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Abstract 

Natural disasters have been determined as the leading cause of power outages, causing not 

only huge economic losses, but also the interruption of crucial welfare activities and the arise of 

security concerns. Because of the later, decision-making considering grid modernization, power 

system economics, and system resiliency has been a crucial theme in power systems’ research. 

The need to better withstand catastrophic events and reducing the dependency of bulky generating 

units has propelled the development and better management of behind-the-meter generation or 

distributed energy resources (DERs). DERs can assist in the grid in different manners, not only by 

meeting energy demand goals, but also by reducing the overall system operating cost and support 

the global emerging environmental objectives. By being closer to the consumer or load side, DERs 

avoid transmission line losses and can contribute to reduced system congestion which translates in 

reduced operational cost, considering that two of the three pillars that affect Locational Marginal 

Price (LMP) are losses and congestion. Additionally, a higher power system resilience is achieved 

by reducing the dependency of transmission lines that can potentially fail during a contingency 

event. Furthermore, DERs are primarily based on Renewable Energy Sources (RESs) which 

contributes to diversifying the energy generation supply and reducing the grid’s fuel dependency. 

As a consequence, DERs in the form of RESs have the potential of reducing the overall greenhouse 

gas (GHG) emissions. While RESs have demonstrated over the years their numerous benefits, they 

also inflict a big challenge to the power grid in the form of added uncertainty and power flow 

instability by demanding higher system flexibility and improved decision-making algorithms. To 

account for this induced RESs power output uncertainty and improve power system resiliency in 

the decision-making process, the implementation of stochastic optimization via Monte Carlo 

simulations has been widely and commonly used, where different probability-based scenarios are 
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used to account for possible profile outcomes and renewable sources uncertainty. One of the many 

drawbacks of employing Monte Carlo simulations is that a power system optimization problem 

might be solved containing a worst-case scenario which differs significantly from the actual system 

condition. The latter yields consequently to a higher optimal cost, caused by the system’s 

uncertainty. As previously mentioned, RESs enhanced management can also be achieved by 

improving system flexibility. A well-studied power flow control technique consists of actively 

changing the power system transmission topology using Optimal Transmission Switching (OTS), 

leading to improved power flow and transmission congestion relief. The OTS problem is based on 

an DC Optimal Power Flow (DCOPF) algorithm with the addition of a big-M constraint to 

maintain problem linearity. In such big-M based algorithm, the selection of the M value can impose 

great computational complexity challenges; In extreme cases, an erroneous M value selection can 

potentially lead to numerical instability, long solving times, and even compromise problem 

optimality or feasibility. Therefore, the importance of selecting an appropriate M value is noticed 

and well known in literature. Finally, the increased penetration of RESs will demand a better use 

of the different generating resources across the network control areas. Regions with great solar 

irradiance capabilities are and will benefit from solar generation during sun hours. In the other 

hand, regions with great wind and tidal power capabilities might expect high power output during 

night hours. Furthermore, regions with must-run generation such as nuclear or hydro power need 

to maintain an almost constant power output to ensure power resilience and reliability. With the 

latter zone’s descriptions, different regions with diverse capabilities and characteristics can widely 

benefit from neighboring entities by allowing power exchange through system interconnections. 

As a consequence, distributed or decentralized algorithms that are able to reliably balance and co-

optimize multiple control areas while sharing minimal system information are required. This type 
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of algorithms optimizes not only the region’s own power dispatch, but also optimize the overall 

interconnected regions to exploit power exchange and interconnection benefits. 

This thesis will evaluate the cost effects of decision-making under uncertainty in the power 

system caused by wind power RESs, where a stochastic optimization mixed integer linear program 

(MILP) DCOPF based model employing Monte Carlo simulations is implemented. Furthermore, 

an evaluation of optimally choosing the big-M value for OTS is presented to describe some of the 

computational challenges of decision-making in the power system. Finally, a distributed consensus 

based DCOPF algorithm is presented to compare the resiliency impacts between centralized and 

decentralized decision-making mechanisms on power systems. The presented decentralized 

algorithm is based on the Alternating Direction Method of Multipliers (ADMM), founded on a 

penalty-based objective which implements the augmented Lagrangian method for constrained 

optimization problems. 
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Chapter 1: Introduction 

This thesis addresses some of the decision-making challenges in modern power systems 

with the inclusion of Distributed Energy Resources (DERs), uncertainty, flexible topology control, 

effects of natural disasters, and decentralized decision-making and control. The decision-making 

perspective considered has the objective to minimize the operational cost and analyze the effects 

of different optimization algorithms based on a DC Optimal Power Flow (DCOPF) algorithm. 

Similarly, a resiliency focus was utilized when employing a decentralized ADMM algorithm 

focused again in a DCOPF algorithm. In this chapter, the background and motivation will be 

introduced, as also the objective of the thesis and its limitations are defined. Additionally, a short 

summary of the upcoming chapters will be provided.  

1.1 BACKGROUND AND MOTIVATION 

The main inspiration of this thesis is to contribute to the ongoing and continuous 

transformation of the power and energy system. As the environmental goals and green-house gas 

emission sanctions increase, many electric facilities are aiming towards a Renewable Energy 

Sources (RES’s) oriented generation for the upcoming years. RES can contribute to this scenario 

by having a positive environmental and economic effect by reducing the overall emissions and the 

dependency on fossil fuels. In the other hand, RES such as wind power and solar generation 

through Photovoltaic (PV) panels impose big challenges to the electric grid that need to be urgently 

addressed to maintain a reliable power system operation. These challenges are based on the 

intermittent and chaotic behavior that they exhibit; while intermittency can be handled by 

allocating flexible fast ramping units or energy storage devices, the forecast uncertainty is a more 

complex allocation which requires coordination of the system’s available resources. A direct result 

of RES uncertainty being incorrectly addressed is the imbalance of load and generation. In the case 
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of over generation, when more output from renewable energies is obtained compared to the 

forecast, unscheduled power flows can potentially increase the grid overall frequency and impose 

penalties as set by the regulatory commissions or even cause permanent damage to devices 

connected to the electrical grid. On the other hand, under generation has the potential of causing 

rolling blackouts as also decreasing the overall electrical grid frequency. Furthermore, the 

mentioned imbalances can lead to severe consequences such as grid islanding from an 

interconnection or cause cascading failures across the electrical grid. Besides the reliability aspect 

of RES, market prices along the grid are based on Locational Marginal Prices (LMPs) which are 

dependent on the congestion, losses, and energy price aspects of a specific location. That being 

said, it is crucial to prioritize research in congestion management of the grid as well as minimizing 

generation prices under uncertainty conditions. Additionally, the inclusion of big data sets or 

mathematically complex algorithms maintain plenty of the state-of-the art algorithms outside of 

the operational scope. As a result, the requirement of computationally effective algorithms has 

been another motivation for the work of this thesis. Finally, the increasing resiliency needs caused 

by increasing natural disasters and the transition from big robust generation facilities to distributed 

small generation units inspired a decentralized decision-making algorithm. The latter with the 

objective of exploding the advantages of decentralized control compared to a central command 

center and the upcoming trend of the expansion of electricity markets. 

1.2 THESIS CONTRIBUTION 

This thesis aims to discuss the current challenges and serve as a comprehensive review for 

some of the power system’s decision-making strategies. Being uncertainty one of the main 

challenges of the power system; (1) A method to price uncertainty is presented based on a 

stochastic optimization DCOPF model to study the economic impacts and flexible ramping 
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requirements of the power system under wind power RES uncertainty. Furthermore, with the 

inclusion of RES, greater grid flexibility is required. One of the explored techniques to achieve the 

latter is Optimal Transmission Switching (OTS), which allows to selectively switch on or off 

transmission lines. In one hand, transmission switching helps alleviate congestion in the system, 

improve power profiles, and reduce the total operational cost. On the downside, the OTS problem 

is computationally challenging by the addition of the “big-M” constraint. In this thesis, (2) a 

penalty approach is utilized on the DCOPF algorithm to reduce the computational time of big-M 

OTS problems, as also to ensure its feasibility. Finally, following the future power system trends 

of decentralized control and generation, (3) a decentralized consensus ADMM algorithm is 

presented to evaluate the power system resiliency of centralized and decentralized decision making 

under contingency events. The consensus ADMM based algorithm was chosen due to the minimal 

communication requirement between adjacent regions which is a priority in terms of data security 

and protection. 

This thesis is limited to providing an insight of some the current challenges on modern 

power system’s decision making. The uncertainty chapter dedicated in this thesis aims to develop 

a strategy to price the effects of uncertainty in terms of the system’s flexible ramp and energy 

deployment costs. The approach uses Monte Carlo simulations to represent wind variability and 

does not aim to use any scenario reduction techniques or evaluates other uncertainty consideration 

approaches or additional uncertainty variables. Furthermore, the OTS algorithm employed in 

chapter 4 intends to show the effects of different big-M selections and the importance of selecting 

an appropriate constant value. The algorithm itself consists of a two-stage optimization model in 

which the objective is not exhibit a decreased overall computational time, but to show de benefits 

that selecting an appropriate M-value has in terms of computational time. Finally, chapter 5 aims 
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to exclusively show the load-loss benefits of implementing a decentralized algorithms under 

specific conditions, this is the case of a contingency event resulting in the loss of control center 

communication. 

1.3 ORGANIZATION AND CHAPTER SUMMARIES 

Chapter 2 provides an approach to price wind power uncertainty, which aims to provide a 

reference for electric facilities to mitigate the uncertainty effects. The chapter begins with a 

literature review of the existing uncertainty consideration techniques and models followed by an 

introduction to the model, simulation specifications, and obtained results. Chapter 3 proposes a 

model to find optimal M values for the big-M OTS problems with the goal of reducing the 

problem’s solution time and feasibility including a literature review involving flexible topology. 

Finally, Chapter 4 starts with a literature review based on decentralized decision-making  

algorithms and later presenting a model based on distributed optimization to enable independent 

decision-making on adjacent regions while allowing power exchange.  
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Chapter 2: The Cost of Uncertainty in Power System’s Decision-Making 

The current search for green and sustainable energy solutions had aimed the focus of 

electric facilities to RES, which had provided an optimistic future with big challenges. The volatile 

and intermittent nature of renewable energy sources (RES) has critical impact on the electric grid. 

This thesis chapter aims to propose a model to quantify the impact of the uncertainty of RES on 

the power system operating costs in an electricity market environment considering the use of 

flexible ramping (FR) products, compensation for wind power curtailment, and the cost for flexible 

load curtailment, and thus offer a method to price the uncertainty of RES. The model is based on 

a stochastic optimization model for power system operations considering flexible ramping 

products, and the uncertainty cost is calculated by comparing the dispatch cost with and without 

uncertainties. The method was implemented on a modified RTS-96 test system with a high 

penetration of wind energy, and the uncertainty of wind power output were represented using three 

different distributions, namely, Gamma, Weibull, and Rayleigh. Results show that the uncertainty 

of wind power increases power system operating costs, and the uncertainty prices of wind power 

can be evaluated based on the difference of generation costs and penalty of wind power or load 

curtailment between the cases with and without uncertainties. 

2.1 NOMENCLATURE 

Indices 
𝑏 Bus. 
𝑔 Generator. 
𝑙 Transmission Line. 
𝑠 Scenario. 
𝑠𝑒𝑔 Segments for piece-wise linear cost function. 
𝑡 Time. 
𝑤 Wind farms. 
𝜙 Distribution Type. 

 
Sets 
𝑁𝐿!" Transmission lines with their “to” bus connected to node n. 
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𝑁𝐿!# Transmission lines with their “from” bus connected to node n. 
𝑁𝐺! Generators connected to node n. 
𝑁𝑊! Wind Farms connected to node n. 

 
Variables 
𝐶$% Dispatch cost of base case	at time 𝑡. 
𝐶$,'%  Dispatch cost of distribution 𝜙	at time 𝑡. 
𝑃($ Real power generation of generator 𝑔	at time 𝑡. 
𝑃($
)*( Real power generation of generator 𝑔	at time 𝑡 in segment 𝑠𝑒𝑔. 

𝑃+$,),  Wind generation of wind farm 𝑤	in scenario 𝑠 at time 𝑡. 
𝑃$,-  Total wind curtailment of base case	at time 𝑡. 
𝑃+$,),-  Wind curtailment of wind farm 𝑤	in scenario 𝑠 at time 𝑡. 
𝑃$,',-  Total wind curtailment of distribution 𝜙	at time 𝑡. 
𝑃$./-  Total flexible load curtailment of base case	at time 𝑡. 
𝑃!$,)./-  Flexible load curtailment of bus 𝑏	in scenario 𝑠 at time 𝑡. 
𝑃$,'./-  Total flexible load curtailment of distribution 𝜙	at time 𝑡. 
𝑃𝐿0$,) Real power flow through transmission line 𝑙	at time 𝑡 in scenario 𝑠. 
𝑆𝑅($1  FR down available through generator 𝑔	at time 𝑡. 
𝑆𝑅($2  FR up available through generator 𝑔	at time 𝑡. 
𝑠𝑟($,)1  FR down deployment by generator 𝑔	at time 𝑡 in scenario 𝑠. 
𝑠𝑟($,)2  FR up deployment by generator 𝑔	at time 𝑡 in scenario 𝑠. 
𝜃3$,) Voltage angle at the slack bus at time 𝑡	in scenario 𝑠. 

𝜇$,'24-  Uncertainty price of distribution 𝜙	at time 𝑡. 
 

Parameters 
𝐺 Total number of generators. 
𝑃!$1  Load at bus 𝑏 at time 𝑡. 
𝑃56$* Rated output of the wind farm. 

𝑃𝐿0768 Upper real power flow limit of transmission line 𝑙. 
𝑁 Number of piece-wise linear segments for the generators. 
𝑃(768 Upper generation limit of generator 𝑔. 
𝑃(79: Lower generation limit of generator 𝑔. 
𝑅𝐷( Per minute ramp-down rate for generator 𝑔. 
𝑅𝑈( Per minute ramp-up rate for generator 𝑔. 
𝑆 Total number of scenarios. 
𝑇 Length of investigated time period. 
𝑃(
)*(,768Upper generation limit of generator 𝑔 in segment 𝑠𝑒𝑔. 

𝜇(
)*( Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 
𝜇()5 FR deployment cost of generator 𝑔. 
𝜇(;< FR capacity cost of generator 𝑔. 
𝜇+,-  Wind curtailment compensation rate for wind farm w. 
𝜇!./-  Flexible load curtailment compensation rate for bus 𝑏. 
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𝜈 Wind speed. 
𝑓(𝜈)       The frequency rate of wind speed. 
𝜈=9 The cut-in speed of the wind turbine. 
𝜈=> The cut-out speed of the wind turbine. 
𝜈56$*% The rated speed of the wind turbine. 
𝜇 Mean value. 
σ Standard deviation.  
𝑘 Shape parameter of Weibull/Rayleigh distribution. 
𝑐 Scale parameter of Weibull/Rayleigh distribution. 
𝛼 Shape parameter of Gamma distribution. 
𝛽 Scale parameter of Gamma distribution. 
𝛤 The Gamma function. 
𝛾$,) Probability of scenario 𝑠 at time 𝑡. 

2.2 INTRODUCTION 

Currently, electric power generation contributes more than 30% of greenhouse emissions 

in the U.S. It is expected that the electricity demand will grow by 56% from 2010 to 2040 [1], 

raising an extended concern of the environmental impact caused by power systems. To reduce 

greenhouse gas emissions, the usage of renewable energy systems (RES) plays a critical role. 

Among different categories of RES, wind energy has been leading in both the growth and total 

consumption. In 2017, 52% of global renewable energy consumption is from wind energy, while 

only 21% is from solar energy. The massive increase in wind energy usage compared to other RES 

is mainly due to its wide availability and low cost. Wind farms can be deployed not only on land, 

but also onshore and offshore with large capacities, thus alleviating the need for large areas of 

land. From 2008 to 2015, wind energy reduced electric power generation cost by one-third [2]. 

However, the wide usage of RES, such as wind energy, caused a challenge to power system 

operations due to its risks, which can compromise their economic benefits and negatively affect 

the reliability of the system if not addressed properly. The risks of renewable energy mainly 

include two aspects: variability and uncertainty. The variability of renewable energy is relatively 

easy to accommodate because dispatchable energy resources could be properly scheduled to 



8 

accommodate the fluctuation of renewable energy supply if the fluctuations can be accurately 

forecasted. To accommodate the uncertainty of renewable energy, however, is a true challenge. To 

mitigate the impact of the uncertainty, renewable energy output forecasting is the first step. 

Forecasting methods have evolved during the past years, with the goal of reducing error and 

improving accuracy. The first type of methods are physical methods, which utilize mainly physical 

data to produce a weather and wind forecast over a period of time [3]. A more sophisticated version 

of physical methods includes the usage of spatial correlation models, which use the spatial 

relationship of different wind sites speed data and physical properties. The data obtained from 

specific sites is used to predict the wind speed at such sites by analyzing the patterns and important 

parameters of such data [4], [5]. To analyze the data, statistical methods are commonly used. These 

methods are based on probability density functions (PDF), which provide a good model to portray 

the pattern of future wind speed and wind power output. Wind power output scenarios can be 

created through Monte Carlo simulations based on the PDFs, allowing power system operators to 

take the uncertainty into consideration [6]. The advantage of the statistical methods is their easiness 

to implement, however, they have relatively large prediction errors as the forecasted time increases 

[7]. Facilitated by the recent development in artificial intelligence (AI), modern techniques take 

full advantage of the computational power to perform forecasting tasks. AI algorithms such as 

artificial neural networks (ANN) are capable of detecting complex nonlinear relations utilizing 

historical data to determine the dependance between different variables affecting the wind speed 

forecast with a high accuracy level [8]. Despite the improvement of renewable energy output 

forecasting methods, forecasting errors are unavoidable. Such forecasting errors are a major source 

of uncertainty for renewable energy. One of the most prevailing methods to address such 

uncertainty is to use fast response flexible ramp (FR) [9]. FR, or “flexiramp”, which allows the 
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generators to rapidly reduce their generation when wind power supply increases and increase their 

generation when wind power supply decreases based on the fast-ramping capabilities of such 

generators. It provides the flexibility needed by power system to accommodate the uncertainties 

of renewable energy resources [10]-[12]. California Independent System Operator (CAISO) and 

Midcontinent Independent System Operator (MISO) have both adopted FR to manage the 

variability and uncertainty caused by renewable energy in their systems [13]. The scheduling of 

FR can be performed using stochastic programming [10], which considers different realizations of 

the uncertainty, or robust programming [14], which considers the worst-case scenario of the 

uncertainty. To include FR in the operating schedule can induce an increase in the power system 

operating cost, which is an opportunity cost that could have been avoided had the FR not been 

scheduled. In the electricity market, this opportunity cost is often used to determine the price of 

ancillary services such as FR [14]-[16]. With the procurement of FR due to the integration of 

renewable energy, the operating costs of the power system will increase inevitably. The impact of 

wind power uncertainty on the electricity market has been discussed in multiple studies. The 

impact of wind power on operating reserves is analyzed from a unit commitment and market point 

of view in [17] and [18]. In the case of [19], the impact of wind power uncertainty on electricity 

prices were examined. FR products are used to mitigate the impact of wind power uncertainty in 

[10]-[16], [20]-[23], using either robust optimization [14], [20], which considers the worst-case 

scenario, or stochastic optimization [10], [11], [21]-[23], which considers a number of uncertainty 

scenarios. Despite existing studies on the scheduling of ancillary services considering the 

uncertainty of wind power, there is still a gap in studying the impact of wind power uncertainty on 

the increase of power system operating costs, and there lacks a comprehensive approach that 

evaluates the prices of wind power uncertainty with a high time resolution and a large number of 



10 

representative scenarios. To address such gaps, this chapter proposes an approach to evaluate the 

impact of wind power uncertainty on the scheduling of FR products in a stochastic optimization 

framework and proposes a method to price the uncertainty of wind power. The contributions of 

this chapter of the thesis are listed as follows:  

1. A method to price wind power uncertainty is proposed. The wind power uncertainty 

prices generated from this method can provide references for electricity market operators 

to design new market mechanisms and incentivize wind energy builders to mitigate the 

impact of such uncertainties.  

2. A method to evaluate the impact of wind power uncertainty on the scheduling of FR 

products in proposed in a stochastic optimization framework. This framework avoids 

producing overly conservative results for scheduling FR products while ensuring that the 

FR scheduling is representative to show the impact of wind power uncertainty.  

3. The method was implemented on a modified RTS-96 test system with high penetration 

of wind energy and 200 wind power scenarios from three different PDFs were considered. 

The impact of wind uncertainty represented by different distributions were compared, and 

the uncertainty of wind power is priced.  

The rest of the chapter is organized as follows. Section 2.3 presents wind power uncertainty 

pricing model, and Section 2.4 specifies the parameters used for the case studies. Simulation results 

and discussion is presented in section 2.5, followed by the conclusions in section 3.6. 

2.3 THE UNCERTAINTY PRICE MODEL 

The proposed uncertainty pricing model includes two steps. The first step is to optimally 

schedule FR in the system using a scenario-based stochastic optimization model. Using this model, 

the generation dispatch costs for two cases are obtained: (1) the case considering wind power 
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uncertainty, and (2) the case that assumes wind power is accurately forecasted without uncertainty. 

In the second step, the difference between the generation dispatch costs obtained in the two cases 

are calculated, and an average cost increase induced by the uncertainty for each megawatt of wind 

power is calculated, and this average cost increase per megawatt is considered as the uncertainty 

price for wind power. The evaluation process is shown in Fig. 2.1. 

2.3.1 The Optimal FR Scheduling Model 

The optimal FR scheduling model is based on a multi-period stochastic generation dispatch 

model with 5-minute intervals. This model considers a large number of renewable power 

generation scenarios and tries to accommodate different scenarios using FR. The curtailment of 

renewable energy and flexible load is allowed but penalized with high prices in the objective 

function. The formulation of the model is presented with Equations (2.1)-(2.16). The model 

objective function shown in (2.1) is to minimize the dispatch cost by considering piecewise linear 

generation cost, FR capacity cost, and FR deployment cost, as well as wind energy curtailment 

and flexible load curtailment. Equations (2.2) and (2.3) are the generation constraints, (2.4) is the 

power balance constraint at each node of the system, (2.5) sets the transmission line thermal limit 

constraints, (2.6) and (2.7) are the FR availability constraints for each generator, (2.8) set the limit 

for flexible load curtailment, (2.9) set the limit for wind power curtailment, (2.10) and (2.11) are 

the 5-minute ramping constraints for each generator, (2.12) is the flexible ramp up constraint while 

(2.13) corresponds to the flexible ramp down constraint, (2.14) and (2.15) are the flexible ramp up 

and down deployment constraints, and (2.16) sets Bus 1 as the reference bus.  
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Figure 2.1: Uncertainty Price Model Flowchart 
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2.3.2 The Wind Power Generation Uncertainty Model 

In the stochastic FR scheduling model, the uncertainty is modeled through renewable 

power generation scenarios. In this study, we use wind power as an example. In order to generate 

the scenarios, first, the mean and standard deviation of the wind speed for each time interval is 

calculated based on historical wind data. Historical wind data can be obtained through different 

sources, and one of them is the NREL Wind Prospector [24]. Then, a desired number of wind 

speed scenarios can be generated through commonly used wind speed distributions, such as 

Gamma, Weibull, and Rayleigh. At last, wind power generation are calculated based the wind 

speed in each time interval in each scenario. Different spatiotemporal characteristics need to be 

considered when selecting an appropriate PDF that properly models the region wind speed 

characteristics. The most commonly used PDF in wind speed modeling is the Weibull distribution 
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[25] – [29]. It has been used in the estimation of some wind power generation systems [30] and 

wind turbines failure analysis [31]. Nevertheless, Weibull is not suitable for locations with very 

low or very high wind speed [28]. Meanwhile, the Gamma distribution, another widely used 

distribution to model wind speed [32], is suitable for very low or very high wind speeds, and 

regions with different underlying surfaces and climatic conditions [28]. The Rayleigh distribution 

is a special form of the Weibull distribution. Because it is easy to estimate the parameters of the 

Rayleigh distribution [28], it is also commonly used to model wind speed and evaluate the 

performance of wind turbines [33], [34].  

The Gamma distribution is shown in Equation (2.17), followed by the respective Gamma 

shape and scale parameters, which are calculated by Equations (2.18) and (2.19), respectively [35]. 

𝑓(𝜈) =
𝜈G#3

𝛽G𝛤(𝛼) 	𝑒𝑥𝑝	(−
𝜈
𝛽) (2.17) 

𝛽 =
𝜎H

µ  (2.18) 

𝑎 =
µH

𝜎H (2.19) 

 

The Weibull distribution is presented in (2.20). Similar to the Gamma distribution, the 

shape parameter and scale parameter are calculated using the mean and standard deviation of the 

wind speed in Equations (2.21) and (2.22), respectively. One of the main limitations of the Weibull 

probability density function (PDF), as criticized by [36], is the lack of accuracy when representing 

probabilities of observing low wind speed values or zero wind cases. 
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𝜎
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#3.KLM
 (2.21) 

𝑐 =
µ

𝛤(1 + 𝑘#3) (2.22) 
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Lastly, the Rayleigh distribution is a special formulation of the Weibull distribution, 

following the same PDF as (2.20). Rayleigh distribution has a constant scale parameter of k = 2, 

with the only variable parameter being the shape parameter, as Equation (2.23) shows. Rayleigh 

distribution has been widely implemented due to its easy implementation by being a single 

parameter PDF [36]. 

𝑐 =
2
√𝜋

µ (2.23) 

To calculate the wind power generation according to wind speed, Equation (2.24) is used 

[37]. The wind power generation model considers three important values: the cut-in speed, a wind 

speed below which would results in a zero-power output from the wind power generator, the cut-

out speed, a wind speed above which would results in a zero-power output from the wind power 

generator, and the rated wind speed of the turbine. When the wind speed is between the rated speed 

and cut-out speed, the wind power generator produces a rated amount of power. 
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(2.24) 

 
2.3.3 The Wind Power Uncertainty Price Calculation 

At many locations, the wind speed follows a day and night pattern. Take Texas as an 

example, the seasonal pattern for the wind speed is not obvious, but the day and night pattern is 

obvious, since the wind speed is usually higher at night than during the day. To accommodate a 5-

minute resolution for the optimal FR scheduling model, the mean and standard deviation of the 

wind speed for each 5-minute interval is calculated using historical data, and the mean value of 

the wind speed in each interval is used as the wind speed without uncertainty, and the wind power 

generation without uncertainty can be calculated accordingly. Then a desired number of wind 

speed scenarios are generated using the distributions described in Section  II-B, and then the wind 

power generation in each scenario can be calculated.  
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After the wind power generation without uncertainty and the scenarios with uncertainty are 

obtained, two cases of optimal FR scheduling can be implemented using the model presented in 

Section II-A: (1) FR scheduling with only one scenario, the scenario without uncertainty, and (2) 

FR scheduling with a number of wind power generation scenarios. Then the generation dispatch 

cost in the two cases can be obtained from part of their objective values: 

 

𝐶%9)O6$=P = H 𝜇(
)*(𝑃($

)*(
4

)*(?3

 (2.25) 

 

Then, the uncertainty price can be calculated as: 

𝐶Q:=*5$69:$R =
𝐶%9)O6$=P
-6)*	(H) − 𝐶%9)O6$=P

-6)*	(3)

𝑃6S*56(*,  (2.26) 

 
2.4 MODEL SETUP AND SPECIFICATIONS 

2.4.1 Test System 

The simulations were performed on a modified RTS-96 test system shown in figure 2.2, 

and with minor modifications similar to [38]. In this study, the original peak load values of the 

system were used. The system includes two 200-MW wind farms at bus 3 and 24, respectively. 
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Figure 2.2: RTS-96 Test System [39]  

 
2.4.2 Wind Speed Scenarios 

To study the impact of wind power uncertainty, 200 wind speed scenarios on a five-minute 

resolution were created for the duration of a day using the three wind speed distribution models, 

Gamma, Rayleigh, and Weibull, as described in Section II-B. To generate these scenarios, the 

wind speed data of Taylor, TX for the year 2012 were obtained [24], [27], [28], and the mean and 

standard deviation of the wind speed at each five-minute time point in the January were computed. 

The mean and standard deviation of the wind speed at each time point were used to create 288 

shape parameters c and scale parameters p (i.e., twelve 5-minute intervals each hour for 24 hours) 

that yielded 288 different PDFs. Using these PDFs, 200 random wind speed values were generated 

at each time point using the gamrnd, wblrnd, raylrnd functions for Gamma, Weibull, and Rayleigh 
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PDFs, respectively, in MATLAB (version 2020a). The 200 scenarios allowed the optimization 

problem to cover a representative amount of uncertainties of the wind speed. 

2.4.3 Wind Power Generation for Each Scenario 

With the wind speed scenarios generated in Section III-B, the wind power output at each 

wind speed were calculated using Equation (2.24). The cut-in speed used for the model was 4 m/s, 

and the cut-out speed was 25 m/s. The rated wind speed was 14m/s, and the rated power output of 

each wind farm is 200MW. Using the 200 wind speed values for each 5-minutes interval, 200 wind 

power output scenarios were created for every interval of the day for each PDF. . 

2.4.4 Conditions for the Case Studies 

In this study, case studies were carried out under five conditions:  

i. Only one scenario was considered in the stochastic optimal FR scheduling problem, 

and wind power generation was assumed to be zero at all times in this scenario. 

ii. Only one scenario was considered, and the mean wind speed at each time point was 

used to generate the wind power output scenario. 

iii. 200 scenarios generated from the Gamma distribution were considered. 

iv. 200 scenarios generated from the Rayleigh distribution were considered.  

v. 200 scenarios generated from the Weibull distribution were considered. 
In the stochastic optimal FR scheduling model, wind power curtailment and flexible load 

curtailment were allowed but penalized in the objective function. The penalties for wind power 

curtailment and flexible load curtailment were $10,000/MW and $15,000/MW, respectively. In 

Conditions (i) and (ii), FR was not allowed because there was no uncertainty in the two cases. . 
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2.5 SIMULATION RESULTS 

2.5.1 Uncertainty Analysis 

To evaluate the impact of wind speed uncertainty, the deviations of wind speed from its 

average were evaluated. The deviations were calculated using the wind speed of each five-minute 

interval during the day in Condition (iii)-(v), respectively, minus the wind speed in Condition (ii), 

and the process was repeated for each of the 200 scenarios, creating a total of 57600 deviation 

entries for each of the three distributions.  

The histograms in Fig. 2.3 - Fig. 2.5 shows the normalized errors of the deviations. The 

normalization process was realized by diving each individual error by the maximum absolute error 

of each distribution. In order to evaluate these deviations, four statistical parameters were obtained 

from the 57600 deviation entries from each distribution and presented in Table 2.1. The four 

parameters are mean (μ), standard deviation (σ), kurtosis (κ), and skewness (γ). From the results, 

it can be seen that the Gamma and Rayleigh distributions tend to underestimate the wind speed, 

while the Weibull distribution tend to overestimate wind speed, and the standard deviations 

indicate that the deviations from the Gamma and Rayleigh distributions have a smaller spread and 

higher concentration of mass near the mean than those from the Weibull distribution [40]. The 

kurtosis values indicate that the distribution of the deviations from the Gamma and Rayleigh 

distributions tend to have a higher peak and fatter tail than those from the Weibull distribution. 

The skewness of the deviations from the three distributions shows that those from the Gamma and 

Rayleigh distributions tend to lean toward the farther left side than those from the Weibull 

distribution. 

 
Table 2.1: Error Distributions Parameters. 

 μ σ κ γ 

Gamma -0.0002 0.1620 3.879 0.7457 
Weibull 0.0007 0.2394 2.787 0.1874 

Rayleigh -0.0886 0.1594 3.624 0.7209 
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2.5.2 FR Capacity Scheduling 

To analyze the FR scheduling with uncertainty represented by different distributions, we 

calculated the averages of scheduled FR for each hour of the day considering the results from 

simulations carried out using load profiles in the month of January. The averages in MW are 

presented in Fig. 2.6. The valley at hour 4 corresponds to small deviations from the average values, 

which could be addressed by using only a relatively small amount of FR. The spike from Hour 11-

16 in the FR down curve shows that there was excessive wind energy generated during these hours 

from both the Gamma and Weibull distributions, which required conventional, dispatchable 

resources to ramp down to facilitate the integration of wind energy.   
2.5.3 FR Deployment 

While FR capacity was scheduled to meet the worst-case scenario in Conditions (iii), (iv), 

and (v), the deployment of FR varies in each scenario. To analyze FR deployment, we calculated 

the average percentage of FR deployed for each hour in the day considering the 200 scenarios in 

an overall length of 31 days. The results are shown in Fig. 2.7. Since FR deployment was co-

optimized with generation dispatch, the deployment of FR is determined by a number of factors, 

such as the availability of wind energy, load profile, and generation dispatch. During night hours, 

with a low load level and high wind speed, downward FR was more frequently used than upward 

FR to address the deviations of wind speed. During the day, with a high load level and low wind 

speed, upward FR was more frequently used than downward FR to address the deviations of the 

wind speed. 
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Figure 2.3: Normalized histogram of forecasted Gamma errors  

 

  
Figure 2.4: Normalized histogram of forecasted Weibull errors  
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Figure 2.5: Normalized histogram of forecasted Rayleigh errors 

 
2.5.4 Dispatch Cost 

Since producing wind energy does not incur a fuel cost, integrating wind energy in a power 

system can reduce its generation dispatch cost. Fig. 2.8 shows that regardless of uncertainty being 

present or not, the generation dispatch cost in the case with RES is lower than that without RES. 

By excluding the cost of FR capacity and FR deployment, the dispatch cost is slightly higher 

overall in the cases with uncertainty. The difference of dispatch cost in the cases with and without 

uncertainty are calculated as a percentage of the dispatch cost without uncertainty and shown in 

Fig. 2.9. Positive percentages indicate that the cases with uncertainties have a higher generation 

cost than the case without uncertainty. As the figure shows, the average generation dispatch cost 

is higher in the cases with uncertainty in most hours of the day. 
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Figure 2.6: Gamma, Weibull, and Rayleigh FR up/down capacity scheduling 
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Figure 2.7: Gamma, Weibull, and Rayleigh FR up/down deployment 

 

 
Figure 2.8: Generation Dispatch Cost 
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Figure 2.9: Generation dispatch percentage difference 

 
2.5.5 Wind Power Curtailment 

The wind power that could not be integrated into the system even with the deployment of 

FR were curtailed in the model. The average wind power curtailment for each hour of the day is 

presented in Fig. 2.10. The wind power curtailment in the figure was obtained from the stochastic 

optimization model with uncertain scenarios generated by Gamma, Rayleigh, and Weibull 

distributions, respectively. It can be seen from the subplot that wind energy curtailment occurred 

at night when wind speed was high. For the cases with uncertainty, the case with scenarios from 

the Rayleigh distribution had the most curtailment among the three cases, this is because Rayleigh 

distribution tends to underestimate wind speed values, as Table I shows.  
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Figure 2.10: Wind power curtailment 

 
2.5.6 Flexible Load Curtailment 

Flexible load represents load that could be curtailed during emergencies, such as customers 

who possess emergency generators and have contract in place with the utility that allows the utility 

to disconnect them from the grid for a short period of time during emergencies. In the simulations 

implemented in this study, load curtailment is a very rare condition. The average flexible load 

curtailment for each hour of the day is presented in Fig. 2.11. As the figure shows, load curtailment 

only occurred when the Gamma distribution was used to generate the scenarios and the maximum 

load curtailment was less than 1 MW. The load curtailment was caused by a combination of low 

actual speed winds and a high expectancy for the availability of wind energy. 
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Figure 2.11: Gamma, Weibull, and Rayleigh flexible load curtailment 

 
2.5.7 Uncertainty Price Evaluation 

As Section IV-D indicates, uncertainty increases the overall dispatch cost. In this study, 

uncertainty prices were calculated in Conditions (iii), (iv), and (v). As Equation (2.27) indicates, 

the uncertainty price is defined as the difference between the total cost in the case with uncertainty 

and the case without uncertainty. The total cost includes generation dispatch cost, the 

compensation of wind power curtailment, and penalty of load curtailment. The uncertainty prices 

of wind power evaluated under each distribution in each hour of the day is shown in Fig. 2.12. In 

a further uncertainty price comparison, a daily average uncertainty price was computed for each 

distribution and displayed in Table 2.2. Results show that Rayleigh distribution induced the lowest 

uncertainty cost, followed by Weibull, and lastly Gamma by presenting the highest uncertainty 

cost. 

 
𝜇$,'24- =	𝐶$,'% + $30 𝑀𝑊⁄ L𝑃$,',-M + $10000 𝑀𝑊⁄ L𝑃$,'./-M 

																	−𝐶$% − $30 𝑀𝑊⁄ (𝑃$,-) − $10000 𝑀𝑊⁄ (𝑃$./-) 
 

∀𝑡, 𝜙 (2.27) 
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Figure 2.12: Gamma, Weibull, and Rayleigh Hourly Uncertainty Price 

 
Table 2.2: Average Daily Uncertainty Price. 
 $/Day 

Gamma 152,098.96 

Rayleigh 143,927.70 

Weibull 145,825.20 

 
2.6 CONCLUSION 

This chapter proposes a method to evaluate the uncertainty price of wind power based on 

a stochastic optimization model. The model was implemented wind speed scenarios generated 

from the Gamma, Weibull, and Rayleigh distributions. Results show that the model can schedule 

FR products to effectively address the uncertainty of wind power. The results also show that the 

uncertainty of wind power increases the generation dispatch cost, wind power curtailment, and 

load curtailment. Thus, the price of wind power uncertainty can be defined as the sum of the 

increase in generation dispatch cost, the compensation for wind power curtailment, and penalty of 

load curtailment. The uncertainty prices differ according to the probability distribution function 
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used to represent the uncertainty and selecting the right method to represent the uncertainty is 

important. The method proposed in this study can be used to provide guidance for policy makers 

and electricity market designers to incentivize the builders to reduce the uncertainty from RES. 
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Chapter 3: Computational Challenges in the big-M OTS Problem 

As more RESs are integrated into the power system better congestion management 

strategies are required to maintain power reliability. One of the solutions to reduce transmission 

system congestion is to increase grid flexibility and implementing flexible topology control by 

allowing OTS. This chapter includes a published paper that highlights the computational 

challenges of big-M OTS decision-making problems. 1  

Transmission switching is widely used in the electric power industry for both preventive 

and corrective purposes. Optimal transmission switching (OTS) problems are usually formulated 

based on optimal power flow (OPF) problems. OTS problems are originally nonlinear optimization 

problems with binary integer variables indicating whether a transmission line is in or out of service, 

however, they can be linearized into mixed-integer linear programs (MILP) through the big-M 

method. In such big-M-based MILP problems, the value of M can significantly affect their 

computational efficiency. This chapter proposes a method to find the optimal big-M values for 

OTS problems and studies the impact of big-M values on the computational efficiency of OTS 

problems. The model was implemented on a modified RTS-96 test system, and the results show 

that the proposed model can effectively reduce the computational time by finding an optimal big-

M value which ensures optimal switching solutions while maintaining numerical stability. 
3.1 NOMENCLATURE 

Indices 
𝑏 Bus. 
𝑔 Generator. 
𝑘 Transmission Line. 
𝑠 Scenario. 
𝑠𝑒𝑔 Segments for piece-wise linear cost function. 
𝑡 Time. 
 
Sets 
𝜎!" Transmission lines with their “to” bus connected to bus 𝑏. 
𝜎!# Transmission lines with their “from” bus connected to bus 𝑏. 

 
1 Reprinted with permission from L. Ramirez-Burgueno, Y. Sang, and N. Santiago, “Improving the Computational 
Efficiency of Optimal Transmission Switching Problems,” IEEE 
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𝑔! Generators connected to bus 𝑏. 
 
Variables 
𝜃!,$,) Voltage angle of bus 𝑏 at time 𝑡	in scenario 𝑠. 

𝜃T5,I,$,) Voltage angle at the “from” bus of line 𝑘 at time 𝑡 in scenario 𝑠. 

𝜃$>,I,$,) Voltage angle at the “to” bus of line 𝑘 at time 𝑡 in scenario 𝑠. 

𝑀$ Big-M value at time 𝑡. 

𝑃(,$ Real power generation of generator 𝑔	at time 𝑡. 
𝑃(,$
)*( Real power generation of generator 𝑔	at time 𝑡 in segment 𝑠𝑒𝑔. 

𝑃!,$,),  Wind generation of wind farm at bus 𝑏 at time 𝑡 in scenario 𝑠. 
𝑃!,$,),-  Wind curtailment of wind farm at bus 𝑏	at time 𝑡 in scenario 𝑠. 
𝑃!,$,)/-  Flexible load curtailment of bus 𝑏	at time 𝑡 in scenario 𝑠. 
𝐹I,$,) Real power flow through transmission line 𝑘	at time 𝑡 in scenario 𝑠. 
𝑆𝑅(,$1  Spinning down reserve available through generator 𝑔	at time 𝑡. 
𝑆𝑅(,$2  Spinning up reserve available through generator 𝑔	at time 𝑡. 
𝑠𝑟(,$,)1  Spinning down reserve deployed by generator 𝑔	at time 𝑡 in scenario 𝑠. 
𝑠𝑟(,$,)2  Spinning up reserve deployed by generator 𝑔	at time 𝑡 in scenario 𝑠. 
𝑍I,$ Transmission switching binary status (1: line 𝑘 is on at time 𝑡; 0: line 𝑘 is off at 
time 𝑡). 

 
Parameters 
𝛾$,) Probability of scenario 𝑠 at time 𝑡. 
𝜃I79: Minimum voltage angle difference at line 𝑘. 
𝜃I768 Maximum voltage angle difference at line 𝑘. 
𝜃3,$,) Voltage angle at the slack bus at time 𝑡	in scenario 𝑠. 
𝐵 Total number of buses. 
𝑏I Susceptance of transmission line 𝑘. 
𝐺 Total number of generators. 
𝑀768  The maximum value of the big M. 
𝑃!,$/  Load at bus 𝑏 at time 𝑡. 
𝐹I768 Upper real power flow limit of transmission line 𝑙. 
𝑁 Number of piece-wise linear segments for the generators. 
𝑃(768 Upper generation limit of generator 𝑔. 
𝑃(79: Lower generation limit of generator 𝑔. 
𝑃56$* Rated output of the wind farm. 

𝑃(
)*(,768 Upper generation limit of generator 𝑔 in segment  𝑠𝑒𝑔. 

𝑅( Per minute ramp rate for generator 𝑔. 
𝑆 Total number of scenarios. 
𝑇 Length of investigated time period. 
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𝑢(,$ Generator binary status (1: generator 𝑔 is on at time 𝑡; 0: generator 𝑔 is off at time 
𝑡. 

𝑢(,$;1 Shutdown binary indicator (1: generator 𝑔 shuts  down at time 𝑡; 0: generator 𝑔 
does not shut down at  time 𝑡). 

𝑢(,$;2 Startup binary indicator (1: generator 𝑔 starts up at time  𝑡; 0: generator 𝑔 does 
not start up at time 𝑡). 

𝑍I. Transmission line failure at line 𝑘. 
𝑍I768 Maximum lines permitted for transmission switching. 
𝜇(
)*( Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 
𝜇U 𝑀 penalty cost. 
𝜇(4/ No load cost of generator 𝑔. 
𝜇()5 Spinning reserve deployment cost of generator 𝑔. 
𝜇(;< Spinning reserve capacity cost of generator 𝑔. 
𝜇(;1 Shutdown cost of generator 𝑔. 
𝜇(;2 Startup cost of generator 𝑔. 
𝜇,-  Wind curtailment compensation rate. 
𝜇!./-  Flexible load curtailment compensation rate for bus 𝑏. 
𝜈 Wind speed. 
𝑓(𝜈)       The frequency rate of wind speed. 
𝜈=9 The cut-in speed of the wind turbine. 
𝜈=> The cut-out speed of the wind turbine. 
𝜈56$*% The rated speed of the wind turbine. 
 

3.2 INTRODUCTION 

The rising environmental awareness has boosted the usage of RESs, which plays a crucial 

role in reducing the usage of fossil fuel-based electric power as well as providing economic 

benefits to the users. However, RESs introduces significant uncertainty to power systems, resulting 

in power system stability and reliability concerns, and various techniques are currently being used 

to improve system flexibility for increased RES penetration to improve the reliability and cost 

efficiency of power systems [1]-[3]. Among different techniques, appropriately adjusting the 

network topology of electric power transmission systems through optimal transmission switching 

(OTS) can result in great benefits such as reduced transmission congestion, improved voltage 

profiles, better system security, and reduced operating costs  [4]-[8].  
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Currently, OTS problems are usually formulated based on optimal power flow (OPF) 

problems by modifying the power flow constraints with the introduction of binary integer variables 

that indicate whether the transmission line is in or out of service. The OTS problem is originally a 

nonlinear optimization problem, and the big-M method is usually used to linearize the problem, 

making the problem a mixed-integer linear program (MILP). Although the linearization helps 

improve the computational efficiency of the OTS problem, the MILP is still relatively 

computation, especially for large-scale, real-world power systems [9]. Thus, improving the 

computational efficiency of the OTS problem is paramount.  

In the big-M method, binary variables are used to enable or disable constrains, leading to 

big-M constraints in the form of (3.1), where x represents a binary variable and M corresponds to 

a “big constant” [10]: 

𝑎V𝑦 +𝑀(1 − 𝑥) ≥ 𝑏 (3.1) 

The selection of M has a significant impact on the computational efficiency of MILP 

problems. A poorly selected M value can lead to non-optimal solutions or an unnecessarily long 

solution time  [11], [13]. It is common in literature and research to advocate selecting a very large 

number as the value of M, however, an  unnecessarily large value of M can expand the feasible 

region of the MILP problem, resulting in an increased number of iterations required to obtain the 

optimal solution [11], [12] and thus negatively affect the computational efficiency of the problem. 

Furthermore, an extremely large value of M can even cause a loss of solver’s precision and 

numerical instability [13], [14]. In additional to the previously mentioned scenarios, a small M 

value limits the feasible region space. Consequently, a small M does not guarantee the convergence 

to a global optimum and can potentially lead to infeasible models [13]. 
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Real-world OTS problems are part of the power system operations model, and the OTS 

problems have to be solved within the operational time frame. Thus, computational efficiency is 

extremely important for OTS problems. For large-scale OTS problems, a moderate change in the 

value of the big M can result in a considerable difference in the computational efficiency. Although 

the big-M-based OTS model has been widely used [15]-[18], there still lacks a method to search 

for the optimal value for the big M-based OTS problem.  

To fill this gap, this thesis chapter aims to propose a model to find the optimal big M values 

for the big M-based OTS problems.  The contributions of this chapter are as follows. First, an 

evaluation on the effects of different big M values on the computational efficiency of OTS 

problems is presented. Second, a model to find the optimal big M values is proposed. The model 

was implemented on a modified RTS-96 test system with different contingency scenarios, and 

results show that the proposed model can effectively find the optimal big M values for OTS 

problems, reducing the solution time of the big M-based OTS problems while achieving optimality 

and maintaining numerical stability. 

The remainder of this chapter is organized as follows. Section 3.3 describes the proposed 

big M value optimization model for OTS problems. Model setup, cases descriptions, and results 

discussion is presented in Section 3.4. Finally, Section 3.5 summarizes the main conclusions. 

3.3 THE BIG-M VALUE OPTIMIZATION METHOD 

This section presents the proposed big M value optimization model for OTS problems, and 

the model is presented in equations (3.2)-(3.26). The model is based on a multi-hour OTS model, 

with M being a variable, while allowing different transmission contingency scenarios to be 

considered. To better observe the detrimental consequences of an erroneous big M selection, load 

shedding and wind power curtailment are allowed with a penalty in the model. 
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−60𝑅(𝑢(,$ ≤ 𝑃(,$ − 𝑃(,$#3 ≤ 60𝑅(𝑢(,$ (3.15) 

𝑃(,$ − 𝑆𝑅(,$1 ≥ 𝑃(79:𝑢(,$ (3.16) 
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𝑃(,$ + 𝑆𝑅(,$2 ≤ 𝑃(768𝑢(,$ (3.17) 

0 ≤ 𝑆𝑅(,$2 ≤ 10𝑅( (3.18) 

0 ≤ 𝑆𝑅(,$1 ≤ 10𝑅( (3.19) 

0 ≤ 𝑠𝑟(,$,)2 ≤ 𝑆𝑅(,$1  (3.20) 

0 ≤ 𝑠𝑟(,$,)1 ≤ 𝑆𝑅(,$2  (3.21) 

0 ≤ 𝑃!,$,),- ≤ 𝑃!,$,),  (3.22) 

0 ≤ 𝑃!,$,)./- ≤ 𝑃!$/  (3.23) 

𝜃I79: ≤ 𝜃T5,I,$,) − 𝜃$>,I,$,) ≤ 𝜃I768 (3.24) 

𝜃3,$,) = 0 (3.25) 

 

The objective function (3.2) has the goal of minimizing the total cost. Equation (3.2) 

considers big M as an hourly variable instead of a constant predetermined value. Furthermore, a 

minor penalty cost is added to the big-M variable to avoid unnecessarily large M values while 

keeping the generation dispatch cost the dominant objective. Additionally, (3.2) considers the 

piece-wise linear generation cost, spinning reserve cost, start-up, shutdown, and no-load cost, as 

well as the load curtailment and wind power curtailment penalties. Generation limits are modeled 

in (3.3) and the generation piece-wise linear segments constraints are described in (3.4) and (3.5). 

Equation (3.6) describes the transmission capacity limits considering transmission contingencies 

and transmission switching. Additionally, Equations (3.7) and (3.8) represent the DC power flow 

constraints considering a big-M formulation and the maximum permitted transmission line 

switching is modeled in (3.9). Equation (3.10) describes the nodal power balance constraint and 

(3.11) sets an upper limit for M. The start-up and shutdown constraints are modeled in Equations 

(3.12) and (3.13), while Equations (3.14) and (3.15) model the minimum up and down time for the 

generators. The hourly generation ramp constraint is modeled in (3.16), Equations (3.17) and 

(3.18) describe the spinning up and down reserves correspondingly. The reserve energy 
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deployment time is described in Equations (3.19) and (3.20), while the energy deployment limits 

are shown in Equations (3.21) and (3.22). The wind power curtailment and load curtailment 

constraints are modeled in Equations (3.23) and (3.24), respectively, and Equations (3.25) and 

(3.26) are the constraints for the bus voltage angle. 

3.4 CASE STUDY, RESULTS, AND DISCUSSION 

3.4.1 Case Studies and Model Setup 

The proposed model was implemented on the RTS-96 test system with a minor 

modification; two wind energy farms located at bus 3 and bus 24, each with a 200-MW rated power 

similar to the model in [19]. Two different conditions were used to evaluate the effects of different 

big M values in the OTS model: (1) One wind power output scenario was considered, and (2) 25 

wind power output scenarios were considered. Under each condition, two sub-conditions are 

considered: (a) No transmission contingency exists in the system; (b) Three highly utilized 

transmission lines fail in the system. Furthermore, under each sub-condition, three cases were 

carried out, allowing a maximum of 1, 2, and 3 transmission lines to be switched out, respectively. 

In total, 12 test cases were carried out. A small penalty cost of $1E-7/unit was added to the M 

variable in the objective function. Additionally, the load curtailment and wind power curtailment 

penalties were set at $10,000/MW and $30/MW, respectively. The model proposed in Section III 

was implemented using a two-step approach. In the first step, the unit commitment variable was 

solved without considering transmission switching. In the second step, the model was solved with 

predetermined values for the unit commitment variables, start-up and shut-down variables. 
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3.4.2 The Impact of the Big-M Value on the Objective Function 

Choosing an extremely large or a small value of M can have undesirable consequences to 

the optimization problem [9]. To study the impact of the big M value on the objective value, the 

OTS model in Section III was solved using predetermined values of M without the penalty for 

the big M. The M values used in this study ranged from 1E2 to 1E12 for the 1-scenario cases and 

from 1E2 to 1E9 for the 25-scenario cases. The big M values in the latter cases were smaller 

because the problem became very computationally burdensome with such large M values, and 

we only chose cases that could be solved within 7200 seconds. The objective values of different 

cases obtained with different big M values are shown in  Fig. 3.1 and Fig. 3.2.  

From the two figures, it can be seen that, with a small value of M (less than 10E3), the search 

space for the solution was limited, thus the OTS problem could not converge to the global 

optimum. With an excessively large M value (greater than 10E7), unreasonable objective values 

were produced because of the numerical instability. Thus, the values of the big M have to be 

chosen properly to avoid instability in the optimization model [20]. 

3.4.3 The Optimal M Model 

Using the model proposed in Section III, the optimal values of the big M were solved for 

24 hours in the 12 cases described in section IV.A, and the optimal big M values are shown in Fig. 

3.3 and Fig. 3.4. It can be observed that the optimal big M values vary with time, the maximum 

number of lines to be switched, and transmission contingencies. 
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Figure 3.1: Objective Value for the 1-Scenario Cases under different M values 
 

  

Figure 3.2: Objective Value for the 25-Scenario Cases under different M values 
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3.4.2 Computational Efficiency 

To study the impact of big M values on the computational efficiency of the OTS model, 

the solution time of the OTS cases were obtained with the M values being 1000, 5000, 10000, and 

the obtained optimal M values for each of the 12 cases. The solution times for the 1-scenario and 

25-scenario cases are listed in Table 3.1 and Table 3.2, respectively. The cases were implemented 

using Python and Gurobipy on a computer with an Intel Core i7-1065G7 CPU and 16GB of RAM. 

From Table 3.1 and Table 3.2 it can be observed that in most of the cases the computational 

time increased with the increase of the M values. With the optimal M values, the solution time was 

always the shortest among the cases where the global optimum could be reached under each 

condition. This verifies the effectiveness of the proposed model in obtaining optimal big M values 

for OTS problems. 

 

Figure 3.3: Optimal M Values for the 1-Scenario Cases 
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Figure 3.4: Optimal M Values for the 25-Scenario Cases 

 
3.5 CONCLUSIONS 

This chapter proposes a big M value optimization model for big M-based OTS problems 

and evaluates the impact of the big M values on the optimality and computational efficiency of the 

OTS problems. The model was implemented on a modified RTS-96 test system under 12 

conditions. The results presented in Table 3.1 and Table 3.2 show that properly chosen big M 

values are critical to the computational efficiency, optimality, and stability of the OTS problems, 

and the proposed model can effectively find a set of optimal values for the big M, allowing the 

OTS problem to be solved fast while converging to the global optimum. 
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Table 3.1: Computational Times for 1-Scenario OTS 
M 1000 5000 10000 Optimal M 

 1 Transmission Switch Allowed – No failures 
Time (s) 3.157 3.355 3.376 3.063 

Objective ($) 1,595,271 1,584,756 1,584,756 1,584,756 

 1 Transmission Switch Allowed – 3 failures 
Time(s) 2.266 2.567 2.703 2.008 

Objective ($) 5,964,818 5,911,480 5,911,480 5,911,480 

 2 Transmission Switch Allowed – No failures 
Time(s) 4.235 4.579 5.547 4.207 

Objective ($) 1,530,968 1,506,473 1,506,473 1,506,473 

 2 Transmission Switch Allowed – 3 failures 
Time(s) 2.938 3.360 3.579 2.859 

Objective ($) 3,569,559 3,564,907 3,564,907 3,564,907 

 3 Transmission Switch Allowed – No failures 
Time(s) 7.097 6.646 7.754 5.709 

Objective ($) 1,501,527 1,470,217 1,470,217 1,470,217 

 3 Transmission Switch Allowed – 3 failures 
Time(s) 3.391 4.016 4.126 3.193 

Objective ($) 2,465,004 2,464,802 2,464,802 2,464,802 
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Table 3.2: Computational Times for 25-Scenario OTS 
M 1000 5000 10000 Optimal M 

 1 Transmission Switch Allowed – No failures 

Time(s) 162.617 260.895 249.264 158.593 

Objective 
($) 

1,801,245 2,464,802 2,464,802 2,464,802 

 1 Transmission Switch Allowed – 3 failures 

Time(s) 63.322 132.663 135.299 52.653 

Objective 
($) 

7,489,953 7,399,367 7,399,367 7,399,367 

 2 Transmission Switch Allowed – No failures 

Time(s) 149.566 195.236 203.369 192.162 

Objective 
($) 

1,728,716 1,725,476 1,725,476 1,725,476 

 2 Transmission Switch Allowed – 3 failures 

Time(s) 106.641 113.697 130.817 85.121817 

Objective 
($) 

4,489,102 4,488,312 4,488,312 4,488,312 

 3 Transmission Switch Allowed – No failures 

Time(s) 186.261 252.698 266.511 216.309 

Objective 
($) 

1,690,485 1,682,310 1,682,310 1,682,310 

 3 Transmission Switch Allowed – 3 failures 

Time(s) 112.588 125.534 139.057 121.698 

Objective 
($) 

2,739,361 2,739,222 2,739,222 2,739,222 
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Chapter 4: Decentralized Consensus-ADMM Decision-Making 

One of the main challenges of power systems resiliency is its ability to withstand and 

reduce load loss under natural disasters. Additionally, the variability of resources across the 

network and the introduction of RESs is forcing the grid to depend at a higher level in 

interconnections and the electricity market. Besides the economic goals of a power system, 

reliability is the number one consideration and the main focus towards grid modernization. This 

section includes a published paper comparing the power system resiliency of a centralized versus 

a decentralized decision-making algorithm by evaluating the load loss on both cases.2  

Natural disasters have been causing an increasing amount of economic losses in the past 

two decades. Natural disasters, such as hurricanes, winter storms, and wildfires, can cause severe 

damages to power systems, significantly impacting industrial, commercial, and residential 

activities, leading to not only economic losses but also inconveniences to people’s day-to-day life. 

Improving the resilience of power systems can lead to a reduced number of power outages during 

extreme events and is a critical goal in today’s power system operations. This chapter presents a 

model for decentralized decision-making in power systems based on distributed optimization and 

implemented it on a modified RTS-96 test system, discusses the convergence of the problem, and 

compares the impact of decision-making mechanisms on power system resilience. Results show 

that a decentralized decision-making algorithm can significantly reduce power outages when part 

of the system is islanded during severe transmission contingencies. . 
 

4.1 NOMENCLATURE 

Indices 
𝑏 Bus. 
𝑔 Generator. 
𝑘 Iteration number. 
𝑙 Transmission line. 
𝑠𝑒𝑔 Segments for piece-wise linear cost function. 

 
2 Reprinted with permission from L. Ramirez-Burgueno, Y. Sang, and N. Santiago, “Improving Power System 
Resiliency through Decentralized Decision-Making,” IEEE 
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Sets 
𝜎!" Transmission lines with their “to” bus connected to bus 𝑏. 
𝜎!# Transmission lines with their “from” bus connected to bus 𝑏. 
𝑔! Generators connected to bus 𝑏. 

 
Variables 
𝜃!  Voltage angle of bus. 

𝜃T5,0 Voltage angle at the “from” bus of line 𝑙. 

𝜃$>,0 Voltage angle at the “to” bus of line 𝑙. 

𝑃( Real power generation of generator 𝑔. 
𝑃(
)*( Real power generation of generator 𝑔	in segment 𝑠𝑒𝑔. 

𝑃!/-  Flexible load curtailment of bus 𝑏. 
𝐹0 Real power flow through transmission line 𝑙 

 
Parameters 
𝜃I79: Minimum voltage angle difference at line 𝑙. 
𝜃I768 Maximum voltage angle difference at line 𝑙. 
𝜃3 Voltage angle at the slack bus at time 𝑡. 
𝐵 Total number of buses. 
𝐵!  The set of indices for subproblems that include 𝜃!.  
𝐵*  The set of indices for the buses that are connected to tie lines in subproblem 𝑒. 
𝐵9  The total number of buses in subproblem 𝑖. 
𝑏0 Susceptance of transmission line 𝑙. 
𝐺 Total number of generators. 
𝐺9 Total number of generators in area 𝑖. 
𝑃!/ Load at bus 𝑏. 
𝐹0768 Upper real power flow limit of transmission line 𝑙. 
𝐹079: Lower real power flow limit of transmission line 𝑙. 
𝑁 Number of piece-wise linear segments for the generators. 
𝑃(768 Upper generation limit of generator 𝑔. 
𝑃(79: Lower generation limit of generator 𝑔. 
𝑃(
)*(,768Upper generation limit of generator 𝑔 in segment  𝑠𝑒𝑔. 

𝜃!6  The average value of 𝜃! from all the distributed optimization problems that include 
𝜃!. 

𝜇(
)*( Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 
𝜇!/-  Flexible load curtailment compensation rate for bus 𝑏. 
𝜌 The ADMM step size. 
𝜆!I  Penalty value for  𝜃! at iteration 𝑘. 
𝜀 Optimality gap. 
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4.2 INTRODUCTION 

Natural disasters have caused significant economic losses throughout the history, and the 

power outages caused by natural disasters is one of the leading causes of economic losses [1]. The 

economic losses caused by power outages including the revenue lost for utility companies, direct 

or indirect losses from electricity customers, such as the interruption of industrial and commercial 

activities, and inconvenience in the electricity customer’s daily life [2]. In recent years, natural 

disasters have caused significant power outages throughout the U.S. In 2017, Hurricanes Harvey, 

Irma, and Maria caused significant damages to power systems in multiple states, including Texas, 

Florida, and Puerto Rico, and led to long-lasting power outages, especially in Puerto Rico, which 

lasted for several months [3]-[6]. In 2018, Hurricanes Florence and Michael made U.S. landfalls 

and affected more than 1 million electricity customers [7], [8]. In 2019, Hurricanes Dorian and 

Barry caused power outages to at least half a million electricity customers [9], [10], and in 2020, 

Hurricanes Isaias, Laura, Sally caused power outages to millions of electricity customers in 

multiple states, including New York, New Jersey, Connecticut, Louisiana, Alabama, Georgia, and 

Florida [11]-[13]. In 2021, a winter storm hit Texas, in which 4.5 million homes lost power, 

causing billions of dollars of losses and the death of 57 people [14]. History has shown the 

significant impact of power outages on the society, and, thus, it is critical to improve the resilience 

of power systems. Different natural disasters can cause damages to different parts of power 

systems. Hurricanes can cause damages to transmission and distribution lines and flooding in 

power plants [3]-[13]. Winter storms can freeze transmission and distribution lines, fuel pipes for 

power plants, or wind turbines [14]. Wildfires can damage power plants, transmission, and 

distribution lines. Thus, different measures need to be taken to cope with different natural disasters 

[15]. In this study, we specifically focus on damages caused to transmission lines, especially severe 



54 

damages of transmission systems that island part of the power system. This is because transmission 

lines can be damaged by different types of natural disasters and are one of the most commonly 

seen components damaged by natural disasters, and unlike the damage of distribution lines, which 

usually causes local power outages, the damage of transmission systems can cause widespread 

outages in the system. There are a number of methods that can be used to improve power system 

resilience by addressing transmission system failures. From a time-scope perspective, the methods 

can be divided into three categories [16], [17]. The first category includes preventive measures 

taken during the planning process, which happens years before the system is committed. This 

mainly includes system hardening, such as building strong transmission poles or use underground 

lines [18]. The second category is preventive operational decision-making, which happens from 

months to minutes before the extreme events. This includes preparing enough onsite fuel storage 

at certain power plants, pre-allocating the maintenance crew to vulnerable locations, and decide 

the unit commitment and generation dispatch during the extreme event [16], [19]-[24]. The third 

category of methods are for the restoration after the extreme events. This mainly includes the 

dispatch of restoration crew, the sequence of component restoration, etc. [25]-[30]. The U.S. has 

an aging transmission system and upgrading the transmission system is an extremely capital-

intensive and time-consuming process. To reduce power outages during natural disasters, the 

second category of methods, preventive operation, plays an important role. Reference [19] 

proposes a method to pre-allocate resources for restoration, which can be considered as a 

preventive measure. Reference [16] proposed a preventive operation method which considers 

possible contingency scenarios based on weather forecast. This method can reduce power outages 

and over generation without over committing generation resources, and this method works well 

for interconnected systems. However, some natural disasters cause such severe damage that part 
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of the power system is islanded from the rest. In such cases, damaged were not only the 

transmission lines but also the communication equipment. Due to this reason, control signals 

cannot be sent from the control center to the islanded area, and the control center cannot remotely 

monitor the conditions of the components in the islanded area, causing difficulties in operating 

system in islanded area and resulting in severe power outages. To fill this gap, this chapter proposes 

a decentralized decision-making method based on distributed optimization. This method enables 

decentralized decision-making in different areas of power systems. When the areas are 

interconnected, a consensus will be achieved by all the participating areas. When one or more areas 

are islanded, the islanded area will be able to make decisions on their own while the remaining 

interconnected areas make decisions by achieving a consensus. The method was implemented on 

a modified RTS-96 test system, and results show that the decentralized decision-making method 

can significantly reduce power outages compared to a centralized decision-making method. 

The remaining sections of the chapter are organized as follows. Section 4.3 presents the 

distributed optimization model used in this study. A case study is discussed in Section 4.4, and 

conclusions are drawn in Section 4.5. 

4.3 MATHEMATICAL MODEL 

In this thesis chapter, we used both the centralized and decentralized decision-making 

methods to decide generation dispatch in case of severe contingencies caused by natural disasters. 

The two decision-making models are presented as follows.  

4.3.1 Centralized Decision Making 

The centralized decision-making model is based on a DCOPF model [31] and presented by 

Equations (4.1)-(4.10). Using this model, only one control center is needed for a power system, 

and control signals can be sent to different components in the system that need to be operated. The 

advantage of this method is that it is easy to implement, and the disadvantage of this method is 
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that when one area in the power system is islanded due to severe contingencies, the load in this 

area will be completely lost because control signals cannot be sent to the area. The model allows 

load loss, but the load loss is penalized with a high cost in the objective function, as Equation (4.1) 

shows. Besides the penalty for the load loss, the generation dispatch cost is also included in the 

objective function, and a piece-wise linear generation cost is adopted. Equation (4.2) is the nodal 

power balance constraint, which allows load loss. Equations (4.3)-(4.5) are the generation 

constraints considering the piece-wise linear segments. Equations (4.6) and (4.7) are the power 

flow constraints. The maximum load loss cannot exceed the maximum load at the bus, as Equation 

(4.8) shows. Since the DCOPF model can only be applied when the differences between bus 

voltages angles are small, Equation (4.9) sets a limit for the bus voltage angle differences between 

the two ends of each transmission line, and Equation (4.10) sets Bus 1 as the reference bus. 
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𝜃3 = 0 (4.10) 

 

4.3.2 Decentralized Decision-Making Based on ADMM 

The decentralized decision-making algorithm is based on a distributed DCOPF, which is 

developed using the alternating direction method of multipliers (ADMM) [32], [33]. ADMM is 
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adopted in study because it is suitable for parallelize the power system optimization problem based 

on sub-areas of the power system. The decentralized decision-making algorithm allows us to 

divide the power system into multiple areas and make generation dispatch decisions in a 

decentralized manner based on areas. Using this algorithm, each area needs to have a control 

center, and the control centers communicate with each other to reach a consensus on generation 

dispatch decisions. In this way, globally optimal generation dispatch decisions can be made. When 

one of the areas is islanded, the area will operate independently and make locally optimal decisions 

for the area, while the interconnected areas could still communicate and make globally optimal 

decisions. When one area of the system is islanded, the area could still make sure at least some of 

the load in this area being met, thus reducing load loss caused by such islanding events. To 

implement this algorithm, each area needs to implement a distributed optimization problem, or 

subproblem. For these subproblems, only the bus voltage angles at the two ends of the tie lines 

between different areas need to reach a consensus. Other variables in the optimization problems 

are internal to each area and does not need to be agreed on by other areas. The objective function 

of the distributed optimization problem is shown in Equation (4.11). It minimizes the total 

generation dispatch cost in the area, penalizes load loss in the area, and includes two ADMM terms 

that facilitates the consensus-reaching process of certain variables. Constraints (4.2)-(4.10) will be 

included in each distributed optimization problem, however, the constraints in each problem will 

only consider the generators, transmission lines, and buses in each area. The global optimal 

solution will be achieved in an iterative manner. In each iteration, all the subproblems need to be 

solved, and then the bus voltage angles at the ends of tie lines will be exchanged between different 

subproblems. An average of each variable that needs to be agreed on is calculated by Equation 

(4.12), and then the Lagrangian multipliers will be updated using Equation (4.13). A flow chart 

for the solution process is shown in Fig. 4.1. 
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Figure 4.1: Decentralized Consensus-ADMM Algorithm Flowchart 
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4.4 CASE STUDIES AND RESULTS DISCUSSION 

4.4.1 Simulation Setup 

A modified version of the RTS-96 test system [34] was used to implement the case studies 

of the proposed simulations, and each case study is implemented in single-period manner. For case 

study purposes, the mentioned 24-bus system was divided into three sub-regions or areas as 

presented in Table 4.1. In this case study, the areas were divided in a way that minimizes the 

number of tie-lines between regions and consequently reduce the computational time for the 

decentralized model. The area division and node clustering can be optimally performed with 

assistance of graph theory clustering methods [35].  

This case study was implemented assuming Area III is islanded from the other areas due 

to the outage of all the tie lines that connects Area III to other areas. The resilience study evaluates 

load-loss results under this condition when the system was operating in centralized and 

decentralized cases. In the centralized case, the control center was assumed to be in Area I, and in 

the decentralized case, there was a sub-control center in each area. 
 

Table 4.1: RTS-96 Case Study Areas 
 Buses Available Generation 

Capacity (MW) 
Load 

Area I 1 – 7, 24 684 791 
Area II 8 – 13 591 1286 

Area III 14 – 23 2130 773 

 

4.4.2 Centralized Decision-Making Results 

The centralized decision making was implemented using the model shown in Section 4.3.1, 

when the control center was located in Area I and Area III was islanded. When Area III was 

islanded, no power lines or communication wires were connecting Area I and Area II with Area 

III, and thus neither power nor control signals could be delivered to Area III. Results from the 

centralized decision-making algorithm are shown in Table 4.2.   
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Table 4.2: Load loss in centralized decision-making 
 Load (MW) Generation (MW) Load Loss(MW) 

Area I & II 2,077 1,275 802 
Area III 773 0 773 

Total Load 
Loss   1,575 

 
As the results show, with no control signal from the centralized control center and all the 

tie lines out, Area III could neither generate power for itself nor receiving power from other areas, 

and this resulted in a significant amount of load loss, which totals 1,575 MW. Islanding Area III 

can be considered as the worst islanding contingency scenario, due to the inability of Area I and 

Area II to fulfill its demand. Areas I and II had a total load loss of 802 MW because of a lack of 

generation capacity. The importance of implementing distributed control can be noted in this 

scenario, where although enough generation was present to meet the local area demand in Area 

III, the control signals could not be sent properly due to communication failures, resulting in a 

complete load loss in Area III.  

4.4.3 Decentralized Decision-Making Results 

The To overcome the problems caused by a single centralized control center, the distributed 

algorithm shown in section 4.3.2 was implemented to simulate distributed control centers in each 

area. This case allowed Area I and Area II to exchange power and bus voltage angle information, 

with the advantage that the islanded Area III could make its own generation dispatch decisions. 

Area I and II shared bus voltage angle information to reach a consensus, while Area III operates 

independently. The results are provided in Table 4.3.  
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Table 4.3: Load loss in decentralized decision-making 
 Load (MW) Generation (MW) Load Loss(MW) 

Area I & II 2,077 1,275 802 
Area III 773 773 0 

Total Load 
Loss   802 

 

Results from Area I and Area II remain consistent with the centralized algorithm, however, 

since Area III could perform decision-making independently in this case, load loss in Area III is 

eliminated since Area III has enough generation capacity. Since Area III is able to meet its total 

load demand through independent decision-making, the total load loss reduced by 51% compared 

to case with centralized decision-making. .  

4.4.4 Computational Efficiency 

Both centralized and decentralized algorithms were implemented using Python and 

Gurobipy on a Computer with an Apple M1 Pro CPU and 16 GB of RAM. The computational time 

for the centralized algorithm was 0.28 seconds, compared to the decentralized algorithm taking 

41.13 seconds to converge. Although the decentralized version took considerably longer than the 

centralized version, both solutions could be found within an appropriate operational time frame. . 

4.5 CONCLUSIONS 

This chapter presents an ADMM-based distributed DCOPF model which allows load loss 

during emergent conditions and studies the importance of decentralized algorithms and the positive 

effects of decentralized control when severe contingencies island part of the power system. The 

ADMM-based distributed DCOPF algorithm was implemented on a modified RTS-96 test system 

when severe contingencies islands one of the three areas. Results show that the decentralized 

decision-making method can significantly reduce the total load loss under extreme events in which 

communication and power interconnections are interrupted. In the future work, the decentralized 
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decision-making algorithm will be tuned to speed up its convergence and apply to large-scale 

power systems with complex operating conditions and different contingency scenarios. 
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ADMM: Alternating Direction Method of Multipliers 

AI: Artificial Intelligence 

ANN: Artificial Neural Network 

CAISO: California Independent System Operator 

DCOPF: Direct Current Optimal Power Flow 

DER: Distributed Energy Resources 

FR: Flexible Ramp 

GHG: Green House Gasses 

LMP: Locational Marginal Price 

MISO: Midcontinent Independent System Operator 

OTS: Optimal Transmission Switching 

PDF: Probability Density Function 

RES: Renewable Energy Resources 
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