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Abstract 
 

Industry 4.0, the fourth industrial revolution, has emerged as the most recent digital 

transformation worldwide, expanding and reshaping the manufacturing industry by introducing 

novel technologies. In Industry 4.0, Smart Manufacturing (SM) and the Internet of Things (IoT) 

have collaborated to bring the best of both worlds and make the new manufacturing era more cost-

effective, automated, and digitized. As a result, many businesses are putting sensors, intricate 

networks of integrated systems, big data analytics, cloud computing, and storage in place to use 

predictive maintenance (PdM) best. PdM uses IoT to convert physical activities into digital 

activities, also known as digitization. Predictive engineering has received the most academic 

attention of the six pillars of SM, demonstrating the need for complete integration of these 

technologies to improve data-driven decision-making. 

In this research, we discuss the relevance of PdM and its challenges, limitations, and 

strengths for optimal PdM applications. In addition to our primary analysis, we created an 

application case to show how the principles of SM, IoT, and Industry 4.0 fit into the broad and 

robust PdM technology. Using assets such as temperature sensors, microprocessors, network 

antennas, and software, a remote monitoring system and the “PAInOuTT” model application flow 

were created to fully understand the framework and process behind applying a PdM model in a 

manufacturing machine from a local industry. Furthermore, this study provided a unique 

opportunity to comprehend the challenges and expertise encountered by small businesses 

attempting to integrate IoT and SM technologies into their operational systems with limited 

resources. 
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Chapter 1 : Introduction 

Industries must evolve and adapt to the rapid growth of new technologies to create the 

latest Industry 4.0 era. This unique idea relies on new technologies that have the potential to 

revolutionize manufacturing and the way products are made [1]. This term intends to lead to faster 

production times, lower costs, and make automated decisions to produce high-quality products and 

services. 

In 2011, the German federal government introduced this concept as a project with academic 

institutions and private enterprises to maintain the country's manufacturing industry's 

competitiveness [1] [2]. Since the first industrial revolution in the late 18th century, the industry 

has attempted to adapt and overcome the production and cost challenges. As depicted in Figure 

#1.1, the second and third industrial revolutions demonstrate a significant advance from mass 

production to automated manufacturing. Once these hurdles are met, there is always space for 

development. The purpose of today's Industry 4.0 technologies is to facilitate the production of 

goods and meet the increasing global demand. 

 

Figure 1.1 Four Industrial Revolutions [2] 
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In tandem with Industry 4.0, another concept intended to transform the current production 

era was introduced. The Smart Manufacturing (SM) concept was established as a research 

endeavor into the future of manufacturing by large firms from Japan, the United States, South 

Korea, and European countries [3]. SM asserts that it has the same objectives as Industry 4.0, such 

as meeting global customer expectations by expediting the production of goods using new 

technologies like IoT, cloud computing, big data, analytics, and sensor digitization. 

 

The Predictive Maintenance (PdM) strategy is one of the critical concepts gaining traction 

in Industry 4.0 and SM. PdM is a maintenance technique to predict the equipment or asset failure 

time based on particular criteria or circumstances. This method relies on IoT, including monitoring 

equipment with sensors and other devices. PdM is a tool that has aided small and large businesses 

across the globe in increasing output by decreasing equipment failure and maintenance downtime. 

According to PwC, PdM can increase asset life by 20%, boost uptime by 9%, and reduce safety, 

health, environment, and quality risks by 14% [4]. 

 

In the early 21st century, PdM technology was adopted in the industry due to the 

introduction of new technologies that enable using PdM technology. Before introducing this 

method, the industry relied on alternative maintenance methods. First, maintenance is defined as 

"regular monitoring of the process, machine, material, or product conditions to ensure the greatest 

interval between repairs, thereby minimizing the number and cost of unplanned outages that reduce 

the manufacturing process's productivity, product quality, and overall effectiveness"[5].      
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Maintenance plays a significant part in modern manufacturing, as organizations' revenue 

may depend entirely on equipment output, meaning that any downtime represents a substantial 

financial loss for industrial enterprises. Presently, four distinct types of maintenance incidents may 

be distinguished, and Figure #1.2 explains how maintenance has evolved through time.  

 

 

Figure 1.2 Evolution of Maintenance [6] 

• Corrective or Reactive: this is the simplest straightforward technique. It is the process of 

replacing or repairing faulty equipment. For equipment failure, CM tasks determine the cause 

of the problem (a component or an item of equipment) and fix the loss so that the equipment 

may be reinstated and factory production can be restored [7]. Corrective maintenance is 

frequently linked to unscheduled downtime, costing three to four times as much as scheduled 

downtime.[6] 

• Preventive: is one of the earliest and most effective maintenance procedures still in use today. 

It consists of the measures taken to keep an object in a particular condition by providing 
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systematic examination, appraisal, and prevention of impending failures. Simple preventive 

maintenance involves periodic actions based on assumed behavior, such as the mean time 

between failures [6].  

• Predictive: It is a highly effective maintenance technique. It involves monitoring equipment 

for indications of aberrant functioning or variations.[7] 

• Prescriptive: This maintenance can predict the future health status of a system. Also, it 

recommends autonomously timed judgments for specific maintenance activities (inspection, 

repair, and replacement) or action plans [8]. It goes beyond a simple failure prediction; this 

includes proactive and intelligent maintenance planning [6]. 

One of the most significant challenges with applying PdM techniques is that they need 

clarification with other terminology or methods. PdM is also known as Condition-based 

maintenance (CBM), Prognostics and health management (PHM), and Remaining Useful Life 

(RUL) (RUL). These ideas aim to accomplish the same objective but in different ways. These all-

techniques are a component of the Predictive Maintenance model, but businesses need help 

comprehending or selecting the technique that best fits their needs or problems. 

Businesses employing and correctly applying PdM strategies have observed considerable 

cost reductions, decreased maintenance costs, and downtime. According to most of the literature, 

a successful predictive maintenance program should generate a 10:1 to 12:1 return on investment 

[9]. In other words, the average return for each dollar invested in a PdM scheme should be between 

$10 and $12. As noted, utilizing PdM in business has numerous benefits and negatives. Emerson 

believes that only about twenty percent of predictive maintenance projects are successful [4]. 

This failure rate may be attributable to multiple factors. Some of these challenges are 

related to financial constraints; investing enormous sums of money without the desired return on 
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investment or rapid outcomes may lead to the collapse of a project. Selecting the appropriate 

models, technology, and expertise is a further challenge in correctly applying PdM tactics. PdM 

procedures vary in complexity since each industry may have various needs and complicated assets; 

therefore, it is essential to understand which techniques (CBM, PHM, RUL) and technologies are 

required to meet project requirements. Not doing so may result in enormous financial waste and 

project failure. 

The principles of a PdM model will be utilized in a case study to establish the foundation 

for how small or local businesses can be introduced to PdM techniques without having to make 

substantial financial investments, in addition to demonstrating the obstacles or limitations and 

benefits of this evolving technology. This case study also introduces the significance of illustrating 

how IoT, cloud computing, big data, analytics, and sensor digitization connect to PdM along with 

the proposed “PAInOuTT” PdM application flow model. 

Since the beginning of the 21st century, businesses have attempted to adopt PdM projects; 

however, according to many surveys, only around 20% of PdM projects are successful [4]. Why 

are only 20% of projects successful? What is the most typical factor that causes organizations to 

fail while implementing PdM projects? What is preventing businesses from investing in PdM 

besides the low success rate? Is the concept lacking in benefits, expensive, or misinformed? 

This study aims to define predictive maintenance vocabulary and the technologies involved 

in a PdM project. This study will provide a fundamental grasp of the workflow stages followed in 

Predictive maintenance by describing the steps in a PdM model and introducing a proposal of a 

generalized PdM application flow model, which is the process and framework for an optimal PdM 

application. It is crucial to comprehend the process so industries may relate it to the various 
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prediction philosophies, such as CBM, PHM, and RUL. All three methods share a similar 

workflow, but a more in-depth examination of each will reveal that they may be applied to different 

situations and lead to distinct outcomes. The objective of using a CBM technique in a local 

manufacturing company is to establish the foundation for how enterprises should define their needs 

to translate them into the appropriate PdM project. This case study also demonstrates that a small 

business may be successful in PdM initiatives without significant investments by utilizing the right 

technologies, people, resources, and an overall application flow model. 

Studying PdM methodologies from various authors is intended to aid the selection of 

models when planning a PdM project investment. While pretending to enter the realm of PdM, it 

is crucial to comprehend and be aware of the associated difficulties and constraints. Before 

investing in PdM methods, knowing the most well-known issues faced by past organizations and 

projects may help other companies make the correct option. Aside from that, displaying multiple 

case studies involving the successful application of various PdM techniques, such as in the 

automotive or aviation industries, should encourage initiatives to utilize the well-known 

technology and conduct valuable predictive maintenance projects. Advantages generated from this 

maintenance technique are also included to increase the value of the global output of this 

technology. 

Solution framework development will only establish the fundamentals of the PdM project 

approach. A PdM project may be lengthy due to the extensive data collecting and maintenance 

report generation required to predict failures. The local company to which this case study was 

applied employs an obsolete machine without any sensors or alarms to indicate machine 

breakdown. All maintenance is preventative and corrective. This case study belongs to a private 
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company, so particular material may be withheld per the company's request. Remember that the 

three methodologies presented in this paper are not the only ones, but they are the most common 

and widely utilized in PdM projects. 

 

This paper contains five chapters. Chapter 2 describes the fundamental principles and 

technologies associated with PdM Models. In addition, it represents the PdM model and three most 

utilized methodologies, including the proposed “PAInOuTT” PdM Model that combines the best 

of all three methods, as well as the benefits and challenges/or limitations of PdM that other 

businesses have encountered. Chapter 3 presents a solution framework development using the 

“PAInOuTT” PdM methodology and a list of all the equipment used and the processes taken to 

initiate a PdM application project. Chapter 4 addressed the project findings and the advantages the 

local business received. Chapter 5 concludes with a conclusion following the application case 

within the local company and the outlook for implementing a proposed PdM model analysis in 

more industrial applications.
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Chapter 2 : Methodology 

2.1 Predictive Maintenance 

Predictive Maintenance (PdM) is defined as a strategy used to estimate when maintenance 

should conduct on in-service equipment by using innovative scheduling preventative maintenance 

measures that eventually avert (or at least lessen the impacts of) unexpected equipment 

breakdowns [10]. PdM is gaining popularity in multidisciplinary research groups, which propose 

developing and integrating research lines relating to data gathering, infrastructure, storage, 

distribution, security, and intelligence. This section provides the essential information for 

comprehending PdM and guides the findings of this investigation.[11]  

 

Industry 4.0 environments that collect data from various sensors offer new options for asset 

remaining life prediction systems. The idea that Predictive Maintenance (PdM) can produce 

scheduling actions based on equipment performance or circumstances over time becomes 

interesting and fundamental for the industry's future. A sufficient quantity of data from all aspects 

of the manufacturing process is one of the primary needs for efficient PdM achievement [40]. 

Consequently, it can reduce maintenance costs and downtime and boost productivity and quality. 

 

2.1.1 PdM Workflow 

Phase 1. What are the project needs? 

Learning about the project's commercial aspects, challenges, and limitations is the first 

order of business. This phase requires in-depth familiarity with the project's critical systems, 

equipment, and functions. To implement this concept, one must specify the quantities to be 
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monitored, choose the appropriate sensors, and maybe set them up. During this stage, it is also 

essential to identify the many failure modes that could occur. 

 

Phase 2. Acquisition, Preprocessing, and Processing of Data 

Sensors built into the apparatus can record and upload information to a server. In this step, 

it is crucial to determine which data will be scrutinized, evaluate the quality of that data, and assign 

meaning to it. Data cleaning and management encompasses a wide range of tasks, including but 

not limited to selecting and merging related datasets; deleting or imputing missing values; 

managing erroneous data by deleting it; looking for and handling outliers; using engineering 

software to construct new data and obtain new interpretation from existing data; formatting the 

unstructured data into the structured data; removing unnecessary rows or columns; and many 

others. Preparing the data to be analyzed is the most time-consuming part of a project, typically 

accounting for 70-90% of the entire endeavor.[10][12] 

 

Phase 3. Creation of a Data Model 

The data analysis process revolves around the data model. The model takes as input the 

results of the data preparation phase before it and produces the expected result. In this step, the 

business will decide on the algorithm based on whether they are trying to solve a classification, 

regression, or clustering problem. A model results from trying out different approaches and then 

fine-tuning their parameters. 

 

Phase 4. Model Assessment and Implementation: 
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4.1—Assessment: The model's correctness (how well it functions and accurately represents 

the data) and applicability are the first to evaluate. (Original question needs to be answered). 

Similarly, we must ensure that the developed model is unbiased and can be applied to various 

contexts. 

4.2—Implementing the model: This is the last step in gathering information for use in 

predictive maintenance. Each stage of the life cycle is discussed in detail below. All hard work 

will be for naught if even a single step is incomplete or sloppy. For instance, a representative model 

cannot be built if the knowledge is lost owing to insufficient data gathering. The accuracy and 

reliability of the model rely on clean data. The model will not deliver perfect outcomes in practice 

unless thoroughly tested. Each process step, from initial project understanding to final model 

deployment, calls for dedicated focus, time, and energy. 

 

Phase 5. Solution Selection.  

The process is used to help operators choose the best solution to a problem. Making 

decisions that benefit short- and long-term goals after careful consideration is much easier when 

following a step-by-step plan. 

5.1—Identifying the output: Identifying the issue is essential to selecting the best action. 

Generating several possible intervention scenarios in this stage, each with estimated repair time 

and cost, is important. 

5.2—Act: After a list of possible outcomes has been compiled, choosing one or combining 

them is vital to find the optimal combination of time and money savings. After verifying the 

availability of workers and replacement parts, the number of scheduled repair days is set. 
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5.3—Active monitoring: Given the cyclical nature of the predictive maintenance life cycle, 

this step is critical for gaining insights to fine-tune future interventions and evaluate the efficacy 

of those already implemented. [12] 

 

 

Figure 2.1 Predictive Maintenance Workflow 

 

Certain technologies are required to complete these 5 phases of a PdM model (shown in 

Figure #2.1) to conform with them. These technologies may be engaged in one or all steps of the 

PdM workflow; therefore, the combinations, collaboration, and correct application will result in a 

reliable prediction of any problem a business may face. The Internet of Things (IoT), big data, 

analytics, cloud computing, and digitization play a significant role in developing or implementing 

a PdM model. If adequately implemented, combining these technologies can eliminate or reduce 

the amount of corrective and preventive maintenance produced by the global industry. 

 

2.2 PdM Technologies 

2.2.1 Internet of Things 

The Internet of Things (IoT) and the Internet of Services are two concepts that are 

becoming increasingly prevalent in the manufacturing sector because of the fourth industrial 
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revolution. [2]. The Internet of Things (IoT) is the term used to refer to the process of integrating 

computing and sensors into an online environment through a wireless connection.  

 

The Internet of Things (IoT), creating a global information network comprised of many 

interconnected "Things," is a crucial enabling technology for intelligent manufacturing. Materials, 

sensors, actuators, controllers, robots, human operators, machines, equipment, products, and 

material handling equipment are only some of the "Things" that might be considered 

"manufactured" in this context [10]. The internet-based IoT architecture provides a once-in-a-

generation opportunity to digitally integrate the entire industrial sector by connecting its "Things," 

services, and applications.  

 

Large-scale IoT sensing produces and manifests large amounts of data, which can be kept 

locally or in data repositories dispersed across the cloud. To obtain the full benefits from big data 

in smart manufacturing, new approaches for managing large-scale Internet of Things (IoT) data, 

analyzing information, and controlling industrial processes are required [10]. For instance, the 

Internet of Things may use a large number of sensors to carry out ongoing monitoring of the state 

of a machine and then upload the resulting data to the cloud. The data obtained by the Internet of 

Things include sensor signals and measurements gathered from the equipment and online data 

collected through active monitoring of machines.  

 

While working at the MIT Auto-ID Center, Kevin Ashton created the term "Internet of Things" 

in 1999[39]. IoT refers to the expansion of physical objects that are networked together. The 

Internet, in this context, is the worldwide system of interconnected computer networks that allow 
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"Things" to be linked together and managed from afar using the TCP/IP protocol. Ethernet, Wi-

Fi, Bluetooth, ZigBee, Radio Frequency Identification (RFID), and barcodes (Table #2.1) are all 

examples of low-level wired and wireless technologies that could enable high-level 

communication based on the TCP/IP suite [10]. Physical or digital items with their identities and 

the ability to perceive their surroundings, collect data on those surroundings, and communicate 

that data with similar objects are collectively called "things."  

 

Table 2.1 IoT data link protocols and their characteristics [10] 

Protocol Standard Frequency Range Data Rates Applications 

Bluetooth Bluetooth 4.2 2.4 GHz 50-150 m 1 Mbps 

In-vehicle network 

wear-able sensing 

smart home. 

ZigBee IEE802.15.4 2. G GHz 10-100 m 250 kbps 
Smart-home remote-

control healthcare 

Z-Wave 

Wi-Fi 

ZAD12837 

IEEE 802.11 

900 MHz 

2.4 GHz 

5GHz 

30m 

50m 

9.6/40/100 kbps 

150 ~ 600 Mbps 

Smart home 

healthcare laptops, 

mobile, tablets, and 

digital TVs 

NFC 
ISO/IEC 

18000-3 
13.56 MHz 10cm 100 ~ 420 kbps 

Smartphones, 

contactless payment 

Sigfox Sigfox 900 MHz 

30-50km 

(Rural) 

3-10 km 

(Urban) 

10 ~ 100 kbps 

Smart city, industrial 

and environmental 

applications 

Neul Neul 900 MHz 10 km 10 ~ 100 kbps 
Smart city, industrial 
and environmental 

applications 

Cellular 

GSM/GPRS/ED

GE (2G), 

UMTS/HSPA 

(3G), LTE (4G) 

900 MHz 

1800 MHz 

1900 MHz 

2100 MHz 

35 km 

(GSM) 

200 km 

(HSPA) 

35-170 kbps (GPRS) 

120-384 kbps (EDGE) 

384 kbps – 2Mbps 

(UMTS) 

600 kbps - 10 Mbps 

(HSPA) 

3-10 Mbps (LTE) 

Cellular networks, 

mobile phones, and 

long-distance 

applications. 
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Bluetooth, Zigbee, Z-wave, Wi-Fi, and Near Field Communication are all examples of 

protocols used in short-range and local-area wireless networks [10]. Typically, they send 

information over distances between 10 centimeters and 100 meters. Bluetooth is widely used for 

in-car networking and wearable sensor uses. Since Bluetooth uses little power, ZigBee has become 

the de facto standard for WSN protocols. Due to its low data rate and low energy consumption, Z-

wave is well-suited for domestic and medical IoT use. Unlike Near Field Communication (NFC), 

typically used in contactless payment via smartphones, Wi-Fi is a wireless computer network 

protocol used mainly in broad ways such as laptops and mobile laptops. 

 

In terms of the industry, the main objective of IoT is to establish a connection between any 

asset companies may have and the network, which transforms this data into a digital space where 

it can be stored, shared, or displayed. This technology converts things (assets) into smart by making 

them able to be monitored from any place once connected to a specific network. This action 

eliminates the need to be physically on-site if data from the asset is needed or if asset monitoring 

needs to be done to avoid failures, downtime, or any other aspect that depends on the industry's 

needs. 

 

2.2.2 Cloud Computing 

Cloud computing is defined as the capability of storing data in a provider of internet server 

space, with the data being easily retrieved via remote access. While the devices do not need to be 
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physically close to each other to communicate information and coordinate their actions, this feature 

makes it easier to integrate multiple devices. 

 

Cloud deployment describes how a Cloud is configured to deliver a specific service. These 

deployment strategies will differ based on how a Cloud provides services to its users. 

Consequently, their deployment methods are user-specific. Three cloud deployment methods exist 

Public, Private, and Hybrid. Below are briefly discussed each type of these methods.  

 

Public Cloud is the most common approach to deploying the Cloud, in which providers 

dynamically allocate resources to their users and charge them on a per-use basis for their 

utilization, which is called utility computing. It is a viable option for small businesses due to its 

low upfront cost, scalability, and flexibility, all of which are paid for on a pay-as-you-go basis. 

Then, Private Cloud involves allocating an entire data center to a single company. The fact that 

only one company controls these Clouds makes them safer.  Consequently, Hybrid Cloud takes 

the best features of both the Public and Private Cloud approaches. For instance, in a Hybrid Cloud 

deployment, services with lower security requirements may be hosted on Public Clouds, while 

those with higher standards could be hosted on Private Clouds.[15] 

 

Cloud computing services can be broken down into three broad groups: software as a 

service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). In what follows, 

this section provides an overview of some of the most popular Cloud Services on the market today. 

Figure #2.2 describes some of the most common services used for each cloud service. 

• Infrastructure-as-a-Service (IaaS): This pay-as-you-go service offers storage and virtual servers. 

IaaS provides faster service by using cutting-edge computer infrastructure technology. IaaS lets 
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companies quickly develop new software or environments without purchasing or configuring them. 

Resource virtualization and usage-based charging make IaaS appropriate for all sorts of companies. 

• Platform-as-a-Service (PaaS): PaaS may offer application design, development, testing, 

deployment, hosting, and application services like team collaboration, web service integration and 

marshaling, database integration, security, scalability, storage, persistence, state management, 

application versioning, application instrumentation, and developer community facilitation. [15] 

• Software-as-a-Service (SaaS): Some apps are hosted remotely. Internet access is not required, but 

data storage and communication capabilities are. Users can access the provider's application via 

thin client interfaces. Cloud companies provide software as a service. 

 

 

Figure 2.2 Examples of services for each type of cloud computing [15] 

The Internet of Things and cloud computing make it possible to connect disparate pieces 

of hardware, resulting in the storage of massive amounts of data under the umbrella term "Big 

Data." 
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2.2.3 Big Data 

Big data refers to large volumes of data that are too extensive, quick, and complex to be 

processed using standard methods [13]. Consequently, accessing and storing massive data for 

analytics has been difficult for data professionals. Moreover, big data includes numerous 

unstructured, semi-structured, and structured data types. However, specialists utilize it due to the 

complexity of sifting unstructured data. The storage size of extensive data varies from a few 

terabytes to several zettabytes.  

 

Big Data is defined by different variables such as velocity, volume, veracity, variety, value, 

variability, scalability, and relational, as shown in Table#2.2. 

Table 2.2 Big Data Variables [13] 

Variable Definition 

Velocity The rate at which data is generated in real-time situations. 

Volume Amount of data to handle, manage, and store. 

Veracity Capacity to confirm data accuracy with an accurate value. 

Variety 

• Structured data – Databases (Spreadsheet) 

• Unstructured data – Audio, Video, Images. 

• Semi-structured data -Email, Webpages 

Value Proportional to the time required for data refinement processing. 

Variability 

Raw data must be assimilated and merged into parts, and unstructured data can be 

eventually converted into structured data. 

Scalability Capacity to store massive amounts of data. 

Relational Data must be examined based on the elements of correlations that link them. 
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The following conclusions may be drawn from the above: First and foremost, data is a vital 

asset enabling intelligent production. The second strategic relevance of big data is not to control 

large amounts of data but to obtain value with unique meaning through specialized processing. 

The value of convergent data is significantly greater than that of a single data type.[14] 

 

2.2.4 Analytics 

Analytics is a discipline or approach that involves observing and analyzing complicated 

phenomena to extract anything useful. When this technique is used for data, helpful information 

and knowledge are removed. IoT's extensive data analysis can identify trends, hidden links, 

unexpected patterns, and new information.[16]  

• Descriptive Analytics: This method evaluates data to answer the queries, "What occurred? What 

is going on?" The data is manually assessed and classified using standard business intelligence 

(BI).  

• Diagnostic Analytics: This procedure analyzes the root source of the problem. This technique 

facilitates responding to the inquiry, "Why did something occur?" It is categorized using data 

mining, drill down, discovery, and correlations.  

• Discovery in Analytics: It is visualizing or using guided complex analytics to find outliers and 

patterns. Data discovery relies on brain pattern detection and visualization.  

• Predictive Analytics: Predictive analytics aims to develop patterns from existing data to predict 

future conclusions and trends. Predictive analytics forecasts "what is likely to occur in the future." 

It combines previous data and knowledge to anticipate future outcomes and provides the methods 

to evaluate the accuracy and dependability of these forecasts.  

• Prescriptive Analytics: This statistical method uses mathematical model computations to provide 

recommendations and draw findings. It answers, "What should I do about what has happened or 



 

  19 

is likely to happen?" Prescriptive analytics determines the best action based on timely data 

analysis and uncertainty. [16] 

 

Using big data in conjunction with analytics can facilitate the self-organization of production 

lines and enhance the decision-making processes in every facet of an industrial enterprise.  

 

2.2.5 Digitization 

Digitization is the process of transferring analog information to digital or any information 

(picture, speech, text, sound) into a digital format, such as scanning paper into bytes or uploading 

an audio recording [13][17]. Often, it also encompasses the transition from manual to digital 

processes, such as replacing paper forms with online ones that are instantaneously uploaded to a 

database. The much-discussed and elusive "paperless workplace" represents the peak of 

digitization.  

 

One of the many benefits of digitization is the ability to streamline processes and reduce 

human error. Envision a scenario where the doctor enters pharmacy orders into the electronic 

medical record. This information could then be forwarded to the pharmacist for preparation, the 

orderly transport to the floor, and the nurse for administration [17]. Alternatively, the factory 

manager can record the inventory of individual parts directly into a database, alerting purchasing 

of impending shortages and possibly leading to the creation of a purchase order. Additionally, it 

can make possible the collection of hitherto impracticable data, such as real-time performance data 

from sensor-equipped machinery.  

Digitization converts analog formats humans can read to digital formats machines can only 

read, as depicted in Figure #2.3. With the assistance of information technology, it is becoming 
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increasingly easier to keep up with the ever-increasing volume of information created in various 

formats and disseminated through multiple channels. Digitization enhances the availability of 

information resources. Digital projects enable users to do quick and exhaustive collection searches 

from any location. The digitizing process renders the invisible visible. Multiple users can access 

the same document concurrently without interference. It also eliminates the inconvenience of 

distance, as users are no longer required to travel to venues containing hard copies of materials. 

[13][17] 

 

 

Figure 2.3 Digitization Concept [13] 

Figure #2.4 shows the integration of IoT, digitization, cloud computing, big data, and 

analytics technologies. Nowadays, various technologies must work together and interact with one 

another. Since the introduction of Industry 4.0 and SM, these technologies have evolved, with 

more industries deciding to implement the concepts daily, resulting in many success stories that 

summarize better products, increased earnings, and better control of their assets. Creating a PdM 

model in which these concepts are thoroughly adapted to the PdM workflow described in the 

following section is one of the primary aims of integrating these technologies. 
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Figure 2.4 Integration of Smart Manufacturing & Industry 4.0 technologies. [18] 

 

2.3 PdM Models 

2.3.1 Condition-based Maintenance (CBM) 

Managers use the philosophy of condition-based maintenance (CBM) to decide when and 

how to repair or replace machinery. Data collection, processing, and maintenance decision-making 

are the three essential components. It is a tool that monitors a system's health and recommends 

fixes based on the data it collects. [12] 

 

CMB can be presented in 7 different modules and are represented as follows: data 

acquisition, data processing, status detection, diagnostic, prognostic, decision-making, and 

presentation. In Module 1, sensors convert the analog sensor or transducer readings into digital 

form for use by the CBM system. For the second module, the signal processing module receives 

the fixed signals and data from the sensor module or other signal processing modules. The sensor 
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input is digitally filtered, frequency spectra are generated, and simulated sensor signals are 

produced as output from the signal processing module, among other CBM features. A sentient 

artificial intelligence (AI) could operate the signal processing module. 

 

In the next module, the sensor module, signal processing module, and additional status 

monitors all provide information into the status monitor. Its primary function is to check actual 

results against predictions. In addition, the status monitor should be able to sound alarms based on 

user-specified thresholds. When a fault develops quickly, this feature can be invaluable. After this 

module, from various status monitors or other health assessment modules, this module gets data. 

The health assessment section's primary goal is to determine if the state of the monitored item has 

worsened. The health assessment module can suggest diagnostic records and potential failures. 

Patterns in past health, operations, and load/maintenance data provide the basis for diagnosis. 

 

In the fifth module, the predictive component can integrate information from the uppermost 

layers. The prognosis module's primary goal is to predict an asset's health in the future by analyzing 

expected usage patterns. Future health status or remaining useful life should be displayed on the 

module. Module 6 passes the information collected by the prognosis and health assessment 

modules to the decision support module for processing. One of its primary functions is to suggest 

potential courses of action and solutions. The measures taken may involve maintenance but may 
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also include continuing to operate the asset as necessary to finish the current task without an 

incident. 

 

Finally, the last module involves implementing decisions on assets while continuously 

monitoring them. This may involve updating the models, changing the sensors, or refining the 

maintenance actions. Information from the diagnostic, prognostic, and decision-making tools and 

status-monitor-generated warnings are the most crucial components to convey. Getting a tighter 

hold at deeper layers is possible. It would be possible to incorporate the presentation module into 

a standard machine interface or Human-machine interface to visualize the asse data better. [12][40]  

 

Table 2.3 Condition-based Monitoring Methodology [12][40] 

 



 

  24 

2.3.2 Prognostics and Health Management (PMH) 

Prognostics is a form of predictive diagnostics that assesses a system's deteriorating health 

and accurately explains when a failure is likely to occur. The objective of prognostics is to detect 

deterioration and generate prediction information, such as estimates of a system's state of health 

(SoH) and remaining usable life (RUL).[5]  

 

Acquiring data is the first and most crucial stage of PHM, and it entails gathering and 

storing information about the physical component or system under study for later diagnosis and 

prognosis. The data collected may consist of sensory information or information about events 

(ED). Events (such as failure, breakdown, and installation) involving the physical component are 

recorded in the ED, along with the maintenance actions (such as oil changes or repairs) performed. 

Sensory data (condition monitoring data) includes readings from devices attached to the asset. 

Sensory data can be collected for noise, vibration, heat, cold, electricity, temperature, and other 

parameters. Where ED encompasses activities carried out on a component or system by a 

maintenance technician, including but not limited to corrective maintenance, asset repairs, 

installation, breakdown, cleaning, and oiling. [19][20]  

 

Following the data acquisition, the next phase is called data preprocessing, which consists 

of cleaning and analyzing the data. Removing mistakes and other noise sources from raw data 

improves the chances of working with reliable information in analyses. The second phase of data 

preprocessing is analysis, which entails the procedures of feature extraction, feature evaluation, 

and selection. A feature extraction method should cleanse sensory time series to draw out only the 

genuinely relevant features to monitor the system's health. The failure evolution of the system 
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should be reflected in the extracted features. In the literature, the feature extraction methods are 

broken down into three distinct groups: those that use the time domain, those that use the frequency 

domain, and those that use both. Time-domain feature extraction methods (such as root-mean-

square and kurtosis analysis) are employed to glean insights into the overall qualities of data. 

 

Feature extraction methods, such as the Fourier transform and envelop analysis, can 

discover mistakes that could otherwise go unnoticed by time-domain methods because they 

reshape the information into the frequency domain. Fourier transforms, surround analysis, Hilbert-

Huang transform, Wigner-Ville distribution, and similar techniques are examples of time-

frequency domain-based methodologies [20]. The following steps after data extraction are 

evaluation and feature selection.  

 

The transformation of raw data into actionable knowledge is essential for decision-making. 

Data reduction, preprocessing, and cleansing are standard practices in research and modeling. Data 

processing (including resolving conflicting or redundant data) can be conducted during 

preparation, whereas data cleansing is accomplished when the format is finalized. In most 

circumstances, data reduction requires processing, including collecting features or cases to 

translate the data into meaningful and reduced forms. [19] 

 

After the preprocessing, processing, and cleaning of the data, detection modeling must 

account for the multiple causes that cause system components to age and lose their initial 

performance. "Health state detection" refers to finding anomalies or signs of impending failure in 
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CM data. In most cases, a problem can be detected by comparing the system's actual behavior in 

nominal conditions with predicted behavior.[20]  

 

One of the essential phases is diagnostic and prognostic, meaning that when something 

goes wrong, it is up to condition monitoring's fault diagnostics procedure to figure out what went 

wrong, which parts are at fault, and how badly those parts are failing. Both total machine failure 

and poor operation present opportunities for diagnostic testing. When identifying a deteriorated 

condition instead of a complete failure, the results of a diagnostic might be used in either reactive 

or preventative maintenance. 

 

Decision-making is the result of a procedure that leads to the selection of the most 

reasonable and appropriate course of maintenance action from a set of possibilities. Based on the 

diagnostics and prognostics findings, the maintenance team must evaluate the pros and cons of 

each step taken. The technician's ability to predict the outcomes of potential courses of action is 

crucial to making good choices. The results of decisions may have an operational or design focus. 

Optional operational activities may include fault tolerant control, hardware/software 

reconfigurations, and maintenance interventions (FTC). Changes in observability, redesign, and 

component location could be implemented due to the design process. [41] 
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Table 2.4 PHM Methodology 

 

 

2.3.3 Remaining Useful Life (RUL) 

The RUL of a component indicates how much longer it will continue to serve its intended 

purpose before breaking down. The RUL of an element is the time remaining until it is no longer 

functional.[21] Using any one of numerous prognostic prediction methodologies can calculate 

the RUL of subsystems or components. Methods and procedures describe these approaches.  

 

- Model-based: It may be used with methods from Statistics and Computational Intelligence (CI). 

These models can be used in maintenance decision-making based on configuration, usage, and 

run-to-failure data. Bearings and gear plates are two industrial components that have been the 

subject of analysis and documentation in the literature. Estimating RUL using a model-based 

approach is standard practice since it helps to influence maintenance decisions based on failure 

thresholds. The time-frequency features allow for more exact findings than time features; hence, a 
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fixed wavelet packet' decomposition technique or Hidden Markov Models (HMMs) is proposed to 

forecast RUL. [21]  

 

- Analytical-based: An analytical approach to RUL prediction exemplifies the physical failure 

method. The analytical-based model is about understanding the methodologies that contribute to 

the reliability estimates of the physics-based model due to Physics-of-Failure (PoF), the physical 

science of components, and developed experimental equations. According to the research of Coppe 

et al. [18], it is possible to forecast the RUL of an exhausted system by employing a straightforward 

crack growth model. Mathematical formulas estimate RUL for failure events, including cracks by 

fatigue, wear, and corrosion of components. Estimating damage in a specific failure mechanism 

using an analytical-based model calls for a synergy of experiment, observation, geometry, and 

condition monitoring data. [21]  

 

- Knowledge-based: This approach incorporates both CI and practical knowledge. The knowledge-

based approach is concerned with accumulating data from specialists and deducing meaning from 

a predetermined set of rules [21]. One way to think of it is as a service delivery performance system 

built on the foundation of service feedback for analysis. Estimates of reliability parameters are 

made utilizing knowledge of the asset and prior experience. 

 

- Hybrid: A hybrid model is a data-gathering strategy. The RUL estimation accuracy of the hybrid 

model is enhanced by its usage of many methods. The RUL estimations in a hybrid model use 

parametric and non-parametric data. It makes independent RUL forecasts and, using probability-
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theoretic techniques, makes it easier to fuse two or more RUL forecasts into a single RUL. [21] 

[43]  

Table 2.5 RUL Methodology 

 

As described previously, RUL methodology can be differentiated into four approaches, 

each employing distinct techniques. Based on the project's requirements, these techniques facilitate 

selecting the most suitable approach. Table#2.5 explains the data required and recommended 

practices for the physics of failure, statistics, computational intelligence, experience, and fusion 

techniques used as the primary input depending on the type of model selected when applying an 

RUL methodology.  

 

Even though various methodologies exist for deploying a PdM model, the most crucial 

factor is the project's requirements or the industry's primary objective for which PdM may be 

required. No matter which method is used or chosen, all of these methodologies lead to the same 
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result: prediction. The type of prediction will be specified alongside the primary objective of the 

undertaking. Before attempting to invest in a PdM project or selecting the best methodology for 

the industry, it is essential to understand the potential outcomes of deploying a PdM model. The 

benefits obtained from successfully deploying a PDM model and examples of PdM's success in 

various industries are presented in the following section. 

 

2.4 Benefits of PdM 

The practice of predictive maintenance takes advantage of the ability to deploy intelligent 

machines, which can alert maintenance teams before the machines break down. The benefits 

include a reduction in the amount of downtime experienced, an improvement in the effectiveness 

of the equipment, a decrease in the costs associated with maintenance, an increase in return on 

assets, risk mitigation, and, most crucially, profitable growth.[4]  

 

The goal of PdM is to schedule maintenance interventions and forecast when problems will 

occur precisely. This goal is accomplished by installing sensors in industrial machinery to monitor 

their operations and relay the data they collect (which is often presented as a time series). PdM 

strategies try to foresee certain rare events that signify failures by analyzing this type of data to 

create models. In other words, sensors keep track of the activities carried out by a machine or at 

least a portion of those activities. The readings from these sensors reveal the machine's typical 

behavior when doing specific tasks. Anomalies are recorded whenever this pattern is broken; they 

may indicate that the equipment is deteriorating and may soon collapse. Consequently, the 

detection of irregularities is a crucial stage in the process of successfully putting PdM systems into 

operation.[4][9]  
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PricewaterhouseCoopers (PwC) reports that PdM can extend the life of an aging asset by 

20%, reduce OPEX costs by 12%, increase uptime by 9%, and decrease hazards related to safety, 

health, environment, and quality by 14% [4]. Machines automatically generate log data about their 

regular (and abnormal) running. However, the business world has hesitated to adopt integrated 

data analytics methodologies to make sense of the enormous amounts of data collected. 

 

The potential benefits of using predictive maintenance algorithms for maintenance 

management have decreased significantly, according to an analysis of 1,500 plants. The survey 

results determined that 89% of the plants currently use one or more of the traditional predictive 

maintenance technologies as an active component of their maintenance management activities and 

that 14.1% planned to initiate a program within the following three years.[9]. Five years ago, only 

15% of assessed factories used this technology. This figure indicates that most plants have 

attempted to incorporate predictive maintenance into their maintenance management program due 

to its apparent value.  

 

According to Mobley's survey, there are derived benefits aimed to measure the benefits 

that predictive maintenance systems have produced. Almost 91% (90.9%) of participants reported 

measurable cost reductions due to their predictive maintenance programs [9]. Reduced 

maintenance expenses and downtime have, on average, recouped 113% of the total cost of these 

projects. Based on these facts, the average program will deliver a 13 percent net improvement. 

Compared to the average maintenance budget of survey respondents ($12,053,000), the annual 

savings average is almost $1.6 million. According to most of the literature, a successful predictive 
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maintenance program should yield a 10:1 to 12:1 return on investment. The plant should save 

between $10 and $12 for each dollar invested [9]. The poll results demonstrate conclusively that 

this event is not the case. According to the data, the average return on investment was only 1.13:1, 

marginally above breakeven. Few financial managers would allow predictive maintenance 

investments if this figure were accurate.  

 

The survey's results could only tell part of the story. Looking closely at the responses, it 

can be noticed that only 26.2% of people said their programs recovered the money they put into 

them, 13% said they needed clarification, and 50.8% said they did not. Based on these numbers, it 

is reasonable to doubt the usefulness of predictive technology; however, the remaining 10% should 

be analyzed first. These 26.2% projects were more profitable than the other programs since they 

recovered their costs and found ways to save money. About half of these establishments had a 

return on investment of 5:1, meaning their profits were equal to or greater than their total costs. 

[9] 

 

Although this return is far lower than the average recorded for successful predictive 

maintenance programs, it significantly impacts profitability. The numbers also reflect our 

assumption that only some plants employ predictive maintenance capabilities to their full potential. 

These technologies, when properly employed, can provide a return on investment substantially 

above 100:1, or $100 for every dollar invested. As often said, the technology is accessible but must 

be utilized effectively for optimal benefit. The poll results demonstrate that this issue is untrue for 

many businesses. [4][9] 
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2.4.1 Success Stories of PdM  

Implementing predictive maintenance solutions has significant benefits in the industry. 

Table#2.6 briefly describes some use cases from our projects.  

Table 2.6 Successful Case Studies using PdM [22][23][42][43] 

Business Approach Prediction Benefit 

Offshore Oil 

Drilling  

Real-time data of the oil 

temperature and revolutions per 

minute (RPM) of the drilling 

machine's gearbox 

Identify triggers for gearbox 

failure. 

Lowered maintenance expenses by 

38% and enhanced safety. 

Automotive 

Industry  

Real-time measurements of the dust 

level, humidity, and temperature of 

molding machines 

The rate of headlamp scrap will 

exceed the permitted threshold. 

A greater understanding of the 

problems’ causes and a 29% 

improvement in scrap rate. 

Production of 

Domestic 

Appliances  

Real-time measurements of punch 

vibration, seaming vibration, and 

seaming pressure during drum 

rotation. 

Malfunctioning (resulting in scraps) 

or breakdown (resulting in 

downtime) of the dryer drum 

manufacturing process. 

33% reduction in faults and 27% 

decrease in maintenance expenditures. 

Aviation Industry  

Real-time data of temperature, 

humidity, gyroscope, and 

acceleration of an extensive 

transportation jig for wing 

coverings of a commercial airplane. 

The time-to-arrival at the repair 

provider and the quality of the jig. 

Maximized the utilization of 

maintenance resources and reduced 

repair time by up to 22%. 

Steel Industry 

Real-time measurements from the 

vibration (acceleration and 

velocity), tachometer (RPM), and 

current (Amps) sensor 

Failure of the cold rolling 

machine’s rollers. 

Maximized the running equipment’s 

lifetime by up to 60% and reduced 

downtime. 

Tennessee Snack 

Food 

Manufacturer 

 

Infrared is used on electrical 

equipment, some rotating 

equipment, and heat exchangers. 

Quarterly IR analysis is performed 

in-house on all motor control center 

rooms and electrical panels. 

Increased acid levels were detected 

in soil samples from a baked 

extruder gearbox, indicating oil 

degradation, which prevented a 

shutdown of Cheetos Puffs 

production. 

Year-to-date equipment downtime is 

0.75%, and unplanned downtime is 

2.88% at PepsiCo’s Fayetteville, 

TN, Frito-Lay plant. 

 

Louisiana 

Alumina Refinery 

 

Noranda Alumina tracks all motors 

and gearboxes at 1,500 rpm, higher 

with vibration readings, and most 

below 1,500 with ultrasound. 

Put in the right amount of grease, 

know it was greased, and prove it 

with data on the date, time, and 

quantity. 

60% decline in bearing changes in the 

second year, saving approximately 

$900,000 in bearing purchases and 

avoiding costly downtime. 

 

Singapore Rail 

Operator 

 

PDSS developed a data repository 

and analytics engine to consolidate 

and analyze all data for 

maintenance. 

SMRT Trains implemented a 

Predictive Decision Support 

System (PDSS) based on 

AssetWise Linear Analytics 

from Bentley Systems. 

Hundreds of manual planning hours 

have been eliminated, and about 20 

maintenance train deployments per 

year are avoided. 
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2.5 Challenges & Limitations 

Companies with a manufacturing focus are adopting the practices of Industry 4.0, which 

involve using the Internet of Things and the concept of Big Data. Implementing this method with 

their large amounts of data from production processes allows manufacturers to perform predictive 

maintenance and failure prediction. These fundamental classes provide a foundation for 

identifying the core application domains of knowledge discovery in manufacturing. In practice, 

however, there is considerable overlap between the methods employed in these core domains of 

knowledge-finding success application. [5]  

According to Emerson, only about 20% of their predictive maintenance projects are 

successful [4]. Based on the recommendations in articles, papers, blogs, and other documents, the 

most common challenges and limitations are listed when implementing predictive maintenance 

projects. Some challenges include financial, data, maintenance, or industry limits.  

 

2.5.1 Financial and Organizational Limits  

Any new investment a for-profit company makes will be assessed against the costs they 

expect to incur. There are costs associated with implementing predictive maintenance strategies, 

such as sensor installation, data retrieval, model development and upkeep, and actual repair tasks. 

The price of this technology may vary depending on several criteria, including the equipment's 

type and complexity, the cost of consulting, installation, and information extraction, and whether 

the requisite expertise is available in-house. One approach to tell if predictive maintenance is worth 

it is to calculate the expected return on investment (ROI). Predictive maintenance results, payback 

time, and indicated costs must all be factored into ROI projections. Predictive maintenance's 
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business case and practical implementation are both sensitive to the size and type of company that 

employs it [41][42]. 

 

2.5.2 Data Source & Quality  

Building a production process management model with access to relevant data is possible. 

Nevertheless, only some businesses can access all relevant information when implementing 

production process management. After using the facts, it is crucial to pinpoint the gaps and 

progress toward filling them. The quality of the currently available information may also need to 

catch up to expectations. Suppose only a subset of the data could be of better quality. In that case, 

it may be possible to improve the situation during data preparation if there are enough data points 

to achieve statistical significance and defect detection can effectively isolate machine-critical 

hotspots.  

 

Organizations using predictive maintenance approaches may encounter challenges if 

sufficient trust in the data is lacking, for example, if sensors, controllers, or other data sources 

provide erroneous or misleading readings. False alarms, incorrect estimations, and neglected 

maintenance are all possible outcomes of this problem. The fact that sensors often operate offline 

and do not offer online data is an additional challenge for sensor technology. In addition, sensors 

can be affected by things like noise, degradation of the instrument, malfunction, and outages. The 

data must be cleaned up before the predictive maintenance algorithm is applied so that it can make 

accurate predictions. [12][43] 
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Data collection and analysis at the field level of hierarchical control is difficult yet 

necessary for manufacturing. This data is the backbone for various control strategies, including 

decision support, failure analysis, and predictive maintenance. Data collected in the field is often 

aggregated as a decision-making tool. 

Data mining applications in the manufacturing sector can be categorized into five categories.  

•      Correlating output quality and system parameters, like the settings of a machine, to identify 

the elements contributing to a deterioration in product quality through quality analysis.  

•      The process of learning from the causes and consequences of production resource failures, 

such as malfunctioning machinery.  

•      Maintenance effectiveness can be increased, among other ways, by careful analysis so that 

production assets are more readily available.  

•      Analysis of production schedules and plans to boost planning quality to maximize the use of 

production resources to their fullest potential.[5] 

 

2.5.3 Maintenance Limits  

Predicting how long a component will last allows for more accurate maintenance 

scheduling, but human interaction and a lack of self-maintenance still present challenges. Human 

operators are now required to monitor and maintain many machine components, making the level 

of human management and maintenance abilities crucial—industrial machinery functions by 

reflexively carrying out commands without questioning their design. Human job planning, on the 

other hand, relies on data and experience that a machine could also be able to access. The system's 

health, asset throughput, or product quality can benefit from the independent recommendation or 

execution of actions by an intelligent component. Other advances toward asset autonomy include 

asset awareness and autonomous maintenance. With the information currently obtained and stored 
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in a predictive maintenance system, the assets can independently assess their current state, identify 

critical situations, and define maintenance actions. All the data needed to make predictive 

maintenance decisions and the degradation and prediction model would be scattered and available 

at the component level instead of a centralized system operating one or more assets. This method 

will allow the machines to organize routine upkeep tasks. Nevertheless, industrial machines still 

need to have this level of intelligence and upkeep. [12] 

 

2.5.4 Deployment of Industrial Predictive Maintenance Models  

After creating intelligent failure prediction models, integration, monitoring, and periodic 

update are three common challenges. Since the IT department is usually unrelated to the 

researchers and developers who produced the predictive maintenance models, model integration 

in the industry is challenging. The time and effort required to construct an appropriate IT 

infrastructure for data pipeline maintenance should be considered during the planning stages of a 

project. Updating the model is a part of the monitoring process. A feedback loop is added to the 

model to use new data as training inputs. The reliability of the predictions suffers because of the 

constant re-training of the models used to make them. Neither the integrity nor the relevance of 

the data is checked throughout the manufacturing process, allowing for the inclusion of outliers 

that affect future forecasts. It is crucial to maintain up-to-date models in machine learning to 

prevent the problem of conceptual drift. To update the prediction models, the company must 

change the code, the model, and the data all at once. This round of bettering predictive maintenance 

models is much more involved than routine changes to company software. [12][42] 
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2.6 “PAInOuTT” Model Methodology  

 
After analyzing the three most prevalent methodologies for deploying the PdM model, a 

model proposal combining these three approaches was developed. This "PAInOuTT" model 

establishes the phases to follow and their actions, the expected inputs/outputs for each stage, the 

most common instruments used during each step, and the required team for each project phase.  

 

This methodology guides initiating a PdM project and adheres to the stages recommended 

by various methods, including CbM, PHM, and RUL. The "PAInOuTT" model aims to 

comprehend the fundamental knowledge required for a PdM project by combining the steps, tools, 

and approaches. Even though not all PdM projects have identical objectives, they all aim to reduce 

unscheduled machine outages and save money on corrective and preventative asset maintenance 

[42][43].  

 

Figure #2.5 depicts the "PAInOuTT" (Phases, Actions, Inputs, Outputs, Tools, and Teams) 

application flow diagram, which follows the steps/phases with the decisions required to proceed 

to the following process. The model is represented by eight distinct steps: asset selection, data 

collection, data preprocessing, data processing, diagnostic, PdM plan, act, and continuous 

improvement. In each of these eight stages, multiple actions and inputs are required to complete 

the specific activities. Following these steps with the suggested inputs will result in the expected 

outcomes for each phase, allowing users to continue deploying this methodology.  Appendix A-1 

contains the specifics and explanations of all the actions, inputs, outputs, tools, and teams utilized 

in each phase of this model.  
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To validate this proposed application flow model, it was incorporated into the solution 

framework presented in Chapter 3, in which a small local business decided to embark on its PdM 

technology voyage. The solution architecture adheres to the first four phases of the "PAInOuTT" 

model, which include asset selection, data acquisition, and data preprocessing/processing. 
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Figure 2.5 Proposed "PAInOuTT” Application Flow Diagram 
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Chapter 3 : Solution Framework Development 

3.1 Problem Definition 

Protect Extruder-Corrugator production and equipment from excessive temperatures using 

a temperature sensor module to collect and monitor actual temperature data to feed a database for 

potential predictive maintenance analysis. 

 

Over the past few years, the company's maintenance crew has struggled to determine how 

to monitor machinery to prevent equipment from overheating. The maintenance staff addresses 

this issue by dispatching an individual to measure each machine's temperature with a temperature 

gun. This action is done to prevent the machine from overheating and burning out. In addition, 

excessive temperatures may damage or degrade the machine faster, necessitating predictive 

maintenance to avoid downtime and costly repairs. 

 

The recommended answer is to digitize its machinery by putting temperature sensors at 

vital spots where high temperatures are more likely to occur or where temperature variations pose 

a more significant threat. By placing the sensors, they will be operational 24 hours a day, seven 

days a week, and they will send a report with all the temperatures at the specified period so that 

the company can monitor them. Secondly, the obtained data will be used to create and feed a 

database for the Extruder-Corrugator machine for potential predictive analysis. In addition, these 

sensors will be equipped with a red-light alert that will activate whenever any of the sensors 

reaches the maximum temperature allowed (approximately 90 degrees Fahrenheit), allowing a 

technician to identify and address the problem quickly. The temperature sensor module will also 

be connected wirelessly to the computer, monitoring and generating the data collection report. 
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This proposed solution consists of two phases:  

Phase 1: Sensor Digitization of the Extruder Corrugator Machine, which includes the installation 

of temperature sensors in essential places and the development of a temperature sensor module. 

Secondly, Wireless Connectivity between the extruder-corrugator machine and the coordinator 

PC/computer must display real-time data for monitoring and generating anomalies reports and a 

dense database. 

Phase 2: Focused on the Data processing of the data captured to obtain a diagnostic along with a 

PdM plan for the selected equipment. Finally, deploying the PdM model and continuously 

monitoring the equipment to improve accuracy will conclude the application case. Figure #3.1 

illustrates the schematic of the proposed solution following the “PAInOuTT” methodology. 

 

 

Figure 3.1 Proposed PdM Model for this Application 
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3.1.1 Equipment Specification 

Areas to be monitored:  

Area 1 - Extruder Motor, Area 2 - Barrel Throat, Area 3 – Cooling Unit for Electrical Cabinet  

And Area 4 – Gear Box. The machine representation along all four areas is represented in Figure 

#3.2 

 

Figure 3.2 Extruder-Corrugator’s Critical Areas. 

 

3.2 Methodology & Equipment 

3.2.1 Temperature Sensor 

In this application case, it is crucial to understand that the machine used in this project 

needs to be more intelligent. In this context, the extruder-corrugator machine does not count with 

preinstalled sensors or any technology that enables machine monitoring. That is why part 1 was 

focused on making this machine a smart one by applying one of the concepts previously discussed 

in section #. Sensor digitization means obtaining desired data from a physical object and 

converting it into digital data. In this case, the purpose is to measure temperature using sensors 



 

  44 

and transfer these data into a digital platform. To do this, first, it is essential to define what types 

of temperature sensors are available in the market. After some research, it was found that the four 

most reliable and used temperature sensors such thermocouples, RTDs, thermistors, and local 

temperature ICs. 

 

Thermocouples: A thermocouple consists of two dissimilar metals joined at one end, 

producing a small unique voltage at a given temperature. This voltage is measured and interpreted 

by a thermocouple thermometer [24]. The Seebeck effect, which happens when there is a 

temperature difference between junctions of dissimilar metals, is used by thermocouples to 

measure temperature. The difference in temperature between the part that is heated and the cooled 

area generates a voltage difference between the two junctions. This voltage difference can be used 

to calculate the temperature. [25] 

  

There are numerous thermocouple types, each marked by a letter. The K type is the most 

employed. [25] Different types of thermocouples vary in material, accuracy, and temperature 

ranges, as shown in Table #3.1. 

 

Table 3.1 Thermocouple Types 

Type 

Temperature 

Range (Celsius) 

Sensitivity 

(Microvolts/Celsius) 

Conductor Alloys 

K -180 to +1300 41 

Chromel (90% Ni, 10% Cr) 

Alumel (95% Ni, 2% Mn, 2% Al, and 1% Si) 

J -180 to +800 55 

100%Fe 

Constantan (55% Cu, 45% Ni) 
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N -270 to +1300 39 

Nicrosil (84.1% Ni, 14.4% Cr, 1.4% Si,0.1% Mg) 

Nisil (95.6% Ni, 4.4% Si) 

R -50 to +1700 10 

87% Pt, 13% Rh 

100% Pt 

S -50 to +1750 10 

90% Pt, 10% Rh 

100% Pt 

B 0 to +1820 10 

70% Pt, 30% Rh 

94% Pt, 6% Rh 

T -250 to +400 43 

100% Cu 

Constantan 

E -40 to +900 68 

Chromel 

Constantan 

 

RTDs: Effectively, they are resistors with well-defined resistance versus temperature 

characteristics. Due to its chemical stability and very linear response to temperature fluctuations, 

platinum is the most popular and accurate wire material utilized in RTDs. Nickel, copper, and 

other metals may also produce RTDs. Platinum RTDs have a broad temperature range (up to 750°C 

or greater), superior accuracy and repeatability, and adequate linearity. Due to their accuracy, 

stability, and wide temperature range, RTDs are utilized in various precision applications, such as 

instruments and process control. [25] 

 

Thermistors: Thermistors, like RTDs, alter their resistance in reaction to variations in 

temperature. Unlike RTDs, which are often composed of pure metal, thermistors typically 

comprise a polymer or ceramic substance. Exceptions exist, but thermistors are often less 

expensive and less accurate than RTDs. As its name implies, the resistance of an NTC thermistor 
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lowers as the temperature rises. The typical thermistor temperature range is -90°C to +130°C, 

significantly lower than thermocouples and RTDs. [25] 

 

Local Temperature Sensor ICs: A local temperature sensor is a popular name for an integrated 

circuit that uses the physical properties of bipolar transistors to measure its die temperature. Some 

local temperature sensors have analog outputs (voltage or current), but others have an internal 

ADC and generate a digital output in one of several formats. I2 C, SMBus, 1-Wire®, and SPI are 

the most common output formats; however, PWM and other structures are also available. [25] 

 

After studying the many types of temperature sensors, a thermocouple was chosen to serve as 

the project's temperature sensor. A type K was selected since it is the most common, reliable, and 

inexpensively available in the market. The research was conducted to understand how it operates 

in practice and its numerous configurations. A thermocouple's merits are its temperature range, 

durability, quick response, and lack of self-healing. This application requires a quick response to 

prevent high temperatures in the machine's essential regions. The precision of thermocouples may 

be less precise. However, a 1- or 2-degree Celsius discrepancy will not be a problem because a 

conservative maximum temperature will be utilized before activating the alert.  

Below are the specifications of the implemented thermocouple: 

• Type: K  

• Measuring Range: 32~1112°F (0~600°C) 

• Probe Length: 6mmx20mm/0.23“x0.79“（D * L) 

• Internal Insulation: Fiberglass; External Shielding: Metal Shield. 

• Thread：1/4” 

• Best used with a thermocouple amplifier such as the MAX31855, AD8495 or MAX31856 
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Figure 3.3 Thermocouple Type K & Thermocouple Amplifier MAX31855. [26] 

 

3.2.2 Voltage Amplifier  

Considering this fact, it was necessary to utilize an amplifier to acquire the readings from the 

thermocouple. Because thermocouples are sensitive, an amplifier is required to achieve stability 

and obtain correct readings [26]. As a result of this, it was decided to add the thermocouple 

amplifier MAX31855 breakout board after research was performed. It is essential to mention that 

this amplifier only works with type K thermocouples. This amplifier contains the negative and 

positive connectors for the thermocouple, and there are six pins (as shown in figure #3.3) that 

consist in: 

• Vin – 3 to 5 V 

• 3Vo – Only 3.3 V 

• GND - Ground 

• DO (Data out) – Carries each bit of data. 

• CLK (Clock) - Indicates when to present another bit of data. 

• CS (Chip select) tells the chip when to read the thermocouple and output more data. 
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3.2.3 Microcontroller 

A microcontroller executes a user program stored in its program memory. This software 

receives data from external devices (inputs), manipulates the data, and then sends the data to 

external output devices. A microcontroller is a highly effective device that enables designers 

to develop complex I/O data processing algorithms. The most straightforward microcontroller 

architecture comprises a CPU, memory, and input/output. CPU and control unit make up the 

microprocessor (CU). [27] One of the most known microcontroller-based brands is Arduino. 

It is an open-source platform for electronic project construction. Arduino consists of a physical 

programmable circuit board (commonly called a microcontroller) and a piece of computer 

software, or IDE (Integrated Development Environment), used to create and upload computer 

code to the physical board. [28] 

At the beginning of this project, an Arduino microcontroller could work to build a 

temperature reader, and it is easy to work with too many open-source tools and components, 

such as the MAX31855 amplifier. Then, the intention was to adapt the thermocouple and its 

amplifier to a microcontroller, in this case, Arduino Mega, for the prototyping. After that, it 

was needed to adjust the alarm light, and the Arduino could not withstand the 24V required by 

any industrial LED light, so a Rugged Mega replaced the Arduino Mega. Rugged is more 

robust, resilient, and efficient for industrial purposes, as shown in Table #3.2. 
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Table 3.2 Arduino Mega vs. Rugged Mega [29][30] 

Features Arduino Mega 2560 Rugged Mega 

Microcontroller ATmega2560 ATmega2560 

USB Microcontroller ATmega16U2 FT231X 

Operating Voltage 5V 5V 

Input Voltage 7-12V 3.5V-30V 

Analog Input Pins 16 16 

Protected Digital I/O 0 22 

Protected Analog Input Pins 0 16 

Vin Reverse Voltage Protection None Protected up to 30V 

Vin Current Protection None 500mA resettable fuse 

Total Microcontroller Current Protection None Protection up to 150mA 

Operating Temperature N/A -10 to +85 C 

I/O Pin Current Protection None 30mA resettable fuse 

I/O Pin Voltage Protection None Withstands 24V 

 

3.2.4 Shield 24V 

Even though the Rugged Mega microcontroller can withstand 24V, it requires a shield to 

perform adequately (an illustrative image is shown in Figure #3.24). Adding the shield will 

establish a more secure connection between the microcontroller and the 24V from the LED alarm. 

As noted previously, the device will be directly linked to an external power supply to obtain the 

24V required to activate the alarm; hence, this shield will convert this 24V into 5V to accommodate 

the microcontroller's ability to handle the higher voltage. This shield is linked to the 

microcontroller by placing it atop the microprocessor and attaching its pins to the corresponding 
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connectors. In addition, the microcontroller and shield must be indirectly linked to the 24V power 

supply and ground using a breadboard. [31] 

       

Figure 3.4 24V Shield [31] & Relay Board [32] 

 

 

3.2.5 Relay Board 

           The relay board is another vital component of this temperature instrument, and it is 

represented in Figure#3.24 on the image on the right. It will be introduced to prevent any 

microcontroller malfunctions using the alarm light. Since the alarm will receive 24V and turn 

on/off as necessary, the relay will function as a switch for 24V. This relay board can provide power 

between 22VDC and 26VDC and resist input voltage between 3VDC and 26VDC. [32] One of the 

eight relay sockets is chosen to connect the relay board to the shield and microcontroller. Each 

relay socket has four connectors: CO (changeover), IN (input), NO (normally open), and NC 

(normally closed) (normally closed). This project utilizes solely CO and IN. IN is directly 

connected to the shield in P1, while CO is connected to the breadboard's 24V power supply. Lastly, 

the relay incorporates Ground and 24V to power the complete relay board. The 24V source is 

linked to the same breadboard as CO, and Ground is connected to the breadboard's general Ground. 
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3.2.6 LED Alarm Light 

Lastly, after incorporating all preceding components, the LED Light was immediately 

attached to the relay board. The LED's power is linked to CO at the relay socket, and the second 

cable is connected to NO. Since the alarm is attached to a typically open relay so it can function 

as a button; if the temperature reaches the limit, the circuit will close, and the Red LED light alert 

will illuminate. The selected LED Alarm light with two different colors is illustrated in Figure 

#3.5. 

• Power Voltage: 120VAC 

• Current Rating: Max 18 mA RMS 

• Color: Red & Green 

• LED Lifespan: 20,000-50,000 Hours Typical 

                                          

Figure 3.5 LED Alarm Light 2 Colors (Red/Green) [33] 
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3.2.7 Wireless Antenna 

A wireless link was necessary for accurate machine temperature data gathering as part of the 

project. This section examines many types of antennas, whereas the previous section (Internet of 

Things) examined various data link protocols. Among these protocols were Bluetooth, ZigBee, Z-

Wave, WiFi, and others; It was chosen to delve deeper into ZigBees, also known as XBees. ZigBee 

(XBees) is the current standard approach for WSN protocols compatible with microcontrollers and 

multi-hop mesh network topologies. Even though this project intends to design and evaluate on a 

single machine, the option can scale up to 32 machines. 

 

Digi's website states, "The world-renowned XBee module is part of a family of cellular 

modems and RF modules that provide ultimate flexibility for IoT application developers, with 

three programmable form factors and a range of popular wireless protocols. The XBee family also 

includes IoT gateways and management tools to connect, monitor and manage the XBee network". 

[34] 

 

Digi XBee offers different types of modules [34]: 

• 2.4 GHz – For low-power, point-to-point, and mesh networking applications. 

• Sub-1 GHz – For long rang applications up to 60+ miles line-of-sight range and up to 250 

kbps rate. 

• Cellular-For global cellular applications are enabling low-power wide area networking 

(LPWAN). 
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Considering these modules are meant for usage in a manufacturing organization, the range may 

be essential. As a result, it was decided to utilize Sub-1 GHz modules, for which Digi offers a 

choice of solutions. In these alternatives, they provide a Digimesh kit that encourages and offers a 

hands-on method for learning to use XBees for device connectivity and sensor networking. 

 

Digi XBee-PRO 900 HP Digimesh Kit: According to DIGI, this kit enables one to study and 

comprehend the basics of getting started with Digi XBee. One of the benefits of this XBee is the 

ability to allow embedded wireless connectivity with several modules at once (multi-hop mesh 

network topologies). As mentioned above, this project will be evaluated on a single machine. The 

manufacturing company possesses at least 30+ similar/equivalent machines. If the organization 

desires to monitor all machines, this can make a connection between all devices and transmit the 

data to a single receiver. 

Some of the technical specifications are listed below [34]: 

• Antenna Options: Wire, U. FL (Coaxial), and RPSMA (Reverse polarity) 

• RF Data Rate: 10Kbps or 200 Kbps 

• Indoor/Urban Range: 10Kbps up to 610 m, 200Kbps up to 305 m. 

• Outdoor: 10 Kbps up to 14 km, 200Kbps up to 6.5 km 
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Figure 3.6 XBee Antenna [34] 

XBee devices connect wirelessly by transmitting and receiving messages. The devices can only 

send wireless communications; they cannot manage incoming or outgoing data. Nonetheless, they 

can communicate with intelligent devices via the serial interface.   

 
 

 

Figure 3.7 XBee’s Working Principle [35] 

 

The system consists of two types of devices: Coordinator and End devices, as shown in 

Figure #3.7. The coordinator is the system's focal point. It transmits the sensor readings to the user. 

The collector's function is broken into two components: the Web server and the XBee Interface to 

the WSN. Conversely, the end device is equipped with one or more sensor inputs. The device 
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awaits the coordinator's data reading request (i.e., polling) before responding with the sensor's 

value. [36] The XBees offer two distinct modes of operation: application transparent and 

application programming interface. Below are the primary distinctions between these two modes. 

 

Application Transparent ("transparent mode" ): This mode is referred to as 

"transparent" since the radio transmits data precisely as it receives it. Xbee module wirelessly 

transmits all the serial data it receives to a remote location. When the other module gets the 

data, it is sent via the serial port in the exact format it received.   Application Programming 

Interface ("API mode" ): The operating mode of the Application Programming Interface (API) 

is an alternative to the transparent mode. In API mode, the exchange of information is 

determined by a protocol. Data is transmitted in packets (commonly called API frames). 

[35]                           

 

Due to the ease of operation, it was chosen to use the transparent mode for this project 

because XBee receives what it is sent in this mode. This model is compatible with any device 

with a serial interface, allowing it to function exceptionally well with the microcontroller 

utilized in the project's first phase. This mode works well when attempting to communicate 

between two XBee antennae.  

            

After selecting the proper data link protocol (ZigBee/XBee), the appropriate model for 

this project, and transparent mode as the operating mode, it was just needed to link XBee and 

the microcontroller.  The XBee has 20 pins, as shown in Figure #3.6; however, not all are 

necessary for this function. It was discovered through research that there is a module that 
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simplifies communication between the XBee and the microcontroller. It is known as XBee 

Explorer regulated and is described below. 

 

3.2.8 XBee Explorer Regulated 

Power, RSSI, and DIN/DOUT activity LEDs are just some of the basics the XBee Explorer 

Regulated takes care of with its use. Connect any XBee module to a 5V (down to 3.3V) system 

thanks to this adapter's ability to convert 5V serial signals to 3.3V. The board was made to be 

directly compatible with the Arduino family of boards to facilitate wireless boot loading and USB 

setup. [37] This part reduces the number of XBee's pins from 20 to 4. All left is Ground, 5V 

electricity, noise, and uncertainty. The component is illustrated in Figure #3.8 for better 

representation. 

 

Figure 3.8 XBee Explorer Regulated [37] 

 

An extra microcontroller is required to connect the antenna to add the XBee and Explorer 

antennas. Consequently, a second microcontroller is given, although an Arduino can be used in 

this section because it can manage the coding and power requirements of the XBee. For the 
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connectivity between the XBee and the Explorer to be regulated, it is sufficient to position the 

XBee's Pins over the Explorer's connectors. The Explorer's four pins are then directly linked to the 

microcontroller. Ground to ground, 5V power to the 5V connector on the Arduino, and the digital 

wires Din and Dout are connected to the Microcontroller's Rx (Pin 0) and Tx (Pin 1) pins. Din is 

assigned to Tx, while Dout is assigned to Rx. 

 

Figure 3.9 Component Schematic. 

 

With all the components connected (as illustrated in Figure #3.9), the data produced 

from the thermocouples will be stored in a spreadsheet in Excel using the Data Streamer add-

in. This recorded data will help better visualize the actual temperatures in the desired areas. 

The alarm light will turn on whenever any focused areas have reached the maximum 

temperature allowed. The electrical schematic can be found in Appendix B-1. 
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3.3 Software Specification  

3.3.1 Arduino IDE 1.8.16 

This open-source software is compatible with all Arduino boards, including the Rugged 

Mega. For the coding, Arduino Software was utilized. It is simple to write and upload code to a 

microcontroller. Components like the MAX31855 come with their library for coding, which must 

be included in the code. 

 

Modifications were made to the microcontroller's code to incorporate the XBees modules. 

Now, two microcontrollers are being utilized, one to implement the temperature sensors and the 

other to create the XBee receiver module. The second microcontroller will connect to the PC 

immediately, populating an Excel spreadsheet with the readings. The code used in this project can 

be found in Appendix C-1. 

 

3.3.2 XCTU Software 

Creating connectivity between both antennas involves a list of steps to realize. First, XCTU 

software must connect both devices to the PC using the USB cable and antennas. Then, the 

software looks for the antennas and finds them in the software. Each antenna has its own MAC 

Address that makes it unique. To work in the transparent mode, XCTU must connect them by 

introducing the Mac address into the destination address, as depicted in Figure #3.10. The end 

device will have the Mac address of the coordinator device and vice versa.[35] This XBee setup 

will connect both devices (transparent mode only).     
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Figure 3.10 XBee set-up using XCTU Software 

Using the XCTU program, a test was conducted to confirm the connection between both 

antennas. In the following graphic, the connection between the two antennas is depicted. Blue and 

red lettering is shown in the image on the left to distinguish between the receiver and transmitter. 

After checking the connectivity, it is time to ensure the microcontroller's programming is 

functional. Figure #3.11 shows the successful connection between the serial monitor from the 

microcontroller to send and receive data from the XBee. 

 

         

Figure 3.11 Successful Connection between XCTU and Serial Monitor 
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3.3.3 Data Streamer from Microsoft Excel 

Microsoft Excel was used to display the temperature readings and be able to save the report 

to create a Database with all the data produced by the thermocouples. Data Streamer provides 

students a straightforward method for transferring data from the actual world into Excel's robust 

digital canvas. Data Streamer helps students to comprehend data science and the Internet of Things 

using a sensor, a microcontroller, and Microsoft Excel (IoT).[38] In other words. Data Streamer is 

a two-way data transfer for Excel that streams live data from a microcontroller into Excel and 

sends data from Excel back to the microcontroller. Figure #3.12 shows how the data streamer 

displays data from four different outputs and a graph showing the temperature vs. time behavior. 

 

 

Figure 3.12 Data Streamer Dashboard. 
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Chapter 4 : Results 

4.1 Digitization of Equipment 

The initial prototype utilized the microcontroller, amplifier, and thermocouple. This was 

performed primarily to evaluate the thermocouple's coding and working principle for temperature 

accuracy. Both warm and cold water was used to examine the initial prototype. When compared 

to a thermocouple-equipped temperature gun, the obtained measurements were correct. With the 

initial prototype's success, it has chosen to go on to the next step, including all four thermocouples. 

 

Secondly, the four thermocouples are merged for the second iteration. The enclosure was 

added to join assembly components to complete the component assembly. The code was modified 

to collect data from four unique sensors. With all four sensors functioning correctly and generating 

accurate temperature readings, we moved on to the final prototype, which included the other 

components. 

 

              In addition, the Shield, relay board, and warning light were added to the device during 

this phase. An extra power supply of 24V was used to activate the warning light for testing 

purposes. The power source supplies the Shield, which is connected to the relay board. The relay 

board prevents the microcontroller from overheating by deploying a warning light that illuminates 

when required. Since 24V is necessary to power the alarm, the relay helps to protect it. The 

microcontroller's I/O voltage range is limited to 5 and 3.3 V, and the Shield makes 24 V compatible 

with the microcontroller. Figure #4.1 illustrates the final device operating with the alarm light and 

four sensors. 
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Figure 4.1 Temperature Sensor Module 

 

4.2 Asset Selection & Goal Definition 

 

Posterior to completing the device's assembly and testing it using the Data streamer in 

Excel, the temperature device was tested at the manufacturer. The device was immediately 

attached to the machine to receive the 24V required to power the LED light alert—all four 

temperature sensors successfully transmitted accurate data, which is then displayed on the 

computer as depicted in Figure #4.2. Data Streamer allowed users to begin recording data and 

determine how frequently to receive data to prevent the creation of a massive file. Since the 

temperature may not change every second, it was decided to monitor the unit every minute to 

detect any anomalies or changes in behavior during high-temperature months during the year. 
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Figure 4.2 Temperature Sensor Module Tested On-Site 

 

This module was subjected to the facility's final evaluation. The temperature module was 

mounted in the corrugator-extrusion machine, while the receiver was in the office adjacent to the 

computer. Approximately thirty to thirty-five meters separated the two antennas. All four sensors 

met the established temperature parameters at implementation, as indicated by the green light on 

the LED alert. In addition, thermocouples were insulated with a corrugated weave. This action is 

done because thermocouples are extremely sensitive, and their readings could be affected if they 

encounter one another or any other metal. The selected equipment for implementing the 

temperature monitoring system was machine labeled as #42, as shown in Figure #4.3. 
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Figure 4.3 Temperature Sensor Module Installed on Equipment #42 

 

4.3 Data Collection & Monitoring  

 
Data collection is crucial to a PdM model and occupies most of the project's time. For this 

purpose, a Data streamer was used to enable the user to create a dashboard with a more appealing 

appearance to understand the received data better along with the data collection. As depicted in 

Figure #4.4, symbols were incorporated to aid comprehension of the true significance of each data 

collection. A green checkmark will be displayed whenever the temperature is below 80 degrees 

Fahrenheit. When temperatures are between 80 and 90 degrees Fahrenheit, a yellow sign with an 

exclamation mark is displayed. This warning symbol indicates that the temperature is near the 

maximum permissible level. Finally, the red logo with a cross indicates that the maximum 

temperature has been reached and that action must be taken to prevent machine damage. 

Unfortunately, only data from March 27th until April 30th  has been collected until this point.  
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Figure 4.4 Behavior of the Temperature at the 4 Critical Areas. 

 

4.4 Data Preprocessing & Processing 

 

Following data collection, the data must be preprocessed with database creation. Figure 

#4.5 illustrates the temperature behavior at the extruder motor for the data collected. Data 

preprocessing enables the validation and cleansing of data so that only the essential data can be 

extracted. Also, Figure #4.5 is depicted several outliners that, if not cleansed, could affect the 

diagnostic and prediction of the failure by replicating or affecting the diagnostic. The additional 

tables for the other three areas measured can be found in Appendix D-1. 
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Figure 4.5 Raw Data vs. Cleaned Data at the Extruder Motor 

 

In addition to being validated and cleansed, data must be organized in a structured format. 

This data structure consists of columns and rows, allowing for better visualization and 

comprehension of the data. Essentially, forms such as CVS and Excel workbooks function as 

structured data due to their rows and columns organization. The use of structured data enables the 

user to look up data in an organized manner, as depicted in Figure #4.6. It provides a user-friendly 

visualization for identifying anomalies and changes in trends. 

 

 

Figure 4.6 Structured Data Collection
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With the continuous deployment of a specific PdM model for this equipment, it is necessary 

to continue data collection until patterns or trends can be identified. The necessity of unexpected 

failures, changes in behavior, or anomalies is essential to perform a diagnostic. Data Processing 

works as a data filtration where all clean data extracted from the actual condition of the machine, 

plus all other important data such as historical data, failure reports, and maintenance logbooks, are 

combined to facilitate the analysis and diagnosis of the equipment. Due to the time limitations of 

this project and the necessity of continuous monitoring to understand the behavior of the 

equipment for at least an entire year, the project is presented until this point. This allows the 

company to understand the behavior of their equipment; in the meantime, data is extracted from 

their maintenance reports with all the registered failures related to any of the four critical areas.  

 

This project intends to set up the bases for how small industries can start digging into PdM 

projects. Following the proposed methodology of the “PAInOuTT” application flow diagram, the 

first 4 phases of selecting the asset while digitalizing it, data collection, preprocessing, and 

processing are implemented before requiring expertise in data analytics/scientists to deal with the 

following phases of the project. Even before deploying a PdM solution, until this point, the 

industry had already started seeing benefits through the development of this project. The expected 

savings until this point are presented in the section below. 

 

4.5 Expected Outcome 

 

This initiative helped the manufacturing company achieve a 100 percent reduction in 

manual temperature monitoring for Extruder-Corrugator #42. By implementing this remote 

monitoring system, if the operator is no longer required for manual temperature surveillance of the 
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apparatus, their annual savings can increase to $35,000. The implementation of the remote 

monitoring system will cost approximately $1000. Replicating this model on each of the 42 

machines would cost $42,000 in addition to the anticipated errors and required monitoring system 

maintenance. This means that the operator's annual salary can readily cover the cost of 

implementing this system for long-term use. 

 

In addition, according to this company's maintenance team, when the extruder motor or 

driver malfunctions due to high temperatures, the repair costs increase to $5,000 if repaired but to 

$8,000 if replaced. According to their internal logbooks, one of every 42 machines malfunctions 

every three months, resulting in downtime, costly corrective maintenance, and revenue loss. Due 

to the inability to provide specific revenue losses during an outage, only corrective maintenance 

costs are accounted for in this analysis. If only four of the forty-two devices fail and can be 

repaired, their annual loss increases to $20,000 in this case. Adding a new component increases 

the price to $32,000. They indicated a cost of approximately $70,000 for corrective maintenance 

(only extruder failure) plus the need for a monitoring operator under ideal circumstances where no 

other machines fail. These unplanned failures cost a lot of money, so implementing the PdM model 

would benefit this company's situation. 
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Chapter 5 : Conclusion and Future Work 

According to numerous polls, businesses have tried implementing PdM projects since the 

turn of the millennium, but only around 20% are effective [4]. Ineffective PdM projects could go 

from the misconception of the PdM definition up to wide-ranging challenges or limitations that 

cause businesses to be unable to implement PdM projects successfully. Following an application 

case study in which the "PAInOuTT" model was implemented, this paper aims to show the main 

steps to avoid failure when deploying a PdM model. A PdM failure may have been avoided with 

better planning and execution.  

 

The purpose of the "PAInOuTT" is to operate as a generic approach that may be tailored to 

meet the unique requirements of the industrial sector. By detailing the steps to take, the 

inputs/outputs needed at each stage, and the recommended tools and teams that should be involved, 

this guide makes it easier to launch a PdM project. This application flow solution was then used 

to analyze a manufacturing facility's assets. Validating that the equipment has been digitized is a 

crucial step in PdM. Since this model relies on information gleaned from the monitored industry's 

assets, having access to accurate data is essential. 

 

The manufacturing company has benefited from the first four stages of the "PAInOuTT" 

model deployed in this extruder-corrugator asset, thanks to introducing a temperature monitoring 

system that eliminates the need for human intervention. Due to the asset's sensitivity to heat, the 

solution architecture provided significant value in the practical use of innovative manufacturing 

for small to medium industrial businesses. In general, the offered methodology and detailed 

solution framework are meant to help manufacturing organizations ease into the realm of PdM 
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methods by outlining all the processes necessary for the most effective implementation of 

Predictive Maintenance initiatives. 

 

Obtaining diagnostic, prognostic, and PdM models for the application scenario would be a 

natural next step along the proposed model approach already discussed in this research. The 

capacity to generalize the detailed flowchart to other projects and understand the reliability of this 

model in a new context or undertaking is also desired. Finally, successful PdM project deployment 

and acceptance of the internal model necessitate a constant evaluation of project outcomes to 

improve the model's correctness. The PdM model is also effectively implemented in the chosen 

system. The next step of this investigation will be to implement this methodology for all their 

Extruder-Corrugator machines to produce a higher value added to the manufacturing industry. 
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Appendix 

 

Appendix A: “PAInOuTT” Model Methodology 
           

 
Table A-1 PAInOuTT Methodology Explained 
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Appendix B: Temperature Module Electric Schematic            

 

Figure B-1 Electrical Schematic 
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Appendix C: Coding 
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Figure C-1 End Device Coding 

 

Figure C-2 Coordinator Device Coding 
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Appendix D: Additional Graphs 

 

 
 

 
 

 
 

Figure D-1 Graphs showing data cleaning of Gear Box, Cooling Unit, and Barrel Throat areas. 
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