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Abstract

Today’s state-of-the-art spoken dialog systems lack context-appropriate prosody in their re-

sponses, often making them sound unnatural. Better modeling of this contextual dependency

would enable natural prosodic responsiveness. Accordingly, this dissertation explores the ex-

tent to which the prosody of a dialog marker can be predicted directly from the prosody

of its local context. The prediction performance was evaluated in terms of the similarity

between the predicted and the observed prosodic features as measured by the reduction of

root mean square error from the baseline. This prediction task was accomplished for multiple

combinations of various sets of context features and different machine learning algorithms.

Simple machine-learning models, without any knowledge of pragmatic intent or phonetic

structure, could predict prosody, to a certain extent, for each of the most common twelve

types of dialog markers in a corpus of unstructured American English dialogs. A simple

feed-forward multi-layered artificial neural networks model performed best, with an overall

average reduction in prediction error of 42%. This proposed prosody prediction approach

has value also for a task-oriented dialog domain.
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Chapter 1

Introduction

1.1 Variation in Prosody for Dialog Markers

Humans participating in dyadic conversations influence each other’s engagement, emotions,

and behaviors (Burgoon et al., 1995) and prosody plays an important part in this process.

Humans use their knowledge of prosody to infer the intended meaning of a spoken word from

its dialog context, to distinguish between different contextual uses of the same word, and to

respond with context-appropriate prosody.

The following dialog snippets illustrate how the same word (in this case, a dialog marker)

can vary in its prosody according to the dialog context. These examples—part of my ex-

ploratory qualitative study (Chapter 3)—were obtained from the ISG Billing Support Corpus

(Ward et al., 2005), which comprises recorded telephonic conversations between a human cus-

tomer and a human or virtual agent for accomplishing tasks like paying credit card bills and

enquiring about past transactions or current credit balances. The participants conducted

the same task with a spoken dialog system (i.e., the virtual agent) and the human agent,

not necessarily in that order.

Context 1

Human Agent: What is your bank routing number?

Customer: It’s 879668321.

Human Agent: Okay. What is your bank checking account number?

The word okay here conveys that the agent acknowledges the information provided by

the customer and also seeks more information on the same sub-topic. The most observable

prosodic characteristics of this okay are a late pitch peak in the first syllable, a downslope

1



and lower pitch in the second syllable, and high harmonicity1 .

Context 2

Customer: I need to make a payment.

Human Agent: Okay. What is your account number?

In this context, okay conveys that the agent acknowledges the customer’s wish but needs

to violate her likely expectation for the next action and seek more information on a different

sub-topic. Okay here is loud, breathy, and relatively short in duration.

These examples were from dialogs between two neurotypical humans. For comparison, I

also listened to human-machine conversations in similar dialog contexts. This revealed that

the okays spoken by the virtual agent (alternatively, the spoken dialog system) did not vary

at all: they sounded flat and monotone, with no variation in their prosodic patterns that

could help distinguish among their contextual uses.

Some humans, such as those with autistic spectrum disorder, may also lack context sen-

sitivity (Scholten et al., 2015) and often exhibit atypical prosody in conversations (Kanner,

1943; Asperger and Frith, 1991; Nakai et al., 2014; Fusaroli et al., 2017).

To summarize this section, humans typically convey their intent to their speaking partners

by appropriately shaping the prosody of their responses. To do this, they generally consider

the context in which the dialog occurs. However, such context-appropriate prosodic behavior

is still absent in spoken dialog systems.

1.2 Motivation

As noted above, current spoken dialog systems are often incapable of exhibiting human-

like responsive behavior, specifically with respect to adaptive prosody. Consequently, their

conversations with users are less human-like, that is, less natural. Hence, there is a need

for models that enable the selection of better prosody in system responses to make them

appropriate to the pragmatic intentions or the local dialog context. Improved responsiveness
1high harmonics to noise ratio, reflecting a near "singing" voice
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could improve perceived naturalness and ultimately enable systems:

• to retain the attention of the user for a longer period,

• to increase user engagement and rapport in interactive games,

• to improve user satisfaction in commercial applications, as previously suggested by

Acosta and Ward (2011); Lubold and Pon-Barry (2014); Li et al. (2019); Gálvez et al.

(2020); Choi and Agichtein (2020).

To detect atypical prosodic patterns in autistic populations—especially in children—

prior research has compared their patterns with the corresponding prosodic patterns in

neurotypical counterparts (Dahlgren et al., 2018). Automatic detection of atypical prosody—

by automatically learning its differences from the neurotypical prosodic behavior— could

help in the early diagnosis of this disorder (Chi et al., 2022). However, these approaches do

not consider the typical context dependency of response prosody, which if incorporated may

improve these automatic comparisons.

With these possible improvements as an ultimate goal, this research explores a novel

approach that would:

• enable a spoken dialog system to select prosody in its responses that is more appropriate

to the context and thus, improves naturalness in its responsive behavior, and

• enable direct and improved comparisons between atypical and neurotypical prosody

and ultimately, improve the automatic detection of atypical prosodic patterns in autis-

tic dialogs.

To be more specific, in this dissertation I claim that it is possible to predict the appro-

priate prosody of dialog markers directly from their local dialog context prosody. I choose

to focus only on dialog markers instead of all words and utterances because they:

1. occur frequently,

3



2. are often more semantically independent of local lexical context than most words,

3. have a core procedural and not conceptual meaning (Fraser, 1999)

4. are important in dialog since they:

• can be explicit indicators of the local discourse structure (Fraser, 2009),

• can be powerfully indicative of the intent of an utterance (Fraser, 2009).

• serve many important functions, including managing turn-taking, marking topic

structure, and expressing stance (Louwerse and Mitchell, 2003; Fraser, 1999)

and, finally

5. often stands alone, prosodically. That is, their prosody is usually their own and is less

often affected by the larger prosodic patterns that govern many word sequences.

Hence, dialog markers are a reasonably good initial exploration point to test the predic-

tivity of local context prosody in spoken dialogs.

1.3 Dissertation Preview

In this dissertation, I will review the literature (Chapter 2). I will discuss what is considered

natural responsiveness in interactions in general, what progress has been made over the years

toward achieving this responsiveness in spoken dialog systems (specifically with respect to

prosodic behavior), what key challenges remain to be solved, and how I propose to solve a

few of them. Then I will discuss what is meant by atypical prosody as exhibited by humans

with autistic spectrum disorder, current approaches to differentiate this from neurotypical

prosody, the likely benefits of automatic detection of atypical prosody, and one of the key

challenges in doing so that this dissertation aims to address. Next, I will review prior research

on dialog markers and their associated prosody, some of the key limitations of these past

works, and how the novelties of my proposed approach are likely to address them. Chapter
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2 concludes with the main question I address in this dissertation: how well can the dialog

marker prosody be predicted directly from the local context prosody?

Chapter 3 describes an initial qualitative study on the context-prosody mappings of a

single dialog marker, okay, in an in-house task-oriented dialog corpus.

Next, in Chapter 4, I will discuss the methodological and evaluation details and then the

initial results for predicting dialog marker prosody directly and only from the prosody of its

local context. Chapter 5 investigates the factors that affect the prediction performance of

this proposed approach and Chapter 6 discusses performance improvement through different

machine learning algorithms.

Subsequent chapters describe the methods that test and report whether the proposed

prosody prediction approach can be generalized for task-oriented dialogs (Chapter 7) and

for dialogs involving neurotypical and autistic children (Chapter 8).

Finally, Chapter 9 summarizes my research findings and discusses their implications and

possible future directions.
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Chapter 2

Related Research

2.1 Spoken Dialog Systems and Responsive Prosody

This section briefly reviews prior research on responsiveness in human-human interactions

and its benefits. Then it discusses in detail the approaches toward achieving this natural

responsiveness in spoken dialog systems, specifically concerning their prosodic behavior.

2.1.1 Natural Prosodic Responsiveness

Human interactions involve verbal and non-verbal features (Mandal, 2014), including prosody.

Prosody refers to the suprasegmental acoustic features of speech (Lehiste, 1970), including

pitch, intensity, and duration, that act as non-verbal signals capable of communicating in-

formation above and beyond what is explicitly stated verbally (Cutler et al., 1997; Ferreira,

2006). Since intended meaning cannot be predicted entirely from word forms, for exam-

ple, when the same word is used in different contexts, human listeners must rely on these

extralinguistic cues to uncover the word’s meaning in the context. (Shintel et al., 2006; Ny-

gaard et al., 2009; Roettger and Rimland, 2020). It is also observed that most humans can

adapt their responses to these inferred interlocutor intents or the communicative context by

appropriately adjusting these prosodic signals (Tzeng et al., 2019; Xie et al., 2021). Such

adaptable, responsive behavior demonstrated by typical human speakers, without conscious

awareness, while interacting with a fellow interlocutor, is what some speech researchers term

natural or human-like interaction (Edlund et al., 2008).

This is of practical importance because it is not only what one says but also how one
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says it that is important for effective communication. Appropriate prosody in the speaker’s

responses plays an important role in various real-life situations. For example, features ex-

tracted from the vocal tone and prosody can quantify the non-linguistic communication

channel between the interviewer and interviewee, which can also help predict the outcomes

of job interviews accurately (Soman and Madan, 2009). Appropriate prosody can strengthen

social bonds and can be used to generate supportive responses in human-human interactions

(Mauchand and Pell, 2021). Prosodic cues also help the listener determine whether the

speaker is being sarcastic (negative irony) or teasing (positive irony), that is, understand the

speaker’s stance towards the listener (Mauchand et al., 2020).

Natural responsiveness is also related to the phenomenon of acoustic-prosodic entrain-

ment. Human dialog partners sometimes become more similar to each other in their prosodic

behavior—pitch, loudness, or speaking rate—during a conversation. This entrainment could

directly correlate with rapport (Lubold and Pon-Barry, 2014), primarily measured from the

perceptual perspective. This is supported in the aggregate results from self-reported rapport

as perceived by each participant: speakers who entrain tend to be more in rapport with

each other. Prosodic entrainment has even been shown to lead to greater success in student

learning in an intelligent dialog tutoring system (Thomason et al., 2013). Also, it has been

seen that entrainment of the robot’s prosodic features to that of the child user’s speech in a

game that recognized only two action words, go and jump (Sadoughi et al., 2017), engendered

greater engagement than the version of the game that did not entrain.

2.1.2 Towards Prosodically Responsive Spoken Dialog Systems

This section briefly surveys progress towards incorporating responsiveness in spoken dialog

systems.

To have a virtual assistant or a chat companion system with adequate intelligence has

seemed elusive and has existed only in Sci-Fi movies for a long time. But with the evolution

of speech-based technologies, today’s spoken dialog systems have come a long way from

accomplishing simple tasks, such as the provision of air travel (Hempel, 2010), to be used
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in more complex scenarios, for example, in-car applications (Geutner et al., 2002), personal

assistants such as Siri, Google Now or Microsoft’s Cortana (Janarthanam et al., 2013), smart

homes (Krebber et al., 2004), and interaction with robots (Foster et al., 2013). During the

last two decades, spoken dialog systems have been increasingly used in providing services such

as interviews (Ghanem et al., 2005), counseling (Hubal and Day, 2006), chronic symptoms

monitoring (Black et al., 2005; Migneault et al., 2006), medication prescription assistance

and adherence (Bickmore and Giorgino, 2006), changing dietary behavior (Delichatsios et al.,

2001), promoting physical activity (Farzanfar et al., 2005), helping cigarette smokers quit

(Ramelson et al., 1999) and speech therapy (Saz et al., 2009). Recent technological advances

that enabled end-to-end and transformer-based neural speech synthesis achieved enormous

task success in conversational AI, for example, in Alexa (Ram et al., 2018).

Despite the progress in spoken dialog systems, accommodating human-like or natural

responsiveness remains one of the top challenges (Ward and DeVault, 2016), especially while

designing an open-ended dialogue system (Huang et al., 2020). Neural methods have helped

develop context-aware and expressive dialogue systems in open-domain and task-oriented

genres but either mostly in text-based bots or have only improved linguistic information

(Ni et al., 2022). However, incorporating human-like prosodic behavior in system responses

remains to be accomplished (Ni et al., 2022). The above systems can accomplish their

intended task(s) but fail to exhibit natural prosodic behavior to the extent needed to improve

engagement and rapport with users and increase user satisfaction. One way systems could

achieve this is by better approximating the adaptive behavior observed in human-human

interactions.

Research on improving the responsiveness of spoken dialog systems to make them more

human-like or natural has boomed in recent years. For example, in the context of job inter-

views, a socially adaptive virtual recruiter (Youssef et al., 2015), that adapted its behavior

according to social constructs (attitudes, relationships, etc.) depending on user’s behavior

was perceived by the users as a more credible agent than a scripted one.

Acoustic-prosodic entrainment in human-human dialogs was modeled for a spoken dialog
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system that served as a learning companion to increase its effectiveness (Lubold et al.,

2015). In particular, adapting by shifting the text-to-speech output’s pitch contour towards

the user’s mean pitch resulted in the highest measures of rapport and naturalness. Overall,

the system demonstrated greater rapport with the student users, enabling them to have a

higher learning rate in a collaborative learning domain.

In one of the early works on improving adaptive behavior in the e-learning domain

(Forbes-Riley and Litman, 2004), it was found that it is useful to understand the students’

affective states through the correct interpretation of the non-verbal cues communicated by

them. The students’ negative, neutral, and positive emotions could automatically be pre-

dicted at each student turn in a dialog to an accuracy of 84%, utilizing contextual acoustic-

prosodic and other linguistic information from the speech signal. This predictive ability

was used to build an intelligent tutoring spoken dialog system that automatically predicted

and adapted to student uncertainty. Students learned more if the tutor responded to their

explicit questions and this pedagogically relevant state (Litman, 2013). A Wizard-Of-Oz

spoken dialog system (Forbes-Riley and Litman, 2012) — that adapted to two user states,

uncertainty, and disengagement, in real time — showed that increased adaptivity reduced

uncertainty levels and disengagement of their users as well as improved their learning. Based

on these findings, a fully-automated affect-adaptive spoken tutoring system was designed and

evaluated (Litman and Forbes-Riley, 2014). The results showed that adapting to affect is

better than not adapting at all, but there was no significant difference between multiple-state

(user-uncertainty and user-disengagement) and single-state (only user-uncertainty) adaptiv-

ity. Also, only males showed improved learning due to adaptivity, indicating that such

systems’ utility may vary by gender. The system, however, could only be adaptive in terms

of the linguistic content of the responses.

In an attempt to improve the prosodic behavior of systems, Acosta and Ward (2011)

showed that the emotional prosody of interlocutor responses could be improved utilizing the

prosody associated with the emotional categories identified in the immediately preceding

user utterance. Until then, either emotional categories of user speech were recognized, or
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system-side emotions were expressed with the help of prosody. This work combined both

of these functionalities for the first time. The emotional state of each speaker utterance

was recognized by its associated prosodic features, and then this information was used to

determine the emotional coloring for the next interlocutor’s utterance. A spoken dialog

system, Gracie, which used this coloring technique, achieved greater rapport with its users

than baselines with no or non-contingent coloring. This was one of the early successful

attempts to render the system’s responses with human-like prosody.

More recently, Li et al. (2019) combined a prosody-based emotional valence recognition

model and a text-based sentiment analysis model to improve the emotion processing and

reaction module of a spoken dialog system. Using linear regression, prosody was used to

predict the labeled valence in an utterance. The prosodic features used were energy, creaki-

ness, pitch lowness, pitch highness, narrow pitch range, wide pitch range, and speaking rate,

each computed over four time periods preceding the end point of each utterance: –1600 ms

to –1100 ms, – 1100 ms to –600 ms, –600 ms to –100 ms, and –100 ms to 0 ms. Their novel

method of combining valence from speech and sentiment from text achieved better emotion

recognition than the state-of-art models. Encouraged by these results, the authors proposed

a "reactive emotion expression method", where the system’s emotion category and level were

predicted using the parameters predicted by the emotion recognition. This proposed system

generated more authentic and effective emotions that resulted in more natural and human-

like conversations, compared to conventional dialogue systems that provided robotic and

unnatural reactions since they did not consider emotion, as reported by ten participants in a

subjective experiment. This also shows that even the simplest machine learning algorithms

can effectively achieve natural responsiveness if used with appropriately engineered features.

The above systems or approaches only adapted their linguistic content to the context

or were adaptive to only a handful of user states or emotional dimensions. Recently, incor-

porating end-to-end-speech synthesis (Shen et al., 2018) and transfer learning (Éva Székely

et al., 2019) synthesized more expressive and natural speech for public speaking and casual

conversation. However, these approaches for speech synthesis did not consider the dialog
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context. Hence, the synthesized speech often did not sync with the dialog flow.

Several studies introduced dialog-related information to speech synthesis: tokens repre-

senting emphasis (Tsiakoulis et al., 2014), dialog acts (Hojo et al., 2020), and dialog history

up to ten turns (Guo et al., 2021), but they employed only linguistic features. In one of the

recent attempts to model the typical contextual dependency of prosody observed in human-

human dialogs, Yamazaki et al. (2021) employed neural methods that modeled the differential

F0 in a dialog context, along with other linguistic information, to synthesize speech with

appropriate F0 contours. The synthesized F0 was closer to the recorded F0 for a Japanese

corpus of spontaneous multi-modal conversations, also demonstrated through a subjective

evaluation of perceived appropriateness. Although this work is a step in the right direction

towards improving prosodic responsiveness in human-machine interaction, pitch contours

represent only a part of the voice characteristics. To make the machines sound more natural

sound, it is necessary to approximate the human-like adaptive prosodic behavior for all or

most of the prosodic characteristics of a voice signal.

2.1.3 Key Limitations of Responsiveness Research

Though previous research has shown progress toward building responsive spoken dialog sys-

tems, key challenges—some of which are enumerated below—remain before commercial di-

alog systems can be made highly naturally responsive, specifically with respect to prosodic

behavior.

1. Previous spoken dialog systems were responsive to only a small finite set of user states—

uncertainty and disengagement (Forbes-Riley and Litman, 2012)—or emotional dimen-

sions (activation, evaluation, and power) (Acosta and Ward, 2011).

2. Prior research (Acosta and Ward, 2011) used limited context information, only from

one speaker and only from the immediate past utterance.

3. Previous responsive models were built to function only in a specific dialog domain such
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as the persuasive dialog domain (Acosta and Ward, 2011) or the e-tutoring application

domain (Litman and Forbes-Riley, 2014).

4. Even state-of-the-art methods of speech synthesis (Yamazaki et al., 2021) used both

lexical and prosody context information to generate spoken responses in a TTS with

context-appropriate prosody but with respect to only F0 contours.

This research will address the above challenges, respectively, by:

1. developing a continuous model that would predict the prosody for all aspects of each

target word.

2. including prosodic context information from both the dialog partners and from a wider

time period: wider recent past and future context.

3. investigating the possibility of building a more generalized cross-domain responsive

model.

4. by predicting appropriate prosody for more than just one feature and that too, only

using the local context prosody.

2.2 Autistic Spectrum Disorder and Atypical Prosody

While this does not relate directly to the main question, this section reviews research on

atypical prosody patterns observed in humans with autism spectrum disorder, detection of

these patterns via comparisons with neurotypical prosody, automatic detection of autistic

prosody through machine learning approaches, and how our novel approach can improve or

add value to these methods.

2.2.1 Atypical Prosody in Humans

Atypical prosody has been investigated in many childhood disorders to date, for example, in

language impairment (SLI), hearing impairment, Down syndrome (DS), childhood fluency
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disorder, Williams syndrome (WS) and autistic spectrum disorder (ASD). The specific char-

acteristics of atypical prosody are diverse and complex (Peppé, 2018). They may include

misplaced stress, articulatory irregularities, disrupted speech rhythm, monotonous speech,

sudden rise in volume, unusual intonation patterns, and disordered phrasing.

Autism spectrum disorder(ASD) has been associated with atypical prosody, specifically,

with respect to pitch, duration, and intensity, ever since (Kanner, 1943) and Asperger and

Frith (1991) published the first systematic studies of ASD. Common autistic prosodic be-

havior includes monotonous voice, atypical pitch with no pitch variation, harsh or hoarse

voice, and either too loud or too quiet, especially in autistic children (Baltaxe et al., 1984;

Sheinkopf et al., 2000; Kaland et al., 2013).

Atypical prosody could be the underlying cause of various functional and social challenges

that autistic people face. Impaired prosodic skills were significantly linked with executive

dysfunction traits: divided attention, working memory/sequencing, set-switching, and inhi-

bition (Filipe et al., 2018). Zampella et al. (2020) demonstrated in their study that children

with ASD exhibited less interactional synchrony than their typically developing peers, which

may be associated with impaired social functioning in ASD. Severe deficits in social commu-

nication, usually characterizing autism spectrum disorder, could often be caused due to their

lesser capability of processing and recognizing emotional prosody (Rosenblau et al., 2017).

2.2.2 Towards Modeling Autistic Prosody

Research shows that the traditional ways of detecting atypical prosody in autistic speech

are by comparing the same with conversations involving neurotypical humans using either

perception or acoustic analysis (Nadig and Shaw, 2011; Nakai et al., 2014). Dahlgren et al.

(2018) used both perceptual and acoustic analyses to study the production of prosody in

children with autism spectrum disorder and to additionally investigate whether prosodic

characteristics of the voice could be used as clinical markers for autism spectrum disorder.

Eleven children each, from a group diagnosed with autism spectrum disorder and the other

with typical development, were recorded while they told a story that was elicited with ex-
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pression. Perceptual analysis was carried out using a standardized Swedish clinical voice

evaluation procedure. For the acoustic analysis, features considered were: average funda-

mental frequency (F0), F0 range, F0 variation, speech rate, and the number of words pro-

duced per utterance. The perception analysis revealed no difference between the two groups,

whereas the acoustic analysis showed an increased number of words per utterance, atypical

fluency, and speech rate in autistic children. Disfluency in producing discourse markers um

when compared to typically developed peers proved to be an important pragmatic marker

in children with autism spectrum disorder (Irvine et al., 2016). Though used extensively

in differentiating the two groups, this traditional process is time-consuming, lengthy, and

labor-intensive, sometimes also involving trained physicians.

Recent research has, therefore, shifted its focus to the automatic detection of atypical

prosody using machine learning, which is both time and cost-effective and may facilitate

early detection of autistic prosody. Chi et al. (2022) demonstrated that the random forest

classifier achieved 70% accuracy, the fine-tuned wav2vec 2.0 model achieved 77% accuracy,

and the convolutional neural network achieved 79% accuracy when classifying children’s

audio as either ASD or NT in an experiment involving cellphone-recorded child speech audios

curated from the Guess What? mobile game.

2.2.3 Key Challenge in Modeling Autistic Prosody

Current approaches on auto-classification of autistic prosody are mostly a black box and

do not facilitate factor-based studies. Also, these comparative studies do not consider the

typical dependency of a word or utterance’s prosody on the prosody of its local context,

observed in conversations involving neurotypical humans, which may be lacking in autistic

people. Scholten et al. (2015) demonstrated that autistic people, especially children, were

less sensitive to contextual prosody than their neurotypical counterparts as they could not

detect irony in spoken words, mostly cued by the local context prosody. Hence, comparing the

two groups’ context-responsive behavior could be the key factor in improving the automatic

detection of atypical autistic prosodic patterns. This dissertation explores how far the local
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context dependency information is directly useful in automatically distinguishing autistic

prosodic behavior from neurotypical one.

2.3 Dialog Markers and Prosody

My strategy for tackling the challenges in the aforementioned prior research (c.f. Section

2.1.3 and Section 2.2.3) will be to focus on an important and accessible special case: dialog

markers.

2.3.1 Dialog Markers Properties

Dialog markers have been much studied for their important role in speech. The research

works cited in this section establish this importance, describe some functions of their prosody

and indicate how this connection can be exploited to accomplish various speech-related tasks.

In this dissertation, I use the term dialog markers simply to refer to discourse markers used

in a dialog. Discourse markers have been defined as “sequentially dependent elements which

bracket units of talk” (Schiffrin, 1987). They mark transition points in communication and

may facilitate the construction of a mental representation of the semantic and pragmatic

organization of the dialog (Louwerse and Mitchell, 2003). They are used extensively in

spontaneous speech and function as indicators of the structure of dialog, such as now, which

marks the beginning of a new topic, but, which indicates contrasting information, and so

on. They enable cohesion in a conversation (Louwerse and Mitchell, 2003) by signaling how

an upcoming utterance relates to the prior dialog (Fraser, 1999). They help the listener

to develop an expectation of the pragmatic intent of the upcoming utterance (Byron and

Heeman, 1997). A study of dialog markers in English implied that it is essential for language

learners to be aware of these markers and their pragmatic functions (Zarei, 2013; Torabi Asr

and Demberg, 2013).

15



2.3.2 Towards Automatically Identifying Dialog Markers’ Prosody

Dialog markers are often associated with their own characteristic prosody. Literature showed

the presence of a linear systematic relationship (Shriberg and Lickley, 1993) between the

clause-internal filled-pauses (such as uh and um) f0 values and their corresponding past

prosodic context, represented by the closest preceding f0 peaks.

Hirschberg and Litman (1993) proposed an intonation model, based on pitch accent

and phrasing, to disambiguate dialog markers (or as the authors called them, cue phrases).

The authors tagged the transcript of the corpus for two different usages of tokens of the

word now : according to whether it represented a sentential or a dialog use. This was

mainly done utilizing simple human perception. The intonational phrase containing each

token plus the preceding and succeeding intonational phrases were then digitized and pitch-

tracked. Dialog and sentential uses of the tokens were then compared along several acoustic

dimensions, accent type being one of them. Empirical results showed that the discourse uses

of the cue phrases were either deaccented or bore an L* pitch accent whereas the sentential

uses bore an H* or a complex pitch accent. Building on these findings, Litman (1996)

used machine learning to classify the cue phrases according to their discourse or sentential

functions, achieving higher accuracy than the state-of-the-art manual classification models.

Also in Slovak (Mareková and Benus, 2020), context prosodic cues helped in disambiguating

the functional meanings of the word no, analogous to okay in English.

Not only in English but also in the Japanese language, discourse markers are character-

ized by their prosodic features. Kawamori et al. (1998) demonstrated through the analysis

of a task-oriented Japanese corpus that certain words which were until then considered re-

dundantly used in an interaction actually fulfilled the characteristics of discourse markers

in this language. These were categorized as responsiveness (back-channels in English): hai

that could mean several things like yes or ok in English and fillers: aaa in Japanese which

could be mm in English. Also, the work demonstrated that these categories could easily

be distinguished by their associated prosodic characteristics like pitch, vowel length, and

phonetic forms.
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One dialog marker, namely okay, has been shown to have as many as ten pragmatic

functions (Table 2.1) in a collaborative task domain in American English (Gravano et al.,

2007b). These discourse functions were disambiguated with the help of contextual cues as was

shown by a perception study. In an empirical study, Novick and Sutton (1994) distinguished

between three following broad classes of acknowledgments, based on exchange structure in

dialog utterances:

1. Other → ackn: acknowledgment forms the second phase in an utterance pair that

follows the other speaker’s utterance.

2. Self → other → ackn: Self speaker initiates an exchange, Another speaker (eventually)

completes the exchange, and Self then utters an acknowledgment, and

3. Self + ackn: Self includes an acknowledgment in an utterance outside of an utterance

pair.

They recognized thirteen different speech-act patterns that were present within these

classes which accounted for the specific uses of acknowledgments in a task-oriented speech

corpus. In another work, pitch change in a single word served as a prosodic cue that helped

distinguish between different uses of the word right—namely affirmative answer and ac-

knowledgment, pronounced with a falling intonation, or direction, pronounced with rising

intonation—in a task-oriented dialog corpus of spontaneous speech (Ward and Novick, 1995).

In another work, (Lai, 2009), showed how prosody, specifically pitch range, can dis-

tinguish whether the dialog marker really is used for questioning or expressing surprise.

(Freeman et al., 2015), investigated the role and importance of prosody in categorizing and

characterizing different stance-related dialog functions, namely, stance strength and polarity

of yeah. It was seen that prosody helped in communicating meaning as six stance cate-

gories – agreement, no stance, backchannel, opinion, reluctance, and convincing – could be

distinguished through a combination of intensity contour and duration cues, and the pitch

was particularly useful for distinguishing the strength of stance. Gravano et al. (2007a)
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Table 2.1: Discourse functions of okay, as described by Gravano et al. (2007b)

AI: Acknowledgment/agreement.

A2: Backchannel.

C: Cue beginning discourse segment.

E: Cue ending discourse segment.

P: Pivot beginning (A1+C).

F: Pivot ending (A1 + E).

N: Literal modifier.

B: Back from a task.

K: Check.

S: Stall.

presented results of a perception study showing that contextual and acoustic cues were use-

ful in the disambiguation of various dialog-pragmatic functions of the word okay such as

agreement/acknowledgment, backchannel, and cue to discourse beginning. Further, they

showed that acoustic features capturing the pitch excursion at the right edge of okay feature

prominently in disambiguation, whether other contextual cues were present or not.

Correlations between dialog markers and their characteristic prosody were exploited

to predict dialog relations in English spoken monologs (Kleinhans et al., 2017). This co-

dependency was used to distinguish between various dialog functions of the Swedish markers

men (but or and in English) and sa (so in English), like signaling the beginning of a new

topic, return to a previous topic, and different kinds of dialog moves (Hansson, 1999). The

prosody of dialog markers was also useful to classify them in multiple dialog domains of the

European Portuguese Corpus (Cabarrão et al., 2015).

Yet another study (Beach, 2020) explored this correlation of dialog markers with prosody,

which revealed that okays that were more prosodically marked, with more extreme pitch,

loudness, duration, timing, and overall vocal quality, were used by speakers to display a

wide range of orientations (e.g., when disagreeing, displaying aggravation, treating others’
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actions as odd or bizarre, exuding happiness and excitement) rather than simply to achieve

acknowledgment, acceptance, or assessment of the prior speaker’s actions.

More recently, a preliminary analysis by Figueroa et al. (2022) revealed that designing an

annotation scheme for communicative feedback functions required both the lexical forms of

the words and their associated prosodic characteristics to be taken into account to distinguish

the functions. This work annotated a total of 1627 short single-worded feedback tokens from

the Switchboard corpus—that were preceded and followed by at least 5 seconds of silences—

for each of the ten different communicative functions enumerated in Table 2.2. Each of the

ten different functions had its own prosodic characteristics in terms of duration, mean pitch,

pitch slope, and pitch range. Specifically, their statistical analysis showed that in terms

of duration, functions Sympathy, Strong Surprise and Disapproval had significantly longer

duration compared to the other functions. Also, Agree had a significantly longer duration

than Continue. In terms of mean pitch, functions Non-understanding and Mild Surprise

had significantly higher mean pitch than Strong Surprise, No, Yes, Disapproval, Agreement,

and Sympathy. Also, Disagree and Strong Surprise had a significantly higher mean pitch

than Continue and Agreement. In terms of pitch slope, Non-Understanding was the only

function with a rising slope (0.919 ), that was significantly different from others, all of which

had downward, negative pitch slopes. In terms of pitch range, functions Mild Surprise,

Non-understanding, and Strong Surprise had a significantly wider pitch range than Agree,

Continue and No. The authors further observed that uses of some lexical tokens like yeah,

um, and mhm were particularly ambiguous and their corresponding feedback functions could

frequently only be identified based on their prosodic characteristics.

In an exploratory study, Wallbridge et al. (2021) demonstrated the value of the non-

lexical channel of speech through experimental results that showed that providing the non-

lexical context in addition to its lexical counterpart helped to increase participants’ ability to

discriminate actual responses from the sampled ones. This discriminative task presented the

participants with 1 true correct (T0, T1) sample, where T0 was the dialogue context (either

text-only or audio+text) from the preceding turns and T1 was a potential response, along
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Table 2.2: Major feedback functions with descriptions ((Figueroa et al., 2022))

Feedback

Functions
Description

Continue Continue speaking. I hear you and I’m listening but not necessarily agreeing/disagreeing.

Non-Understanding I’m uncertain if I understood/heard what you said.

Agree I agree with what you said.

Disagree I doubt what you said is true. I disagree with what you said.

Yes I am giving a positive response/answer to your yes/no question.

No I am giving a negative response/answer to your yes/no question.

Sympathy I’m expressing sympathy/pity/sorrow/concern/compassion to a negative statement.

Disapproval I am showing disapproval/disgust.

Mild Surprise I am showing mild surprise, showing slight interest.

Strong Surprise I am showing strong surprise; I am impressed.

with 3 lexically-equivalent (T0, T1́) samples where T1́ was extracted from elsewhere in the

corpus. Each of 67 native English-speaking participants completed a 20-question Qualtrics

survey, where they were asked to rate how likely each sample was to be the true one on

a scale from 1 (‘Very Unlikely’) to 4 (‘Very Likely’). It was seen that when participants

had access to the audio context of the immediately preceding turn along with its lexical

counterpart, accuracy, and cross-entropy performance were significantly better, as people

could more effectively discriminate between different prosodic realizations of the response,

than when presented with only the lexical context. Thus, the results of this non-behavioral

task indicate that the local prosodic non-lexical context strongly relates to the prosodic form

of the next utterance.

In another recent study, Raso et al. (2022) used prosody to not only define the general

function of being a discourse marker but also to distinguish between the specific functions

performed by different kinds of markers. Mean intensity, f0, and the f0 slope up to the

stressed syllable were the prosodic features that enabled the classification of 3 labeled dis-

course marker categories—ALL which includes markers establishing "social cohesion among

the interlocutors" or disambiguating "who is the addressee of the utterance, using titles,
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epithets, and proper names", CNT which includes markers that "push the listener to do

something or to stop doing something", and INP that includes markers "taking the turn

or beginning the utterance"— with a global 74% accuracy. Further qualitative analyses

revealed that:

• discourse markers tagged as EXP (Expressive) —those that convey some surprise or

emotional support—were characterized by a rising f0 shape on the stressed syllable,

and

• discourse markers tagged as EVD (Evidentiator)—those that highlight what was said

and also, secure the other speaker’s attention—had slightly rising f0 shape, low inten-

sity, and short duration.

The above research works revealed the variation of dialog markers’ prosody according

to their uses or functions in a dialog context, but they mostly explored the lexical context

rather than the prosodic context. The use of prosodic context is potentially valuable, as

shown by the above perceptual analysis establishing the connection of the dialog marker’s

prosody with its prosodic context. However, this association with context prosody has not

been exploited further or modeled directly.

Although prior research on improving the responsiveness of spoken dialog systems used

state-of-the-art speech synthesis models (c.f. Section 2.1), they largely ignored the utility of

dialog markers, so well recognized in discourse structure and functions. Smith et al. (2022)

presented a set of design principles on leveraging this prosodic information associated with

discourse markers uses such as backchanneling, turn-taking, and so on, hypothesizing that

the inclusion of this "conversational intelligence" would improve the system’s usability and

decrease a user’s cognitive load. Though a subjective evaluation result of a mock system

demonstrated some truth in this hypothesis, it has not yet been experimentally verified.

Before incorporating the context-dependent prosodic behavior of dialog markers into a speech

synthesis model, the first step is to model these mappings.
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2.3.3 Key Limitations of Dialog Marker Research

While the prior research suggests how dialog markers may be used to improve responsive

behavior in dialog systems, several shortcomings remain. The prior research:

1. mostly used lexical context to distinguish among various dialog marker classes or func-

tions.

2. mostly treated one or, at the most, two dialog markers.

3. used prosody to disambiguate a few different categories of uses or functions of dialog

marker, from two in (Hirschberg and Litman, 1993) to ten in (Gravano et al., 2007a)

or very recently three categories in (Figueroa et al., 2022).

4. did not investigate whether these models are applicable across domains.

In this dissertation, I aim to address these limitations, respectively, by:

1. investigating the predictive ability of specifically the context prosody.

2. modeling the context-prosody mappings for more than a few dialog markers, specifically

for the twelve most common ones found in American English.

3. predicting the prosody of each individual dialog marker instance.

4. testing the proposed context-dependent prosody prediction across multiple domains.

In sum, though there has been extensive research on improving the natural responsive

behavior of the spoken dialog systems, there is still much room for improving the state of the

art, especially with respect to the prosody in responses, which are often not yet appropriate to

the dialog context. Prior research has also established that dialog markers’ prosody depends

on or varies with local context prosody but this prosodic information has not been put to

any direct use.

To fill in the major research gaps mentioned above, I aim to investigate in this disserta-

tion:
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How well can a dialog marker prosody be predicted directly from its local context

prosody?

Additionally, can this predictability succeed for more than:

• two dialog marker types,

• one prosodic feature, and

• a single dialog domain?

In addition, I explore the related question of whether this proposed prediction approach

is able to differentiate between neurotypical and autistic prosody automatically.
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Chapter 3

Exploratory Qualitative Study

3.1 Purpose

This study1 aimed to discover simple mappings from dialog context to prosody for one of the

most commonly found dialog markers in American English, namely okay. I could identify

such mappings in one dialog corpus, the ISG Billing Support Corpus (Ward et al., 2005). This

corpus includes approximately 90 minutes of role-playing audio, in which human customers

interacted with a human agent and then, also repeated the same task with a virtual agent

over the phone, though not always in that order. Tasks included paying credit card bills,

enquiring about recent transactions, and other credit card-related tasks.

This exploration was based on the premise that various dialog markers can be categorized

according to their associated pragmatic functions or use in a dialog context, and thus it

expands on the study by Novick and Sutton (1994).

The main objective behind this study was two-fold:

1. Observe first-hand, albeit on a small scale, the details of one example of context-

prosody mapping for dialog markers to supplement what was gleaned from previous

work (Section 2.3).

2. Identify the most important prosodic features in such mappings, to determine what to

include later in my proposed model.
1This chapter is based on Nath (2020)
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3.2 Methodology

To explore mappings from context to prosody for the dialog marker okay, my approach

comprised the following steps:

1. Listen to the dialogs.

2. Mark all points of occurrences of the dialog marker okay.

3. Group them into various context categories2 based on their associated pragmatic

functions. To accomplish this, a two-step bottom-up approach was followed.

(a) Corresponding to each instance of okay in the corpus, the exact time-stamps

were noted along with the type of its speaker, that is, whether it was the human

agent, the human customer, or the virtual conversational agent. Transcripts of

the utterances immediately preceding and following an okay were saved.

(b) The above information was then used to categorize the pragmatic function of each

okay in a given context and then to group them based on their common func-

tions. For example, the contextual uses of okay similar to those of Context-1 and

Context-2, described in the Introduction, were categorized as AST (Acknowledge-

mentSameTopic) and ATS (AcknowledgementTopicShift), respectively.

4. Use Praat to visualize the prosodic features, namely, pitch, intensity, and duration,

present in these categories. Praat graphs3 generated for each occurrence of okay were

studied to find the common prosodic characteristics for each context category of okay.

5. Listen to the audio again and, based entirely on human perception, note any additional

subtle prosody that characterizes each context category and distinguishes it from the
2Audios available at https://github.com/anath2110/ISG-Credit-Card-Billing-Dialog-Corpus/tree/

master/OkayWithPastFutureContext
3Graphs available at https://github.com/anath2110/ISG-Credit-Card-Billing-Dialog-Corpus/tree/

master/OkayPraatFigures
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others. For example, okay spoken by the human customer as an acknowledgment of the

human agent’s speech and also to indicate the end of the conversation was perceived

to be more cheerful than the other okays.

I repeated the steps 1, 2 and 3a for each of the 123 okays in the corpus.

3.3 Results

The major context categories and their common prosodic characteristics are listed below:

• Acknowledgment leading to a new topic, i.e., initiating Topic Shift (ATS):

For example,

Agent: What is your credit card account number?

Customer: (provides the number).

Agent: Okay, what can I help you with?

This contextual use of okay was often characterized by high intensity (that is, was

quite loud), clarity, pitch rise (more if there was a greater topic shift), breathiness, and

was mostly short in duration.

• Acknowledgment, then, seeking more information on the Same Topic (AST):

For example,

Customer says his bank routing number.

Agent: Okay, What is your bank account number?

Common prosodic characteristics for this context category were more harmonicity than

in other contexts, late pitch peak when prefiguring a question, and more downslope

when the acknowledgment was that of heavier information, such as bank name or user

intent vs. account number.

• Acknowledgment, then Reply (AR): For example,

Agent: Will you like me to find out your last check number?
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Customer: Yes.

Agent: Okay. Your last check number is (says the number).

Okays, in these contexts, were observed to have a pitch drop or rise, a breathy first

syllable, sometimes devoiced, co-articulated with the next word, and was not followed

by any pause. They were short and quiet.

• Acknowledgement only (ACK):

For example,

Agent: Your payment is processed.

Customer: (satisfied) Okay.

Okays here were short, clipped, or fading out slowly, loud at /k/ and early in the

second syllable, and mostly the first syllable was higher in pitch than the second.

• Acknowledgement, then, Ending Conversation (AEC):

For example:

Agent: Last date of payment is midnight tomorrow.

Customer: Okay. That’s all I needed to know. Bye.

This contextual use of okay did not have a single specific prosodic pattern but was

perceived, in different scenarios, to be either:

– cheerful, where /o/and the diphthong /eI/ were high pitched, or

– loud and low-pitched at the beginning with gradually rising pitch, or

– just flat pitched and abruptly ending.

• End of Conversation (EC):

For example:

Customer: That’s all. Bye.

Agent: Okay. Bye.
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In such contexts, okays were shortest of all, very quiet, almost inaudible, devoiced, and

breathy.

• Transition to Different Speaker (TDS):

For example,

Customer: I just don’t know what I had given..

Agent: Okay.

Customer: I don’t remember if you could give me that information..

In these contexts, okays were mostly lengthened, overlapped with the interlocutor’s

speech, quite loud with the higher pitch at the end, and ended abruptly.

From the above observations, it could be inferred that the most common prosodic features

that helped distinguish each context of okay were volume, duration, pitch range, pitch height,

harmonicity, breathiness, creakiness, and peak disalignment.

3.4 The Salience of Context-Inappropriate Prosody

In the absence of context-appropriate prosody in response, the speaker’s intended meaning

or the local dialog goal is not successfully communicated to the interlocutor. To investigate

whether this claim holds in a practical scenario, I conducted an informal study with ten

research students from different areas who attended a poster session at an international

conference where I presented the findings of the initial phase of this exploration. I asked each

participant to listen to the original recording and an edited version of the same dialog snippet,

but where the context had been purposely mismatched with the prosody. More specifically,

I interchanged an okay spoken in the context AcknowledgementSameTopic (AST ), in one of

the dialogs with that spoken in the context End of Conversation, (EC) in another dialog.

All of the participants confirmed that the out-of-context prosody was distinct in the edited

audio4. The outcome of this informal experiment, thus, demonstrated—to a certain extent—

the significant contribution of context-appropriate prosody to communicate the speaker’s
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intended meaning in a dialog.

3.5 Discussion

In a nutshell, this exploratory study:

• finds that various contextual uses of the same dialog marker can be disambiguated by

their associated prosody,

• provides a list of prominent prosodic features that enable this disambiguation, and

• finally, confirms that the use of appropriate prosody contributes to communicating the

speaker’s intended meaning of a word in a dialog context.

This qualitative analysis, however, is limited in terms of scalability and reproducibility

since it mostly involved human perception and, therefore, consumed an enormous amount

of effort and time.

Moving forward, to test the original research hypothesis — more specifically, to test

the extent to which the prosody of local dialog context is directly informative to predict

the prosody of a dialog marker— it is necessary to learn these context-prosody mappings

automatically. Based on the aforementioned findings of this exploration, I now have a key

set of prosodic features that could be used, in some combination, to represent an instance of

a dialog marker and its local context. I decided to employ supervised machine learning to

build the proposed predictive model. The detailed methodology and evaluation results are

described in the following chapter.

4Audio available at https://github.com/anath2110/ISG-Credit-Card-Billing-Dialog-Corpus/tree/

master/OkayEditedMismatched
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Chapter 4

Proposed Prosody Prediction

This chapter details Nath and Ward (2022)’s demonstration that appropriate prosody for

a dialog marker can be approximately predicted directly from the prosodic information ob-

tained from its context of use in a dialog.

4.1 Data Set

As the aim is to develop a predictive prosodic model generally suitable for open-domain

conversations, the Switchboard (Godfrey et al., 1992) corpus of American English telephone

conversations is well suited to the task. Also, in open-ended spontaneous conversations,

we are more likely to find a greater frequency and more variation in the contexts of use of

the dialog markers than in task-oriented dialogs since the nature of the genre— topic or

goal of conversations, the intent of the speakers and opinion of the participants— influences

discourse marker use (Tübben and Landert, 2022; Verdonik et al., 2008).

After excluding recordings with poor audio quality or artifacts that bothered the pitch

tracker, 1900+ conversations were considered involving 400+ speakers. All audio spans bear-

ing labels from the list in Table 4.1 were considered, according to the Picone transcriptions

(Deshmukh et al., 1998). These were the most common dialog markers, those with more

than 1000 instances each in the corpus. No subjective labels (Calhoun et al., 2010) or any

additional checks were done, so cases, where the word was not actually being used as a dialog

marker, were not excluded.
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Table 4.1: Number of instances of each dialog marker used from the Switchboard corpus.
token count

huh 1417
now 5910
oh 14053
okay 3915
really 11009
right 12448
uh 52230
uh-huh 12155
um 16392
well 16701
yeah 33768
yes 3393
Total 183391

4.2 Prosodic Features Predicted

Ultimately, I would like to predict every detail of the prosody of each dialog marker token:

the value for every feature at every frame of the token. However, for now, only four features

are predicted namely:

• loudness or volume, as measured by its acoustic correlate log energy,

• pitch, as measured by its acoustic correlate fundamental frequency or f0, estimated

by the pitch tracker fxrapt (Talkin and Kleijn, 1995) from the MATLAB’s speech

processing tool, Voicebox (Brookes, 2019),

• cepstral flux, as a measure of lengthening and reduction. This computes frame-to-frame

cepstral difference to capture the rate of change of cepstrum in a dialog segment using

James Lyons’s Cepstral Coefficient’s implementation, and

• the harmonic ratio (Kim et al., 2005), which is a proxy for harmonicity and, indi-

rectly, other properties of voicing, including the absence of creakiness, breathiness,

and devoicing.
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Table 4.2: Predicted features
mean over the token max over the token
log energy log energy
cepstral flux cepstral flux
pitch pitch
harmonic ratio harmonic ratio

The relevance of pitch, energy, and timing is well known; harmonicity was also included

since it appears to help differentiate among roles for many dialog markers, as seen earlier in

Section 3.3.

For each of these four features, two experiments were conducted. One was to predict the

average of the feature values over the entire token. The other was to predict the maximum

feature value in the entire token, as both contribute to what is perceived. Table 4.2 sum-

marizes this information. The pitch frames with undefined values were excluded from the

computations of mean and max.

4.3 Prosodic Features used for Prediction

As the primary goal is to explore, I used neither a maximal set of features nor a minimal

one. Rather a set of 72 prosody features were chosen that were diverse, convenient, reliable,

and broadly covered the local context. Contextual features were used for both speakers: the

one who produced the dialog marker and the interlocutor. Together these features cover

the time from 3.2 to 0 seconds before the start of the dialog marker and the time from 0

to 3.2 seconds after its end (Figure 4.1). Future information was also considered because

it was observed, as described in Chapter 3, that often the prosody of the dialog marker

is suitable not only based on what came before but also for what is upcoming, either by

the same speaker or by the interlocutor, to the extent that the prosody of a dialog marker

can guide the interlocutor’s future behavior. Specifically, for each speaker, 36 features were

computed as shown in Table 4.3: 9 base features, each computed over 4 time spans. All

were computed using the Midlevel Prosodic Features Toolkit (Ward, 2015—2022). The four
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Table 4.3: Features used for prediction from 3.2 sec context). Times are in milliseconds relative to
the start (s) and end (e) of the dialog marker whose prosody is being predicted

Past Windows,
from the

start (s) of the token

Future Windows,
from the

end (e) of the token

log energy s–3200 to s–800,
and

s–800 to s

e to e+800,
and

e+800 to e+3200
lengthening
peak disalignment

creakiness

s–1600 to s–200,
and

s–200 to s

e to e+200,
and

e+200 to e+1600

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate

pitch-related features enabled everywhere-meaningful computation of pitch information, even

over windows with few or no pitch points (Ward, 2019). The "peak disalignment" feature

measures the displacement between energy peaks and pitch peaks (Ward, 2018). For this

data, this feature generally measures the late (delayed) peak occurring in stressed syllables.

The specific time windows were chosen based on some initial intuitions about the rate of

local prosodic change relative to broader movements and were not subsequently optimized

or revisited. Together these features capture much information about the local prosody—

from the immediate and wider recent context—and the local turn-taking state.

Both the predicted features, i.e., the dialog marker token features, and the predictors,

i.e., the local context features, were z-normalized per speaker as follows:

z = (x− µ)/σ

where x is the computed feature value for a single frame in a conversation, µ is the mean over

the channel, and σ is the standard deviation of the values per speaker in the conversation.

A z-normalized value represents the number of standard deviations that the original
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Figure 4.1: Diagrammatic representation of 3.2 sec context audio segment, each from the past and
future of the dialog marker token, right : Pitch (blue) and Volume (green) contours generated by
Praat

value is from the mean. The mean of a z-normalized dataset is 0, and the standard deviation

is 1. This computation was done using MATLAB’s in-built normalize function. This z-

normalization was done to reduce the effects of intrinsic speaker differences. Also, when a

z-normalized dataset is used to fit a machine learning model, any outlier is likely to have a

lesser influence on the model fit.

4.4 Evaluation Approach

An intra-corpus evaluation approach (Evaluation phase in Fig. 4.2), was followed. Each

model, one for each of the twelve dialog marker types, was evaluated with a disjoint train-

test split of 70:30, chosen such that the test set contained no dialogs seen in the training set.

However, no speaker separation was done, meaning the same speaker could speak in both

the train and test sets, possibly more than once.

The performance of each model was evaluated in terms of similarity between the pre-

dicted and observed prosody. Owing to the lack of any universally accepted measure for

determining prosodic similarity, this was approximated by one of the most popular met-
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Figure 4.2: Proposed prediction model: An overview
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rics used in regression tasks, namely, root mean squared error (RMSE). The utility of local

context information was measured by the percent reduction in the RMSE values for model

predictions compared to the baseline. The baseline, here, is simply predicting the average

over all instances of the particular dialog marker type under investigation. For example, the

baseline to compare any predicted feature value for an instance of yeah would simply be the

global average of its value across all instances of yeah.

4.5 Linear Regression Model

4.5.1 Training the Model

The training phase of Fig. 4.2 presents an overview of the process of training the proposed

predictive prosody model. Unlike prior research that either primarily relied on human per-

ception (c.f. Section 2.3) or followed a time-consuming approach of generating hand-crafted

rules (Acosta and Ward, 2011), in this work, I follow an automated approach for predicting

context-dependent prosody.

My first approach involved one of the simplest machine learning algorithms: multi-variate

linear regression. This algorithm used the default least-square sum function to select the

best-fit line. Using a relatively simple approach enables easy backward reasoning to analyze

the underlying features better and further improve the solution. This enabled me to easily

examine how the context features affected the dialog markers’ prosody.

A separate model was developed for each dialog marker category, as it is not expected

that the same rules to work well for all dialog marker types: for both huh and okay, for

example (cf. Section 5.2).

As explained earlier, each model predicted two types of features for each dialog marker

token, namely mean and max. The first represents the average or the mean, and the latter

represents the maximum of the features over all frames for a single dialog marker token.
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4.5.2 Evaluation Results

Table 4.4: Prediction errors with the baseline and with the linear regression model, and error
reduction rate for predicting mean (respectively maximum) features. Prediction errors are the
average RMSE values obtained for each of the 12 dialog markers. le is log energy, cf is cepstral flux,
p is pitch, and hr is harmonic ratio.

predicting mean features predicting max features
le cf p hr le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.74 1.38 1.95 1.18
Model Average RMSE 0.44 0.64 0.52 0.46 0.49 0.92 1.34 0.74
Reduction, % 28.7 22.4 23.6 29.6 33.4 31.9 31.1 37.2

The above model is evaluated as described in Section 4.4. Table 4.4 shows the quality of

the baseline and linear regression model predictions. The errors are lower with the model,

with reductions ranging from 22% to 37%, showing that the local prosodic context is in-

formative. The benefit is statistically significant for all four predicted features and in both

cases of predicting mean and max features (matched pairs t-tests, p << 0.01). It is also

Table 4.5: Prediction error reduction rate1per dialog marker type using linear regression: Percent
reduction in root mean squared error for predicting mean (respectively maximum) feature values.

predicting
mean features

predicting
max features

le cf p hr Avg. le cf p hr Avg.
huh 29 43 26 34 33 22 46 27 15 28
now 19 21 30 25 24 23 21 44 39 32
oh 17 27 15 24 21 35 37 25 37 34
okay 18 30 7 6 15 19 31 18 40 27
really 46 16 -1 15 19 37 39 35 48 40
right 37 2 7 25 18 31 14 19 39 26
uh 43 21 56 30 38 52 48 33 32 41
uh-huh 12 20 34 50 29 18 11 31 39 25
um 31 22 29 32 28 56 50 36 27 42
well 25 24 23 33 26 32 24 40 33 32
yeah 38 25 20 44 32 49 38 40 54 45
yes 30 19 37 37 31 28 22 26 45 30

Average 29 22 24 30 26 33 32 31 37 33

1Note: Average values, in this and in any subsequent table in this dissertation that reports percent
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seen that the reductions were greater for the maximum features than for the mean features,

although this difference may be largely due to outliers. Also, it is seen that the mean and

maximum harmonic ratio were most easy to predict: their predictions had the highest error

reduction rate, 30%, and 37% (Table 4.5), respectively, from the baseline. Predicting mean

pitch was hardest for the response marker type, really.

4.6 Failure Analysis

The above evaluation results support the hypothesis: local prosodic context alone is suffi-

ciently informative to approximately predict the dialog markers’ prosody

This section probes into the regularities that the above model learned and discusses the

strengths and limitations of prediction from prosodic context alone.

• For most dialog markers, the most predictive features were the peak disalignment

features. For most windows, these features had correlations of 0.20 or higher with high

pitch, high volume, and high harmonicity. This is likely because peak disalignment

often marks times of shared laughter, questions, and other high-engagement dialog

acts (Ward, 2018), and these generally call for enthusiastic dialog markers.

• There was also a tendency to matching: more specifically, when the immediate past

context exhibits higher volume or pitch, the prosody of the dialog marker often does

too, for example, when acknowledging new information.

• Some specific dialog markers had additional unique tendencies. For example, for the

word now, high pitch correlated with a high pitch by the same speaker over the next

few windows, likely due to its forward-looking role, as in introducing new subtopics.

• Most of the strong correlations were with contextual behavior by the person who

produced the dialog marker, but there were also interlocutor effects. For example, the

reduction of prediction errors for a model from its respective baseline, were computed before rounding off

the values.
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word okay tended to be lower in pitch when the interlocutor’s cepstral flux was low in

the context. This happened likely due to the use of lengthening and reduction to mark

a low density of new information or seeking only weak feedback.

For insight into why the model sometimes performed well and sometimes poorly, I started

by considering Table 4.5. I noted that:

1. The relatively high predictability for uh and huh was likely because they often have no

independent prosody or meaning beyond their roles in the local context.

2. Low predictability was observed for mean features of really and for both mean and

max features of right, which are sometimes dialog markers, but sometimes just adverbs

and adjectives, in which roles they likely have different prosodic tendencies.

3. The prosody of okay was also hard to predict, perhaps because it often is deployed to

convey a specific meaning or function rather than just fitting passively in the context.

This can also be verified from the initial exploratory results (cf. Section 3.2), where

the prosodic pattern of okay was more pronounced in scenarios where it had distinc-

tive pragmatic functions like acknowledgment and topic shift or acknowledgment and

seeking confirmation than in scenarios where it was used to acknowledge the speaker’s

information or to end the conversation.

To further understand where this model succeeded and failed, its performance was exam-

ined on specific tokens: for each dialog marker type, the five for which the predictions were

least accurate and the five for which they were most accurate. This was done subjectively,

relying on my perceptions and those of a native speaker researcher and qualitative inductive

methods.

Factors that were common when the model failed included:

1. background noise in the audio segment. (Feature computations in the midlevel toolkit

are not robust to noise.)
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2. long monologues (a dialog activity type uncommon in Switchboard, and therefore likely

rare in the training data).

3. one speaker with an unusual accent or perhaps a speech impediment,

4. incorrect annotations, though very rare in occurrence, for example, where the label

was um, but the sound was more like hmm. (The model for um, of course, had not

been trained to predict the prosody of hmm tokens.)

5. sequences of dialog markers, such as well, yeah and oh, okay. (The prosody of markers

in a sequence is apparently different from those in isolation, the more common case in

the training data.)

6. okay at the end of the conversation, where it was short and breathy as part of the

closing, which is also what was observed in my exploratory study, Chapter 3, and

7. huh when produced as a repair question or strong exclamation.

The cases where the model’s predictions were most accurate include:

1. typical backchannel uses of yeah,

2. times the speaker and interlocutor shared happy or excited agreement, for example,

You’re pretty Texan, yes . . . [interlocutor laughter], and

3. sympathetic productions of really in the context of talk about troubles or problems, as

in that can really be a problem.

Overall, it seems that the model tends to perform well when the local dialog context is

of a type that is common in the Switchboard genre.
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Chapter 5

Improving Prediction, Part 1:

Investigating Contributing Factors

The aim of this chapter is to investigate the factors contributing to the prediction perfor-

mance of the proposed prosody prediction model and thereby, improve the same. Specifically,

the same linear regression algorithm is trained with:

1. either only the past or the future context features

2. either the speaker’s or the interlocutor’s context features

3. features from all the dialog markers’ instead of only the one whose prosody is being

predicted

4. fine-grained context features

5. features from a wider (10 sec) context

6. features whose values are scaled to the range (0–1),

7. a feature set that additionally includes the CPPS feature, and

8. features combined from both speech and text modalities

5.1 Type of Context

This section tests the prediction model’s performance via some ablation experiments, that

is, removing specific components to understand their contribution to the overall model.
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Table 5.1: Summary of results for predicting mean features using linear regression with either only
the past or the future context.

past context only future context only
le cf p hr le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.61 0.82 0.67 0.66
Model Average RMSE 0.58 0.80 0.60 0.61 0.61 0.78 0.58 0.66
Reduction, % 6.00 2.90 10.2 7.70 0.00 4.88 13.4 0.00

5.1.1 Ablation Study #1: Future & Past vs. Future Only vs. Past

Only

To investigate the utility of local dialog context for many realistic scenarios where the future

context is not usually available, I measured the quality of predictions made using only the

past context features.

A linear regression model was trained on the local context features from both the dialog

speakers, but now only on those prior to the dialog marker token: specifically on 3.2 sec of

past context only. Thus, any future context information was excluded entirely.

Using the past context features alone provided some benefit with the reduction in pre-

diction error that ranged from 2.9% to 10.2% (Table 5.1), but was much less than those

obtained when also using the future context (c.f. Table 4.4).

To explore whether using the future context alone has any benefits, a linear regression

model was trained on only the future context features from both the dialog speakers. Mixed

performance results (Table 5.1) were produced. Predicting mean cepstral flux and mean pitch

has improved performance more than when using the past context alone, while predicting

mean log energy and harmonic ratio produces no benefit at all.

We may safely conclude, however, that using both the context (c.f Table 4.4), enables

more appropriate prosody prediction than using either of the past or future context alone.

This further implies that at its current state, this context-dependent approach of predictive

prosody modeling is not directly applicable to real-time prosody predictions.
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5.1.2 Ablation Study #2: Both Speaker vs. Self Only vs. Inter-

locutor Only

In this section, I describe yet another ablation study. I compared the performance of linear

regression models that used only one of the dialog speaker’s context information: either the

same speaker who produced the dialog marker or the interlocutor.

Linear regression using only the interlocutor context produced better prediction results

than that using only the self-speaker context (Table 5.2) for predicting the mean of three out

of four response features: cepstral flux, pitch, and harmonic ratio. The harmonic ratio was

the easiest to predict when using only the interlocutor’s context. With respect to the dialog

marker type, yes and really had the best overall prediction results. Perception analysis of

some of the dialog marker tokens that had the best-predicted mean harmonic ratio revealed

that:

• the harmonicity of really was predicted best when it was low or when the speaker

was less harmonic in the context, that is either: i) when they were breathier using

really as an adjective in a self-directed speech segment (Ward et al., 2022), or ii) when

they sounded nasal to attach more importance and confidence in their response to a

context where really was used as an interjection, marking the receipt of surprising new

information as in oh really.

• the low harmonicity of yes was predicted best when the speaker’s voice was creaky in

the context, demonstrating their confidence and authority.

It can be seen that neither of the individual contexts generated predictions as well as

using both speakers’ contexts (c.f. Table 4.4), for any of the features.

5.2 Type of Training: Generic vs Type-Specific

Here, a global training approach was adopted where the model was trained on the entire set of

dialog markers and tested for its ability to predict the token features of each particular type.
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Table 5.2: Summary of results for predicting mean features using linear regression with only one
speaker’s context from both the past and the future.

self-speaker context only interlocutor context only
le cf p hr le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.61 0.82 0.67 0.66
Model Average RMSE 0.56 0.74 0.54 0.63 0.57 0.73 0.49 0.54
Reduction, % 8.20 9.76 19.40 4.55 6.56 10.98 26.87 18.18

Table 5.3: Summary of results for predicting mean features for any dialog marker type using linear
regression trained on features of all the marker types

predicting mean features
le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66
Model Average RMSE 0.46 0.70 0.51 0.53
Reduction, % 24.5 14.8 23.8 20.1

For example, the model that predicted the mean features of each token of yeah was trained

on the features from all of the twelve dialog marker types. This was done to investigate if

there is any inter-categorical effect in the prosody of the dialog markers, that is, for example,

whether the prosody of the local context that affected the prosody in the dialog marker token

yeah would also equally affect the prosody of the token okay, if used in a similar context.

As seen in Table 5.4, this global model performed modestly worse than those trained

on the specific dialog markers (c.f. Table 4.4): the prediction errors were more for the

former. This result is easy to understand as it reflects the prosody of local context for one

marker type, say, yeah is not as informative while predicting the prosody of another type of

response, for example, yes. Table 5.4 lists the individual RMSE values for predicting each

marker type’s mean of token features. Also, as seen in Table 5.5, predicting mean cepstral

flux was rather more difficult with the lowest average prediction error reduction of 15%.

Also, prediction for response marker types, um was the worst.
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Table 5.4: Prediction errors per dialog marker type using the generic model: Root mean squared
error for predicting a token’s mean feature values of any type using linear regression model trained
on context feature sets of all marker types.

predicting mean features
le cf p hr Avg.

huh 0.44 0.77 0.68 0.46 0.59
now 0.44 0.61 0.41 0.46 0.48
oh 0.48 0.95 0.68 0.56 0.67
okay 0.48 0.85 0.48 0.45 0.57
really 0.54 0.75 0.54 0.60 0.61
right 0.47 0.57 0.40 0.47 0.48
uh 0.45 0.72 0.47 0.51 0.54
uh-huh 0.44 0.49 0.37 0.66 0.49
um 0.40 0.59 0.42 0.44 0.46
well 0.51 0.82 0.67 0.59 0.65
yeah 0.48 0.64 0.48 0.51 0.53
yes 0.43 0.67 0.51 0.62 0.56

Average 0.46 0.70 0.51 0.53 0.55

Table 5.5: Percent reduction of prediction errors per dialog marker type using the generic model:
Percent reduction of root mean squared error, from the baseline of predicting a token’s mean feature
values of any type, using linear regression trained on features of all marker types.

predicting mean features
le cf p hr Avg.

huh 39 15 16 28 25
now 19 27 34 21 25
oh 14 11 15 11 13
okay 24 -3.7 29 8.2 14
really 10 8.5 20 13 13
right 16 29 29 24 24
uh 20 30 4 30 21
uh-huh 17 25 30 4.3 19
um 9 -28 28 28 9.1
well 29 28 26 27 28
yeah 38 11 19 22 22
yes 41 -6.3 34 21 22

Average 25 15 24 20 21
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5.3 Alternate Context Feature Sets

5.3.1 Fine-Grained Context Features

The original hypothesis of this research being supported to a certain extent, I try using an

alternative set of features to represent the context used to train the models, an approach

hypothesized to improve the prediction quality.

Table 5.6: Set of fine-grained context (3.2 sec) prosody features used for prediction. Times are
in milliseconds relative to the start (s) and end (e) of the dialog marker whose prosody is being
predicted

Past Windows, from the
start (s) of the token

Future Windows, from the
end (e) of the token

log energy s-3200 to s-2400,
s-2400 to s-1600,
s-1600 to s-800
and s-800 to s

e to e+800, e+800 to e+1600,
e+1600 to e+2400

and
e+2400 to e+3200

lengthening
peak
disalignment

creakiness
s-3200 to s-1600,
s-1600 to s-800,

and
s-800 to s

e to e+800,
e+800 to e+1600,

and
e+1600 to e+3200

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate

Table 5.7: Summary of prediction results using linear regression trained on the set of fine-grained
context prosody features (Table 5.6).

predicting mean features
le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66
Model Average RMSE 0.45 0.66 0.50 0.49
Reduction, % 26.5 20.0 24.7 26.1
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Table 5.8: Root mean squared error for predicting mean feature values using linear regression trained
on the set of fine-grained context features (Table 5.6)

predicting mean features
le cf p hr Avg.

huh 0.45 0.72 0.67 0.48 0.58
now 0.42 0.62 0.43 0.48 0.49
oh 0.47 0.84 0.63 0.52 0.62
okay 0.48 0.74 0.49 0.46 0.54
really 0.40 0.62 0.55 0.48 0.51
right 0.47 0.57 0.41 0.49 0.48
uh 0.47 0.73 0.43 0.54 0.54
uh-huh 0.44 0.49 0.42 0.45 0.45
um 0.42 0.56 0.38 0.45 0.45
well 0.47 0.76 0.61 0.54 0.59
yeah 0.48 0.63 0.49 0.52 0.53
yes 0.43 0.62 0.51 0.44 0.50

Average 0.45 0.66 0.50 0.49 0.52

More windows were used for computing the local context features. The 9 base features

remained the same, namely, log energy, lengthening, creakiness, peak disalignment, pitch

lowness, pitch highness, narrow pitch, wide pitch and speaking rate, but they were computed

over more windows, as shown in Table 5.6 than before (c.f. Table 4.3). A total of 120 context

features, 60 per speaker, were computed.

Linear regression that used this new set of local context features reduced the RMSE of

predicting mean pitch, to 24.7 % (Table 5.7), which is slightly better than when trained with

the original set of context features (Table 4.4).

However, training with this extended set of context features had a lesser positive effect on

predicting the remaining three response features. Prediction errors by the model in terms of

RMSE values and the error reduction rate from the baseline for predicting mean log-energy,

cepstral flux, pitch, and harmonic ratio for each dialog marker type are listed in Tables 5.8

and 5.9, respectively. Interestingly, as is seen in Table 5.9, response token of type um shows

a negative error reduction, -21%, for predicting mean cepstral flux and only a slight positive

improvement, 4% for predicting mean log energy. This could imply that the prosody of um

is more influenced by immediate local context.
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Table 5.9: Percent reduction in the root mean squared error for predicting mean features using
linear regression trained on the set of fine-grained context features (Table 5.6)

predicting mean features
le cf p hr Avg.

huh 37 21 17 25 25
now 22 26 30 17 24
oh 16 21 21 17 19
okay 25 9 27 7 17
really 33 24 20 30 27
right 17 29 27 22 23
uh 16 29 12 26 21
uh-huh 16 23 21 34 24
um 4 -21 33 25 10
well 34 33 33 34 33
yeah 37 13 15 21 21
yes 41 1 34 43 30

Average 27 20 25 26 24

5.3.2 Wider Context

Table 5.10: Set of Context features used for prediction from a wider context (10 sec). Times are in
milliseconds relative to start (s) and end (e) of the dialog marker whose prosody is being predicted

Past Windows, from the
start (s) of the token

Future Windows, from the
end (e) of the token

log energy s-10000 to -8000,

s-8000 to -6000,

s-6000 to -4000

e to e+2000,

e+2000 to e+4000
lengthening
peak disalignment
creakiness

s-4000 to s-2000,
and

s-2000 to s

e+4000 to e+6000,

e+6000 to e+8000,
and

e+8000 to e+10000

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate

In this section, I experiment with another set of context features (Table 5.10). This time

the local context region includes 10 sec of context each to the past and the future of the dialog
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marker token from both the dialog speakers from the dialog marker token. Linear regression

trained on this wider context is hypothesized to improve the prediction performance.

Table 5.11: Summary of prediction results using linear regression trained on prosody features from
a wider context 10 sec (instead of 3.2 sec) each from the past and the future as well as from both
the speakers.

predicting mean features
le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66
Model Average RMSE 0.43 0.64 0.49 0.46
Reduction, % 29.8 22.6 26.5 30.7

Table 5.12: Root mean squared error for predicting mean feature values using linear regression
trained on 10 sec local context features both from the past and the future of both the speakers
(Table 5.10).

predicting mean features
le cf p hr Avg.

huh 0.49 0.47 0.60 0.41 0.49
now 0.45 0.65 0.38 0.47 0.49
oh 0.35 0.97 0.74 0.43 0.62
okay 0.50 0.74 0.64 0.36 0.56
really 0.41 0.64 0.52 0.48 0.51
right 0.46 0.58 0.39 0.46 0.47
uh 0.25 0.75 0.11 0.52 0.41
uh-huh 0.46 0.52 0.35 0.36 0.42
um 0.28 0.36 0.35 0.45 0.36
well 0.50 0.77 0.56 0.54 0.59
yeah 0.44 0.63 0.54 0.38 0.50
yes 0.58 0.58 0.72 0.63 0.63

Average 0.43 0.64 0.49 0.46 0.50

As seen in Table 5.11, this model performed moderately but consistently better than the

linear regression trained on only 3.2 sec of context (c.f Table 4.4) or with the extended set of

fine-grained context feature set (c.f Table 5.7), for predicting mean of each of the response

features: log energy, cepstral flux, pitch, and harmonic ratio.
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Table 5.13: Percent reduction in the root mean squared error for predicting mean feature values
using linear regression trained on 10 sec of local context features both from the past and the future
of both the speakers (Table 5.10).

predicting mean features
le cf p hr Avg.

huh 31 48 25 36 35
now 17 23 38 20 24
oh 38 10 8 32 22
okay 21 10 7 27 16
really 31 21 24 30 27
right 18 27 30 26 25
uh 55 27 78 29 47
uh-huh 13 20 34 48 29
um 36 22 38 26 30
well 31 33 38 34 34
yeah 43 12 8 42 26
yes 21 8 6 19 13

Average 30 22 28 31 27

5.3.3 Adding CPPS feature

In this section, Cepstral Peak Prominence Smoothed (CPPS) is used both as a predictor as

well as a predicted/response feature.

Hillenbrand et al. (1994) measures CPP or Cepstral Peak Prominence as the difference

in amplitude between the cepstral peak and the corresponding predicted magnitude for the

quefrency at the cepstral peak. It is calculated using an inverse Fast Fourier Transform

(FFT) of the log power spectrum of a voice signal. A CPP variation is called Cepstral Peak

Prominence-Smoothed (CPPS). It has different calculation algorithms, such as smoothing

the cepstrum before extracting the peak and using 1024 frames every 2 ms instead of 10 ms

(P.S. and Pebbili, 2020), which makes CPPS more robust and with no influence of artifacts.

The literature demonstrates CPPS as an acoustic measure of overall voice quality (Maryn

et al., 2009), negatively correlating with breathiness in voice (Ward et al., 2022). It integrates

measures of several features describing the aperiodicity and waveform of the acoustic voice

signal (Fraile and Godino-Llorente, 2014). It is considered a reliable cue of overall dysphonia

(Wolfe and Martin, 1997; Heman-Ackah et al., 2002) and also has been used in clinical voice
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Table 5.14: Set of context prosody features used as predictors in Table 4.3 extended to also include
the feature Cepstral Peak Prominence Smoothed (CPPS). Times are in milliseconds relative to the
start (s) and end (e) of the dialog marker whose prosody is being predicted

Past Windows,
from the

start (s) of the token

Future Windows,
from the

end (e) of the token

log energy s–3200 to s–800,
and

s–800 to s

e to e+800,
and

e+800 to e+3200
lengthening
peak disalignment
CPPS

creakiness

s–1600 to s–200,
and

s–200 to s

e to e+200,
and

e+200 to e+1600

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate

Table 5.15: Summary of results for predicting prosody features including mean CPPS using linear
regression trained on the set of predictors that also include CPPS (Table 5.14)

predicting mean features
le cf p hr cpps

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.60
Model Average RMSE 0.42 0.63 0.50 0.46 0.38
Reduction, % 31.8 24.1 24.5 30.6 35.9

evaluation (Murton et al., 2020). Hence, this feature could be extremely useful in predicting

appropriate dialog marker prosody.

Here, Cepstral Peak Prominence Smoothed is computed using the code developed by

Marcin Włodarczak in 2020 and available in the mid-level toolkit (Ward, 2015—2022)). The

local context (3.2 sec) feature set (Table Table 4.3) is extended to include the CPPS from

both the past and future context of both the speakers (Table 5.14). Linear regression trained

51



with this feature set is applied to predict mean CPPS in addition to predicting mean log

energy, cepstral flux, pitch, and harmonic ratio.

The average prediction performance is seen to be improved, Table 5.15, for each of the

response features (log energy, cepstral flux, pitch, and harmonic ratio), over what was ob-

tained with the original set of context features (c.f Table 4.4). It is also seen that adding a

breathiness feature (CPPS) is usefully informative for specific tokens and features, notably

those that predicted least well with the original set of context features (c.f. Table 4.5).

As a predicted feature, CPPS was the easiest to predict overall than the other response

features. The best average predictions were obtained for the dialog marker really and the

worst for yes.

Further listening to 20 of these audio segments of yes that were predicted with large

prediction errors revealed that:

• Of those with predicted CPPS much higher than the true value, several:

– were emphatic with a stressed vowel,

– had a rising pitch, and

– and had no perceived breathiness.

• Of those with predicted CPPS much lower than the true value, several:

– were creaky and lengthened, and

– sometimes ended abruptly.

Overall, it can be said that the prediction for CPPS failed miserably when the tokens

were rather idiosyncratic uses in the corpus that did not conform to the local dialog flow.
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Table 5.16: Percent reduction in the root mean squared error for predicting mean feature values
using linear regression trained local context features that also include CPPS both from the past and
the future of both the speakers (refer Table 5.14).

predicting mean features
le cf p hr cpps Avg.

huh 27 26 25 35 36 29
now 33 45 27 35 41 36
oh 33 24 25 35 36 30
okay 20 22 30 45 38 31
really 45 22 57 31 42 39
right 39 26 22 45 39 34
uh 19 30 17 26 35 25
uh-huh 21 23 32 27 35 28
um 31 20 39 42 40 34
well 39 5 10 27 30 22
yeah 49 18 5 19 32 24
yes 21 33 10 11 25 20

Average 32 24 24 31 36 29

5.3.4 Optimal Feature Set

As was illustrated in the previous sections, linear regression using 10 sec of context features

outperformed the one using 3.2 sec of context features. Also, linear regression using 3.2 sec

context performed better with CPPS as one of the predictors than without it. Hence, I

decided to create an optimal predictor set with the best possible combination of feature sets

so far: 10 sec context that additionally includes CPPS as the predictor (Table 5.17).

As expected, linear regression trained on the above set of features produced a higher

quality of predictions for each predicted feature: mean log energy, cepstral flux, pitch and

harmonic ratio (Table 5.18) than the one trained on only 3.2 sec of context (c.f Table 4.4) or

on 10 sec of context features with no CPPS (c.f. Table 5.12) or even using CPPS in a 3.2 sec

context (Table5.15). This also reduced the overall average prediction error by 37% which is

the best result so far. Thus, it is demonstrated that an appropriate set of engineered features

can ensure better prediction even with the simplest of machine learning algorithms.

In another experiment, a step-wise linear regression algorithm was employed to garner
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Table 5.17: Set of context features used for prediction from 10 sec context also including CPPS as
a predictor. Times are in milliseconds relative to start (s) and end (e) of the dialog marker whose
prosody is being predicted

Past Windows, from the
start (s) of the token

Future Windows, from the
end (e) of the token

log energy s-10000 to -8000,

s-8000 to -6000,

s-6000 to -4000

e to e+2000,

e+2000 to e+4000
lengthening
peak disalignment
creakiness

s-4000 to s-2000,

and
s-2000 to s

e+4000 to e+6000,

e+6000 to e+8000,
and

e+8000 to e+10000

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate
CPPS

Table 5.18: Summary of results for predicting prosody features including mean CPPS using linear
regression trained on a set of features that also include CPPS as a predictor (Table 5.17)

predicting mean features
le cf p hr CPPS

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.60
Model Average RMSE 0.39 0.60 0.42 0.40 0.34
Reduction, % 37.1 27.3 37.2 39.1 42.6

more information on the more contributing predictors using the same feature set as above.

At first, linear regression using MATLAB’s fitlm method was used to create a model using

the entire feature set. Then the step method, using a 5-fold cross-validation approach,

recursively removes a predictor from the set if the increase in the adjusted R-squared value

of the model is less than -0.01 or, in other words, if the goodness of the fit is reduced by more

than 1%. The prediction results were the same as in Table 5.18. Also, none of the predictors

was excluded from the model at any point. This could possibly mean that each predictor

contributed with some positive value to this prediction task, at least for this model.
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5.4 Scaled Features

In another experiment, features were scaled, using the min-max scaling formula shown below:

x− xmin/(xmax − xmin)

where xmax and xmin are the maximum and the minimum values of the feature x across each

channel of each conversation, respectively.

This technique shifted the feature values for each speaker and re-scaled them so that they

end up ranging between 0 and 1.

Scaling the feature values had a slight positive effect when compared to baseline, Table

5.19, for predicting mean log-energy, cepstral flux, pitch, and harmonic ratio. Predicting

mean log-energy showed the least improvement from the baseline. Table 5.20 shows the

model’s prediction errors and Table 5.21 shows the percent reduction of these errors from

the baseline for each dialog marker type. Such poor prediction quality that demonstrates the

inferiority of this normalization technique is not surprising. This scaling of data increases

the possibility of outliers having a high negative impact on the model’s performance.

Table 5.19: Summary of prediction results with linear regression trained on 3.2 sec of local context
features, scaled within [0-1] instead of z-normalization.

predicting mean features
le cf p hr

Baseline Average RMSE 0.13 0.06 0.105 0.11
Model Average RMSE 0.12 0.06 0.09 0.10
Reduction, % 3.23 5.59 5.65 5.72

5.5 Multi-modality: Text plus Speech

Having already supported my original research claim that the prosody of the local context

is directly informative to predict the prosody of the target dialog marker token to a certain
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Table 5.20: Root mean squared error for predicting mean feature values using linear regression
trained on 3.2 sec of local context features that are scaled within [0-1] instead of z-normalization.

predicting mean features
le cf p hr Avg.

huh 0.11 0.07 0.13 0.11 0.11
now 0.13 0.05 0.09 0.10 0.09
oh 0.13 0.06 0.13 0.12 0.11
okay 0.13 0.07 0.10 0.10 0.10
really 0.11 0.05 0.11 0.10 0.10
right 0.12 0.06 0.09 0.10 0.09
uh 0.13 0.06 0.07 0.10 0.09
uh-huh 0.12 0.05 0.10 0.11 0.10
um 0.12 0.06 0.08 0.10 0.09
well 0.12 0.06 0.11 0.11 0.10
yeah 0.13 0.06 0.10 0.11 0.10
yes 0.13 0.06 0.09 0.09 0.09

Average 0.12 0.06 0.09 0.10 0.09

Table 5.21: Percent reduction in the root mean squared error from the baseline for predicting mean
feature values using linear regression trained on 3.2 sec of local context features, scaled within [0-1]
instead of z-normalization.

predicting mean features
le cf p hr Avg.

huh 5.2 -1.5 0.8 4.3 2.2
now -2.8 12 10 9.1 7.0
oh 1.5 -3.4 -0.8 4.0 0.3
okay 4.5 2.8 4.8 4.8 4.2
really 4.3 12 11 11 9.6
right 4.8 1.6 2.3 4.0 3.2
uh 3.0 12 5.4 1.9 5.5
uh-huh -1.7 7.4 1.9 3.5 2.8
um 4.1 0.0 9.7 9.5 5.8
well 6.3 9.1 10 5.8 7.8
yeah 6.0 3.2 4.8 5.1 4.8
yes 3.0 12 9.1 5.3 7.3

Average 3.2 5.6 5.7 5.7 5.0

extent, here, I investigate whether adding the lexical information of the context has any

effect on the prosody prediction results.

Following are the hypotheses tested here.
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1. Adding lexical information from the context in addition to prosody improves prediction

performance.

2. Predictive ability of the context prosody alone is more than the lexical context.

3. Individual lexical context information is more useful than the average of the entire

lexical context.

4. Using more lexical context information improves prediction.

The lexical context was represented by an embedding vector obtained from a pre-trained

word-embedding file, glove.6B.50d. These pre-trained word embeddings were generated using

GloVe (Pennington et al., 2014), an unsupervised learning algorithm that produced linear

representations of the word vector space and has since been used in various text mining tasks.

glove.6B.50d has 6 billion tokens, 400K vocabulary, is uncased, and has 50 dimensions. Thus,

a given word was represented by a 50-dimensional vector of numbers.

Before computing the lexical embeddings, each word was first:

• expanded: contractions, if any, were expanded to their full forms, for example, there’s

→ there is, they’ve → they have, I’m → I am, and so on and then,

• lemmatized, with the use of a vocabulary and morphological analysis of words that

normally aims to remove inflectional endings only and to return the base or dictionary

form of a word (i.e. the lemma). Here, this is done using the normalizeWords function

of MATLAB with the parameter Style set as lemma.

Among many other possible ways to define the local lexical context, here this included

three words each from the past and the future of the target dialog marker token from both the

speakers, that is twelve words in total. In situations when both speakers speak at the same

time, some of these context words might overlap with each other or with the target token, en-

tirely or partially. Nevertheless, even in such cases, each of the context words was separately

added to the set. To test the first hypothesis, prosodic context (3.2 sec to the past and the
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Figure 5.1: Prediction performance comparison using i) prosody plus lexical context, ii) only context
prosody, and iii) only lexical context

future of the target token and from both speakers) was represented by the 72-dimensional

feature vector (c.f. Table 4.3) and the lexical context by 50-dimensional lexical embeddings

averaged over all the context words. Therefore, each predictor was a 122-dimensional vector

(72-dimensional prosody vector + 50-dimensional average lexical embedding vector). The

results, (Figure 5.1) supported the first hypothesis since linear regression trained on both

prosodic and lexical contexts performs better for predicting the mean of each feature when

compared to the model trained on only prosodic context.

Using only the lexical information (excluding prosody entirely) to represent the context

worsens the prediction results (Figure 5.1) when compared to using only prosodic context,

other than for predicting mean pitch, which is, surprisingly, improved. Thus, the second

hypothesis is also supported for three out of four predicted features.

Table 5.22: Prediction performance comparison when using i) average lexical embeddings vs. ii)
individual lexical embeddings.

average lexical embeddings individual lexical embeddings
le cf p hr le cf p hr

Baseline RMSE 0.61 0.82 0.67 0.66 0.61 0.82 0.67 0.66
Model RMSE 0.46 0.68 0.48 0.49 0.46 0.67 0.48 0.49
Reduction, % 25.5 18.0 28.0 25.9 24.9 19.2 27.8 25.3
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Figure 5.2: Prediction performance comparison for each mean feature predicted using only lexical
information from i) 3.2 sec context, ii) 5 sec context, and iii) 10 sec context

To test the third hypothesis, instead of computing the average, the individual lexical

embedding vectors corresponding to each of the twelve context words were used, thus, the

lexical context was here a 200-dimensional vector. However, no significant difference was

found in the prediction results (Table 5.22) when compared to using the average lexical

embeddings.

Figure 5.3: Prediction performance comparison for predicting prosody for each dialog marker when
using only lexical information from i) 3.2 sec context, ii) 5 sec context, and iii) 10 sec context

To verify the final hypothesis of this section, linear regression trained on 3.2 sec and
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5 sec, and 10 sec of lexical context was used to predict the mean prosodic features. It is

seen (Figure 5.2) that the more lexical information is used, the overall average prediction is

improved.

Incidentally, among the dialog markers (Figure 5.3), um had the worst prediction re-

sults across the three conditions. This could imply that the um’s prosody is probably more

influenced by the context prosody than by the lexical context information, which is under-

standable since it is primarily used as a backchannel or filler without any semantic meaning.

To conclude, the addition of text modality, that is to say, lexical information, to prosody,

does improve prediction performance. Also, the better predictive ability of prosodic infor-

mation over its lexical counterpart was established.
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Chapter 6

Improving Prediction, Part 2:

Different Learning Algorithms

This chapter describes the performance of a few other machine learning algorithms that were

used with the aim of improving predictive performance over the linear regression model.

6.1 Auto Best-Fit Model

Here, I investigate the value of an auto-optimized regression model. More specifically, the

fitlinear function in MATLAB, with its OptimizeHyperparameters parameter set as auto was

used to build the predictive model. This function automatically chooses an optimized set of

hyper-parameters, selecting either the least-square sum or the SVM as the best regression-

fitting approach that minimizes the loss at the end of each training iteration. This model

was trained using the same set of context features described in Table 4.3.

Comparing the performance of linear regression that uses only the least-square sum

method to generate the best-fit line with this auto best-fit approach provided no benefit

whatsoever in prediction quality. The error reduction rate was exactly the same in both

cases (Table 4.5 and c.f. Table 6.1). Apparently, the algorithm chose the least-square sum

method as the best-fit approach each time since this probably minimized the training error.

This could mean that the underlying relationship between the predictor and the predicted

data was mostly linear in nature.
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Table 6.1: Percent reduction of prediction errors per dialog marker type using the auto-optimized
linear regression model that chooses the better learner between the least square sum and SVM.

predicting
mean features

predicting
max features

le cf p hr Avg. le cf p hr Avg.
huh 29 43 26 34 33 22 46 27 15 28
now 19 21 30 25 24 23 21 44 39 32
oh 17 27 15 24 21 35 37 25 37 34
okay 18 30 7 6 15 19 31 18 40 27
really 46 16 -1 15 19 37 39 35 48 40
right 37 2 7 25 18 31 14 19 39 26
uh 43 21 56 30 38 52 48 33 32 41
uh-huh 12 20 34 50 29 18 11 31 39 25
um 31 22 29 32 28 56 50 36 27 42
well 25 24 23 33 26 32 24 40 33 32
yeah 38 25 20 44 32 49 38 40 54 45
yes 30 19 37 37 31 28 22 26 45 30

Average 29 22 24 30 26 33 32 31 37 33

6.2 Random Forest Model

Continuing the search for a better machine learning algorithm with the aim of improving

the predictive performance, the random forests algorithm was tried.

The random forests algorithm employs a type of ensemble machine learning algorithm

called Bootstrap Aggregation or bagging. The algorithm operates by constructing a multi-

tude of decision trees at training time and outputting the mean of prediction of the individual

trees. It is often known to produce better results with large datasets than linear regression

and is faster than non-linear SVM. Based on this, it was hypothesized that the random

forests model would outperform the other models in terms of its predictive performance.

A random forest model trained on the same feature set as in Table 4.3, which was

run for 30 iterations for each dialog marker type, showed an overall better performance

in predicting the mean features. MATLAB’s fitrensemble function was used that returned

an ensemble regression model of boosting a default of 100 decision trees using either the

LSBoost (least square boosting) or Bag (bagging) approach and other hyper-parameters—

NumLearningCycles, LearnRate and MaxNumSplits— that were automatically optimized
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Table 6.2: Summary of results for predicting mean features of a dialog marker token using random
forests algorithm.

predicting mean features
le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66
Model Average RMSE 0.42 0.64 0.47 0.47
Reduction, % 32.0 22.8 29.2 28.8

using Bayesian Optimization. The best value that minimized the 5-fold cross-validation loss

for the ensemble was returned as the final result after 30 iterations. In general, if there

is any missing data in the predictors, i.e., the value of the optimal split predictor for an

observation is missing, this algorithm uses surrogate splits that sends the observation to the

left or right child node using the best surrogate predictor. This is done to maintain the

quality of predictions. However, since I already ensured that no NaNs or missing values in

the computed features would be used for training, there was hardly any chance of such a

predicament.

Table 6.3: Percent reduction in root mean squared error from the baseline for predicting mean
feature values using the random forests model.

predicting mean features
le cf p hr Avg.

huh 42 28 16 23 27
now 30 27 34 22 29
oh 20 26 28 19 23
okay 27 11 28 7 18
really 39 24 23 33 30
right 20 30 30 23 26
uh 27 34 17 31 27
uh-huh 25 29 36 39 32
um 18 -16 39 30 17
well 39 33 38 37 37
yeah 39 14 20 23 24
yes 44 4 37 44 32

Average 32 23 29 29 28
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6.2.1 Results using 3.2 sec of context

As seen while comparing Table 4.4 with Table 6.2, this random forests model reduced the

prediction error from the baseline for most of all the mean features predicted, namely, log

energy, cepstral flux, and pitch. The highest reduction was 29.2% for predicting mean pitch,

which is more than what was achieved by the linear regression model (Table 4.4).

From the reduction in prediction error rate, Table 6.3, it is evident that there is substantial

improvement in predicting mean token features for each dialog marker type by this model,

with the overall average prediction error reduction of 28% or the best of 32% for mean log

energy, over linear regression (c.f. Table 4.5).

6.2.2 Results using 10 sec of context

Table 6.4: Summary of results for predicting mean features of a dialog marker token using random
forests algorithm trained with 10 sec context feature set including CPPS as a predictor (Table 5.17).

predicting mean features
le cf p hr CPPS

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.60
Model Average RMSE 0.38 0.57 0.41 0.42 0.31
Reduction, % 37.9 30.3 38.9 36.4 47.6

Inspired by the success of the linear regression model’s prediction performance when

trained with 10 sec of context that also had CPPS as one of the predictors, the random

forests model —with other hyper-parameters remaining the same as the previous model—

was now trained with the feature set in Table 5.17. Features predicted also included mean

CPPS along with mean log energy, cepstral flux, pitch, and harmonic ratio.

On average, predictions were improved for each of the dialog marker types as well as for

each predicted feature (Table 6.4 and Table 6.5) when compared to the model using only

3.2 sec of context without the CPPS predictor (c.f Table 6.2). Interestingly, predictions for

mean cepstral flux for the dialog marker um, which was the hardest to predict in the previous

model (c.f. Table 6.3), was quite improved to achieve 6% error reduction (Table 6.5). The
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overall average prediction error reduction for this model was 38% which is also better, albeit

marginally, than what linear regression achieved with the same feature set (c.f. Table 5.18).

Table 6.5: Percent reduction in root mean squared error from the baseline for predicting mean
feature values using random forests algorithm with the feature set in Table 5.17.

predicting mean features
le cf p hr CPPS Avg.

huh 44 36 34 36 40 38
now 35 38 41 38 38 38
oh 27 28 29 28 36 30
okay 30 13 33 10 32 23
really 41 34 43 41 41 40
right 30 29 33 29 44 33
uh 39 36 35 41 37 38
uh-huh 36 35 42 39 48 40
um 24 6 45 35 44 31
well 45 41 50 43 53 46
yeah 43 24 31 38 45 36
yes 49 26 47 47 49 44

Average 38 30 39 36 48 38

6.3 K Nearest Neighbors

With the aim of even further improving the prediction results, the KNN approach was used.

Table 6.6: Prediction results summary for the kNN (k=3) model using 3.2 sec context feature set
without the CPPS predictor.

predicting mean features
le cf p hr

Baseline Average RMSE 0.61 0.82 0.67 0.66
Model Average RMSE 0.54 0.72 0.51 0.58
Reduction, % 11.9 12.2 24.3 11.9
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6.3.1 Results using 3.2 sec of context

kNN is a non-parametric method that approximates the association between independent

variables and the continuous outcome by averaging the observations in the same neighbor-

hood. A kNN model, using MATLAB’s fitcknn function with the number of neighbors, k=3,

and the default Euclidean distance as the metric to decide the closest neighbors, was trained

with the original set (Table 4.3) of prosody features computed over 3.2 sec of context.

Contrary to expectations—given the success of this approach in many supervised predic-

tive modeling tasks— the results were quite disappointing, as seen in Table 6.6, since only

for predicting mean pitch were the results close to the linear regression model (c.f Table 4.4)

while the rest had much lower prediction error reduction rate.

If we look into more detailed prediction results for each dialog marker type in Table 6.7,

yes had the overall highest reduction in average prediction error while well had the worst

predictions.

Table 6.7: Percent reduction of root mean squared error per dialog marker type for the kNN model

using 3.2 sec context without the CPPS predictor.
predicting mean features
le cf p hr Avg.

huh 1.4 1.1 1.2 1.6 1.3
now 11 17 47 14 22
oh 11 16 38 11 19
okay 18 15 25 16 18
really 30 32 52 12 31
right 8.9 33 48 11 25
uh 1.8 1.9 2.0 1.4 1.8
uh-huh 1.9 0.0 1.9 1.4 1.3
um 4.5 2.2 26 8.2 10
well 1.4 0.0 0.0 1.2 0.7
yeah 0.0 1.4 1.7 1.5 1.2
yes 49 33 48 59 47

Average 12 12 24 12 15

Following are some of my inferences:

• The prediction results of the kNN model indicated some sort of clustering in the dia-
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log markers’ prosodic mapping to their context: the context categories into which the

dialog markers can be grouped together are not only distinguishable by their corre-

sponding pragmatic functions but also the associated prosody.

• Dialog markers uh and well —usually used as fillers—, and uh-huh and huh — usually

used as back-channels— had an overall lower reduction in average prediction error,

implying that they were particularly hard to predict.

• Dialog marker yes — usually a response — and really— usually an adjective but

sometimes also an interjection— were easier to predict. One common factor was that

the speakers usually continued to hold the floor for some time in the local future after

the target token, and thus, likely provided sufficient context prosodic information to

the model to enable easy prediction of the marker’s prosody.

• The kNN model predicted the prosody of okay well above the overall average, unlike

the linear regression model (c.f. Table 4.5) which predicted its prosody with a much

lower prediction error reduction than the other dialog markers. This result aligns

with my exploratory study results (c.f. Chapter 3) that okay ’s prosody could be

significantly distinguished in different pragmatic contexts. For example, okay said in

an Acknowledgement context category is prosodically different from that in an End

of Conversation context. kNN, essentially used as a clustering algorithm, is probably

able to easily predict the prosody of okay because of their inherent clustered prosodic

behavior.

6.3.2 Results using 10 sec of context

Looking to further improve the prediction performance, kNN (k=5) was now trained on the

optimal predictor set (Table 5.17) that has contributed to the best prediction results with

each learning algorithm used so far.

Prediction was improved for all features except mean pitch (Table 6.8) which remained
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Table 6.8: Summary of results for predicting mean features using kNN(k=5) trained on 10 sec
context feature set with CPPS as an additional predictor (Table 5.17).

predicting mean features
le cf p hr CPPS

Baseline Average RMSE 0.61 0.82 0.67 0.66 0.60
Model Average RMSE 0.51 0.67 0.51 0.57 0.42
Reduction, % 16.6 18.2 24.1 14.0 30.3

Table 6.9: Percent reduction in root mean squared error from the baseline for predicting mean feature
values using kNN(k=5) algorithm trained on 10 sec context feature set, also including CPPS as a
predictor (Table 5.17).

predicting mean features
le cf p hr CPPS Avg.

huh 12 19 13 1 13 11
now 16 24 36 16 35 25
oh 12 21 24 24 22 21
okay 19 17 27 18 30 22
really 33 33 37 14 35 30
right 14 35 39 12 37 27
uh 16 2 18 4 12 10
uh-huh 12 15 14 18 16 15
um 6 4 31 9 27 15
well 13 12 10 1 16 10
yeah 14 3 17 15 18 13
yes 29 35 30 37 35 33

Average 17 18 24 14 30 21

the same as before (c.f. Table 6.6). The overall average prediction error was reduced to 21%

(Table 6.9) and hence, improved upon the previous model by 6%. However, the predictions

were still not of the level achieved by random forests or even linear regression algorithms

with the same feature set. Moderate prediction performance of kNN (even with an increased

number of neighbors and increased context information) implies that in this unstructured

corpus of dialogs, the diverse nature of dialog marker prosody, though dependent on context,

could not be commonly categorized in general. However, it is to be noted that the predictions

for okay were better than the overall average even this time (Table 6.9), further supporting

my inference regarding the clustered nature of okay ’s prosody as also noted in the previous
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section.

6.4 Artificial Neural Networks

The success of advanced neural methods in synthesizing context-aware expressive speech has

seen quite a success in recent times (c.f. Section 2.1). I decided to start with a simple version

of an artificial neural network, intending to further improve the prediction quality.

Figure 6.1: Conceptual Diagram of feedforward Artificial Neural Network (Demirel et al., 2009)

An artificial neural network for regression task was created using MATLAB’s fitrnet

method (conceptual diagram in Figure 6.1). This method trains a feedforward, fully con-

nected neural network for regression. The first fully connected layer of the neural network

has a connection from the input (predictor data), and each subsequent layer has a connection

from the previous layer. Each fully connected layer multiplies the input by a weight ma-

trix and then adds a bias vector. An activation function follows each fully connected layer,

excluding the last. The final fully connected layer produces the network’s output, namely

predicted response values. This network was trained with the argument OptimizeHyperpa-

rameters set to "auto", and for reproducibility, the AcquisitionFunctionName argument set
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to "expected-improvement-plus" in a HyperparameterOptimizationOptions structure. These

arguments cause the fitrnet to search for optimized values for the following set of hyper-

parameters, that would produce a model with the lowest 5-fold cross-validation error at the

end of 100 epochs, using Bayesian optimization:

• Activation functions for fully connected layers over: {‘relu’, ‘tanh’, ‘sigmoid’, ‘none’}.

• Regularization Term Strength over continuous values in the range ([1e− 5, 1e5]/

NumObservations), where the value is chosen uniformly in the log-transformed range.

The objective function for minimization is composed of the mean squared error (MSE)

loss function and the ridge (L2) penalty term.

• LayerBiasesInitializer—type of biases for initial fully connected layer— over the two

values {‘zeros’, ‘ones’}.

• LayerWeightsInitializer—function to initialize fully connected layer weights— over the

two methods {‘glorot’ (Glorot and Bengio, 2010), ‘he’(He et al., 2015)}.

• LayerSizes: fitrnet optimizes over 1, 2, and 3 fully connected layers, excluding the final

one. Also, fitrnet optimizes each fully connected layer separately over 1 through 300

neurons in the layer, sampled on a logarithmic scale.

Table 6.10: Summary of results for predicting mean features of a dialog marker token using an
artificial neural network model trained on 10 sec context feature set with CPPS as an additional
predictor.

predicting mean features
le cf p hr CPPS

Baseline Average RMSE 0.85 41.0 45.7 0.11 1.19
Model Average RMSE 0.52 25.0 26.0 0.07 0.60
Reduction, % 39.3 39.0 43.1 36.4 49.7

At each epoch, the objective function minimized was log(1 + cross-validation loss)). Also, a

cross-validation check with early stopping was used to ensure no overfitting in the training
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data. Also note that by default, fitrnet uses the limited-memory Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton algorithm (LBFGS) (Nocedal and Wright, 2006) as its loss function

minimization technique. This is a non-parametric algorithm that is not dependent on the

learning rate and is suited to finding a global minimum.

Table 6.11: Percent reduction in root mean squared error from the baseline for predicting mean
feature values using feed-forward neural network algorithm trained on 10 sec context feature set,
also including CPPS as a predictor (Table 5.17).

predicting mean features
le cf p hr CPPS Avg.

huh 25 31 35 31 36 32
now 59 56 53 54 57 56
oh 42 33 39 36 51 40
okay 33 34 44 33 35 36
really 25 31 35 31 34 31
right 26 34 35 31 37 33
uh 56 55 58 51 57 56
uh-huh 44 31 39 21 37 35
um 48 45 57 33 45 46
well 44 46 54 48 50 48
yeah 36 36 38 37 40 37
yes 29 35 35 32 36 34

Average 39 39 43 36 50 42

A separate ANN was trained for each dialog marker and each predicted feature with the

optimal predictor set (Table 5.17). However, please note that unlike with other models, the

features were not z-normalized but used as is (since the ANN produced unintelligible results

with the z-normalized values).

Table 6.11 shows that the overall average prediction error was reduced to 42%, thus,

outperforming other models reported so far. Also, the predictions were the best for each

predicted feature (Table 6.10). This model also produced the best predictions for seven out

of 12 dialog markers’ prosody (Table 6.11, c.f. Tables 6.5 and 6.9).

In conclusion, not only did the local context prove to be useful in predicting appropriate

dialog marker prosody, but also we can improve the quality of these predictions when learning

using more suitable algorithms that are trained with the best representatives of the context.
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Chapter 7

Predictability for Task-Oriented Dialogs

This chapter tests the applicability of the main hypothesis of this research—the prosody of a

dialog marker token can be predicted appropriately from its local dialog context prosody—

for task-oriented dialogs, expanding my previous work on open-domain conversations.

7.1 Data Set

The dataset —the Harper Valley Bank Corpus (Wu et al., 2020)— consists of recorded audio

dialogs that are primarily simulated task-oriented conversations between a bank’s call center

agent and a customer, collected using the Gridspace Mixer platform. Conversations are

goal-oriented, for example, a customer ordering a new checkbook or checking the balance of

an account, etc.

A sample conversation from this corpus is given below:

Agent : hello this is harper valley national bank my name is jay how can I help

you today

Caller : hi my name is mary davis

Caller : [noise]

Caller : i would like to schedule an appointment

Agent : yeah sure what day what time

Caller : thursday one thirty pm

Agent : that’s done anything else

Caller : that’s it

Agent : have a good one.
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This dataset—developed to support education and experimentation across a wide range

of conversational speech and language machine-learning tasks—contains about 23 hours of

audio from 1,446 human-human conversations between 59 unique speakers, encoded as 8kHz

per the original telephony data. Each conversation is labeled with human transcripts, timing

information, emotion and dialog act model outputs, subjective audio quality, task descrip-

tions, and speaker identity. Table 7.1 shows the total count of tokens for each dialog marker

type from this corpus that was used for the experiments in this chapter. These counts take

into account only those dialog markers present in the human transcript field and not those

in the machine-generated transcript field of a conversation which, though greater in number,

were mostly inaccurate as was revealed by listening to the first 10 of them. The dialog

marker, uh-huh had zero count in this corpus when the human-generated transcripts were

considered.

Table 7.1: Number of instances of each dialog marker in the Harper Valley Bank Corpus
token count

huh 38
now 77
oh 120
okay 1565
really 9
right 30
uh 672
uh-huh 0
um 464
well 126
yeah 96
yes 253

Total 3450
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Table 7.2: Summary of results for predicting mean features of a dialog marker token in a task-
oriented dialog corpus using 10-fold cross-validation training.

predicting mean features
le cf p hr

Baseline Average RMSE 0.86 0.56 0.78 0.49
Model Average RMSE 0.83 0.54 0.76 0.47
Reduction, % 3.51 2.92 2.44 3.23

7.2 Predictive Model and its Performance

Local context (3.2 sec each, from the past and future context of the target token and from

both speakers) is represented by the 72-dimensional prosody vector (Table 4.3). Unlike in

Chapter 4, the pitch tracker used here is the REAPER—Robust Epoch And Pitch EstimatoR

(Talkin)—developed by David Talkin at Google. This is much faster than MATLAB’s fxrapt

and is fairly robust to recording quality. The main reason for using this pitch tracker is that

fxrapt failed to compute pitch for most of this corpus’s audios. Since there is only a limited

number of instances available for each dialog marker type in the corpus, it was necessary to

ensure that each one of them has some computed prosody value that could be used for k-fold

cross-training.

Table 7.3: Percent reduction of prediction errors per dialog marker type for predicting dialog marker
prosody in the task-oriented dialogs from the Harper Valley Bank Corpus.

predicting mean features
le cf p hr Avg.

huh 4.1 2.6 2.1 0.3 2.3
now 2.4 2.6 4.3 0.9 2.6
oh 1.5 0.6 0.5 2.1 1.2
okay 3.6 4.3 0.5 -0.1 2.1
right 9.8 4.6 5.1 12.0 7.9
uh 1.4 1.1 0.9 0.8 1.1
um 1.6 1.4 0.0 1.7 1.2
well 2.6 4.7 2.1 1.3 2.7
yeah 1.2 3.0 6.8 10 5.3
yes 4.9 5.2 0.5 0.6 2.8

Average 3.5 2.9 2.4 3.2 2.9
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An intra-corpus evaluation approach was followed but, unlike in Chapter 4, a k-fold,

k=10 cross-training method was adopted to mitigate the effect of fewer training samples.

The dialog marker really had too few instances (9) to be of use to any supervised machine

learning algorithm and understandably, had large prediction errors, so these results are

omitted from the tables below. Each predicted mean feature: log energy, cepstral flux,

pitch, and harmonic ratio, had a positive error reduction rate, Table 7.2, indicating that

the proposed prediction model also works for task-oriented dialogs, although the prediction

results were much worse than what was achieved for the open-domain dialogs (c.f. Table

4.4). On average, right, and yeah were predicted well above the overall prediction average.

uh, oh and um had predictions quite below the overall average.

One possible reason for such a modest prosody prediction could easily be the lack of a

sufficient number of training samples for most dialog markers. This is not only because of

fewer audio hours available in the corpus but also because task-oriented conversations do

not feature as much variation in contextual uses of dialog markers as open-domain dialogs

do (which aligns with my intuition in Section 4.1). This is probably because they are more

structured and are spoken in a more formal environment.

To conclude, the original research hypothesis—context prosody is useful for predicting

the target dialog marker’s prosody— also holds true, albeit marginally, for task-oriented

dialogs. This also goes on to show the significance of my research problem which has been

shown to be solvable to a certain extent. A more general solution, though much harder to

achieve, is worth pursuing in future research.

75



Chapter 8

Predictability of Autistic Prosody

Inspired by the cross-domain performance of the proposed prosody prediction approach in

task-oriented dialogs, this chapter investigates whether this predictability can be further

extended for atypical prosody in autistic children dialogs. This task is also motivated by

the possible benefits that automatic comparisons of autistic with neurotypical prosody based

on typical context-prosody mappings may provide in the automatic and early detection of

atypical prosody (reviewed in Section 2.2).

8.1 Data Set

The experiments in this chapter used the NMSU children corpus (Lehnert-LeHouillier et al.,

2020). Specifically, I used two groups of matched dialogs from the corpus: one recorded

with neurotypical children and the other recorded with autistic children. Each group had 14

dialogs: each ranging from 4 to 10 minutes. An adult counselor or interviewer played a spot

the difference game with a child in each dialog. The child was asked to help identify these

differences by describing the picture given to them in detail without seeing its counterpart.

The audios were post-processed to separate each speaker to a separate track. Each child’s

dialog segment was annotated to mark the start and end timestamps for each token of the

dialog markers. The number of instances for each dialog marker in this corpus is listed in

Table 8.1. It is to be noted that the neurotypical children sometimes also used okay and umm

in the corpus, which were completely absent in the autistic children’s dialogs and hence, not

considered.
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Table 8.1: Number of instances of each dialog marker in NMSU’s children corpus.

CASD: Children with Autistic Spectrum Disorder and CNT: Children NeuroTypical
Dialog
Marker CASD CNT
oh 19 16
uh 24 8
um 37 55
yeah 72 89
yes 20 52

Total 172 220

8.2 Autistic Prosody vs. NeuroTypical Prosody

Given the atypical nature of autistic children’s prosody (Section 2.2), it seems likely that:

• predicting the dialog markers’ prosody for autistic children would be much harder than

for neuro-typical children, that is,

• autistic prosody is much less influenced by local context prosody.

In more formal terms, the following are the hypotheses tested in this section:

1. The prosody of local context in dialogs between typical adults is sufficiently informative

to predict the prosody of dialog markers occurring in children’s dialogs, and

2. This contextual information is less predictive in dialogs involving autistic children than

those with neuro-typical ones.

3. Prosody of autistic children is harder to predict than their neuro-typical counterparts,

even when trained on intra-corpus data.

Linear regression, trained with typical adult prosodic data from the Switchboard corpus

(Chapter 4), is used to predict the mean for the prosodic features: log energy, cepstral flux,

pitch, and harmonic ratio, for each of the above dialog marker type found in both the autistic
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and neuro-typical children data, given their corresponding local context information. The

set of context prosodic features used was the same as described in Chapter 4.

Contextual prosody prediction using the model derived from the adult dialogs in Switch-

board corpus was proved to be not very useful in predicting children’s behavior since almost

all dialog marker prosody predictions were much worse than baseline for each response feature

(Table 8.2 and Figure 8.1). Thus, the first hypothesis was not supported.

Figure 8.1: Prediction results for each predicted feature: Comparing average prediction error rate
for predicting dialog marker prosody in autistic (CASD) vs. neurotypical (CNT) children for each
predicted feature when trained on Switchboard adult dialog data.

For each dialog marker, the average prediction error rate of all the response features is seen

to be much worse for the autistic data than for the neuro-typical group ( Table: 8.3 and Figure

8.2). When the prediction error rate is considered with respect to each predicted feature

(Table 8.2), mean log energy and mean harmonic ratio was found especially hard to predict

for autistic children while mean cepstral flux and mean pitch predictions were somewhat

better than for the neurotypical children. Additionally, the overall average prediction error

rate for autistic children (-29%) is much worse than that for neurotypical children (-3%).
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Figure 8.2: Prediction performance comparison per dialog marker type: Comparing average pre-
diction error rate for predicting dialog marker prosody in autistic (CASD) vs. neurotypical (CNT)
children for each dialog marker type when trained on Switchboard adult dialog data.

Hence, it can be concluded that the experimental evidence weakly supports that autistic

children’s prosody is less like that of adults than those of neuro-typical children, partially

supporting the second hypothesis. Interestingly, the predicted average log energy and pitch in

autistic dialogs varied the most from their neurotypical counterparts. This aligns with prior

research (Section 2.2) that observed prominent and consistent atypical pitch and intensity

patterns in the autism spectrum.

Table 8.2: Comparing average prediction error reduction rate for predicting mean of each of the
features for autistic (CASD) vs. neurotypical (CNT) children using linear regression trained on
Switchboard adult dialog data.

predicting
mean features

CASD CNT

log energy -56.8 -2.3
cepstral flux -7.8 -10.2
pitch 8.4 -1.9
harmonic ratio -55.7 1.1
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Table 8.3: Comparing average prediction error reduction rate for predicting dialog marker prosody
in autistic (CASD) vs. neurotypical (CNT) children, for each dialog marker type using linear
regression trained on adult Switchboard adult dialog data.

CASD CNT
oh -12.5 -10.4
uh -59.1 3.3
um -38.0 1.0
yeah -20.7 -11.9
yes -17.4 -7.6

Figure 8.3: Prediction results for intra-corpus training: Comparing average prediction error rate
for predicting dialog marker prosody in autistic (CASD) vs. neurotypical (CNT) children for each
dialog marker type, when trained on intra-corpus children data via 5-fold cross-validation approach.

In another experiment, the local prosodic context information of a dialog marker token

was derived from the corresponding children’s dialogs instead of being trained on adult

dialog corpus. Specifically, a linear regression model that predicted the prosody for each

dialog marker of autistic children was trained on the corresponding local context via a 5-fold
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cross-validation approach. A similar approach was followed for predicting the neuro-typical

Figure 8.4: Prediction results with intra-corpus training: Comparing average prediction error reduc-
tion rate for predicting dialog marker prosody in autistic (CASD) vs. neurotypical (CNT) children
for each predicted feature, when trained on intra-corpus children data via 5-fold cross-validation
approach.

children’s prosody. However, the prediction quality (Figure 8.3 and Figure 8.4) was bad

for both the sub-corpora. This was not very surprising given the small amount of training

data available in the children’s corpus. Nevertheless, even in this scenario of intra-corpus

training, the dialog prosody of autistic children was predicted even worse than those of their

neuro-typical counterparts on an average for each dialog marker type (Figure 8.3) and for

each predicted feature (Figure 8.4), indirectly supporting the third hypothesis.

To conclude, though the predictability of the children’s prosody from the adult dialogs’

context could not be demonstrated, it was confirmed that appropriate context-prosody mod-

eling was even harder to achieve for autistic children’s dialogs than for their neurotypical

peers. Hence, typical contextual dependency of prosody should be considered an essential

factor for further research on the automatic comparison between atypical and neurotypical

prosodic behavior.
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Chapter 9

Discussion and Future Research

The following sections summarize the significant findings of this research and provide sug-

gestions on how to improve the prediction results, leading to future research.

9.1 Summary of Findings

The experiments that support my claim—that dialog markers’ prosody can indeed be pre-

dicted directly from the prosody of the context to a fair extent, even with very limited feature

sets and very simple models— are enumerated below.

• Linear regression with only a minimal set of context features (Table 4.3) reduced the

error by an overall average of 26% (c.f. Table 4.5) for predicting each dialog marker’s

mean feature values and by 33% for predicting their maximum.

• A simple feedforward artificial neural network model—that used 10 sec of context

features that included CPPS as a predictor (Table 5.17)—has the best prediction per-

formance with an overall average prediction error of 42% (c.f. Table 6.10).

• An appropriate and optimal set of engineered predictor prosody features (Table 5.17)

can ensure much improved prediction even with the simplest of machine learning algo-

rithms such as linear regression (c.f. Table 5.18), random forests (c.f. Table 6.2) and

knn (c.f. Table 6.6) than what was achieved with the original set of predictors ( c.f.

Tables 4.4, 5.12 and 5.15)

Following are the conclusions I have drawn from the other experiments.
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• Linear regression when trained on context segmented into more windows (Table 5.6)

predicted less accurate prosody (c.f. Table 5.7) than that trained on uniformly win-

dowed context (c.f. Table 4.4).

• A generic model, trained globally on the context prosody of all dialog marker types,

predicted worse (c.f Table 5.4) than those trained on the type-specific data (c.f. Table

4.4).

• Past context alone proved less informative than when used with future information for

prediction (c.f. Table 5.1).

• Both speaker context is more informative than either individual speaker’s context (c.f.

Table 5.2).

• Use of wider context (10 sec) improves the prediction performance (Section 5.3.2).

• Adding lexical context information improves the prediction performance (Section 5.5).

• Proposed prosody prediction approach has some value also in task-oriented dialog

domain (Chapter 7).

• Prosody is harder to predict for autistic children than for the neurotypical population

belonging to the same age group (c.f. Tables 8.2 and 8.3).

It is also to be noted that the proposed predictive approach was able to overcome the

key limitations of prior research (c.f. Sections 2.1.3 and 2.3.3) since it:

• primarily learns from prosodic context

• predicts appropriate prosody for more than a few dialog markers, twelve to be exact.

• uses both past and future local dialog context (instead of only the immediate past)

and context from both the speakers.

• is tested across multiple dialog domains.
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Additionally, this approach neither does rely on human annotations for context or intents

nor on hand-crafted rules but follows an automated prediction technique using machine

learning algorithms.

9.2 Implications

The performance of the proposed prosody prediction approach implies that, indeed, local

prosodic context is directly informative for such prediction.

In the near future, this predictive modeling may be extended to generate appropriate

prosodic adjustments in the responses of dialog systems to create, for example:

• highly responsive spoken language chatbots or

• more natural sounding voice assistants.

Further, this proposed approach of context-appropriate prosody prediction could be used

to build intervention bots that would provide feedback to people exhibiting atypical prosody.

For example, a) language learners often fail to grasp the technique of changing the prosody

in their spoken words appropriately to the dialog context, or b) autistic people, who are

usually less context-sensitive than their neuro-typical counterparts, often exhibit awkward

prosody while communicating. They could practice their communication skills with these

proposed feedback bots. Such bots could detect atypical prosody—inappropriate to the

dialog context—in their user’s responses and intervene as it seems fit. One possible approach

could be to pause the interaction when such atypicality is detected, provide feedback to the

user on what went wrong, and then repeat a revision of the user’s target utterance modified

to have appropriate prosody in terms of pitch, volume, and duration. This way, the users

could be trained to master the typical responsive dialog patterns that would, eventually, help

them improve their communication skills and be more socially effective.

However, to develop such responsive systems, further exploitation of context-based prosody

prediction is required. This may involve generating tokens of utterances that exhibit fully
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appropriate prosody. For example, prosodic style or pattern templates that include the

prosodic configurations for pitch, volume, duration, etc., for any utterance appropriate to a

dialog context need to be formed so that the prosody of synthesized speech can be modified

as needed. Very recently, Fernandez et al. (2022) developed a high-fidelity scheme of trans-

lating a dedicated single-speaker corpus conversation style to a multi-speaker setting with

no quality degradation using a prosody preserving voice-conversion-based data augmenta-

tion technique. Such a scheme could be followed to develop the context-appropriate prosodic

styles that also need to include the context embeddings as part of the speech representation

in their proposed S2S TTS architecture.

The extent to which the prosody adjustments recommended by a context-sensitive model

have actual value in dialog still remains to be seen. Previous research suggests that im-

proved responsiveness can increase perceived naturalness and responsiveness, and ultimately

rapport, engagement, and user satisfaction (Acosta and Ward, 2011; Lubold and Pon-Barry,

2014; Li et al., 2019; Gálvez et al., 2020; Choi and Agichtein, 2020; Sadoughi et al., 2017).

However, experiments with human subjects are needed to establish whether such manipula-

tions also have value for dialog markers and, more specifically, whether using such prosodi-

cally appropriate dialog markers can improve rapport and engagement with the users.

9.3 Future Research

Future work should attempt more detailed predictions such as predicting prosody :

• not just of a dialog marker token’s averages but also of contour parameters or even

frame-by-frame values, and

• of full utterances.

Prediction of appropriate prosody can, perhaps, further be improved by using:

• an exhaustive list of commonly occurring dialog markers that would include more than

the twelve ones considered here. More importantly, dialog markers could be segregated
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based on their general role/function in dialog, and samples belonging to each role should

be separately modeled. Since each specific function of a dialog marker should ideally

be characterized by its associated prosodic forms, such segregation could enable better

prosody predictions. Alternatively, this segregation process could be automated by

employing semi-supervised approaches such as the UMAP clustering method, success-

fully applied by Liesenfeld and Dingemanse (2022) directly on the speech signals to

represent their structure and variation across 16 languages in a bottom-up study of

the behavior of the response tokens. These approaches would automatically cluster the

dialog markers based on their common prosodic structure.

• acoustic word embeddings, instead of engineered prosody features, to represent the

local context, following the approach that has recently been used to improve prosody

of synthesized speech in neural text-to-speech (Chen et al., 2021), and

• methods to combine these context-based predictions with other factors that might

affect the prosody, such as the current dialog state and the communicative intent of

the system (Ward and DeVault, 2016).

• more sophisticated deep learning models that could automatically learn the prosodic

feature representations, specifically, self-supervised learning approaches. Recent ad-

vances in self-supervised learning in speech processing led to the development of a

benchmark framework, SUPERB (Yang et al., 2021), released as an open-source that

aimed for a simple and more generalized solution for any speech-related task. This

framework consists of several pre-trained self-supervised models and a common toolkit

successfully used for various downstream and upstream tasks (Mohamed et al., 2022).

It also enables fine-tuning the models to suit any unknown task. The extracted fixed

representations from the pre-trained models can be fed to any prediction head for a

downstream task. Specifically, in the context of this research, these representations

could be extracted for each utterance in the dialog corpus and then combined to repre-

sent the entire local prosodic context. Such self-supervised contextual representation
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could hugely improve the quality of prosody predictions.

Future research could also involve experiments with languages other than English to

test whether the same context-dependent approach could be successfully applied to predict

appropriate prosody for other languages.

To conclude, although there is much room for improvement, this research is able to build

the foundation of a novel context-dependent prosody prediction model that can be expected

to be used to improve the natural prosodic behavior in future spoken dialog systems.

.
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