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Abstract

Marginal Integration (MI) is a statistical method that is extensively employed to estimate

component functions of the nonparametric additive models. The shortcoming of the purely

additive model is that interaction between predictor variables is often ignored, and it may

produce poor performance in some real applications. As a result, this research consid-

ers the second-order interactions in the regression models. The primary objective is to

use marginal integration techniques to estimate the nonparametric additive functions. We

compare this model with other models/estimators such as the Generalized Additive Model

(GAM), Generalized Additive Model with Selection (GAMSEL), Robust Marginal Inte-

gration (RMI), Ordinary Least Squares (OLS), M-estimators based on Tukey and Huber

methods, and LASSO. The simulation results indicate that MI has the least root mean

prediction error (RMPE) in pure non-linear models with interaction terms. In the presence

of outliers, RMI has the least RMPE demonstrating robustness. Finally, an application of

the models on Real Estate Price Prediction data obtained from Kaggle shows that the MI

method has the least RMPE depicting as the best model.

Keywords: Marginal Integration, Nonparametric Additive Models, Interaction terms,

GAM.
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Chapter 1

Introduction

A linear model uses a statistical model to describe the relationship between an outcome

variable and independent variables. These models presuppose a linear relationship between

the independent variables and the outcome variable, which means that a change in the in-

dependent variables will have a corresponding change in the dependent variable. Simple

Linear and Multiple Linear regression are examples of linear models. Simple linear regres-

sion is a basic linear model that uses a single predictor variable to explain the variation in

a response variable. The simple linear regression model can be expressed as follows:

Y = β0 + β1X + ϵ,

where Y is the response variable, X is the predictor variable, β0 and β1 are the intercept

and slope coefficients, respectively, and ϵ is the error term, which represents the variability

not explained by the model.

Multiple linear regression is a more general linear model that uses multiple independent

variables to explain the variation in a response variable. It is represented as

Y = β0 +
d∑

j=1

βjXj + ϵ = βX + ϵ,

where X = (1, X1, X2, .., Xd)
T and β = (β0, β1, β2, .., βd)

T . An ordinary least squares (OLS)

estimator is used to estimate the parameters of the model. However, the OLS often gives

a poor estimate in the presence of outliers or other data anomalies in linear models. In

these situations, we look for robust estimators which provide accurate results. Tukey’s

M-estimator and Huber’s M-estimator are both robust estimators commonly used in linear
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regression to improve the robustness of the model in the presence of outliers or other

types of data anomalies. Tukey’s M-estimator uses a weighting function to down-weight

the influence of outliers on the estimated coefficients. In contrast, Huber’s M-estimator

combines least squares and absolute deviation approaches to handle both small and large

residuals.

In many practical problems with a large number of covariates, one may look for simpler

models for better interpretability. So, in those cases, we need an appropriate variable

selection method. Variable selection in linear models refers to the process of selecting a

subset of predictor variables to include in the model while discarding insignificant variables.

One approach to variable selection in linear models is stepwise regression, which adds

or removes variables from the model based on statistical criteria. However, it is a very

computationally intensive process. Another approach is regularization, which penalizes the

coefficients of less important variables to encourage sparsity in the model. Two commonly

used types of regularization in linear models are LASSO regression and Ridge regression.

However, they are not robust against outliers. The Lad LASSO combines the least absolute

deviation (Lad) and LASSO methods, and thus, the estimator produces a robust variable

selection.

In statistical modeling, a wide range of nonparametric models falls under the general

regression model if a linearity assumption is not tenable, even as a rough approximation.

The general regression model is given as

Y = m(X) + σ(X)ϵ, (1.1)

where

• X = (X1, X2, .., Xd)
T is a vector of explanatory variables,

• m(X) and σ(X) are functions of X,

• ϵ is independent independent of X with E(ϵ) = 0, V ar(ϵ) = 1.
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Although nonparametric methods could theoretically be used to estimate the full model

(1.1), the curse dimensionality (an unacceptably large increase in variance as the dimension

of the data increases) generally makes it difficult. In nonparametric regression models,

the dimensionality reduction issue has been addressed by several statisticians. On the

other hand, additive models permit the modeling of a response Y as the sum of smooth

functions of distinct covariates X = (X1, X2, ..., Xd)
T . The benefit of additive models over

general nonparametric regression models is their ability to avoid the so-called ‘curse of

dimensionality’, caused by the expected number of observations in local neighborhoods

declining exponentially as a function of the dimension p of the covariates. The curse

of dimensionality is described explicitly by Stone (1985) as “being that the amount of

data required to avoid an unacceptably large variance increases rapidly with increasing

dimensionality.”

Consider m to be additive as a viable middle option for modeling complexity. i.e

m(X) = µ+
d∑

α=1

fα(xα) (1.2)

with fα is unknown and as a main effect.

Leontief (1947) discussed additive models where he looked at the so-called separable

functions, which are distinguished by the independence between the changes in the level

of one input and the marginal rate of substitution for a pair of inputs. As a result, the

additive assumption has been utilized in several areas of economic, statistical, and produc-

tion theories, such as in connection with the separability hypothesis. In today’s theoretical

statistics and empirical data analysis, additive models are widely used. They have a desir-

able statistical structure that makes it possible to conduct statistical analysis on subsets

of regressors, decentralize optimization and decision-making, and aggregate inputs into

indices (Fuss 1978, Deaton & Muellbauer 1980).

Stone (1985) and Hastie & Tibshirani (1990) suggested additive models, which gener-

alize linear models, resolve the issue of the curse of dimensionality, and provide models
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that are easily interpretable as a solution to this problem. The additive components fα in

model (1.2) fulfill some additional need to be recognizable, such as E(fα(Xα)) = 0, to be

included in additive models. As in linear regression models, one benefit of additive models

is that they enable independent interpretation of each variable’s impact on the regression

function. In addition, Stone (1985) demonstrated that for these regression models, the best

rate for predicting Y is the one-dimensional rate of convergence n
−

l

2l + 1 , which results in

dimensionality reduction through additive modeling. l is the degree of smoothness of fα.

The asymptotic behavior of the robust estimators of the additive components fα was

introduced by Li et al. (2012) utilizing local linear regression and marginal integration.

However, the technique outlined in Li et al. (2012) has the fundamental drawback of only

solving the curse of dimensionality when the number of variables, p ≤ 4, since the local

multivariate polynomial under consideration is of order one. This is in addition to presum-

ing that the scale is known. Severance-Lossin & Sperlich (1999) and Kong et al. (2010)

described this effect for the traditional estimators based on a local least squares approach,

noting that to overcome the problem of dimensionality, the order of the local polynomial

approximation should rise with the dimension of the covariates, resulting in higher preci-

sion. In an attempt to get solve this issue, Severance-Lossin & Sperlich (1999) changed the

initial estimators employed in the integration process, employing higher order kernels and

local polynomials that only depend on the covariate Xj associated with the jth additive

component to be estimated.

Additive modeling in statistics has been emphasized by some researchers for its use-

fulness. The requirements of interpretability, dimensionality, and flexibility, which can

sometimes be conflicting, are well satisfied by additive models. The curse of dimension-

ality (an increase in variability as the dimension of the data increases), in particular, can

be remedied satisfactorily. Backfitting and splines have typically been used to estimate

purely additive models (Hastie & Tibshirani 1990), but marginal integration (Linton &

Nielsen 1995) has recently gained some traction due to its ability to construct an explicit
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asymptotic theory. Marginal Integration (MI) is a statistical method extensively employed

to estimate the average treatment effects of a treatment on an outcome variable. It allows

researchers to estimate the effect of a predictor on an outcome variable while holding other

predictors constant. Marginal integration is particularly important when dealing with com-

plex models that involve multiple predictors and when there is a need to estimate the effect

of a predictor while controlling for the effect of other predictors. One of the key benefits

of marginal integration is that it can help to reduce bias in statistical models. By con-

trolling for the effects of other predictors, marginal integration can eliminate the potential

confounding effects that can occur when multiple predictors are included in a model. This

can lead to more accurate and reliable estimates of the effect of a predictor on an outcome

variable.

The shortcoming of the additive model in (1.2) is that interaction between predictor

variables is ignored, and the lack of interaction terms has been criticized in several statistical

contexts. As a result, this research considers the model’s second-order interactions. We use

marginal integration techniques to estimate the additive functions of the model. Also, the

interaction model will be compared with other models such as the Generalized Additive

Model (GAM), Generalized Additive Model with Selection (GAMSEL), Robust Marginal

Integration (RMI), Ordinary Least Squares (OLS), Tukey, Huber, and LASSO in terms

of their Root Mean Prediction Error. It will help us to compare the advantages and

disadvantages of different methods.
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Chapter 2

Linear Models

This section talks about existing methods of linear models. The linear models discussed

in this section are Ordinary Least Squares (OLS), M-estimators proposed by Tukey and

Huber, and LASSO.

2.1 Ordinary Least Squares (OLS)

Linear regression is a frequently used statistical method applied in various fields to study

the relationship between an outcome variable and one or more independent variables. It

comprises two types; simple linear regression and multiple linear regression. Simple linear

regression consists of one predictor variable. Multiple linear regression is an extension of

simple linear regression, where there is more than one independent variable. The multiple

linear regression model can be represented as:

Yi = β0 +
d∑

i=1

βkXik + ϵi, for i = 1, 2, ..., n, (2.1)

where Y is the dependent variable, Xk’s are the independent variables, β0 is the intercept

term, βk’s are the slope coefficients, and ϵi is the error term. We assume ϵi ∼ N (0, σ2) and

d is the number of covariates in the model.

The above equation can be rewritten in the matrix form as:

Y = Xβ + ϵ,
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• with ϵ ∼ N (0, σ2I),

• Y is an n× 1 vector,

• β is a (d+ 1)× 1 vector,

• the design matrix X is a n× (d+ 1) matrix and

• ϵ is an n× 1 vector.

Each β coefficient represents the change in the dependent variable for a unit change in

the corresponding independent variable, holding all other independent variables constant.

Multiple linear regression is widely used in various fields, including social sciences, engi-

neering, and business. For example, in social sciences, multiple linear regression is used to

study the relationship between various demographic and socio-economic factors and health

outcomes. In engineering, multiple linear regression is used to develop predictive models for

product design and optimization. In business, multiple linear regression is used to forecast

sales and analyze customer behavior.

The regression model requires these four major assumptions:

• Linearity Assumption: µ = E(Y |X) = Xβ

• Independence of the error term: Each ϵ’s are independent of each other

• Homoschedasticity: The ϵ’s have a constant or equal variance σ2

• The error term is assumed to be normally distributed.

The coefficients in a multiple linear regression model are estimated using the method of

least squares, which involves finding the values of the coefficients that minimize the sum of

squared differences between the observed values of the response variable and the predicted

values from the model. That is

β̂ = argmin
β
Q(β),

where
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Q(β) =
n∑

i=1

{
Yi − β0 −

d∑
j=1

βjXij

}2

= (Y −Xβ)T (Y −Xβ).

Differentiating by taking the partial derivative with respect to β gives the gradient

∂Q(β)

∂β
= −2(XTY −XTXβ) = −2XT (Y −Xβ)

Setting the partial derivative to zero and solving for β results in

β̂ = (XTX)−1XTY

and the vector of the fitted values, Ŷ is

Ŷ = Xβ̂ = X(XTX)−1XTY = HY

with H = X(XTX)−1XT termed as the hat matrix/projection matrix.

The advantages of Multiple Linear Regression are

• Flexibility: Multiple linear regression is a flexible and adaptable statistical method

that can handle a wide range of research questions and data types.

• Interpretability: The coefficients in multiple linear regression models have a clear

interpretation in terms of the relationship between the dependent variable and each

independent variable, allowing researchers to make meaningful interpretations of the

results.

• Predictive power: Multiple linear regression can be used to make predictions about

the dependent variable based on the values of the independent variables, providing

researchers with a useful tool for forecasting and decision-making.

• Hypothesis testing: Multiple linear regression allows researchers to test hypotheses

8



about the relationships between the dependent variable and the independent vari-

ables, helping to identify important predictors and explain the variability in the data

Some disadvantages of Ordinary Linear Regression are

• Assumptions: Multiple linear regression relies on a number of assumptions, such as

linearity, independence, normality, and constant variance of the errors, which may be

violated in practice and can lead to biased or inefficient estimates.

• Multicollinearity: Multiple linear regression can be affected by multicollinearity,

where two or more independent variables are highly correlated with each other, mak-

ing it difficult to separate their effects on the dependent variable.

• Outliers: Multiple linear regression can be sensitive to outliers, which can have a

disproportionate influence on the estimated coefficients and lead to biased results.

2.2 M-Estimator

It is used in linear regression to estimate the parameters of the regression line in the presence

of outliers. In linear regression, the M-estimator results from optimizing the problem:

β̂ = argmin
β

n∑
i=1

ρ

(
yi − x⊤

i β

σMAD

)
, (2.2)

where

• yi is the observed value of the response variable,

• xi is a vector of predictor variables for the ith observation,

• β is a vector of regression coefficients,

• the function ρ can be chosen in such a way to provide the estimator desirable prop-

erties in terms of bias and efficiency,
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• σMAD is an estimate of the scale created by the residuals,

σMAD =
median|ϵi −median(ϵi)|

0.6745
.

The constant 0.6745 makes the sample mean absolute deviation (MAD) as an unbiased

estimator of the population standard deviation σ if n, the sample size is large and normal.

Let us define the weight function as follows

wi =

ψ

(
yi − x⊤

i β

σMAD

)
(
yi − x⊤

i β
)

σMAD

,

where ψ is the first derivative of ρ. It can be shown that the M-estimator of β is obtained

by iteratively reweighted least squares (IRLS) algorithm using

β̂ = (XTWX)−1(XTWY ),

where W is the diagonal matrix with the diagonal element as wi, i = 1, 2, · · · , n.

2.2.1 Huber Estimator

Huber M-estimators were proposed by Peter J. Huber, a Swiss mathematician and statis-

tician, in his paper “Robust Statistics” published in 1964. Considering equation (2.2), the

Huber loss function ρH is defined as:

ρH(e) =


1
2
e2 if |e| ≤ k,

k(|e| − 1
2
k) if |e| > k,

where e = yi − ŷi and k is a tuning constant that controls the transition between the

quadratic (least squares) and linear (M-estimator) regimes of the weight function. Taking
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the derivative of ψ(ϵ) gives the weighted function of Huber M-estimator as

ψ(e) =


e if |e| ≤ k,

k

|ϵ|
if |e| > k.

The main advantage of Huber M-estimators for linear regression is their robustness to

outliers. By giving less weight to observations that deviate from the regression line, Huber

M-estimators can provide more accurate estimates of the regression coefficients than least

squares regression when the data contains outliers. Moreover, Huber M-estimators are

consistent, meaning that as the sample size increases, the estimator converges to the true

parameter values. One limitation of Huber M-estimators for linear regression is that they

are not as efficient as least squares regression when the data does not contain outliers. In

other words, if the data does not contain extreme values, Huber M-estimators may provide

less precise estimates than least squares regression. Additionally, the choice of the tuning

constant k can be subjective and may require some trial and error to find the best values

for a particular dataset.

Overall, Huber M-estimators can be a useful tool in linear regression when dealing with

datasets that contain outliers. By providing more accurate estimates of the regression

coefficients even in the presence of extreme values, Huber M-estimators can help ensure

that the regression line is based on accurate and representative data (Huber 1992, Maronna

et al. 2006, Rousseeuw & Leroy 2005).

2.2.2 Tukey’s Estimator

Tukey M-estimators can also be used in linear regression models to estimate the regression

equation coefficients. They were introduced by John Tukey in 1960 and are particularly

useful when the data set contains outliers or other sources of contamination. The Bisquare
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function for Tukey estimator is defined as:

ρT (e) =


k2

6

(
1−

(
1−

( e
k

)2)3
)

if |e| ≤ k,

k2

6
if |e| > k.

The derivative of ψT (ϵ) gives the weighted function of Tukey estimator as:

ψT (e) =


e−

(
1−

( e
k

)2)3

if |e| ≤ k,

0 if |e| > k.

The Tukey M-estimator for linear regression has several merits (Tukey 1977, Mosteller

& Tukey 1977, Cleveland 1988, Mohd Salleh 2013):

• Robustness: The estimator is resistant to the presence of outliers or other sources of

contamination in the data set.

• Efficiency: The Tukey M-estimator for linear regression is efficient when the data set

is normal or close to normal.

• Flexibility: The estimator can be easily adapted to different types of distributions by

choosing an appropriate tuning constant k.

2.3 Least Absolute Shrinkage and Selection Operator

(LASSO)

LASSO penalty, also known as L1 regularization, is a method used to reduce the complexity

of linear regression models. In linear regression, the goal is to find the coefficients that best

fit the data. However, if the model has too many coefficients, it can overfit the data and

result in poor performance on new data. The LASSO penalty addresses this issue by adding

12



a penalty term to the cost function that encourages sparsity in the coefficient estimates.

LASSO estimator of β is obtained by minimizing the problem

min
||β||1≤t

||y −Xβ||22

with ||β||1 =
∑p

j=1 |βj| and t > 0. Here β is a p-dimensional vector of coefficients to be

estimated, y is an n-dimensional vector of observed response variables, X is an n×p matrix

of observed predictor variables, ||β||1 is the ℓ1-norm of β, defined as the sum of the absolute

values of its components, t is a non-negative tuning parameter that controls the amount of

shrinkage or sparsity in the estimated coefficients and ||y−Xβ||22 is the squared Euclidean

distance between the observed response y and the fitted values Xβ.

Applying Lagrangian, the penalized form of the constrained optimization problem is of the

form

min
β

||y −Xβ||22 + λ||β||1,

where λ > 0 is the tuning parameter that controls the amount of penalization. The LASSO

penalty works by shrinking the coefficients of less important predictors to zero, effectively

removing them from the model. This helps to simplify the model and reduce the risk of

overfitting. However, it can also lead to bias in the coefficient estimates, particularly if

there are many correlated predictors.

To choose the optimal value of λ, we can use cross-validation, which involves dividing the

data into training and validation sets, fitting the model on the training set, and evaluating

its performance on the testing set. This process is repeated for different values of λ, and

the value that results in the best performance on the validation set is chosen (Ranstam &

Cook 2018, Reid et al. 2016).
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Chapter 3

Nonparametric Models

The nonparametric regression models described in this section are Generalized Additive

Model (GAM), Generalized Additive Model with Selection, and Robust Partially Linear

Additive Model (RPLAM).

3.1 Generalized Additive Model (GAM)

A Generalized Additive Model (GAM) extends the linear regression model, allowing for

nonlinear relationships between the explanatory and response variables. The general for-

mula for a GAM can be written as:

Y = µ+
d∑

j=1

fj(Xj) + ϵ,

where Y is the outcome variable, X1, X2, ..., Xd are the independent variables, µ is the

intercept, and ϵ is the error term.

The key difference between a linear regression model and a GAM is the inclusion of the

smooth functions f1(X1), f2(X2), ..., fd(Xd) in the model. These smooth functions allow for

flexible, nonlinear relationships between the independent and dependent variables.

The smooth functions can be represented using techniques such as cubic splines, smooth-

ing splines, or thin-plate splines. The smooth functions used in GAMs can be easily visu-

alized, allowing for easy interpretation of the relationships between variables. The optimal

degree of smoothing is chosen based on the data and the desired trade-off between flexibility

and simplicity.
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GAMs can also incorporate interaction terms between the independent variables to

allow for nonlinear interactions between the variables. The general formula for a GAM

with interactions can be written as:

Y = µ+
d∑

j=1

fj(Xj) +
∑

1≤j<k≤d

fjk(Xj, Xk) + ϵ,

where fjk(Xj, Xk) is the smooth function for the interaction between the jth and kth

independent variables.

The key advantage of GAMs is that they allow for flexible modeling of nonlinear rela-

tionships between predictors and the response variable without requiring prior knowledge

or assumptions about the functional form of these relationships. This makes them very use-

ful when traditional linear regression models do not capture the true relationship between

the independent variables and the response variable. GAMs can be used in various applica-

tions, including environmental science, finance, social sciences, and medical research. They

are particularly useful when working with large datasets, where it is difficult to identify the

exact form of the relationship between the predictors and the response variable (Hastie &

Tibshirani 1990)

The basic structure of a GAM is similar to that of a linear regression model, with a

response variable and a set of independent variables. However, in GAMs, the predictor

variables are modeled as smooth functions, often represented by spline functions, allowing

for flexible modeling of nonlinear relationships. The smooth functions are estimated using

maximum likelihood or Bayesian methods. One of the key features of GAMs is that they

can handle multiple predictors simultaneously and model their interactions. This allows

for the identification of complex relationships between variables, which may not be evident

in a linear regression model (Mammen et al. 1999)

GAMs can be fitted using maximum likelihood estimation, and the optimal smoothing
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parameters can be chosen using various methods, such as cross-validation or information

criteria. The models can be fitted using a variety of software packages, such as R’s ”mgcv”

package. generalized additive models (GAMs) have some disadvantages, such as being

computationally intensive and requiring larger sample sizes than linear regression models.

Additionally, GAMs can overfit the data if too many variables or too much flexibility is

included in the model. The choice of smoothing parameters in GAMs is subjective and

may impact the model’s results. These requirements should be taken into account when

using GAMs for statistical modeling.

3.2 Generalized Additive Models with Selection (GAM-

SEL)

Nonparametric Generalized Additive Models with Selection (GAMSEL) is a statistical

model used for regression analysis. They have been well known in recent years due to

their ability to handle complex, high-dimensional data and identify significant variables

(Hastie & Tibshirani 1990). Nonparametric GAMSEL is a variant of generalized additive

models (GAMs), flexible regression models that allow for nonlinear relationships between

variables. GAMSELs extend the GAMs by incorporating variable selection into the model

fitting process. This selection process can help identify essential variables, reduce overfit-

ting, and improve model interpretability. Nonparametric GAMSEL further extends GAM-

SEL by using nonparametric smoothing techniques to model the functional relationship

between variables. The objective function of GAMSEL is defined as:

f̂1, . . . , f̂p = arg min
f1,...,fp∈F

L(Y ; f1, . . . , fp) +

p∑
j=1

J(fj),

where

• L(Y ; f1, . . . , fp) is the negative log-likelihood of the data, given the predictor variables
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X and the response variable Y

• f1, . . . , fp are smooth functions of the predictor variables, which are modeled using

spline functions or other basis functions

• J(fj) is a penalty term applied to the j-th smooth function fj, which can be expressed

as a function of the type of basis functions used and the degree of smoothness. The

penalty term J(fj) penalizes the complexity of the smooth function fj by constraining

the roughness penalty of the function. This encourages the function to be smooth

and prevents overfitting.

The form of the penalty term J(fj) depends on the type of basis functions used to model

the smooth function fj and the degree of smoothness. In general, J(fj) penalizes deviations

from a simple or smooth function, while allowing some flexibility in the functional form.

For example, if the smooth function fj is modeled using cubic spline basis functions, the

penalty term J(fj) can be expressed as:

J(fj) = λj

∫
R

[
f ′′
j (x)

]2
dx,

where f ′′
j (x) is the second derivative of the function fj with respect to x, and λj is the

penalty parameter that controls the amount of regularization applied to fj. This penalty

term encourages the smoothness of fj by penalizing large values of its second derivative.

The GAMSEL method optimizes the objective function by using a backfitting algorithm,

which alternates between updating each smooth function fj while keeping the others fixed,

and updating the penalty parameter λj for each smooth function fj while keeping the oth-

ers fixed. This iterative process continues until convergence is reached. The regularization

parameter λ introduced in GAMSEL is to regulate the amount of shrinkage applied to the

smooth functions, and the model is estimated by minimizing the sum of squared residuals

subject to the condition that the sum of the absolute values of the coefficients is less than

or equal to λ. One of the key advantages of nonparametric GAMSEL is its ability to handle
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complex, high-dimensional data. In many real-world applications, data sets can be large,

noisy, and contain many variables, making it difficult to fit a traditional linear model.

Nonparametric GAMSEL allows for a flexible modeling approach that can capture com-

plex nonlinear relationships between variables, while also identifying the most important

variables in the data set.

However, there are also some limitations to nonparametric GAMSEL. One limitation is

that the model fitting process can be computationally intensive, especially for large data sets

or when using high-dimensional smoothing techniques. Additionally, the interpretation of

the model can be more challenging than with linear models, as the functional relationships

between variables can be complex and difficult to explain (Chen et al. 1996, Green &

Silverman 1993).

3.3 Robust Partially Linear Additive Model (RPLAM)

The Robust Partially Linear Additive Model (RPLAM) is a statistical model that extends

the Generalized Additive Model (GAM) by including both linear and nonlinear predictor

variables, while also being robust to the presence of outliers in the data. RPLAM is partic-

ularly useful when dealing with complex datasets where the relationships between variables

are nonlinear, and the presence of outliers may distort the results. The RPLAM consists

of a linear model and a nonparametric component. The linear component involves a set of

linear predictor variables, while the nonparametric component involves a set of nonlinear

predictor variables that are represented as smooth functions. The smooth functions are

typically represented using spline functions, and the number of knots is chosen using cross-

validation or a similar method.

Robust partially Linear Additive Model is also a type of GAM model that uses a penal-

ized likelihood approach to estimate regression parameters. The regularization parameter

is estimated using cross-validation. The robustness of the RPLAM is achieved through the
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use of a robust estimator of scale, such as the Huber estimator, which down weights the

effect of outliers in the data. The robust estimator of scale is combined with a robust esti-

mation procedure for the nonlinear component of the model, which ensures that the model

is robust to the presence of outliers. RPLAM has a wide range of applications, including

finance, economics, and medical research. In finance, for example, RPLAM can be used

to model the relationship between stock prices and various economic indicators, while also

taking into account the presence of outliers that may be caused by market shocks or other

unexpected events.

The RPLAM model can be formulated as:

Y = XTβ + g(Z) + ϵ, (3.1)

In this model

• Y is an n × 1 response vector

• X is an n × p predictor variables, with p being the number of predictors

• β is a p × 1 vector of regression coefficients for the linear component of the model

• g(Z) is a nonlinear function of a set of covariates Z, estimated using penalized re-

gression splines

• ϵ is n × 1 vector of error terms

Jiang (2015) proposed a robust estimator for RPLAM where he introduced the Least

Squares Method. Let (Yi, X
T
i , Zi)

T , i = 1, ..., n be the random samples that satisfies the

partially linear additive model in eqn 2.1. Let us define

ϕ0(Zi) = E(Y |Z = z),

ϕ(Z) = E(X|Z = z).
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Then

g(z) = ϕ0(Z)− ϕ0(z)
Tβ.

Hence, equation (3.1) becomes

Yi − ϕ0(Zi) = (Xi − ϕ(Zi))
Tβ + ϵi, i = 1, ..., n (3.2)

Since ϕ0(·) and ϕ(·) are unknown, we can find their suitable estimates by letting

Wnj(z) =
K
(

z−Zj

hn

)
∑n

j=1K
(

z−Zj

hn

) ,
where K(·) is a kernel function and hn is a bandwidth tending to zero. The classical

nonparametric method estimates the conditional expectations through

ϕ̂0(z) =
n∑

j=1

Wnj(z)Yj, ϕ̂(z) =
n∑

j=1

Wnj(z)Xj. (3.3)

Hence, the LS estimator β̂n of β can be derived by minimizing

n∑
i=1

(Yi − ϕ̂0(Zi)− (Xi − ϕ̂(Zi))
Tβ)2,

and the LS estimate of unknown smooth function g is given as

ĝ(z) = ϕ̂0(z)− ϕ̂(z)T β̂n.

The procedure to obtain robust estimators is as follows. We first estimate ϕ0(·) and ϕ(·) by

a robust smoothing using a local median estimate proposed by Bianco et al. (2011). The

resulting robust estimators are denoted as ϕ̃0(z) and ϕ̃(z), respectively. Let Y
∗
i = Yi−ϕ̃0(Zi)

and X∗
i = Xi − ϕ̃0(Zi). An affine equivariant robust estimator of the unknown parameter
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β can be obtained by maximizing

β̃n = argmax
β∈Rd

n∑
i=1

exp

{
−(Y ∗

i −X∗T
i β)2

σ̂λ

}
,

where λ ∈ (0,∞) ( is a tuning parameter which controls the degree of robustness and effi-

ciency), σ̂ is a median absolute deviation (MAD) estimator based on the residuals Y ∗
i −

X∗T
i β̃INI , i = 1, . . . , n with an initial estimate β̃INI of β.

Finally, we define the estimate of unknown smooth function g as g̃(z) = φ̃0(z)−φ̃(z)T β̃n.

Although the Robust Partially Linear Additive Model (RPLAM) has several benefits,

such as the ability to model both linear and nonlinear predictor variables and robustness

to the presence of outliers, there are also some disadvantages to consider. These include:

Complexity: RPLAM is a complex model that estimates linear and nonlinear compo-

nents. This can make the model difficult to interpret and may require advanced statistical

knowledge to use effectively. Computational burden: The estimation of RPLAM requires

the estimation of both linear and nonlinear components, which can be computationally

intensive, especially when dealing with large datasets.

Assumptions: RPLAM relies on certain assumptions, such as linearity and additivity,

like any statistical model. When these assumptions are violated, estimates may be biased

or inefficient.

Limited applicability: RPLAM may not be suitable for all types of data, especially

when dealing with highly complex relationships or sparse data. In such cases, alternative

modeling approaches may be more appropriate. Overall, while RPLAM is a powerful and

flexible model, it is not without its limitations. Researchers should carefully consider these

limitations and evaluate alternative approaches before deciding to use RPLAM (Sun & Liu

2022)
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Chapter 4

GAM with Interaction Effect

One of the methods for this study is generalized additive model (GAM) with interaction

terms using the marginal integration estimation. In many additive models, interaction

terms are completely ignored, this method seeks to address the issue of interaction terms.

Bivariate interaction terms for the marginal integration estimator have been investigated by

Sperlich et al. (2002). They provide asymptotic properties and also introduce test methods

to determine the relevance of the interactions.

4.1 Marginal Integration

We define the nonparametric GAM with interactions as:

Y = c+
d∑

α=1

fα(Xα) +
∑

1≤α<β≤d

fαβ(Xα, Xβ) + σ(X)ϵ, (4.1)

where

• X = (X1, X2, ..., Xd) is a sequence of independent and identically distributed (i.i.d)

vectors of explanatory variables,

• ϵ is also a sequence of iid random variables independent of X such that E(ϵ) = 0 and

V ar(ϵ) = 1,

• [fα(.)]
d
α=1 and [fαβ(.)]1≤α<β≤d are real-valued unknown functions.

According to Linton & Nielsen (1995) and Tjøstheim & Auestad (1994), the marginal

influence of Xα, Xβ and (Xα, Xβ) are estimated by the integration estimators as follows.
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Main Effect:

F̂α(Xα) =
1

n

n∑
l=1

m̂α(Xα, Xβ, Xlα).

Interaction Effect:

F̂αβ(Xα, Xβ) =
1

n

n∑
l=1

m̂αβ(Xα, Xβ, Xlαβ),

where Xlαβ(Xlα) is the lth observation of X with Xα and Xβ(Xβ) removed.

m̂α(Xα, Xβ, Xlαβ) is the local preestimator which is computed using multidimensional local

kernel estimation.

For the pre-estimator of the main effect:

m̂α(Xα, Xlα′) = e1(Z
T
αW1,αZα)

−1ZT
αW1,αY where each of the components are defined as:

e1 = (1, 0)

W1,α = diag

[
1

n
Kh(Xiα − xα)Lg(Xiα′ −Xlα′)

]n
1

Zα =



1 X1α − xα

. .

. .

. .

1 Xnα − xα


.

For the preestimator of the interaction effect:

m̂αβ(Xα, Xβ, Xlα′β′) = e1(Z
T
αβW1,αβZαβ)

−1ZT
αβW1,αβY,

where each of the components are defined as:

Y = (Y1, Y2, ..., Yn)
T is an n by 1 vector

W1,αβ = diag

[
1

n
Kh(Xiα − xα, Xiβ − xβ)Lg(Xiα′β′ − xlα′β′)

]n
1

K and L are two dimensional kernel functions and h is the bandwidth

Kh (.) = h−1K
(
˙
h

)
, Lg (.) = g−1K

(
˙
g

)
e1 = (1, 0, 0)
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Zαβ =



1 X1α − xα X1β − xβ

. . .

. . .

. . .

1 Xnα − xα Xnβ − xβ


.

4.2 Robust Marginal Integration (RMI)

Robust marginal integration (RMI) is among the statistical techniques that can enhance

the performance of generalized additive models (GAMs) when dealing with non-normal or

non-Gaussian data. The method combines the advantages of both marginal integration

and robust estimation techniques to create a more robust and accurate model. Considering

the additive model,

Y = µ+
d∑

α=1

gα(Xα) + σ(X)ϵ

where the error term ϵ is independent of X and has a symmetric distribution F0. The

robust estimator was proposed by Boente et al. (2017).

The robust estimator for the α-th component of the additive model is obtained through

a marginal integration procedure. Essentially, this involves integrating out all the other

components of the model and only considering the function of interest. The resulting

estimator is a weighted average of the initial local polynomial M-estimators, where the

weights are given by the density function of the residuals of the M-estimator.

Let X = (X1, . . . , Xd) be the vector of covariates, and let gα(xα) be the marginal re-

gression function of interest for the α-th covariate. Let q be the order of the initial local

polynomial M-estimator used to estimate each gα(xα) is defined as:

ĝ(x) =
1

d

d∑
α=1

gα,mq,α(xα),
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where gα,mq,α(xα) is the mq-th order local polynomial M-estimator of gα(xα) based only on

the α-th component of X and can be estimated using a weighted least squares method.

The RMI process can be implemented using various software packages that support

generalized additive models, such as the ‘gam’ function in the R package ‘mgcv’. The

‘gam’ function allows users to specify the type of robust estimator to use in the RMI

process, as well as other parameters such as the choice of basis functions for the smooth

terms and the type of penalization for the smoothness parameters. Other packages such as

‘rmargint’ proposed by Boente et al. (2017) can implement RMI in R.
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Chapter 5

Simulation Results

We perform a simulation experiment to validate the performance of the models based on

their Root Mean Prediction Error (RMPE). 3 Predictors (X1, X2, X3) are simulated from a

uniform distribution with sample sizes of n = 50, 100, 200. Onwards, estimating the main

effects and interaction effects, we assumed the following functions:

f1 = 24(X1 − 0.5)2 − 2

f2 = 2π sin (πX2)− 4

These functions (f1, f2) are nonlinear functions used in the response variable (Y).

Y = f1(X1) + f1(X2) +X3 + log (1 +X1X2) + exp (X2X3) + ϵ,

where

ϵ ∼ (1− p)N(0, σ2) + pN(20, σ2).

where p represents the proportion of outliers and we have taken p = 0, 0.05 and σ = 1.

Also, we have generated full training data, 5% trimmed training data, and test data with

the same predictors and then applied RMI (Robust Marginal Integration), MI (Marginal

Integration), OLS (Ordinary Least Squares), Huber regression, Tukey regression, LASSO

(Least Absolute Shrinkage and Selection Operator), GAM (Generalized Additive Model)

and GAMSEL (Generalized Additive Model with Selective Estimation of Parameters) for

prediction. The simulation is replicated 100 times, and each model Root Mean Prediction

Error (RMPE) is computed for the full training data set, 5% trimmed training data, and

testing data. Since the MI and RMI method require the selection of bandwidth parameters,

we have tuned the bandwidths for different sample sizes. The R code used for this simulation
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can be found in the Appendix. The bandwidth parameters used for this simulation are also

mentioned at the end of the code.

5.1 Main Effect and Interaction Plots

Figure 5.1: Estimates of the main effect using the Marginal Integration method.
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Figure 5.2: Estimates of the interaction effect using the Marginal Integration method.

5.2 Root Mean Prediction Error (RMPE)

Root Mean Prediction Error (RMPE) is a measure of the average deviation between the

predicted values and actual values of model. The RMPE is defined as

RMPE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where n is the number of observations, yi is the actual value of the i-th observation, and

ŷi is the predicted value of the i-th observation.
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5.3 RMPE for Simulated Data

In this section, we have reported the Root Mean Prediction Error (RMPE) for the full

training data set, 5% trimmed training data, and testing data using n = 50, 100 and 200

for different proportions of outliers (p = 0%, 5%). The main idea is to help check the

nature of the RMPE of the models when the proportion of outliers is altered.

Table 4.1 depicts the RMPE for n = 50, p = 0%. The RMPE for the nonlinear models (MI,

RMI, GAM and GAMSEL) appear to be relatively minimal as compared to the RMPE for

linear models (OLS, Tukey, Huber and LASSO) in all three cases for full training data, 5%

trimmed training data and test data. The MI method has the least RMPE for the test

data, followed by the RMI method and the other linear models.

Table 5.1: RMPE of different estimators for n = 50, p = 0.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 1.4956194 1.1343427 1.693024
RMI 1.9509687 1.7033965 1.880585
GAM 1.8341465 1.7184733 1.909057

GAMSEL 1.8792736 1.7567732 1.904757
OLS 2.4231850 2.1378903 2.925841
Tukey 2.4274825 2.1236149 2.945889
Huber 2.4277466 2.1230090 2.947578
LASSO 2.4500079 2.1606034 2.929164

Similarly, Table 4.2 shows the RMPE for 5% contaminated proportion of outliers. It can

be seen that almost the nonlinear models (RMI, MI, GAM, and GAMSEl) have relatively

minimal RMPE than the RMPE of the linear models (OLS, Tukey, Huber, and LASSO),

with RMI being more robust, followed by MI model. RMI down weights outliers within an

observation leading to relatively minimal RMPE.
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Table 5.2: RMPE of different estimators for n = 50, p = 0.05.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 3.334617 2.150334 2.244626
RMI 3.341925 1.866634 2.063283
GAM 3.415981 1.641068 2.367746

GAMSEL 3.744582 1.588817 2.087379
OLS 4.481427 2.547037 3.381487
Tukey 4.650484 2.298392 2.946648
Huber 4.577265 2.314059 3.021648
LASSO 4.578127 2.572043 3.312549

Table 5.3: RMPE of different estimators for n = 100, p = 0.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 1.0883718 1.0371954 1.0932077
RMI 1.1819926 1.3872637 1.2025745
GAM 0.9198588 0.8012661 1.120111

GAMSEL 0.9377968 0.8168821 1.100418
OLS 2.7307057 2.4398454 2.521105
Tukey 2.7333633 2.4312190 2.532443
Huber 2.7345418 2.4304282 2.534311
LASSO 2.7649038 2.4649656 2.500821
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Table 5.4: RMPE of different estimators for n = 100, p = 0.05.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 4.244543 1.537812 1.317160
RMI 4.131838 1.291164 1.141759
GAM 4.157817 1.822049 2.153853

GAMSEL 4.303037 1.710540 1.833162
OLS 5.130159 3.002963 2.908784
Tukey 5.278511 2.732754 2.530476
Huber 5.209252 2.759724 2.580387
LASSO 5.180242 2.990368 2.802996

Table 5.5: RMPE of different estimators for n = 200, p = 0.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 1.3783011 1.9248289 1.0351418
RMI 1.5367982 1.3550877 1.4029131
GAM 0.9769661 0.8529152 0.9692405

GAMSEL 0.9855903 0.8605986 0.9627929
OLS 2.7759304 2.4773668 2.7182039
Tukey 2.7767363 2.4741015 2.7267952
Huber 2.7770788 2.4734560 2.7303227
LASSO 2.7823566 2.4857525 2.6971132
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Table 5.6: RMPE of different estimators for n = 200, p = 0.05.

Estimator
Data

Full Training Data 5% Trimmed Training Data Test Data

MI 4.651391 1.752412 1.644437
RMI 4.664832 1.565018 1.382834
GAM 4.329318 1.653548 1.626122

GAMSEL 4.399191 1.603645 1.471823
OLS 5.179609 3.053820 2.962892
Tukey 5.261134 2.768808 2.726325
Huber 5.206081 2.784423 2.698031
LASSO 5.155451 3.005571 2.741744

Finally, in the simulation results on the RMPE in Table 4.3, 4.4, 4.5 and 4.6, RMI has

the least RMPE indicating robustness to outliers where there is 5% proportion of outliers.

Also, MI has the least RMPE when there is 0% proportion of outliers. In most cases, the

nonlinear models have relatively minimal RMPE than the linear model. The RMI proposed

by Boente et al. (2017) down-weights outliers resulting in relatively minimal RMPE.
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Chapter 6

Real Data Analysis

A dataset on Real Estate Price Prediction is obtained from Kaggle (Kaggle Real Estate

Price Prediction Dataset n.d.) which has 414 observations across 7 variables, of which

one is a response variable, and 6 are predictors. The house price is the response variable,

and among the predictor variables are house age, distance to the nearest MRT station,

number of convenience stores, latitude, longitude, and transaction date. All variables are

continuous except the transaction date. Since the Marginal Integration method works for

only continuous variables, the analysis will discard the transaction date.

We fit a GAM model with interactions using Marginal Integration Estimation Tech-

niques. It is applied to Real Estate Price data where the response variable is house price,

and the response variables are various features of house age, distance to the nearest MRT

station, number of convenience stores, latitude, and longitude. The method involves esti-

mating the main and interaction effects using a kernel function and integrating over the

covariates space to obtain the estimated function. The main effect for each covariate is

estimated, where the output GAM model is a list containing the estimated and interaction

effects for each covariate. The GAM function first scales the predictors in the predictor

matrix before estimating the main effects of each predictor using the main effect function,

which predicts the marginal effects of each predictor using the Gaussian kernel density

estimator with bandwidth. Nevertheless, the GAM function also calculates the interaction

effect between each pair of predictors using the interaction effect function, which computes

the interaction effect at each pair of points using the product kernel density estimator. On-

wards, to check the model’s performance, we developed a prediction function that predicts

the response variable based on the estimated main and interaction effects. The dataset is
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split into 75% training dataset and 25% testing dataset. The model is built on the training

dataset and later validated on the testing dataset based on the Root Mean Prediction Error

(RMPE). Furthermore, the RMPE is extended to the Generalized Additive Model (GAM),

GAMSEL, RMI, OLS, Tukey, Huber, and LASSO.

6.1 Main Effect and Interaction Plots

Figure 6.1: Main Effect Plots
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Figure 4.3 depicts the plots of the main effects (the plot of the main effect against each

predictor). One requirement of the additive model is that the relationship between the

response variable and predictors must be nonlinear. The plot above depicts a nonlinear

relationship between the response variable (House Prices) and all other predictors. These

variables will be suitable for fitting a generalized additive nonparametric model.

Figure 6.2: Interaction Effects Plots

Figure 4.4 shows the interaction effect plots among the predictors. A second-order
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interaction effect is allowed between the predictor variables. The 3D plots of all interactions

exhibit non-flatness, which appears contour-like, indicating an interaction between the

variables.

6.2 RMPE for Different Methods

In Statistics, Root Mean Prediction Error (RMPE) helps researchers to assess the perfor-

mance of predictive models and to compare the accuracy of different models. To validate

the performance of the method, the RMPE of the Marginal Integration (MI) model is com-

pared with the RMPE of other nonparametric models such as GAM, GAMSEL, Robust

Marginal Integration (RMI), and four other linear models including Ordinary Least Re-

gression (OLS), Tukey, Huber, and LASSO penalty. The RMPE of the MI model appears

to be the smallest followed by RMI although the difference between the models is not much

the MI model appears to perform better than the others. It appears that the RMPE for the

nonparametric models performs better than the linear model depicting that the application

of the nonparametric model will be a good fit for the data. The results of the RMPE are

summarized in the table below.

Table 6.1: RMPE of different estimators for the house price data.

Estimator MI GAM GAMSEL RMI OLS Tukey Huber LASSO
RMPE 5.265913 5.54814 5.38276 5.46731 6.66606 6.75857 6.72713 6.66975
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Chapter 7

Conclusion

In this thesis, we have studied a Marginal Integration (MI) method for estimating Gen-

eralized Additive Model (GAM) with interactions. We compared different nonparametric

models (MI, RMI, GAM, GAMSEL) and linear models (OLS, Tukey, Huber, and LASSO)

using the root mean prediction error (RMPE). The simulation study indicates that the MI

has the least RMPE in pure data when the actual model is nonlinear and has interaction

terms. The Robust Marginal Integration (RMI) has the least RMPE when there is a 5%

proportion of outliers in the nonlinear model. The RMI method down-weights outliers

leading to a relatively small RMPE. The results on RMI are consistent with the method

proposed by Boente et al. (2017), indicating robustness in the presence of outliers. Next,

we have applied our method to Real Estate Price Prediction data obtained from Kaggle.

The nonlinear models performed better than the linear models used to analyze this dataset.

The lowest RMPE is produced by the MI method, followed by the RMI.
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Chen, R., Härdle, W., Linton, O. B. & Severance-Lossin, E. (1996), Nonparametric estima-

tion of additive separable regression models, in ‘Statistical Theory and Computational

Aspects of Smoothing: Proceedings of the COMPSTAT’94 Satellite Meeting held in

Semmering, Austria, 27–28 August 1994’, Springer, pp. 247–265.

Cleveland, W. S. (1988), The Collected Works of John W. Tukey: Graphics 1965-1985,

Vol. 5, CRC Press.

Deaton, A. & Muellbauer, J. (1980), Economics and consumer behavior, Cambridge uni-

versity press.

Fuss, M. (1978), ‘A survey of functional forms in the economic analysis of production’,

Production economics: A dual approach to theory and application .

Green, P. J. & Silverman, B. W. (1993), Nonparametric regression and generalized linear

models: a roughness penalty approach, Crc Press.

Hastie, T. & Tibshirani, R. (1990), ‘Generalized additive models london chapman and hall’,

Inc .

Huber, P. J. (1992), ‘Robust estimation of a location parameter’, Breakthroughs in statistics:

Methodology and distribution pp. 492–518.

38



Jiang, Y. (2015), ‘Robust estimation in partially linear regression models’, Journal of Ap-

plied Statistics 42(11), 2497–2508.

Kaggle Real Estate Price Prediction Dataset (n.d.), https://www.kaggle.com/code/

mahyamahjoob/real-estate-valuation-using-linear-regression. Accessed: 2023-

05-15.

Kong, E., Linton, O. & Xia, Y. (2010), ‘Uniform bahadur representation for local polyno-

mial estimates of m-regression and its application to the additive model’, Econometric

Theory 26(5), 1529–1564.

Leontief, W. (1947), ‘Introduction to a theory of the internal structure of functional rela-

tionships’, Econometrica, Journal of the Econometric Society pp. 361–373.

Li, J., Zheng, Z. & Zheng, M. (2012), ‘Robust estimation of additive models based on

marginal integration’.

Linton, O. & Nielsen, J. P. (1995), ‘A kernel method of estimating structured nonparametric

regression based on marginal integration’, Biometrika pp. 93–100.

Mammen, E., Linton, O. & Nielsen, J. (1999), ‘The existence and asymptotic properties

of a backfitting projection algorithm under weak conditions’, The Annals of Statistics

27(5), 1443–1490.

Maronna, R., Martin, R. & Yohai, V. (2006), ‘Robust statistics theory and methods john

wiley & sons’, Inc., USA .

Mohd Salleh, R. (2013), A robust estimation method of location and scale with application

in monitoring process variability, PhD thesis, Universiti Teknologi Malaysia.

Mosteller, F. & Tukey, J. W. (1977), ‘Data analysis and regression. a second course in

statistics’, Addison-Wesley series in behavioral science: quantitative methods .

39

https://www.kaggle.com/code/mahyamahjoob/real-estate-valuation-using-linear-regression
https://www.kaggle.com/code/mahyamahjoob/real-estate-valuation-using-linear-regression


Ranstam, J. & Cook, J. (2018), ‘Lasso regression’, Journal of British Surgery

105(10), 1348–1348.

Reid, S., Tibshirani, R. & Friedman, J. (2016), ‘A study of error variance estimation in

lasso regression’, Statistica Sinica pp. 35–67.

Rousseeuw, P. J. & Leroy, A. M. (2005), Robust regression and outlier detection, John wiley

& sons.

Severance-Lossin, E. & Sperlich, S. (1999), ‘Estimation of derivatives for additive separable

models’, Statistics: A Journal of Theoretical and Applied Statistics 33(3), 241–265.

Sperlich, S., Tjøstheim, D. & Yang, L. (2002), ‘Nonparametric estimation and testing of

interaction in additive models’, Econometric Theory 18(2), 197–251.

Stone, C. J. (1985), ‘Additive regression and other nonparametric models’, The annals of

Statistics 13(2), 689–705.

Sun, H. & Liu, Q. (2022), ‘Robust empirical likelihood inference for partially linear vary-

ing coefficient models with longitudinal data’, Journal of Statistical Computation and

Simulation pp. 1–21.

Tjøstheim, D. & Auestad, B. H. (1994), ‘Nonparametric identification of nonlinear time

series: projections’, Journal of the American Statistical Association 89(428), 1398–1409.

Tukey, J. W. (1977), ‘Exploratory data analysis addision-wesley’, Reading, Ma 688, 581–

582.

40



Appendix

R CODE

Simulation MI = func t i on (n=50, p=0.05 , tr im=p , n t e s t =100 , R=100 , h MI=0.9 ,

h RMI=0.9 , sigma=1, mu out l i e r = 20){

##==== Simulat ion Code ======= ##

# n : sample s i z e ( t r a i n i n g data )

# p : contaminat ion propor t ion

# trim : trimming proport ion f o r RMPE

# n t e s t : s i z e o f t e s t data

# R: number o f r e p l i c a t i o n

# sigma : e r r o r sd

# mu out l i e r : l o c a t i o n o f o u t l i e r s

s e t . seed (123)

l i b r a r y ( glmnet ) #f o r LASSO

l i b r a r y ( gamsel )

l i b r a r y ( rmargint )

l i b r a r y (MASS)

l i b r a r y ( akima ) #f o r i n t e rp in MI p r ed i c t i on

# f o r gamsel

n . b a s i s = 5

# Def ine the f unc t i on s and generate the data
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func . v1 <− f unc t i on ( x1 ) 24∗( x1−1/2)ˆ2−2

func . v2 <− f unc t i on ( x2 ) 2∗ pi ∗ s i n ( p i ∗x2)−4

# X f o r Train ing Data

x1 <− r un i f (n)

x2 <− r un i f (n)

x3 <− r un i f (n)

X <− cbind ( x1 , x2 , x3 )

reg <− func . v1 ( x1 ) + func . v2 ( x2 ) + x3 + log (1 + x1∗x2 ) + exp ( x2∗x3 )

# Test data

x1 <− r un i f ( n t e s t )

x2 <− r un i f ( n t e s t )

x3 <− r un i f ( n t e s t )

X tes t <− cbind ( x1 , x2 , x3 )

r e g t e s t <− func . v1 ( x1 ) + func . v2 ( x2 ) + x3 + log (1 + x1∗x2 ) + exp ( x2∗x3 )

eps <− rnorm ( n te s t , 0 , sd=sigma )

Y tes t = r e g t e s t + eps

# Def ine the bandwidth

bandwd <− matrix (h RMI , 3 , 3) #Choice o f bandwidth f o r RMI

# pr ed i c t i on e r r o r s

RMPE train ful l = RMPE test = RMPE train trim = matrix (NA, R, 8)

colnames ( RMPE train ful l ) = colnames ( RMPE train trim ) =

colnames (RMPE test ) = c (”RMI” , ”MI” , ”OLS” , ”Huber ” ,

”Tukey” , ”LASSO” , ”GAM” , ”GAMSEL”)
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f o r ( i in 1 :R) {

i f ( ( i==1) | ! ( i%%1)) cat ( s p r i n t f (” Step %d/%d\n” , i , R) )

eps <− rnorm (n , 0 , sd=sigma )

o u t l i e r i n d e x = sample ( 1 : n , round (n∗p ) )

eps [ o u t l i e r i n d e x ] = rnorm ( length ( o u t l i e r i n d e x ) ,

mean = mu out l i e r , sd=sigma )

Y <− reg + eps

##=== RMI (Robust Marginal I n t e g r a t i on ) ====##

f i t . c l <− margint . rob (Y ˜ X, windows=bandwd , type=’alpha ’ , degree=1)

y pred <− p r ed i c t ( f i t . c l , newdata=X)

# Compute the pred i c t ed value in t r a i n i n g data

RMPE train trim [ i , ”RMI” ] <− s q r t ( upper . tr im .mean ( ( y pred−Y)ˆ2 ,

tr im = trim ) )

RMPE train ful l [ i , ”RMI” ] <− s q r t (mean ( ( y pred−Y)ˆ2 ) )

y pred <− p r ed i c t ( f i t . c l , newdata=X tes t )

# Compute the pred i c t ed value in t e s t data

RMPE test [ i , ”RMI” ] <− s q r t (mean ( ( y pred−Y test ) ˆ2 ) )

##=== MI (Marginal I n t e g r a t i on ) ==== ##

gam mi f i t = GAMMI(Y=Y, X=X, h=h MI )

# pr ed i c t i on on t r a i n i n g data

y pred = predict MI (Y=Y, X tes t=X, x alpha=gam mi f i t$x a lpha ,

f a l pha=gam mi f i t$ f a lpha , f a l pha b e t a=gam mi f i t$ f a l pha be ta )
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RMPE train ful l [ i , ”MI” ] = sq r t (mean ( (Y − y pred )ˆ2 ) )

RMPE train trim [ i , ”MI” ] =

sq r t ( upper . tr im .mean ( (Y − y pred )ˆ2 , tr im=trim ) )

# pr ed i c t i on on t e s t data

y pred = predict MI (Y=Y, X tes t=X test , x a lpha=gam mi f i t$x a lpha ,

f a l pha=gam mi f i t$ f a lpha , f a l pha b e t a=gam mi f i t$ f a l pha be ta )

RMPE test [ i , ”MI” ] = sq r t (mean ( ( Y tes t − y pred )ˆ2 ) )

##==== OLS====##

lm f i t = lm(Y ˜ X)

beta lm = lm f i t $ c o e f f i c i e n t s #es t imator o f beta

RMPE train ful l [ i , ”OLS” ] = sq r t (mean ( ( cbind (1 , X) %∗% beta lm − Y)ˆ2 ) )

RMPE train trim [ i , ”OLS” ] = sq r t ( upper . tr im .mean ( ( cbind (1 , X) %∗%

beta lm −Y)ˆ2 , tr im=trim ) )

RMPE test [ i , ”OLS” ] = sq r t (mean ( ( cbind (1 , X tes t ) %∗%

beta lm − Y test ) ˆ2 ) )

##==== Huber ====##

Hube r f i t = rlm (Y ˜ X, maxit = 100)

beta Huber = Hub e r f i t $ c o e f f i c i e n t s #est imator o f beta

RMPE train ful l [ i , ” Huber ” ] = sq r t (mean ( ( cbind (1 , X) %∗%

beta Huber − Y)ˆ2 ) )

RMPE train trim [ i , ” Huber ” ] = sq r t ( upper . tr im .mean ( ( cbind (1 , X) %∗%

beta Huber− Y)ˆ2 , tr im=trim ) )

RMPE test [ i , ” Huber ” ] = sq r t (mean ( ( cbind (1 , X tes t ) %∗%

beta Huber − Y test ) ˆ2 ) )
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##===== Tukey ====##

Tukey f i t = rlm (Y ˜ X, method = ”MM” , maxit = 100)

beta Tukey = Tuk e y f i t $ c o e f f i c i e n t s #es t imator o f beta

RMPE train ful l [ i , ” Tukey ” ] = sq r t (mean ( ( cbind (1 , X) %∗%

beta Tukey − Y)ˆ2 ) )

RMPE train trim [ i , ” Tukey ” ] = sq r t ( upper . tr im .mean ( ( cbind (1 , X)

%∗% beta Tukey− Y)ˆ2 , tr im = trim ) )

RMPE test [ i , ” Tukey ” ] = sq r t (mean ( ( cbind (1 , X tes t ) %∗%

beta Tukey− Y test ) ˆ2 ) )

##==== LASSO ====##

la s s o c v = cv . glmnet (x = X, y=Y, alpha = 1 , nlambda = 100)

lambda opt la s so = lasso cv$ l ambda . min #minimum MSE

l a s s o f i t = glmnet (x = X, y = Y, lambda = lambda opt la s so )

#es t imato r s

b e t a l a s s o = as . numeric ( c o e f ( l a s s o f i t ) )

RMPE train ful l [ i , ”LASSO” ] = sq r t (mean ( ( cbind (1 , X) %∗%

be t a l a s s o − Y)ˆ2 ) )

RMPE train trim [ i , ”LASSO” ] = sq r t ( upper . tr im .mean ( ( cbind (1 , X)

%∗% be t a l a s s o − Y)ˆ2 , tr im=trim ) )

RMPE test [ i , ”LASSO” ] = sq r t (mean ( ( cbind (1 , X tes t )

%∗% be t a l a s s o − Y test ) ˆ2 ) )

##==== GAM and GAMSEL ====##

n . ba s i s gamse l = rep (n . bas i s , nco l (X) ) #P number o f v a r i a b l e s
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n . x unique = apply (X, 2 , f unc t i on ( t ) l ength ( unique ( t ) ) )

l ow degree index = (n . x unique <= n . ba s i s )

n . ba s i s gamse l [ l ow degree index ] = n . x unique [ l ow degree index ] − 1

bases = pseudo . bases (X, degree=n . bas i s gamse l , d f=4)

gamsel cv = cv . gamsel ( x = X, y = Y, fami ly=”gauss ian ” , bases=bases )

lambda opt gamsel = gamsel cv$ lambda . min

# gamsel needs at l e a s t two va lues o f lambda

temp lambda gamsel = c ( gamsel cv$ lambda . min , 0)

g ams e l f i t = gamsel ( x = X, y = Y, lambda = temp lambda gamsel ,

bases=bases , f ami ly=”gauss ian ”)

###==== GAMSEL ====##

# fo r t r a i n i n g data

Y hat gamsel = pr ed i c t ( ob j e c t=gamse l f i t , X) [ , 1 ]

RMPE train ful l [ i , ”GAMSEL” ] = sq r t (mean ( ( Y hat gamsel − Y)ˆ2 ) )

RMPE train trim [ i , ”GAMSEL” ] = sq r t ( upper . tr im .mean ( ( Y hat gamsel

− Y)ˆ2 , tr im=trim ) )

#f o r t e s t data

Y hat gamsel = pr ed i c t ( ob j e c t=gamse l f i t , X tes t ) [ , 1 ]

RMPE test [ i , ”GAMSEL” ] = sq r t (mean ( ( Y hat gamsel − Y test ) ˆ2 ) )

##==== MPE f o r ord inary GAM ====##

# fo r t r a i n i n g data

Y hat gam = pred i c t ( ob j e c t=gamse l f i t , X) [ , 2 ]

RMPE train ful l [ i , ”GAM” ] = sq r t (mean ( ( Y hat gam − Y)ˆ2 ) )
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RMPE train trim [ i , ”GAM” ] = sq r t ( upper . tr im .mean ( ( Y hat gam − Y)ˆ2 ,

tr im=trim ) )

#f o r t e s t data

Y hat gam = pred i c t ( ob j e c t=gamse l f i t , X tes t ) [ , 2 ]

RMPE test [ i , ”GAM” ] = sq r t (mean ( ( Y hat gam − Y test ) ˆ2 ) )

}

average RMPE tra in fu l l = colMeans ( RMPE train ful l )

average RMPE train trim = colMeans ( RMPE train trim )

average RMPE test = colMeans (RMPE test )

# Print root mean p r ed i c t i o n e r r o r s over

cat ( s p r i n t f (”Root mean p r ed i c t i on e r r o r s over %d samples f o r %g%% ou t l i e r s

:\n\n” , n , p ) )

cat ( s p r i n t f (” In f u l l t r a i n i n g data :\n”) )

p r i n t ( average RMPE tra in fu l l )

cat ( s p r i n t f (”\n\nIn %g%% trimmed t r a i n i n g data :\n” , 100∗ tr im ) )

p r i n t ( average RMPE train trim )

cat ( s p r i n t f (”\n\nIn t e s t data :\n”) )

p r i n t ( average RMPE test )

browser ( )

}

#

# Fi t t i n g GAM model with i n t e r a c t i o n us ing marginal i n t e g r a t i o n method

#
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GAMMI = func t i on (Y, X, k=21, i s . p l o t=FALSE, h=0.9){

# Y: (n vec to r ) re sponse va r i ab l e

# X: (n∗d matrix ) c o va r i a t e s

# k : number o f po in t s taken in s ca l ed X

# i s . p l o t : ( l o g i c a l ) i f TRUE, p l o t s main and i n t e r a c t i o n e f f e c t s

i f ( i s . p l o t ) l i b r a r y (” s c a t t e r p l o t 3d ”)

n=nrow (X)

d = nco l (X)

X = apply (X, 2 , s c a l e )#s c a l i n g X’ s

#Computing M hat i n t e r a c t i o n and F hat i n t e r a c t i o n

x alpha = seq ( from=min(X) , to=max(X) , l ength . out=k)

h vec = rep (h , d )

# f o r ( i in 1 : d)

# h vec [ i ]=1.06 ∗ nˆ(−1/5) ∗ sd (X[ , i ] )

# p lo t main e f f e c t s

f a l pha = matrix (NA, k , d)

f o r ( i in 1 : d){

f a l pha [ , i ] = ma in e f f e c t (Y=Y, X=X, alpha=i , x a lpha=x alpha ,

h vec=h vec , n=n , d=d , k=k)

#p lo t ( x alpha , f a l pha [ , i ] )

}

# in t e r a c t i o n e f f e c t s
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f a l pha b e t a = array (NA, dim = c (k , k , d , d ) )

f o r ( i in 1 : ( d−1))

f o r ( j in ( i +1):d){

f a l pha b e t a [ , , i , j ] = i n t e r a c t i o n e f f e c t (Y=Y, X=X, alpha=i ,

beta=j ,

x a lpha=x alpha , x beta=x alpha ,

h vec=h vec , n=n , d=d , k=k)

i f ( i s . p l o t ) s c a t t e r p l o t 3d ( rep ( x alpha , each=k ) ,

rep ( x alpha , k ) ,

c ( f a l pha b e t a [ , , i , j ] ) ,

x lab = bquote (X [ . ( i ) ] ) , y lab = bquote (X [ . ( j ) ] ) )

}

output = l i s t ( x a lpha=x alpha , f a l pha=f a lpha ,

f a l pha b e t a=f a l pha be t a )

re turn ( output )

}

#

# main e f f e c t

#

ma in e f f e c t = func t i on (Y, X, alpha , x alpha ,

h vec , n , d , k ){

# Y: (n vec to r ) re sponse va r i ab l e

# X: (n∗d matrix ) c o va r i a t e s

# k : number o f po in t s taken in s ca l ed X

# alpha : ( s ca l a r , 1 to d) column index o f X

# x alpha : ( k vec to r ) s c a l ed X space , where f a l pha w i l l be computed
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# h vec : (d vec to r ) bandwidth parameter

# output : ( k∗d matrix ) e s t imate o f the main

#e f f e c t at x a lpha f o r each column

Y = Y − mean(Y)

F hat a lpha = rep (NA, k )

m hat alpha = rep (NA, n)

j = 1

f o r ( xa in x alpha ){

Z alpha = cbind (1 , X[ , alpha ] − xa )

f o r ( l in 1 : n){

W l alpha = ke rn e l f un (X[ , alpha ] , xa , h vec [ alpha ] ) / n

f o r ( d1 in 1 : d){

i f ( d1==alpha ) next e l s e

W l alpha = W l alpha ∗ ke rn e l f un (X[ , d1 ] ,

X[ l , d1 ] , h vec [ d1 ] )

}

i f ( sum(W l alpha ) < . 0001 ) {

m hat alpha [ l ] = 0

next

}

W l alpha = diag (W l alpha )

ZW = t ( Z alpha ) %∗% W l alpha
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m hat alpha [ l ] = c (1 , 0) %∗% so l v e (ZW %∗% Z alpha ,

ZW %∗% Y)

}

F hat a lpha [ j ] = mean( m hat alpha )

j = j + 1

}

r e turn ( F hat a lpha )

}

#

# in t e r a c t i o n e f f e c t

#

i n t e r a c t i o n e f f e c t = func t i on (Y, X, alpha , beta , x alpha , x beta ,

h vec , n , d , k ){

# Y: (n vec to r ) re sponse va r i ab l e

# X: (n∗d matrix ) c o va r i a t e s

# k : number o f po in t s taken in s ca l ed X

# alpha , beta : ( s ca l a r , 1 to d) column index o f X

# x alpha , x beta : ( k vec to r ) s c a l ed X space , where f a l pha be t a

#w i l l be computed

# h vec : (d vec to r ) bandwidth parameter

# output : ( k∗k∗d∗d array ) es t imate o f the i n t e r a c t i o n e f f e c t at

# ( x alpha , x beta ) g r id f o r each pa i r o f columns

Y = Y − mean(Y)
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F hat a lpha beta = matrix (NA, k , k )

m hat a lpha beta = rep (NA, n)

s = 1

f o r ( xa in x alpha ){

t = 1

f o r ( xb in x beta ){

Z alpha beta = cbind (1 , X[ , alpha ] − xa , X[ , beta ] − xb )

f o r ( l in 1 : n){

W l alpha beta = ke rn e l f un (X[ , alpha ] , xa , h vec [ alpha ] ) ∗

ke rn e l f un (X[ , beta ] , xb , h vec [ beta ] ) / n

f o r ( d1 in 1 : d){

i f ( d1==alpha | d1==beta ) next e l s e

W l alpha beta = W l alpha beta ∗ ke rn e l f un (X[ , d1 ] ,

X[ l , d1 ] , h vec [ d1 ] )

}

i f ( sum(W l alpha beta ) < 0 .0001) {

m hat alpha beta [ l ] = 0

next

}

W l alpha beta = diag ( W l alpha beta )

ZW = t ( Z a lpha beta ) %∗% W l alpha beta

m hat a lpha beta [ l ] = c (1 , 0 , 0) %∗% so l v e (ZW

%∗% Z alpha beta , ZW %∗% Y)
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}

F hat a lpha beta [ s , t ] = mean( m hat a lpha beta )

t = t + 1

}

s = s + 1

}

r e turn ( F hat a lpha beta )

}

#

# Kernel func t i on

#

ke rn e l f un = func t i on (x , mu, h){

# normal ke rne l f unc t i on

re turn (dnorm(x , mu, h ) )

# x = (x − mu)/h

# f = (15/16) ∗ (1 − xˆ2)ˆ2

# ze ro index = ( abs (x ) > 0)

# n zero = sum( ze ro index )

# i f ( n ze ro > 0) f [ z e r o index ] = rep (0 , n ze ro )

# return ( f )

}

#
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# Pred i c t i on

#

predict MI = func t i on (Y, X test , x alpha , f a lpha , f a l pha b e t a ){

# Y: (n vec to r ) re sponse va r i ab l e f o r t r a i n i n g data

# X: (n∗d matrix ) c o va r i a t e s f o r t r a i n i n g data

#(not needed as x alpha i s g iven )

# X tes t : ( n t e s t ∗d matrix ) t e s t data

# x alpha : ( k vec to r ) s c a l ed X space , where f a l pha and f a l pha be t a

# are computed

# f a l pha : ( k∗d matrix ) main e f f e c t at x a lpha

# f a l pha be t a : ( k∗k∗d∗d array ) i n t e r a c t i o n e f f e c t eva luated at a g r id

# o f ( x alpha , x a lpha )

#l i b r a r y ( akima )

n . t e s t = nrow ( X tes t )

d = nco l ( X tes t )

k = length ( x alpha )

#s c a l i n g

X center = colMeans ( X tes t )

X sca l e = apply ( X test , 2 , sd )

#X = s c a l e (X, c ent e r=X center , s c a l e=X sca l e ) #apply (X, 2 , s c a l e )

X tes t = s c a l e ( X test , c en t e r=X center , s c a l e=X sca l e )

mu = mean(Y)

y hat = rep (mu, n . t e s t )
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# main e f f e c t s

f o r ( i in 1 : d){

y hat = y hat + approx (x=x alpha , y=f a l pha [ , i ] ,

xout = X tes t [ , i ] , r u l e =2)$y

}

# in t e r a c t i o n e f f e c t s

f o r ( i in 1 : ( d−1))

f o r ( j in ( i +1):d)

y hat = y hat + diag ( i n t e rp (x=rep ( x alpha , t imes=k ) ,

y=rep ( x alpha , each=k ) ,

z=c ( f a l pha be t a [ , , i , j ] ) ,

xo=X tes t [ , i ] , yo=X tes t [ , j ] ,

l i n e a r = FALSE, extrap = TRUE) $z )

re turn ( y hat )

}

#

# Upper trimmed mean

#

upper . tr im .mean = func t i on (x , tr im=0.05) {

#trim : the f r a c t i o n o f ob s e rva t i on s to be trimmed from the top

i f ( tr im==0) return (mean(x ) )

x <− s o r t ( x )

mean(x [ 1 : f l o o r ( l ength (x)∗(1− tr im ) ) ] )

}
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#

Simulation MI (n=50, p=0, h MI=0.9 , h RMI=0.9 , R=100 , tr im=0.05)

Simulation MI (n=50, p=0.05 , h MI=0.9 , h RMI=0.9 , R=100 , tr im=0.05)

Simulation MI (n=100 , p=0, h MI=0.7 , h RMI=0.7 , R=100 , tr im=0.05)

Simulation MI (n=100 , p=0.05 , h MI=0.7 , h RMI=0.7 , R=100 , tr im=0.05)

Simulation MI (n=200 , p=0, h MI=0.65 , h RMI=0.65 , R=100 , tr im=0.05)

Simulation MI (n=200 , p=0.05 , h MI=0.65 , h RMI=0.65 , R=100 , tr im=0.05)
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