
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-05-01

Analyzing Software Maintenance Through Machine Learning and Analyzing Software Maintenance Through Machine Learning and

Mining Software Repositories Approaches Mining Software Repositories Approaches

Sayed Mohsin Reza
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Reza, Sayed Mohsin, "Analyzing Software Maintenance Through Machine Learning and Mining Software
Repositories Approaches" (2023). Open Access Theses & Dissertations. 3844.
https://scholarworks.utep.edu/open_etd/3844

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3844?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

ANALYZING SOFTWARE MAINTENANCE THROUGH MACHINE LEARNING AND

MINING SOFTWARE REPOSITORIES APPROACHES

SAYED MOHSIN REZA

Doctoral Program in Computer Science

APPROVED:

Mahmud Shahriar Hossain, Ph.D., Chair

Yoonsik Cheon, Ph.D.

Hugo Gutierrez, Ph.D.

Stephen L. Crites, Jr., Ph.D.
Dean of the Graduate School

Copyright ©

by

Sayed Mohsin Reza

2023

to my

MOTHER, FATHER and WIFE

with love

ANALYZING SOFTWARE MAINTENANCE THROUGH MACHINE LEARNING AND

MINING SOFTWARE REPOSITORIES APPROACHES

by

SAYED MOHSIN REZA

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

May 2023

Acknowledgements

I express my deep gratitude to my advisor, Dr. Mahmud Shahriar Hossain, and my previous

advisor, Dr. Omar Badreddin, for their unwavering support, motivation, and exceptional

guidance throughout my Ph.D. journey. Their patience and wisdom have been invaluable

in guiding me through the research and writing of this dissertation. I consider myself

fortunate to have had such dedicated mentors who consistently pushed me to achieve my

best.

I extend my sincere appreciation to my Ph.D. committee members, Dr. Yoonsik Cheon

and Dr. Hugo Gutierrez, for their insightful comments and feedback. Their contributions

have been instrumental in shaping this work and have helped me broaden my research

perspectives. I am grateful for their dedication, time, and commitment to making this

work a success.

I am also grateful to the professors and staff at the University of Texas at El Paso

Computer Science Department for their hard work and dedication in providing me with the

means to complete my degree and prepare for a career as a computer scientist. Additionally,

I am grateful to my family, especially my parents, for their unwavering love, support, and

encouragement throughout my academic journey. Their constant motivation has been a

source of strength and inspiration for me.

Finally, I am incredibly grateful to my dear wife, Laila Noor, for her unwavering support

and understanding during my Ph.D. Her continuing, loving support without complaint has

been invaluable to me.

v

Abstract

The rapid growth of software systems demands meticulous planning and maintenance to

accommodate the evolution of the code base over extended periods. Without maintenance,

software systems will become more complex, low in quality, and hence unsustainable. Soft-

ware engineers who perform maintenance often strive to optimize code quality or minimize

code smells in a timely manner. Several techniques have been used to detect code qual-

ity or code smells as a part of software maintenance. Most of these techniques are based

on heuristics, which create detection rules using a few metrics. These approaches have

reasonable accuracy but do not work in cross-project evaluation. The recent efforts in de-

vising automatic Machine Learning (ML) based quality or code smell detection techniques

have achieved unsatisfactory results so far. Reasons include the use of a smaller dataset,

fewer input features, within-project classification, or a lack of user-friendly tools for data

collection.

This dissertation explores the use of modern techniques in Mining Software Reposito-

ries (MSR), identifying code smells, code quality, and issue labels using machine learning

approaches. The mining process is optimized through the use of phase-by-phase caching

and efficient data retrieval from open-source platforms. To identify code quality attributes,

traditional machine-learning approaches were applied to a large set of metrics. For the

identification of code smells, traditional ML, and neural network-based ML techniques were

utilized. A deep learning-based ML technique is proposed to classify the issue labeling of

reported issues.

The first contribution of this dissertation is the development of a novel mining tool

for extracting software artifacts. The proposed tool, ModelMine, is capable of mining

software repositories, issues, and files from open-source platforms. A synthesized dataset

containing code quality, issue, and code smell data is created. The second contribution is

the application of ML approaches to classify code quality attributes and the comparison of

vi

their performance. The evaluation results indicate that Random Forest (RF) significantly

improves accuracy without generating false negatives or false positives, which can result

in false alarms in code quality classification. The third contribution is the investigation

of unexpected side effects (code smells and technical debt) of software repositories. The

analysis revealed that handwritten code quality is impacted by a higher level of technical

debt and code smells. The results also show that the performance of neural network-based

ML approaches is better than traditional ML approaches in classifying code smells. The

fourth contribution of this research is the development of a deep learning approach for issue

label classification. The result shows that the proposed approach outperforms classifying

issue labels compared to existing research.

In conclusion, this dissertation presents a comprehensive study of the use of modern

techniques in the MSR field and machine learning approaches to identify code quality, code

smells, and issue labels. The results of this research have practical implications for software

quality assurance and issue management. Also, it will provide a foundation for machine

learning approaches in software maintenance activities. To further improve the performance

of ML, I will incorporate a larger dataset into the ML models through the enhancement

of the ModelMine tool. The future research plan includes developing a methodology using

NLP techniques to extract insights from textual data associated with software code and

investigating the use of VR-based data visualizations for software maintenance.

vii

Table of Contents

Page

Signature Page . i

Title Page . iv

Acknowledgements . v

Abstract . vi

Table of Contents . viii

List of Tables . xiii

List of Figures . xv

Chapter

1 Introduction . 1

1.1 Background of the Research Problem . 1

1.1.1 Mining Software Artifacts from Open Source Repositories 2

1.1.2 Machine Learning Approaches in Code Quality Classification 2

1.1.3 Machine Learning Approaches in Code Smell Detection 3

1.1.4 Machine Learning Approaches in Issue Label Identification 3

1.2 Motivation . 4

1.3 Research Objective and Questions . 4

1.4 Contributions . 6

1.5 Significance of the Research . 7

1.6 Dissertation Overview . 8

1.6.1 Chapter 2: Literature Overview . 9

1.6.2 Chapter 3: ModelMine: A Tool to Facilitate Mining Software Arti-

facts from Open Source Repositories 9

1.6.3 Chapter 4: Performance Analysis of Machine Learning Approaches

in Software Code Quality Classification 10

viii

1.6.4 Chapter 5: Evaluating the Accuracy of Machine Learning Algorithms

for Code Smells Detection . 10

1.6.5 Chapter 6: Issue Label Identification: Towards A Machine Learning-

based Approach . 11

2 Literature Review . 12

2.1 Overview of the Research Field . 12

2.2 Software Artifacts . 13

2.2.1 Tools in Mining Software Repositories 13

2.2.2 Software Artifacts Mining . 14

2.2.3 Software Artifacts Analysis . 15

2.2.4 Software Artifacts Visualization . 16

2.2.5 Other Research on Software Artifacts 17

2.3 Machine Learning in Code Quality Research 17

2.3.1 Code Quality Features . 17

2.3.2 Machine Learning Approaches . 19

2.3.3 Code Quality Analysis Techniques 20

2.3.4 Other Code Quality Research . 20

2.4 Machine Learning in Code Smell Research 21

2.4.1 Traditional ML Approaches . 23

2.4.2 Neural Network-based ML Approaches 24

2.5 Gaps in the Literature . 25

3 ModelMine: A Tool to Facilitate Mining Software Artifacts from Open Source

Repositories . 27

3.1 Introduction . 28

3.2 ModelMine Architecture . 30

3.2.1 Indexing Phase . 30

3.2.2 Paging Phase . 30

3.2.3 Query Reduction Phase . 31

ix

3.2.4 Querying Phase . 31

3.2.5 Data Representation . 31

3.2.6 Results Ranking . 31

3.3 ModelMine User Interface . 32

3.3.1 Model-based Repository Search . 32

3.3.2 Model-based Artifact Search . 33

3.3.3 Model-based Commit Search . 33

3.4 Evaluation . 34

3.5 Conclusion . 38

4 Performance Analysis of Machine Learning Approaches in Software Code Quality

Classification . 40

4.1 Introduction . 41

4.2 Research Methodology . 42

4.2.1 Research Questions . 42

4.2.2 Proposed Research Framework . 43

4.2.3 Dataset Collection . 44

4.2.4 Dataset Cleaning & Analysis . 47

4.2.5 Machine Learning Classifiers & Evaluation Metrics 48

4.3 Result and Discussion . 48

4.3.1 Correlation Results . 48

4.3.2 Performance Results . 49

4.4 Conclusion . 52

5 Evaluating the Accuracy of Machine Learning Algorithms for Code Smells Detection 53

5.1 Introduction . 54

5.2 Background . 55

5.3 Study Design . 57

5.3.1 Research Questions . 57

5.3.2 Code smell Characteristics of Handwritten Code in MDE Projects . 58

x

5.3.3 Code Smells in Recent Studies . 60

5.3.4 Data Collection for Code Smells in MDE Projects 70

5.3.5 Machine Learning Approaches in Code Smell Detection 75

5.4 Results . 75

5.4.1 Results Based on Code Smells (RQ1 & RQ2) 75

5.4.2 Results Based on Technical Debt (RQ3) 77

5.4.3 Code Smells Considered in Recent Studies (RQ4) 78

5.4.4 ML Approaches Considered in Recent Studies (RQ5) 80

5.4.5 Performance Comparison of ML Approaches (RQ6) 84

5.5 Discussion & Analysis . 85

5.6 Threats to Validity . 88

5.6.1 Construct Validity . 89

5.6.2 External Validity . 90

5.7 Conclusion . 91

6 Issue Label Identification: Towards A Machine Learning-based Approach 93

6.1 Introduction . 94

6.2 Study Design . 96

6.2.1 Research Questions . 96

6.2.2 G-Issue Architecture . 98

6.2.3 Proposed Deep Learning Approach 99

6.2.4 Data Collection . 100

6.2.5 Terminology . 102

6.3 Results & Discussion . 102

6.3.1 Performance Evaluation . 102

6.3.2 Analysis of Issue Lifetime . 103

6.3.3 Evolution of Issues . 104

6.3.4 Performance of Proposed Deep Learning Approach 107

6.4 Conclusion . 108

xi

7 Conclusion . 109

7.1 Contributions . 109

7.2 Future Research Plan . 110

References . 112

Appendix

A CSIQ: A Synthesized Dataset of Software Artifacts 128

A.1 Dataset Overview . 128

A.2 Significance of the Data . 130

A.3 Data Description . 130

A.4 Experimental Design, Materials, and Methods 137

A.5 Repository Links . 139

A.6 Version links . 140

B Machine Learning in Code Smell Detection . 142

B.1 Data Sources Links . 142

B.2 List of Questions for Data Collection . 143

B.3 Dataset Used in the Primary Studies . 144

B.4 Independent Variables Considered in the Primary Studies 145

B.5 List of Source Code Metrics and Definitions 148

Biosketch . 149

xii

List of Tables

3.1 Evaluation Metrics for Tasks . 35

3.2 Performance Evaluation Results . 36

3.3 Usability Study Questionnaires . 37

4.1 Selected Repositories with Metadata Information 44

4.2 Source Code Metrics Used in this Study 46

4.3 Confusion Matrices of Classifiers for Predicting Software Complexity 50

4.4 Performance of Machine Learning Models 50

5.1 Selected Repositories Name, its Type, and URL 59

5.2 Basic Information of Subject Software Repositories 61

5.3 Query Strings Applied to Extract Articles 63

5.4 Data Sources and Search Results . 64

5.5 Reviewed Articles in the Literature . 65

5.6 Variables Description . 72

5.7 File Search Criteria . 73

5.8 Detected Types of Code Smells . 73

5.9 Code Smells & Technical Debt Results . 74

5.10 Selected Machine Learning Approaches . 76

5.11 Code Smells and Their Frequencies Identified in the Primary Studies . . . 78

5.12 Machine Learning Algorithms Reported in Primary Studies 83

5.13 Accuracy Comparison of Traditional and Neural Network-based Machine

Learning Approaches . 85

6.1 Selected Repositories with Metadata Information 101

6.2 Performance Comparison of Different Tools 103

xiii

6.3 Statistics on Days it Takes to Solve an Issue 104

6.4 Performance of Proposed Approach Compared with Existing Research . . . 107

A.1 Dataset Specifications . 129

A.2 Selected Repositories with Metadata Information 131

A.3 Version & Metadata Information of Selected Repositories 131

A.4 List of Source Code Metrics and Code Quality Attributes 133

A.5 List of Code Smells and Their Associated PMD Rule Names 138

A.6 PMD Command & Parameters to Extract Code Smells 139

A.7 Selected Repository Links . 139

A.8 Version Link of Selected Repositories . 140

B.1 Data Sources and Links . 142

B.2 List of Questions & Metadata for Data Collection 143

B.3 Datasets Reported in the Primary Studies 144

B.4 Independent Variables Considered in the Primary Studies 145

B.5 Source code metric names along with their definitions 148

xiv

List of Figures

3.1 Architecture of ModelMine Tool . 29

3.2 Model-based Repository Search . 32

3.3 Model-based Artifact Search . 33

3.4 Model-based Commit Search . 34

3.5 Usability Study Results . 38

4.1 Proposed Methodology . 43

4.2 Complexity Distribution among Repositories 45

4.3 Relationship of Input Variables with Target Variable 45

4.4 Correlation among Source Code Metrics and Quality Attribute 49

4.5 Relative Performance of ML Classifiers . 51

4.6 Relative FP and FN Rate of ML Classifiers 51

5.1 Repository Selection Process . 58

5.2 Article Selection Process . 62

5.3 Code Smells in MDE, DD & Non-DD Repositories 77

5.4 Technical Debt (TD) Result . 78

5.5 Code smells Reported in the Primary Studies 81

5.6 Frequency of Machine Learning Models in Code Smells Detection 81

5.7 Frequency of Evaluation Metrics Used for ML Algorithms in Primary Studies 82

5.8 Average Code Smell Density Results . 86

5.9 Average Technical Debt Density Results 87

5.10 Comparative Accuracy Analysis of Machine Learning Models 89

6.1 Example of Labels Attached to Issues for the Spring-framework Project in

GitHub. 95

xv

6.2 Architecture of G-Issue Tool . 96

6.3 Search & Result Screenshot of G-Issue Tool 99

6.4 Classifier for Proposed Deep Learning Approach 100

6.5 Box Plot of Days it Takes to Solve Issues among Repositories 105

6.6 Evolution of Issue-related Artifacts Over Time among Repositories 106

xvi

Chapter 1

Introduction

This dissertation explores the intersection of mining software repositories and machine-

learning approaches in software engineering. In recent years, there has been a significant

increase in research using machine learning methods in software engineering. By leveraging

software repositories, their versions, and commit histories, researchers can extract valuable

information about software development activities to support studies in areas like cost

estimation, testing, quality assurance, and more. This information has driven advancements

in software engineering research, including code smell detection, code review automation,

and software issue management. In this chapter, we introduce the research background,

problems, motivation, contributions, and overview of the dissertation.

1.1 Background of the Research Problem

The rise of distributed software development has led to the need for effective management

of technical artifacts such as code, commits, issues, and milestones. This has resulted in

the development of source code management software like BitBucket, GitHub, and GitLab,

which combine the development, security, and operation of the software in a single applica-

tion. As software repositories contain critical information regarding software development

processes, leveraging this information has become an essential area of research in advanc-

ing the field of software engineering. The implications of such research are far-reaching,

spanning beyond code quality estimation, bug identification, code smell detection, and

re-engineering activity prediction.

1

1.1.1 Mining Software Artifacts from Open Source Repositories

In recent years, the field of mining software repositories has experienced significant growth

due to the valuable information that software repositories, their version and commit histo-

ries can provide regarding software development processes. However, existing mining tools

have primarily focused on extracting data from code or commit history, leaving a gap in

support for extracting non-textual artifacts, which limits the scope of extractable data.

Moreover, source code management systems are becoming popular and diversified devel-

opers contribute to community-based software development, the number of issues reported

related to bugs, errors, and missing documentation continues to increase. Addressing these

issues in a timely and effective manner is crucial to enhancing software quality, features,

and documentation. Failure to do so can lead to software quality degradation and even

render the software unusable. Therefore, there is a need to mine the software issue-related

artifacts to understand the behavior of the software and improve the management of these

issues. However, existing tools lack the ability to efficiently and accurately mine issues,

identify issues’ labeling, and assign them to the correct developer. It is therefore impor-

tant to develop a more effective and efficient tool for mining software data, which is a key

motivation for my research in this area.

1.1.2 Machine Learning Approaches in Code Quality Classifica-

tion

Maintainability is an essential part of software development. Studies have shown that code

quality attributes such as complexity, coupling, and cohesion are critical to maintainability

[1, 2]. The use of source code metrics to improve software quality factors has been proven to

lead to better software maintenance [3, 4, 5]. Ignoring software maintenance in the current

version of a project can lead to the accumulation of technical debt, which can be costly

and time-consuming to repay [6, 7]. Traditional tools used to analyze software quality can

be time-consuming. Therefore, it is essential to apply modern techniques such as machine

2

learning to classify software quality and undertake preventive maintenance. This issue

motivates me to research machine learning techniques to improve software quality and

undertake preventive maintenance.

1.1.3 Machine Learning Approaches in Code Smell Detection

Code smell, as an indicator of poor software design, is a major issue that can lead to

higher software maintenance costs and jeopardize the sustainability of software. While

several detection rules, heuristics, and traditional machine learning-based approaches have

been proposed to identify code smells, recent advances in machine learning have led to an

increasing trend in using neural network-based approaches. However, there is still a need for

a comprehensive study to compare the accuracy of neural network-based approaches with

traditional machine learning approaches. This gap in the research is what motivates me to

investigate the effectiveness of applying machine learning, especially neural network-based

approaches, to code smell detection.

1.1.4 Machine Learning Approaches in Issue Label Identification

Machine learning approaches have revolutionized the way we approach various tasks, and

Source Code Management (SCM) issue label identification is no exception. With the sheer

volume of issues that repositories receive, it can be challenging to label them automatically

and correctly, and this is where machine learning comes in. By leveraging algorithms and

data analysis, machine learning can accurately classify and assign appropriate labels to

SCM issues, thus saving developers time and effort.

Furthermore, SCM’s issue label identification through machine learning allows for con-

sistent and standardized labeling, reducing errors and improving overall efficiency. Very

few studies have been done on machine learning in SCM issue label identification. And

that is what makes me motivated towards such research.

3

1.2 Motivation

The motivation for this research stems from the increasing importance of software mainte-

nance in the context of distributed software development. The rise of source code manage-

ment software has created a need to extract valuable information from software repositories,

which can be used to improve software quality, identify bugs and code smells, and predict

re-engineering activities. However, current tools are limited in their ability to extract

repositories, codes, and non-textual artifacts and efficiently mine issue-related artifacts.

Moreover, machine learning techniques are becoming popular in research related to soft-

ware development, maintenance towards code quality classification, code smell detection,

and issue label identification. However, due to a lack of a huge dataset of software arti-

facts, and the low performance of existing ML approaches, software researchers are unable

to use developed ML approaches for practical purposes. And that’s why I am motivated to

develop a more efficient tool for mining software data and investigate whether more data

can improve machine learning performance in software maintenance research.

Overall, the research is motivated by the need to fill gaps in the current understanding

and implementation of mining software data and the process of performance improvement

of ML approaches in software maintenance.

1.3 Research Objective and Questions

My research involves investigating tools and techniques in software engineering research to

improve code quality and identify code smells for better software maintenance. I want to

understand what makes a better tool to mine software artifacts and which machine learning

approaches are providing better performance in classifying code quality, code smells, and

issue labeling. The objective of this research is to explore and evaluate the machine learning

approaches for identifying code quality, code smells, and issue labels and to develop a tool

that can extract software artifacts for ML training purposes.

4

In this dissertation, the following research questions drive this investigation:

RQ1. How does the proposed mining tool compare with existing state-of-

the-art tools in terms of performance & usability metrics?

The question reveals the importance of the proposed tool in terms of performance

and usability. The performance dimension gives valuable information on the estimated

time, maximum memory consumption, and cyclomatic complexity. The usability dimension

is motivated to look at the user interface, learning curve, data visualization, and error

reporting to the targeted audience. The finding reveals the comparison with existing state-

of-the-art tools. I describe the research methodology and results in Chapter 3.

RQ2. Which code metrics are correlated most with code quality attributes

and How accurately can machine learning approaches classify code quality?

This question reveals the relationships between code quality attributes and source code

metrics. To answer this question, we apply statistical correlation on source code metrics

and code quality attributes collected from open-source source code repositories to find

out the relationship. Also, this question is targeted to find out the accuracy of machine

learning approaches in class-level code quality detection. We apply several machine learning

techniques and evaluate the performance. This question reveals the best technique for

detecting code quality from source code metrics. I describe the research methodology and

results for this RQ in Chapter 4.

RQ3: What are the predominant code smells in software repositories, and

how accurately can machine learning techniques identify code smells?

The question is targeted at identifying the code smells in open-source repositories.

It explores the current state of the art of code smell detection using machine learning

approaches. I identified code smells that are being investigated in recent studies, and

prevalent code smells are listed. The question is also targeted at finding the accuracy of

several ML classifiers for detecting code smells. I describe the research methodology and

results related to the performance comparison of all the machine learning approaches in

Chapter 5.

5

RQ4: How accurately can machine learning techniques classify software issue

labels?

This question finds out the automatic issue labeling by using modern machine-learning

techniques. To answer this research question, I use the G-Issue mining tool to mine issues

from open-source repositories and convert issue words to vectors for the creation of an

issue dataset. Finally, I applied the deep learning technique to detect the issue’s labels. I

describe the research methodology and results in Chapter 6.

1.4 Contributions

The contributions of the dissertation lie in two main areas: (1) mining software repositories;

and (2) machine learning approaches in software maintenance. Under ML approaches in

software maintenance, there are three contributions to the development of ML approaches

in code quality, code smells, and issue label classification.

The first contribution of the dissertation is the development of a groundbreaking mining

tool, ModelMine, that can extract repositories, model-based artifacts, and designs from

open-source repositories and compare the performance of the ModelMine tool with a state-

of-the-art tool [8]. The details of the contributions can be found in Chapter 3. The second

contribution is the investigation and comparison of the performance of traditional Machine

Learning approaches for code quality attribute classification from source code metrics and

report the best ML technique towards code quality classification [9]. The details of the

second contribution can be found in Chapter 4.

In the third contribution, I investigate the generation of unexpected code smells in

software repositories, and compare the performance of the traditional and neural network-

based ML approaches in code smell detection [7]. The details of the contribution are

discussed in Chapter 5. The fourth contribution is the development of a deep-learning

approach to issue label identification. The details of this contribution are discussed in

Chapter 6.

6

In preparation for this dissertation, I have authored a collection of scholarly works,

consisting of four conference papers (three of which have been published [8, 9, 7] and one

currently under review), as well as two journal papers (one of which has been published [5]

and the other one is under review).

In addition, there are ongoing research projects, including a systematic literature review

of machine learning algorithms for code smell detection, which is currently under review by

the Wiley Journal of Software Practice and Experience. Another area of research focuses on

evaluating the performance of “G-Issue,” a proposed mining tool for issue-related artifacts,

against other state-of-the-art tools while also examining the issue lifetime and evolution of

well-known and well-maintained repositories over time.

1.5 Significance of the Research

The significance of this research can be summarized as follows:

• Practical ML approaches in software maintenance: The research has practical

implications for software quality assurance, maintenance, and issue management.

The proposed ML approaches can help software engineers to identify code smells,

code quality, and issue labels in a timely and accurate manner, leading to improved

software quality and sustainability.

• Development of usable tools & ML techniques: The research makes several

contributions to the fields of mining software repositories and machine learning for

software maintenance. The development of a novel mining tool, ModelMine, and the

use of ML approaches to classify code quality attributes, code smells, and issue labels

are significant contributions of this research.

• Improvement of existing approaches: The research demonstrates the limitations

of existing approaches that are based on heuristics and proposes modern ML tech-

7

niques that are more accurate and efficient. For instance, the proposed deep learning-

based ML technique for issue-label classification outperforms existing research.

• Research extensibility: The research opens up paths for future research, such as

incorporating a larger dataset into the ML models by collecting more data using

the ModelMine tool and developing a methodology using NLP techniques instead

of traditional ML approaches to extract insights from textual data associated with

software code for software maintenance.

In summary, this research has important implications for improving software quality

and sustainability and makes significant contributions to the field of software maintenance.

The proposed tools and techniques have great significance for future software engineering

research.

1.6 Dissertation Overview

The dissertation showcases my contributions to the field of software engineering, specifically

in the areas of mining software repositories and utilizing machine learning for code quality

analysis, code smell detection, and issue label identification. Chapter 2 provides an in-

depth literature review of the current state of research in these domains, highlighting the

existing approaches and their limitations. Subsequently, Chapters 3-6 present my original

contributions, which bring forth innovative solutions to address some of the challenges

faced in the field. Finally, Chapter 7 concludes the dissertation by summarizing the key

takeaways from my work and discussing its implications for future research. Overall, this

dissertation aims to provide a comprehensive overview of my contributions to the field and

offer a valuable resource for researchers and practitioners alike.

8

1.6.1 Chapter 2: Literature Overview

This chapter provides an overview of the existing literature on the topics of mining software

repositories and machine learning in code quality and code smell research. The review is

structured into four main sections, each focusing on a distinct area of research:

1. Studies that aim to mine, analyze, and visualize software artifacts,

2. Studies that apply machine learning techniques to code quality classification,

3. Studies that apply machine learning for code smell detection, and

4. Studies that apply machine learning for issue label identification.

Each section provides a comprehensive examination of the current state of research in

the respective area, with a focus on identifying the major challenges and limitations, as well

as the proposed solutions. The literature review highlights the mixed results reported in the

field, with some studies demonstrating the capabilities of certain tools for software artifact

mining, while others report on the performance of machine learning models. Ultimately,

this chapter provides a solid foundation for the subsequent chapters of the dissertation.

1.6.2 Chapter 3: ModelMine: A Tool to Facilitate Mining Soft-

ware Artifacts from Open Source Repositories

In this chapter, I introduce a proposed cutting-edge mining tool designed to extract model-

based artifacts and designs from open-source repositories. By leveraging this tool, we can

uncover valuable insights into software designs and practices within open-source commu-

nities. Additionally, I explore ways to simplify the process of mining software repositories

and discuss research methods that can be employed to improve the performance of mining

efforts. Also, I present a synthesized dataset of software data that includes code quality

attributes, code smells, and issues extracted from various open-source repositories using

9

this tool. I provide insights into the research process that can be employed to obtain sim-

ilar data. By leveraging this dataset, researchers can gain valuable insights into software

quality, and code smell and identify potential software issues that need to be addressed.

1.6.3 Chapter 4: Performance Analysis of Machine Learning Ap-

proaches in Software Code Quality Classification

In this chapter, I present a study that explores the classification of software code quality

components in software design using machine learning approaches. The study includes

an examination of the relationship between source code metrics and code quality, with

a particular focus on class complexity, coupling, and lack of cohesion. Additionally, we

compare the performance of various ML techniques for code quality classification to identify

the most effective approaches. Through this chapter, I hope to provide valuable insights

into the use of ML for improving software quality.

1.6.4 Chapter 5: Evaluating the Accuracy of Machine Learning

Algorithms for Code Smells Detection

In this chapter, I present a case study focused on evaluating the quality and identifying

code smells in software repositories. I examine the quality of handwritten code developed

within the context of Model-Driven Engineering (MDE). The study reveals key code smells

that are more prevalent in handwritten code within MDE projects. By highlighting these

issues, I hope to provide insights into the areas that require attention to improve software

quality and maintainability. Also, I discuss the machine learning algorithms for code smell

detection in recent studies on code smell detection, with a particular focus on research

articles published between 2015 and 2021. This chapter reveals the predominant code smells

and machine learning techniques in recent studies. Finally, I compare the performance of

neural network-based ML approaches with traditional ML approaches in classifying code

smells. Through this study, I aim to provide a comprehensive overview of the current state

10

of research in code smell detection and identify research areas for future investigation.

1.6.5 Chapter 6: Issue Label Identification: Towards A Machine

Learning-based Approach

In this chapter, I present research focused on software issues reported during community-

based software development. I examine software issue-related artifacts to gain a deeper

understanding of software behavior through software issues. I investigate the performance

of a proposed issue-related artifacts mining tool, ”G-Issue”, and compare it with other

state-of-the-art tools. Through analysis, I also explore the issue lifetime and evolution of

issues over time within well-known and maintained repositories. Also, I propose a deep

learning approach to identify software issue labels automatically. By providing insights,

I hope to contribute to the development of more effective machine learning models for

software issue label classification.

11

Chapter 2

Literature Review

This chapter provides an overview of the existing literature supporting research areas in

this dissertation. It begins by presenting the background and scope of the research field

and then proceeds to examine key research areas, identify gaps in the current literature,

and outline the proposed theoretical framework.

2.1 Overview of the Research Field

The Mining Software Repository (MSR) and Machine Learning research in the software

engineering field has gained significant attention in recent years due to the abundance

of rich software data that are readily available. The data stored in these repositories

provide valuable insights into software development activities and have become increasingly

important in software maintenance and re-engineering research. However, access to these

repositories and data extraction has been challenging in the past, due to limited access and

the complexity of understanding the APIs of open-source systems.

The MSR community was established with the first International Workshop on Min-

ing Software Repositories held at the International Conference on Software Engineering

(ICSE) in 2003. Since then, MSR has grown into a prominent conference in its own right,

attracting a large amount of interest within the software engineering community. MSR-

related publications in top research venues continue to grow in size and quality, and many

MSR-related papers have won awards at prestigious venues.

Machine learning has been increasingly applied to software maintenance, particularly

in the areas of code quality and code smell research. Code quality refers to the overall

12

characteristics of software code, including its readability, maintainability, and efficiency.

Code smells, on the other hand, are specific patterns or structures within code that may

indicate potential problems or areas for improvement.

Machine learning techniques have been applied to automatically detect and classify code

smells, as well as to predict the impact of code changes on code quality. These approaches

can help developers prioritize their efforts, focus on the most critical issues, and ultimately

improve the overall quality of their software code. However, there are still challenges in

applying machine learning to code quality and code smell research, including the need for

high-quality training data and the difficulty of interpreting the results of complex machine

learning models.

2.2 Software Artifacts

The general idea of retrieving software-related data on demand is not new and can be

related to Data as a Service (DaaS). These data are collected from source code, metadata

information, structured data, graphics files, etc. [10]. Some tools provide static and dy-

namic processes to collect metadata information as well as file structure. However, the

process is not trivial to collect, analyze and visualize specific types of software artifacts

from open-source repositories.

2.2.1 Tools in Mining Software Repositories

Tools in Mining Software Repositories (MSR) research field involve the application of data

mining, machine learning, and statistical techniques to software repositories such as source

code, bug reports, and version control systems. These tools are used to extract useful in-

sights and knowledge about software development practices, including software evolution,

bug fixing, and code quality. Several research has been done on the development of tools to

mine software artifacts. In one research, GHTorrent was developed to provide repositories

of GitHub in a static way that was archived each year since 2013 [11]. As a public reposi-

13

tory of software repositories, it provides cross-domain analysis on metadata information of

repositories [10, 11]. A study by Goes [12] in 2014 showed that Big Data concepts in soft-

ware repositories such as GHTorrent are characterized by 5-Vs (Volume, Variety, Velocity,

Value, and Veracity). However, it limits research on current data files and commits history

[13, 14]. This issue was also mentioned by Gousios et al [11]. The author mentioned that

the advantage of GHtorrent in terms of repository information that are mostly static helps

to analyze software structure and basic metadata information, not dynamic attributes such

as recent commits, comments, or issues [11].

Another example, PyDriller, a Python framework for mining software repositories can

extract recent information from open-source repositories such as commits, developer infor-

mation, modifications, differences, and source codes [15]. MetricMiner is another cloud-

based application suitable for mining software repositories for metrics calculation, data

extraction, and statistical inference [16]. These tools focus on extracting data primarily

from either code or commit history, with limited support for mining non-textual artifacts.

Software textual or non-textual artifacts mining from public repositories can be con-

nected to software quality, and maintainability research to analyze when files are created,

and how those files are maintained and sustained throughout the project life cycle. A

study conducted by Gregorio et al. [17] reported that creating a model-based dataset helps

to study the impact of specific extension models on the code structure and how software

quality and productivity are changing throughout the project life cycle. A study by Noten

et. al. [14] showed that such dynamic model files allow one to analyze recent data on

repositories, artifacts, or commit information to maintain software quality. Overall, the

field has contributed to software maintenance research and has led to the development of

many useful software tools.

2.2.2 Software Artifacts Mining

Software Artifacts Mining is a research field that focuses on analyzing and understanding

software artifacts, such as source code, documentation, and bug reports. The field involves

14

the use of data mining, machine learning, and other techniques to extract valuable insights

from these artifacts, with the aim of improving software quality, maintenance, and devel-

opment processes. Several studies have been conducted research on such artifacts from

different perspectives such as sentiment analysis [18], label prediction[19], issue manage-

ment [20] & mining [21].

Software artifact mining has improved software quality, bug identification, and network

analysis. Several studies have uncovered interesting and actionable artifacts from software

data. Several mining tools have emerged to enable such research, and discovery [15, 8, 22].

For example, PyDriller, a Python framework for mining software repositories, can extract

recent information from open-source repositories such as commits, developer information,

modifications, differences, and source codes [15]. However, the tool has no feature to

extract issues. MetricMiner is another application suitable for mining software repositories

for metrics calculation, data extraction, and statistical inference [16]. These tools focus

on extracting data primarily from either code or commit history, with limited support for

mining issue-related artifacts. The insights generated from this research field can help

developers understand how software is built and maintained, leading to better software

design and more effective software development practices.

2.2.3 Software Artifacts Analysis

Software Artifacts Analysis is a research field that involves the systematic analysis of soft-

ware artifacts, such as source code, documentation, and requirements. This field aims to

identify and understand the characteristics and properties of these artifacts, and how they

relate to software quality, maintainability, and evolution. Issue-related artifact analysis has

gained popularity last few years. Several studies have researched on issue lifetime [19, 23],

how long it will take to close an issue, and empirical studies on the life expectancy of issues

based on labels. Kikas et al. conducted research on 4000 repositories to find temporal dy-

namics of issues in GitHub [19]. The study found that projects with a shorter observation

time tend to have higher volumes of open issues. In addition, Kikas proposed a prediction

15

model trained from static, dynamic, and contextual features to predict the lifetime of an

issue. The results showed that the average issue lifetime for community-created issues is

39 days, but the team-created issues are 5.9 days. Techniques used in this field include

static and dynamic analysis, and testing, with the goal of improving software quality and

reducing the risk of failures.

2.2.4 Software Artifacts Visualization

Software Artifacts Visualization is a research field that focuses on developing visual rep-

resentations of software artifacts, such as source code, dependencies, and software archi-

tectures. The goal of this field is to provide developers and stakeholders with a better

understanding of complex software systems, making it easier to comprehend and maintain

them. Visualization techniques have been popular in textual, camera control & network

data [24]. However, this research is becoming popular in software engineering too. As an

example, an issue-related artifact has textual(issue title, body) and network (issue assignee,

label) data. Very few research has been conducted on issue-related artifact visualization

[25, 20]. Liao et al. applied the visualization technique on issue-related behavior by an-

alyzing seven projects with 98,074 issues in total [25] and proposed an SRF to measure

the importance of user behaviors. The results found that issue-related user behaviors are

critical, and not all issues that are assigned labels could be closed rapidly. Another em-

pirical research by Bissyand et al. investigated the adoption of an issue tracker based on

the projects, developers, and type of issues [20]. The results found that small-sized team

projects are less likely to have issues and visualized the top 10 labels in GitHub, where

bug and feature requests are at the top with 18.36% and 10.29%, respectively. Techniques

used in this paper include 2D, interactive visualizations but are planned to show software

artifacts visualization in 3D.

16

2.2.5 Other Research on Software Artifacts

There is other research on software artifacts conducted in aspects of sentiment [26, 18, 27],

bug and issue tracking [28]. Jurado et al. conducted a study on 10,829 issues from 9

well-known & open-source repositories to do sentiment analysis [18]. The study proposed

a new technique to identify the underlying sentiments in the text found in issues and their

comments. Results showed that issues’ titles and text leave underlying sentiments, which

can be used to analyze the development process. Another set of research on issues-related

artifacts is automatic labeling of Issues [29, 30, 31]. Kallis et al. introduced a tool called

Ticket Tagger, which is developed using Node.js, de-facto server-side JavaScript, and uses

machine learning approaches on issue artifacts to label an issue automatically [30].

2.3 Machine Learning in Code Quality Research

Machine Learning in Code Quality is a research field that aims to apply machine learning

techniques to improve the quality of software code. This field involves developing models

that can detect code quality, and recommend improvements to code. The goal of this field

is to help developers write better code, reduce the risk of defects and failures, and improve

the maintainability of software systems. The earlier techniques to measure the code quality

depended on low-level metrics. Estimating quality characteristics has been a well-known

problem for many years. The reason behind this, quality has a direct impact on software

maintenance and software development [1, 2]. Many researchers and practitioners proposed

different methodologies to improve code quality for software maintenance. In this section,

we discuss the existing research on those areas with mentioning advantages and limitations.

2.3.1 Code Quality Features

Code Quality Features are the characteristics of software code that determine its quality,

maintainability, and reliability. These features include readability, consistency, modular-

17

ity, testability, and efficiency. Several research on code quality from source code metrics

includes fault-prone modules detection [32], early detection of vulnerabilities [2], improve-

ment of network software security [33, 34, 35], software redesign [36], etc. All of these

researches are targeted to reduce the maintenance effort and cost during software devel-

opment. Chowdhury et al. investigate the efficacy of applying cohesion, complexity, and

coupling to automatically predict vulnerability and complexity entities [2]. This study

used machine learning and statistical approaches to predict vulnerability that learn from

the cohesion, complexity, and coupling metrics. The results indicate that structural infor-

mation from the non-security realm such as cohesion, complexity, and coupling is useful in

vulnerability prediction which minimizes the maintenance effort.

Another study proposed by Briand et al. [37] analyzed the correspondence between

object-oriented metrics and fault proneness. This research result is created based on a

few classes analysis. Gegick et al. [38] developed a heuristic model to predict vulnerable

components and complexity. The model was successful on a large commercial telecommu-

nications software and predicted vulnerable components with an 8% false positive rate and

0% false negative rate.

In another research, Varela et al. conducted a systematic study to collect code quality

features and perform an analysis of over five years of data [39]. They found almost 300

different source code features used by different organizations, practitioners, and researchers.

Among all analyzed attributes, complexity, coupling, and lack of cohesion were the most

prevalent quality features for software maintenance [1, 2]. They also reported the machine

learning techniques’ performance in the detection of code quality. Another study by Janes

et al. demonstrated that source code metrics could predict the fault-prone modules with

the help of the following quality features: Response Set for a Class (RFC) and Coupling

Between Object class (CBO) [40]. Dallal et al. utilized similar object-oriented features to

improve predictions using ML techniques [41]. Recently, Shin and William demonstrated

an approach to predict vulnerabilities using object-oriented code quality features, such

as complexity, coupling, and cohesion [42, 43]. All these efforts can reduce the risk of

18

generating bugs and failures, make code easier to maintain, and improve the overall quality

of software systems.

2.3.2 Machine Learning Approaches

Machine learning approaches are becoming increasingly popular in improving code quality

by automating code analysis and identifying code quality. These approaches can be used

to classify the impact of code changes on quality. Machine learning approaches are par-

ticularly useful in dealing with large and complex codebases, where manual analysis can

be time-consuming and error-prone. Several research on machine learning approaches has

been done. In a few research, Code quality was identified through a threshold or fuzzy-

based approaches. But machine learning techniques open a new arena for code quality

detection. One key challenge in using ML to classify software quality features is identifying

the most influential source code metrics to be fed into the ML algorithms. Chang et al.

identified some of the influential code metrics that impact software usability using fuzzy

logic [44]. Another study by Watanabe et al. was conducted to collect a software defect

dataset with 8-object-oriented code metrics from two projects and proposed a method to

do Cross Project Defect Prediction (CPDP) [45]. As an extension of this research, Rahman

et al. collected nine datasets with the same process but got different influential source code

metrics to improve the performance of CPDP in terms of costs [46]. However, collecting a

small number of object-oriented metrics limit any prediction accuracy [47, 48]. Wang et al.

discussed the importance of a significant number of software quality parameters in detect-

ing software defects. In a study, the author showed the dynamic version of AdaBoost.NC

with object-oriented code metrics improves the overall performance of software quality pre-

dictions [49]. Not only Wang but also Kehan et al. discussed what code metrics are needed

to choose for defect predictions and how such metric selection impacts the predictions [50].

19

2.3.3 Code Quality Analysis Techniques

Correlation analysis among features in software engineering is a technique used to identify

relationships between different code quality features. By examining the correlation between

these features, developers can gain insights into how changes in one feature might affect

others, and prioritize efforts to improve code quality accordingly. This analysis is useful in

understanding the overall quality of software code and identifying areas for improvement.

Many prior studies have used correlation in their software quality research [2, 51, 52].

Chowdhury et al. experimented with a hypothesis that complexity is positively correlated

to vulnerabilities. He also experimented with his other correlation hypothesis related to

coupling and cohesion [51]. The results showed empirical evidence that using correlation

in software engineering research is providing a better outcome. Another study by Marco

et al. found a correlation between object-oriented metrics and bugs [53]. The author

experimented with correlation with major, minor, and high-priority bugs. The results

showed a correlation between change coupling and defects higher than the one observed

with complexity metrics. Another recent work on software quality research experimented

with and evaluated the correlation between quality features and source code metrics [52].

The experimental results showed that unit complexity metrics correlate with vulnerability

and make stronger vulnerability predictors than coupling metrics.

2.3.4 Other Code Quality Research

There is very limited literature on code quality aspects in a specific environment such

as Model Driven Engineering (MDE), Unified Modeling Language (UML), etc. In one re-

search, Hutchinson et al. [54] conducted an empirical study of MDE projects in the context

of the industry by questionnaire and interviews. They reported on the understanding of

social and organizational factors on MDE usages and investigated factors of failure and

success aspects of MDE such as benefits of code generation.

In another research, Fernandez-Saez et al. [55] conducted interviews and questionnaires

20

on UML and software modeling with employees of a software company that works on

software maintenance projects. The results of this survey suggest that UML modeling is

beneficial, however, there are concerns about integrating modeling into the overall software

engineering approach. Nurgoho and Chaudron [56] analyzed the impacts of UML modeling

(class diagram and sequence diagram) in terms of defects density with software modules

that are not modeled and found that UML modeling reduces the defect density in code than

not modeled modules. However, there is a research gap in investigating the characteristics

of handwritten code (HC) in MDE and Non-MDE software sub-systems from open-source

platforms.

2.4 Machine Learning in Code Smell Research

Code smells indicate a violation of software design principles. Detecting code smells using

machine learning is comparably better technology to minimize violations of design and

improve software quality. Many prior studies used such concepts to find design flaws and

enable software redesign.

Over the last two decades, several research has been conducted to understand the reason

and the impact of code smells in code quality and technical debt management [57, 58]. In

code smell research, researchers used current or historical source code metrics information

or textual properties to exploit code smell [59, 60]. In terms of approaches, there are two

ways of approaches used by researchers. In one way, researchers used heuristic approaches

[60, 61, 62] and in other ways, researchers used machine learning approaches [60, 63, 64, 65].

In the machine learning approach, researchers apply traditional approaches and neural

network-based approaches [66, 67, 68]. In one study, Fabiano et al. focus on the comparison

of traditional heuristic approaches and supervised machine learning approaches for metric-

based code smell detection [60]. Kreimer [69] proposed a decision tree-based approach to

identify specific code smells (long method and large class) to visualize design flaws. The

technique is applied based on a few source code metrics and quality features which minimize

21

the power of the adaptive learning approach. Vaucher et al. [70, 71, 72] applied Bayesian

belief networks to detect God’s class (Blob class). The author used the box plot to perform

the discretization of God Class. The weak point of the research lies in the approach with

few numbers of classes analyzed. A similar approach was proposed by Amorim et al.

[73] to detect the Blob class, long parameter list, long method, and feature envy. The

author applied the decision tree technique rather than trying different machine learning

to prove that the decision tree works better than others. However, a detailed study was

done by Fontana et al. using different machine learning techniques including J48, JRip,

Random Forest, Naive Bayes, SMO, and LibSVM in predicting the severity of code smells

[74, 75, 76]. The paper reported each technique’s performance, but a weak point exists in

balancing different severity levels that were missing and might create bias in the results.

Several other systematic literature reviews showed the machine learning techniques for

identifying essential code smells that hurt the maintenance of software systems [77, 78, 60].

A systematic literature review on machine learning techniques for code smell detection by

Azeem et al. [79] considered 2456 papers published between 2000 and 2017. The paper

revealed a promising way to identify the search keywords and organize the research perspec-

tives. The results uncovered the predominant code smells, machine learning approaches,

and evaluation strategies. Another similar systematic literature review conducted on 319

papers by Zhang et al.[80] reported code smells. The study findings indicate that dupli-

cated code is the most identified code smell. This literature review reveals that all the

data used to detect code smells are objective rather than subjective. Similarly, Gupta et

al. [81] identified that code clone receives the most attention among all code smells. They

performed a literature review on sixty research papers. They found that most of the liter-

ature in the area of research is focused on code smell detection tools and techniques rather

than the actual impact of code smells.

Some studies report on code smell detection at the class and method levels. Pritom et

al. [65] reported on a study that detects class-level code smells using different machine-

learning techniques. Firstly, 4120 classes were selected for this study after pre-processing.

22

Six machine learning algorithms (Naive Bayes Classifier, Multilayer Perceptron, Logit-

Boost, Bagging, Random Forest, and Decision Tree) were used to predict change proneness

in the classes. The study results show that code smell is indeed a powerful predictor of

class change proneness. The models perform with 70% accuracy except for a few excep-

tions. Additionally, many researchers conducted similar studies to measure the attributes

of software systems’ good and bad aspects [82].

Lafi et al. [83] presented research that discussed the importance of detecting code

smells and different code smell detection machine learning algorithms. They discuss the

significance of maintenance issues related to code smell and finding optimal code smell

detection techniques. Further, a group of researchers investigated which code smells should

be considered while identifying code smells using machine learning approaches [84]. They

reported one class level and two method level code smell for software systems. They found

very high accuracy in the prediction model. Such as 98.57% accuracy for the data class,

97.86% accuracy for the God class, 99.67 % feature envy, and 99.76% accuracy for the long

method.

Rasool et al.[85] conducted a study on code smell detection techniques and tools for

mining code smells. They observed that most of the subject systems used for code smell

detection are open-source or local. They also reported a lack of evidence of which code smell

detection technique is appropriate. They conclude that code smell detection techniques

should be flexible on the subject systems. Additionally, code smell detection techniques

are classified into seven categories [86]. Many code smell detection techniques are based on

source code metrics. Further, the code smell threshold is determined from the source code

under analysis.

2.4.1 Traditional ML Approaches

In the past decade, traditional machine-learning approaches have been widely used for

code smell detection. These approaches involve extracting features from source code and

using classification algorithms to identify code smells. Techniques such as support vector

23

machines, decision trees, and random forests have been commonly applied. However, the

effectiveness of these approaches heavily relies on the quality of extracted features and the

choice of classification algorithms. The most common machine learning approaches used

to detect code smells are supervised methods [60, 87]. In such an approach, independent

variables (source code metrics as predictors) are used to detect dependent variables (code

smell of classes). The setup of those machine learning approaches varied based on the

dataset size, training-testing size, within-project testing, cross-project testing, etc. Besides

that, there are variations in ML approaches in terms of probabilistic approach or tree-based

approach.

Amorim et al. [73] evaluated the Decision Tree machine learning approach to detect code

smells (Blob, Long Parameter List, Long Method, Feature Envy). The results showed that

performance metrics F1 measure are above 67%. Similar results were reported by Fontana et

al. [63]. In his proposal for four different code smells (God Class, Data Class, Long Method,

and Feature Envy) and more than four different machine learning approaches, Naive Bayes,

Random Forest, Support Vector Machine, and Decision Tree are used. According to the

results, Decision Tree performs well in detecting code smells. A recent study by Dewangan

et al. [88] showed a different set of results where Random Forest becomes the best algorithm

to detect code smells. As there are differences in results, I will verify that with the collection

of code smells from popular and well-maintained repositories in this dissertation.

2.4.2 Neural Network-based ML Approaches

Recent research has explored the use of neural network-based machine learning approaches

for code smell detection. These approaches involve using deep learning techniques to au-

tomatically learn features from source code, such as through the use of convolutional or

recurrent neural networks. These approaches have shown promise in achieving high de-

tection accuracy and overcoming the limitations of traditional feature-based approaches.

However, they require large amounts of labeled data and extensive computational resources

for training. Several research used neural network-based ML approaches for code smell

24

detection[67, 66, 89]. In general, neural network models are being trained with a large

amount of data from the repository analysis and are required high-end machines contrary

to traditional Machine Learning techniques.

A recent work by Lin et al. showed why deep learning techniques are becoming popular

in code smell detection [66]. Another novel approach by Liu et al. showed neural networks

and advanced deep learning techniques could automatically select features of source code

for code smell detection, and could automatically build the complex mapping between such

features and target labels [67]. In both studies, the performance of detecting comparison

is better in terms of accuracy, precision, recall, and F1 score. Sharma et al. also apply

deep learning models to see the feasibility of such a technique and also investigate applying

transfer learning [89]. Experiments by this study showed that transfer learning is feasible

for code smells with performance comparable to that of direct learning.

2.5 Gaps in the Literature

The literature gap in the field of Mining Software Repositories is the limited support for

software engineering researchers in targeting mining software artifacts specially models

and non-textual artifacts for system development from open-source platforms. The current

textual-based mining tools, such as PyDriller and MetricMiner, have limitations in mining

non-textual artifacts, as well as having a smaller size of extractable data compared to

modeling artifacts. These deficiencies have limited the depth and breadth of the extractable

data, thus limiting the scope of the possible research. Also, the literature gap of the existing

research is the lack of efficient and effective issue mining, analyzing, and visualizing in

open source communities. Existing efforts on issue mining are limited to specific tasks

such as title prediction, and sentiment analysis. There is a missing effort in comparing the

performance of my developed tools with state-of-the-art tools in terms of execution time

and memory usage

Although neural network-based machine learning approaches have shown promise for

25

code smell detection, the literature gap lies in the comparison of their performance against

traditional machine learning approaches. Existing studies have primarily focused on eval-

uating the performance of either traditional or neural network-based approaches indepen-

dently, without directly comparing their performance. Moreover, it remains unclear which

approach performs better under different scenarios, such as varying levels of code reposito-

ries. Therefore, a systematic comparison between these approaches is needed to understand

the trade-offs and benefits of each and guide the selection of appropriate techniques for code

smell detection in practice.

The field of automatic software issue labeling has seen an increase in the use of deep

learning approaches in recent years. This is due to their ability to learn complex patterns

and relationships in data, which can be difficult for traditional machine-learning approaches

to capture. However, there is a literature gap in terms of comparing the performance of

deep learning approaches with traditional machine learning approaches in this specific task.

While some studies have reported promising results with traditional machine learning,

there is a need for more comprehensive and rigorous comparative evaluations to establish

the superiority of one approach over the other. This gap presents an opportunity for my

dissertation to contribute to the development of more accurate and efficient automated

software issue labeling techniques.

26

Chapter 3

ModelMine: A Tool to Facilitate

Mining Software Artifacts from Open

Source Repositories

This chapter presents ModelMine, a novel mining tool for extracting software repositories

and other artifacts from open-source platforms to uncover information about software de-

signs and practices in open-source communities. The proposed approach supports mining

software repositories, files, commits, issues, etc. This chapter is related to a research paper

that was published in the 2020 ACM/IEEE 23rd International Conference on Model Driven

Engineering Languages and Systems (MODELS 2020) conference [8].

Mining Software Repositories have opened up new pathways and rich sources of data for

research and practical purposes. This research discipline facilitates mining software-related

data from open-source repositories and analyzing software quality, defects, development

activities, processes, patterns, and more. Contemporary mining tools are geared towards

data extraction, and analysis primarily from textual artifacts and have limitations in rep-

resentation, ranking, and availability. This chapter presents ModelMine, a novel mining

tool that focuses on mining model-based artifacts and designs from open-source reposito-

ries. ModelMine is designed particularly to mine software repositories, artifacts, and com-

mit histories to uncover information about software designs and practices in open-source

communities. ModelMine supports features that include the identification and ranking of

open-source repositories based on the extent of the presence of model-based artifacts and

querying repositories to extract models and design artifacts based on customizable criteria.

27

It supports phase-by-phase caching of intermediate results to speed up the processing to en-

able efficient mining of data. We compare ModelMine against a state-of-the-art tool named

PyDriller in terms of performance and usability. The results show that ModelMine has the

potential to become instrumental in cross-disciplinary research that combines modeling and

design with repository mining and artifacts extraction.

URL: https://www.smreza.com/projects/modelmine/

3.1 Introduction

Mining software repositories have witnessed tremendous growth in the past few years. Soft-

ware repositories, their versions, and commit histories to contain significant information

about software development activities and contribute to establishing research agendas in

software development, cost estimation, testing, and quality assurance [90, 91, 16, 92]. With

such research advancement, the impact of modeling, code smells, code reviews, and pre-

diction of change-prone classes become more influential in software engineering research

[59, 93, 94].

Unfortunately, there is limited support for software engineering researchers who target

mining models and design artifacts for system development from open-source repositories

[95, 96, 97]. Mining tools like PyDriller [15] and MetricMiner [16] can extract data primarily

from either code or commit history, with limited support for mining non-textual artifacts.

Current textual-based mining tools expose some key deficiencies when mining repositories

and model artifacts. First, textual artifacts are relatively smaller in size compared to

modeling artifacts. Second, models and design artifacts are much less prevalent than code

in the majority of repositories. These deficiencies have limited the depth and breadth of

the extractable data, and have consequently limited the scope of the possible research. As

such, the ultimate goal of the paper is to propel research in software design and related

practices by facilitating a tool that enhances data extraction for model-based artifacts.

This paper presents a novel model-mining tool called ModelMine which facilitates min-

28

https://www.smreza.com/projects/modelmine/

Figure 3.1: Architecture of ModelMine Tool

ing models by analyzing model artifacts and repository metadata information. The tool

brings some key benefits to researchers in software design and modeling. First, it enables

the ranking of repositories based on the prevalence of model-based artifacts. Second, it

enables faster data extraction for non-textual artifacts using a phased data pre-fetching

approach. Third, it supports different filtering mechanisms to extract models from open-

source repositories without requiring extensive data mining knowledge or expertise.

To evaluate the usefulness of our tool, we compare our tool with the state-of-the-art

PyDriller [15], a Python framework in terms of execution time, memory consumption, cy-

clomatic complexity, and usability. Results show that ModelMine requires less time, and

memory, and can achieve similar results as PyDriller without having the coding knowl-

edge. In addition to that, ModelMine can mine repositories and file artifacts which are

unsupported in PyDriller.

The chapter is organized as follows. Section 3.2 presents ModelMine architecture, fol-

lowed by a demonstration of ModelMine user interfaces. We evaluate the tool compared

against a well-known tool named PyDriller in Section 3.4. In the last section, we conclude

29

the paper with future work ideas.

3.2 ModelMine Architecture

In this section, we discuss the architecture that we use to build ModeMine. The tool adopts

a six-phased approach (indexing, paging, query reduction, querying, data representation,

and results ranking) to mine model-based repositories, artifacts and commit history from

open source repositories. The architecture of the tool is visualized in Figure 3.1 and the

details are provided in the following subsections.

3.2.1 Indexing Phase

In this phase, ModelMine processes model extensions to generate a searchable code index.

The tool supports several types of code extensions (UML, XMI, UMP, and SysML, etc.)

which are required to index in a search query. To get proper search results for the model

file extension, we create indices one by one if there are multiple file extensions. A sample

query indices are shown in Figure 3.1(A).

3.2.2 Paging Phase

In this phase, the ModelMine tool works on paging the results. Since generating more

results require more time and server load, we introduce the paging concept to limit the

number of response results. If a researcher wants to generate more results, the ModelMine

tool allows them to perform that at the cost of time. Without pagination, the researcher

gets maximum set limit results. To request further results, ModelMine adds a new query

parameter named page. A sample example is shown in Figure 3.1(B) with the paging

concept.

30

3.2.3 Query Reduction Phase

In this phase, we implement a technique to overcome the issue limit per request. To

process each request, the ModelMine tool applies a query reduction technique that enables

a request to have a maximum number of results set by the administrator. Such a limit is very

important during the development of any mining tools [98]. However, to get a maximum

number of results per query, ModelMine introduces a new query parameter named per page

and it reduces approximately 70% of requests to get more results per request. A sample

example is shown in Figure 3.1(C).

3.2.4 Querying Phase

In this phase, ModelMine prepares the queries created in the last three phases. Two impor-

tant steps are required to secure the server. First, authentication, and second, blocking too

many requests within a short period of time. In authentication, the ModelMine tool uses

the OAuth2 − key/secret technique [99] to protect the tool from unauthenticated users.

For the second part, we introduce middleware to block multiple requests from the same IP

within a short period of time [100]. A sample example is shown in Figure 3.1(D).

3.2.5 Data Representation

Data representation is the phase where ModelMine prepares the resulting data and its for-

mat of presentation. In the background, ModelMine represents the response in JavaScript

Object Notation (JSON) format but for users, the responses are presented in a human-

readable format (table, CSV, excel, pdf). Additionally, ModelMine provides search and

sort operations to maximize user satisfaction with data presentation.

3.2.6 Results Ranking

The ranking of the results is used to position the responses on a scale. To ensure a better

result ranking system in ModelMine, we use the score concept to serialize the results. This

31

default score system represents the relevance of a search item relative to the other items

in the result set. However, this ranking system can be changed to repository popularity,

watchers, etc.

3.3 ModelMine User Interface

In this section, we discuss user interface features and the mining process in ModelMine. The

tool provides a simple extensible user interface to mine software repositories, artifacts, and

commit history. The tool has three unique user interface features: (1) repository search, (2)

artifacts search, and (3) commit history search to ensure the possibility of mining different

types of datasets for MSR research.

Figure 3.2: Model-based Repository Search

3.3.1 Model-based Repository Search

A typical first exploratory step involves searching for repositories with prevalent modeling

artifacts. Researchers can query code repositories with any model file extensions (i.e. UML,

XMI, UMP, etc.) as shown in Figure 3.2. In addition to that, ModelMine allows additional

32

criteria to query for repositories. Additional criteria include repository size, popularity,

primary programming language, and repository timestamped information.

3.3.2 Model-based Artifact Search

ModelMine provides another user interface to search model-based files in open-source repos-

itories. Figure 3.3 visualizes the user interface for this operation where researchers can

search model files with extensions. In addition to the extension, the user can also provide

a basic string that may exist inside the model file metadata.

Figure 3.3: Model-based Artifact Search

3.3.3 Model-based Commit Search

Once a subset of repositories is identified using the repository search feature described in

section 3.3.1, researchers are able to search for commit history. In a repository, there are

multiple types of files and ModelMine allows researchers to investigate specific extension-

based commit searches. This feature allows researchers to analyze the version of the files

of repositories as well as the behavior of software code updates of specific file extensions

for different projects [14]. The user interface for this operation is visualized in Figure 3.4.

33

Figure 3.4: Model-based Commit Search

3.4 Evaluation

The evaluation focuses on two dimensions; performance and usability. The performance

dimension is motivated by the fact that model-based artifacts are much rarer in reposi-

tories compared to code, and tend to be significantly larger in size. This often translates

to computational complexity in identifying and extracting model-based artifacts. The us-

ability dimension is motivated by the targeted audience; software design practitioners and

researchers who are not necessarily competent in data mining and data extraction.

For reference, we compare ModelMine with PyDriller [15], a well-established Python

framework for mining software repositories. We identify five unique tasks that are common

for the majority of MSR research. The tasks are as follows:

1. Task 1 (Size related): Retrieve the list of repositories that include at least one

model artifact developed in UML and the repository size is larger than 30 MB.

2. Task 2 (Time related): Retrieve the list of repositories that include at least one

model artifact developed in UML and the repository was created between January

2019 and December 2019.

3. Task 3 (File property related): Retrieve the list of artifacts with a specific file

extension: .uml.

34

4. Task 4 (Commit related): Retrieve the list of commits with a model artifact and

the repository has at least one model artifact.

5. Task 5 (File property + commit related): Retrieve the list of commits with any

model artifacts (any model-based file extension) and the repository has at least one

model artifact.

These tasks are implemented using both frameworks: (1) ModelMine and (2) PyDriller.

To compare the frameworks, we use two different types of metrics: (1) performance & (2)

usability metrics. Such evaluation metrics are used in the evaluation of different software

mining repositories tools [15, 101]. The reason behind evaluation is to check how easy the

tool is to learn and whether the results are provided in a meaningful way or not. The

metrics we used to evaluate our tool are provided in Table 3.1.

Table 3.1: Evaluation Metrics for Tasks

No Metric Type Metric Name Subcategory Shorthand Unit

1

Performance Metrics

Execution Time ET Second

2 Max Memory MM Kilobytes

3 Cyclomatic Complexity CCOM N/A

4

Usability Metrics Subjective Satisfaction

User Interface UI

Rating (1-5)
5 Learning Curve LC

6 Data Visualization DV

7 Error Reporting ER

In the performance and usability study, we select ten participants who are actively

working in software engineering research. Eight of them are doctoral students and two

of them are master’s students in computer science. We request participants to perform

a usability study on ModelMine and PyDriller and fill up a questionnaire that collects

all the usability metrics. The performance metrics are collected when the participants

used the tools to do the evaluation. The details of the evaluation are available online at

35

https://www.smreza.com/projects/modelmine/eval/. The results of the performance

analysis of each task are shown in Table 3.2.

The result clearly shows that PyDriller takes more time and memory than ModelMine.

The reason behind this result is that PyDriller fetches the whole git file of a selected

repository and then mines the commit information. But ModelMine fetches the information

directly without downloading any file. As there is no intermediate process, ModelMine takes

less time and memory. Note that, the current version of PyDriller [15] is unable to search

repositories (Task 1 & 2) or artifacts (Task 3).

Table 3.2: Performance Evaluation Results

Tasks Metrics ModelMine PyDriller

Task 1 (Size)

ET 0.793 s

Not supportedMM 701 KB

CCOM 5

Task 2 (Time)

ET 0.675 s

Not supportedMM 698 KB

CCOM 5

Task 3 (Property)

ET 0.633 s

Not supportedMM 611 KB

CCOM 4

Task 4 (Commit)

ET 1.422 s 3.8 s

MM 630 KB 24220 KB

CCOM 4 5

Task 5 (Composite)

ET 1.508 s 9.3 s

MM 660 KB 24616 KB

CCOM 4 4

In the usability study, we adopt a framework proposed by Altalhi et al. [102] where

36

https://www.smreza.com/projects/modelmine/eval/

usability analysis is designed based on a list of questionnaires presented to participants.

Table 3.3 lists the questions and their related category. Similar usability studies were used

to analyze overall tool ratings as well as task-based user satisfaction ratings [102, 103].

Table 3.3: Usability Study Questionnaires

Category Questions

User Interface
(1) How easy are the tools to navigate?

(2) How clearly do the tools provide results in a meaningful way?

Learning Curve (3) How easy are the tools to learn?

Data Visualization (4) How well does the tool about presenting the data and modeling

results?

Error Reporting (5) How relevant is the error reporting?

Participants are required to answer the given questions for each task with a scale from

1-5 to express their usability responses. The lower value represents less usability for each

criterion. Figure 3.5 shows the usability results of ModelMine compared with PyDriller.

The results clearly show that ModelMine has better usability in all usability criteria

than PyDriller. In the user interface & learning curve category, ModelMine has 50% more

ratings than PyDriller. The evaluation study also asks participants to provide comments

on their ratings. One participant mentions that ModelMine provides a platform to mine

data without worrying about the data collection part. Most of the MSR tools need ex-

tensive tasks to mine and have limitations in data preparation, ranking, and availability.

ModelMine has incorporated most of them to enrich the mining model experience from

open-source repositories. Another participant comments that ModelMine provides a faster

learning experience than PyDriller due to its easy UI design and better readability.

37

0 1 2 3 4 5
Ratings

User Interface

Learning Curve

Data Visualization

Error Reporting

Overall Rating
Us

ab
ilit

y
Cr

ite
ria

Usability Study Results

ModelMine PyDriller

Figure 3.5: Usability Study Results

3.5 Conclusion

Prevalent mining tools are geared towards textual artifacts and tend to exhibit poor per-

formance in mining models and software designs. Model-based artifacts are much less

prevalent and tend to be much larger in size when compared to codes and other textual-

based artifacts. This paper presents ModelMine, a tool crafted to facilitate mining models

and designs from open-source repositories. It enables the ranking of repositories based on

the presence of designs and models and uses phased data pre-fetching to enhance perfor-

mance and broaden the scope of the mining processes. To evaluate our tool, we compare it

with the state-of-the-art tool PyDriller and perform a usability and performance analysis

with ten graduate students. Results show that ModelMine performs better than PyDriller

in both analyses. The reported results demonstrate a significant potentiality of ModelMine

in MSR research. ModelMine fills an important gap in the repository mining landscape and

aims at realizing research that combines data mining and data extraction from open-source

repositories.

38

ModelMine tool can be extended with image-based model mining features. We plan to

mine image-based model files (i.e. png, jpg, jpeg, etc.) which will enrich MSR research.

We also plan to ensure the best search results by analyzing text inside those image-based

model files to understand the model semantically.

39

Chapter 4

Performance Analysis of Machine

Learning Approaches in Software

Code Quality Classification

This chapter presents a study on the classification of software code quality components in

software design using machine learning (ML) approaches. The objective of the paper is

to examine the relationship between source code metrics and code quality features such

as class complexity, coupling, and cohesion and to compare the performance of various

ML techniques for classification. This chapter is related to published research which was

published at the 2020 International Conference on Trends in Computational and Cognitive

Engineering (TCCE 2020) [9].

Software design is one of the core concepts in software engineering. This covers insights

and intuitions of software evolution, reliability, and maintainability. Effective software

design facilitates software reliability and better quality management during development

which reduces software development costs. Therefore, it is required to detect and maintain

these issues earlier. Class complexity, coupling, and cohesion are part of software quality

features. The objective of this paper is to classify class code quality features from source

code metrics using Machine Learning approaches and compare the performance of the

approaches. We collect ten popular and quality-maintained open-source repositories and

extract eighteen source code metrics that relate to code quality features for class-level

analysis. First, we apply statistical correlation to find out the relation between the source

code metrics and code quality features. Second, we apply five alternative ML techniques

40

to build complexity predictors and compare the performances. The results report that the

following source code metrics: Depth Inheritance Tree (DIT), Response For Class (RFC),

Weighted Method Count (WMC), Lines of Code (LOC), and Coupling Between Objects

(CBO) have the most impact on class complexity. Also, we evaluate the performance of

the techniques and results show that Random Forest (RF) significantly improves accuracy

without providing additional false negatives or false positives that work as false alarms in

complexity prediction.

4.1 Introduction

Software design is a process of creating software artifacts, primitive components, and con-

straints. Effective software design with object-oriented structures facilitates better software

quality, re-usability, and maintainability [32]. One of the quality factors is complexity. This

quality attribute is determined by many factors related to code structures, object-oriented

properties, and source code metrics [104]. The less the complexity of software, the less

the cost of software development will be [105, 91]. This motivates us to research software

complexity prediction.

In the software life cycle, the more the complexity is, the maintenance becomes costly,

unpredictable, and human-intensive activity [104]. Moreover, high maintenance efforts of-

ten affect software sustainability that many software systems become unsustainable over

time [106, 96, 107]. Therefore, software redesign becomes an essential step where the com-

plexity of the software needs to be reduced. Such action will enhance software maintain-

ability and reduce the associated costs [108, 95]. Having set the importance of complexity

detection for software redesign, we are motivated to predict class-level complexity from

source code metrics.

Some studies introduced McCabe complexity, a widely accepted metric developed by

Thomas McCabe to show the level of software complexity [36]. Another approach to the

calculation of software complexity was based on counting the number of operators and

41

operands in software. But the calculation and counting process of total operators and

operands is tedious [109].

In this paper, we use machine learning techniques to build a complexity predictor.

The reason behind using machine learning is to get rid of manual processes or code rules

to detect class complexity. Also, successful research on detecting software defect, and

vulnerability using ML techniques motivate us [2, 110]. We use five ML classifiers, analyze

the performance of the classifiers and report the best technique in complexity prediction.

The rest of the paper is organized as follows. We describe research methodology in

Section 4.2. Results & Evaluation are discussed in Section 4.3 and finally, we conclude the

paper in Section 4.4.

4.2 Research Methodology

This research has two main goals. First, analyze source code metrics to what extent it is

possible to predict complexity. Second, report the best ML approaches evaluating relative

effectiveness in the prediction of complexity from source code metrics. The details of

our research questions, data sets, and machine-learning approaches are discussed in the

following subsections.

4.2.1 Research Questions

This research is focused on answering two primary research questions.

Research Question 1: How source code metrics are correlated with quality attribute:

class complexity?

This question reveals the relationships between complexity and source code metrics,

such as the number of attributes, lines of code, etc. To answer this question, we apply

statistical correlation on 18 source code metrics and complexity collected from 10 different

source code repositories to find out the relationship.

42

Research Question 2: How accurately can machine learning approaches predict class

complexity from source code metrics?

This question is targeted to find out the accuracy of machine learning approaches in

class-level complexity detection. We apply 5 machine learning techniques and evaluate the

performance. This question reveals the best technique for detecting class complexity from

source code metrics.

4.2.2 Proposed Research Framework

The proposed research is built upon three steps. First, extracting source code metrics and

complexity from classes of large code bases. Second, prepare the dataset for complexity

prediction by applying the data cleaning process. Third, apply ML techniques and evaluate

to find out the best one.

(A) Software Quality Dataset Creation (B) Dataset Cleaning

(C) Training & Evaluation

- Minimum 5000 commits

- Minimum 100 contributors

- Minimum 300 stars

- Minimum 500 forks

Repository Selection

1. Spring Framework

2. Junit-5 Software Quality Features

Class Size LOC WMC ... ATFD

Class 1
...

Class N

10,104

5,254

...
3,134

1,120

94

41

...

...

28

19

Extract Software Quality Features
using CodeMR Static Analysis Tool

Remove
duplicate
datapoints

Remove
outliers
datapoints

Positive Training
Data

Dataset 1

Dataset N

...

Negative Training
Data

Sampling

Sampling

Classifiers

1. Naive Bayes

2. Logistic Regression

3. Decision Tree

Complextiy
Prediction

Models

Performance Metrics

1. Accuracy 2. Recall

3. F1 Measure

5. False Positive (FP) Rate

Best
classifiers
selection

Repository Search Criteria

- Primary Language: JAVA 3. Apache Kafka

4. Apache Lucene-Solr

5. Dropwizard

6. Checkstyle

7. Hadoop

9. Skywalking

8. Selenium

10. Signal Android

4. Precision

6. False Negative (FN) Rate
4. Random Forest

5. AdaBoost

Figure 4.1: Proposed Methodology

For the first step, we extract source code metrics and quality feature: complexity from

a large number of classes. The details of the dataset creation process are discussed in

subsection 4.2.3. In the second step, we apply the data-cleaning process to get a better-

43

learned ML model. Uncleaned data fed into machine learning techniques may result in

a bad model creation [111]. The details of the process are discussed in subsection 4.2.4.

For the final step, we select several ML techniques and train the dataset to detect highly

complex classes. We also assess ML prediction effectiveness using performance metrics.

The detailed picture of the study is shown in Figure 4.1.

Table 4.1: Selected Repositories with Metadata Information

Serial Repository Name Commits Contributors Stars Forks Lines of Code Classes

1 Spring Framework 21154 491 38200 25800 232447 5628

2 Junit5 6286 146 4000 899 16856 659

3 Apache Kafka 7787 691 16300 8700 119299 2463

4 Apache Lucene-Solr 33899 194 3600 2500 602185 8850

5 Dropwizard 5448 345 7700 3200 14268 508

6 checkstyle 9408 232 5400 7400 26030 454

7 Hadoop 24001 280 10600 6600 695992 10496

8 selenium 25354 518 18100 5800 36031 1175

9 skywalking 5753 245 14000 4100 61588 2531

10 Signal-Android 5777 206 13400 3400 116268 2861

4.2.3 Dataset Collection

The dataset for complexity prediction needs a diverse set of repositories. We search code-

base repositories using ModelMine tool [8] with the following criteria; a repository with

primary language Java, a minimum of 5000 commits, at least 100 active contributors, a

minimum of 3000 stars, and 500 forks. The selected repositories are shown in Table 4.1

with repository metadata information.

To validate the diversity of repositories, we consider a high number of stars and forks

as a proxy for the popularity of repositories and a high number of commits as a proxy for

maintenance. Also, we consider repository size as follows: low (1-1000 classes), medium

(1001-5000 classes), and high (more than 5000 classes) in size. This selection implies

44

Figure 4.2: Complexity Distribution among Repositories

diversity in the complexity of classes. Figure 4.2 shows the number of complexity classes

against each selected repository where 3 of them are selected from low, 4 of them are

selected from medium, and the rest of them are selected from the high volume of category.

(a) WMC, LOC vs Complexity (b) SRFC, CMLOC vs Complexity

Figure 4.3: Relationship of Input Variables with Target Variable

After extracting code repositories, we extract source code metrics for each class in the

repository using the CODEMR tool [4]. The tool provides 18 unique source code metrics

for each class. The details of the source code metrics are described in Table 4.2. The target

45

variable data is collected also for each class using the same tool with different processes.

The data is then combined using the class file name for training and testing purposes.

Table 4.2: Source Code Metrics Used in this Study

No Source Code Metric

Name

Description

1 Class Lines of Code

(CLOC)

The number of all non-commented and nonempty lines of

a class.

2 Weighted Method

Count (WMC)

The weighted sum of all class’ methods.

3 Depth of Inheritance

Tree (DIT)

The location of a class in the inheritance tree.

4 Number of Children

(NOC)

The number of associated sub-classes of a class.

5 Coupling Between Ob-

ject Classes (CBO)

The number of classes that another class is coupled to.

6 Response for a Class

(RFC)

The number of the methods that can be potentially invoked

in response by an object of a class.

7 Simple Response For a

Class (SRFC)

The number of the methods that can be potentially invoked

in response by an object of a particular class.

8 Lack of Cohesion of

Methods (LCOM)

Measure how methods of a class are related to each other.

9 Lack of Cohesion

Among Methods

(LCAM)

Measure cohesion based on parameter types of methods.

10 Number of Fields

(NOF)

The number of fields (attributes) in a class.

46

No Source Code Metric

Name

Description

11 Number of Methods

(NOM)

The number of methods in a class.

12 Number of Static

Fields (NOSF)

The number of static fields in a class.

13 Number of Static

Methods (NOSM)

The number of static methods in a class.

14 Specialization Index

(SI)

Measures the extent to which sub-classes override their an-

cestor’s classes.

15 Class-Methods Lines

of Code (CMLOC)

The total number of all nonempty, non-commented lines of

methods inside a class.

16 Number of Overridden

Methods (NORM)

The number of methods that are inherited from a super-

class and have return type as the method that it overrides.

17 Lack of Tight Class

Cohesion (LTCC)

Measures cohesion between the public methods of a class

and subtract from 1.

18 Access to Foreign Data

(ATFD)

The number of classes whose attributes are directly or in-

directly reachable from the class.

4.2.4 Dataset Cleaning & Analysis

Data cleaning is a critically important step for complexity prediction. To get optimal

performance results of ML approaches, we clean the data in two stages. First, by identifying

column variables that have a single value or very few unique values. In this stage, we also

remove the duplicate observations. In the second stage, we apply a box plot for each source

code metric and find the outliers. This technique helps to remove the biased data points

from the dataset.

After cleaning the dataset, we have come up with a much more differential and clear

47

dataset for complexity prediction. Figure 4.3a visualizes the relationship between weighted

method count, lines of code, and complexity. Figure 4.3b visualizes the relationship between

response for class, method lines of code, and complexity.

4.2.5 Machine Learning Classifiers & Evaluation Metrics

This subsection provides a brief overview of five alternative machine learning classifiers

used to build class complexity predictors. The machine learning classifiers are as follows:

(1) Naive Bayes (NB), (2) Logistic Regression (LR), (3) Decision Tree (DT), (4) Random

Forest (RF), and (5) Ada Boost (AB). These classifiers are well-known classifiers in building

vulnerability predictors and used in several similar research [2, 112, 113]. The statistical

performance of selected ML classifiers is calculated by performing a 10-fold cross-validation

technique. Cross-validation is a technique for assessing how accurately a predictive model

will perform in practice after generating the model [114]. The objective of such an operation

is to reduce the variability of the results.

4.3 Result and Discussion

This section describes the results of correlation analysis, and complexity prediction using

ML models and compares the performance of ML classifiers.

4.3.1 Correlation Results

The results of Pearson correlation reveal the impact of source code metrics on quality

attribute: complexity. Figure 4.4 visualizes the correlation between source code metrics and

complexity. It is clear in the figure that not any single metric highly impact on complexity.

This quality attribute is formed based on a combined behavior of source code metrics.

Among the code metrics, DIT, SRFC, RFC, WMC, CMLOC, and CBO have a moderately

high impact on complexity. Generally, classes with a higher number of WMC, LOC, or

48

DIT are associated with a high number of defects in the software and it becomes hard to

maintain over time. [110]. This issue is also mentioned by Subramanyam et. al. that

DIT and CBO have influenced class complexity [110]. In another research, Chowdhury

et. al. experimentally showed that WMC, DIT, RFC, and CBO code-level metrics are

strongly correlated to vulnerabilities that are directly generated from file complexity [51].

This answers research question 1.

Figure 4.4: Correlation among Source Code Metrics and Quality Attribute

4.3.2 Performance Results

In this subsection, we discuss the performance of ML complexity predictors. We use the

following evaluation metrics: accuracy, precision, recall, F1 score, FP rate, and FN rate to

compare the performances. At first, we generate confusion matrices from the validation

set. Table 4.3 visualizes the confusion matrices of the classifiers for predicting software

complexity.

We evaluate the techniques using the following metrics: accuracy, precision, recall, F1

score, FP, and FN rate, and the results are visualized in Table 4.4. Accuracy and precision

are the most used measurements in comparing performance. Table 4.4 and Figure 4.5 show

the accuracy and precision value of the selected classifiers. The result implies Decision Tree

49

Table 4.3: Confusion Matrices of Classifiers for Predicting Software Complexity

Classifier

Names→
Naive Bayes Logistic Regression Decision Tree Random Forest Ada Boost

Predicted→

Actual ↓
Low High Low High Low High Low High Low High

Low 6416 475 6766 125 6832 59 6820 71 6813 78

High 330 434 173 591 223 541 58 706 82 682

& Random Forest classifier has the highest accuracy and precision than other classifiers.

We also observe Random Forest has the highest recall & F1 score.

Table 4.4: Performance of Machine Learning Models

Serial Classifier Name Accuracy Precision Recall F1 Score FP Rate FN Rate

1 Naive Bayes 89 71 75 73 6.88 42.11

2 Logistic Regression 96 91 86 88 1.44 26.08

3 Decision Tree 98 95 96 96 0.90 7.53

4 Random Forest 98 95 99 97 1.00 1.95

5 Ada Boost 97 94 93 94 1.13 12.27

However, we evaluate the classifiers with another set of metrics: false positive rate and

false negative rate. The higher the FN rate, the model generates more false alarms. This

implies high complex classes are detected as low complex classes which are very risky. Figure

4.6 shows the relative performance of classifiers in terms of false positive rate and false

negative rate. One may have to tolerate many false positives to ensure a reduced number

of complex classes left undetected. As such, if the target is to predict a larger percentage

of high-complexity class files, then the Naive Bayes classifier can be evaluated favorably

although, in overall prediction, Random Forest and Decision Tree classifier performance

are better.

On the other hand, if the target is to predict a fewer percentage of highly complex

files as low to avoid risk, then obviously Random Forest might be a good choice as it has

50

Figure 4.5: Relative Performance of ML Classifiers

the lowest false negative rate. We focus more on false negative rates to reduce the risk of

detecting high complex classes as low. RF results indicate that it is a much better model

for the prediction of complexity because of its bootstrapping random re-sample technique

and working with significant elements. On the other hand, DT is working with all elements

as a result it creates more false alarms than RF. Therefore, Random Forest is the best

complexity predictor among selected ML techniques.

Figure 4.6: Relative FP and FN Rate of ML Classifiers

51

4.4 Conclusion

In this study, we analyze the software source code metrics which are most impacted the

class complexity. It is undoubtedly necessary to take proper action before classes become

more complex. Otherwise, it will become more expensive to test and fix if many classes

become highly complex. To reduce such risk and cost, it is necessary to build a complexity

predictor.

We start with extracting 38,778 classes of the dataset with 18 source code metrics,

we use five different machine learning approaches to train the dataset to classify high or

low-complex classes. In evaluation, we compare the performance of the approaches using

the evaluation metrics. The result shows that the RF classifier predicts high complexity

classes with an accuracy of 98% and also has the lowest FN rate of 1.95. Therefore,

Random Forest is considered the best classifier to detect class complexity. In summary, we

have made the following observation from our study. First, cross-validation implies a low

variance of performance metrics detecting software complexity. Second, the FN rate needs

to be reduced as much as possible to avoid the risk of detecting a high-complex class as a

low-complex class.

Finally, the observations and results from this study can be useful in software quality

research. Using ML automatic prediction on code quality will allow quality managers

and practitioners to take preventive actions against bad quality, faults, and errors. Such

proactive actions will allow software redesign and maintenance, ensuring better software

quality during development.

52

Chapter 5

Evaluating the Accuracy of Machine

Learning Algorithms for Code Smells

Detection

This chapter presents research on code smells of handwritten code (HC) in model-driven

engineering (MDE) software repositories, finds code smells and ML approaches in recent

studies, and compares the performance of neural network-based ML approaches with tra-

ditional ML approaches for code smell detection. The chapter examines the hypothesis

that the quality of HC developed in the context of MDE is negatively affected by unique

constraints, such as the need to integrate with automatically generated code and artifacts.

This chapter is related to published research in the 9th International Conference on Model-

Driven Engineering and Software Development (MODELSWARD 2021) [7] and submitted

research in the WILEY Journal of Software: Practice and Experience (WILEY SPE).

In model-driven engineering (MDE) software projects, large portions of the executable

code are automatically generated from designs and models. This generated code may

or may not be edited by the developers to achieve their development objectives. MDE

projects also include a significant amount of handwritten code (HC). This handwritten

code is developed under unique constraints, as it must integrate with generated artifacts

and code elements that are not directly developed by the engineers. These constraints

adversely affect codebase quality and maintainability. This case study aims to investigate

the hypothesis pertaining to the handwritten code quality developed in the context of

MDE. The study analyzes these unique code fragments and compares their characteristics

53

to handwritten code in repositories where code generation is not present. The study finds

that handwritten code quality in the MDE context suffers from elevated technical debt and

code smells. We observe key code smells that are particularly evident in this handwritten

code. These findings imply that code generators must optimize for human comprehension,

prioritize extensibility, and must facilitate integration with handwritten code elements.

Recent studies on code smells and machine learning approaches have shown promising

results in identifying and addressing software quality issues. Code smells are indicators

of potential problems in code that can lead to bugs and technical debt. This chapter

investigates the uses of different types of code smells and ML approaches in recent studies

and reports all the details. The result helped to find the most used code smells and ML

approaches for code smell detection. We compare the performance of the most used neural

network-based ML approaches with the most used traditional ML approaches for code smell

detection. The results show that neural network approaches are performing better than

traditional ML approaches on average in classifying code smell.

5.1 Introduction

Model Driven Engineering (MDE) envisions software development teams that focus primar-

ily on developing models that would generate all executable artifacts. This vision seems to

have been realized only in organizations that have invested in infrastructures to support

domain-specific modeling languages and custom code generators that produce all or most

of the required executables. These organizations can afford the overhead to support the

development of compilers, code generators, and custom-built design languages. Software

modeling is undoubtedly a core activity in software development. The precise form of mod-

eling varies from whiteboard sketches to models that support code generation. Further,

modeling in some form is a fundamental part of designing, understanding, communicating,

and analyzing software-heavy systems [115].

Today, many MDE practitioners generate only a portion of the required executable

54

artifacts. In these cases, engineers often write code that integrates with and extends the

generated code. This handwritten code is unique for many reasons. The code must integrate

with generated artifacts that may not be well-suited for integration. Code generators often

do not follow coding conventions and frequently generate counter-intuitive code that may

not be comprehensible [116]. Moreover, the originating models and their code generators

may not be designed to prioritize extensibility; further complicating the engineers’ tasks

[97].

In addition to the generated code and the handwritten code categories in MDE projects,

developers often modify code that was originally generated from models. This modified

code category is also unique; the code is neither written from scratch nor purely generated.

Software engineers are often constrained in the way they manipulate this code.

The goal of this study is to understand the quality characteristics of handwritten code.

Specifically, the study aims to characterize the maintainability of handwritten code frag-

ments in MDE projects. We investigate the hypothesis that handwritten code in MDE

contexts suffers from unique deficiencies that have a significant impact on its maintainabil-

ity.

The rest of the chapter is organized as follows. A background pertaining to MDE

projects and code smells is discussed in Section 5.2. The study design is presented in Section

5.3. Detailed results and discussion are presented in Sections 5.4 and 5.5 respectively. The

Threats to Validity are discussed in Section 5.6 and we conclude the chapter in Section 5.7.

5.2 Background

Model Driven Engineering (MDE) is a software development approach that emphasizes the

use of models to capture software design and implementation details. In MDE, models serve

as the primary artifacts throughout the software development lifecycle, from requirements

specification to implementation and testing. MDE has several benefits, including increased

productivity, better quality software, and improved maintainability. By using models to

55

capture design and implementation details, MDE reduces the amount of time and effort

needed to develop software systems. Additionally, MDE helps ensure that software is of

high quality by allowing developers to verify and validate models before implementing

them. Finally, MDE makes software easier to maintain by making it easier to modify and

update models as needed.

The benefits of MDE are clear; models are much easier to comprehend and provide a

better platform to support collaborations. Models tend to be more visual and can support

designs at variable levels of abstractions [117]. Moreover, there is significant potential

in improving software engineers’ productivity and the quality of the code they develop

by automatically generating executable artifacts. Today, only a few organizations have

succeeded in achieving this vision. Many MDE adopters generate some artifacts and rely

on software developers to extend the generated code. This handwritten code often consumes

the majority of the maintenance efforts [118]. As such, understanding this code quality is

fundamental to understanding the MDE value proposition.

The handwritten code in MDE projects is subject to unique constraints that can affect

code quality both positively and negatively. First, integrating with generated artifacts is a

negative impact on MDE. But on the other hand, having well-formed unambiguous designs

that are part of MDE artifacts would affect code quality positively [119]. Therefore, in this

study, we analyze the handwritten code in the MDE context with comparable code from

two sets of repositories; those that include designs and those that do not. In this study, we

collect Graphical Modeling Framework (GMF) and Eclipse Modeling Framework (EMF)

based MDE projects because both of these categories are popular, mature, and stable

MDE platforms with extensive code generating engines and customized templates [119].

The Graphical Modeling Framework (GMF) is a framework within the Eclipse platform.

It provides a generative component and runtime infrastructure for developing graphical

editors based on the Eclipse Modeling Framework (EMF) [120]. EMF’s purpose is to allow

data models to be created and then stored in an ‘ecore’ file. However, GMF’s purpose is to

translate existing EMF models and utilize GEF (Graphical Editing Framework) to build

56

a graphical editor automatically based on the content [121]. Projects that are developed

using GMF/EMF platforms include three unique classes of code. 1) Generated, code that

is generated exclusively from models. 2) Generated and Modified, code that is generated

but then later modified by engineers. 3) Handwritten code, this is code developed manually

by engineers that either extend or integrate with the previous two classes of code.

In this study, we hypothesize that code quality characteristics such as Code Smells (CS)

and Technical Debt (TD) are elevated in the MDE environment. CS is any surface symptom

in the source code that suggests deficiencies related to maintainability [122]. CS appears

because of bad software design and programming practices and indicates that code refac-

toring may be required [123, 124]. TD is a metaphor that provides short-term benefits but

may hurt long-term software maintainability. TD has both positive and negative impacts

on software systems. When TD is incurred intentionally to achieve short-term benefits can

be beneficial if the cost associated with TD is made visible and kept under control. How-

ever, unintentional TD could be detrimental to the maintenance of the software systems

[125, 126].

5.3 Study Design

This chapter presents the research questions, study design, data collection process for code

smells in handwritten code, and recent studies and the selection of ML approaches for

comparison.

5.3.1 Research Questions

The research is motivated by the following research questions.

RQ1: What are the quality characteristics of handwritten code in the MDE context?

How do these characteristics compare to handwritten code in Non-MDE contexts?

RQ2: What are the key code deficiencies in handwritten code in MDE projects? What

are the most prevalent code smells and their severity?

57

RQ3: How does the Technical Debt accumulated in Handwritten code in the MDE

context compare to Non-MDE contexts?

RQ4: What are the predominant code smells discussed in the recent literature on

machine learning-based code smell detection?

RQ5: Which machine learning algorithms are used to identify code smells in the recent

literature on code smell detection?

RQ6: How do neural network-based machine learning techniques for code smell detec-

tion perform when compared to traditional machine learning approaches?

5.3.2 Code smell Characteristics of Handwritten Code in MDE

Projects

This study identifies 15 sub-systems (sources are listed in Table 5.1), 5 identified as MDE

repositories (based on GMF/EMF framework), and 10 identified as Non-MDE repositories

that are further classified under two classes. The repository selection process is visualized

in Figure 5.1.

Repository Selection Criteria
S
el

ec
te

d

M
D

E
 P

ro
je

ct
s

- Project based on GMF/EMF

Project Type Criteria Project Properties Criteria

- WSO2 tools
- Aspirerfid
- Pldoctoolkit
- UNICASE
- Reuseware

- cdt-tests-runner
- Oryx-editor
- 101repo
- Activiti
- Poi

Objective

- Identify MDE &

- Identify Non-MDE

Search Repository
on Github

Selected
Repositories

- DD Repositories

S
el

ec
te

d

N
on

-M
D

E

Pr
o
je

ct
s

N
on

-D
D

D
D

- Selenium
- FastJson
- Mal
- Deeplearning4j
- Presto

- Primary Programming

- Primary Programming

- Project Contibutors must have - Secondary Programming

- Minimum 100 commits

- Minimum 1 year Project

- Minimum number of files

- Minimum Code Size 145K

- Non-DD

language Java

language Java

Language Javascript, C++,
python, php, C#.

Non-MDE Repository

repositories under
following category

Repositories 3 years of experience

Life Span

is 1000

Figure 5.1: Repository Selection Process

The first five MDE sub-systems are selected from a pool of 16 MDE repositories that

58

Table 5.1: Selected Repositories Name, its Type, and URL

Type Project URL

MDE

WSO2 Tools https://www.github.com/wso2-attic/tools.git

aspirerfid https://www.github.com/mouillerart/aspirerfid.git

pldoctoolkit https://www.github.com/spbu-se/pldoctoolkit.git

UNICASE https://www.github.com/unicase-ls1/unicase.git

Reuseware https://www.github.com/DevBoost/Reuseware.git

DD

cdt-tests-runner https://github.com/xgsa/cdt-tests-runner

Oryx-editor https://github.com/andreaswolf/oryx-editor

101repo https://github.com/101companies/101repo

Activiti https://github.com/Activiti/Activiti

Poi https://github.com/apache/poi

Non-DD

Selenium https://github.com/SeleniumHQ/selenium

Fastjson https://github.com/alibaba/fastjson

Mal https://github.com/kanaka/mal

Deeplearning4j https://github.com/deeplearning4j/deeplearning4j

Presto https://github.com/prestodb/presto

are reported in the study by He et. al. [119]. We select these repositories that meet the

following criteria, each repository is GMF/EMF framework-based, code size greater than

145k lines of code (LoC), predominantly written in the Java object-oriented programming

language, and the number of commits in GitHub is at least 100. This last condition is

meant to exclude trivial projects.

To determine whether a project lies within the GMF/EMF category, we checked whether

the project includes files with the extension gmfgen. The gmfgen extension is the generator

model of GMF and from which the source code is derived. Since a GMF project may contain

many sub-projects, only the sub-projects that are based on GMF/EMF are included in this

59

study. The details of the selection criteria of these 16 repositories are described in [119].

The next five repositories are identified as Design Driven sub-systems (DD) which are

selected from a pool of 4,650 identified in [127] to be model-heavy repositories. These 4,650

repositories are selected by mining all GitHub repository artifacts that include UML and

modeling elements [128]. From this list, we select the top 5 repositories that meet the

following criteria: code size is greater than 145K lines of code, written predominantly in

the Java object-oriented language, and have at least 100 commits in the GitHub repository.

The third set of 5 repositories are selected as reference repositories. These reposito-

ries are identified as Non-Design Driven (Non-DD). They are selected from the study by

Badreddin et al. [94]. These repositories include similar object-oriented code size, number

of commits, and similar programming languages and contributors’ profiles. We ensure that

the average expertise of the active contributors in this set is comparable to the expertise of

the contributors of the identified repositories. For this, we collect profiling information of

active contributors such as the history of their edits, and years of contribution in GitHub.

Table 5.2 lists all 15 subject code repositories and the number of their identified files, com-

mits, code size, and analyzed Lines of Code (LoC). The analyzed LoC column lists the

lines of code that were analyzed in this study. This excludes non-object-oriented code and

documentation.

5.3.3 Code Smells in Recent Studies

Article Search Strategy

A successful literature review synthesizes the existing research in a fair and seems fair

manner. Kitchenham et al.[129] provided evidence of the importance of search strategy in

a systematic literature review and how it affects the completeness of search results. We

compiled a search process to collect all the published literature relevant to our study focus.

Our search process is based on search keyword identification, resources to be searched, and

article selection criteria. Figure 5.2 depicts a bird’s eye view of our article selection process.

60

Table 5.2: Basic Information of Subject Software Repositories

Type Repository Commits Code Size File Category
No. of Files Analyzed LoC

Count % Count %

MDE

WSO2 Tools 2,609 1,009,000

GF 3,025 35.3 311,422 30.8

MGF 615 7.2 149,801 14.8

HC 4,934 57.5 550,709 54.6

aspirerfid 341 145,000

GF 397 25.7 37,657 25.9

MGF 55 2.8 3,124 2.15

HC 1,105 71.5 99,147 68.4

pldoctoolkit 493 182,000

GF 587 58.2 68,636 37.7

MGF 102 10.1 14,537 7.9

HC 320 31.7 30,076 16.5

UNICASE 8,506 289,000

GF 3,202 54.6 406,819 59.7

MGF 464 7.9 111,792 16.4

HC 2,196 37.5 161,789 23.7

Reuseware 104 526,000

GF 4,193 80.6 598,755 85.8

MGF 107 2.1 25,414 3.6

HC 903 17.4 73,912 10.6

DD

Cdt-tests-runner 19,589 1,003,261

HC

8,122 982,425 97.9

Oryx-editor 2,022 640,127 2,887 543,704 84.9

101repo 2,312 183,083 1,421 154,437 84.4

Activiti 7,741 207,339 3,078 192,812 93.0

Poi 9,157 450,906 3,575 427,326 94.8

Non-DD

Selenium 21,788 875,267

HC

4,150 775,268 88.6

Fastjson 2,673 168,880 2,537 149,186 88.3

Mal 2,249 178,870 1,567 166,296 93.0

Deeplearning4j 9,301 283,711 2,062 221,711 78.1

Presto 15,786 716,021 5,632 716,021 100

The following sections discuss the database, data query, and paper selection criteria in

further detail.

61

ACM (187)

IEEE Xplore
(63)

ScienceDirect
(150)

SpringerLink
(175)

Total articles
retrieved

(694)

Intial
Selection

(457)

Skimming
Selection

(91)

Final Selection
(26)

Exclusion Criteria
(Considered conference

& Journal articles)

Exclusion Criteria
(Skimming through title,

abstract, keywords)

Exclusion Criteria
(scanning full text)

Scanned
full text
articles

(26)

Engineering
Village

(65)

WILEY (54)

Figure 5.2: Article Selection Process

Identification of query keywords

To find relevant articles, we look for keywords related to our topic and synonyms of the

keywords. Such a strategy was applied in similar research [79]. The alternative spelling

and synonyms are given below:

• Code Smells: (“code smells” OR “code bad smells” OR “bad smells” OR antipat-

terns OR “design defect” OR “design-smells” OR “design flaw”)

• Machine Learning: (“machine learning” OR “supervised learning” OR “unsuper-

vised learning”)

• Detection: (detection OR identification OR “prediction model”)

• Software: (software OR “software engineering”)

Due to the number of boolean term restrictions in some data sources, we have tweaked

the number of keywords and created a smaller query string named Query2. As a result,

62

two different query strings have been devised to search. After combining all the keywords

mentioned above, we created a query string named Query1, which is reported in Table 5.3.

Table 5.3: Query Strings Applied to Extract Articles

Serial Query

Identifier

Query String

1 Query1 (“code smells” OR “code bad smells” OR “bad smells” OR an-

tipatterns OR “design defect” OR “design-smells” OR “design

flaw”) AND (“machine learning” OR “supervised learning” OR

“unsupervised learning”) AND (detection OR identification OR

“prediction model”) AND (software OR “software engineering”)

2 Query2 (“code smells” OR “antipatterns” OR “design flaw”) AND

(“machine learning”) AND (detection OR identification OR

“prediction model”) AND (software OR “software engineering”)

Data sources

Selection of proper data sources is crucial for conducting a systematic literature review

[130]. We consider six different databases as our data source. The detail of data sources

with their URLs is shown in B.1. The query identifiers and their query string are listed in

Table 5.3. Raw query strings applied as search queries are used to extract the potential

literature from the data sources. Table 5.4 shows the number of articles found in data

sources in each stage. Note that, the data sources are popular and recognized for software

engineering research and are used in many SLRs [79].

Article Selection Criteria

We take four steps for identifying primary studies. The steps described below are taken to

collect articles.

63

Table 5.4: Data Sources and Search Results

Serial Data source Query identifier Total re-

sults found

Skimming

selection

Scanning

selection

Final selec-

tion

1 ACM Digital Library Query1 187 151 25 7

2 IEEE Xplore Digital Libray Query1 63 47 13 9

3 ScienceDirect Query2 150 105 6 3

4 SpringerLink Digital Library Query2 175 52 6 1

5 Engineering Village Digital Library Query1 65 62 32 5

6 Wiley Online Library Query1 54 40 9 1

Total 694 457 91 26

1. Step 1: Query string from Table 5.3 is applied to search relevant articles. We have

added the date constraint(2015-2021) in our search process. The search results pro-

duced 694 articles in total against the query strings. The detailed search results for

each data source are reported in Table 5.4.

2. Step 2: Starting from the entire 694 lists, we consider the articles from the journal,

conference, symposium, and workshops, which resulted in a total of 457 publications

in the list of articles. Reports and white papers are excluded from this study.

3. Step 3: Having the previous list, we skim through the title, abstract, and keywords.

We excluded the articles that did not mention machine learning or reported code

smells. The output of this exclusion compressed the list into 91 research articles.

4. Step 4: In this step, we scrutinize all 91 articles and attempt to find out the following

criteria: code smell, dataset, independent variables, machine learning approaches,

and evaluation metrics considered or not. We finalize the list of 26 research articles

that cover the criteria mentioned.

Table 5.5 shows 26 primary studies considered in this study. In summary, all these

selected primary studies are from six data sources, published between 2015 and 2021, and

published in conferences, journals, symposiums, or workshops. To make it easy for the

future researcher, we list all the exclusion and inclusion criteria in the following sections.

64

Table 5.5: Reviewed Articles in the Literature

Code Source Article Title Author Year Type

S01

ACM

Detecting bad smells with ma-

chine learning algorithms: an

empirical study

Cruz et al. 2020 Conference

S02 Machine learning techniques for

code smells detection: an em-

pirical experiment on a highly

imbalanced setup

Luiz et al. 2019 Conference

S03 Sniffing Android code smells:

an association rules mining-

based approach

Rubin et

al.

2019 Conference

S04 Comparing heuristic and ma-

chine learning approaches for

metric-based code smell detec-

tion

Pecorelli

et al.

2019 Conference

S05 Smells are sensitive to devel-

opers! on the efficiency of

(un)guided customized detec-

tion

Hozano et

al.

2017 Conference

S06 Deep semantic-Based Feature

Envy Identification

Guo et al. 2019 Symposium

S07 On the role of data balancing

for machine learning-based code

smell detection

Pecorelli

et al.

2019 Workshop

65

Code Source Article Title Author Year Type

S08

IEEE

Xplore

An Empirical Framework for

Code Smell Prediction using

Extreme Learning Machine

Gupta et

al.

2019 Conference

S09 Code Smells Analysis Mecha-

nisms, Detection Issues, and Ef-

fect on Software Maintainability

Lafi et al. 2019 Conference

S10 Assessment of Code Smell for

Predicting Class Change Prone-

ness Using Machine Learning

Pritam et

al.

2019 Journal

S11 Comparison of Machine Learn-

ing Methods for Code Smell De-

tection Using Reduced Features

Hadziabdic

et al.

2018 Conference

S12 A Support Vector Machine

Based Approach for Code Smell

Detection

Kaur et al. 2017 Conference

S13 Comparison of Multi-Label

Classification Algorithms for

Code Smell Detection

Kiyak et

al.

2019 Symposium

S14 Comparing Heuristic and Ma-

chine Learning Approaches for

Metric-Based Code Smell De-

tection

Pecorelli

et al.

2019 Conference

S15 Identification of Code Smell Us-

ing Machine Learning

Jesudoss

A. et al.

2019 Conference

66

Code Source Article Title Author Year Type

S16 Detecting code smells using ma-

chine learning techniques: Are

we there yet?

Di Nucci

et al

2018 Conference

S17
Science

Direct

Code smell severity classifica-

tion using machine learning

techniques

Fontana et

al.

2017 Journal

S18 A large empirical assessment

of the role of data balancing

in machine-learning-based code

smell detection

Pecorelli

et al.

2020 Journal

S19 A machine-learning based en-

semble method for anti-patterns

detection.

Barbez et

al.

2020 Journal

S20 Springer

Link

Comparing and experimenting

machine learning techniques for

code smell detection

Fontana et

al.

2015 Journal

S21

Engineering

Village

Using developers’ feedback to

improve code smell detection

Hozano et

al.

2016 Symposium

S22 Predicting Code Smells and

Analysis of Predictions: Using

Machine Learning Techniques

and Software Metrics

Mhawish

et al.

2020 Journal

S23 Evaluating the Accuracy of Ma-

chine Learning Algorithms on

Detecting Code Smells for Dif-

ferent Developers

Hozano et

al.

2017 Conference

67

Code Source Article Title Author Year Type

S24 Applying Machine Learning to

Customized Smell Detection: A

Multi-Project Study

Oliveira et

al.

2020 Conference

S25 Improving performance with

hybrid feature selection and en-

semble machine learning tech-

niques for code smell detection

Jain et al. 2021 Journal

S26 Willey MARS: Detecting brain

class/method code smell based

on metric–attention mechanism

and residual network

Zhang et

al.

2021 Journal

Article Exclusion

This section presents how we exclude articles that are not directly relevant to this literature

review. There are some constraints reported as part of our exclusion criteria. The criteria

are listed below.

• Articles that were published outside the following areas: journal, conference, sympo-

sium, and workshop.

• Articles that were not written in English.

• Articles that did not have the full text on the web.

• Articles that were based on machine learning but not related to software engineering.

• Articles that were related to code smell detection, but no ML techniques were applied.

68

Article Inclusion

This section presents how we include articles relevant to this literature review. The criteria

for inclusion of papers are listed as follows:

• Articles that were published between 2015 and 2021.

• Articles that were purely written in English.

• Articles that reported evaluation metrics of machine learning techniques for code

smell detection.

The reason behind choosing articles between 2015 and 2021 is to consider missing papers

addressed in SLR by Azeem et al.[79] who conducted reviews between 2000 and 2017 on

the code smell domain.

Metadata collection

After collecting all the articles, we perform metadata analysis on the selected articles to

answer the research questions. The metadata we collect from the data extraction is listed

in Table B.2. We ensure the data extraction process with some questions. It provides

better data quality assessment during data extraction [131, 132]. The questions we set are

as follows:

• Are the code smell considered in the research article clearly mentioned?

• Is the dataset information clearly stated?

• Are the independent variables clearly stated?

• Are the machine learning approaches clearly defined?

• Are the evaluation metrics for selected machine learning clearly reported?

69

The process is applied for each article and finalized the data to answer research ques-

tions. Each of these questions was clearly answered with either “Yes” (1), “No” (0), or

“Somewhat” (0.5). We evaluate the “somewhat” in cases where the results can be derived

methodologically from the given results, even if they were not clearly stated. For example,

a research article clearly mentioned accuracy, precision, and recall, not F-score. In those

cases, F-score is possible to derive from the accuracy, precision, and recall values.

5.3.4 Data Collection for Code Smells in MDE Projects

MDE repositories contain three types of files: Generated Files (GF), Modified Generated

Files (MGF), and Handwritten Code (HC). In this study, we extract handwritten code files

from the selected MDE repositories by carefully excluding GF and MGF. This process is

achieved by a script [133] whose results were independently verified.

Study Variables

For each project, we consider 12 variables that directly relate to our research questions.

The variable’s description and relation with the research question are listed in Table 5.6.

The first six variables (#FMDE, #FDD, #FNDD, #LOCMDE, #LOCDD, #LOCNDD) are

selected under file & code metrics to compare the relationship between MDE & Non-MDE

repositories code quality.

The variables (#CSMDE, #CSDD, #CSNDD) represents CS value for each MDE, Design

Driven (DD) and Non-Design Driven (Non-DD) repositories. These variables provide total

occurrences of all CS in handwritten code to help answer the second research question.

The last three variables (#TDMDE, #TDDD, #TDNDD) are related to the third re-

search question and refer to TD in the selected repositories in MDE, DD, and Non-DD

repositories respectively.

We construct two complex variables related to density for further analysis in this

study. These variables are (#CSDMDE, #CSDDD, #CSDNDD, #TDDMDE, #TDDMDE,

70

#TDDMDE) and are described as Code Smell Density (CSD) and Technical Debt Density

(TDD) in MDE, DD, and Non-DD repositories respectively. The variables are constructed

by using the equations below.

#CSDX =
#CSX

#LOCX

(5.1)

#TDDX =
#TDX

#LOCX

(5.2)

Where X represents MDE or DD or Non-DD repositories.

Metrics and Thresholds

Metrics and thresholds are uniform for all subject repositories as listed in Table 5.6 and

5.8. We develop a custom program [133] that can read all the files & folders from the MDE

repositories iteratively using java program extension and constructs an array of files and

directories by filtering .JAVA or .java extension. To identify handwritten code files from

previous filtered results, we determine which files are GF and which files are MGF. We

classify the files that do not belong to Generated or Modified Generated as handwritten

code files. The classification process of the files is followed by some search criteria which

are shown in table 5.7.

Code Quality Metrics

This section describes code smells and technical debts that asses the code quality of the

subject code repositories.

Code Smell: We use PMD [134] a source code analysis tool to identify Code Smells.

We select six types of CS as listed in Table 5.8, which includes God Class, Excessive Class

Length, Excessive Method Length, Duplicate Code, Cyclomatic Complexity, and Excessive

Imports. The details of these CS can be found in PMD tool documentation [134]. These CS

are selected because they are frequently used in literature [125] [135] as TD indicators. For

71

Table 5.6: Variables Description

Variables Description Research

Question

(RQ)

#FMDE Total number of handwritten code files in Model Driven

Engineering repositories

RQ1

#FDD Total number of files in Design Driven repositories RQ1

#FNDD Total number of files in Non-Design Driven repositories RQ1

#LOCMDE Total number of lines of code in Model Driven Engineering

repositories

RQ1

#LOCDD Total number of lines of code in Design Driven repositories RQ2

#LOCNDD Total number of lines of code in Non-Design Driven repos-

itories

RQ2

#CSMDE Total Code Smells in Model Driven Engineering repositories RQ3

#CSDD Total Code Smells in Design Driven repositories RQ3

#CSNDD Total Code Smells in Non-Design Driven repositories RQ3

#TDMDE Total Technical Debt in Model Driven Engineering reposi-

tories

RQ3

#TDDD Total Technical Debt in Design Driven repositories RQ3

#TDNDD Total Technical Debt in Non-Design Driven repositories RQ3

instance, God Class, Duplicate Code, and Cyclomatic Complexity are related TD, which

influence the maintainability of source code [119].

In this study, all the CS are measured by the PMD tool except for Duplicate Code.

Duplicated Code Smell and its density are measured by SonarQube by identifying dupli-

cated block counts of a project divided by physical lines of code. Other CS densities are

measured by the CS counts divided by analyzed lines of code and multiplied by 100. This

72

Table 5.7: File Search Criteria

File Category Search Criteria

Generated Files (GF) Search in all files by these strings: ‘@generated’, ‘@Gener-

ated’

Modified Generated Files

(MGF)

Search in all files by these strings: ‘@generated NOT’,

‘@generated not’, ‘@Generated not’, ‘@Generated NOT’

Handwritten Code (HC) The files that do not belong to Generated or Generated &

Modified are considered as handwritten code files.

density refers to the number of CS per line of code.

Table 5.8: Detected Types of Code Smells

No. Code Smell Threshold

1 Large Class 1000 LOC

2 Large Method 100 LOC

3 Excessive Imports 30 imports

4 God Class N/A

5 Cyclomatic Complexity 10

6 Duplicate Code 100 duplicated blocks

Technical Debt: TD of subject software repositories are measured using the source

code analysis tool SonarQube. SonarQube computes TD based on the Software Quality

Assessment which is based on Lifecycle Expectations methodology (SQALE) [136]. The

SQALE is a methodology that organizes non-functional requirements related to code qual-

ity. Non-functional requirements are realized in terms of coding rules and issues in the

SonarQube implementation of the SQALE method. The details of this TD calculation by

SonarQube can be found in SonarQube documentation [137].

We perform similar calculations to measure TD density by dividing the TD counts by

73

Table 5.9: Code Smells & Technical Debt Results

Type
Repository

Analyzed

LoC

Code Smells
Technical

Debt (Days)
Large

Class

Large

Method

Code

Clone

Excessive

Imports

God

Class

Cyclomatic

Complexity
Total

MDE

WSO2 Tools 550,709 78 636 5,600 371 414 1,872 8,971 741

aspirerfid 99,147 10 103 1,000 40 40 257 1,450 166

pldoctoolkit 30,076 1 24 349 24 15 97 510 50

UNICASE 161,789 8 49 1,281 122 49 297 1,806 148

Reuseware 73,912 5 44 794 18 62 217 1,140 100

Total 915,633 102 856 9,024 575 580 2,740 13,877 1,205

Average 183,127 20 171 1,805 115 116 548 2,775 241

DD

Cdt-tests-runner 982,425 150 477 9,535 69 319 1,619 12,169 1,200

Oryx-editor 543,704 16 28 16,991 30 62 277 17,404 486

101repo 154,437 1 15 2,475 0 6 43 2,540 386

Activiti 192,812 19 77 890 40 66 302 1,394 122

Poi 427,326 96 311 1,628 131 238 1,362 3,766 322

Total 2,300,704 282 908 31,519 270 691 3,603 37,273 2,516

Average 460,141 56 182 6,304 54 138 721 7,455 503

Non-DD

Selenium 775,268 3 8 10,104 71 11 92 10,289 217

Fastjson 149,186 23 103 1,955 10 25 341 2,457 196

Mal 166,296 0 2 3,075 0 4 27 3,108 415

Deeplearning4j 221,711 79 374 2,699 184 160 1,381 4,877 720

Presto 716,021 57 181 2,536 744 114 693 4,325 420

Total 2,028,482 162 668 20,369 1,009 314 2,534 25,056 1,968

Average 405,696 32 134 4,074 202 63 507 5,011 394

analyzed lines of code and multiplying by 100. This density refers to the number of TD

per line of code. In other words, the number of TD is the total number of days it will take

to fix an issue per line of code.

In Figure 5.3 and 5.4, R1, R2...R5 represents a set of 3 types of the repository that

includes MDE, Design Driven (DD), and Non-Design Driven (Non-DD) respectively. This

repository set selection process for R1, R2...R5 has been conducted sequentially. For in-

stance, the MDE repository WSO2 Tools is selected with Cds-test-Runner and Selenium

from DD and Non-DD repository lists respectively.

74

5.3.5 Machine Learning Approaches in Code Smell Detection

In the selection of machine learning approaches, we consider 5 traditional and 5 neural

network-based approaches.

Traditional ML-Based Code Smells Detection

While several traditional ML classifiers have been previously used for code smell detection,

it is still unclear which of the traditional MLs represents the best model for code smell

detection. For this reason, in this work, we have used the following traditional ML algo-

rithms: Naive Bayes, Decision Tree, Random Forest, Support Vector Machine, and Logistic

Regression with a recently extracted data set deployed between 2016 to 2021.

Neural Network ML-Based Code Smells Detection

As there is a growing trend of applying neural network-based models in code smell research,

we have decided to apply some of the models to detect code smells. In this research, we

have applied the following neural network-based models: Multilayer Perceptron, Convolu-

tional Neural Network [138], Long Short-Term Memory, Recurrent Neural Network, and

Artificial Neural Network. To perform a fair comparison, we applied the same balancing

configuration, pre-processing and training strategies to all the machine learning models.

5.4 Results

Our assessment criteria are based on two primary measurements; measurements of CS and

measurements of TD. In the following, we report on these two measurements.

5.4.1 Results Based on Code Smells (RQ1 & RQ2)

The total number of Code Smells in handwritten code in the MDE context are significantly

reduced as shown in Table 5.9. The total number of CS increases with code size metrics

75

Table 5.10: Selected Machine Learning Approaches

Serial Machine Learning Algorithm Type

1 Naive Bayes (NB)

Traditional

2 Decision Tree (DT)

3 Random Forest (RF)

4 Support Vector Machine (SVM)

5 Logistic Regression (LR)

6 Multilayer Perceptron (MLP)

Neural-Network

7 Convolutional Neural Network (CNN)

8 Long Short-Term Memory (LSTM)

9 Recurrent Neural Network (RNN)

10 Artificial Neural Network (ANN)

in any type of repository. we found that handwritten code in MDE contexts is associated

with reduced CS (#CSMDE < #CSDD & #CSMDE < #CSNDD). Since the number of CS

are associated with elevated values when the code size increases, we calculate the frequency

of CS for each repository, and we formulate normalized CS metrics as CS density.

Figure 5.3 illustrates the results of six CS densities of MDE HC and Non-MDE reposi-

tory code. Figure 5.3(A) to Figure 5.3(F) illustrates Large Class, Large Method, Duplicate

Code, Excessive Imports, God Class, and Cyclomatic complexity CS density respectively.

In addition, we report on pairwise comparative analysis of CS in MDE handwritten code

and Non-MDE repository code.

Figure 5.3 shows that 60% of the HC from selected MDE repositories have elevated Large

method, Duplicate code, and Cyclomatic complexity CS densities. In the case of Excessive

imports and God class CS densities, 80% of the HC (MDE) have more CS density than

Non-MDE repository code. However, we observed the opposite results in Large class CS

density in 80% of the HC in selected MDE repositories. We also found that all MDE HC

76

to be associated with elevated CS density on average compared to Non-MDE repositories

(#CSD
MDE > #CSD

DD & #CSD
MDE > #CSD

NDD).

In normalized CS, we found that Large method, Excessive imports, and Cyclomatic

Complexity are the top 3 CS that are introduced in MDE HC. However, the God class and

Large class are the least introduced CS in the MDE environment.

R1 R2 R3 R4 R5
0.00

0.02

0.04

De
ns

ity

A) Large Class
R1 R2 R3 R4 R5

0.0

0.1

De
ns

ity

B) Large Method

R1 R2 R3 R4 R5
0.00

0.01

0.02

De
ns

ity

C) Duplicate Code
R1 R2 R3 R4 R5

0.00

0.05

0.10

De
ns

ity
D) Excessive Import

R1 R2 R3 R4 R5
0.00

0.25

0.50

De
ns

ity

E) God Class
R1 R2 R3 R4 R5

0.00

0.25

0.50

De
ns

ity

F) Cyclomatic Complexity

MDE Repositories DD Repositories Non-DD Repositories

Figure 5.3: Code Smells in MDE, DD & Non-DD Repositories

5.4.2 Results Based on Technical Debt (RQ3)

Table 5.9 shows the total number of Technical debts in MDE handwritten code and Non-

MDE repository code. We found that total TD in MDE HC is associated with reduced

TD. In other words, HC in an MDE environment introduces less TD than Non-MDE

environment code. To normalize the total number of TD in an MDE handwritten code

base, we compute TD density.

Figure 5.4 illustrates TD density results for MDE HC and Non-MDE repository code.

Overall, 80% of HC from selected MDE repositories have higher TD density than Non-MDE

repository code.

77

We also calculate TD elevation between MDE handwritten code bases and Non-MDE

repositories. There is a 13% TD density elevation in all 5 MDE HC compared to the DD

repository code (#TDMDE > #TDDD). However, TD elevation in all MDE HC compared

to Non-DD repositories is insignificant(2% elevation) (#TDMDE > #TDDD).

R1 R2 R3 R4 R50.00

0.05

0.10

0.15

0.20

0.25

Te
ch

ni
ca

l D
eb

t D
en

sit
y

(T
DD

)

TDD in MDE Repositories
TDD in DD Repositories
TDD in Non-DD Repositories

Figure 5.4: Technical Debt (TD) Result

5.4.3 Code Smells Considered in Recent Studies (RQ4)

In the preliminary result, we found a total of twenty-five various code smells from the

primary studies. Table 5.11 presents the frequency of uses of code smells in the primary

studies. One of the top uses of code smell is God class, 19 primary studies analyzed it.

Similar results were achieved before by another research [139].

Table 5.11: Code Smells and Their Frequencies Identified in the Primary Studies

Serial Code Smell Frequency Primary Studies

1 God Class 19 [S01], [S04], [S05], [S07], [S08], [S11], [S12],

[S13], [S14], [S16], [S17], [S18], [S19], [S20],

[S21], [S22], [S23], [S24], [S25]

78

Serial Code Smell Frequency Primary Studies

2 Long Method 19 [S01], [S02], [S04], [S05], [S07], [S08], [S09],

[S11], [S12], [S13], [S14], [S16], [S17], [S18],

[S20], [S21], [S22], [S23], [S25]

3 Feature Envy 16 [S01], [S02], [S06], [S09], [S11], [S12], [S13],

[S16], [S17], [S18], [S19], [S20], [S21], [S22],

[S23], [S25]

4 Data Class 11 [S05], [S09], [S11], [S12], [S13], [S16], [S17],

[S20], [S22], [S23], [S25]

5 Complex Class 6 [S04], [S07], [S08], [S14], [S18], [S24]

6 Spaghetti Code 4 [S07], [S14], [S18], [S24]

7 Speculative Gen-

erality

3 [S09], [S18], [S24]

8 Long Parameter

List

3 [S09], [S18], [S21]

9 Refused Parent

Bequest

3 [S01], [S09], [S18]

10 Lazy Class 2 [S09], [S24]

11 Parallel Inheri-

tance

2 [S02], [S09]

12 Middle Man 2 [S09], [S18]

13 Large Class 2 [S02], [S09]

14 Shotgun Surgery 2 [S02], [S09]

15 Inappropriate In-

timacy

2 [S09], [S18]

16 Divergent Change 2 [S02], [S09]

79

Serial Code Smell Frequency Primary Studies

17 Class Data

Should be Private

2 [S18], [S24]

18 Primitive Obses-

sion

2 [S05], [S09]

19 Swiss Army Knife 1 [S08]

20 Brain Class 1 [S26]

21 Brain Method 1 [S26]

22 Duplicate Code 1 [S09]

23 Dead Code 1 [S09]

24 Data Clump 1 [S09]

25 Switch Statement 1 [S09]

Other top code smells are as follows: Long Method, Feature Envy, Data Class, and

Complex Class are the most popular studied code smells. Whereas, Swiss Army Knife,

Brain Class, Duplicate Code, Dead Code, Data Clump, and Switch Statement are the

least studied code smells in the literature. A visualization of the top fifteen code smells is

provided in Figure 5.5.

5.4.4 ML Approaches Considered in Recent Studies (RQ5)

This research explores popularly used machine learning algorithms for detecting code smells.

Seventeen ML techniques are considered in primary studies and listed in Table 5.12 with

their number of uses.

Näıve Bayes, Decision Tree, and Random Forest have widely used ML algorithms for

code smell detection. Nearest Neighbor based techniques (KNN) [78] are also getting atten-

tion. However, we did not exploit which neighboring setting (i.e., the number of neighbors)

produces the best result. We further observed that neural network-based techniques such

80

God Class

Long Method

Feature Envy

Data Class

Complex Class

Spaghetti Code

Speculative Generality

Long Parameter List

Refused Parent Bequest

Lazy Class

Parallel Inheritance

Middle Man

Large Class

Shotgun Surgery

Inappropriate Intimacy

Code smells reported in the literature

0

2

4

6

8

10

12

14

16

18

Fr
e
q
u
e
n
cy

 o
f
co

d
e
 s

m
e
ll

o
cc

u
ra

n
ce

Figure 5.5: Code smells Reported in the Primary Studies

Naive Bayes Decision Tree Random Forest SVM Neural Network

Machine Learning Algorithm

0

2

4

6

8

10

12

Fr
q
u
e
n
cy

 o
f
M

L
te

ch
n
q
iu

e
s

a
p
p
lie

d
 f
o
r

su
b
je

ct
 c

o
d
e
 s

m
e
lls God Class

Long Method
Feature Envy
Data Class
Complex Class

Figure 5.6: Frequency of Machine Learning Models in Code Smells Detection

81

as Artificial Neural Network (ANN) [78] and deep learning[67] algorithms have recently

emerged too. We have compiled such kinds of algorithms to provide an overview of how

neural network-based algorithms perform in general.

We further investigate the uses of machine learning algorithms based on code smells,

which are visualized in Figure 5.6. The result depicts that Naive Bayes, Decision Tree,

and Random Forest are popular machine learning techniques. Results also show that three

machine learning techniques are frequently used to identify God class, Long method, and

feature envy code. For example, to identify God class code smells approximately fourteen

times Naive Bayes approach is used, whereas the Decision tree is used twelve times. Further,

it is visible in Figure 5.6 that there is an emerging trend of using Neural Networks [S02],

[S06], [S11], [S13], [S22], [S26] and Ensemble [S19], [S21] methods which might drive the

researcher community to focus on exploring such algorithms in the future.

Naive Bayes Decision Tree Random Forest SVM Neural Network

Machine Learning Algorithm

0

2

4

6

8

10

Fr
e
q
u
e
n
cy

 o
f
e
va

lu
a
ti
o
n
 m

e
tr

ic
s

in
 t

h
e
 li

te
ra

tu
re

Accuracy
F1
AUC
Recall
Precision

Figure 5.7: Frequency of Evaluation Metrics Used for ML Algorithms in Primary Studies

Note that, to apply machine learning approaches, datasets, and independent variables

are important. Table B.3 demonstrates the list of datasets considered in the recent studies.

We observed that the most popular dataset for the code smell research community is

82

Table 5.12: Machine Learning Algorithms Reported in Primary Studies

Serial Machine Learning

Algorithm

Primary Studies Frequency

1 Naive Bayes [S01], [S02], [S04], [S05], [S07], [S11], [S13],

[S14], [S16], [S18], [S20], [S23], [S24], [S25]

14

2 Decision Tree [S01], [S02], [S05], [S06], [S08], [S11], [S13],

[S16], [S17], [S20], [S22], [S23], [S24], [S25]

14

3 Random Forest [S01], [S02], [S05], [S11], [S13], [S16], [S17],

[S20], [S22], [S23], [S24], [S25]

12

4 SVM [S05], [S11], [S12], [S13], [S16], [S20], [S22],

[S23], [S24], [S25]

10

5 Neural Network [S02], [S06], [S11], [S13], [S22], [S26] 6

6 SMO [S05], [S11], [S20], [S23], [S24] 5

7 Logistic Regression [S01], [S02], [S08], [S25] 4

8 KNN [S02], [S11], [S25] 3

9 Ensemble [S19], [S21] 2

10 Linear Regression [S08] 1

11 Decision Table [S11] 1

12 Multi-Objective

Search-Based

[S09] 1

13 Gradient Boosting [S25] 1

14 One Rule [S24] 1

15 Polynomial Regression [S08] 1

16 GBT [S22] 1

17 Adaboost [S25] 1

83

Qualitas Corpus [140] which currently consists of 112 open-source Java systems. Regarding

independent variables use, Table B.4 list the variables with the recent studies and Source

code metric names along with their definition names can be found in Table B.5. One of

the notable studies is [S25] which study used 55 different source code metrics in a machine-

learning approach to detect code smells. We also found that three studies ([S05], [S21],

[S23]) used the lowest number of source code metrics.

5.4.5 Performance Comparison of ML Approaches (RQ6)

This section presents the results of our study comparing the performance of traditional

machine learning approaches and neural network-based models using accuracy as the eval-

uation metric.

Class-level Code Smell Results

Table 5.13 presents the accuracy of each machine learning approach we used in detect-

ing God classes and data classes. The support vector machine approach achieved the

highest accuracy of 81% in detecting God classes, while Naive Bayes had the lowest accu-

racy among the traditional machine learning approaches. On average, traditional machine

learning approaches achieved an accuracy of 68.4%. In contrast, the convolutional neural

network achieved the best accuracy of 76%, while the long short-term memory (LSTM) had

the lowest accuracy of 60% among neural network-based approaches. On average, neural

network-based approaches achieved an accuracy of 69.4%.

In terms of data classes, logistic regression had the highest accuracy of 70%, while Naive

Bayes had the lowest accuracy among the traditional machine learning approaches. On av-

erage, traditional machine learning approaches achieved an accuracy of 61.4%. Among

neural network-based approaches, the recurrent neural network (RNN) achieved the high-

est accuracy of 76% compared to others, with an average accuracy higher than that of

traditional machine learning approaches.

84

Table 5.13: Accuracy Comparison of Traditional and Neural Network-based Machine Learn-

ing Approaches

Code Smell
Traditional Machine Learning Neural Network Based ML

NB DT RF SVM LR AVG. MLP CNN LSTM RNN ANN AVG.

God Class 50 69 70 81 72 68.4 70 76 60 75 66 69.4

Data Class 35 66 68 68 70 61.4 51 67 64 76 73 66.2

Long Method 51 73 75 85 78 72.4 64 71 68 80 74 71.4

Long Parameter List 48 79 79 83 73 72.4 66 79 69 76 77 73.4

Method-level Code Smell Results

For the long method code smell, we found that support vector machine and RNN achieved

better accuracy in traditional machine learning and neural network-based machine learning,

respectively. On the other hand, Naive Bayes and multi-layer perceptron (MLP) had the

lowest accuracy in detecting long methods.

For the long parameter list code smell, support vector machine and convolutional neural

network provided the best accuracy in traditional machine learning and neural network-

based machine learning, respectively. Naive Bayes and MLP had the lowest accuracy in

detecting this code smell.

Overall, our results indicate that neural network-based machine-learning approaches

perform better than traditional machine-learning approaches in detecting code smells. Sup-

port vector machines and convolutional neural networks are the most accurate classifiers

for identifying code smells.

5.5 Discussion & Analysis

The study results demonstrate that both code smells and technical debt are significantly

elevated in handwritten code in MDE repositories. There are smells that were largely unique

to this handwritten code, namely, large methods, duplicate code, and excessive imports.

Interestingly, this code also had a significantly low number of large class code smells. This

85

suggests that refactoring for large methods would be relatively straightforward. Another

key finding is that TD density was the largest in HC code in the MDE context. Based on

our sample, we found evidence that designs by themselves tend to reduce TD, as evident

in the TD density counts for design-driven repositories. Further, this would suggest that

the elevated TD counts in MDE repositories are largely due to the unique constraints that

software engineers face in developing this code. Overall, this confirms the hypothesis that

handwritten code in the MDE context is subject to unique constraints that adversely affect

its quality and sustainability.

MDE Repositories

45.3%
DD Repositories

22.8%

Non-DD Repositories

31.9%

Figure 5.8: Average Code Smell Density Results

The first research question investigates the code quality characteristics. For that, we

found that code smell density and TD density are elevated in HC in MDE repositories. We

also observe that Cyclomatic complexity is elevated in HC MDE repositories. The second

research question focuses on investigating unique deficiencies in the handwritten code in

MDE contexts. This study finds that Large Method code smell density is the highest

86

overall in HC code, followed by duplicate code and excessive imports. Large method code

smells are often associated with Large class smells, but this was not the case in this study.

This suggests that classes in the HC MDE context have few numbers of methods but a

significantly large number of lines of code within each method. This is potentially due

to how these methods grow over time, or how these methods extend and/or integrate

with generated artifacts. The third research question investigates Technical debt measures.

Often, TD follows code smells as is the case in this study. TD count and density are

elevated in HC code in MDE contexts in all five subject MDE repositories.

MDE Repositories

35.1%

DD Repositories

30.4%

Non-DD Repositories

34.5%

Figure 5.9: Average Technical Debt Density Results

For RQ4, we have found that God Class [141], Long Method, Feature Envy [78], Com-

plex Class, and Data Class are the most studied code smells detected in recent studies

shown in Figure 5.5. Interestingly, all of these code smells are related to design. One im-

portant lesson from this study is that the identified code smells are essential because they

may trigger or hurt the maintenance of software systems. Identifying these crucial code

87

smells enables us to use various machine-learning algorithms to classify further these code

smells toward answering RQ6. Literature from other studies[142, 143] also reported similar

kinds of code smells in their studies.

The recent literature only used a few code smells, while the capabilities of machine

learning in the detection of the other code smells in this area by Pecorelli et al. [143] and

Zhang et al. [144] are not assessed adequately or only preliminary evaluated. Some of the

minimal used code smells, e.g., Class Data Should be Private [S18], [S24], Inappropriate

Intimacy [S09], [S18], Refused Parent Bequest [S01], [S09], [S18] are harmful to software

by several studies [145, 146, 147]. We recommend doing the empirical investigations using

machine learning approaches on the mentioned code smells, which create issues related to

harmfulness to codebases.

In regarding RQ5, we explore machine learning algorithms for code smells detection in

recent studies. The result shows that Decision Tree, Naive Base, Support vector Machine,

and Random Forest are the top four machine learning algorithms that are used in the

literature from 2015 to 2021 (Figure 5.6). However, this article depicts that most machine

learning algorithms can not provide accurate results in identifying code smells (Figure 5.10)

and lack implementation of ensemble & transfer techniques for code smell classification.

The interpretation is that providing the better performance of these algorithms requires a

handful of data sets to train the machine learning models. Several studies [78, 60, 148] agree

with this interpretation. We infer that some other novel machine learning models such as

ensemble [149, 150] and transfer learning [89, 151] need to be explored. It will create an

opportunity for future researchers to improve the code smell detection algorithms.

5.6 Threats to Validity

There are some threats to validity in this study that we categorize as construct threats to

validity and external threats to validity. Constructs threats refer to threats to which the

study measures what it claims to be measuring. However, external threats refer to whether

88

Naive Bayes Decision Tree Random Forest SVM Neural Network

Machine Learning Algorithm

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

God Class
Long Method
Feature Envy
Data Class
Complex Class

Figure 5.10: Comparative Accuracy Analysis of Machine Learning Models

we can generalize this study with different settings. This study does not deal with internal

threats to validity and we exclude it.

5.6.1 Construct Validity

The selected types of code smells are a subset of all the code smells that are predominantly

found in the code-base and indicate maintenance needed in the code-base. We do not claim

that the selected types of CS are a complete set for TD. Furthermore, we do not claim that

other CS that are not included in this study can not be TD indicators. However, it is

an open question to investigate which code smells are more suitable than others as TD

indicators. In the future, we plan to repeat this study with other code smells.

The second threat of this study is the precision of measuring CS by PMD and SonarQube

tool. We do not claim that PMD and SonarQube are the best tools to measure CS. There

are many source code analysis tools available to measure CS. We use SonarQube and PMD

tools for their popularity as source code analysis tools [152, 153]. We plan to minimize this

threat by using multiple code analysis tools and synthesizing the results.

The third threat is artifacts identification in MDE and Non-MDE projects which verifies

89

whether a selected project is MDE or Non-MDE. We conducted a semi-automated process

to identify MDE elements in the code base. We do not claim that our identification process

is the most appropriate one. This threat can be minimized by regenerating the code from

models and comparing the current version with the regenerated version. However, this

requires a lot of effort that can not be spent in this explanatory study.

The fourth threat is the comparison of TD in handwritten code (MDE environment)

with TD in non-MDE code whether reasonable or not. We argue that this is reasonable to

compare because we compare non-model-generated code quality with the non-MDE code.

This is comparable since the coding is similar in terms of code bases which are handwritten.

5.6.2 External Validity

There is the risk that the selected 15 repositories are not the best representation of the

general practices and other open-source repositories. This risk is introduced in the selec-

tion process. To minimize this risk, we selected repositories of sizes close to the median

repository size in GitHub. We also excluded repositories that are trivial. We defined trivial

repositories which have less than 100 commits and code size is less than 145k.

The second threat of this study is identifying MDE projects considering the GMF/EMF

framework. There are some other modeling frameworks such as Xtext that also can generate

executable code from the model. We use GMF/EMF because these are the most popular

modeling framework in the MDE context [154].

The third type of threat is identifying comparable repositories by their code size, the

number of commits in GitHub, and the primary programming language. We do not argue

that these criteria are the best criteria to select comparable MDE and Non-MDE reposito-

ries. In the future, we plan to include other criteria such as software domain and software

technology to identify comparable repositories.

The fourth external threat is we undermine the importance of assessing some confound-

ing factors such as the developer’s expertise. Assessing these types of confounding factors

will not give us a perfect perception of the MDE environment, but may provide us with

90

the developers’ circumstances under which the MDE environment could be beneficial.

Moreover, all the code repositories were selected from the GitHub open-source platform,

and conclusions from this study should be comprehended within the context of open-source

software.

5.7 Conclusion

This study aims to analyze code smell characteristics in Model-Driven Engineering (MDE)

repositories, recent research studies, and a comparison of machine learning approaches for

code smell detection.

First, we investigate the quality of handwritten code in MDE projects by comparing

it to codebases in non-MDE environments. The handwritten code in the MDE context is

unique because it must integrate with extent code that is automatically generated from

models. The study reveals that the handwritten code in MDE projects has elevated levels

of code smells and technical debt, resulting in poor design compared to similar non-MDE

codes. The code smells identified include God class, excessive imports, large methods, and

cyclomatic complexity are more prevalent in handwritten code in MDE repositories. In

addition, measures of Technical Debt were also elevated in this code.

Secondly, we examine recent literature on code smell research using machine learning

techniques from 2015 to 2021. The study highlights the predominant code smells and

the most commonly used machine learning algorithms for code smell detection. The code

smells identified as the most studied include God class, long method, feature envy, complex

class, and data class. Furthermore, decision tree, naive base, support vector machine, and

random forest were found to be the top four machine learning algorithms used in recent

literature.

Thirdly, we compare the performance of neural network-based approaches with tradi-

tional machine learning-based approaches for code smell detection. Our findings reveal that

neural network-based approaches achieved an accuracy of 69.4%, while traditional machine

91

learning approaches achieved an accuracy of 68.4%.

We reported key code smells that tend to be more prevalent in this unique handwrit-

ten code and recent studies; namely, large method, excessive imports, and duplicate code

smell. We attribute this to the constraints that are unique to the handwritten code in

MDE projects. These constraints include integrated and extended generated artifacts.

MDE repositories often use code generators that may produce code that is not intuitive

or comprehensible. Such factors, among others, contribute to the degraded code quality.

And since this handwritten code tends to consume a significant portion of the maintenance

effort, its degraded quality may cancel out or overshadow the benefits of automated code

generation. We also report key code smells in recent studies and highlights the need to

optimize code generators for human comprehension, and shows which machine learning

approaches are receiving higher accuracy in detecting code smells.

In future research, we plan to investigate the impact of code smells on software main-

tainability in MDE environments and develop recurrent neural network approaches for code

smell detection. We also plan to explore the relationship between code smells and software

security. By exploring these areas, we can gain a deeper understanding of the impact of

code smells on software quality in MDE environments and identify new approaches for

detecting and addressing code smells.

92

Chapter 6

Issue Label Identification: Towards A

Machine Learning-based Approach

This chapter presents research on software issues reported during community-based soft-

ware development. The research focuses on analyzing software issue-related artifacts to

understand the behavior of the software and improve its quality. The paper investigates

the performance of the proposed issue-related artifacts mining tool “G-Issue” with other

state-of-the-art tools. It also investigates the performance of software issue label classifica-

tion and compares it with existing research.

Software developers or contributors report issues related to bugs, errors, and missing

documentation during community-based software development. These issues are treated as

feedback and are crucial to enhancing software’s new features, documentation, and qual-

ity. If software issues are not being addressed with the correct developer, software quality

degrades and is unable to use in the end. Hence, it is essential to analyze the software

issue-related artifacts and classify them into correct labels to understand the behavior of

the software. However, there is a misclassification of labeling with these issues. Some

researchers used machine learning approaches to improve the classification but had low

accuracy due to small dataset training. This paper investigates the performance of the

proposed issue-related artifacts mining tool G-Issue with other state-of-the-art tools and

proposes a deep learning approach to classify labels from software issues. We also inves-

tigate issue lifetime and evolution of issues over time among well-known and maintained

repositories. The results show that G-Issue is faster in mining issue-related artifacts but

takes more memory than general Python API during mining issue mining and the proposed

93

approach can classify labels with good accuracy. The results depict that we can prioritize

issues based on issue labels, lifetime, and evolution. Such results may provide a new hori-

zon about issues that can help in issue management, developer assignment, and quality

management.

6.1 Introduction

Software development becomes distributed nowadays, and developers from anywhere can

contribute towards the software development [155]. Towards this development, some soft-

ware manages technical artifacts like commits, issues, and milestones which enables a social

community that attracts many developers to work on and deliver projects within timeline

[156, 157]. BitBucket [158], GitHub[159], GitLab [160] is the leader in distributed version

control and source code management (SCM), which combines the ability to develop, secure,

and operate software in a single application.

Source code management software is growing in features that allow faster development

through bug identification, error reporting, or other issues. One of the features is an issue

tracking system, often used to get user feedback related to proposed features, bugs, errors,

and problems. Also, the service allows the developers to assign an issue to a developer

[25] and automatic labeling issues to prioritize it better [30]. One example is shown in

Figure 6.1. In summary, this tracking system enhances the code quality and increases the

software’s lifetime.

Software maintenance is a costly and largely unpredictable human-intensive activity in

the software development life cycle. High maintenance efforts and expertise often eclipse

the cost and sometimes become the reason for unsustainable software [161]. Moreover, if

issues are not well managed during this maintenance, the software becomes smelly and

may introduce bugs, and obsolete in the long run [28]. To solve such issues, developers

worldwide may provide feedback on an issue and can contribute to fixing that. Therefore,

source code management with issue tracking can provide collaborative pathways to manage

94

Figure 6.1: Example of Labels Attached to Issues for the Spring-framework Project in

GitHub.

software, reduce software failures and improve software quality.

Very few research efforts have been conducted on mining [18, 162, 163], analyzing [164]

and visualizing [165] issues in open source communities. These efforts include issue title

prediction [21], automatic issue labeling [166, 167] and sentiment analysis of issues [168, 26].

However, there is a missing effort on mining issues faster, classifying labels from issues to

identify the correct category.

In this paper, we investigate the performance of issue mining of an in-house developed

tool, called G-Issue, and compare performance with other state-of-the-art tools [15, 128]

in terms of execution time and memory usage. Moreover, we investigate the performance

of the deep learning approach in classifying labels from issues to see the behavior of each

repository.

This chapter is structured as follows: Section 6.2 discusses the study design with re-

search questions. Section 6.3 shows results against each research question and discusses

elaborately and finally, we conclude in Section 6.4.

95

6.2 Study Design

The study aims to analyze issue-related artifacts from open-source repositories with the

purpose of mining, pre-processing, and visualizing the issues which can be effectively used

in practice. The perspective is of both researchers and practitioners who are interested in

analyzing the issues in terms of issue expectancy and evolution of issues. Specifically, we

aim to address the following research question:

Figure 6.2: Architecture of G-Issue Tool

6.2.1 Research Questions

This section discusses the research questions we used and how we plan to answer these

research questions. We are motivated to find the answer to the following research questions:

RQ1. What is the performance of the G-Issue tool compared to the state-of-the-art

tools in mining issue-related artifacts?

The RQ focuses on the performance evaluation of G-Issue and is motivated by the fact

that issue-related artifacts are crucial in repositories compared to the code itself and tend

96

to be significantly larger in terms of text size and issue comments. This often translates to

complexity in identifying and extracting issue-related artifacts. For reference, we compare

ModelMine with state-of-the-art tools Python API [18], GHTorrent [128, 10], PyDriller

[15], G-Repo [22] for mining issues from GitHub. To answer this research question, we

choose three individual tasks that are common for the majority of mining research with

available support in mining tools. The tasks are as follows:

1. Task 1 (Size related): Retrieve the list of 1000 issues that include at least one

open state issue, and the total number of issues is more than 1000.

2. Task 2 (Time-related): Retrieve the list of 1000 issues that include at least one

open state issue and were created before January 2019.

3. Task 3 (State related): Retrieve the list of 1000 issues now in a closed state.

These tasks are implemented using the following frameworks/tools: (1) G-Issue, (2)

Python API, (3) GHTorrent, (4) PyDriller, and (5) G-Repo. To compare the tools, we

use two performance metrics: (1) Execution Time and (2) Max Memory (MM). Such

performance metrics are used in evaluating different software artifacts mining tools [101,

15, 8]. The evaluation checks how fast and how much memory the tool takes to mine

issue-related artifacts.

RQ2. What is the average issue lifetime among different repositories?

This RQ describes the analysis of the time it takes to solve an issue for each repository

in our dataset on average. After collecting issues using G-Issue, we will find closed state

issues, their created time, and when it is closed. We reveal the average issue lifetime among

different repositories based on those data.

RQ3. What is the evolution of issues over time among repositories?

This RQ shows the evolution of open and closed state issues among repositories. To

prepare the results, we need to extract yearly issues and their state from all the issues. We

also plan to show Kernel Density Estimation (KDE) as a part of the probability density

function on our ongoing issue of creating time variables.

97

RQ4. How accurately the proposed deep learning approach can classify labels from

software issues?

This RQ reports our experiences with the application of a deep learning algorithm

to classify issues from open-source repositories into multi-label categories in a completely

automated way. The issue lists were selected from ten open-source repositories. We propose

a deep-learning classification algorithm for this multi-label classification problem.

With these research questions, we aim to provide a more profound knowledge of the

capabilities of G-Issue in mining and analysis of issue-related artifacts. The following

subsections report the architecture of G-Issue and the steps that we conducted to collect

the dataset.

6.2.2 G-Issue Architecture

In this section, we discuss the architecture of the issue mining tool G-Issue that we built

in-house lab setup and hosted on the online platform. The tool adopts several approaches

(indexing, paging, query reduction, querying, data representation, and results ranking)

to mine issue-related artifacts of repositories from open source repositories. The overall

architecture of the G-Issue tool is visualized in Figure 6.2.

In G-Issue, we provide a user interface with the mining capability to request GitHub for

issue-related artifacts and process that data. This service is under the parent tool called

ModelMine [8]. This tool provides a simple, extensible user interface to mine issue-related

artifacts of repositories. It has a different way of searching to ensure the possibility of

different mining types of datasets for MSR research.

Software issues have multiple types of artifacts, including state, milestone, assignee,

and G-Issue, allowing researchers to investigate specific state-based issue searches. This

feature allows researchers to analyze the different states of the issues in repositories and

the behavior of software code issues of different projects. The user interface of the G-Issue

tool is visualized in Figure 6.3.

98

Figure 6.3: Search & Result Screenshot of G-Issue Tool

6.2.3 Proposed Deep Learning Approach

Figure 6.4 illustrates the structure of our deep neural network-based classifier for detecting

issue labels. The model takes a vector of the issue’s full text as input, which is then

preprocessed using popular NLP techniques like stopword removal and stemming. Next,

we use the word2vec technique to convert the preprocessed text into numerical vectors,

which are then fed into our proposed deep-learning approach.

Our proposed model utilizes several layers such as embedding layers, dropout, and

LSTM with specific settings, such as recurrent dropout = 0.2 and activation = sigmoid.

99

Figure 6.4: Classifier for Proposed Deep Learning Approach

The use of NLP techniques is well-suited for our task due to recent advancements in NLP,

which enhance the capacity and flexibility of machine learning. Additionally, powerful

neural network layers can learn deep semantic relationships among input vectors, enabling

the classification of labels. Furthermore, NLP is ideal for parallel computation on modern

GPUs, which significantly reduces training time.

The output of the NLP is then passed through a dense layer that transforms the input

into a multi-dimensional vector.

6.2.4 Data Collection

One of the challenges in software research is identifying code repositories that have been

actively maintained for an extended period. We identify some characteristics that may give

us actively maintained repositories to search such code repositories. The characteristics are

as follows: a repository with a minimum of 5000 commits, at least 100 active contributors,

100

Table 6.1: Selected Repositories with Metadata Information

Serial Repository name Commits Contr. Time Selection No.

Open

Issues

No.

Closed

Issues

Total

Issues

1 Spring framework 22,208 531 2004-05 to 2022-08 1,391 24,593 25,985

2 Junit-5 6,621 161 2015-01 to 2022-08 135 2,828 2,963

3 Apache kafka 8,590 762 2012-08 to 2022-08 1,002 11,477 12,479

4 Apache lucene-solr 34,789 232 2016-01 to 2022-08 255 2,411 2,666

5 Dropwizard 5,702 361 2011-03 to 2022-08 26 5,518 5,544

6 Checkstyle 9,922 254 2013-09 to 2022-08 697 11,287 11,984

7 Hadoop 24,612 339 2014-09 to 2022-08 681 3,681 4,362

8 Selenium 26,532 558 2013-01 to 2022-08 117 10,597 10,715

9 Skywalking 6,242 315 2015-11 to 2022-08 62 8,525 8,587

10 Signal android 7,015 223 2011-12 to 2022-08 242 10,049 10,291

a minimum of 3000 stars, and 500 forks. We use the ModelMine tool [8] which is capable

of retrieving repositories with the mentioned criteria. A high number of stars and forks

imply the popularity of the repositories, and a high number of commits imply maintenance

throughout the software development life cycle. We choose the top ten repositories from

the results provided by the ModelMine tool. Overall, the selected repositories have code

changes in commits that will help us to extract the different source code metrics to reduce

threats to the generalizability of this study. In this study, we have mined repositories

and created a dataset composed of ten open-source repositories. Then we use the G-

Issue tool to mine issue-related artifacts. The whole dataset is now published in GitHub

https://github.com/sayedmohsinreza/CSIQ and available online [169]. The detailed

summary of the ten open source repositories and issues in each repository are reported in

Table 6.1.

101

https://github.com/sayedmohsinreza/CSIQ

6.2.5 Terminology

The software issues have some particular terminology we need to discuss to understand

the results. Occasionally, issue-related artifacts include reporting bugs, requesting new

features, refactoring code, and enhancement ideas. Also, the artifacts are typically created

by anyone with title & details and consist of the person’s information, created time, and

labels associated with the issues. If the issue is closed or modified, that record is also

documented in the specific issue.

Here are the details of some terminologies used in this study.

• Issue lifetime - Time from the first opening of the issue to the first closing of the

issue.

• Opened issue - Newly created issue. Each issue is opened only once during its

lifetime.

• Closed issue - issue that is marked closed in the issue tracking system. In practice,

an issue might be reopened and closed again, but here we use only the last closing

event.

6.3 Results & Discussion

In this section, we report the results and analysis of the research questions mentioned in

Section 6.2.1.

6.3.1 Performance Evaluation

This section discusses the results of the performance of G-Issues compared to other state-of-

art-tools. The performance evaluation results among the tools are visualized in Table 6.2.

Such a result provides an idea of which tool performs better during mining issue-related

102

artifacts and how much fast and memory the tool takes to mine selected repositories. All

these results are produced with the setup to mine 1000 issues from repositories.

Table 6.2: Performance Comparison of Different Tools

Tasks Metrics G-Issue Python API GHTorrent PyDriller G-Repo

Task 1∗ ET ∗∗ 12.1s 18.2s 46.2s Not Not

(Size) MM∗∗∗ 18223KB 10211KB 67033KB supported supported

Task 2 ET 30.22s 41.7s 88.3s Not Not

(Time) MM 20340KB 16547KB 74031KB supported supported

Task 3 ET 11.8s 15.5s 102.3 Not Not

(Issue-related) MM 19967KB 14566KB 63654KB supported supported

* Task details are listed in Section 6.2.1

** ET - Execution Time

*** MM - Max Memory

Table 6.2 shows that in each task, G-Issue mines a list of 1000 issues with the low-

est execution time while GHTorrent mines with the highest execution time. Python API

has the lowest memory utilization during mining, and GHTorrent has the highest utiliza-

tion. Among state-of-the-art tools, PyDriller and G-Repo have focused on mining software

repositories and have no feature to mine issue-related artifacts.

6.3.2 Analysis of Issue Lifetime

In this section, the results of issue lifetime among repositories are discussed and portrayed

in Table 6.3. The table shows the average days it takes to solve an issue among repositories.

Here “Average days to solve” means how many days it takes to close the issue by developers

since the issue creation date.

From Table 6.3 results, we can see that Spring Framework project has the highest

average of 1220 days to solve an issue where skywalking developers use only 37 days.

spring-framework commit count is less than haddop project but average issue lifetime in

103

Table 6.3: Statistics on Days it Takes to Solve an Issue

Project Name Mean (days) Minimum (days) Maximum (days)

1. spring-framework 1220 0 5491

8. selenium 551 0 2574

10. signal-android 215 0 3010

2. junit-5 162 0 2144

3. apache-kafka 104 0 2467

5. dropwizard 101 0 3221

7. hadoop 98 0 2158

4. apache-lucene-solr 91 0 2030

6. checkstyle 57 0 2496

9. skywalking 37 0 1840

haddop is twelve time less than spring-framework. For each repository, the minimum issue

lifetime day is zero, which implies that within the issue created date, developers solve the

issue and close that.

However, Figure 6.5 visualizes the boxplot of issue lifetime among repositories. From

the figure, it is noticeable that spring-framework and selenium has the highest mean of

days to solve an issue. Among all repositories, one issue from spring-framework has taken

more than 5000 days / 13 years to solve. Here, we need to keep in mind that some issues

are closed and reopened later on to receive more feedback on that issue.

6.3.3 Evolution of Issues

In this section, we discuss the evolution of issues among repositories. The results of the

evolution of issues are visualized in Figure 6.6 showing a histogram of issue count per year

in terms of open or closed state among repositories.

In every case, the graph implies that new issues are increasing in number during the

104

0 1000 2000 3000 4000 5000

No. of days to solve an issue

1. spring-framework

6. checkstyle

8. selenium

10. signal-android

7. hadoop

9. skywalking

4. apache-lucene-solr

3. apache-kafka

2. junit-5

5. dropwizard

Pr
o
je

ct
 N

a
m

e

Figure 6.5: Box Plot of Days it Takes to Solve Issues among Repositories

software evolution. This number increases and becomes higher when the close-state issue

rate declines. spring-framework, junit-5, checkstyle and signal-android show a recent decline

in the rate of closed-state issues and an upward trend of new issues. The KDE density value

represents an increasing number of issues reported by developers or contributors.

105

Figure 6.6: Evolution of Issue-related Artifacts Over Time among Repositories

106

Also, we have seen a pattern of the zigzag move of issues over the years among the

repositories. It implies that when new issues are introduced within that year, it tries

to be solved and closed the issue. Hence, continuous maintenance through issue-related

artifact analysis prepares software for subsequent releases with improved software quality

and minimized bugs in reporting.

6.3.4 Performance of Proposed Deep Learning Approach

In this section, we present the performance results of our proposed deep learning approach

and compare it with existing research. We provide a detailed performance comparison

between the two approaches in Table 6.4 and highlight the superior accuracy achieved by

our proposed method.

Our proposed deep learning approach outperforms the existing approach in terms of

accuracy. Specifically, it achieves an accuracy of 81.29% in classifying issue labels, while

the existing approach achieves an accuracy of 76.8%. It’s worth noting that our proposed

approach can classify multi-labels with a higher level of accuracy (266 unique labels), while

the existing approach can only classify bug-related labels only.

Table 6.4: Performance of Proposed Approach Compared with Existing Research

Serial Evaluation Metrics Proposed Approach Random Forest Algorithm*

1 Accuracy 81.29% 76.8%(Average)

2 F-measure 79.11% 70.7%(Average)

* Pandey, N., Sanyal, D.K., Hudait, A. and Sen, A., 2017. Automated classification of software

issue reports using machine learning techniques: an empirical study. Innovations in Systems

and Software Engineering, 13, pp.279-297.

107

6.4 Conclusion

Software issue maintenance is crucial during software development and source code management in GIT.

To do software maintenance, developers need feedback in the form of issues. If the issue maintenance is

not handled properly, the issues will not be solved and in the long run, the code repository will generate

more issues. Most source code management software nowadays provides issues to report bugs and share

ideas for new features.

In this study, we investigated the process of mining, analyzing, and visualizing issue-related artifacts

through a tool called G-Issue and developed a deep-learning approach to classify the issue labels. The

study primarily compares the performance of the G-Issue tool with state-of-the-art tools. Moreover, we

investigate the lifetime and evolution of issues in well-known open-source projects. Finally, we compare

the performance of the proposed approach with existing research.

The results show that the G-Issue tool performs a minimum of 33% faster than other state-of-the-art

tools. However, in memory management, G-Issue is higher than the Python API but lower than other tools.

Besides, the results show that highly popular & forked repositories have more issues; on average, it takes

more days to solve an issue. In terms of evolution, if the rate of the closed issue is declining, there is a high

chance of introducing new issues. And finally, the performance results demonstrate the effectiveness of our

proposed deep learning approach and its potential to improve the accuracy of issue label classification. Our

proposed approach provides a more comprehensive and accurate classification of multi-label issues, which

is critical for effective issue management and resolution. Such results may provide new knowledge about

issues-related artifacts and help team leaders with issue assignments for better software development.

In future research, we plan to analyze the issue text and apply more sophisticated natural language

processing approaches to identify issue labels, improving the automatic issue label tracking system.

108

Chapter 7

Conclusion

Software systems continue to become more complex and have large code bases. Maintaining code qual-

ity and ensuring long-term functionality has become increasingly critical for large software companies.

Refactoring and redesign activities should consider both short-term and long-term implications and aim to

predict the future evolution of the code base. However, the process of software maintenance or evaluating

code quality often involves managing the repository through code quality tools, which can take time and be

challenging when dealing with large code bases and making changes are done so frequently. Current tools

lack modern techniques like machine learning-based classification capabilities for maintaining software.

One of the obstacles to the process is data related to software artifacts due to the lack of user-friendly

tools and manual data organization, which is time-consuming. Also, limited machine learning techniques

are applied toward code quality classification, code smell detection, and issue label classification.

To address this gap, this dissertation presents a comprehensive study of the use of sophisticated tech-

niques in software mining repositories and applied machine learning approaches to code quality classification

and code smell detection to enable software maintenance activities. Additionally, natural language pro-

cessing techniques are implemented to classify the issue’s label. For data collection for machine learning

approaches, I investigate what makes a mining tool that can extract software artifacts from open-source

repositories faster and compare the performance with a state-of-the-art tool.

7.1 Contributions

The first contribution of this dissertation is the development of ModelMine, a novel mining tool designed

to extract repositories, codes, model-based artifacts, and designs from open-source repositories. The tool

supports phase-by-phase caching of intermediate results to speed up the processing and enable efficient

data mining. I compare ModelMine with a state-of-the-art tool in terms of performance and usability,

and our results demonstrate that ModelMine has the potential to become an instrumental tool for mining

software repositories. Using the ModelMine tool, I create a synthesized dataset from open-source reposito-

ries, containing code quality characteristics, code smell information, and issues from selected open-source

109

repositories. The collected dataset is created from several popular and quality-maintained repositories

and a significant number of source code metrics. The dataset provides a valuable resource for data-driven

approaches to the early detection of software quality degradation and code smell detection. The second

contribution of this dissertation is the application of machine learning approaches to classify code quality

attributes using source code metrics and the comparison of their performance. The results showed that

the Random Forest ML technique significantly improves accuracy without generating false negatives or

false positives. The third contribution is the investigation of unexpected code smell generation in software

repositories, where I analyzed the unique characteristics of handwritten code developed in the context of

model-driven engineering and discovered that MDE handwritten code quality is impacted by a higher level

of technical debt and code smells. Also, I investigated the recent development in ML techniques for code

smell detection and compared the traditional and neural network-based machine learning approaches in

code smell detection. The final contribution is the development of a deep learning approach for issue label

classification. The results indicate that the proposed deep learning technique can classify the issue label

with an accuracy of 81% which outperforms the existing approaches in issue label classification.

7.2 Future Research Plan

Overall, the results of this dissertation have practical implications for software quality assurance, main-

tenance, and issue management, and provide a foundation for continuous software maintenance and re-

engineering. In the future, I want to continue my dissertation research with an extensive study of software

maintenance activities. My future research plan is as follows:

1. Apply Natural Language Processing (NLP) techniques on code to understand the qual-

ity aspects of a repository.

This research plan proposes to investigate the application of NLP techniques to software code anal-

ysis, with a particular focus on understanding the quality, bugs, and defects of a code repository.

The goal of this research is to develop a methodology for using NLP techniques to extract mean-

ingful insights from the vast amount of textual data associated with software code, including code

comments, documentation, and issue reports. The research will involve designing and implementing

a prototype NLP-based tool and conducting experiments to evaluate its effectiveness in identifying

and addressing software bugs and defects. The results of this research could have significant impli-

cations for the field of software engineering, particularly in the areas of software quality assurance

and testing.

110

2. Do research on reinforcement learning in software maintenance activities. Another future

plan is to conduct research on the use of reinforcement learning techniques in software maintenance

activities, specifically focusing on using Abstract Syntax Tree (AST) paths generated from code.

AST paths are a way of representing the structure of code, which can be used to analyze and

understand its behavior.

The goal of this research is to investigate how reinforcement learning can be applied to AST paths in

order to automate and improve software maintenance tasks. By training an agent to learn from AST

paths, it may be possible to automatically identify and fix bugs, optimize code, and perform other

maintenance tasks. This approach has the potential to make software maintenance more efficient

and effective, as well as reduce the need for human intervention.

3. Do research on virtual reality-based software data visualizations for software mainte-

nance.

Virtual reality (VR) has the potential to transform the way we visualize and analyze complex

software systems. This research plan proposes to investigate the use of VR-based data visualizations

for software maintenance. The goal of this research is to develop a novel approach to software

maintenance that leverages the immersive nature of VR to provide developers with a more intuitive

and efficient way to analyze and understand software systems. The research will involve designing

and implementing a prototype VR-based data visualization tool and conducting user studies to

evaluate its effectiveness. The results of this research could have significant implications for the field

of software engineering, particularly in the areas of software maintenance and debugging.

4. Do research on transfer learning applied to software code with and without adding

pre-trained models.

Transfer learning is a popular technique in machine learning that has the potential to improve

the effectiveness of software code analysis [170, 171]. This research plan proposes to investigate

the application of transfer learning to software code analysis, both with and without pre-trained

models. The goal of this research is to explore the effectiveness of transfer learning for tasks such

as code classification, code similarity, and code clustering. The research will involve designing and

implementing a prototype transfer-learning-based tool and conducting experiments to evaluate its

effectiveness. The results of this research could have significant implications for the field of software

engineering, particularly in the areas of code analysis and optimization.

All of my contributions and future plans will improve the accuracy of automated software maintenance

activities.

111

References

[1] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability of service-

and microservice-based systems: a literature review,” in Proceedings of the 27th International Work-

shop on Software Measurement and 12th International Conference on Software Process and Product

Measurement, 2017, pp. 107–115.

[2] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics as early indi-

cators of vulnerabilities,” Journal of Systems Architecture, vol. 57, no. 3, pp. 294–313, 2011.

[3] J. Ludwig, S. Xu, and F. Webber, “Static software metrics for reliability and maintainability,” in

2018 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE, 2018, pp. 53–54.

[4] A. Shaheen, U. Qamar, A. Nazir, R. Bibi, M. Ansar, and I. Zafar, “Oocqm: Object oriented code

quality meter,” in International Conference on Computational Science/Intelligence & Applied Infor-

matics. Springer, 2019, pp. 149–163.

[5] K. Rahad, O. Badreddin, and S. Mohsin Reza, “The human in model-driven engineering loop: A case

study on integrating handwritten code in model-driven engineering repositories,” Software: Practice

and Experience, 2021.

[6] J. Tan, D. Feitosa, P. Avgeriou, and M. Lungu, “Evolution of technical debt remediation in python:

A case study on the apache software ecosystem,” Journal of Software: Evolution and Process, vol. 33,

no. 4, p. e2319, 2021.

[7] K. Rahad, O. Badreddin, and S. M. Reza, “Characterization of software design and collaborative

modeling in open source projects,” in 9th Int Conf Model-Driven Eng and Soft Dev, 2021, pp. 254–

261.

[8] S. M. Reza, O. Badreddin, and K. Rahad, “Modelmine: a tool to facilitate mining models from

open source repositories,” in Proceedings of the 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems: Companion Proceedings, 2020, pp. 1–5.

[9] S. M. Reza, M. M. Rahman, H. Parvez, O. Badreddin, and S. Al Mamun, “Performance analysis

of machine learning approaches in software complexity prediction,” in Proceedings of International

Conference on Trends in Computational and Cognitive Engineering. Springer, 2021, pp. 27–39.

[10] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean ghtorrent: Github data on demand,”

in Proceedings of the 11th working conference on mining software repositories, 2014, pp. 384–387.

112

[11] G. Gousios, “The ghtorent dataset and tool suite,” in 2013 10th Working Conference on Mining

Software Repositories (MSR). IEEE, 2013, pp. 233–236.

[12] P. B. Goes, “Editor’s comments: big data and is research,” 2014.

[13] S. Bayati and A. Tripathi, “Designing a knowledge base for oss project recommender system, using

big data analytics,” in Twenty Fourth European Conference on Information Systems (ECIS), 2016.

[14] J. Noten, J. G. Mengerink, and A. Serebrenik, “A data set of ocl expressions on github,” in 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, 2017,

pp. 531–534.

[15] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework for mining software repos-

itories,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 908–911.

[16] F. Z. Sokol, M. F. Aniche, and M. A. Gerosa, “Metricminer: Supporting researchers in mining

software repositories,” in 2013 IEEE 13th International Working Conference on Source Code Analysis

and Manipulation (SCAM). IEEE, 2013, pp. 142–146.

[17] G. Robles, T. Ho-Quang, R. Hebig, M. R. Chaudron, and M. A. Fernandez, “An extensive dataset

of uml models in github,” in 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR). IEEE, 2017, pp. 519–522.

[18] F. Jurado and P. Rodriguez, “Sentiment analysis in monitoring software development processes: An

exploratory case study on github’s project issues,” Journal of Systems and Software, vol. 104, pp.

82–89, 2015.

[19] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual features to predict issue lifetime in

github projects,” in 2016 ieee/acm 13th working conference on mining software repositories (MSR).

IEEE, 2016, pp. 291–302.

[20] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon, “Got issues? who cares

about it? a large scale investigation of issue trackers from github,” in 2013 IEEE 24th international

symposium on software reliability engineering (ISSRE). IEEE, 2013, pp. 188–197.

[21] T. Zhang, I. C. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “itiger: An automatic issue title

generation tool,” arXiv preprint arXiv:2206.10811, 2022.

[22] S. Romano, M. Caulo, M. Buompastore, L. Guerra, A. Mounsif, M. Telesca, M. T. Baldassarre,

and G. Scanniello, “G-repo: a tool to support msr studies on github,” in 2021 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2021, pp. 551–555.

113

[23] M. Rees-Jones, M. Martin, and T. Menzies, “Better predictors for issue lifetime,” arXiv preprint

arXiv:1702.07735, 2017.

[24] S. Transue, S. M. Reza, A. C. Halbower, and M.-H. Choi, “Behavioral analysis of turbulent exhale

flows,” in 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).

IEEE, 2018, pp. 42–45.

[25] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring the characteristics of issue-related

behaviors in github using visualization techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018.

[26] J. Ding, H. Sun, X. Wang, and X. Liu, “Entity-level sentiment analysis of issue comments,” in

Proceedings of the 3rd International Workshop on Emotion Awareness in Software Engineering, 2018,

pp. 7–13.

[27] B. Yang, X. Wei, and C. Liu, “Sentiments analysis in github repositories: An empirical study,” in

2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW). IEEE, 2017, pp.

84–89.

[28] G. Rodŕıguez-Pérez, J. M. Gonzalez-Barahona, G. Robles, D. Dalipaj, and N. Sekitoleko, “Bugtrack-

ing: A tool to assist in the identification of bug reports,” in IFIP International Conference on Open

Source Systems. Springer, 2016, pp. 192–198.

[29] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth dataset and classification model

for detecting bots in github issue and pr comments,” Journal of Systems and Software, vol. 175, p.

110911, 2021.

[30] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, “Ticket tagger: Machine learning driven

issue classification,” in 2019 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2019, pp. 406–409.

[31] S. Bharadwaj and T. Kadam, “Github issue classification using bert-style models,” in 2022

IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE).

IEEE, 2022, pp. 40–43.

[32] T. B. Alakus, R. Das, and I. Turkoglu, “An overview of quality metrics used in estimating software

faults,” in 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE,

2019, pp. 1–6.

[33] S. Moshtari, A. Sami, and M. Azimi, “Using complexity metrics to improve software security,”

Computer Fraud & Security, vol. 2013, no. 5, pp. 8–17, 2013.

114

[34] S. Rahman, T. Sharma, S. Reza, M. Rahman, M. Kaiser et al., “Pso-nf based vertical handoff

decision for ubiquitous heterogeneous wireless network (uhwn),” in 2016 International Workshop on

Computational Intelligence (IWCI). IEEE, 2016, pp. 153–158.

[35] K. A. Rahad and S. M. Reza, “A study on network security services with cryptography and an

implementation of vigenere-multiplicative cipher,” 2013.

[36] J. Moreno-León, G. Robles, and M. Román-González, “Comparing computational thinking develop-

ment assessment scores with software complexity metrics,” in 2016 IEEE global engineering education

conference (EDUCON). IEEE, 2016, pp. 1040–1045.

[37] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter, “Exploring the relationships

between design measures and software quality in object-oriented systems,” Journal of

Systems and Software, vol. 51, no. 3, pp. 245–273, May 2000. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121299001028

[38] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing software security fortification

throughcode-level metrics,” in Proceedings of the 4th ACM workshop on Quality of protection, ser.

QoP ’08. New York, NY, USA: Association for Computing Machinery, Oct. 2008, pp. 31–38.

[Online]. Available: https://doi.org/10.1145/1456362.1456370

[39] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Mart́ınez-Perez, and C. Soubervielle-Montalvo,

“Source code metrics: A systematic mapping study,” Journal of Systems and Software, vol. 128, pp.

164–197, 2017.

[40] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi, “Identification of defect-

prone classes in telecommunication software systems using design metrics,” Information sciences,

vol. 176, no. 24, pp. 3711–3734, 2006.

[41] J. Al Dallal, “Constructing models for predicting extract subclass refactoring opportunities using

object-oriented quality metrics,” Information and Software Technology, vol. 54, no. 10, pp. 1125–

1141, 2012.

[42] Y. Shin and L. Williams, “Is complexity really the enemy of software security?” in Proceedings of

the 4th ACM workshop on Quality of protection, 2008, pp. 47–50.

[43] ——, “An empirical model to predict security vulnerabilities using code complexity metrics,” in

Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering

and measurement, 2008, pp. 315–317.

115

http://www.sciencedirect.com/science/article/pii/S0164121299001028
https://doi.org/10.1145/1456362.1456370

[44] S. K. Dubey, A. Rana, and A. Sharma, “Usability evaluation of object-oriented software system using

fuzzy logic approach,” International Journal of Computer Applications, vol. 43, no. 19, pp. 1–6, 2012.

[45] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault prediction model to allow inter lan-

guagereuse,” in Proceedings of the 4th international workshop on Predictor models in software engi-

neering, 2008, pp. 19–24.

[46] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the” imprecision” of cross-project defect pre-

diction,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, 2012, pp. 1–11.

[47] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in 2013 35th international conference on

software engineering (ICSE). IEEE, 2013, pp. 382–391.

[48] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect predic-

tion,” Information and Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[49] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE Trans-

actions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[50] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software metrics for defect predic-

tion: an investigation on feature selection techniques,” Software: Practice and Experience, vol. 41,

no. 5, pp. 579–606, 2011.

[51] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and cohesion metrics be used as early

indicators of vulnerabilities?” in Proceedings of the 2010 ACM Symposium on Applied Computing,

2010, pp. 1963–1969.

[52] S. Moshtari and A. Sami, “Evaluating and comparing complexity, coupling and a new proposed set

of coupling metrics in cross-project vulnerability prediction,” in Proceedings of the 31st Annual ACM

Symposium on Applied Computing, 2016, pp. 1415–1421.

[53] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between change coupling and software

defects,” in 2009 16th Working Conference on Reverse Engineering. IEEE, 2009, pp. 135–144.

[54] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical assessment of mde in

industry,” in Proceedings of the 33rd international conference on software engineering. ACM, 2011,

pp. 471–480.

[55] A. M. Fernández-Sáez, M. R. Chaudron, and M. Genero, “An industrial case study on the use of uml

in software maintenance and its perceived benefits and hurdles,” Empirical Software Engineering,

vol. 23, no. 6, pp. 3281–3345, 2018.

116

[56] A. Nugroho and M. R. Chaudron, “The impact of uml modeling on defect density and defect res-

olution time in a proprietary system,” Empirical Software Engineering, vol. 19, no. 4, pp. 926–954,

2014.

[57] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen, “Understanding code smells in

android applications,” in 2016 IEEE/ACM International Conference on Mobile Software Engineering

and Systems (MOBILESoft). IEEE, 2016, pp. 225–236.

[58] F. Palomba, R. Oliveto, and A. De Lucia, “Investigating code smell co-occurrences using association

rule learning: A replicated study,” in 2017 IEEE Workshop on Machine Learning Techniques for

Software Quality Evaluation (MaLTeSQuE). IEEE, 2017, pp. 8–13.

[59] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “The scent of a smell: An

extensive comparison between textual and structural smells,” IEEE Transactions on Software Engi-

neering, vol. 44, no. 10, pp. 977–1000, 2017.

[60] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing heuristic and machine learning

approaches for metric-based code smell detection,” in 2019 IEEE/ACM 27th International Confer-

ence on Program Comprehension (ICPC). IEEE, 2019, pp. 93–104.

[61] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Automatic metric thresholds derivation

for code smell detection,” in 2015 IEEE/ACM 6th International Workshop on Emerging Trends in

Software Metrics. IEEE, 2015, pp. 44–53.

[62] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a prioritization of code debt: A

code smell intensity index,” in 2015 IEEE 7th International Workshop on Managing Technical Debt

(MTD). IEEE, 2015, pp. 16–24.

[63] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting

machine learning techniques for code smell detection,” Empirical Software Engineering, vol. 21,

no. 3, pp. 1143–1191, 2016.

[64] U. Azadi, F. A. Fontana, and M. Zanoni, “Poster: machine learning based code smell detection

through wekanose,” in 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion). IEEE, 2018, pp. 288–289.

[65] N. Pritam, M. Khari, R. Kumar, S. Jha, I. Priyadarshini, M. Abdel-Basset, H. V. Long et al.,

“Assessment of code smell for predicting class change proneness using machine learning,” IEEE

Access, vol. 7, pp. 37 414–37 425, 2019.

117

[66] T. Lin, X. Fu, F. Chen, and L. Li, “A novel approach for code smells detection based on deep lean-

ing,” in EAI International Conference on Applied Cryptography in Computer and Communications.

Springer, 2021, pp. 171–174.

[67] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based code smell detection,”

IEEE transactions on Software Engineering, 2019.

[68] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G. Antoniol, “Keep it simple: Is deep learn-

ing good for linguistic smell detection?” in 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 602–611.

[69] J. Kreimer, “Adaptive detection of design flaws,” Electronic Notes in Theoretical Computer Science,

vol. 141, no. 4, pp. 117–136, 2005.

[70] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking design smells: Lessons from a

study of god classes,” in 2009 16th Working Conference on Reverse Engineering. IEEE, 2009, pp.

145–154.

[71] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach for the detection

of code and design smells,” in 2009 Ninth International Conference on Quality Software. IEEE,

2009, pp. 305–314.

[72] F. Khomh, S. Vaucher, Y. G. Gueheneuc, and H. Sahraoui, “Bdtex: A gqm-based bayesian approach

for the detection of antipatterns,” Journal of Systems and Software, vol. 84, no. 4, pp. 559–572, 2011.

[73] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro, “Experience report: Evaluating the

effectiveness of decision trees for detecting code smells,” in 2015 IEEE 26th international symposium

on software reliability engineering (ISSRE). IEEE, 2015, pp. 261–269.

[74] F. A. Fontana and M. Zanoni, “Code smell severity classification using machine learning techniques,”

Knowledge-Based Systems, vol. 128, pp. 43–58, 2017.

[75] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, “Code smell detection: Towards a machine

learning-based approach,” in 2013 IEEE International Conference on Software Maintenance. IEEE,

2013, pp. 396–399.

[76] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empirical Software Engineering, vol. 21, no. 3, pp.

1143–1191, 2016.

118

[77] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with machine learning algorithms:

an empirical study,” in Proceedings of the 3rd International Conference on Technical Debt, 2020, pp.

31–40.

[78] F. C. Luiz, B. R. de Oliveira Rodrigues, and F. S. Parreiras, “Machine learning techniques for code

smells detection: an empirical experiment on a highly imbalanced setup,” in Proceedings of the XV

Brazilian Symposium on Information Systems, 2019, pp. 1–8.

[79] M. I. Azeem, F. Palomba, L. Shi, and Q.Wang, “Machine learning techniques for code smell detection:

A systematic literature review and meta-analysis,” Information and Software Technology, vol. 108,

pp. 115–138, 2019.

[80] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of current knowledge,” Journal of

Software Maintenance and Evolution: research and practice, vol. 23, no. 3, pp. 179–202, 2011.

[81] A. Gupta, B. Suri, and S. Misra, “A systematic literature review: code bad smells in java source

code,” in International Conference on Computational Science and Its Applications. Springer, 2017,

pp. 665–682.

[82] S. S. Rathore and S. Kumar, “Towards an ensemble-based system for predicting the number of

software faults,” Expert Systems with Applications, vol. 82, pp. 357–382, 2017.

[83] M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-Tamimi, “Code smells analysis

mechanisms, detection issues, and effect on software maintainability,” in 2019 IEEE Jordan Inter-

national Joint Conference on Electrical Engineering and Information Technology (JEEIT). IEEE,

2019, pp. 663–666.

[84] K. Karauzović-Hadžiabdić and R. Spahić, “Comparison of machine learning methods for code smell

detection using reduced features,” in 2018 3rd International Conference on Computer Science and

Engineering (UBMK). IEEE, 2018, pp. 670–672.

[85] G. Rasool and Z. Arshad, “A review of code smell mining techniques,” Journal of Software: Evolution

and Process, vol. 27, no. 11, pp. 867–895, 2015.

[86] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A cooperative parallel search-

based software engineering approach for code-smells detection,” IEEE Transactions on Software

Engineering, vol. 40, no. 9, pp. 841–861, 2014.

[87] F. L. Caram, B. R. D. O. Rodrigues, A. S. Campanelli, and F. S. Parreiras, “Machine learning

techniques for code smells detection: a systematic mapping study,” International Journal of Software

Engineering and Knowledge Engineering, vol. 29, no. 02, pp. 285–316, 2019.

119

[88] S. Dewangan, R. S. Rao, A. Mishra, and M. Gupta, “A novel approach for code smell detection: An

empirical study,” IEEE Access, vol. 9, pp. 162 869–162 883, 2021.

[89] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “Code smell detection by deep direct-learning

and transfer-learning,” Journal of Systems and Software, vol. 176, p. 110936, 2021.

[90] K. K. Chaturvedi, V. Sing, and P. Singh, “Tools in mining software repositories,” in 2013 13th

International Conference on Computational Science and Its Applications. IEEE, 2013, pp. 89–98.

[91] S. M. Reza, M. M. Rahman, M. H. Parvez, M. S. Kaiser, and S. Al Mamun, “Innovative approach

in web application effort & cost estimation using functional measurement type,” in 2015 Interna-

tional Conference on Electrical Engineering and Information Communication Technology (ICEE-

ICT). IEEE, 2015, pp. 1–7.

[92] S. M. Reza, “Activity based new technique of effort & cost estimation using functional measurement

type for web application,” Ph.D. dissertation, Jahangirnagar University, 2016.

[93] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review participation in modern code

review: An empirical study of the android, qt, and openstack projects (journal-first abstract),”

in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2018, pp. 475–475.

[94] O. Baddreddin and K. Rahad, “The impact of design and uml modeling on codebase quality and

sustainability,” in Proceedings of the 28th Annual International Conference on Computer Science

and Software Engineering, 2018, pp. 236–244.

[95] M. C. Paul, S. Sarkar, M. M. Rahman, S. M. Reza, and M. S. Kaiser, “Low cost and portable

patient monitoring system for e-health services in bangladesh,” in 2016 International Conference on

Computer Communication and Informatics (ICCCI). IEEE, 2016, pp. 1–4.

[96] S. M. Reza, M. M. Rahman, and S. Al Mamun, “A new approach for road networks-a vehicle xml

device collaboration with big data,” in 2014 International Conference on Electrical Engineering and

Information & Communication Technology. IEEE, 2014, pp. 1–5.

[97] O. Badreddin, R. Khandoker, A. Forward, O. Masmali, and T. C. Lethbridge, “A decade of soft-

ware design and modeling: A survey to uncover trends of the practice,” in Proceedings of the 21th

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, 2018,

pp. 245–255.

[98] M. M. Rahman and C. K. Roy, “An insight into the pull requests of github,” in Proceedings of the

11th Working Conference on Mining Software Repositories, 2014, pp. 364–367.

120

[99] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security analysis of oauth 2.0,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016,

pp. 1204–1215.

[100] P. Maheshwari, H. Tang, and R. Liang, “Enhancing web services with message-oriented middleware,”

in Proceedings. IEEE International Conference on Web Services, 2004. IEEE, 2004, pp. 524–531.

[101] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language and infrastructure for

analyzing ultra-large-scale software repositories,” in 2013 35th International Conference on Software

Engineering (ICSE). IEEE, 2013, pp. 422–431.

[102] A. H. Altalhi, J. M. Luna, M. Vallejo, and S. Ventura, “Evaluation and comparison of open source

software suites for data mining and knowledge discovery,” Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 7, no. 3, p. e1204, 2017.

[103] N. Bevan, “Classifying and selecting ux and usability measures,” in International Workshop on

Meaningful Measures: Valid Useful User Experience Measurement, vol. 11, 2008, pp. 13–18.

[104] E. E. Ogheneovo et al., “On the relationship between software complexity and maintenance costs,”

Journal of Computer and Communications, vol. 2, no. 14, p. 1, 2014.

[105] S. Yu and S. Zhou, “A survey on metric of software complexity,” in 2010 2nd IEEE International

Conference on Information Management and Engineering. IEEE, 2010, pp. 352–356.

[106] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss, “Sustainability guide-

lines for long-living software systems,” in 2012 28th IEEE International Conference on Software

Maintenance (ICSM). IEEE, 2012, pp. 517–526.

[107] S. M. Reza, M. M. Rahman, M. M. Mahmud, and S. Mamun, “A new approach of big data collabo-

ration for road traffic networks considering path loss analysis in context of bangladesh,” JU Journal

of Information Technology, vol. 3, pp. 1–5, 2014.

[108] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis and prediction

for software evolution,” in 2012 34th International Conference on Software Engineering (ICSE).

IEEE, 2012, pp. 419–429.

[109] G. Singh, D. Singh, and V. Singh, “A study of software metrics,” IJCEM International Journal of

Computational Engineering & Management, vol. 11, pp. 22–27, 2011.

[110] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-oriented design

complexity: Implications for software defects,” IEEE Transactions on software engineering, vol. 29,

no. 4, pp. 297–310, 2003.

121

[111] A. Munappy, J. Bosch, H. H. Olsson, A. Arpteg, and B. Brinne, “Data management challenges for

deep learning,” in 2019 45th Euromicro Conference on Software Engineering and Advanced Applica-

tions (SEAA). IEEE, 2019, pp. 140–147.

[112] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li, “Combining software metrics and text features

for vulnerable file prediction,” in 2015 20th International Conference on Engineering of Complex

Computer Systems (ICECCS). IEEE, 2015, pp. 40–49.

[113] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and M. Harman, “The importance

of accounting for real-world labelling when predicting software vulnerabilities,” in Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 695–705.

[114] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out validation on colossal

datasets for quality classification,” in 2016 IEEE 6th International conference on advanced computing

(IACC). IEEE, 2016, pp. 78–83.

[115] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-driven engineering,”

IEEE software, vol. 31, no. 3, pp. 79–85, 2013.

[116] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COMPUTER SOCIETY-, vol. 39,

no. 2, p. 25, 2006.

[117] A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of software modeling: a survey of soft-

ware practitioners,” in 5th workshop from code centric to model centric: evaluating the effectiveness

of MDD (C2M: EEMDD), 2010.

[118] D. Lucredio, E. S. de Almeida, and R. P. Fortes, “An investigation on the impact of mde on software

reuse,” in 2012 Sixth Brazilian Symposium on Software Components, Architectures and Reuse. IEEE,

2012, pp. 101–110.

[119] X. He, P. Avgeriou, P. Liang, and Z. Li, “Technical debt in mde: a case study on gmf/emf-based

projects,” in Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engi-

neering Languages and Systems. ACM, 2016, pp. 162–172.

[120] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Language evolution in practice: The history

of gmf,” in International Conference on Software Language Engineering. Springer, 2009, pp. 3–22.

[121] (2019) Eclipse foundation,. [Online]. Available: https://www.eclipse.org/articles/article.php?file=

Article-Integrating-EMF-GMF-Editors/index.html

122

https://www.eclipse.org/articles/article.php?file=Article-Integrating-EMF-GMF-Editors/index.html
https://www.eclipse.org/articles/article.php?file=Article-Integrating-EMF-GMF-Editors/index.html

[122] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi, “Does refactoring improve software structural quality?

a longitudinal study of 25 projects,” in Proceedings of the 30th Brazilian Symposium on Software

Engineering. ACM, 2016, pp. 73–82.

[123] E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells,” in Ninth Working

Conference on Reverse Engineering, 2002. Proceedings. IEEE, 2002, pp. 97–106.

[124] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull et al., “Comparing four approaches

for technical debt identification,” Software Quality Journal, vol. 22, no. 3, pp. 403–426, 2014.

[125] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack, R. Nord,

I. Ozkaya et al., “Managing technical debt in software-reliant systems,” in Proceedings of the

FSE/SDP workshop on Future of software engineering research. ACM, 2010, pp. 47–52.

[126] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A. Shapochka, “A case study

in locating the architectural roots of technical debt,” in 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 179–188.

[127] T. Ho-Quang, R. Hebig, G. Robles, M. R. Chaudron, and M. A. Fernandez, “Practices and per-

ceptions of uml use in open source projects,” in 2017 IEEE/ACM 39th International Conference

on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017, pp.

203–212.

[128] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,” in 2012 9th IEEE Working

Conference on Mining Software Repositories (MSR). IEEE, 2012, pp. 12–21.

[129] B. Kitchenham, “Procedure for undertaking systematic reviews,” Computer Science Depart-ment,

Keele University (TRISE-0401) and National ICT Australia Ltd (0400011T. 1), Joint Technical

Report, 2004.

[130] J. C. Carver, E. Hassler, E. Hernandes, and N. A. Kraft, “Identifying barriers to the systematic

literature review process,” in 2013 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement. IEEE, 2013, pp. 203–212.

[131] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic

literature reviews in software engineering–a systematic literature review,” Information and software

technology, vol. 51, no. 1, pp. 7–15, 2009.

[132] Y. Xiao and M. Watson, “Guidance on conducting a systematic literature review,” Journal of Plan-

ning Education and Research, vol. 39, no. 1, pp. 93–112, 2019.

123

[133] (2019) Handwritten code classification,. [Online]. Available: shorturl.at/otxMN

[134] (2019) Pmd documentation,. [Online]. Available: https://pmd.github.io/latest/index.html

[135] R. Marinescu, “Assessing technical debt by identifying design flaws in software systems,” IBM Journal

of Research and Development, vol. 56, no. 5, pp. 9–1, 2012.

[136] J.-L. Letouzey, “The sqale method for evaluating technical debt,” in 2012 Third International Work-

shop on Managing Technical Debt (MTD). IEEE, 2012, pp. 31–36.

[137] (2019) Sonarqube documentation,. [Online]. Available: https://docs.sonarqube.org/latest/

[138] S. M. Reza, M. A. M. Bhuiyan, and N. Tasnim, “A convolution neural network with encoder-decoder

applied to the study of bengali letters classification,” Big Data and Information Analytics, vol. 6,

no. bdia-06-004, pp. 41–55, 2021.

[139] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-based comparative study

of bad smell detection tools,” in Proceedings of the 20th International Conference on Evaluation and

Assessment in Software Engineering, 2016, pp. 1–12.

[140] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble, “The

qualitas corpus: A curated collection of java code for empirical studies,” in 2010 Asia pacific software

engineering conference. IEEE, 2010, pp. 336–345.

[141] A. Kaur, S. Jain, S. Goel, and G. Dhiman, “Prioritization of code smells in object-oriented software:

A review,” Materials Today: Proceedings, 2021.

[142] J. Rubin, A. N. Henniche, N. Moha, M. Bouguessa, and N. Bousbia, “Sniffing android code smells:

An association rules mining-based approach,” in 2019 IEEE/ACM 6th International Conference on

Mobile Software Engineering and Systems (MOBILESoft), 2019, pp. 123–127.

[143] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “A large empirical assessment of the role

of data balancing in machine-learning-based code smell detection,” Journal of Systems and Software,

vol. 169, p. 110693, 2020.

[144] Y. Zhang and C. Dong, “Mars: Detecting brain class/method code smell based on metric–attention

mechanism and residual network,” Journal of Software: Evolution and Process, p. e2403, 2021.

[145] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do they really smell bad?

a study on developers’ perception of bad code smells,” in 2014 IEEE International Conference on

Software Maintenance and Evolution. IEEE, 2014, pp. 101–110.

124

shorturl.at/otxMN
https://pmd.github.io/latest/index.html
https://docs.sonarqube.org/latest/

[146] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A systematic literature review

on bad smells–5 w’s: which, when, what, who, where,” IEEE Transactions on Software Engineering,

vol. 47, no. 1, pp. 17–66, 2018.

[147] D. Taibi, A. Janes, and V. Lenarduzzi, “How developers perceive smells in source code: A replicated

study,” Information and Software Technology, vol. 92, pp. 223–235, 2017.

[148] F. Pecorelli, D. Di Nucci, C. De Roover, and A. De Lucia, “On the role of data balancing

for machine learning-based code smell detection,” in Proceedings of the 3rd ACM SIGSOFT

international workshop on machine learning techniques for software quality evaluation, ser.

MaLTeSQuE 2019. New York, NY, USA: Association for Computing Machinery, 2019. [Online].

Available: https://doi.org/10.1145/3340482.3342744

[149] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect prediction models: L’union fait la

force,” in 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,

and Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 164–173.

[150] A. Alazba and H. Aljamaan, “Code smell detection using feature selection and stacking ensemble:

An empirical investigation,” Information and Software Technology, vol. 138, p. 106648, 2021.

[151] K. M. Ahmed, A. Imteaj, and M. H. Amini, “Federated deep learning for heterogeneous edge comput-

ing,” in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).

IEEE, 2021, pp. 1146–1152.

[152] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp. 58–61, 2006.

[153] V. Lenarduzzi, A. Sillitti, and D. Taibi, “A survey on code analysis tools for software maintenance

prediction,” in International Conference in Software Engineering for Defence Applications. Springer,

2018, pp. 165–175.

[154] A. Evans, M. A. Fernández, and P. Mohagheghi, “Experiences of developing a network modeling tool

using the eclipse environment,” in European Conference on Model Driven Architecture-Foundations

and Applications. Springer, 2009, pp. 301–312.

[155] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software development: Perspectives

from github, msdn, stack exchange, and topcoder,” IEEE software, vol. 30, no. 1, pp. 52–66, 2013.

[156] J. A. Teixeira and H. Karsten, “Managing to release early, often and on time in the openstack

software ecosystem,” Journal of Internet Services and Applications, vol. 10, no. 1, pp. 1–22, 2019.

125

https://doi.org/10.1145/3340482.3342744

[157] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication, collaboration, and bugs: the

social nature of issue tracking in small, collocated teams,” in Proceedings of the 2010 ACM conference

on Computer supported cooperative work, 2010, pp. 291–300.

[158] J. Fisher, D. Koning, and A. Ludwigsen, “Utilizing atlassian jira for large-scale software development

management,” Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), Tech.

Rep., 2013.

[159] J. D. Blischak, E. R. Davenport, and G. Wilson, “A quick introduction to version control with git

and github,” PLoS computational biology, vol. 12, no. 1, p. e1004668, 2016.

[160] J. C. C. Ŕıos, K. Kopec-Harding, S. Eraslan, C. Page, R. Haines, C. Jay, and S. M. Embury,

“A methodology for using gitlab for software engineering learning analytics,” in 2019 IEEE/ACM

12th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).

IEEE, 2019, pp. 3–6.

[161] L. Hatton, D. Spinellis, and M. van Genuchten, “The long-term growth rate of evolving software:

Empirical results and implications,” Journal of Software: Evolution and Process, vol. 29, no. 5, p.

e1847, 2017.

[162] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona, “Perceval: software project

data at your will,” in Proceedings of the 40th International Conference on Software Engineering:

Companion Proceeedings, 2018, pp. 1–4.

[163] X. Sun, B. Li, H. Leung, B. Li, and Y. Li, “Msr4sm: Using topic models to effectively mining software

repositories for software maintenance tasks,” Information and Software Technology, vol. 66, pp. 1–12,

2015.

[164] M. A. de F. Farias, R. Novais, M. C. Júnior, L. P. da Silva Carvalho, M. Mendonça, and R. O.

Sṕınola, “A systematic mapping study on mining software repositories,” in Proceedings of the 31st

Annual ACM Symposium on Applied Computing, 2016, pp. 1472–1479.

[165] A. Fiechter, R. Minelli, C. Nagy, and M. Lanza, “Visualizing github issues,” in 2021 Working Con-

ference on Software Visualization (VISSOFT). IEEE, 2021, pp. 155–159.

[166] J. Wang, X. Zhang, and L. Chen, “How well do pre-trained contextual language representations

recommend labels for github issues?” Knowledge-Based Systems, vol. 232, p. 107476, 2021.

[167] J. Wang, X. Zhang, L. Chen, and X. Xie, “Personalizing label prediction for github issues,” Infor-

mation and Software Technology, vol. 145, p. 106845, 2022.

126

[168] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in github: an empirical

study,” in Proceedings of the 11th working conference on mining software repositories, 2014, pp.

352–355.

[169] S. M. Reza, S. U. Mahmud, K. Rahad, and O. Badreddin, “Csiq: A synthesized dataset of code

smells, issues and quality related artifacts from open source repositories,” 2022. [Online]. Available:

https://data.mendeley.com/datasets/77p6rzb73n/5

[170] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learning for repairing security vul-

nerabilities in c code,” IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 147–165,

2022.

[171] M. H. Parvez, M. M. Khatun, S. M. Reza, M. M. Rahman, and M. F. K. Patwary, “Prediction of

potential future it personnel in bangladesh using machine learning classifier,” Global Disclosure of

Economics and Business, vol. 6, no. 1, pp. 7–18, 2017.

[172] S. Lujan, F. Pecorelli, F. Palomba, A. De Lucia, and V. Lenarduzzi, “A preliminary study on the

adequacy of static analysis warnings with respect to code smell prediction,” in Proceedings of the

4th ACM SIGSOFT International Workshop on Machine-Learning Techniques for Software-Quality

Evaluation, 2020, pp. 1–6.

[173] S. M. Reza, O. Badreddin, K. Rahad, and S. U. Mahmud, “Software code quality and source code

metrics dataset,” 2021. [Online]. Available: https://data.mendeley.com/datasets/77p6rzb73n

[174] H. Keuning, B. Heeren, and J. Jeuring, “Code quality issues in student programs,” in Proceedings of

the 2017 ACM Conference on Innovation and Technology in Computer Science Education, 2017, pp.

110–115.

[175] J. DIBattista, “I have been merging pandas dataframes com-

pletely wrong,” 2022. [Online]. Available: https://towardsdatascience.com/

the-most-efficient-way-to-merge-join-pandas-dataframes-7576e8b6c5c

127

https://data.mendeley.com/datasets/77p6rzb73n/5
https://data.mendeley.com/datasets/77p6rzb73n
https://towardsdatascience.com/the-most-efficient-way-to-merge-join-pandas-dataframes-7576e8b6c5c
https://towardsdatascience.com/the-most-efficient-way-to-merge-join-pandas-dataframes-7576e8b6c5c

Appendix A

CSIQ: A Synthesized Dataset of

Software Artifacts

This appendix presents CSIQ, a synthesized dataset of software data including code quality attributes,

code smells, and issues extracted from open-source repositories. The dataset is developed through the

use of ModelMine [8], CodeMR [4], PMD [172] tools, and python programming language. This chapter

is related to a dataset that was published in Mendeley Dataset [173] and planned to publish an extended

version in the Data in Brief journal.

A.1 Dataset Overview

The dataset contains synthesized code smells, issues, quality, and source code metrics information of 60

versions under 10 different repositories. The dataset is extracted into 3 levels: (1) Class (2) Method

(3) Package. The dataset is created upon analyzing 9,420,246 lines of code and 173,237 classes. The

provided dataset contains the following folders: code smells, issues, quality attributes, synthesized, and

four associated Comma Separated Values (CSV) files: repositories.csv, versions.csv, codesmells.csv, and

attribute-details.csv.

The first file (repositories.csv) contains general information (repository name, URL, number of commits,

stars, forks, etc.) to understand the size, popularity, and maintainability.

File versions.csv contains general information (version unique ID, number of classes, packages, external

classes, external packages, version repository link) to provide an overview of versions and how over time

the repository continues to grow.

File attribute-details.csv contains detailed information (attribute name, attribute short form, category,

and description) about extracted static analysis metrics and code quality attributes. The short form is

used in the real dataset as a unique identifier to show value for packages, classes, and methods.

File codesmells.csv provides the information (Rule, Code Smell, Rule Description) of code smells ana-

lyzed from each version.

128

Table A.1: Dataset Specifications

Subject Software

Specific subject

area

The provided dataset lies in the area of software engineering, specifically in the code

smell, software quality, maintenance, and evolution.

Type of data Table

How data were

acquired

Repositories were searched using the ModelMine tool [8] and were downloaded based

on the conditions of popularity (minimum of 3,000 stars and 500 forks) and well-

maintained (minimum of 5,000 commits). After repository collection, code quality

and source code metrics data were extracted using the CODEMR tool [4], and code

smell data were extracted using the PMD tool [172]. We use Python scripts to

create a combined dataset by synthesizing both the source code metrics and the

code smell dataset.

Data format 1) Raw

2) Analyzed

3) Synthesized

Parameters for

data collection

Upon selecting the most popular & well-maintained repositories using the Mod-

elMine tool, we filtered and selected the repositories with the following criteria; a

repository with primary language Java, a minimum of 5,000 commits, at least 100

active contributors, a minimum of 3,000 stars, and 500 forks. We consider the high

number of stars and forks as a proxy for the popularity of repositories and the high

number of commits as a proxy for maintenance. On the other hand, code smells

information was extracted using the PMD tool [174] and filtered using rules of code

smells.

Description of

data collection

The source code of the repositories were retrieved using the ModelMine tool [8]. The

selected repositories are downloaded from their source location with the versions

between 2016-2021. We have conducted the static analysis for each version at the

class, package, and method level using the CODEMR static analysis tool [4] and

collected code smell data using the PMD code analyzer tool [172]. Both code smell

and quality metrics are then analyzed, synthesized, and reported in this paper.

Data source loca-

tion

Software Engineering Laboratory, Department of Computer Science University of

Texas at El Paso, Texas, USA.

129

Data accessibility Repository name: CSQ - Code smells and quality dataset [173]

DOI: http://dx.doi.org/10.17632/77p6rzb73n

Related research

article

Sayed Moshin Reza, Md. Mahfujur Rahman, Hasnat Parvez, Omar Badreddin,

and Shamim Al Mamun. Performance Analysis of Machine Learning Approaches

in Software Complexity Prediction. In 2020 International Conference on Trends in

Computational and Cognitive Engineering (TCCE), Springer, 2020 [9].

DOI: https://doi.org/10.1007/978-981-33-4673-4_3

A.2 Significance of the Data

• The data primarily benefit software engineering researchers interested in various source code analysis

or code smell tasks over versions and predict future software quality using a data-driven or machine

learning approach.

• The provided dataset contains forty-seven unique static analysis metrics that can be used to detect

code smell and thus can be used as the information basis for the software maintainability.

• The provided dataset contains code quality metrics that are directly related to various open research

questions in the areas of software quality, maintainability, and sustainability. The data is capable of

constituting a valuable ground truth for researchers and practitioners in the field of software quality

estimation.

• The data contains information at different software component levels (package, class, and method)

of sixty versions of ten repositories varying both in terms of size and functionality and thus covers

a wide range of data variations.

A.3 Data Description

The provided dataset contains three folders: codesmells, quality attributes, synthesized and four associ-

ated Comma Separated Values (CSV) files: repositories.csv, versions.csv, codesmells.csv and attribute−

details.csv. The first file (repositories.csv) contains general information (repository name, URL, number

of commits, stars, forks, etc.) to understand the size, popularity, and maintainability. Table A.2 presents

the information included in repositories.csv.

130

http://dx.doi.org/10.17632/77p6rzb73n
https://doi.org/10.1007/978-981-33-4673-4_3

Table A.2: Selected Repositories with Metadata Information

Serial Repository name Commits Contributors Stars Forks

1 Spring framework 22,208 531 41,400 28,800

2 Junit-5 6,621 161 4,400 991

3 Apache kafka 8,590 762 18,000 9,600

4 Apache lucene-solr 34,789 232 4,100 2,700

5 Dropwizard 5,702 361 7,900 3,300

6 Checkstyle 9,922 254 5,800 7,700

7 Hadoop 24,612 339 11,300 7,000

8 Selenium 26,532 558 19,800 6,200

9 Skywalking 6,242 315 16,100 4,700

10 Signal android 7,015 223 19,800 4,700

File versions.csv contains general information (unique version identification, number of classes, pack-

ages, external classes, external packages, version repository link, etc.) to provide an overview of versions

and how the repository continues to grow over time. Table A.3 shows the metadata information related to

each version of the repositories provided in versions.csv.

Table A.3: Version & Metadata Information of Selected Repositories

No Repository name Version Commits Lines of code Classes Packages

1

Spring framework

2021-1 22,029 237,160 5,743 442

2 2020-1 20,155 225,059 5,450 433

3 2019-1 17,649 205,268 5,025 394

4 2018-1 15,800 194,646 4,864 388

5 2017-1 13,862 178,744 4,658 383

6 2016-1 11,454 175,826 4,440 368

7

Junit-5

2021-1 6,529 17,372 688 70

8 2020-1 6,025 15,676 569 64

9 2019-1 5,244 13,540 500 61

10 2018-1 3,987 8,636 318 40

11 2017-1 2,821 6,575 243 33

12 2016-1 871 2,843 137 19

131

No Repository name Version Commits Lines of code Classes Packages

13

Apache kafka

2021-1 8,348 130,620 2,674 137

14 2020-1 6,943 111,332 2,375 124

15 2019-1 5,728 88,166 1,993 114

16 2018-1 4,514 71,958 1,682 89

17 2017-1 3,014 38,961 942 62

18 2016-1 1,857 26,423 661 56

19

Apache lucene-solr

2021-1 34,550 600,393 8,746 421

20 2020-1 32,842 588,425 8,713 394

21 2019-1 31,221 527,217 7,891 355

22 2018-1 29,186 497,523 7,420 343

23 2017-1 26,390 432,647 6,393 333

24 2016-1 23,932 389,276 5,786 308

25

Dropwizard

2021-1 5,643 14,460 514 88

26 2020-1 5,220 14,059 506 88

27 2019-1 4,681 14,057 554 93

28 2018-1 4,356 13,002 521 87

29 2017-1 4,044 11,463 477 81

30 2016-1 3,484 10,208 407 69

31

Checkstyle

2021-1 9,832 27,751 483 35

32 2020-1 8,936 25,791 445 26

33 2019-1 8,162 25,315 430 26

34 2018-1 7,469 24,992 416 26

35 2017-1 6,248 22,770 389 24

36 2016-1 5,507 20,416 366 23

37

Hadoop

2021-1 24,479 709,632 10,676 677

38 2020-1 23,378 687,561 10,462 687

39 2019-1 20,879 686,289 10,592 743

40 2018-1 17,547 594,562 9,066 573

41 2017-1 15,188 489,835 7,711 460

42 2016-1 12,619 431,280 6,978 431

132

No Repository name Version Commits Lines of code Classes Packages

43

Selenium

2021-1 26,202 41,483 1,290 138

44 2020-1 24,579 32,347 1,079 105

45 2019-1 23,328 32,416 1,045 100

46 2018-1 21,649 27,274 910 72

47 2017-1 19,817 24,648 835 67

48 2016-1 18,306 33,234 929 71

49

Skywalking

2021-1 6,145 72,800 3,001 765

50 2020-1 5,393 50,974 2,224 540

51 2019-1 4,503 29,773 1,238 269

52 2018-1 3,152 23,363 1,113 247

53 2017-1 1,287 8,544 379 98

54 2016-1 282 7,194 253 80

55

Signal android

2021-1 6,654 136,947 3,338 209

56 2020-1 4,849 91,578 2,239 141

57 2019-1 3,930 63,589 1,357 85

58 2018-1 3,339 46,727 1,075 67

59 2017-1 2,601 47,528 1,078 71

60 2016-1 2,299 42,098 950 56

Total 60 version of repositories 700,938 9,420,246 173,237 12,849

File attribute− details.csv contains detailed information (attribute name, attribute short form, cate-

gory, and description) about extracted static analysis metrics and code quality attributes. The short form

is used in the real dataset as a unique identifier to show value for packages, classes, and methods. Table

A.4 lists the source code metrics and code quality attributes used in our dataset.

Table A.4: List of Source Code Metrics and Code Quality Attributes

No Category Code Full name Description

1 Package,

Class,

Method

Coupling Coupling Measures coupling value between two

classes A and B.

133

No Category Code Full name Description

2 Package,

Class,

Method

Lack of Cohe-

sion

Lack of Cohesion Measure how well the methods of a class

are related to each other.

3 Package,

Class,

Method

Complexity Complexity Implies being difficult to understand and

describe the interactions between a number

of entities.

4 Package,

Class,

Method

Size Size Measured by the number of lines or meth-

ods in the code.

5 Package,

Class

LOC Lines of Code The number of all nonempty, non-

commented lines of the body of the class.

6 Package,

Class

WMC Weighted Method

Count

The weighted sum of all class methods.

7 Class DIT Depth of Inheritance

Tree

The position of the class in the inheritance

tree.

8 Class NOC Number of Children The number of direct subclasses of a class.

9 Class CBO Coupling Between

Object Classes

The number of classes that a class is cou-

pled to.

10 Class CBO LIB CBO Lib The number of dependent library classes.

11 Project CBO APP CBO App The number of dependent classes in the ap-

plication.

12 Class RFC Response For a Class The number of the methods that can be

potentially invoked in response to a public

message received by an object of a partic-

ular class.

13 Class SRFC Simple Response For

a Class

The number of the methods that can be

potentially invoked in simple response to a

public message received by an object of a

particular class.

14 Class LCOM Lack of Cohesion of

Methods

Measure how methods of a class are related

to each other.

134

No Category Code Full name Description

15 Class LCAM Lack of Cohesion

Among Methods

CAM metric is the measure of cohesion

based on parameter types of methods.

LCAM = 1-CAM.

16 Class NOF Number of Fields The number of fields (attributes) in a class.

17 Class NOM Number of Methods The number of methods in a class.

18 Class NOSF Number of Static

Fields

The number of static fields in a class.

19 Class NOSM Number of Static

Methods

The number of static methods in a class.

20 Class SI Specialization Index Measures the extent to which subclasses

override their ancestors’ classes.

21 Class CMLOC Class-Methods Lines

of Code

The total number of all nonempty, non-

commented lines of methods inside a class.

22 Package EC Efferent Coupling Outgoing Coupling. The number of classes

in other packages that the classes in the

package depend upon is an indicator of the

package’s dependence on externalities.

23 Package AC Afferent Coupling Incoming Coupling. The number of classes

in other packages that depend upon classes

within the package is an indicator of the

package’s responsibility.

24 Package #(C&I) Number of Classes &

Interfaces / Entities

Total number of Classes & Interfaces.

25 Package #I Number of Interfaces Total number of Interfaces.

26 Package #C Number of Classes Total number of classes.

27 Class NORM Number of Overrid-

den Methods

The number of Overridden Methods.

28 Class C3 C3 The max value of Coupling, Cohesion,

Complexity metrics.

29 Project nofP Number of Packages Number of Packages in the project.

30 Project nofPa Number of External

Packages

Number of External Packages referenced

by the project.

135

No Category Code Full name Description

31 Project nofEE Number of External

Entities

Number of External classes and interfaces

referenced by the project.

32 Project NoPC Number of Problem-

atic Classes

Number of classes with high coupling, high

complexity or low cohesion in the project.

33 Project NoHPC Number of Highly

Problematic Classes

Number of classes with high coupling,

high complexity, and low cohesion in the

project.

34 Class LTCC Lack of Tight Class

Cohesion

Measures the lack of cohesion between the

public methods of a class.

35 Class ATFD Access to Foreign

Data

The number of classes whose attributes are

directly or indirectly reachable from the in-

vestigated class.

36 Package Ins Instability Measure the relative susceptibility of class

to changes.

37 Package Abs Abstractness Measure the degree of abstraction of the

package.

38 Package ND Normalized Distance Normalized Distance metric is used to mea-

sure the balance between stability.

39 Class InDegree InDegree In-degree of corresponding graph vertex of

the class.

40 Class OutDegree OutDegree Out-degree of corresponding graph vertex

of the class.

41 Class Degree Degree Degree of corresponding graph vertex of

the class.

42 Method MCC McCabe Cyclomatic

Complexity

McCabe Cyclomatic Complexity

43 Method NBD Nested Block Depth Number of statement blocks that are

nested due to the use of control structures

(branches, loops).

44 Method LOC.2 Method Lines of

Code

Number of Lines of Code under a method.

136

No Category Code Full name Description

45 Method #Pa Number of Parame-

ters

Number of Parameters.

46 Method #MC Number of Methods

Called

Number of Methods Called.

47 Method #AF Number of Accessed

Fields

Number of Accessed Fields.

File codesmells.csv provides the information (Rule, Code Smell, Rule Description) of code smells

analyzed from each version. Table A.5 lists the code smells and their associated rules.

In addition to these files, the dataset contains a folder having ten sub-folders named against each

repository name. Each sub-folder has six CSV files named according to the version. The CSV files contain

analyzed static analysis metrics and code smell information.

A.4 Experimental Design, Materials, and Methods

The dataset construction process involves the following distinct steps:

The first step involves the selection of the repositories to be analyzed. Towards this direction, we

retrieved information regarding the most popular repositories using the ModelMine tool [8] with the fol-

lowing criteria; a repository with primary language Java, a minimum of 5, 000 commits, at least 100 active

contributors, a minimum of 3, 000 stars and 500 forks. We have selected ten diverse repositories out of 47

searched and filtered repositories. The selected repositories are open-source and can be downloaded from

the GitHub link provided in A.5.

To validate the variations of the repositories, we consider a high number of stars and forks as a proxy

for the popularity of repositories and a high number of commits as a proxy for maintenance. Also, we

consider repository size as follows: low (1–1,000 classes), medium (1001–5,000 classes), and high (more

than 5,000 classes) in the latest version of each repository.

After selecting repositories to be analyzed, the next step involves acquiring their version and source

code. We use the ModelMine tool again to find the version link of the repositories each year between

2016-2021. The selected versions are open-source and can be downloaded from GitHub by visiting the

GitHub tree link provided in A.6.

After collecting the source code of each version of the selected repositories, the next step involves

analyzing the source code and extracting source code metrics and code quality attributes from each version.

137

Table A.5: List of Code Smells and Their Associated PMD Rule Names

No Code Smell Description Rule

1 God Class A class does too many things, is very big,

and is overly complex.

GodClass

2 Long Method A method does more than its

name/signature suggests.

ExcessiveMethodLength

3 Data Class A class holds simple data, which reveal

most of their state without complex func-

tionality.

DataClass

4 Long Parameter

List

A method with numerous parameters

challenged to maintain.

ExcessiveParameterlist

5 Large Class A class may be burdened with many re-

sponsibilities provided by external classes

or functions.

ExcessiveClassLength

6 Complex Class A class that concentrates too much deci-

sional logic in methods makes its behav-

ior hard to read and change.

CyclomaticComplexity

7 Switch Statement A switch statement implies a method

with a switch statement is overloaded.

SwitchDensity

8 Class Data

Should Be Private

A class with large numbers of public

methods and attributes.

ExcessivePublicCount

We perform static analysis using the CODEMR, static analysis tool [4], which enables the computation

of a series of metrics that quantify forty-seven different source code metrics and code quality attributes.

The analysis was performed at package, class, and method levels. A list of source code metrics and code

quality attributes, along with the description and acronyms, are shown in Table A.4.

Besides collecting the code quality attributes, we extracted design-related code smells information using

the PMD tool [172] from the repositories. The code smell information for each repository is stored as CSV

files in the codesmells folder. To extract the design-related code smells, we used a PMD command shown

in Table A.6 and applied the parameters: (1) directory (-d), (2) rule (-R), and (3) output format (-f).

138

Table A.6: PMD Command & Parameters to Extract Code Smells

Command pmd.bat -d “path to repository” -R category/java/design.xml -f csv >>

“output file name.csv”

Parameters -d <path>: Root directory for the analyzed sources.

-R <refs>: Comma-separated list of ruleset or rule references.

-f <format>: Output format of the analysis report.

Finally, we created a synthesized version of source code metrics, code quality, and code smell informa-

tion by class and method name of each repository version. This process is done using a Python script and

takes longer as we merge the data over a non-indexed column: Class/method name. Generally, By simply

merging using the index column, the speed increases from 10 to 15% over a non-indexed column [175].

A.5 Repository Links

The table A.7 shows the repository link information that we mine from the GitHub repositories of interest.

Table A.7: Selected Repository Links

Serial Repository name Repository link

1 Spring framework https://github.com/spring-projects/spring-framework

2 Junit-5 https://github.com/junit-team/junit5

3 Apache kafka https://github.com/apache/kafka

4 Apache lucene-solr https://github.com/apache/lucene-solr

5 Dropwizard https://github.com/dropwizard/dropwizard

6 Checkstyle https://github.com/checkstyle/checkstyle

7 Hadoop https://github.com/apache/hadoop

8 Selenium https://github.com/SeleniumHQ/selenium

9 Skywalking https://github.com/apache/skywalking

10 Signal android https://github.com/signalapp/Signal-Android

139

https://github.com/spring-projects/spring-framework
https://github.com/junit-team/junit5
https://github.com/apache/kafka
https://github.com/apache/lucene-solr
https://github.com/dropwizard/dropwizard
https://github.com/checkstyle/checkstyle
https://github.com/apache/hadoop
https://github.com/SeleniumHQ/selenium
https://github.com/apache/skywalking
https://github.com/signalapp/Signal-Android

A.6 Version links

The following table shows the version link information we mine repositories of interest from GitHub. We

download a total of sixty versions of ten repositories.

Table A.8: Version Link of Selected Repositories

No Repository name Version Version link

1

Spring framework

2021-1 https://github.com/spring-projects/spring-framework/tree/44b29b6ecfdf77aec59409601301ca8e21452f0e

2 2020-1 https://github.com/spring-projects/spring-framework/tree/d5f0bb23aed29578cb45653f14d291d1bfe291e7

3 2019-1 https://github.com/spring-projects/spring-framework/tree/72fbbb24035c79f0c95e698aa26f913497b26323

4 2018-1 https://github.com/spring-projects/spring-framework/tree/0f1f95e0909c5d32bbc9305ae85c57312a491058

5 2017-1 https://github.com/spring-projects/spring-framework/tree/badde3a479a53e1dd0777dd1bd5b55cb1021cf9e

6 2016-1 https://github.com/spring-projects/spring-framework/tree/d681f77d625d4815563511e6abb96827c8aec2a5

7

Junit-5

2021-1 https://github.com/junit-team/junit5/tree/03a79c13f612099a8fc328aa2bcff23e4f8dcc2c

8 2020-1 https://github.com/junit-team/junit5/tree/20a9fe00e795b9234b6e9abb2e9a172d347625ff

9 2019-1 https://github.com/junit-team/junit5/tree/56ac9fde793903fe6fd36ec2d3b09e3fbed91f7d

10 2018-1 https://github.com/junit-team/junit5/tree/4b3b36e1b2b2069600f2fcf8fcf5385b0278b2c1

11 2017-1 https://github.com/junit-team/junit5/tree/73f3eeb436e78226f19554f2c2b5dab63e103670

12 2016-1 https://github.com/junit-team/junit5/tree/13d39cfbd9a42d3e6d6679e869caf98b5e3386de

13

Apache kafka

2021-1 https://github.com/apache/kafka/tree/2515bf236864c04cc75d8fd136b048625663e16c

14 2020-1 https://github.com/apache/kafka/tree/f610f9ff1f59f90434c3614f00c95001f50100e4

15 2019-1 https://github.com/apache/kafka/tree/b16afbb77bc1a497096815e64ed9e97df1edf92d

16 2018-1 https://github.com/apache/kafka/tree/96df93522f84173ff47f47ec78ec408991140b65

17 2017-1 https://github.com/apache/kafka/tree/ce1cb329d5aa788968e47d7dfe307128f2ddc2ff

18 2016-1 https://github.com/apache/kafka/tree/b905d489188768ba1c55226857db9713b9272918

19

Apache lucene-solr

2021-1 https://github.com/apache/lucene-solr/tree/beb163c9160bf983ac94c33eeee9659dc061ff6a

20 2020-1 https://github.com/apache/lucene-solr/tree/1e0471a2476d66ff64e866b354253b8e76bcd7c7

21 2019-1 https://github.com/apache/lucene-solr/tree/5016959ce8c1eed9d354822f01edc4b509e4aa9d

22 2018-1 https://github.com/apache/lucene-solr/tree/2da4ed17bae07593233f4e5610ce40a6a07f7c10

23 2017-1 https://github.com/apache/lucene-solr/tree/93562da610bf8756351be7720c69872bc1cea727

24 2016-1 https://github.com/apache/lucene-solr/tree/c9b7af045085bb44fada61cfa877f0238769ff72

25

Dropwizard

2021-1 https://github.com/dropwizard/dropwizard/tree/dda5bb6990607f6b2e9ca00e8156c3bf2cf480d6

26 2020-1 https://github.com/dropwizard/dropwizard/tree/1ae6ea6a62329d3715fa62d3f85b620178f8da9b

27 2019-1 https://github.com/dropwizard/dropwizard/tree/f000627a307d12280e39875da99caf685d1950d3

28 2018-1 https://github.com/dropwizard/dropwizard/tree/6e5c9c5aef82fe7d25097d837854c6d0778f86c7

29 2017-1 https://github.com/dropwizard/dropwizard/tree/a43e4b96df5b36a8cfd795bd5fd382e40a6733b3

30 2016-1 https://github.com/dropwizard/dropwizard/tree/3d78e02c3daef8d4acd78c570a4363db07eedeea

31

Checkstyle

2021-1 https://github.com/checkstyle/checkstyle/tree/c3e5dfff8ea8ec8ef5ed1ea12f86c1110445707a

32 2020-1 https://github.com/checkstyle/checkstyle/tree/5e7809c096db317143f38cf7fbe4d2a535836b85

33 2019-1 https://github.com/checkstyle/checkstyle/tree/a262bad94bb4aa5786a2c47582021dc1189208ec

34 2018-1 https://github.com/checkstyle/checkstyle/tree/327c0bc843612486ab4ded32a2f01038e1271fd0

35 2017-1 https://github.com/checkstyle/checkstyle/tree/16aadebeee91937b3fadaa6f911e6ce0a97863b1

36 2016-1 https://github.com/checkstyle/checkstyle/tree/af047afee8216a4b0db9027dd013a1aad2be9494

37

Hadoop

2021-1 https://github.com/apache/hadoop/tree/1448add08fcd4a23e59eab5f75ef46fca6b1c3d1

38 2020-1 https://github.com/apache/hadoop/tree/b6dc00f481189821e5d982083eba6d01f108b3de

39 2019-1 https://github.com/apache/hadoop/tree/cb26f154289ed065a967886b8eac04794907d643

40 2018-1 https://github.com/apache/hadoop/tree/dfe0cd86553bd2688603ea382ea593171d520471

41 2017-1 https://github.com/apache/hadoop/tree/b31e1951e044b2c6f6e88a007a8c175941ddd674

42 2016-1 https://github.com/apache/hadoop/tree/f9e36dea96f592d09f159e521379e426e7f07ec9

140

No Repository name Version Version link

43

Selenium

2021-1 https://github.com/SeleniumHQ/selenium/tree/4af354bb99abf3191473fa32f636063311a378d5

44 2020-1 https://github.com/SeleniumHQ/selenium/tree/58249b7943198e92ce083f42052380fa2dbcfd61

45 2019-1 https://github.com/SeleniumHQ/selenium/tree/d25b01eca78ae9982e3c1fed7f2294a91c186f54

46 2018-1 https://github.com/SeleniumHQ/selenium/tree/f3eafa022fe42e3aa200821f3175350b611209c8

47 2017-1 https://github.com/SeleniumHQ/selenium/tree/9a39af7619b7165af80bd6d7b688369479baeeed

48 2016-1 https://github.com/SeleniumHQ/selenium/tree/4c35228399ed9b0610d41e5b8c758563c129efbc

49

Skywalking

2021-1 https://github.com/apache/skywalking/tree/61011635135cfe777370db59f0988d5a3c546dd2

50 2020-1 https://github.com/apache/skywalking/tree/568c2e53f09855199884f65f38a9e4771a5a6467

51 2019-1 https://github.com/apache/skywalking/tree/8506f8f3c5afb1af762bcd7b3d221121bf242ea7

52 2018-1 https://github.com/apache/skywalking/tree/e5ea6cf33154f4319a82029038ca533e4e593384

53 2017-1 https://github.com/apache/skywalking/tree/a944427df8f85f9881169ed3f342e36091f4d3e8

54 2016-1 https://github.com/apache/skywalking/tree/c1a90c9b7f26cce27e6fa13ecf055dd78eff1163

55

Signal android

2021-1 https://github.com/signalapp/Signal-Android/tree/ccd405fdce5f3d0a3f934e9ac02a4f0e33c9ed10

56 2020-1 https://github.com/signalapp/Signal-Android/tree/fe5fca8eaf3f73ab5b350d7d6b3c17b27729d92a

57 2019-1 https://github.com/signalapp/Signal-Android/tree/1c3052a580f8d40f235f0e3d2da9c4cda2f3860e

58 2018-1 https://github.com/signalapp/Signal-Android/tree/b307980d8ca0da588213d2cd448474ffa925d1c2

59 2017-1 https://github.com/signalapp/Signal-Android/tree/57cdbaedd646529ede41749fce0f16e1fe0b5ea3

60 2016-1 https://github.com/signalapp/Signal-Android/tree/df27fa47ed92f941e887e40974ae5f217f999294

141

Appendix B

Machine Learning in Code Smell

Detection

This appendix presents different results regarding recent studies on machine learning algorithms for code

smell detection considering the research articles published between 2015 and 2021.

B.1 Data Sources Links

Table B.1: Data Sources and Links

Serial Data source Data source URL

1 ACM Digital Library https://dl.acm.org/

2 IEEE Xplore Digital Libray https://ieeexplore.ieee.org/

3 ScienceDirect https://www.sciencedirect.com/

4 SpringerLink Digital Library https://link.springer.com/

5 Engineering Village Digital Library https://www.engineeringvillage.com/

6 Wiley Online Library https://onlinelibrary.wiley.com/

142

B.2 List of Questions for Data Collection

Table B.2: List of Questions & Metadata for Data Collection

Serial Metadata Description Rationale

1 Code smells

studied

What code smells are reported in the papers?

To answer re-

search ques-

tions

2 Datasets

used to train

models

What datasets are used in the papers to train ma-

chine learning models?

3 Independent

variables

The classifier used to measure the proneness of

code smell?

4 Machine

Learning

algorithms

applied

Which machine learning algorithms are considered

in the research articles?

5 Evaluation

metrics used

What evaluation metrics have been used to assess

the accuracy of the model?

6 Demographic

informa-

tion of the

authors

Which regions are employing machine learning in

code smell-related research?

To conduct

exploratory

data analysis

7 Publication

venues

In which conferences or journals are the papers

published?

8 Publication

year

In which year were the articles published?

143

B.3 Dataset Used in the Primary Studies

This section shows the results related to the reported dataset in recent studies.

Table B.3: Datasets Reported in the Primary Studies

Serial Dataset Primary Studies Dataset Type

1 Qualitas Corpus [S01], [S06], [S11], [S13], [S17],

[20] [S22], [S25]

Open Source

2 Code Smell 13 repository

dataset

[S04], [S07], [S14], [S18] Open Source

3 Self generated dataset [S15], [S23], [24] Industrial

4 Two open source java

projects [GanttProject,

Apache Xerces]

[S05], [S21] Open Source

5 Landfill [S02] Open Source

6 Android Smell Dataset

(Created Manually)

[S03] Industrial

7 Code Smell Github Dataset [S08] Open Source

8 Seven open source projects [S09] Open Source

9 Fourteen Industrial Soft-

ware Systems

[S10] Industrial

10 Two projects [ArgoUML,

Apache Xerces]

[S12] Open Source

11 Eight Open Source

Projects

[S19] Open Source

12 BrainCode Dataset [S26] Industrial

144

B.4 Independent Variables Considered in the Primary

Studies

Table B.4: Independent Variables Considered in the Primary Studies

Article

ID

Metrics Number of

Metrics

S01 CBO, CYC, DAC, DIT, ILCOM, LCOM, LD, LEN, LOC, LOD, MPC,

NAM, NOC, NOM, RFC, TCC, WMC, MNB, uniqueWordsQty, assign-

mentsQty, comparisonsQty, loopQty, parenExpsQty, variables, parameters,

startLine

26

S02 CLOC, LOC, WMC 3

S03 NoM, DoI, NoII, NoA, CLC, LoC, isAbstract, isStatic, isInnerClass, isIn-

terface, isActivity, isBroadcastReceiver, isAsyncTask, ownOnLowMemory,

NoP, NoI, NoDC, NoC, CC, NatureOfClass, callExternalMethod, call-

Method, useVariable, callInit

24

S04 ELOC, LCOM, LOC METHOD, NOA, NOM, NOPA, NP,

NMNOPARAM, WMC

9

S05 LOC, CC 2

S06 LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NoA, WMC,

WMCNAMM, AMW, AMWNAMM, CLNAMM, NOP, NOAV, ATLD,

NOLV, FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, NMCS, CC, CM,

NOAM, DIT, NOC, NoII

29

S07 ELOC, LCOM, LOC METHOD, NOA, NOM, NOPA, NP,

NMNOPARAM, WMC

9

S08 NOC, IPM, WMC, CC, NOCH, NBI, NOM, DIT, PPIV, LCOM, LOCL,

APD, XML, BSMC, NTO, WKL, GPS, BMAP, SQL, NET, I/O

22

S09 LOC, CBO, DIT 3

S10 LCOM, DIT, IFANIN, CBO, NOC, RFC, NIM, NIV, WMC, Cyclo 10

S11 RFC, PM, AFD, LOC, LOCNA, TCC, WMC,WMCNA, NPA, parameters,

CC

11

S12 NSM, TLOC, CA, RMD, NOC, SIX, RMI, NOF, NOP, MLOC, WMC,

NORM, NSF, NBD, NOM, LCOM, VG, PAR, RMA, NOI, CE, NSC, DIT

23

145

Article

ID

Metrics Number of

Metrics

S13 LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NoA, CC, WMC,

WMCNAMM, AMW, AMWNAMM, CLNAMM, NOP, NOAV, ATLD,

NOLV, FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, NMCS, CC, CM,

NOAM, DIT, NOC, NoII

30

S14 ELOC, LCOM, LOC METHOD, NOA, NOM, NOPA, NP,

NMNOPARAM, WMC

9

S15 WMC, NOV 2

S16 CBO, CYC, DAC, DIT, ILCOM, LCOM, LD, LEN, LOC, LOD, MPC,

NAM, NOC, NOM, RFC, TCC, WMC, maxNestedBlocks, uniqueWord-

sQty, assignmentsQty, comparisonsQty, loopQty, parenExpsQty, variables,

parameters, startLine

27

S17 LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NoA, CC, WMC,

WMCNAMM, AMW, AMWNAMM, CLNAMM, NOP, NOAV, ATLD,

NOLV, FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, NMCS, CC, CM,

NOAM, DIT, NOC, NoII

30

S18 ATFD, ELOC, FanIn, FanOut, LCOM, LOC METHOD, McCabe, MC,

NOA, NOC, NOM, NOPA, NP, NMNOPARAM, PDM, PRM, WMC, LOC

18

S19 ATFD, LAA, FDP 3

S20 LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NoA, CC, WMC,

WMCNAMM, AMW, AMWNAMM, CLNAMM, NOP, NOAV, ATLD,

NOLV, FANOUT, ATFD, FDP, RFC, CBO, CFNAMM, NMCS, CC, CM,

NOAM, DIT, NOC, NoII

30

S21 LOC, CC 2

S22 WMC, CFNAMM, NOAM, NIM, ATFD, LAA, Cyclo 7

S23 LOC, CC 2

S24 LOC, CBO, NOM, CC, FO, FI, LCOM 7

146

Article

ID

Metrics Number of

Metrics

S25 LOC, LOCNAMM, NOPK, NOCS, NOM, NOMNAMM, NOA, CYCLO,

WMC, WMCNAMM, AMW, AMWNAMM, MNB, CLNAMM, NOP,

NOAV, Fanout, ATFD, FDP, RFC, CBO, CFNAMM, CINT, MaMCL,

MeMCL, NMCS, CC, CM, CDISP, NOAM, NOPA, LAA, DIT, NoII, NOC,

NMO, NIM, NoII, NOCS, WOC Tyoe, NODA, NOPVA, NOPRA, NOFA,

NOFSA, NOFNSA, NONFNSA, NOSA, NONFSA, NOABM, NOCM,

NONCM, NOFM, NOFNSM, NONSM

55

S26 WMC, NOC, NOM, NONM, NOIM, TLOC, MLOC, CIS, NOPM 28

147

B.5 List of Source Code Metrics and Definitions

Table B.5: Source code metric names along with their definitions

Name Definition Name Definition

AMW Average Method Weight NMCS Number of Message Chain Statements

APD Access to Private Data NOA Number of Anchestors

ATFD Access to Foreign Data NOABM Number of Abstract Methods

ATLD Access to Local Data NOAV Number of Accessed Variable

CBO Coupling Between Objects NOC Number of Children

CC Class Complexity NOCM Number of Construction Methods

CFNAMM Called Foreign Not Accessor or Mutator Methods NOCS Number of Classes

CINT Coupling Intensity NODA Number of Default Attributes

CIS Class Interface Size NOF/NOA Number of Fields/Attributes

CLOC Class Lines of Code NOFA Number of Fields Accessed

CM Changing Methods NOFM Number of Final Methods

CYC / CLC Cyclomatic complexity NOII Number of Implemented Interfaces

DAC Data Abstraction Coupling NOIM Number of Inherited Methods

DIT Depth Inheritance Tree NOLV Number of Local Variables

DOI Depth of Inheritance NOM Number of Methods

ELOC Estimated Lines of Code NONM Number of Normal Methods

FANIN/FI Max number of references to the subject class to another class NOPA Number of Public Attributes

FANOUT/FO Number of methods and fields used by one entity NOPVA Number of Private Attributes

FDP Foreign Data Provider NOPM Number of Polymorphic Methods

LAA Locality of Attribute Accesses NOSA/NOSF Number of static attributes

LCOM Lack of Cohesion in Methods NOV Number of Variable

LD Locality of Data NOPK, NP Number of Packages

LEN Length of Class Names NPA Number of Protected Attributes

LOC Lines of Code NSC Number of static Classes

LOD Lack of Documentation NSM Number of Static Methods

MC/MCC Mccabe Cyclomatic Complexity PDM Percentage of Delegate Methods

MLOC/LOCM Method Lines of Code PM Number of Private Methods

MN Max Nesting Level PRM Percentage of Refused Methods

MNB Max Nested Block RFC Responses for a Class

MPC Message Passing Coupling TCC Tight Class Cohesion

NOAM Number of Accessor Methods TLOC Total Lines of Code

NIM Number of Inherited Methods WMC Weighted Method Call

148

Biosketch

Sayed Mohsin Reza is a Ph.D. candidate in the field of Computer Science at the University of Texas at

El Paso. He received his Master of Science in Computer Science from the same institution in 2021 and a

Bachelor of Science in Information Technology from Jahangirnagar University in Bangladesh in 2014. His

research interests lie at the intersection of Software Engineering, Machine Learning, Software Quality, and

Data Science.

His current research focuses on exploring the application of machine learning techniques in identifying

code quality, code smells, and refactoring techniques. He has developed a tool called ”ModelMine” which

enables efficient mining of models and designs from open-source repositories and ranks repositories based

on the presence of models and designs.

In addition to his research in software engineering, Mr. Reza is also interested in data science-based

CS curriculum design that is culturally relevant. He draws inspiration from the foundational work of

Gloria Ladson Billings in framing learner experiences that are connected to personal interests, cultural

backgrounds, and the sociopolitical landscape.

Mr. Reza’s undergraduate research work was on the development of a conference management system

named PROCONF aimed at improving the submission and review process. This system is currently in use

by multiple international conferences and journals and is hosted on the website, http://www.proconf.

org/. He serves as the CEO of the software company that developed the system.

Contact Information: smrezaiit@gmail.com

149

http://www.proconf.org/
http://www.proconf.org/
mailto:smrezaiit@gmail.com

	Analyzing Software Maintenance Through Machine Learning and Mining Software Repositories Approaches
	Recommended Citation

	Signature Page
	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background of the Research Problem
	Mining Software Artifacts from Open Source Repositories
	Machine Learning Approaches in Code Quality Classification
	Machine Learning Approaches in Code Smell Detection
	Machine Learning Approaches in Issue Label Identification

	Motivation
	Research Objective and Questions
	Contributions
	Significance of the Research
	Dissertation Overview
	Chapter 2: Literature Overview
	Chapter 3: ModelMine: A Tool to Facilitate Mining Software Artifacts from Open Source Repositories
	Chapter 4: Performance Analysis of Machine Learning Approaches in Software Code Quality Classification
	Chapter 5: Evaluating the Accuracy of Machine Learning Algorithms for Code Smells Detection
	Chapter 6: Issue Label Identification: Towards A Machine Learning-based Approach

	Literature Review
	Overview of the Research Field
	Software Artifacts
	Tools in Mining Software Repositories
	Software Artifacts Mining
	Software Artifacts Analysis
	Software Artifacts Visualization
	Other Research on Software Artifacts

	Machine Learning in Code Quality Research
	Code Quality Features
	Machine Learning Approaches
	Code Quality Analysis Techniques
	Other Code Quality Research

	Machine Learning in Code Smell Research
	Traditional ML Approaches
	Neural Network-based ML Approaches

	Gaps in the Literature

	ModelMine: A Tool to Facilitate Mining Software Artifacts from Open Source Repositories
	Introduction
	ModelMine Architecture
	Indexing Phase
	Paging Phase
	Query Reduction Phase
	Querying Phase
	Data Representation
	Results Ranking

	ModelMine User Interface
	Model-based Repository Search
	Model-based Artifact Search
	Model-based Commit Search

	Evaluation
	Conclusion

	Performance Analysis of Machine Learning Approaches in Software Code Quality Classification
	Introduction
	Research Methodology
	Research Questions
	Proposed Research Framework
	Dataset Collection
	Dataset Cleaning & Analysis
	Machine Learning Classifiers & Evaluation Metrics

	Result and Discussion
	Correlation Results
	Performance Results

	Conclusion

	Evaluating the Accuracy of Machine Learning Algorithms for Code Smells Detection
	Introduction
	Background
	Study Design
	Research Questions
	Code smell Characteristics of Handwritten Code in MDE Projects
	Code Smells in Recent Studies
	Data Collection for Code Smells in MDE Projects
	Machine Learning Approaches in Code Smell Detection

	Results
	Results Based on Code Smells (RQ1 & RQ2)
	Results Based on Technical Debt (RQ3)
	Code Smells Considered in Recent Studies (RQ4)
	ML Approaches Considered in Recent Studies (RQ5)
	Performance Comparison of ML Approaches (RQ6)

	Discussion & Analysis
	Threats to Validity
	Construct Validity
	External Validity

	Conclusion

	Issue Label Identification: Towards A Machine Learning-based Approach
	Introduction
	Study Design
	Research Questions
	G-Issue Architecture
	Proposed Deep Learning Approach
	Data Collection
	Terminology

	Results & Discussion
	Performance Evaluation
	Analysis of Issue Lifetime
	Evolution of Issues
	Performance of Proposed Deep Learning Approach

	Conclusion

	Conclusion
	Contributions
	Future Research Plan

	References
	CSIQ: A Synthesized Dataset of Software Artifacts
	Dataset Overview
	Significance of the Data
	Data Description
	Experimental Design, Materials, and Methods
	Repository Links
	Version links

	Machine Learning in Code Smell Detection
	Data Sources Links
	List of Questions for Data Collection
	Dataset Used in the Primary Studies
	Independent Variables Considered in the Primary Studies
	List of Source Code Metrics and Definitions

	Biosketch

