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Abstract

Elliptical copulas provide flexibility in modeling the dependence structure of a random vec-

tor. They are often parameterized with a correlation matrix and a scalar function, called

generator. The estimation of the generator can be challenging, because it is a functional

parameter. In this dissertation, we provide a rigorous approach to estimating the generator

in a Bayesian framework, which is simpler, more robust, and outperforms existing estima-

tion methods in the literature. Based on the proposed framework in this dissertation, other

researchers may modify the model for other types of generators in their own research.
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Chapter 1

Introduction

1.1 Copula

Suppose we are asked to compare the two bivariate data sets in Figure 1.1 in terms of the

underlying dependence structures between the two respective variables. By eyeballing the

scatter plots, the two data sets seem very different. The X = (X1, X2) data are more

concentrated in the center while the Y = (Y1, Y2) data are more dense in the bottom

left corner. Just by observing the two scatter plots, it is difficult to notice the similarity

between their dependence structures, since the linear correlation between X1 and X2 (or

between Y1 and Y2) depends on their marginal distributions.

Figure 1.1: Scatter plots of n = 500 observations from two bivariate distributions.
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Figure 1.2: Kernel density estimations of (X1, X2) and of (Y1, Y2).

We obtain estimates of the marginal probability densities of (X1, X2) and (Y1, Y2) by

kernel density estimation (KDE) and plot the results in Figure 1.2. We see that variables

X1 and X2 have the same marginal distribution, and so do Y1 and Y2. But X and Y

have very different marginals. The marginal distribution of X is bell-shaped whereas that

of Y is right-skewed. The difference in the marginal distributions makes the comparison

between the dependence structures of these two bivariate distributions difficult. If we could

transform X and Y , making their marginal distributions identical, it would be much easier

to compare their dependence structures.

In the univariate case, the Probability Integral Transform (PIT) can achieve this goal.

The PIT can transform any continuous distribution into the standard uniform distribution.

Lemma 1 (Probability Integral Transform) Let F be the cumulative distribution func-

tion (CDF) of a continuous random variable X, that is, X ∼ F . Then U = F (X) follows

a standard uniform distribution, that is, U ∼ U(0, 1). The transformation U = F (X) is

called the Probability Integral Transform.

The PIT can be generalized to the bivariate or multivariate cases. Genest (2018) refers

to the multivariate PIT as the Copula Transform.

2



Theorem 2 (Copula Transform) Let H be the joint distribution function of a d-dimensional

random vector X = (X1, . . . , Xd) and F1, . . . , Fd the continuous marginal CDFs. Then

U1 = F1(X1) ∼ U(0, 1), . . . , Ud = Fd(Xd) ∼ U(0, 1),

and

U = (U1, . . . , Ud) ∼ C,

where C is the copula of H, i.e., a multivariate distribution with standard uniform marginals.

The copula transform converts the margins of a multivariate distribution into the stan-

dard uniform distribution. The transformed random vector U = (U1, . . . , Ud) follows a

special multivariate distribution called copula.

If we apply the copula transform to a data set drawn from a multivariate distribution

H, the transformed data set can be viewed as drawn from its copula. The copula trans-

form standardizes the margins of the data sets, which reveals the dependence structure.

Figure 1.3 is the scatter plots after applying the copula transform to X and Y . We can

easily tell that their dependence structures are exactly the same.

Figure 1.3: Scatter plots of X (left) and Y (right) after applying the copula transform,

revealing the dependence structure.

The above example shows that a multivariate distribution has an underlying copula,

which captures the dependence structure between the random variables. This copula can

3



be obtained through the copula transform. According to Sklar (1959), a multivariate

distribution with continuous marginals can be uniquely defined by its copula and marginal

distributions.

Theorem 3 (Sklar’s theorem) Given a vector Y = (Y1, . . . , Yd) of d ≥ 2 continuous

random variables, its joint CDF can be represented by

H(y1, . . . yd) = C
(
F1(y1), . . . Fd(yd)

)
, (1.1)

where C is a copula and F1, . . . , Fd are marginal CDFs. If the F1, . . . , Fd are continuous,

then C is unique.

The joint probability density function (PDF) of Y can be obtained by differentiating

the CDF in Equation (1.1) through the chain rule:

h(y1, . . . , yd) =
∂dH(y1, . . . , yd)

∂y1 · · · ∂yd

=
∂dH(y1, . . . , yd)

∂F1(y1) · · · ∂Fd(yd)
×

d∏
i=1

∂Fi(yi)

∂yi

= c
(
F1(y1), . . . , Fd(yd)

)
· f1(y1) · · · · · · fd(yd),

where c is the PDF of the copula and fi, i = 1, . . . , d, are the marginal PDFs of Yi.

1.2 Archimedean Copulas

Archimedean copulas have been extensively used in both research and applications, such as

Joe (2014), Genest and MacKay (1986), Genest and Rivest (1993), McNeil and Nešlehová

(2009), McNeil (2008) and Müller and Scarsini (2005). This type of copulas has two main

advantages. First, most Archimedean copulas have an explicit formula. Second, they

only have a single parameter controlling the strength of dependence regardless of their

dimensions, which may be advantageous in modeling the dependence of high-dimensional

data.
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A copula C is called Archimedean if it admits the representation

C(u1, . . . , ud) = ψ−1

(
ψ(u1) + . . .+ ψ(ud)

)
,

where ψ is a continuous, strictly decreasing function from [0, 1] to [0,∞) such that ψ(1) = 0.

Common Archimedean copulas include the Clayton copula, the Frank copula and the

Gumbel copula.

• The Clayton copula has the copula function (CDF)

C(u1, . . . , ud | θ) =

(
−1 +

d∑
i=1

u−θi

)− 1
θ

, θ ∈ (0,∞)

with Kendall’s tau given by τ = θ/(θ + 2).

• The Frank copula has the copula function

C(u1, . . . , ud | θ) = −1

θ
log

[
1 +

∏d
i=1 (exp(−θui)− 1)

exp(−θ)− 1

]
, θ ∈ (−∞,∞) \ {0},

with Kendall’s tau given by τ = 1 + 4
θ
(D1(θ) − 1), where D1(θ) = 1

θ

∫ θ
0

t
exp(t)−1

dt is

the Debye function.

• The Gumbel copula has the copula function

C(u1, . . . , ud | θ) = exp

−
[

d∏
i=1

(− log(ui))
θ

] 1
θ

 , θ ∈ [1,∞),

with Kendall’s tau given by τ = 1− 1/θ.

Figure 1.4 consists of scatter plots of 500 observations from the three bivariate Archimedean

copulas with Kendall’s τ = 0.7.

1.3 The Inversion Method

Unlike Archimedean copulas, many other copulas, such as the Gaussian copula, do not

have simple analytical forms for their copula functions. In such cases, a common way to

construct the copula is to use the Inversion Method.

5



Figure 1.4: Scatter plots of n = 500 independent observations from bivariate Archimedean

copulas with Kendall’s τ = 0.7.

Given a multivariate distribution F and marginal distributions F1, . . . , Fd, its copula

function C can be obtained by inverting Equation (1.1) in Sklar’s theorem

C(u1, . . . , ud) = F
[
F−1

1 (u1), . . . , F−1
d (ud)

]
, u1, . . . , ud ∈ (0, 1), (1.2)

where F−1
1 , . . . , F−1

d are the inverses of the marginal CDFs.

Equation (1.2) can be differentiated to obtain the copula density

c(u1, . . . , ud) =
f
[
F−1

1 (u1), . . . , F−1
d (ud)

]∏d
k=1 fk

[
F−1
k (uk)

] , u1, . . . , ud ∈ (0, 1), (1.3)

where f is the probability density of F and f1, . . . , fd are the marginal probability densities.

1.4 Gaussian Copula

Gaussian copulas are another important family of copulas beside Archimedean copulas,

related to multivariate Gaussian distributions. According to the Sklar’s Theorem, a multi-

variate Gaussian distribution can be decomposed into a Gaussian copula and a collection

6



of marginal distributions that are also Gaussian. It is well known that a multivariate dis-

tribution with Gaussian margins is not necessarily a multivariate Gaussian distribution,

because its copula might not be a Gaussian copula.

Gaussian copulas can be derived from multivariate Gaussian distributions by the inver-

sion method. The resulting copula function can be written as

CGauss(u1, . . . , ud | Ω) = ΦΩ

[
Φ−1(u1), . . . ,Φ−1(ud)

]
, u1, . . . , ud ∈ (0, 1),

where Φ−1 is the inverse CDF of a standard normal distribution and ΦΩ is the joint CDF

of a multivariate Gaussian distribution with mean vector zero and covariance matrix equal

to the correlation matrix Ω. Figure 1.5 demonstrates the density of a bivariate Gaussian

distribution BVN (0, ρ = 0.7) and its underlying copula. Gaussian copulas belong to the

family of elliptical copulas, which are the topic of this dissertation. We introduce elliptical

copulas in subsequent sections of this chapter.

(a) Gaussian distribution (b) Gaussian copula

Figure 1.5: Surface plots of a bivariate Gaussian distribution and its copula.

1.5 Elliptical Distribution

Elliptical copulas are derived from elliptical distributions via the inversion method, which

is why we introduce elliptical distributions first. A d-dimensional continuous random vector

7



X = (X1, ..., Xd) has an elliptical distribution Ed(µ,Σ, g) if its density function takes the

form of

f(x;µ,Σ, g) = det(Σ)−1/2g
(
(x− µ)TΣ−1(x− µ)

)
, (1.4)

where

• µ ∈ Rd is the mean vector;

• Σ is the covariance matrix;

• g is the generator, which is a non-negative function defined on [0,∞).

Since the dissertation is focused on elliptical copulas, without loss of generality, we only

consider elliptical distributions E(0,Ω, g), where Ω is a Pearson correlation matrix. In this

case, the elliptical distribution has identical margins. In later chapters, we refer to the

Pearson correlation matrix simply as a correlation matrix.

Stochastic form:

If a d-variate random vector X has elliptical distribution E(0,Ω, g), it can be expressed

in the following stochastic representation (see Fang et al. (2002) and Fang et al. (2005))

X = RAU , (1.5)

where

• A is a Cholesky factor from the decomposition of Ω (AAT = Ω);

• U is a random vector uniformly distributed on the unit sphere of Rd;

• R is a continuous nonnegative random variable with density function

h(r) =
2πd/2

Γ(d/2)
rd−1g(r2); (1.6)

• R and U are independent of each other.

8



A typical example of an elliptical distribution is the multivariate Gaussian distribution,

whose generator takes the form of g(t) ∝ exp(−1/2). Figure 1.6 shows a scatter plot of

2000 observations from the bivariate Gaussian distribution, which forms an ellipse. This is

the motivation for the term “elliptical” distributions.

Figure 1.6: Scatter plot of n = 2000 observations from a bivariate normal distribution with

µ = (0, 0) and correlation ρ = 0.8.

Table 1.1, taken from Lemonte and Patriota (2011), includes common elliptical distri-

butions and their generators. For a detailed introduction to elliptical distributions, see

Fang and Zhang (1990).

1.6 Elliptical Copulas

Elliptical copulas, also called meta-elliptical copulas, were originally introduced by Fang

et al. (2002). These copulas induce a dependence structure of elliptical distributions, the

same way Gaussian copulas describe the dependence in multivariate Gaussian distributions.

The density of an elliptical copula can be derived from the density of an elliptical

distribution E(0,Ω, g) via the inversion method,

c(u | Ω, g) =
det(Ω)−1/2g

(
Q1(u)TΩ−1Q1(u)

)∏d
j=1 f1

(
Q1(uj)

) , u ∈ [0, 1]d, (1.7)

9



Table 1.1: Different elliptical distributions and their generators.

Elliptical distribution Distribution of R2 Generating function g(t)

Normal R2 ∼ χ2
(d) c1exp(−t/2)

Student R2/d ∼ F (d, ν) c (1 + t/ν)(d+ν)/2

Pearson type II R2 ∼ Beta(d/2, ν + 1) c (1− t)ν , t ∈ [−1, 1], ν > −1

Logistic R2 ∼ *2 c e−t/(1 + e−t)2

1 The c is normalizing constant.

2 The distribution of R2 is not a standard distribution and its kernel is

(r2)(d−2)/2e−r
2
/(1 + e−r

2
)2.

where the numerator is the density of E(0,Ω, g) and f1 and Q1 in the denominator are

respectively the marginal PDF and the marginal inverse CDF of E(0,Ω, g).

We denote the elliptical copula in (1.7) as C(Ω, g), and call E(0,Ω, g) the “associated”

elliptical distribution, which means that it is the distribution from which the copula is

derived. As we see, the elliptical copula C(Ω, g) has exactly the same parameters as its as-

sociated elliptical distribution. To some extent, estimating an elliptical copula is equivalent

to estimating the associated elliptical distribution.

As mentioned before, a copula describes the dependence structure of a multivariate

distribution. When it comes to elliptical copulas, the correlation matrix Ω describes the

linear dependence. In this dissertation, we will only focus on the estimation of generators.

The correlation matrix is assumed known or its estimate is obtained in a separate procedure.

10



Figure 1.7: Scatter plots of n = 500 observations from two elliptical copulas with correlation

ρ = 0.7.
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Chapter 2

The Generator of an Elliptical Copula

2.1 Relation between the Generator and R

An elliptical copula is parameterized by the correlation matrix Ω and the generator g. The

generator g can be expressed by the PDF of R. Recall that R is the random variable in

the stochastic form of the associated elliptical distribution E(0,Ω, g) and the PDF of R is

denoted by h(r).

Most of the relevant literature, such as Genest et al. (2007) and Liebscher (2005),

mentions the relation between g of h(r) as follows

g(t) =
Γ(d/2)

2πd/2
t(1−d)/2h(t1/2), t > 0⇐⇒ h(r) =

2πd/2

Γ(d/2)
rd−1g(r2), r > 0. (2.1)

The generator can also be expressed through the density of the squared radius R2. Denoting

the squared radius R2 by Y , and the probability density of Y by fY , we have

g(t) =
Γ(d/2)

πd/2
t1−

d
2 fY (t), t > 0⇐⇒ fY (y) =

πd/2

Γ(d/2)
y
d
2
−1g(y), r > 0. (2.2)

Equations (2.1) and (2.2) are equivalent. In fact, g can also be written in terms of the

PDF of other functions of R, such as R3,
√
R, or Ra, where a is power. Once the PDFs of

these random variables are available, h(r) can easily be obtained by a transformation.

The key to understanding the generator is understanding the role of R. The notation

R actually means “radius”. To explain this, we introduce a special elliptical distribution

called spherical distribution.
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2.2 Spherical Distribution

When µ = 0 and Ω is the identity matrix Id, the elliptical distribution E(0, Id, g) is called

spherical distribution which can be denoted by SP(g). If a random vector X has elliptical

distribution E(0,Ω, g), then

Y = A−1X ∼ SP(g),

where A is the Cholesky factor of Ω. If a random vector Y has spherical distribution

SP(g), then

X = AY ∼ E(0,Ω, g).

(a) Scatter plot of X ∼ E(0,Ω, g). (b) Scatter plot of Y = A−1X.

Figure 2.1: Scatter plots of n = 2000 observations from a bivariate elliptical distribution

and its associated spherical distribution.

Figure 2.1 shows the relation between E(0,Ω, g) and SP(g). Instead of an ellipse, a

bivariate spherical distribution forms a circle centered at the origin. If a random vector

Y follows SP(g), there is no linear dependence between its entries. The operation A−1X

removes the linear correlation from the entries of X, whereas the operation AY restores

linear dependence.
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If the random vector X has elliptical distribution, it has the stochastic representation

X = RAU , as shown in Equation (1.5). The vector Y = A−1X has spherical distribution

and its stochastic form is Y = RU . It is not difficult to see that the R in stochastic

form (1.5) is equal to (Y TY )−1/2, which is the Euclidean distance from Y to the origin.

The two-dimensional spherical distribution forms a circle and R can be intuitively viewed

as its “radius”. For a detailed introduction to spherical distributions, see Kelker (1970),

Cambanis et al. (1981) and Steerneman and van Perlo-ten Kleij (2005). For now, we only

need to remember that R is a radius.

(a) Uniform distribution on a unit sphere. (b) Spherical distribution.

Figure 2.2: Scatter plots of n = 500 observations from a uniform distribution on sphere

and a spherical distribution.

A spherical distribution should not be confused with another distribution related to

spheres, which is the uniform distribution on a sphere. In most situations, the dimension of

a sphere is at least three, but for simplicity, we use the two-dimensional case to demonstrate

the difference. Figure 2.2 displays scatter plots of a sample from a uniform distribution

on the unit sphere and a sample from a spherical distribution. The difference is obvious:

the uniform distribution on a sphere forms a hollow circle while the spherical distribution

forms a solid circle. Also, all points in plot (a) are equally distant from the origin while

14



the distances of the points in plot (b) to the origin are different.

A spherical distribution is determined by h(r), which is the distribution of R in the

stochastic form. Equivalently, it can be determined from the generator g because g and

h(r) have a one-to-one relation. Drawing a sample from a spherical distribution is a two-

step procedure:

1. Draw a radius R from its distribution h(r);

2. Draw a point uniformly from a sphere with radius equal to R.

A spherical distribution is made of uniform distributions on spheres with a random radius

distributed with density function h(r). Thus, the solid circle in Figure 2.2 (a) is actually

formed by many hollow circles with all different radii. Now we have a better understanding

of R and its distribution h(r).

2.3 Nonlinear Dependence

Generalizing our statements in the previous section to the d-dimensional case, if a d-

dimensional random vector Y has spherical distribution, then its entries must satisfy√
Y 2

1 + Y 2
2 + · · ·+ Y 2

d = R ∼ h(r). (2.3)

The dependence described in Equation (2.3) is nonlinear. In fact, the correlations between

entries of Y are all zero, which means that these entries are linearly independent.

A spherical distribution has only nonlinear dependence, which is described by the dis-

tribution of R. The generator is derived from the distribution of R, and so it also contains

information of nonlinear dependence.

We now take a look at the parameters of an elliptical copula C(Ω, g). The correlation

matrix informs us about the linear dependence, while the generator expresses nonlinear

dependence. This is how a copula describes the entire dependence structure.
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2.4 Condition 1

The generator cannot be an arbitrary function. Equations (2.1) and (2.2) show that h(r)

and the generator are related. Since h(r) is a probability density, it must integrate to one,

and so the generator g must satisfy∫ ∞
0

2πd/2

Γ(d/2)
rd−1g(r2)dr = 1⇐⇒

∫ ∞
0

rd−1g(r2)dr =
Γ(d/2)

2πd/2
. (2.4)

If we derive this condition in terms of the PDF of Y = R2, it can be expressed as∫ ∞
0

πd/2

Γ(d/2)
yd/2−1g(y)dy = 1⇐⇒

∫ ∞
0

yd/2−1g(y)dy =
Γ(d/2)

πd/2
. (2.5)

Equations (2.4) and (2.5) are equivalent. We refer to both of them as Condition 1. Beside

Condition 1, g needs to satisfy other conditions but those are relatively weak and will not be

discussed in this dissertation. See Derumigny and Fermanian (2022) for other constraints

on g.

2.5 Normalization of a Copula Generator

Given a function that does not satisfy Equation (2.4) or Equation (2.5), it can be trans-

formed to satisfy Condition 1. We call this process “normalization”, because it amounts

to normalizing the corresponding PDF of R. Algorithm 1 describes the steps to normalize

a generator.

Algorithm 1 Normalization of a Generator

Input: A function g that is not normalized.

1: Compute I1 =
∫∞

0
td/2−1g(t)dt, where the integrand is the kernel of the PDF of R2;

2: Denote sd = πd/2

Γ(d/2)
;

3: Calculate g̃(t) = 1
sdI1

g(t).

Output: A normalized g̃ satisfying Condition 1 in Equation (2.4).
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2.6 Identifiability

The elliptical copula C(Ω, g) is parameterized in the same way as its associated elliptical

distribution E(0,Ω, g). However, generators are not unique and identifiable for elliptical

copulas. This problem has been discussed by Derumigny and Fermanian (2022).

Here we give a simplified explanation. For a given generator g, the marginal CDF and

PDF of E(0,Ω, g) are given by

Fg(x) =
1

2
+
π(d−1)/2

Γ
(
d−1

2

) ∫ x

0

∫ ∞
u2

(y − u2)(d−1)/2−1g(y)dydu,

fg(x) =
π(d−1)/2

Γ
(
d−1

2

) ∫ ∞
x2

(y − x2)(d−1)/2−1g(y)dy.

(2.6)

Thus, an elliptical distribution’s generator not only contains information about the non-

linear dependence, but also information about the marginal distributions. This can cause

an identifiability problem when using g to parameterize an elliptical copula. In particular,

assume that two elliptical distributions, E(0,Ω, ga) and E(0,Ω, gb), share the same depen-

dence structure but have different marginal distributions. In such a case, these distributions

have different generators, ga and gb, but their copulas are the same, which can be denoted

by either C(Ω, ga) or C(Ω, gb). It should be mentioned that the correlation matrix Ω is

unique and identifiable for elliptical copulas, because the correlation matrix contains only

information about the linear dependence.

Derumigny and Fermanian (2022) propose a transformation for changing the generator

of an elliptical copula without modifying the dependence structure. Specifically, let Ω be

a positive definite correlation matrix and g a generator. Then, for any positive value a,

C(Ω, g) = C(Ω, ga) by setting

ga(t) = ad/2g(at). (2.7)

In other words, the dependence structure induced by g is invariant under the transformation

(2.7), although the marginal distribution Fg and fg have changed to Fga and fga because

of their relation to the generator described in Equation (2.6).
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2.7 Standardization of the Copula Generator

It was shown in the previous section that the generator of an elliptical copula is not unique

or identifiable because it contains information on both the dependence and the marginal

distribution. The transformation (2.7) can modify the corresponding marginal distribution

associated with a generator without changing the dependence structure. This transforma-

tion is able to make the generator unique and constrain the marginal distribution to a have

a specific form.

According to Derumigny and Fermanian (2022), for an elliptical copula, there “most

often” exists a unique normalized generator g satisfying

π
d−1
2

Γ(d−1
2

)

∫ ∞
0

s
d−3
2 g(s)ds = b, (2.8)

where b is a positive number that we call a standardization constant. In other words, each

elliptical copula has only one generator satisfying the constraint in Equation (2.8).

The quantity b is in fact fg(0). Recall that fg is the marginal PDF derived from g via

Equation (2.6). When fixing fg(0) = b, fg is specified. We do not need to fix the values of

fg everywhere to specify the marginal distribution. For a detailed proof, see Proposition 3

and Appendix A and in Derumigny and Fermanian (2022).

Algorithm 2 Standardizing the Generator

Input: A generator g̃ that is already normalized by Algorithm 1, such that I1 =∫∞
0
td/2−1g̃(t)dt = Γ(d/2)/πd/2.

1: Compute and I2 =
∫∞

0
t(d−3)/2g̃(t)dt ;

2: Set β = (b/(sd−1 I2))2, where b is any positive constant, and sd−1 =

π(d−1)/2/Γ ((d− 1)/2) ;

3: Calculate g̃s = βd/2 g̃(β t) ;

Output: A modified version g̃s satisfying the normalization and identification constraints.

We provide Algorithm 2 for standardizing the generator of an elliptical copula. It has

been modified from the algorithm in Derumigny and Fermanian (2022).
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2.8 Literature Review

Though elliptical copulas were introduced a while ago, research on the estimation of ellip-

tical copulas is fairly limited. Related articles are mostly focused on the application of a

specific type of elliptical copula, such as a Gaussian copula or a Student-t copula. In other

words, these articles assume a known generator g. Genest et al. (2007) assume that the

generator g is unknown but is one option from a fixed list, such as those listed in Table 1.1.

Genest et al. (2007) provide goodness-of-fit tests to select the best generator from a list

for a given data set but there is no rigorous way to estimate the generator of an elliptical

copula.

Recently, an iterative procedure was proposed by Derumigny and Fermanian (2022).

This iterative procedure estimates the generator of an elliptical copula on a pre-specified

grid. The algorithm interactively “translates” the copula data into pseudo data having

an elliptical distribution and then estimates the generator of the elliptical distribution

using the procedure from Liebscher (2005). There are two major deficiencies in their

algorithm. Firstly, it does not show very good results in some simulation studies. Secondly,

Derumigny and Fermanian (2022) do not evaluate the likelihood through the density of

elliptical copulas, rather, they estimate an elliptical distribution from the transformed

data. This makes the assessment of their algorithm difficult. Besides, there is no proof of

convergence of their algorithm, though it seems to have converged in their experiments.

Liebscher (2005) provides an estimator of the generator g of elliptical distributions,

which is constructed indirectly through the estimator of h(r). We have introduced Lieb-

scher’s model in Chapter 3. This method works on elliptical distributions. Estimation of

the generator of an elliptical copula and an elliptical distribution can be quite different due

to two factors. Firstly, the generator of elliptical copulas is not unique, as mentioned in

Section 2.6. Secondly, the estimation of elliptical copulas involves the evaluation of the

marginal quantile function and the marginal probability density function of its associated

elliptical distribution, both of which have no closed form in many cases.
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Chapter 3

Methodology

3.1 Modeling the Generator

To estimate the generator, we first need to construct a model for it. In Section 2.4, we

have mentioned in Section 2.4 that to be a generator, a function must satisfy Condition 1

described in Equation (2.4). The model for g can be constructed through the density of R

or the density of R2 because of the relations described in equations (2.1) and (2.2). In this

case, the model automatically satisfies Condition 1.

We model the generator g via fY (y), which is the density of the squared radius, i.e.,

Y = R2. Assume that we have a model for fY (y), denoted by m(y), then a model for g,

denoted by gm(t), can be written as

gm(t) =
Γ(d/2)

πd/2
t1−d/2m(t). (3.1)

We refer to model (3.1) as the “naive model”. The deficiency of the naive model is discussed

in Liebscher (2005). The limt→0 gm(t) goes to ∞ when m(y) is bounded away from 0 in a

neighborhood of zero because limt→0 t
1−d/2 = ∞ when the dimension d is greater than 2.

This implies that the copula density (1.7) goes to infinity at u = (1/2, 1/2, . . . , 1/2). In

many cases, we do not want such a strong constraint on the model.

3.1.1 A Model Based on a Mixture of Noncentral F -Distributions

In order to make gm well-behaved near zero, we can use some methods to cancel out the

term t1−d/2. One solution is to use noncentral F -distributions in modeling m(y). The PDF

20



of a noncentral F -distribution is

fNCF (x | ν1, ν2, λ) =
∞∑
k=0

e−λ/2(λ/2)k

B(ν2
2
, ν1

2
+ k)k!

(
ν1

ν2

)ν1/ν2+k (
ν2

ν2 + ν1x

)(ν1+ν2)/2+k

xν1/2−1+k,

(3.2)

where ν1 and ν2 are degrees of freedom and λ is the noncentrality parameter.

Assume that model m(y) is fNCF (x | ν1, ν2, λ) with its first degree of freedom ν1 equal

to the copula dimension d, then the model for the generator becomes

gm(t | ν2, λ) =
Γ(d/2)

πp/2

∞∑
k=0

e−λ/2(λ/2)k

B(ν2
2
, d

2
+ k)k!

(
d

ν2

) d
ν2

+k (
ν2

ν2 + dt

) d+ν2
2

+k

tk, (3.3)

which is well-behaved near zero because the term t1−d/2 is cancelled out by a term from

the density of the noncentral F -distribution.

In order to improve flexibility, we use a mixture of noncentral F -distributions as the

model for fY , and denote it by m1

m1(y) =
K∑
j=1

wjfNCF (y | ν1j = d, ν2j, λj), (3.4)

where the wjs are mixing proportions, and (ν2j, λj) are parameters for the jth compo-

nent. Every component has its first degree of freedom ν1j equal to the dimension d. The

corresponding model for the generator is

gm1(t) =
Γ(d/2)

πd/2
t1−d/2m1(t) =

K∑
j=1

wj
Γ(d/2)

πd/2
t1−d/2fNCF (y | ν1j = d, ν2j, λj). (3.5)

The gm1 in (3.5) can be viewed as a mixture of generators whose components are the gm

in Equation (3.3).

Proposition 4 A mixture of generators is also a generator.

Proof: To be a generator, a function g(t) has to satisfy Condition 1 in Equation (2.4)∫ ∞
0

πd/2

Γ(d/2)
zd/2−1g(z)dz = 1.
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Now assume g is a mixture of generators,

g(t) =
K∑
j=1

wjgj(t),

where the gj all satisfy ∫ ∞
0

πd/2

Γ(d/2)
zd/2−1gj(z) = 1.

Then we have ∫ ∞
0

πd/2

Γ(d/2)
zd/2−1g(z)dz

=

∫ ∞
0

(
πd/2

Γ(d/2)
zd/2−1

K∑
j=1

wjgj(z)

)
dz

=

∫ ∞
0

( K∑
j=1

wj
πd/2

Γ(d/2)
zd/2−1gj(z)

)
dz

=
K∑
j=1

wj

∫ ∞
0

πd/2

Γ(d/2)
zd/2−1gj(z)dz =

K∑
j=1

wj = 1.

Thus, g also satisfies Condition 1 and is a valid generator.

3.1.2 A Model Based on a Mixture of Truncated Normal Distri-

butions

Another way to fix the deficiency of the naive model in Equation (3.1) is to build the

generator model through the probability density of Y d/2. It can also dissolve the term

t1−d/2 and make the model behave well around zero.

If we have a model for the PDF of Y d/2, denoted by m2, then the model for the generator

g can be

gm2(t) =
Γ(d/2)d

2πd/2
m2(t

d
2 ). (3.6)

However, Liebscher (2005) pointed that this model became wiggle for large value of t, since

the power transformation magnified small differences. Liebscher (2005) provided a way to

create a model for the generator g, which can overcome disadvantages mentioned above.
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Now assume we have a transformation function Ψ and Ỹ = Ψ(Y ). The model for g is

built through the density of Ỹ . Liebscher (2005) gave an example of the transformation

function Ψ, which is

Ψ(Y ) = −a+ (ad/2 + Y d/2)2/d, (3.7)

where a is a positive constant, such as 1.

We model the probability density function of Ỹ via a finite mixture

m3(ỹ) =
K∑
j=1

wjfj(ỹ | θj), (3.8)

where the wjs are mixing proportions and fj, j = 1, . . . , K are mixture components with

the parameter vector θj. The density of Y = R2 is

fY (y) = fỹ(ỹ)×
∣∣∣∣dỹdy
∣∣∣∣ = (ad/2 + yd/2)2/d−1yd/2−1

K∑
j=1

wjfj
(
− a+ (ad/2 + yd/2)2/d

)
.

The corresponding generator is

gm3(t) =
Γ(d/2)

πd/2
t1−d/2fY (t)

=
Γ(d/2)

πd/2
(ad/2 + td/2)2/d−1

K∑
j=1

wjfj
(
− a+ (ad/2 + td/2)2/d

)
=

K∑
j=1

wj
Γ(d/2)

πd/2
(ad/2 + td/2)2/d−1fj

(
− a+ (ad/2 + td/2)2/d

)
=

K∑
j=1

wjgj(t),

(3.9)

where

gj(t) =
Γ(d/2)

πd/2
(ad/2 + td/2)2/d−1fj

(
− a+ (ad/2 + td/2)2/d

)
(3.10)

is a generator itself. It is easy to prove that gj in Equation (3.10) satisfies Condition 1.

The mixture in Equation 3.8 can be a mixture of any continuous distribution with its

support on (0,∞). What we use is a mixture of truncated normal distributions. Assume

we have

m3(ỹ) =
K∑
j=1

wjφj(0,∞)(ỹ | µj, σj = 1), (3.11)
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where the φj(0,∞) is a normal distribution with its mean equal to µj and its standard

deviation equal to one, truncated to (0,∞). From Equation (3.11), the model for the

generator is

gm3(t) =
K∑
j=1

wjgj(t), (3.12)

where

gj(t) =
Γ(d/2)

πd/2
(ad/2 + td/2)2/d−1φj(0,∞)

(
− a+ (ad/2 + td/2)2/d | µj, σj = 1

)
. (3.13)

3.2 Priors

3.2.1 Prior for Mixing Proportions

For the mixing proportions, we use the Dirichlet distribution as prior,

(w1, . . . , wK) ∼ Dir(α1, . . . , αK),

where α1 = . . . = αK = 1/K.

In this dissertation, Metropolis algorithm is used to sample the mixing proportions

from the posterior distribution, so it would be convenient to transform w1, . . . , wK to un-

constrained variables. A common way to do this is using multi-logits,

wj =
exp(vj)

1 +
∑K−1

`=1 exp(v`)
, j = 1, . . . , K − 1

wK =
1

1 +
∑K−1

`=1 exp(v`)
= 1−

K−1∑
`=1

w`,

where v1, . . . , vK−1 ∈ (−∞,∞). The Jacobian for this transfomation is

J =


∂w1

∂v1

∂w1

∂v2
. . . ∂w1

∂vK−1

∂w2

∂v1

∂w2

∂v2
. . . ∂w2

∂vK−1

...
...

. . .
...

∂wK−1

∂v1

∂wK−1

∂v2
. . . ∂wK−1

∂vK−1

 ,
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where diagonal elements are

∂wj
∂vj

=

exp(vj)

(
1 +

∑K−1
`=1 exp(v`)

)
− exp(2vj)(

1 +
∑K−1

`=1 exp(v`)

)2

=

exp(vj)

(
1 +

∑K−1
`=1 exp(v`)− exp(vj)

)
(

1 +
∑K−1

`=1 exp(v`)

)2

=

exp(vj)

(
1 +

∑K−1
`6=j exp(v`)

)
(

1 +
∑K−1

`=1 exp(v`)

)2

and off diagonal elements are

∂wj
∂vk

=
− exp(vj + vk)(

1 +
∑K−1

`=1 exp(v`)

)2 , j 6= k.

3.2.2 Priors for Mixture Components

For the mixture of noncentral F -distributions, we use uniform priors for both degrees of

freedom and noncentrality parameters,

ν2j ∼ U(0, δ0)

and

λj ∼ U(0, δ0),

where the upper bound δ0 is a positive number, such as 50.

For the mixture of truncated normal distributions, we use uniform priors on µjs,

µj ∼ U(L,U),

where L and U are lower and upper bounds, respectively. In our experiments in Chapter 4,

we set L = −5 and U = 5.
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3.3 Likelihood

Given N independent observations U 1, . . . ,UN from an elliptical copula C(Ω, g) in Equa-

tion (1.7), where the correlation matrix Ω is known or its estimate is obtained from a

separate procedure, the likelihood function is given by

L(g | U 1, . . . ,UN) =
N∏
i=1

(
det(Ω)−1/2g

(
Qg(U i)

TΩ−1Qg(U i)
)∏d

j=1 fg
(
Qg(Uij)

) )
, (3.14)

where

Fg(x) =
1

2
+
π(p−1)/2

Γ
(
p−1

2

) ∫ x

0

∫ ∞
u2

(y − u2)(p−1)/2−1g(y)dydu, (3.15)

Qg(u) = F−1
g (u), (3.16)

and

fg(x) =
π(p−1)/2

Γ
(
p−1

2

) ∫ ∞
x2

(y − x2)(p−1)/2−1g(y)dy. (3.17)

Recall that Fg and fg are the marginal CDF and marginal PDF of the associated elliptical

distribution E(0,Ω, g), and Qg is the inverse function of Fg.

The likelihood function (3.14) can hardly be further simplified no matter what model

is used for the generator g. Though Fg, Qg and fg can be derived from a given g, these

functions are expressed as complex integrals. Due to the same reason, it is challenging to

directly evaluation the likelihood. If we use numeric integration to evaluate Fg and fg and

root finding method to obtain the inverse function Qg = F−1
g , it can be very time consuming

and often not accurate. Instead, we propose to use B-spline smoothing to approximate Fg

and fg.

3.4 Evaluation of Marginal Generator

As we mentioned, the fg is the marginal PDF of the associated elliptical distribution

E(0,Ω, g). The marginal distribution of an elliptical distribution is also elliptical, see

Theorem 6 of Gómez et al. (2003). Thus, the marginal elliptical distribution has its own
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generator, denoted by g1. The marginal PDF fg can be computed from g1 via

fg(x) = g1(x2). (3.18)

To evaluate fg, we can evaluate g1 first. The marginal generator is defined as

g1(t) =
π(d−1)/2

Γ
(
(d− 1)/2

) ∫ ∞
0

g(t+ s)s(d−3)/2ds. (3.19)

By using the substitution y = t+ s, g1 can be written as

g1(t) =
π(d−1)/2

Γ
(
(d− 1)/2

) ∫ ∞
t

g(y)(y − t)(d−3)/2dy. (3.20)

This integral can approximated via Riemann sum. In particular, denote the integrand in

Equation (3.20) as f(y) = g(y)(y − t)(d−3)/2. Assume we need to evaluate g1 at the knots

0 = t1, . . . , tn = Tg, where Tg is a value to which we truncate the generator g, such that at

Tg, g(Tg) is about zero. Knots t1, . . . tn are evenly spaced by ∆t. We have

g1(tj) ∝
∫ ∞
tj

g(y)(y − tj)(d−3)/2dy

≈
∫ tn

tj

g(y)(y − tj)(d−3)/2dy

=

∫ tn

tj

f(y)dy.

The value of
∫ tn
tj
f(y)dy can be approximated with Right Riemann sum:∫ tn

tj

f(y)dy ∝ ∆t

(
f(tj + ∆t) + f(tj + 2∆t) + . . .+ f(tn)

)
= ∆t

(
f(tj+1) + f(tj+2) + . . .+ f(tn)

)
= ∆t

n∑
i=j+1

f(ti).

We will need to evaluate the integrand f(y) at tj+1 to tn, in total n− j knots. In this way,

we can obtain g1(t1) to g1(tn−1). To obtain g1(tn−1), we only need to evaluate f(tn).

The integrand for calculating g1(tj) is

f(ti) = g(ti)(ti − tj)
d−3
2 , i = j + 1, . . . , n.
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Note that the integrand’s second term depends on tj. Thus, the integrand will change with

tj at which we want to evaluate g1. Since t1 = 0 and we partition [t1, tn] evenly with space

∆t, we have

t2 = ∆t

t3 = 2∆t

. . .

tn−j+1 = (n− j)∆t.

Thus,

f(tj+1) = g(tj+1)(∆t)
d−3
2 = g(tj+1)(t2)

d−3
2

f(tj+2) = g(tj+2)(2∆t)
d−3
2 = g(tj+2)(t3)

d−3
2

. . . . . . . . .

f(tn−1) = g(tn−1)t
d−3
2

n−j

f(tn) = g(tn)
(
(n− j)∆t

) d−3
2 = g(tn)(tn−j+1)

d−3
2 .

(3.21)

From the Equations in (3.21) above, we can see that we need the value of g(tj+1) to g(tn)

and knots t2 to tn−j+1.

Table 3.1: Approximation of g1 via Riemman sum.

Evaluation of g1 Integrand Evaluation of g Knots Number of knots

g1(t1) f(t2) to f(tn) g(t2) to g(tn) t
(d−3)/2
2 to t

(d−3)/2
n n-1 points

g1(t2) f(t3) to f(tn) g(t3) to g(tn) t
(d−3)/2
2 to t

(d−3)/2
n−1 n-2 points

. . . . . . . . . . . . . . .

g1(tj) f(tj+1) to f(tn) g(tj+1) to g(tn) t
(d−3)/2
2 to t

(d−3)/2
n−j+1 n-j points

. . . . . . . . . . . . . . .

g1(tn−1) f(tn) g(tn) t
(d−3)/2
2 1 points

The process of evaluating g1 at knots t1 to tn−1 is summarized in Table 3.1. The first

column needs to be evaluated. The second column is the integrand. The third and forth
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columns are values required to compute the integrand and the last column is the total

number of knots at which the integrand needs to be evaluated.

With the approximation of g1(t1), . . . , g1(tn−1), we can use (3.18) to compute the ap-

proximation of

fg(−
√
tn−1), . . . , fg(−

√
t1), fg(

√
t1), . . . , fg(

√
tn−1). (3.22)

The sequence in (3.22) can be used to obtain a spline function approximation of fg.

3.5 B-spline

Assume that we have a sequence of samples (xi, yi), i = 1, . . . , n from an unknown function

y = f(x), and we want to obtain a smoothing estimator f̂(x) for the function, it is popular

Figure 3.1: A sequence of samples (red) from an unknown function (blue).

to model the unknown function f as a linear combination of K basis functions B1, . . . , BK ,

so that

ŷ =
K∑
j=1

αjBj(x). (3.23)

In such case, the model in Equation (3.23) can be written as

Y = Bα+ ε, (3.24)
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where Y = (y1, . . . , yn), ε = (ε1, . . . , εn) are the vector of error terms, the α = (α1, . . . , αK)

is the vector of coefficients, and B is a n by K design matrix

B =


B1(x1) B2(x1) . . . BK(x1)

B1(x2) B2(x2) . . . BK(x2)
...

...
...

B1(xn) B2(xn) . . . BK(xn)


with its ith row equal to basis functions B1, . . . , BK evaluated at xi.

There are a few options for the basis functions. Here we consider the commonly used

B-splines. The name“B-spline” is short for basis spline. A mth order spline is a piecewise

polynomial function of degree m− 1, that is continuous and has continuous derivatives of

order 1, . . . ,m− 1, at its knot points. See de Boor (1978) and Eilers and Marx (2021) for

more details. Figure 3.2 visualized the B-splines with order= 4 and degree= 3, which are

called cubic B-splines.

Figure 3.2: Example of Cubic B-slines.

B-splines can be constructed by the Cox-de Boor recursion formula, which was intro-

duced by de Boor (1978). Given a knot sequence t0, t1, . . . , tn, the B-splines of order 1 are

defined by

Bi,1(x) =

 1 if ti ≤ x < ti+1

0 otherwise
.
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The basis functions for order 1 can be viewed indicator functions. If x is between knots ti

and ti+1, the corresponding basis function, which is indexed by i, will be equal to 1, while

other basis functions are equal to zero. The higher-order B-splines are defined by recursion

Bi,k+1(x) = wi,k(x)Bi,k(x) +

(
1− wi+1,k(x)

)
Bi+1,k(x),

where

wi,k(x) =

 x−ti
ti+k−ti

if ti+k 6= ti

0 otherwise
.

Thus, in order to compute basis functions of higher orders, we have to compute those for

all lower orders first.

3.6 B-spline Smoothing with Constraints

In order to estimate the coefficient vector α, we minimize the objective function

S = (Y −Bα)T (Y −Bα)

= αTBTBα− 2αTBTY + Y TY .
(3.25)

To minimize S, we solve linear system

∂S

∂α
= 2αTBTB − 2BTY ⇐⇒ BTBα = BTY .

Beware that the B is not a square matrix and does not have inverse. The solution is

α = (BTB)−1BTY .

By so far, the fitting is not smooth because smoothness is not regulated yet. For B-spline

smoothing, the term of smoothing penalty needs to be added onto the objective funtion

(3.25),

S = (Y −Bα)T (Y −Bα) + λ(Dα)T (Dα) (3.26)

where the λ is the fixed smoothing parameter, such as 1000, and D is the matrix that forms

differences of α, usually second differences. Then we solve the new linear system

∂S

∂α
= 2αTBTB − 2BTY + 2αTλDTD = 0
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which has solution

α = (BTB + λDTD)−1BTY .

If we want to enforce positiveness of the fitting, another penalty term καTVα has to

be added onto the objective function in (3.26), where the V is diagonal matrix with

vj = I(αj ≤ 0).

Given V , α is computed as

α = (BTB + λDTD + κV )−1BTY .

Beware that the value of V is not given a priori, but updated with α iteratively until

convergence. For details about B-spline smoothing with shape constraints, see Chapter 8

of Eilers and Marx (2021).

3.7 Approximation of fg and Qg

We use B-spline smoothing on the sequence of samples in (3.22) to obtain a B-spline

function as an approximation for fg, which can simplify the evaluation of copula likelihood

in (3.14).

To approximate the marginal quantile function Qg, first we need the marginal cumula-

tive distribution function Fg, which is the integral of fg. Since fg is already approximated

with a B-spline function, it is not difficult to obtain its integral. After that, we have the

value of Fg at a grid

Fg(−
√
tn−1), . . . , Fg(−

√
t1), Fg(

√
t1), . . . , Fg(

√
tn−1). (3.27)

Now we flip x-axis and y-axis of the sample (3.27) and apply interpolation to obtain the

functional approximation of Qg. For simplicity, we used linear interpolation here, the

same as the one used in Derumigny and Fermanian (2022). Now the evaluation of copula

likelihood (3.14) becomes practical in speed as well as accuracy.
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3.8 Sampling Scheme

Since the likelihood function (3.14) is complex, the joint posterior function as well as con-

ditional posterior functions will are complicated. Thus, we use Metropolis algorithm to

sample all parameters, including mixing proportions and parameters in mixture compo-

nents.

Recall that the mixing proportions (w1, . . . , wK) are transformed into unconstrained

(v1, . . . , vK−1), so we operate on the unconstrained variables instead. For the transformed

mixing proportions, the proposal distributions are all uniform. The new value v
(p)
j is pro-

posed by v
(p)
j = U(v

(c)
j − δv, v

(c)
j + δv), where δv is a fixed tuning parameter and v

(c)
j is the

current value of vj.

We sample v = (v1, . . . , vK−1) jointly. First, we propose v(p) = (v
(p)
1 , . . . , v

(p)
K−1). The

proposed value v(p) is accepted with probability min

{
1, pv(v(p)|··· )

pv(v(c)|··· )

}
, where pv is the posterior

density of v(p) = (v
(p)
1 , . . . , v

(p)
K−1) conditioned on the current values of other parameters.

Before starting the MCMC loop, we need to tune the value of δv by running 500 iterations

and see the acceptance rate. If the acceptance rate is between 0.3 and 0.6, then the value

of δv is assumed to be good.

For other parameters, such as the µjs in the truncated normal mixture, the Metropolis

algorithm is slightly different. Because those parameters have upper and lower bounds,

if the proposed values are not inside of the range set by the prior, the algorithm keeps

proposing until a proper value is obtained. Other steps of Metropolis algorithm are the

same with those of drawing mixing proportions. Besides, proposal distributions are also

uniform.
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Chapter 4

Simulation Study

4.1 Data Generation

To sample from an elliptical copula, we can sample from its associated elliptical distribution

first, then apply the copula transform. The steps of sampling from an elliptical copula

C(Ω, g) is described in Algorithm 3.

Algorithm 3 Generating data from elliptical copula C(Ω, g)

Input: The correlation matrix Ω and the generator g.

1: Compute h(r) from g using Equation (2.1);

2: Sample R from the distribution h(r);

3: Sample U s uniformly from the unit sphere in Rd;

4: Compute the Cholesky factor A such that AAT = Ω;

5: Compute X = RAU s, which is a sample from elliptical distribution E(0,Ω, g);

6: Compute the marginal CDF Fg from g via Equation (2.6);

7: Deliver U = Fg(X).

Output: A sample U from C(Ω, g).

4.2 Bivariate Cases

For the simulation study on 2-dimensional cases, we used five elliptical copulas from Deru-

migny and Fermanian (2022). They have generators (before normalization and standard-

ization):
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1. g(t) = 1/(1 + t2);

2. g(t) = exp(−t);

3. g(t) = exp(−t)+bump(t), where bump(x) = 1{x ∈ [1, 1+π}(x−1)(1+π−x) sin(x−1)

is a smooth function supported on [1, 1 + π];

4. g(t) = t/(1 + t3);

5. g(t) = t2 exp(−t2).

Their correlation matrix is

Ω =

 1 0.2

0.2 1

 ,
which is assumed known.

For each copula, we generated N = 1000 independent samples using steps in Algo-

rithm 3. The MCMC had 10000 iterations with the first 5000 as burn-in stage. Each

iteration returned an estimate of the generator g. In total, we got 5000 estimates from the

MCMC loop. Then we computed the posterior mean of these estimates and denoted it as

ĝ.

Each simulation study was repeated for 40 times on independent data sets generated

from the same copula. Thus, for each copula, we have 40 posterior means of estimates for

its generator. We plotted the 40 ĝs together with the true generator g(t). We call this plot

as “spaghetti plot”.

We also evaluated these 40 ĝs and the true generator g at a grid (t1, t2, t3, t4, t5) and

calculated the distance between ĝ(t`) and g(t`), ` = 1, . . . , 5. Box plot of the distances was

created at each value of t`.

In Simulation 1 - 3, we used the model based on a mixture of truncated normal distri-

butions (3.12), and in Simulation 4 - 5, we used the model based on a mixture of noncentral

F distributions (3.5).

35



(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.1: Simulation 1: g(t) = 1/(1 + t2)

(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.2: Simulation 2: g(t) = exp(−t)

36



(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.3: Simulation 3: g(t) = exp(−t) + bump

(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.4: Simulation 4: g(t) = t/(1 + t3)
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(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.5: Simulation 5: g(t) = t2 exp(−t2)

The results are shown in Figure 4.1 to Figure 4.5. In each figure, The (a) is the

spaghetti plot, which includes the true g (black dashed line) and the estimates ĝs (solid

colored lines). The (b) is box plot of the distances between the value of the true generator

and ĝ evaluated at the grid. It has to be mentioned that the plotted generators and their

estimates are normalized and standardized.

From the figure (a) of each simulation, we can see the ĝ are close to the true generator

almost everywhere. From the box plots, we can see the distances are all very small, including

outliers, which indicates goodness of fit. The distance between ĝ and g(t) can be larger

when g(t) take sharp turns. But overall, the fittings are satisfying.
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4.3 Higher Dimensions

4.3.1 Gaussian Copula

We generated N = 1000 observations from a 3-dimensional Gaussian copula with correla-

tion matrix

Ω =


1 0.5 0.6

0.5 1 0.7

0.6 0.7 1

 , (4.1)

and also assumed the correlation matrix was known. The model used is based on a mix-

ture of truncated normal distributions. The MCMC settings are the same with that in

Section 4.2. From the spaghetti plot and box plot in Figure 4.6, we can see the fitting is

also very good.

(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.6: Gaussian copula: g(t) = exp(−t/2)

4.3.2 Logistic Copula

We also tested our method ion a less common elliptical copula, which is a 3-dimensional

logistic copula with unnormalized generator g(t) = e−t/(1 + e−t). The correlation matrix

is the same one in (4.1) and is assumed known. The model is also based on a mixture of
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truncated normal distributions and MCMC settings are the same. The results in Figure 4.7

look good, though the boxplot has many outliers, which are all very small numbers.

(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.7: Logistic copula: g(t) = e−t/(1 + e−t)

4.3.3 Student-t Copula

We generated N = 1000 observations from a Student-t copula with degree of freedom ν = 5

and correlation matrix

Ω =



1 0.2 0 0 0

0.2 1 0.2 0 0

0 0.2 1 0.2 0

0 0 0.2 1 0.2

0 0 0 0.2 1


.

Student-t copulas have their generators of the form g(t) ≈ (1 + t/ν)−(d+ν)/2. We use the

model based on the mixture of noncentral F distributions. Again, MCMC settings are the

same with that in Section 4.2. By looking at the Figure 4.8, we can see that the distance

between the true and estimated generators is a little larger when t is around zero. Besides,

the fitting is still acceptable.
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(a) The fitted and true g(t) (b) Distance between the true and fitted g(t)

Figure 4.8: Student-t copula: g(t) = (1 + t/ν)−(ν+d)/2
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Chapter 5

Application

5.1 Meta-elliptical Distribution

A typical application of elliptical copulas is to construct meta-elliptical distributions, which

are also introduced by Fang et al. (2002). Elliptical distributions require their marginal

distributions to be also elliptical. However, many real world data do not satisfy this condi-

tion. For modeling multi-dimensional data sets with heterogeneous margins, a good choice

would be meta-elliptical distributions. A meta-elliptical distribution consists of an ellipti-

cal copula and a collection of arbitrary chosen continuous marginals. In other words, the

dependence structure is induced by an elliptical copula while its marginal distributions are

not necessarily elliptical.

A d-dimensional meta-elliptical distribution can be denoted as ME(Ω, g;F1, . . . , Fd),

where Ω is a correlation matrix, g is a copula generator and F1, . . . , Fd are its marginal

CDFs. Its CDF is in the form of

FME(x1, . . . , xd) = CE

(
F1(x1), . . . , Fd(xd)

)
,

where CE is the CDF of the elliptical copula CE(Ω, g). The PDF of ME is given by

fME(x1, . . . , xd) = cE

(
F1(x1), . . . , Fd(xd)

) d∏
`=1

f`(x`),

where the cE is the PDF of CE(Ω, g) and f`s are marginal PDFs.

When we estimate a meta-elliptical distribution, its marginal distributions and copula

can be estimated separately. Assume we observe a data set x1, . . . , xn from meta-elliptical
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distribution ME(Ω, g;F1, . . . , Fd),
x′1

x′2
...

x′n

 =


x11 x12 . . . x1d

x21 x22 . . . x2d

. . . . . . . . . . . .

xn1, xn2, . . . , xnd

 , (5.1)

we often estimate its marginal distributions first. There are many ways to estimate

F1, . . . , Fd, such as normal mixtures, Gamma mixtures, kernel densities, empirical CDFs,

etc. After we obtained estimates of marginal CDFs, denoted as F̂1, . . . , F̂d, we apply the

copula transform in Theorem 2 on data (5.1),

uij = F̂j(xij), j = 1, . . . , d, i = 1, . . . , n, (5.2)

to obtain the pseudo data
u′1

u′2
...

u′n

 =


u11 u12 . . . u1d

u21 u22 . . . u2d

. . . . . . . . . . . .

un1 un2 . . . und

 , (5.3)

which can be called “copula data”. The copula data (5.3) can be viewed as a data set from

an elliptical copula CE(Ω, g), which is the copula ofME(Ω, g;F1, . . . , Fd). The estimation

of copula is often performed on the copula data.

5.2 Water Quality Data

The water quality data was collected by SRBC (Susquehanna River Basin Commission),

which contain parameters of the water at Susquehanna River Basin in the United States,

such as temperature (Celsius), flow (cubic feet/second), dissolved oxygen (mg/L), dissolved

nitrogen (mg/L), from 1985 to 2021. The data are available at (https://www.srbc.net/portal

s/water-quality-projects/sediment-nutrient-assessment/sites/susquehanna-river-towanda.h

tml).
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Li et al. (2019) used the subset of the data (from 1988 to 2018) to perform a copula-based

analysis for time series. Thus, this is a time series data set, but we ignore the sequential

dependence at this moment. We use elliptical copula to model the dependence between

the water temperature (Temp) and the dissolved nitrogen (DN). In such case, the joint

distribution of Temp and DN is assumed to be a meta-elliptical distribution. Nitrogen is

one of the most common elements existing in many chemical compounds, such as nitrogen

gas and protein. The dissolved nitrogen in water is mainly from the decomposition of

organic compounds, including fish drops, died water plants and water creatures, etc. The

rate of dissolving is related to the water temperature. Mostly, when the temperature goes

up, so does the dissolving rate. This is because that heating up a solvent makes the

molecules move faster, which increases the frequency of the solvent molecules collide with

the solute.

(a) Water temperature (Celsius). (b) Dissolved nitrogen (mg/L).

Figure 5.1: Histograms of water temperature and dissolved nitrogen.

The histograms in Figure 5.1 show heterogeneity of marginal distributions. The marginal

distribution of the water temperature is multi-modal while the one of the dissolved nitrogen

is uni-modal with slight skewness on the right side.
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5.3 Estimation and Results

We estimate marginal distributions of Temp and DN first. We used 3-component nor-

mal mixture to approximate the marginal distribution of the water temperature while the

dissolved nitrogen’s distribution is estimated by kernel densities. The estimation was per-

formed with functions “fitgmdist” and “fitdist” in Matlab, respectively. In Figure 5.2, we

can see the curves of fitted PDFs above the histograms, which shows very good fitting

results.

(a) Water temperature (Celsius). (b) Dissolved nitrogen (mg/L).

Figure 5.2: Fitted marginal PDFs of water temperature and the dissolved nitrogen.

In the next step, we use the copula transform to obtain the copula data. We denoted

the estimates of marginal PDFs as f̂T and f̂N , and marginal CDFs as F̂T and F̂N . The

copula data can be computed by

U = F̂T (Temp)

and

V = F̂N(DN).

We plotted the marginal histograms of copula data in Figure 5.3. They have standard uni-

form distributions as we expected. The bivariate histogram is demonstrated in Figure 5.4.
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We can see that it has radial symmetry, which indicates that elliptical copulas are suitable

to fit this copula data set.

(a) Water temperature. (b) Dissolved nitrogen.

Figure 5.3: Marginal histograms of copula data.

Figure 5.4: Histogram of copula data.

We use the sample correlation as the estimate of Ω, which is

Ω̂ =

 1 −0.46

−0.46 1

 .
Thus, in the MCMC loop, we only estimate the generator of the copula. The generator is

estimated with the model based on the mixture of truncated normal distributions. We use
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five components and truncated the generator to 15, which assumes the generator vanish

at t = 15. The prior setting are the described in Section 3.2, the same as that for the

simulation studies. The MCMC loop contains 10000 iterations with the first 5000 as burnin.

The results are demonstrated in Figure 5.5 and Figure 5.6. The estimated copula PDF and

generator are the posterior means after the burnin stage. We can see that the results look

very good. By looking at the plot of the estimated generator, the elliptical copula of the

water temperature and the dissolved nitrogen is a Gaussian copula.

Figure 5.5: Fitted copula density on the histogram of copula data.

Figure 5.6: Fitted generator with 95% credible interval.
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Chapter 6

Discussion

In this dissertation, we provided a method to estimate the generator of elliptical copulas

in Bayesian framework. It is more convenient and rigorous than old approaches in the

literature. Our method is inspired by the iterative algorithm in Derumigny and Fermanian

(2022) and has better performance in the simulation studies. In the application of the

water quality data, our approach also shows excellent results.

The major contribution of our work is that we provided a framework, instead of a single

model, to estimate the generators of elliptical copulas. The framework enables researchers

to construct new models or extend the two models we provided according to some certain

situations. Besides, we offered a steady way to evaluate the copula likelihood, including

evaluation of the marginal PDF fg and the inverse CDF Qg. Although we still need to find

out at which point the generator starts to vanish into the x-axis. It can be a difficult task

in practice and may require some trial and error.

For future work, we might add more flexible models in our existing framework. Besides,

it would be nice to find a better way to evaluate fg and Qg, which can avoid truncating

the generator g. We shall also apply our method on real world data of higher dimensions

and evaluate the results with tests of goodness of fit introduced by Genest et al. (2009).
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Chapter 7

Appendix: Matlab Code

7.1 Utilities

1 function [T_grid , g1_grid] = get_g1(g, dim , g_trunc)

2 % Return g1 values on grid T_d , computed by Riemann Summ

3 % input:

4 % g: generator

5 % output:

6 % T_grid: grid

7 % g1_grid: evaluation of g1 on T_grid

8

9 % make grid

10 dx =0.01;

11 T_grid_raw =(0: dx: g_trunc) ’;

12

13 T_grid_plus = T_grid_raw .^((dim -3) /2); % evaluate first term on grid

14 g_grid=g(T_grid_raw); % evaluate g on grid

15

16 n1=length(T_grid_raw);

17 g1_grid_raw = zeros(n1 -1, 1); % we can only get g1(1:n1 -1)

18

19 for j = 1:(n1 -1)

20 g1_grid_raw(j)=dot(g_grid ((j+1):n1), T_grid_plus (2:(n1-j+1)));

21 end

22

23 T_grid=T_grid_raw (1:n1 -1); % only n1 -1 points are valid!

24 g1_grid = g1_grid_raw*dx * (pi^((dim -1) /2) / gamma((dim -1)/2));
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25

26 end

Listing 7.1: Evaluation of g1

1 function [sp] = BsplineFit_positive(x, y, xl, xr, nseg , bdeg)

2 % x: covariate values of the sampe

3 % y: response values of the same

4 % xl: left bound of segmentation

5 % xr: right boundary for segmentation

6 % nseg: the number of segments between xl and xr

7 % bdeg: degree , which is equal to order -1

8 [B, knots] = bbase(x, xl, xr, nseg , bdeg);

9 % number of knots

10 nknots=length(knots);

11 order=bdeg +1;

12 % number of basis functions

13 nbasis=nknots -order;

14

15 lambda =1000;

16 D = diff(eye(nbasis), 2);

17 BTB=B’*B; %nbasis by nbasis

18 DTD=D’*D; %nbasis by nbasis

19 BTY=B’*y; % nbasis by N times N by 1= nbasis by 1

20

21 % get coefficients

22 kappa = 1e8;

23 D0=eye(nbasis);

24 a=ones(nbasis , 1);

25 epsilon =1.0e-4;

26

27 for i=1:100

28 v_vec=(sign(D0*a) <=0);

29 V=diag(v_vec);

30
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31 % update a

32 a_new=(BTB + lambda * DTD+kappa*D0 ’*V*D0)\BTY;

33 dz=max(abs(a_new -a));

34

35 if dz< epsilon

36 %fprintf(strcat (" Converged after ", num2str(i), " iternations !\n"));

37 break;

38 end

39 if i==100 && dz> epsilon

40 fprintf (" Warning: Divergent after 100 iterations !\n");

41 end

42 a=a_new;

43 end

44 a=max(a, realmin);

45 sp=spmak(knots , a’);

46 end

Listing 7.2: Bspline smoothing with constraint of positiveness.

1 function [f1_sp , f1] = get_f1(g, dim , g_trunc)

2 % return f1

3 % g: generator

4 % dim: dimension

5

6 [T_grid , g1_grid] = get_g1(g, dim , g_trunc);

7

8 % get sample of f1 on grid

9 f1x=[-flipud(sqrt(T_grid)); sqrt(T_grid)];

10 f1y=[ flipud(g1_grid); g1_grid ];

11

12 % get spline function of f1

13 xl=min(f1x);

14 xr=max(f1x);

15

16 n1=length(f1x);

54



17 %nseg=n1;

18 nseg=n1/10;

19 %nseg =1000;

20 bdeg =3;

21

22 % get b form of f1, f1_sp must be positive between -sqrt(g_trunc) and

sqrt(g_trunc)

23 f1_sp=BsplineFit_positive(f1x , f1y , xl, xr, nseg , bdeg);

24

25 % normalize f1_sp

26 f1inte=diff(fnval(fnint(f1_sp), [xl; xr]));

27 f1_sp.coefs=f1_sp.coefs ./ f1inte;

28

29 f1=@(x) fnval(f1_sp , x);

30

31 end

Listing 7.3: Approximation of fg.

1 function [g_n] = g_normalize(g, dim)

2 % return normalized copula generator.

3

4 I1=integral(@(s) s.^( dim/2-1).*g(s), 0, Inf);

5 SD=pi^(dim /2)/gamma(dim /2);

6 g_n=@(t) 1/SD/I1*g(t);

7

8 end

Listing 7.4: Normalization of generator.

1 function [g_s , A, b] = g_standardize(g, dim , b)

2 % g: a normalized generator

3 % g take column input , return column output

4 % dim: copula dimension

5 % return standardized copula generator , which is unique.
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6

7 %make this interation faster and more robust!

8 I2=integral(@(s) s.^((dim -3) /2).*g(s), 0, Inf);

9

10 A=(b/I2/sd_EllipCop(dim -1))^2;

11 g_s=@(t) A^(dim /2).*g(A.*t);

12

13 end

Listing 7.5: Standardization of generator.

7.2 Model Based on Noncentral F Mixture

1 function gt= g_ncF(t, dim , v2, DELTA)

2 % return g(t) from a noncentral F distribution

3 % v2: seconde degree of freedom

4 % DELTA: noncentrality parameters

5

6 gt=gamma(dim /2)/(pi^(dim /2)).*(t.^(1-dim /2)).* ncfpdf(t, dim , v2 , DELTA)

;

7

8 end

Listing 7.6: Generator based on noncentral F -distribution.

1 function [gmix] = g_ncFMix(t, dim , Weights , v2s , DELTAs)

2 % Return the generator from a noncentral F Mixture

3 % t: ROW or COLUMN vector

4 % Weights: mixing proportions

5

6 ndat=length(t);

7 K=length(Weights);

8

9 if (size(t, 1)>size(t, 2))

10 % if t is column vector
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11 % repeat by columns

12 tMat=repmat(t, 1, K); % n by K

13

14 % parameters are always columns

15 % transpose and repeat byt rows

16 WeightsMat=repmat(Weights ’, ndat , 1); % n by K

17 v2sMat=repmat(v2s ’, ndat , 1);

18 deltasMat=repmat(DELTAs ’, ndat , 1);

19

20 g_mat=g_ncF(tMat , dim , v2sMat , deltasMat);

21

22 gmix= sum(WeightsMat .*g_mat , 2);

23 else

24 % if t is row vector , parameters are still columns!

25 % repeat by rows

26 tMat=repmat(t, K, 1); % K by n

27

28 WeightsMat=repmat(Weights , 1, ndat); % K by n

29 v2sMat=repmat(v2s , 1, ndat);

30 deltasMat=repmat(DELTAs ,1, ndat);

31

32 g_mat=g_ncF(tMat , dim , v2sMat , deltasMat);

33

34 gmix= sum(WeightsMat .*g_mat , 1);

35 end

36

37 end

Listing 7.7: Generator based on noncentral F mixture.

1 function [g_s , f1, Q1] = getFuncF(dim , Weights , v2s , DELTAs , g_trunc , b

)

2 % Return related functions according to dim and mixParameters

3

4 g =@(t) g_ncFMix(t, dim , Weights , v2s , DELTAs);
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5 g_s = g_standardize(g, dim , b);

6

7 [f1_sp , f1] = get_f1(g_s , dim , g_trunc);

8 cdf1 = get_cdf1(f1_sp , g_trunc);

9 Q1 = get_Q1(cdf1 , g_trunc);

10

11 end

Listing 7.8: Function conversions for model based on noncentral F mixture.

1 function [logPost] = logPostCopulaNCF(U, dim , Omega , Etas , v2s , DELTAs ,

g_trunc , b)

2 % Return log Likelihood for Copula data at mixParameters

3 % U: Copula data ndat by dim

4

5 ndat=size(U,1);

6 % Transform back to constrained

7 Weights=Etas_to_Weights(Etas);

8 K=length(Weights); % number of components

9 %sum(Weights)

10

11 [g, f1, Q1] = getFuncF(dim , Weights , v2s , DELTAs , g_trunc , b);

12 % Get pseudo data

13 Z=Q1(U);

14 Rsq=zeros(ndat , 1); % ndat by 1 vector

15 for i=1: ndat

16 Rsq(i)=Z(i, :)/Omega*Z(i, :) ’;

17 end

18

19 logNum=reallog(g(Rsq));

20

21 f1Z=f1(Z);

22 logDen=reallog(f1Z); % n by dim

23 logLike=sum(logNum , ’all’)-sum(logDen , ’all’);

24
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25 logPWeights = dirichletlogpdf(Weights , 1/K*ones(K, 1));

26 JWeights = Jacobian_WtoEta(Etas);

27 logJWeights=reallog(abs(det(JWeights)));

28

29 logPost=logLike+logPWeights+logJWeights;

30

31 end

Listing 7.9: Log posterior distribution for the model based on noncentral F mixture.

1 %% Initialize parameters

2 % Weights trans

3 Etas=normrnd(0, 1, K-1, 1);

4 Weights=Etas_to_Weights(Etas);

5

6 % v2 trans and DELTA trans

7 v2s=unifrnd(v2L , v2U , K, 1);

8 DELTAs=unifrnd(DELTAL , DELTAU , K, 1);

9

10 % hold values after burn in, each column is one sample

11 weights_chain=zeros(K, nloop -nwarmup);

12 v2_chain=zeros(K, nloop -nwarmup);

13 DELTA_chain=zeros(K, nloop -nwarmup);

14 e_chain=zeros(3, nloop -nwarmup);

15

16 for i=1: nloop

17

18 if mod(i, 1)==0

19 fprintf ("loop: %d\n", i)

20 end

21

22 % Draw v2_trans

23 v2s1=unifrnd(v2s -v2_tuning , v2s+v2_tuning);

24 % repeat untile get proposal in range

25 while (any(v2s1 <v2L) || any(v2s1 >v2U))
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26 v2s1=unifrnd(v2s -v2_tuning , v2s+v2_tuning);

27 end

28

29 A=logPostCopulaNCF(U, dim , Omega , Etas , v2s1 , DELTAs , g_trunc , b);

30 B=logPostCopulaNCF(U, dim , Omega , Etas , v2s , DELTAs , g_trunc , b);

31 logRate=A-B ;

32 Rate=exp(logRate);

33 e1=min(1,Rate);

34 u=rand;

35 if u<=e1

36 v2s=v2s1;

37 end

38

39 % Draw DELTA_trans

40 DELTAs1=unifrnd(DELTAs -DELTA_tuning , DELTAs+DELTA_tuning);

41 % repeat untile get proposal in range

42 while (any(DELTAs1 <DELTAL) || any(DELTAs1 >DELTAU))

43 DELTAs1=unifrnd(DELTAs -DELTA_tuning , DELTAs+DELTA_tuning);

44 end

45

46 A=logPostCopulaNCF(U, dim , Omega , Etas , v2s , DELTAs1 , g_trunc , b);

47 B=logPostCopulaNCF(U, dim , Omega , Etas , v2s , DELTAs , g_trunc , b);

48 logRate=A-B;

49 Rate=exp(logRate);

50 e2=min(1,Rate);

51 u=rand;

52 if u<=e2

53 DELTAs=DELTAs1;

54 end

55

56 % Draw Etas

57 Etas1=unifrnd(Etas -Eta_tuning , Etas+Eta_tuning);

58

59 A=logPostCopulaNCF(U, dim , Omega , Etas1 , v2s , DELTAs , g_trunc , b);

60



60 B=logPostCopulaNCF(U, dim , Omega , Etas , v2s , DELTAs , g_trunc , b);

61 logRate=A-B;

62 Rate=exp(logRate);

63 e3=min(1,Rate);

64 u=rand;

65 if u<=e3

66 Etas=Etas1; %update eta

67 Weights=Etas_to_Weights(Etas);

68 end

69

70 % record value after burn in

71 % each COLUMN is a sample

72 if i>nwarmup

73 v2_chain(:, i-nwarmup)=v2s;

74 DELTA_chain (:, i-nwarmup)=DELTAs;

75 weights_chain (:, i-nwarmup)=Weights;

76 e_chain(:, i-nwarmup)=[e1; e2; e3];

77 end

78

79 end

Listing 7.10: MCMC loop for noncentral F mixture.

7.3 Model Based on Truncated Normal Mixture

1 function gt= g_trcnorm_Lieb(t, dim , a, mu, sigma)

2 % a: any positive value for the transformation function

3 const=gamma(dim/2)/(pi^(dim/2));

4 y=-a+(a^(dim/2)+t.^(dim/2)).^(2/ dim);

5 term1=(a^(dim/2)+t.^(dim/2)).^(2/dim -1).*t.^(dim/2-1);

6 gt=const .*term1 .* trcnormpdf(y, mu , sigma);

7

8 end

Listing 7.11: Generator based on truncated normal distribution.
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1 function [gmix] = g_trcnormMix_Lieb(t, dim , a, Weights , Mu)

2 % Return the generator from a Gamma Mixture

3 % t: ROW or COLUMN vector

4 % Weights: mixing proportions

5

6 Sigma =1;

7

8 ndat=length(t);

9 K=length(Weights);

10

11 if (size(t, 1)>size(t, 2))

12 % if t is column vector

13 % repeat by columns

14 tMat=repmat(t, 1, K); % n by K

15

16 % parameters are always columns

17 % transpose and repeat byt rows

18 WeightsMat=repmat(Weights ’, ndat , 1); % n by K

19 MuMat=repmat(Mu’, ndat , 1);

20

21 g_mat=g_trcnorm_Lieb(tMat , dim , a, MuMat , Sigma);

22

23 gmix= sum(WeightsMat .*g_mat , 2);

24 else

25 % if t is row vector , parameters are still columns!

26 % repeat by rows

27 tMat=repmat(t, K, 1); % K by n

28

29 WeightsMat=repmat(Weights , 1, ndat); % K by n

30 MuMat=repmat(Mu, 1, ndat);

31

32 g_mat=g_trcnorm_Lieb(tMat , dim , a, MuMat , Sigma);

33

34 gmix= sum(WeightsMat .*g_mat , 1);
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35 end

36

37 end

Listing 7.12: Generator based on truncated normal mixture.

1 function [logPost] = logPostCopulaTrcnorm_Lieb(U, dim , a, Omega , Etas ,

Mu , g_trunc , b)

2 % Return log Likelihood for Copula data at mixParameters

3 % U: Copula data ndat by dim

4 % mixParametersTrans 3K-1 include:

5 % etas (K-1), AlphaTrans(K)

6

7 ndat=size(U,1);

8

9 % Transform back to constrained

10 Weights=Etas_to_Weights(Etas);

11 K=length(Weights); % number of components

12

13 [g, f1, Q1] = getFuncTrcnorm_Lieb(dim , a, Weights , Mu, g_trunc , b);

14

15 % Get pseudo data

16 Z=Q1(U);

17 Rsq=zeros(ndat , 1); % ndat by 1 vector

18 for i=1: ndat

19 Rsq(i)=Z(i, :)/Omega*Z(i, :) ’; %make this more efficient!

20 end

21

22 logNum=reallog(g(Rsq));

23

24 f1Z=f1(Z);

25 logDen=reallog(f1Z); % n by dim

26 logLike=sum(logNum , ’all’)-sum(logDen , ’all’);

27

28 logPWeights = dirichletlogpdf(Weights , 1/K*ones(K, 1));
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29 JWeights = Jacobian_WtoEta(Etas);

30 logJWeights=reallog(abs(det(JWeights)));

31

32 logPost=logLike+logPWeights+logJWeights;

33

34 end

Listing 7.13: Log posterior distribution for the model based on truncated normal mixture.

1 function [g_s , f1, Q1] = getFuncTrcnorm_Lieb(dim , a, Weights , Mu,

g_trunc , b)

2 % Return related functions according to dim and mixParameters

3

4 g =@(t) g_trcnormMix_Lieb(t, dim , a, Weights , Mu);

5 g_s = g_standardize(g, dim , b);

6

7 [f1_sp , f1] = get_f1(g_s , dim , g_trunc);

8 cdf1 = get_cdf1(f1_sp , g_trunc);

9 Q1 = get_Q1(cdf1 , g_trunc);

10

11 end

Listing 7.14: Function conversions for model based on truncated normal mixture.

1 %% Initialize parameters

2 % Weights trans

3 Etas=normrnd(0, 1, K-1, 1);

4 Weights=Etas_to_Weights(Etas);

5 Mu=unifrnd(Mu_L , Mu_U , K, 1);

6

7 % MCMC chains , each column is one sample

8 weights_chain=zeros(K, nloop -nwarmup);

9 Mu_chain=zeros(K, nloop -nwarmup);

10 e_chain=zeros(2, nloop -nwarmup);

11
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12 for i=1: nloop

13

14 if mod(i, 100) ==0

15 fprintf ("loop: %d\n", i)

16 end

17

18 % Draw Mu

19 Mu1=unifrnd(Mu -Mu_tuning , Mu+Mu_tuning);

20 % repeat untile get proposal in range

21 while (any(Mu1 <Mu_L) || any(Mu1 >Mu_U))

22 Mu1=unifrnd(Mu -Mu_tuning , Mu+Mu_tuning);

23 end

24

25 A=logPostCopulaTrcnorm_Lieb(U, dim , a, Omega , Etas , Mu1 , g_trunc , b);

26 B=logPostCopulaTrcnorm_Lieb(U, dim , a, Omega , Etas , Mu, g_trunc , b);

27

28

29 logRate=A-B;

30 Rate=exp(logRate);

31 e1=min(1,Rate);

32 u=rand;

33 if u<=e1

34 Mu=Mu1;

35 end

36

37 % Draw Etas

38 Etas1=unifrnd(Etas -Eta_tuning , Etas+Eta_tuning);

39

40 A=logPostCopulaTrcnorm_Lieb(U, dim , a, Omega , Etas1 , Mu, g_trunc , b);

41 B=logPostCopulaTrcnorm_Lieb(U, dim , a, Omega , Etas , Mu, g_trunc , b);

42 logRate=A-B;

43 Rate=exp(logRate);

44 e2=min(1,Rate);

45 u=rand;
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46 if u<=e2

47 Etas=Etas1; %update eta

48 Weights=Etas_to_Weights(Etas);

49 end

50

51 % record value after burn in

52 % each COLUMN is a sample

53 if i>nwarmup

54 Mu_chain(:, i-nwarmup)=Mu;

55 weights_chain (:, i-nwarmup)=Weights;

56 e_chain(:, i-nwarmup)=[e1; e2];

57

58 end

59

60 end

Listing 7.15: MCMC loop for model based on truncated normal mixture.
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