minimization. It includes two steps: NPT equilibrium and NVT production. In 

equilibrium, the backbones of proteins and ATP/ADP were restrained. In production, all atoms 

were free except for the two residues in the N- and C- terminals. The simulations were performed 

by NAMD 2.12[160]. In FY841 and FpY841 simulations, the 0.5 ns NPT equilibrium and 45 ns 

NVT production were performed. In JH1-ATP/ADP simulations, the 0.5 ns NPT equilibrium and 

100 ns NVT production were performed.  

4.2.3 Salt bridge and hydrogen bond 

Salt bridge and hydrogen bond formation were analyzed by Visual Molecular Dynamics 

(VMD)[159]. The cutoff distance of salt bridges was set as 4 Å while the cutoff distance and angle 

for the hydrogen bonds were set as 3.5 Å and 20°[110, 227], respectively.  

4.2.4 Topological analysis 

In the trajectories of JH1-ATP/ADP simulations, we observed slight conformational 

changes in the N-lobe of the kinase domain. We calculated the distance between the mass centers 

of the N-lobe (T815-P906) and C-lobe (S907-S1100) by Structure-Man[40]. The distance 

represents the cleft size between the N-lobe and C-lobe of the JH1 domain. The average and 

standard deviation of the distance in 300 frames (70ns-100ns) of 6 models (JH1-Y841, JH1-
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pY841, ATP-JH1-Y841, ATP-JH1-pY841, ADP-JH1-Y841, and ADP-JH1-pY841) were 

calculated to show the topological effects of phosphorylation of Y841. 

4.2.5 Electrostatic analysis 

The electrostatic potential of the N-lobe of JH1-Y841/pY841 with and without ATP/ADP 

at 0 ns and 100 ns were calculated by Delphi[48]. Negatively charged (red), positively charged 

(blue) and neutrally charged (white) surfaces of the N-lobe were depicted by Chimera[107]. 

Electrostatic forces between JH-1 and ATP/ADP were also calculated from 70 ns to 100 ns by 

DelphiForce[52].  Electrostatic forces between JH1 and JH2 in FY841 and FpY841 models were 

calculated from 35 ns to 45 ns. The binding/sliding force was calculated using equations 4.1 or 

4.2: 

𝐹𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐹𝑇 · 𝑐𝑜𝑠𝛼  …………………………….. (4.1) 

𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔 = 𝐹𝑇 · 𝑠𝑖𝑛𝛼   ..…………………..……….. (4.2) 

Where FT represents the total electrostatic force between two subdomains/ligands and α is 

the angle between the electrostatic force direction and the mass center connection of two 

subdomains/ligands (JH1-ATP/ADP or JH1-JH2). The charge and radius were assigned by 

pdb2pqr[199] from CHARMM36m[198]. The dielectric constant for protein and water were set as 

2 and 80, respectively. Salt concentration, probe radius, filling ratio of protein, and resolution were 

set as 150 mM, 1.4 Å, 0.70, and 2 grid/Å, respectively. The separations of JH1 from JAK3 were 

visualized by VMD[159].  

4.2.6 MM/PBSA Free Binding Energy 

The Free energy is calculated by the last 10 ns frames of FY841 and FpY841. We separated 

JH1 from full-length JAK3 to calculate the binding free energy for JH1 and the FERM-SH2-JH2 
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complex. The free energy E was calculated by the sum of coulombic, van der Waals, polar, and 

nonpolar solvation binding energies (Eq. 4.3).  

𝐸 = 𝐸𝑐 + 𝐸𝑣 + 𝐸𝑝 + 𝐸𝑛𝑝    ……………………………………... (4.3) 

Where 𝐸𝑐  and 𝐸𝑝  represent coulombic binding energy and polar solvation energy, 

calculated by Delphi[48]. 𝐸𝑣 represents the van der Waals binding energy, calculated by NAMD 

2.12[160]. 𝐸𝑛𝑝  represents the nonpolar solvation energy, calculated by the solvent-accessible 

surface area (SASA) from equation 6.4. 

𝐸𝑛𝑝 = 𝛼 · 𝑆𝐴𝑆𝐴 + 𝛽 ……………………………………….. (4.4) 

Where Enp is the nonpolar solvation energy. α = 0.0054, and β = 0.92 kcal/mol. The SASA 

was calculated using NACCESS[228].  

Binding energy (𝛥𝐸𝑏𝑖𝑛𝑑) is calculated by the following equation (Eq. 6.5)[109, 110, 172].  

𝛥𝐸𝑏𝑖𝑛𝑑 = 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐸𝐽𝐻1 − 𝐸𝐹𝐸𝑅𝑀+𝑆𝐻2+𝐽𝐻2……………………….. (4.5) 

Where the Ecomplex, EJH1 and EFERM+SH+JH2 represent the free energy for the full-length 

JAK3, JH1 domain, and FERM+SH2+JH2 complex. 

4.3 Results 

4.3.1 The pY841 effects on autoinhibited full-length JAK3. 

The stability of full-length autoinhibited JAK3s with Y841 and pY841 (FY841 and 

FpY841) models was assessed after 35ns MD simulations, and both models were found to be stable 

(Fig. 4.1ab). To gain further insights, we performed 10 ns MD simulations to analyze the force 

and energy involved. Our analysis (Figure 3.2ab) showed that the high-occupancy hydrogen bonds 

of E601-R840 (86.14%) and S580-L851 (68.32%) disappeared after the phosphorylation of Y841, 

whereas the occupancy of hydrogen bonds of R657-D846 increased from 46.53% to 52.48%. 

Moreover, a new hydrogen bond between S826-E542 was formed with 45.54% occupancy. The 
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overall total occupancy of hydrogen bonds decreased, indicating that the interactions between JH1-

pY841 and JH2 were weaker than those between JH1-Y841 and JH2. Notably, key residues such 

as R841, L851, D846, and S826 are geometrically close to Y841, and the presence of pY841 

strongly affects the adjacent residues and hydrogen bond formation. We also examined the binding 

free energy between JH1-Y841/pY841 and the FERM-SH2-JH2 complex and found that FpY841 

had a higher binding free energy (Fig. 4.2c), suggesting that the presence of pY841 promotes the 

detachment of JH1 from FERM-SH2-JH2. 
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Figure 4.1: The raw data from MD simulations. a. RMSD of full length JAK3 with non- phosphorated 

and phosphorated Y841 (FY841 and pY841) in auto-inhibited state. b. RMSF of full length JAK3 with 

non-phosphorated and phosphorated Y841 (FY841 and FpY841) in auto-inhibited state. c. RMSD of the 

kinase Y841, pY841, and that with ADP or ATP. d. Cleft size of kinase Y841, pY841, and that with ADP 

or ATP. e. Distances between the salt bridge pairs LYS830/ATP in Y841 and pY841. The occupancy of 

LYS830/ATP in 5.8% while that in pY841 is 16.6%. f. Binding components of electrostatic force 

between kinase and ADP/ATP in Y841, pY841.  

 

 
Figure 4.2: The ribbon diagram of high-occupancy (>30%) hydrogen bonds between JH1 and JH2 and 

binding free energy. The FERM, SH2, JH2 and JH1 are colored pink, purple, blue, and orange 

respectively. a. The high-occupancy hydrogen bonds in FY841. b. The high-occupancy hydrogen bonds 

in FpY841. c. The binding free energy between JH1 and other domains (FERM, SH2, JH2) in full-length 

JAK3 with Y841(FY841) and pY841(FpY841). 

The loss of hydrogen bonds and increased binding free energy caused by the pY841 

phosphorylation could lead to the detachment of JH1 from autoinhibited JAK3, which is the first 

step towards activation. To further investigate the potential effects of Y841 phosphorylation on 

the conformational changes of JAK3, the JH1 and JH2 domains were separated by 10, 15, and 20 

Å to simulate the initial steps of activation. The electrostatic forces between JH1 and JH2 were 

then analyzed to explore the potential continuous effects on JAK3 conformational changes. As 

shown in Fig. 4.3ad, the sliding force is the main component for sliding JH1 around JH2. 

Interestingly, the electrostatic force between JH1 and JH2 is nearly perpendicular to the JH1- JH2 

mass center connection, as seen in Fig. 4.3bc. This perpendicular alignment indicates that the 
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sliding force plays a critical role in the sliding of JH1 around JH2, which is a crucial step in the 

activation process. It is also noteworthy that the JH1 in the activated JAK3 is on the other side of 

JH2 (Fig. 4.3b), and the increased sliding force on JH1, caused by pY841, may contribute to the 

flipping of JH1 until the activated state is achieved. Overall, the simulation results suggest that 

Y841 phosphorylation may affect the detachment of JH1 from the autoinhibited JAK3 by reducing 

the hydrogen bonds and increasing the binding free energy. The increased sliding force on JH1 

caused by pY841 may further contribute to the flipping of JH1 and the activation of JAK3. The 

electrostatic force between JH1 and JH2 was found to be perpendicular to the JH1- JH2 mass 

center connection, suggesting that the sliding force is the primary driving force in the JH1 sliding 

around JH2. These results provide new insights into the conformational changes of JAK3 and its 

regulation by Y841 phosphorylation, which may have important implications for the development 

of therapeutic interventions targeting JAK3. 
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Figure 4.3: The interactions from FY841/FpY841 to JH1. a. The diagram of separation between JH1 and 

JH2. b. The diagram of the angle (α) between electrostatic force and the JH1-JH2 mass center connection. 

c. The angle (α) between JH1-JH2 mass center connection and the electrostatic force direction. d. The 

sliding component of electrostatic force between JH1 and JH2 at 10, 15, 20 Å.  

4.3.2 JAK3-JH1 ATP/ADP binding process 

A 100 ns simulation was performed for each of the JH1 domain states, including JH1-

Y841, JH1-pY841, ATP-JH1-Y841, ATP-JH1-pY841, ADP-JH1-Y841, and ADP-JH1-pY841, 

and the stability of the conformations (with Root Mean Square Deviation < 4 Å) was observed 

after 10 ns (Fig. 4.1c). Based on the last 30 ns simulations, the cleft size and electrostatic forces 

between the JH1 N-lobe and C-lobe were calculated. As shown in Fig. 4.4ab, the phosphorylation 

of Y841 resulted in a reduction of the JH1 cleft by approximately 0.5 Å, while the JAK3 JH1-

pY841 cleft was found to be enlarged by 1 Å after binding with either ATP or ADP. Conversely, 

the binding of ATP/ADP decreased the cleft size of JAK3-Y841 by about 0.6 Å. Interestingly, 

despite the decrease in the JH1 cleft caused by pY841, ATP/ADP binding can still enlarge the cleft 

size, which allows the substrate to enter and facilitates the transfer of gamma phosphate. The 

phosphorylation of Y841 reverses the conformational change caused by ATP/ADP binding. The 

wide range of cleft sizes indicates that the phosphorylation of Y841 increases the overall elasticity 

of the kinase domain. Additionally, the increased cleft size expands the volume of the nucleotide-

binding pocket and enhances the binding force of ATP/ADP. 
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Figure 4.4: Phosphorylation of JH1-Y841 promotes an activated kinase domain state. a. The ribbon 

diagram of the JAK3 JH1-pY841 domain with ATP. The JH1 cleft is the space between the N-lobe and 

C-lobe. b. The distance between the JH1 C-lobe and N-lobe in the simulation of JH1-Y841, JH1-pY841, 

ATP-JH1-Y841, ATP-JH1-pY841, ADP-JH1-Y841, ADP-JH1-pY841. c. The binding component of the 

electrostatic force between the JH1 domain (Y841/pY841) and ADP/ATP (The error bar is based on the 

CI of 0.95). 

Fig. 4.4c reveals that the binding forces between JH1 with ATP are similar in the presence 

or absence of Y841 phosphorylation (~15 kT/Å). However, the binding forces between JH1 

without and with Y841 phosphorylation and ADP are significantly different. The binding force 

between JH1 without Y841 phosphorylation and ADP is ~18 kT/Å, which is slightly higher than 

that when bound to ATP. This suggests that the kinase has difficulty releasing ADP. In contrast, 

after Y841 phosphorylation, the binding force between JH1 and ADP becomes much weaker, at 

only ~5 kT/Å, which is significantly lower than that with ATP (ATP-JH1-pY841). The reduced 

binding force implies that releasing ADP becomes easier, allowing a new ATP to bind and 

reactivate the catalytic activity. Subsequently, we also analyzed the electrostatic surface of the JH1 

domain to visualize the effects of phosphorylation of Y841 (Fig. 4.5). We found that the pY841 

state alters the positively charged surface area surrounding the site, as shown in figures 2a and 2b. 
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In the N-lobe of the JH1 ATP/ADP binding pocket, phosphorylation does not directly cause 

changes to the electrostatic surface, as shown in Fig. 4.5cd. Nevertheless, after 100 ns simulations 

with ATP/ADP, the nucleotide-binding pocket shows significant differences. After simulations 

with ATP, the binding pocket in JH1-Y841 is positively charged (Fig. 4.5e), whereas the JH1-

pY841 state is observed to be nearly neutral (Fig. 4.5f). By contrast, the binding pocket is more 

neutral (Fig. 4.5g) after ADP-JH1-Y841 simulations, but more positive (Fig. 4.5h) after ADP-JH1-

pY841 simulations. These electrostatic surface changes are caused by the conformational change 

of peptide backbones and amino acid side chains. These changes may also contribute to the shifting 

size of the nucleotide-binding pocket. We observed that the phosphorylation of Y841 initially only 

affects a small area on the N-lobe, while the simulations amplify the effects on the binding pocket. 

The conformational change induced by phosphorylation may create new surface charges or alter 

the distribution of existing charges, affecting the binding pocket's overall charge distribution. 
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Figure 4.5: The electrostatic surface of the N-lobe of JAK3 JH before and after simulations. ac. JH1-Y841 

before simulations. bd. JH1-pY841 before simulations. e. ATP-JH1-Y841 after 100 ns simulation. f. 

ATP-JH1-pY841 after 100 ns simulation. g. ADP-JH1-Y841 after 100 ns simulation. h. ADP-JH1-pY841 

after 100 ns simulation. The surface of electrostatic potential is colored from -1 kT/e (blue) to 1 kT/e 

(red).  

In order to gain a more comprehensive understanding of the effects of Y841 

phosphorylation, we analyzed the salt bridges and hydrogen bonds at the intermolecular interfaces. 

Our analysis revealed that there is only one salt bridge, ATP-LYS830 (Fig. 4.1e), between ATP 

and JH1 in both states (Y841 and pY841). However, the occupancy of the salt bridge is increased 

from 5.8% to 16.6% in the pY841 state. Correspondingly, the occupancies of hydrogen bonds 

between ATP and JH1-Y841 (R916-ATP: 20.7%, L905-ATP: 69.0%) are much lower than that 

between ATP and JH1-pY841 (R916-ATP: 44.3%, L905-ATP: 82.9%) (Fig. 4.6bc). Specifically, 

the occupancies of R916-ATP and L905-ATP are 44.3% and 82.9%, respectively, in ATP-JH1-

pY841, whereas they are only 20.7% and 69.0% in ATP-JH1-Y841. Notably, a new hydrogen 

bond between K830-ATP (occupancy of 54.6%) is formed at the edge of the cleft in ATP-JH1-

pY841, stabilizing ATP inside the nucleotide-binding pocket. In ADP-JH1 Y841/pY841 

simulations, no salt bridge is formed between the kinase domain and ADP. However, the 

occupancy of hydrogen bonds between ADP and JH1 is generally higher in the pY841 state 

compared to the Y841 state. Specifically, in ADP-JH1-pY841 simulations, more residues can form 

hydrogen bonds with ADP, although most of them have very low occurrences. Only L905-ADP 

has an occupancy of 86.5% (Fig. 4.6f). On the other hand, in ADP-JH1-Y841 simulations, L905-

ADP and R916-ADP have occupancies of 97.0% and 78.6%, respectively (Fig. 4.6e). Notably, the 

hydrogen bond of R916-ADP in the ADP-JH1-Y841 state is located near the edge of the cleft, 

which may prevent ADP from being released and inhibit the recovery of catalytic activity. Taken 

together, our data suggest that the binding force between ADP-JH1-Y841 is higher than that of 
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ADP-JH1-pY841, further supporting the hypothesis that ADP is easily released after ATP 

hydrolysis in the Y841 phosphorylated kinase. These high-occupancy hydrogen bonds may serve 

as potential targets for therapeutic interventions. 

 
Figure 4.6: The ribbon diagram of high-occupancy (>10%) hydrogen bonds in a. JH1 bound to ATP. d. 

JH1 bound to ADP. And hydrogen bonds between residues and nucleotides between b. JH1-Y841-ATP. 

c. JH1-pY841-ATP. e. JH1-Y841-ADP. f. JH1-pY841-ADP. 

4.4 Discussion 

The pY841 breaks many hydrogen bonds between JH1 and JH2, which are key residues to 

stabilize the JH1 in the autoinhibited states. The separated JH1-pY841 receives a higher sliding 

force compared to JH1-Y841, suggesting that pY841 may contribute to the flip of JH1 into the 

activated position. In following computational study, we conducted topological analysis of the 

JAK3 JH1 kinase domain with and without ATP/ADP models to investigate the effects of pY841 

on ATP hydrolysis. The results show that phosphorylation of Y841 initially decreases the cleft size 

of the JH1 domain, but dramatically increases the cleft size when ATP/ADP is bound to the kinase. 
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This finding suggests that phosphorylation of Y841 promotes the activation of JAK3 kinase by 

facilitating access to the ATP binding pocket. Furthermore, the analysis shows that the electrostatic 

binding forces between the kinase and ADP/ATP in the JH1-Y841 structure are similar. This 

similarity makes it difficult to bind ATP and release ADP, hindering the hydrolysis of ATP. 

However, after phosphorylation of Y841, more salt bridges and hydrogen bonds are formed 

between JH1 and ATP, which increases the electrostatic binding force on ATP. In contrast, ADP 

receives a lower electrostatic binding force than ATP, making it easier to release ADP. The 

increased binding force on ATP and reduced binding force on ADP, induced by phosphorylation 

of Y841, thus lowers the difficulty for releasing ADP and facilitates the recovery of the kinase 

catalytic activity. These findings support the idea that pY841 encourages an active JAK3 kinase 

state by promoting optimal usage of ATP and STAT5 activity. To be noted, phosphorylation of 

Y904 and Y939 was shown to positively promote optimal usage of ATP and STAT5 activity[221], 

which suggests that these residues play a critical role in the activation of the JAK3 kinase. One of 

our key findings was that E903, Y904, and L905 contribute over 100%-occupancy hydrogen bonds 

and that the phosphorylation of Y841 strongly affects the hydrogen bonds between these key 

residues and ATP/ADP. This is consistent with previous experimental works and highlights the 

critical importance of the phosphorylation of Y841 in JAK3 kinase activity. Initially, we observed 

that pY841 decreased the positively charged surface area surrounding the phosphorylated site 

without impacting the electrostatic surface of the nucleotide-binding pocket. However, our 

simulations revealed that over time, more areas in the binding pocket became negatively/positively 

charged in the pY841 state. This led to the formation of more salt bridges and hydrogen bonds 

between JH1-ATP, while fewer salt bridges and hydrogen bonds were formed between JH1-ADP. 
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As a result, the electrostatic binding force between JH1 and ADP was reduced, making it easier 

for ADP to be released. This likely encourages the kinase to recover catalytic activity.  

4.5 Conclusion 

Phosphorylation of tyrosine residue Y841 on the Janus kinase (JAK) protein initiates a 

cascade of events that ultimately leads to the activation of the protein kinase. Specifically, 

phosphorylation of Y841 breaks the hydrogen bonds between JH1 and JH2 domains, which 

reduces the binding affinity between them. As a result, JH1 domain detaches from JH2 and flips 

around it, exposing the ATP binding pocket. During this process, the sliding force acting on JH1-

pY841 is increased, promoting its movement to the activated state. The analysis of ATP/ADP 

binding pockets in the JAK kinase reveals that phosphorylation of Y841 only negatively charges 

a small portion of the kinase and does not directly affect the ATP/ADP binding pockets. However, 

long-term simulations of 100 ns show that phosphorylation indirectly affects the binding pockets. 

Steric effects and negative charges of phosphorylation cause changes in the negatively and 

positively charged areas of JH1-ATP/ADP that ultimately affect the cleft size and binding force. 

The highly charged area of JH1-ATP/ADP not only increases the cleft size when ATP/ADP is 

bound to the kinase but also strengthens the electrostatic binding force on ATP while weakening 

it on ADP. This reduced force on ADP facilitates the release of ADP, which further facilitates the 

recovery of kinase catalytic activity. On the other hand, JH1-pY841-ATP has a higher occupancy 

of hydrogen bonds, contributing to the attraction of ATP. Moreover, JH1-pY841-ADP has fewer 

hydrogen bonds than JH1-pY841-ATP, facilitating the release of ADP after hydrolysis. The 

reduced hydrogen bonding in JH1-pY841-ADP leads to a lower binding force between ADP and 

the JAK kinase, which makes it easier for ADP to be released after hydrolysis. Overall, 

phosphorylation of Y841 plays a critical role in the activation of JAK kinase. It initiates the 
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separation of the JH1 and JH2 domains, promoting the movement of JH1-pY841 to the activated 

state and exposing the ATP binding pocket. Furthermore, phosphorylation indirectly affects the 

binding pockets by changing the negatively and positively charged areas of JH1-ATP/ADP, which 

ultimately affects the cleft size and binding force. These changes facilitate the release of ADP after 

hydrolysis, which further promotes the recovery of the kinase catalytic activity. 
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CHAPTER 5: USING ENERGY MAP AND DYNAMIC PROGRAMMING TO ANALYZE THE 

STRUCTURAL TRANSITION OF JANUS KINASE  

5.1 Introduction 

The family of Janus kinases (JAKs) plays a crucial role in the regulation of various cellular 

processes, including immune and inflammatory responses[229], hematopoiesis[211, 230], and 

oncogenesis[231]. The JAK family members, including JAK1, JAK2, JAK3, and TYK2, are 

noncovalently connected with the intracellular domain of cytokine receptors. When cytokines bind 

to the extracellular domains of these receptors, it leads to dimerization of the receptors, triggering 

JAKs to phosphorylate tyrosine residues[232, 233]. Then, the intracellular domains of the 

receptors serve as the binding sites for Signal Transducers and Activators of Transcription 

(STATs) and JAKs phosphorylate tyrosine residues[234].  STATs are further phosphorylated by 

the activated JAKs, dimerized[235], and translocated to the nucleus. This process regulates 

transcription of genes and is known as the JAK-STAT signaling pathway.  

All JAKs are comprised of seven homology domains, including a Four-point-one, Ezrin, 

Radixin, Moesin (FERM) domain (JH5, JH6, and JH7), an Src Homology 2 (SH2) domain (JH3 

and JH4), and two kinase domains (JH2 and JH1), which have a Pseudo Kinase (PK) and a 

Tyrosine Kinase (TK),  region respectively[236]. The FERM and SH2 domains are tightly 

associated with juxta-membrane domain cytokine receptor[237]. PK is a noncatalytic domain but 

regulate TK[238, 239]. Specifically, PK has autoinhibitory domains that keep TK inactive until 

stimulation from cytokine receptor dimerization[224]. A classic example that illustrates this 

feature is the VF mutation. V617F is most common mutation in JAK2-PK, which results in 

constitutive activity[240]. The V617F mutation causes simple steric disruption, disturbing the 

inhibited state of TK to activate the JAK2[239, 241]. Notably, in the absence of receptor 
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dimerization, the activated state is likely transient. A V657F mutation causes a JAK1 dimer to 

form, freeing the TK for constitutive activity and continuous transphosphorylation[223]. Evidence 

reveals that the PK has two functions: firstly, to bind TK at the inhibited state, preventing TK from 

releasing; secondly, to stabilize dimerization when a JAK dimer is formed. The P733L mutation, 

which also occurs on the JAK1-PK domain, results in impaired transphosphorylation and 

subsequent immunodeficiency[212]. By contrast, S703I, is a gain-of-function mutation in JAK1, 

and was found to increase JAK1 activity and partnering of JAKs, leading to hyper/neo-morphic 

cytokine signaling[213].  

To fully understand the mechanisms of these mutations, it is necessary to understand the 

JAK activation process. However, simulating the entire process using all-atom explicit Molecular 

Dynamics (MD) simulations is challenging due to the resource requirements and the unknown full-

length inhibited structures. In 2014, an autoinhibited structure of PK-TK dimer was revealed[224] 

and in 2022 the full-length JAK1 dimer structure was reported, providing an opportunity to 

construct the full-length JAK1 in its inhibited state. An energetic and steric analysis of these two 

states should reveal potential paths of TK from inhibited state to activated state. We aligned two 

PKs, one from an inhibited PK-TK dimer[224] and the other from an activated full-length 

JAK1[223] to determine the position of TK in an inhibited state, then constructed the full-length 

inhibited JAK1 structure. Interestingly, the interfaces of TKs facing PKs in both inhibited and 

activated states are identical, suggesting a high likelihood that TK rolls around PK to reach the 

activated position (Figure 1a). However, TK at activated sates is slightly far from PK compared to 

inhibited states, suggesting rolling and separation both contribute to TK activation. So, based on 

separational and rotational movement, we separated and rotated[242] TK around PK to build an 

energy map to find the smoothest path for TK activation. Each dot in the energy map represents a 
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knot, indicating that the number of possible paths exceeds nm (where n and m represent the rotation 

degree and separation distances, respectively). Therefore, computational methods are required to 

reduce the complexity of these paths. Based on Dijkstra's algorithm[243, 244], we developed a 

new dynamic programming approach that identifies the path with minimal variance, representing 

the smoothest path.  

5.2 Methods 

5.2.1 Modeling and Molecular Dynamics Simulations 

The full-length inhibited and activated JAK1 structures were generated using SWISS-

MODEL[195] based on the dimerized full-length JAK1 structure (PDB: 7T6F[223]) and inhibited 

JH1-JH2 dimer (PDB: 4OLI[224]). The JAK1 sequence used for modeling is the Homo sapiens 

tyrosine-protein kinase JAK1 sequence, which can be obtained from UniProt[245]. Models were 

then solvated with TIP3P [178] and ionized by 150 mM KCl via CHARMM-GUI[196]. The force 

field applied in MD simulations is CHARMM36m[198]. Periodic boundary conditions and the 

long-range electrostatic interactions with particle mesh Ewald[9] were performed during 

simulations. The temperature was set at 310.15 K, using a Langevin thermostat with a damping 

coefficient of 1/ps. The pressure was set to 1 atm using a Nosé–Hoover Langevin piston barostat 

with a decay period of 25 fs. Simulations were performed after 10,000-step minimization. 

Simulation included two steps: NPT equilibrium and NVT production. In the equilibrium phase, 

the backbones of proteins were restrained. In production, all atoms were freed. The simulations 

were performed by NAMD 2.12[160]. The 0.5 ns NPT equilibrium and 50 ns NVT production 

were performed for each MD simulation.  
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5.2.2 Electrostatic Analysis 

The charge and radius were assigned by pdb2pqr[199] from CHARMM36[198]. The 

dielectric constant for protein and water were set to 2 and 80, respectively. Salt concentration, 

probe radius, filling ratio of protein, and resolution were set to 150 mM, 1.4 Å, 0.70, and 2 grid/Å, 

respectively. The electrostatic potential was calculated by Delphi and the electrostatic force by 

DelphiForce[52]. The hydrogen bond analyses were performed on VMD based on the last 10 ns 

MD simulations. The cutoff distance and the angle for hydrogen bond analysis were set to 3.5 Å 

and 20°, respectively. 

5.2.3 Simulation of Activation and Analysis of the Smoothest Path  

5.2.3.1 Simulation of Activation 

Here we separate the JAK1 into 4 domains (FERM: 34-420, SH2: 439-544, PK:583-855, and 

TK:875-1153) and rotate the TK about the surface of PK to simulate the activation process (Fig. 

5.1a). The three mass centers of PK, TK in the inhibited state (TK-I), and TK in the activated state 

(TK-A) defined a plane. The plane was applied for the rotation and separation of TK in JAK1 

activation. First, TK and PK were separated by 25 Å. For each 1 Å increment, 1000 steps of 

minimization were applied. TK was then rotated along PK at 10 increments (totaling 145)  for 

each separation. Similarly, for each of these rotations, 1000 steps of minimization were applied. 

The grid defining this procedure is shown in Fig. 5.1b. Here, the separation and rotation were 

achieved by StructureMan[242] while the minimization was applied by NAMD2.12[160] with the 

CHARMM36m force field[198]. After each 1000-step minimization, the total energy (sum of the 

potential energies) was calculated by NAMD and used to construct the total energy matrix (M30 x 

17) Fig. 5.1c.   
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Figure 5.1: The activation process of JAK1 according to the path analysis method. a and b. The diagram 

of the activation-inhibition process. O represents the mass center of PK, and A and C represent the mass 

centers of TK in inhibited and activated states respectively. B is the mass center of TK after separating 

TK from PK by 9 Å to make sure OC=OB. D represents the mass center of TK for 25 Å separation while 

E represents the corresponding mass center of TK after a 145o rotation from position D. c. The matrix 

represents the total energy matrix of JAK1 with TK at certain positions, which is obtained by the 

transformations outlined in b. d. The possible position of TK after each rotation.  

5.2.3.2 Analysis of the Smoothest Path 

After testing at different separation sites, we can draw the energy map of JAK1 with TK 

located at different positions, and then calculate the possible path for activation. An energy 

matrix30X17 (M30×17) (Figure 1c) is built based on the separation between 9 to 25 Å and the rotation 

from 0 o to 145 o, where rows represent the rotation degree while columns represent the separation 

distance. We are looking for a path from M[1,1] (After 9 Å separation of TK from the inhibited 

state) to M[30,1] (activated state). The total energy change from M[1,1] to M[30,1] is known a priori, 

meaning that minimal energy consumption cannot be a criterion. Because of this, we tried to find 

the smoothest path for TK to move from M[1,1] to M[30,1]. The smoothest path means the energy 

consumption is even among steps during the activation process. Each step represents the TK 
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rotation for 5o in our simulations. Here we used the variance of the differences between the two 

steps to represent the level of smoothness (Eq. 7.1).  

𝜎2 =
∑ (𝛥𝐸𝑖,𝑖+1−𝛥𝐸̅̅ ̅̅ )2𝑛

𝑖=1

𝑛−1
…………………………………………………………... (7.1) 

where the 𝜎2 represents the variance, 𝛥𝐸𝑖,𝑖+1 represents the energy differences between 

𝑖𝑡ℎ  position and (𝑖 + 1)𝑡ℎ  position. n equal to 29, because of the rotation is via each 5o 

rotation/step for 145 o rotations to reach the activated state. 𝛥𝐸̅̅ ̅̅  represents the mean of all 

differences (Eq. 7.2).  

𝛥𝐸̅̅ ̅̅ =
∑ (𝛥𝐸𝑖,𝑖+1)

𝑛
𝑖=1

𝑛
=

∑ (𝐸𝑖+1−𝐸𝑖)
𝑛
𝑖=1

𝑛
=

(𝐸30−𝐸1)

𝑛
………………….… (7.2) 

where the 𝐸𝑖 represents the energy at 𝑖𝑡ℎ position. 𝐸1 is the value of M[1,1] and 𝐸30 is 

the value of M[30,1]. Because 𝛥𝐸̅̅ ̅̅  is a constant, equation 1 simplifies to equation 7.3. 

𝜎2 =
∑ 𝛥𝐸𝑖

2𝑛
𝑖=1

28
+ 𝑎 ∑ 𝛥𝐸𝑖 + 𝑏𝑛

𝑖=1 …………………………………………... (7.3) 

where a and b are constants. Since the 𝛥𝐸𝑖  is the solo contributor to variance, if use 

(𝛥𝐸𝑖 − 𝛥𝐸̅̅ ̅̅ )2 as the “distance” of steps, the variance represents the length of the path and the 

shortest path can be easily solved by dynamic programming[246]. For each step (rotation), TK can 

move slightly closer or farther from PK. Here, we set each step to follow two rules:  

1. M[n,m] can reach M[n+1,(m-2,m+3)], (n<29, m<=17) (Fig. 5.1d).  

2. The initial position is M[1,1] and the last position should be M[30,1].  
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5.3 Results 

5.3.1 The Inhibited Full-Length JAK1. 

The surface of inhibited full-length JAK1 has a pentagram-like shape (Fig. 2a), where the 

TK is tightly bound by both FERM and PK. After separating and rotating of FERM and TK by 

90o, we can observe the left and right surface of TK are negatively and positively charged, 

respectively. Correspondingly, the left end of FERM is positively charged while the middle right 

is negatively charged (Fig. 5.2b). The electrostatic attraction between the FERM and TK domains 

plays a vital part in securing their binding. Additionally, an analysis of hydrogen bonds reveals the 

presence of many formed between the FERM and TK domains. E354 (~160%) and E355 (~180%) 

contributed the most hydrogen bonding by interacting with K924, Y999, K1026, A1027, and 

Y1035 (Fig. 5.2c). E354 is located in the fatty acid binding sites for Ruxolitinib[247], an inhibitor 

used to treat myelofibrosis. Interaction between Ruxolitinib and E354 may prevent the release of 

TK, making it harder for the JAK to be activated. Additionally, E362 and K390 are also important 

residues with high occupancies (79.21% and 58.42% respectively) of hydrogen bonds. These 

bonds play a significant role in strengthening the interaction between the two domains, further 

contributing to the stability of the protein. They could be the potential targets for inhibitor design.  

The interactions between PK and TK are depicted in Fig. 5.2d, where PK and TK have 

been rotated by 90o to display the distribution of electrostatic potential on their surfaces. The right 

part of TK is negatively charged and the corresponding left part in PK is positively charged. The 

inhibition of TK can be explained, at least in part, by these electrostatic attractions. To be more 

specific, hydrogen bonds are analyzed to uncover the contribution of residues pairs. The residue 

R724 is the most significant contributor to hydrogen bonds, forming bonds with both E897 and 

D899. This observation has been previously noted in studies that examine the inhibited interfaces 
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between the JAK2 PK-TK dimer (R744 in JAK2)[239]. The residue E668 also makes a significant 

contribution to hydrogen bonding, with an 82.18% occupancy in its hydrogen bond to R893. This 

observation has been previously seen in previous studies (E688 in JAK2)[239]. A new hydrogen 

bond was discovered in our MD simulations. The bond involves the residues Y605 and E890, with 

an occupancy of 61.39%. Phosphorylation is the initial step for JAK activation, where tyrosine 

phosphorylation has been proven to active most JAKs[218, 248, 249]. Y605 could be a possible 

phosphorylation site for active JAK1 activation.     

 
Figure 5.2: The electrostatic surface and hydrogen bonds of inhibited full-length JAK1. a. The 

electrostatic surface of full-length JAK1 structure. b. The electrostatic surface of the binding interface 

between FERM and TK (FERM and TK are oppositely rotated 90o) to show the interface. c. The high-

occupancy hydrogen bonds between FERM and TK. d. The electrostatic surface of the binding interface 

between PK and TK (PK and TK are oppositely rotated 90o). e. The structural representation and high-

occupancy hydrogen bonds for inhibited full-length JAK1. f. The high-occupancy hydrogen bonds 

between PK and TK.  

5.3.2 The Activated Full-Length JAK1. 

In the activated state, TK is no longer connected to FERM, instead, it only interacts with 

PK. The interfaces of the FERM-SH2-PK complex and TK are displayed in Fig. 5.3a. PK is 

positioned on the right of the FERM-SH2-PK complex, which is characterized by having mostly 

negative electrostatic charges. Correspondingly, the center of the TK interface is positively 
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charged, and it is electrostatically attracted to the negatively charged PK domain. The hydrogen 

bonds were analyzed to show the individual contributions of residues (Fig. 5.3bc). R930-E801 

possess over 82.18% occupancy. Other glutamate residues like E803 and E807 also formed high-

occupancy hydrogen bonds with Y933 and K941, respectively. This shows the importance of 

glutamate in PK at the activated state and provide possible tyrosine residues Y933, 

phosphorylation on which may activate JAK1. Positive charges provided by R930 and K941 play 

a role in the electrostatic attraction to the negatively charged surface of PK, which occurs due to 

the presence of glutamate residues in the protein. The formation of hydrogen bonds between PK 

and TK is facilitated by close proximity between the two domains—typically when the distance 

between them is around 3.2 Å[250, 251]. This interaction contributes to the stability of the 

activated JAK1 structure. 

 

 

 

 
Figure 2: The electrostatic surface and hydrogen bonds of activated full-length JAK1. a. The electrostatic 

surface of the full-length JAK1 structure. Two regions (FERM-SH2-PK and TK) are oppositely rotated 

90o to show the interface. b. The high-occupancy hydrogen bonds and structural representation of 

activated full-length JAK1. c. The high-occupancy hydrogen bonds between PK and TK.  
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5.3.3 Using Dynamic Programming to Find the Smoothest Path of TK Translocation in 

JAK1 Activation. 

The activation of JAK1 primarily involves the translocation of the TK from an inhibited 

position to an activated position. The same interface of TK facing PK at both positions inspired us 

that JAK1 activation can be achieved by rolling TK around PK. Since efficiency is a fundamental 

principle for many biological processes, possible minimal paths were initially designed for TK 

translocation. This includes separations of TK and PK by 9 Å and rotation of TK around PK by 

145o. TK was first separated from PK by 9 Å and then rotated 145o to show the total energy change 

(Fig. 5.4a). TK encounters a high energy barrier around 60o-80o, making it difficult for the protein 

to continue rotating the full 145o. To better illustrate these energy changes, TK was further 

separated from PK by increments of 1 Å, up to 25 Å, to observe when the energy barrier would 

diminish. After a 15 Å separation, the rotation did not encounter a significant energy barrier and 

after a 20 Å separation, there was no energy barrier at all (Fig. 4a). These energy calculations 

provide a JAK1 energy map with TK at different locations, shown in Fig. 5.4b. It is evident that a 

region with high energy is present in the range of 9-12 Å and 60o-80o.  

To avoid the energy barrier, we attempt to find the smoothest path for TK translocation. 

The smoothest path refers to the path with the lowest variance of steps. If the energy of TK 

translocation fluctuates markedly and frequently, the variance of is large. Each 5o rotation is 

considered a step. During the rotation, both separation and approach of TK can occur, leading to 

multiple possible paths. This means that TK moves from the point M(0,9) to M(145,9) in Fig. 5.4b. 

The problem of finding the minimum variance cannot be solved directly through dynamic 

programming because the path lacks a recursive structure. To resolve this, a new contributor 
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“(𝛥𝐸𝑖,𝑖+1 − 𝛥𝐸̅̅ ̅̅ )2” was introduced to calculate each step's contribution to the variance. This allows 

the creation of a recursive structure for dynamic programming.  

After calculations, the smoothest path is found and shown in Fig. 5.4b. Clearly, during the 

activation, TK first separates from PK for 17 Å before overcoming the 60o-80o rotational energy 

barrier.  Then it approaches PK and continues rolling until reaching the activated site. We also 

provide the energy heatmaps and smoothest paths of P733L and S703I mutations, shown in Figure 

4c and 4d, respectively. The smoothest path analysis suggests that in JAK1-P733L, TK remains 

near PK until 55o of rotation, after which it suddenly separates by about 6 Å during the next 15o 

rotation. Subsequently, TK continues to rotate for an additional 40o before abruptly approaching 

PK, followed by another 20 degrees of rotation, at which point TK ultimately reaches the activated 

site. While the energy path is smooth, the spatial pathway is not; it is interrupted by sudden 

separations and approaches. The ideal path should be smooth energetically and spatially—

especially for the initial steps. This implies the P733L mutation hampers JAK1 activation and 

impairs transphosphorylation, resulting in subsequent immunodeficiency[212]. The smoothest 

path for TK in JAK-S703I involved an initial separation of 16 Å at a 60o rotation, followed by a 

sudden approach over the next 50o rotation. From there, it smoothly rotated to the activated site 

(Fig. 5.4d). Compared with WT type JAK1, the initial separation combined with rotations is much 

slower while the final approach step is much quicker. The mutation of S703I decreases the 

difficulty of activating JAK1, leading to constitute activation[213]. The smoothest paths of TKs in 

JAK1s with and without mutations are shown in Fig. 5.4e. The mutation of S703I caused spatially 

smooth separation and rotation initially but there is quick approach after bypassing the high energy 

area. The JAK1-S703I mutation created an "energy stair" for TK to navigate around the high 

energy zone gradually. In contrast, the JAK1-P733L mutation did not allow gradual separation of 
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TK to bypass the high energy zone. Moreover, these mutations caused different initial total 

energies (Fig. 5.4g). Compared with WT JAK1, the P733L mutation reduced the initial total 

energy, making the inhibited state more stable. Conversely, S703I increased the total energy of the 

inhibited state, reducing the stability of the inhibited JAK1 structure.  

The energies of smoothest paths of JAK1s are shown in Fig. 5.4f. The total energy of JAK1 

in the activated sate is lower than that of the inhibited state. It infers to that the activation of JAKs 

could be thermodynamically spontaneous. The reason why it should be activated by cytosine 

signaling is necessary is because of the initial separation should cross an energy barrier and enter 

the activated state. This energy barrier is the reason the inhibited state is also known as the 

“autoinhibited state”, and is described in many articles[223, 224, 231, 237, 239]. The VF mutation 

or the tyrosine phosphorylation which can active the JAKs, could serve as the key to overcome or 

diminish the energy barrier. For the P733L mutation, which shows a low energy barrier at the 

initial steps but is also known to weaken transphosphorylation[212] the results could be explained 

by a spatial lock at the step 17, where TK is at a 9 Å separation and 40o rotation. The next step in 

the path is to be separated by 6 Å at a 15o rotation, which is difficult to achieve. Thus, the JAK1-

P733L structure is locked in this state where the activate site of TK is still covered.       
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Figure 5.4: The energy analysis of the activation process of JAK1. a. The total energy of JAK1 during the 

rotation and separation of TK. bcd. The total energy heatmap of JAK1 (WT, P733L, S703I) with TK at 

different positions, where the black lines represent the smoothest paths for the corresponding energy 

heatmap. e. A smoothest path comparison among WT, P733L, and S703I. f. The total energy for each step 

along the smoothest paths for WT, P733L, and S703I JAK1. g. The total energy at the autoinhibited state. 

The energy shown in the figure represents the relative total energy, which is the difference between the 

current state and the total energy in the inhibited state (f). 

5.4 Discussion and Conclusion 

Based on the inhibited PK-TK dimer[224] and activated full-length JAK dimer[223], we 

successfully built the inhibited full-length JAK1 and activated full-length JAK1 to study the 

differences between the two states and the structural transitions of JAKs. In the inhibited state, TK 

is strongly locked in the cavity formed by PK and FERM. The glutamine residues in FERM 

contributed the most hydrogen bonds, while the arginine residues in PK contributed the most 

hydrogen bonds. Typically, the FERM interface facing the tyrosine kinase (TK) is negatively 

charged, while the TK interface facing the FERM domain is positively charged. This charge 
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distribution is reversed in the PK-TK interfaces, with the PK domain interface being positively 

charged and the TK domain interface being negatively charged. In the activated state, only PK 

interacts with TK. Less hydrogen bonds occur in this state, contributing to high freedom of 

movement for TK. 

Comparing the inhibited and activated JAK1 structures, the interfaces of TK are distinct, 

suggesting that TK rotates around PK to reach the activated site. To avoid steric clashes during 

rotation, initial 9 Å separation of TK is necessary for translocation. After the initial separation, the 

TK was further separated from PK by increments of 1 Å, up to 25 Å, and then rotated after different 

separations. The total energies of JAK1 with TK at different positions were calculated and inputted 

into a matrix suited for dynamic programming where the goal is to find the energetically smoothest 

path. This method was also applied to two famous mutations, which are the P733L (negative 

regulatory)[212], and S703I (positive regulatory) mutations in JAK1. We found the energetically 

smoothest path of P733L is not spatially smooth, especially when bypassing one high energy zone. 

In contrast, S703I-JAK1 creates an "energy stair" spatially for TK to navigate around the high 

energy zone gradually. These finding explain the reasons underlying the constitutive activation of 

S703I-JAK1 and the impaired transphosphorylation of P733L-JAK1. We note, however, the 

increased initial total energy in S703I-JAK1 may have also contributed to activation.  

In this work, the electrostatic features of JAK1 in both inhibited and activated states are 

analyzed, providing a potential pathway for TK translocation in JAK1 activation. By comparing 

two mutations, this study reveals the importance of separational and rotational movements, which 

could be crucial for JAK activation. Furthermore, energy analysis suggests that the inhibited state 

is in a low energy state where the entire structure is stable. However, the presence of VF 

mutations[224, 236, 240] or tyrosine phosphorylation[218, 236] increases the energy and forces 
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TK to leave the cavity and rotate around the PK domain to reach the activated site, ultimately 

leading to JAK1 activation. 
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