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Abstract

The study uses various methods to compare the scaling parameters and long-term memory

behavior of financial and geophysical time series. The Cantor Detrended Fluctuation Anal-

ysis (CDFA) method is proposed to provide more accurate estimates of Hurst exponents.

The CDFA method is applied to real-time series and the results are verified. The study

also analyzes the memory behavior of daily Covid-19 cases before and after the announce-

ment of effective vaccines. Low and high-frequency data’s influence on the Hurst Index

estimation is investigated, and a new PCDFA method is proposed. The stability of the

Dow Jones Industrial Average is analyzed using a multi-scale normalized diffusion entropy

and conditional diffusion entropy. The study aims to investigate memory behavior in time

series using deep learning techniques in future work.
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Chapter 1

Introduction

A fractal is a geometric object with similar statistical properties at all scales. Successive

magnifications of a fractal make it look the same as the original fractal shape. This pattern,

which appears on smaller and smaller scales, is often known as self-similarity in fractal

mathematics [1, 2]. A self-similarity process is a type of stochastic process that exhibits self-

similarity phenomena. Self-similar processes occur in many areas of applied mathematics,

such as fractals, chaos theory, long-term memory processes, and spectral analysis. They

can exhibit long-term dependencies, also referred to as long memory persistence. This

phenomenon describes events in which the dependencies of a time series decrease more

slowly than exponential decay (typically power decay) [3].

Definition 1.0.1 (Stochastic Process). A stochastic process X(t) is self-similar if there

exists a constant H > 0 such that for any scaling factor a > 0, the processes {Xat}t≥0

and {aHXt}t≥0 have the same laws in the sense of a finite-dimensional distribution. The

constant H is called the self-similarity exponent of process X.

The variances of time series ranging from financial markets to geophysical phenomena

such as seismic energy released from volcanic eruptions are stochastic. It changes over

time and increases during periods of high volatility. This function is modeled by evaluat-

ing trends over shorter periods to determine fluctuations. There are scaling methods that

quantify the exponent of decay functions. We broadly group these methods into Variance

Scaling Methods (VSMs) and Probability Scaling Methods (PSMs). Some of these meth-

ods include Rescaled Range Analysis (R/S), Detrended Fluctuation Analysis (DFA), the

Truncated Lévy Flight (TLF), and Diffusion Entropy Analysis (DEA).
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Hurst’s Rescaled Range Analysis (R/S) method is a variance scaling method that sub-

divides an integrated time series into contiguous segment sizes and examines the integrated

range of variation (R). Then, a measure of variance, usually the standard deviation (S), is

determined as a function of segment size. The power law defines the approximate relation-

ship between the Rescaled Range Analysis (R/S) statistic and segment size [4].

The Detrended Fluctuation Analysis (DFA) by Peng [5] (1994) is a technique that

quantifies the same power law exponent of the R/S method. Like Hurst’s R/S method,

DFA is based on random walk theory [6, 7]. Addressing difficulties in determining correct

power law exponents of the R/S in non-stationary time series resulted in the introduction

of the DFA. Unlike the R/S, the DFA uses a local detrending approach (usually linear

regression) in the segments of the integrated series. It provides its power law exponents

protection against the effects of nonstationarity and pollution of time series by external

signals while eliminating spurious detection of long memory. It makes detecting the intrinsic

self-similarities in seemingly volatile time series possible. Empirical evidence has shown

that the DFA performs well compared to other VSMs, including the R/S, when estimating

power law exponents. Even though the DFA performs better than the R/S, it sometimes

tends to overestimate/underestimate the Hurst exponent.

In [8], the authors show that the estimation of the Hurst exponent is subject to the

choice of scale that can lead to an overestimation/underestimation of the Hurst exponent.

In order to address this DFA-related problem, we proposed Cantor Detrended Fluctuation

Analysis (CDFA). CDFA uses Cantor set theory to define non-overlapping equal segments

of the DFA methods to solve the problem. The Cantor set is constructed by removing

the middle part of a three-part series and repeating this process with the remaining short

segments. It is the prototype of a fractal [9]. There are videos and animations showing

the fractal properties of the Cantor set [10]. However, we will focus on this phenomenon

using the DFA power exponent as a fractal measure to prove the self-similarity property of

Cantor sets. We further check the relationship using real-time series and how the Cantor

scale (1/3n, n ≥ 0) solves the overestimation problem. The obtained Hurst exponent is then

2



compared to the conventional DFA and TLF to examine its performance. We implement

parallel CDFA optimization scheme (PCDFA) to address the computational complexity

of potentially large amounts of data (i.e., big data) at a high frequency, such as minutes

per minute. We investigate the impact of the CDFA Hurst exponent on runtime. We use

high- and low-frequency DJI and BTC data to evaluate the PCDFA algorithm for parallel

computing metrics such as speed-up ratio, efficiency, and overhead.

Usually, characterizing stochastic processes requires the study of determining asymp-

totic probability density distributions (pdf) and temporal correlations. Brownian motion

models the evolution of a particle’s position over time by assuming that the movement of

particles follows a diffusive process with Gaussian distribution. This model did not accu-

rately describe real-world time series because the kurtosis of the associated pdf is greater

than that of the Gaussian distribution [11]. The Truncated Lévy Flight (TLF) model

originated to address the difficulties of the Brownian motion for working in long-range

correlation scales. The TLF is a random walk with a heavy-tailed probability distribution

with a step length. Researchers have extended Lévy flight to include cases where random

walks occur on discrete grids rather than in contiguous space. [12, 13]. For instance, ani-

mals (including birds and humans) follow paths modeled by Lévy’s flight when searching

for food [14, 15, 16]. For a typical step size distribution that satisfies the power condition,

the distance from the start of a random walk approaches a stable distribution after many

steps. It allows you to model many processes using Lévy flights. In particular, this is a re-

sult of the generalized central limit theorem. Therefore, we use Lévy’s flight to model long

memory processes as demonstrated by real-time series data. Scaling exponent (0 < α ≤ 2)

of the TLF uses Gaussian and non-Gaussian distributions to measure the memory behavior

of time series following a diffusion process [1, 3, 17].

An alternative method to VSMs is the Diffusion Entropy Analysis (DEA) model devel-

oped by Scafetta et al. (2002), which falls under probability scaling methods (PSMs). DEA

can be used to determine whether a time series’ characteristics follow a Gaussian or Lévy

distribution. It can also determine if a time series has long-range correlations. Scafetta

3



argued that DEA is the only way to scale time series of complex processes [18] properly.

This method transforms the series into a diffusion process and determines the probability

that a particle belongs to a given optimal bin size. The monofractal approach of the DEA

uses the Shannon Entropy of Scafetta et al. [19]. The multifractal method uses a mix of the

Shannon and Rényi Entropy [20, 21] for different q weights to estimate scaling exponents.

An important result of this study is the proposal to study bull and bear markets in stocks

using a scale with multiple time lags to determine the Conditional Diffusion Entropy (CDE)

and Multi Scale Conditional Diffusion Entropy (MS-CDE). We use the study of optimal bin

widths in empirical histograms by Jizba et al. [22] to estimate the underlying probability

density function.

Understanding the stability of financial systems, as a result of the US sub-prime crisis,

has grown in importance for asset and derivative pricing, asset allocation, and risk manage-

ment among practitioners, researchers, and regulators in the domains of economics, math-

ematics, and physics in recent years [23, 24, 25, 26, 27, 28, 29]. These scaling approaches

characterize the dependence of observations separated in time series dominated by stochas-

tic properties. Researchers have applied some of these models to various domains, including

DNA sequencing, [30, 31, 32] neural oscillations, [33] speech pathology detection, [34] and

heartbeat fluctuation during different sleep stages [35], etc. We use established concepts

and methods in complex systems and econophysics to investigate unusual, chaotic, and

erratic behavior in economic systems, of which entropy is one. Numerous examples in the

literature show abrupt transitions from a steady state to a fundamentally different one,

building on previous research on financial crises as complex dynamic systems. In [36], the

authors discuss whether entropy reflects stock market uncertainty and disorder.

In this study, we use DFA and DEA to investigate long memory behavior in financial

and geophysical time series. We report the DFA and DEA scaling parameters, H and δ

respectively, and say that the time series exhibit long memory behavior if (H, δ) ∈ (0.5, 1],

anti-persistence if (H, δ) ∈ [0, 0.5), and H, δ = 0.5 for completely random noise to draw

conclusions. We generate a mathematical relationship between the TLF parameter α that

4



characterizes data and the resulting parameters H and δ of DFA and DEA that characterize

the self-similar feature, respectively. Then, we analytically prove the relationship between

α, H and δ. We also use a biological time series to determine the Hurst exponents of DFA

(H) and CDFA (Hc) and compare them with the corresponding TLF α. Here we observe

the overestimation problem of H and how Hc solves it. Next, we investigate the PCDFA for

a large financial time series. This shared-memory multiprocessing computational technique

tells us that the execution time of the sequential CDFA code increases significantly as the

amount of data increases. On the other hand, the PCDFA run time increases by a smaller

margin as the data size increases but provides the same Hc scaling exponent, making it

more efficient when dealing with big datasets.

Since its detection in December 2019, the novel coronavirus resulting from severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), a respiratory illness, has claimed thou-

sands of lives and devastated global economies together with the US. The World Health

Organization (WHO) classified it as a public health emergency. Since then, numerous pre-

cautionary measures have been set to protect lives (e.g. mask mandate, social distancing

etc.) and policies to get the economy back to normal (e.g. stimulus payments). Loads of

research are currently taking place to overcome the virus and its impact. Another applica-

tion we investigate in this study uses the Q-CDFA to analyze the highly erratic behavior

of daily Covid-19 cases in the United States before and after November 2020 when drug

manufacturers announced that they had developed and tested a vaccine that was over 90%

effective. We use the multifractal spectrum of the Q-CDFA to characterize the path and

predict the memory behavior of the time series on different time scales.

In [37], based on Tsallis and the Shannon entropy, the authors investigated the volatility

of seven stock market indices. Compared to other methods, such as convexity, variance, and

vector autoregression (VaR), the authors in [38] found that the information entropy method

can better quantify the risk associated with bonds and other financial securities. Therefore,

the need to identify potentially significant factors to reduce the negative consequences on

economic systems has received attention recently, even though global financial crisis are

5



caused by events generated in the financial industry sectors. In light of that, we employ

the proposed CDE and MS-CDE techniques to predict bull and bear markets. A market

that is expanding and where economic conditions are typically favorable is known as a bull

market. Bear market develops when the economy contracts and most stocks and equities

lose value. This experiment uses daily sampled Dow Jones Industrial Average (DJI) market

data from 2013 to 2021. For conditional entropy, Cq(t) = 1 implies random behavior in

financial markets, Cq(t) > 1 in a bull market and is less than 1 in a bear market.

The outline of this study is as follows. We look at the variance and probability scaling

methods such as the DFA, Q-DFA, DEA, and Q-DEA in Chapter 2. I also introduce the

concept of conditional diffusion entropy (CDE) and Multi Scale CDE (MS-CDE). TLF

model is also presented in this section to determine the relationship of its parameter to

DFA and DEA’s scaling parameters. I introduce the CDFA with proofs, illustrations,

and required steps for implementation. Finally, this section ends with the CDFA parallel

processing framework known as the PCDFA. Chapter 3 presents all the time series data sets

used for applications ranging from finance to geophysical and medical data. I review the

results and discussion of all applications undertaken in this study in Chapter 4. Chapter 5

concludes the study and outlines future research work.
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Chapter 2

Methodology

There are several methods to analyze self-similar behavior in time series. There are two

(2) main classes of models, namely variance scaling methods (VSMs) and probability-based

scaling methods (PSMs). VSMs use different measures of dispersion, like range, standard

deviation, variance, etc., to assess self-similar behavior. On the other hand, PSMs use

probability estimation theory to model disorder and chaos to determine the fractal pattern

in time series.

2.1 Variance Scaling Method (VSM)

2.1.1 Detrended Fluctuation Analysis (DFA)

The Monofractal DFA method, also called the DFA technique, is an innovative strategy

for uncovering long-range correlations in non-stationary time series. The technique was

advanced by Peng et al. in 1993 and has numerous applications in fields such as cloud for-

mation analysis, DNA examination, cardiac dynamics, climate study, solid-state physics,

and financial time series analysis. The following section demonstrates the steps for calcu-

lating DFA exponents numerically.

Let N be the length of the time series {Xi}Ni=1. The logarithmic ratio of the time series

is obtained. The length of the new time series M(t) will be N − 1.

M(t) = log

(
Xt+1

Xt

)
(2.1)
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for t = 1, 2, ..., N − 1. The absolute value of M(t) is integrated:

X(t) =
t∑
i=1

|M(i) | (2.2)

Next, the N − 1 length integrated time series is divided into m segments, each with a

length of n, without overlapping. Since the data is divided into segments of equal length,

there may be some remaining values. To consider these values, the same process is repeated

but starting from the end, resulting in a total of 2(N−1) segments. These are then averaged.

For each segment, a line of best fit is calculated to represent the trend, resulting in yn(i).

Finally, the root mean square errors (RMSE) is determined using the following formula.

F (n) =

√√√√ 1

2(N − 1)

2(N−1)∑
i=1

[X(i)−Xn(i)]2 (2.3)

The calculation is repeated for different box sizes to identify the relationship between

box size n and F (n). If there is a linear relationship between F (n) and n (i.e., box size)

when plotted on a logarithmic scale, it indicates that the fluctuations can be characterized

by a scaling exponent, H, which is the slope of the line that relates logF (n) to log n. This

results in the following mathematical relationship:

F (n) ∝ nH (2.4)

For data series with no fractal pattern, H = 0.5. For data series with long-memory,

0.5 < H < 1 and 0 < H < 0.5 for short-memory behavior.

2.1.2 Q-Order Detrended Fluctuation Analysis (Q-DFA)

As described by Kantelhardt in [39], the profile of the cumulative series Xt is divided into

Ns segments of equal length s. To include all data points, the same procedure is repeated

in the reverse direction, resulting in a total of 2Ns segments. A least squares regression is

performed on each segment of length u to estimate the local trends, as shown in equation

8



(2.5). The average of each segment collects the qth order fluctuation Fq, as described in

equation (2.6).

F2
S(u) =

1

s

s∑
i=1

[
Xu(i)− X̄u(i)

]2
(2.5)

Fq(S) =

{
1

2Ns

2Ns∑
u=1

[
F2
S(u)

]q/2}1/q

(2.6)

Next, the scaling behavior of fluctuations is obtained by determining the slope H(q) of

log-log plots of F2
q(S) versus segment length s for each value of q [3].

Fq(S) ∝ SH(q) =⇒ log [Fq(S)]−H(q) log (S) = 0 (2.7)

Based on the generalized Hurst Exponent (gHE), H(q), we derive the mass exponent (as

per equation (2.8)), the singularity exponent (equation (2.9)), and the singularity spectrum

(equation (2.10)).

τ(q) = qH(q)− 1 (2.8)

α = H(q) + qH ′(q) (2.9)

f(α) = q [α−H(q)] + 1 (2.10)

It is worth mentioning that when q = 2, the Q-DFA methodology is equivalent to the

traditional DFA. For time series data with no fractal characteristics, H(q) would equal 0.5.

If the scaling exponent H(q) falls within the range (0.5, 1], this suggests the presence of

long-memory in the data. Conversely, a value of H(q) in the interval [0, 0.5) implies that

the data has short-memory properties.
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2.2 Probability Scaling Methods (PSM)

2.2.1 Diffusion Entropy Analysis (DEA)

The DEA can be utilized to identify the scaling characteristics of both low and high-

frequency time series. Using DEA allows for the characterization of a time series as either

a Gaussian or Lévy distribution and determining the presence of long-range correlations in

the series.

A function Φ(r1, r2, ...) is considered scale-invariant if it meets the requirement stated.

Φ(r1, r2, ...) = γaΦ(γbr1, γ
cr2, ...). (2.11)

The equation (2.11) demonstrates that we can obtain the original function by scaling

all coordinates r with a suitable set of exponents a, b, c,. In the context of a time series,

the sequence of numbers resulting from the composition can be understood as producing

a diffusion process. Its corresponding probability distribution function ρ(x, t) can be ana-

lyzed, where x represents the variable that captures the diffusion process variations. If the

time series is stationary, the scale property is expressed as follows:

ρ(x, t) =
1

tδ
F
( x
tδ

)
, (2.12)

where the δ is the scaling exponent.

Use the following steps to find the scaling exponent [19]. Let N be the length of a time

series {Xi}Ni=1

• Convert the series {Xi}Ni=1 into a diffusion process. Consider the series such that it

can be represented as:

{Xi, Xi+1, Xi+2, · · · , Xi+t−1}

where i = 1, 2, ..., N − t + 1 and t ∈ [1, N ] is the time scale. For any given diffusion

time t and initial state ψ0
i = 0, the matrix ψji defined as

ψji = Xi+j −Xi+j−1, j = 0, 1, · · · , N − t (2.13)
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can be denoted as sub-sequences.

Using the stochastic process

ηjt =
t∑
i=1

ψji , (2.14)

we create a diffusion trajectory for each sub-sequences where ηjt defines the new

position of the jth particle in the diffusion process.

• Determine the diffusion entropy. To begin, divide the x-axis into bins of size B(t)

and assume that Ni(t) indicates the number of particles falling in each bin at time t,

where i = 1, 2, · · · , B(t).

• Pick the ideal bin size B. There is no ”optimal” number of bins, and different bin

sizes B can identify different data features. When the density of the underlying data

points is low, wider bins are used to reduce sampling-related noise; when the density

is high, narrower bins are used to increase the density estimation’s precision. As

a result, modifying the bin size within a histogram may be advantageous. We use

Freedman-Diaconis’ rule [40] for determining bin size B, which is given by

B = 2
IQR

3
√
n
, (2.15)

which is based on the interquartile range (IQR). The 3.5σ of Scott’s rule in B =

3.5σ̂
3√n [41], where σ̂ is the sample standard deviation, is substituted with 2 IQRs.

Scott’s rule is most effective with data that has a Gaussian distribution. The Freedman-

Diaconis rule is less sensitive to anomalies and outliers in data than the standard

deviation. As a result, the FD rule is more robust.

• The relative frequency can then be used to approximate the probability (pdf ) that a

particle will fall into a bin at time t as

p(i, t) =
Ni(t)

N − t+ 1
. (2.16)
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At time t, the Shannon diffusion entropy will be determined as:

S(t) = −
B(t)∑
i=1

p(i, t) ln[p(i, t)]. (2.17)

or

S(t) = −
∫ ∞
−∞

ρ(x, t) ln [ρ(x, t)] dx (2.18)

Consider the equation (2.18), assuming that ρ(x, t) satisfies the scale condition (2.12).

Then, by substituting ρ(x, t) in (2.18), we get

S(t) = −
∫ ∞
−∞

ρ(x, t) ln [ρ(x, t)] dx (2.19)

by assuming that

ρ(x, t) =
1

tδ
F
( x
tδ

)
. (2.20)

and F (y) retains its form, allowing the statistics of the processes to be time-independent.

Substituting (2.20) into (2.19) gives

S(t) = −
∫ ∞
−∞

1

tδ
F
( x
tδ

)
ln

[
1

tδ
F
( x
tδ

)]
dx

= − 1

tδ

∫ ∞
−∞

F
( x
tδ

)[
ln

(
1

tδ

)
+ lnF

( x
tδ

)]
dx

= − 1

tδ

∫ ∞
−∞

F
( x
tδ

)
ln

(
1

tδ

)
dx− 1

tδ

∫ ∞
−∞

F
( x
tδ

)
ln
[
F
( x
tδ

)]
dx

= − 1

tδ
ln

(
1

tδ

)∫ ∞
−∞

F
( x
tδ

)
dx− 1

tδ

∫ ∞
−∞

F
( x
tδ

) [
lnF

( x
tδ

)]
dx

Let y = x
tδ
⇒ dx = tδdy. Substituting for dx, we get

S(t) = − 1

tδ
ln

(
1

tδ

)∫ ∞
−∞

F (y) tδdy − 1

tδ

∫ ∞
−∞

F (y) ln [F (y)] tδdy
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We get the following after canceling out certain common terms:

= − ln

(
1

tδ

)∫ ∞
−∞

F (y) dy −
∫ ∞
−∞

F (y) ln [F (y)] dy

= −
[
ln (1)− ln

(
tδ
)] ∫ ∞

−∞
F (y) dy −

∫ ∞
−∞

F (y) ln [F (y)] dy

= δ ln (t)

∫ ∞
−∞

F (y) dy −
∫ ∞
−∞

F (y) ln [F (y)] dy

The derived equation yields the linear-log relationship between diffusion entropy S(t) and

t denoted by [1, 3]

S(t) = δ ln(t) + A (2.21)

where δ is the DEA scaling exponent and the constant

A = −
∫ ∞
−∞

F (y) ln[F (y)]dy (2.22)

and the Cumulative Density Function (CDF) equals 1. Equation (2.21) illustrates the

growth of entropy in a linear manner with ln(t), and the scaling coefficient δ represents the

slope of the linear function.

2.2.2 Conditional Diffusion Entropy (CDE)

At time t, normalizing diffusion entropy in equation (2.17) can be written as

S̄(t) =
S(t)

t
. (2.23)

The concept of conditional diffusion entropy, C(t), offers a method for identifying bull

and bear markets. A bull market is characterized by growth and favorable economic con-

ditions, while a bear market occurs during an economic downturn where stocks generally
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decrease in value. As demonstrated in [42, 43], C(t) can be defined as a measure of this

differentiation.

C(t) = 1 + α [1− S̄(t)] (2.24)

where S̄(t) is the normalized entropy as shown in equation (2.23) and

α =


−1, p < q

0, p = q

1, p > q

. (2.25)

In equation (2.13), the amount of positive and negative values in the series are designated

as p and q, respectively. A bear market is represented by C(t) < 1, while a bull market is

indicated by C(t) > 1. In the case of an indifferent or completely random market, C(t) = 1.

2.3 Q-Order Diffusion Entropy Analysis (Q-DEA)

The property of multifractality in time series is continuous, and techniques that deal with

the finite size of histograms and discretization must employ an interpolation method, lead-

ing to a potential for bias. To find the optimal bin size B for various values of q, the Rényi

entropy calculates both pi and pqi , their q-th power, for different values of q. The Scott’s

rule for determining the q-order bin size Bq is expressed as follows:

Bq = (24
√
π)1/3

√
q

6
√

2q − 1

(∑m
k=1 σ

2(1−q)
sk /Nsk∑m

k=1 σ
−(1+2q)
sk

)1/3

,

where q = 0, 1, 2, 3, 4 and scale sk = 2k, k = 1, 2, 3, · · · ,m = floor(logN). In practice, the

theoritical standard deviation σ is replaced with the empirical standard deviation σ̂ to get

B̂q = (24
√
π)1/3

√
q

6
√

2q − 1

(∑m
k=1 σ̂

2(1−q)
sk /Nsk∑m

k=1 σ̂
−(1+2q)
sk

)1/3

(2.26)
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≡ (24
√
π)1/3

√
q

6
√

2q − 1
N σ̂
q,m

where

N σ̂
q,m =

(∑m
k=1 σ̂

2(1−q)
sk /Nsk∑m

k=1 σ̂
−(1+2q)
sk

)1/3

For Freedman-Diaconis’ rule, the estimated standard deviation is replaced by interquartile

ranges (IQR), to obtain

B̂q = 2.6

√
q

6
√

2q − 1
N

ˆIQR
q,m . (2.27)

Please see [22] for more details.

To study the multifractal scaling characteristics of a time series, we employ the q-order

entropy, a set of Shannon and Rényi entropies given by

Sq(t) =


−
∑Bq(t)

i=1 p(i, t) ln[p(i, t)], q = 1

1
1−q ln

∑Bq(t)
i=1 pq(i, t), q 6= 1, q ∈ R+

. (2.28)

where q ∈ R+ denotes the weight of different probabilities of a particle falling in a bin. We

restrict q ≥ 0 due to the fact that information extraction is compromised for q < 0 [44].

This method is usually known as the multifractal diffusion entropy analysis (MFDEA).

The DEA relate to the q-order DEA where q = 1. We express the linear-log relationship

between the q-order diffusion entropy Sq(t) and time t as

Sq(t) = A+ δq ln(t). (2.29)

2.4 Multi Scale Conditional Diffusion Entropy (MS-

CDE)

The Multi Scale Conditional Diffusion Entropy (q-order MS-CDE) is an extension of the

CDE that distinguishes between bear and bull markets at different probabilities (q−weights)
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of a particle being placed in a bin. It is defined as follows.

Cq(t) = I + α [I − S̄q(t)], (2.30)

where I is a vector of ones and S̄q(t) is the q−order vector of normalized entropy as defined

in equation (2.28) and

α =


−1, p < q

0, p = q

1, p > q

. (2.31)

2.5 Truncated Lévy Flight (TLF)

As reported in [45], a stable Lévy process, also known as the Lévy flight model, has the

property of independent increments but is still considered a long memory process. Lévy

and Khintchine [46] solved the issue of defining a universal form for stable distributions

and concluded that the most complete representation is through characteristic functions

ϕ(q), which are defined in the equation:

ln(ϕ(q)) = iµq − γ | q |α
[
1− iβ q

| q |
tan
(πα

2

)]
(2.32)

if α 6= 1, and

ln(ϕ(q)) = µq − γ | q |
[
1 + iβ

q

| q |
2

π
log(q)

]
(2.33)

If α = 1, where α is referred to as the scaling exponent or the characteristic parameter

and it has a value between 0 and 2 (0 < α ≤ 2), γ is a positive value known as the scale

factor, µ is a real value known as the location parameter, and β, which ranges from -1 to

1, is known as the skewness parameter. The mean is represented by µ and the variance,

σ2, is equal to γ2.

We study the symmetric stable Lévy distribution, where β = 0 and µ = 0, and a

limited number of variables of α and β are known to determine its analytical form. The
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characteristic function for this particular scenario is:

ϕ(q) = exp (−γ | q |α) (2.34)

The stable distribution of index α and scale factor γ is determined by the Fourier

transform, which is also known as the characteristic function of the distribution.

PL(x) =
1

π

∫ ∞
0

exp (−γ | q |α) cos(qx)dq (2.35)

One way to tackle the issue of infinite second moment in stable Lévy processes with

α < 2 is to consider using a Truncated Lévy Flight (TLF) process with finite variance. The

TLF process adheres to scale relationships and was introduced by Mantegna and Stanley

in 1994. The TLF distribution is defined as follows:

T (x) = cP (x)χ(−l,l)(x), (2.36)

with P (x) a symmetric Lévy distribution. The TLF distribution is characterized by its

unstable nature and limited variability. The speed of convergence may be impacted by

the value of the cut-off length l. If l is low, the convergence will be quicker, but the

cut in the tails will be more pronounced. In 1995, Koponen proposed using a decreasing

exponential cut-off function with a parameter l in order to smooth out the tails and make

them continuous.

The characteristic function of this distribution is defined as:

ϕ(q) = exp

[
c0 − c1

(q2 + 1/l2)α/2

cos(πα/2)
cos(α arctan(l | q |))

]
(2.37)

with scale factors:

c1 =
2π cos(πα/2)

αΓ(α) sin(πα)
At (2.38)

and

c0 =
l−α

cos(πα/2)
c1 =

2π

αΓ(α) sin(πα)
Al−αt (2.39)

By dividing time into intervals of size ∆t, we obtain a total time of T = N∆t, requiring

us to add up N randomly distributed variables, each of which is independent and has the
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same distribution, at each time step. The distribution of the result is likely to resemble the

stable Lévy distribution for small values of N , and standardizing the model may improve

it if the variance is

σ2 = −∂
2ϕ(q)

∂q2
|q=0 . (2.40)

and

−∂
2ϕ(q/σ)

∂q2
|q=0= − 1

σ2

∂2ϕ(q)

∂q2
|q=0= 1 (2.41)

Then, the standardized model becomes

lnϕs(q) = lnϕ
( q
σ

)
= c0 − c1

((q/σ)2 + 1/l2)
α/2

cos(πα/2)
cos

(
α arctan

(
l
| q |
σ

))
(2.42)

=
2πAl−αt

αΓ(α) sin(πα)

[
1−

(
(q/σ)2 + 1

)α/2
cos

(
α arctan

(
ql

σ

))]
. (2.43)

In this study, the equation presented represents a normalized Lévy model. The numerical

simulations were carried out by adjusting the values of A, l (arbitrary scale parameter),

and α (characteristic exponent) to obtain the best fit for the cumulative function. For

additional details, refer to the references [17, 45, 65, 66].

Property: Stable distributions

For a stochastic process X, we can claim that it is stable, or that it has a stable distribution,

if we express its probability density function as

Law(X1 +X2 + ...+Xn) = Law(CnX +Dn) (2.44)

for any n ≥ 2 where Cn ∈ R+, Dn ∈ R, and Law(X) denotes pdf of X. For instance,

Law(X) = N(µ, σ2) will denote the Gaussian random variable.Note that, X1, X2, ..., Xn are
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independent random copies of X, which implies that Law(Xi) = Law(X) for i = 1, 2, ..., n.

Samorodnitsky and Taqqu (1994) have shown that X is strictly stable when Dn = 0 and

Cn = n1/α, 0 < α ≤ 2 (2.45)

We rewrite equation (2.45) as

logCn =
1

α
log n (2.46)

using logarithms.

2.6 Relationship Between VSM and TLF

2.6.1 DFA and TLF

The equation (2.4) shows that there is a linear relationship in log-log space between the

root mean square fluctuation F (n) and the box size n.

F (n) ∝ nH (2.47)

logF (n) = logK +Hlog(n), (2.48)

where K is a positive constant of proportionality.

logF (n)− logK = Hlog(n) (2.49)

Equations (2.49) - (2.46) gives:

H = 1/α

if

lim
n→∞

| logF (n)− logK − logCn
log n

| → 0, (2.50)

for strictly stable variable X.
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2.6.2 Q-DFA and TLF

The scaling behavior of fluctuations from the slopes H(q) of the q − order DFA generates

the relationship [3]

Fq(S) ∝ SH(q) (2.51)

log [Fq(S)] = logK +H(q) log (S) , (2.52)

K is a positive constant of proportionality.

log [Fq(S)]− logK = H(q) log (S) (2.53)

Equations (2.53) - (2.46) gives:

H(q) = 1/α

if

lim
n→∞

| logFq(S)− logK − logCn
logS

| → 0, (2.54)

for strictly stable variable X by assuming that n equals the segment size S and q = 2.

2.7 Relationship Between PSM and TLF

2.7.1 DEA and TLF

We can calculate the Shannon entropy [45, 65] using the pdf in equation (2.12) as

S(t) = −
∫ ∞
−∞

ρ(x, t) ln [ρ(x, t)] dx. (2.55)

Note that, we already derived the linear-log relationship between diffusion entropy S(t)

and t as [1, 3]

S(t) = δ ln(t) + A (2.56)
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in equation (2.21), where A = S(1), Shannon entropy at time t = 1. Equation (2.56)

becomes

S(t)− S(1) = δln(t) (2.57)

From property 1, for some Cn ∈ R+,

Equations (2.57) - (2.46) gives

|S(t)− S(1)− ln(Cn)| = 0, where t ≥ 2 (2.58)

such that

δ ≈ 1
α

.

2.7.2 Q-DEA and TLF

Earlier, we presented the linear-log relationship between the time t and the q-order diffusion

entropy Sq(t) in the context of the Q-DEA, where q = 1, which is related to the DEA.

Sq(t) = A+ δq ln(t), (2.59)

where A = Sq(1), q-order diffusion entropy at t = 1.

Sq(t)− Sq(1) = δq ln(t) (2.60)

Using property 1, for Cn ∈ R+,

Equations (2.60) - (2.46) gives

|Sq(t)− Sq(1)− ln(Cn)| = 0, where t ≥ 2 (2.61)

and q = 1 such that

δq ≈ 1
α

.
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2.8 Cantor Detrended Fluctuation Analysis (CDFA)

Here, we show that the Hurst exponents’ subspace [Hmin, Hmax] is homeomorphic to the

Cantor set’s [0,1]. We also show an illustration of the Cantor set and the CDFA method.

Theorem 1. A map f : [Hmin, Hmax] → [0, 1] between the topological spaces of Hurst

exponents of noise-like time series and the Cantor set is a homeomorphism if it has the

following properties:

1. f is a bijection ;

2. f is continuous;

3. inverse function f−1 is continuous.

We say two topological spaces are homeomorphic if they admit a homeomorphism between

them: they are fundamentally the same topological space.

Proof of Theorem: Let Hmin ≤ H ≤ Hmax and 0 ≤ y = f(H) ≤ 1, then the map f :

[Hmin, Hmax]→ [0, 1] gives

Hmin −Hmin ≤ H −Hmin ≤ Hmax −Hmin (2.62)

0 ≤ H −Hmin

Hmax −Hmin

≤ 1. (2.63)

Thus,

y = f(H) =
H −Hmin

Hmax −Hmin

. (2.64)

We must now prove that the map f is homeomorphic to the Cantor set.
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1. The map f(H) is said to be bijective iff f(a) = f(b) for all a, b implies that a = b.

From

f(a) =
a−Hmin

Hmax −Hmin

and f(b) =
b−Hmin

Hmax −Hmin

,

f(a) = f(b)

=⇒ a−Hmin = b−Hmin

=⇒ a = b.

Therefore, the map f(H) is a bijection.

2. The map f(H) is continuous at some value c in its domain if

• f(c) is defined,

• limit of f as H approaches c exists, and

• the function value of f at c equals the limit of f as H approaches c.

f(c) is defined as

f(c) =
c−Hmin

Hmax −Hmin

. (2.65)

The limit of f as H approaches c gives

lim
H→c+

f(H) = lim
H→c−

f(H) =
c−Hmin

Hmax −Hmin

. (2.66)

The left and right-sided limits are equal from equation (2.66). Therefore,

lim
H→c

f(H) =
c−Hmin

Hmax −Hmin

. (2.67)

Equations (2.65) and (2.67) are the same. Hence, it follows that

lim
H→c

f(H) = f(c) =
c−Hmin

Hmax −Hmin

.

As a result, for a differentiable fractal, the map f is continuous at some value H = c.
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3. The inverse function of f (i.e. f−1(H)) exists.

y = f(H) =
H −Hmin

Hmax −Hmin

(2.68)

(Hmax −Hmin)y = H −Hmin (2.69)

H = Hmin + (Hmax −Hmin)y (2.70)

Interchanging H and y gives

y = f−1(H) = Hmin + (Hmax −Hmin)H, (2.71)

the inverse function of f(H).

The inverse map f−1 is continuous at some value s in its domain if f−1(s) is defined,

the limit of f−1 as H approaches s exists and the function value of f−1 at s equals the

limit of f−1 as H approaches s. f−1(s) is defined as

f−1(s) = (1− s)Hmin + sHmax. (2.72)

The limit of f−1 as H approaches s equals

lim
H→s+

f−1(H) = lim
H→s−

f−1(H) = Hmin + (Hmax −Hmin)s. (2.73)

⇒ lim
H→s

f−1(H) = Hmin + (Hmax −Hmin)s. (2.74)

Equation (2.72) = (2.74) implies that,

lim
H→s

f−1(H) = f−1(s) = (1− s)Hmin + sHmax.

The inverse map f−1 exists and is continuous at some value H = s.

Therefore, the map f(H) is a homeomorphism. For noise-like time series, H ∈ [Hmin, Hmax]

is homeomorphic to the Cantor set’s [0, 1].
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2.8.1 The Cantor set

Take a time series and remove middle thirds up to many levels, what you observe is similar

to the Cantor set. This phenomenon is depicted in Figure 2.1 [47]. It demonstrates that

the segments seem the same at different scales in successive Cantor magnifications ranging

from C0 to C6. C0 represents the initial time series with no missing parts and C6 represents

the leftover time series after deleting the middle thirds for the sixth time. We limit our

scope to C0 through C3, for the sake of experimentation.

Figure 2.1: Fractal behavior of a Ternary Cantor Set.

2.8.2 Definition

The interval subset of the Cantor set is defined recursively as:

1. C0 = [0, 1];

2. C1 =
(

1
3
, 2

3

)
;

3. Cn = Cn−1

3
∪
(

2
3

+ Cn−1

3

)
for n ≥ 2.

The ternary Cantor set is defined as C = [0, 1] \ (∪∞n=1Cn). The interval we begin with

is indicated by level C0. For C1, [0, 1] is divided into three sub-intervals, with the middle

sub-interval
(

1
3
, 2

3

)
deleted. For C2, each of the remaining intervals from C1 is broken into

25



three sub-intervals, with the middle sub-intervals
(

1
9
, 2

9

)
and

(
7
9
, 8

9

)
removed. This technique

can be repeated indefinitely by deleting the open middle third sub-interval of each interval

created in the preceding level. We rescale the integrated series ψt by dividing each data

point by the maximum data point due to concerns with the dimension of the Cantor sets

(i.e. dimension of 0.631 which is less than 1),

Ψt =
ψt

max(ψt)
.

s.t. Ψt ∈ [0, 1].

2.8.3 Algorithm of the CDFA

We present a Cantor version of the DFA method to generalize the DFA’s segment division

step. The CDFA algorithm is comprised of four (4) major steps.

1. Find the integrated series shifted by the mean < Ψ > given the time series Ψt of

length N .

Yj =

j∑
i=1

(Ψi − < Ψ >) .

2. The series Yj is then divided into equal non-overlapping segments of varying sizes

∆s. ∆s is based on the Cantor set theory scale (∆s = 3n, n ≥ 0). The number of

non-overlapping segments are as follows:

N∆s ≡ int

(
N

∆s

)
= int

(
N

3n

)
.

The Cantor set scaling function is calculated for each segment to emphasize both slow

and fast-evolving fluctuations that control the time series structure.

3. The integrated series’ Root Mean Squared Fluctuation (RMSF) is calculated at sev-

eral scales:

F (∆s) ≡

{
1

2N∆s

2N∆s∑
j=1

[
Yj − Y ∆s

j

]2}1/2

.
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j denotes the sample size of segments N∆s. We compute RMSF from j = 1 to 2N∆s

rather than N∆s. We add from beginning to end and from end to beginning, then

compute an average of the values to consider every data point. Conversely, the large

segments interweave several local periods with both minor and major fluctuations

and so average out their disparities in magnitude.

4. The power-law notation is computed for multiple scales using the least square regres-

sion fit of F (∆s) vs the Cantor scales ∆s on a log-log scale

F (∆s) ∝ (∆s)H
c

log(F (∆s)) = Hclog(∆s) + log(C).

Hc := CDFA Hurst exponent that measures memory behavior in the noise-like time

series.

2.9 Parallel Framework for CDFA (PCDFA)

This section introduces the computation optimization strategy in which CDFA loop it-

erations are processed in a parallel pool of four processors. The CDFA algorithm’s core

workhorse is the use of least squares to calculate fluctuations in non-overlapping segments.

As a result, fluctuations are computed across available processors (procs) utilizing parallel

for-loops before being gathered by a single processor for further processing in determining

the Hurst exponent [48]. We call it the PCDFA and the algorithm is depicted in the chart

below.

2.9.1 Hardware & Software Environment

Experiments are conducted in a system with:

• Processor: 1.4 GHz Quad− Core Intel Core i5
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Figure 2.2: A flow chart of PCDFA for 4 available processors

• Memory: 16 GB 2133 MHz LPDDR3

• Graphics: Intel Iris P lus Graphics 645 1536 MB

• Software: MATLAB R2021b 64− bit, Parallel Computing Toolbox

• Operating System: macOS Big Sur V ersion 11.6.6
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Chapter 3

Data

We adopt the data provided in each subsection below for our research. This includes

financial market data (stock and cryptocurrency time series), geophysical data (volcanic

eruption series), and medical data (bio-medical and COVID-19 time series).

3.1 Financial Time Series

Financial market data used to analyze the relationship between DFA and TLF Hurst in-

dex and between DEA and TLF were obtained from YAHOO FINANCE. All data points

collected are daily closing prices. Following is the name of the countries from which data

was collected and the start and end dates of that data collection. Hong Kong (HSI) from

2 January 1991 to 25 October 2001, and the USA (S&P500) from 2 January 1991 to 25

October 2001. The evolution of prices in the time series of financial markets is shown in

Figures 3.1 and 3.2.
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Figure 3.1: Plots of trading days closings and actual returns of HSI

We also use the daily close values of the Dow Jones Industrial Average (DJI) from the

NY Stock Exchange and Bitcoin (BTC) from the cryptocurrency market for investigating

the PCDFA technique. The table below shows the start and end dates of the data used.

Table 3.1: Financial Market Data for Analysis.

Data Start Date End Date

DJI 09/30/2013 04/19/2021

BTC 09/30/2013 04/19/2021

30



Figure 3.2: Plots of trading days closings and actual returns of SP500

3.2 Geophysical Time Series

The seismic network of the Bezymyanny Volcano Campaign (PIRE) collected volcanic data

at different times of the eruption from two other seismic stations, BEZB and BELO. The

data used in this article were requested 10 days before and 5 days after the eruption.

Volcanic eruptions 1 and 2 originate from BEZB, and volcanic eruptions 7 and 8 originate

from BELO. Time series graphs of volcanic eruptions are shown in Figures 3.5 and 3.6.
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Figure 3.3: Daily Close Prices Plot of DJI

3.3 Biomedical Time Series

The white noise (top panel), monofractal (middle panel), and multifractal (bottom panel)

time series used in the experiments for CDFA and PCDFA are noise-like biomedical time

series with 8000 scaled sample data points each. White noise time series has a time-

independent structure with Hurst exponent close to H = 0.5, whereas monofractal and
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Figure 3.4: Daily Close Prices Plot of BTC

multifractal time series have persistent behavior such that 0.5 < H ≤ 1.
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Figure 3.5: Volcanic Eruption 1 and 2 Plots

3.4 Covid-19 Time Series

The time series used here were collected daily from January 21, 2020 to April 19, 2021,

via the New York Times (NYT) US Coronavirus Cases and Deaths GitHub repository and

had 422 observations. Due to the extreme fluctuations in the time series, we analyze the

following:

Dt = log(Ct)− log(Ct−1), (3.1)

where Dt denotes the log-difference of daily cumulative cases (Ct) of Covid-19 on day t.

Figure 3.8 provides a plot of the series.
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Figure 3.6: Volcanic Eruption 7 and 8 Plots
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Figure 3.7: Biomedical time series plots
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Figure 3.8: Evolution of daily US cumulative and log-difference of Covid-19 cases
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Chapter 4

Applications

4.1 Relationships Between DFA, DEA, and TLF

In this section, we present numerical results by fitting all three models, namely DFA, DEA

and TLF, to the data. Based on the numerical results, we propose a relationship between

the self-similar models and the Lévy truncated flight model, which confirms the analytically

derived relationship. Below is a table of financial market data and volcanic eruption data.

Each table has 6 columns; the first column represents a specific financial market or some

volcanic eruptions, the second through fourth columns represent the DFA and DEA scale

indicators and the best Lévy parameter α. The last three columns are essentially the

product of their scaling factor and the Lévy parameter α that characterizes the data.

Table 4.1: Scaling exponents of various financial markets

Stock Index DFA (H ) DEA (δ) Lévy (α) H.α δ.α

HSI 0.70 0.60 1.40 0.98 0.84

SP500 0.66 0.65 1.40 0.92 0.91

The empirical data presented in Tables 4.1 and 4.2 show an approximately inverse

relationship between the DEA parameter δ and the Lévy parameter α. Meanwhile, for a

very inconsistent time series from volcanic eruption 1, it is not close to 1.

δ ≈ 1

α
(4.1)

Also, there is an inverse relationship between the DFA parameter H and the resulting Lévy
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Table 4.2: Scaling exponents of Volcanic Data from the two seismic stations

Seismic Station Eruption DFA (H) DEA(δ) Lévy (α) H.α δ.α

BEZB
1 0.74 0.68 1.12 0.83 0.76

2 0.92 0.68 1.34 1.23 0.91

BELO
7 0.81 0.68 1.40 1.13 0.95

8 0.75 0.68 1.34 1.01 0.91

parameter α.

H ≈ 1

α
(4.2)

NOTE: The DFA is susceptible to overestimating the Hursts exponent (H), as seen in

Table 4.2. Observe that the product of H and α sometimes is greater than 1. It was this

problem that required the CDFA method.

Plots obtained from the numerical simulation of the HSI, S&P500, and Volcanic Erup-

tion time series data are shown in Figures 5.1 - 5.12 in Appendix A.

4.2 CDFA Applied to Biomedical Signals

Here is the resulting table of Hurst exponents for implementing of the DFA algorithm for

the respective time series.

39



Table 4.3: DFA’s Hurst Exponents for White noise time series

Levels Hurst Exponents

C0 H1 = 0.50

C1 H1 = 0.50, H2 = 0.45

C2 H1 = 0.54, H2 = 0.45, H3 = 0.52, H4 = 0.42

C3 H1 = 0.50, H2 = 0.54, H3 = 0.4, H4 = 0.49, H5 = 0.59, H6 = 0.43,

H7 = 0.42, H8 = 0.57

In table 4.3, we observe that the Hurst exponent of the white noise series is close to

H = 0.5 for all levels C0, C1, C2 and C3. This confirms the phenomena appearing in Cantor’s

fractal properties set in the white noise time series.

Table 4.4: DFA’s Hurst Exponents for Monofractal time series

Levels Hurst Exponents

C0 H1 = 0.79

C1 H1 = 0.80, H2 = 0.68

C2 H1 = 0.81, H2 = 0.69, H3 = 0.74, H4 = 0.68

C3 H1 = 0.65, H2 = 0.80, H3 = 0.63, H4 = 0.72, H5 = 0.78, H6 = 0.68,

H7 = 0.67, H8 = 0.79

Table 4.4 presents Hurst indices between 0.5 and 1 (0.5 < H ≤ 1) for long-memory

monofractal time series for levels C0, C1, C2 and C3. The phenomena seen in the monofractal

time series in the table above are similar to the fractal properties of the Cantor set.

The Hurst exponent of the multifractal time series is in the range 0.5 < H ≤ 1 for all

levels C0, C1, C2 and C3 of Table 4.5 describing the fractal phenomena described by the
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Table 4.5: DFA’s Hurst Exponents for Multifractal time series

Levels Hurst Exponents

C0 H1 = 0.86

C1 H1 = 0.86, H2 = 0.75

C2 H1 = 0.75, H2 = 0.88, H3 = 0.70, H4 = 0.78

C3 H1 = 0.82, H2 = 0.69, H3 = 0.77, H4 = 0.97, H5 = 0.69, H6 = 0.70,

H7 = 0.91, H8 = 0.90

Cantor set. The results from Tables 4.3 - 4.5 confirm that successive increases in noise-

like time series show similar patterns at progressively smaller scales. This phenomenon is

widely known as self-similarity in fractals.

Table 4.6: Comparison of Scaling Exponents of DFA(H) & CDFA(Hc) & TLF (α) on

Noise-like Time series

Time Series H Hc Difference α Hα Hcα

White noise 0.5 0.4997 0.0003 1.97 0.985 0.9844

Monofractal 0.79 0.781 0.009 1.28 1.0112 0.9997

Multifractal 0.86 0.851 0.009 1.17 1.0062 0.9976

When examining monofractal and multifractal time series using the Hurst exponents

of DFA, and CDFA of white noise, we observe the difference in exponents as shown in

Table 4.6. The Hurst exponent of white noise time series changes slightly, but that of the

monofractal and multifractal time series changes by about 1%. The slight change in score

is the result of dividing the time series by a multiple of 3 at each level using CDFA. This

will help resolve overestimation and underestimation issues related to the DFA. Despite the
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differences between the parameters, they still represent the same process modeled here (i.e.

noise-like time series). The exponent of the white noise series is close to 0.5, while that of

the monofractal and multifractal series is in the range 0.5 < H ≤ 1, which describes the

behavior of long memories. The results also show that the segment size does not always

need to be hard-coded into the DFA algorithm based on the length of the time series under

consideration. In particular, for odd-length time series, the process can be automated using

the fractal phenomenon of Cantor sets to obtain equal segment sizes and satisfactory Hurst

exponents.

Also, the product of the Hurst exponents DFA and TLF, and CDFA and TLF exponent

(α) suggests that Hc is a better estimate. It can be seen that Hcα ≈ 1, but for time series

such as monofractal and multifractal noise, DFA produces Hα > 1. The latter does not sat-

isfy the inverse relationship between the Hurst exponent and the TLF scaling exponent for

Gaussian noise, as discussed in [3]. This also highlights the overestimation/underestimation

of the Hurst index of conventional DFA approaches.

4.3 Q-CDFA Applied to Covid-19 Time Series

4.3.1 Before November 2020
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Table 4.7: Q-DFA scaling exponents from Covid cases before Vaccines

q − order H(q) α f(α)

-5 0.94 1.20 -0.27

-4 0.89 1.20 -0.25

-3 0.81 1.18 -0.10

-2 0.69 1.04 0.31

-1 0.52 0.69 0.82

0 0.34 0.34 1.00

1 0.20 0.11 0.90

2 0.11 -0.02 0.73

3 0.04 -0.10 0.59

4 0.00 -0.13 0.48

5 0.00 - -

4.3.2 After November 2020
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Table 4.8: Q-DFA scaling exponents from Covid cases after Vaccines

q − order H(q) α f(α)

-5 0.81 0.95 0.31

-4 0.78 0.93 0.43

-3 0.75 0.89 0.57

-2 0.70 0.83 0.73

-1 0.63 0.74 0.89

0 0.52 0.52 1.00

1 0.36 0.22 0.86

2 0.22 0.02 0.60

3 0.12 -0.08 0.40

4 0.05 -0.13 0.27

5 0.01 - -

Let us set the weights of the q − order of the local fluctuation to lie in the [−5, 5]

interval. Tables 4.7 and 4.8 show the calculated values H(q) = 0.11 and H(q) = 0.22 at

q = 2, indicating anti persistence behavior in time series paths. However, moderate changes

in H(q) are inversely proportional to changes in q over time. Before the introduction of

the vaccines, the Hurst score fell more rapidly than after the introduction of the vaccines.

This indicates that the incidence rate is slowing rather than worsening. Also, the peaks

of the multifractal spectrum lie at α = 0.3 and α = 0.52, respectively, in a wide range

from 0.2 to 1.25. This suggests that volatility clustering of series underlined with negative

q tends to indicate long memory behavior, while positive q weights tend to represent short

memory behavior. We observe that the case’s multifractal spectrum is not symmetric

until November 2020. It is asymmetrical and has a long tail. It represents a multifractal

structure with high sensitivity to large and small fluctuations in the cases. In contrast,

the multifractal spectrum of post-November 2020 cases has a close-to-symmetrical shape,
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Figure 4.1: Plot of q-order Hurst exponents Before and After the Vaccines

indicating moderate sensitivity to both small and large fluctuations in the US Covid-19

case time series.
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Figure 4.2: Plot of q-order singularity spectrum Before and After the Vaccines

4.4 PCDFA Applied to Financial Time Series

4.4.1 Results and Discussions

Table 4.9: PCDFA Time Analysis of Dow Jones Industrial Average (in seconds)

Data Data Points (N) 1 Proc 2 Procs 3 Procs 4 Procs

DJI daily 1901 0.05 0.04 0.03 0.04

DJI 1 hour 15630 0.22 0.16 0.08 0.06

DJI 30 mins 28276 0.37 0.21 0.13 0.10

DJI 5 mins 153168 2.15 1.19 0.75 0.57

The execution time of the CDFA’s sequential code grows by a larger margin as the data
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Table 4.10: PCDFA Time Analysis of Bitcoin Data (in seconds)

Data Data Points (N) 1 Proc 2 Procs 3 Procs 4 Procs

BTC daily 2759 0.07 0.04 0.03 0.03

BTC 1 hour 65994 0.89 0.51 0.33 0.26

BTC 30 mins 131892 1.93 0.99 0.69 0.51

BTC 5 mins 772339 10.24 5.23 3.63 2.65

amount increases. The execution time of the CDFA parallel code (PCDFA), on the other

hand, grows by a lesser margin as the data size grows. Tables (4.9) and (4.10) demonstrate

the PCDFA’s scalability with varying numbers of processors and data points. It is worth

noting that as more processors are used, the CDFA’s execution time on each data set

lowers. It is also obvious that PCDFA performs best for scalability on ”large data” with

772K data points. In other words, the more data there is, the greater the PCDFA’s scaling

performance.

In the analysis of the parallel implementation of the CDFA, we assume the following

variables:

• p : Number of processors

• T1 : Execution time of the sequential algorithm

• Tp : Execution time of the parallel algorithm with p processors.

4.4.2 Speedup Ratio of PCDFA

The speedup ratio of the PCDFA is calculated as the ratio of the execution time of the

sequential algorithm of the CDFA to the execution time of the parallel algorithm of the

CDFA with p processors. Speedup ratio may be less than, greater than or equal to the
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number of processors p.

Speedup Ratio, Sp = T1/Tp

• Sp < p : Sub-linear Speedup: Common

• Sp = p : Linear Speedup (Amdahl’s law): Ideal

• Sp > p : Super-linear Speedup: Wonderful

Table 4.11: PCDFA Speedup Ratios of Low- & High-Frequency DJI & BTC Data

Data S1 S2 S3 S4

DJI daily 1 1.25 1.67 1.25

DJI 1 hour 1 1.38 2.75 3.67

DJI 30 mins 1 1.76 2.85 3.70

DJI 5 mins 1 1.81 2.87 3.77

BTC daily 1 1.75 2.33 2.34

BTC 1 hour 1 1.75 2.70 3.42

BTC 30 mins 1 1.94 2.80 3.78

BTC 5 mins 1 1.96 2.82 3.86

For the DJI, when processing 1901 data points of the daily close values, 2 processors

generated 1.25 times speedup whereas 4 processors also generated the same 1.25 times

speedup. However, for a high-frequency DJI 5-mins data with 153168 data points, 2 pro-

cessors generated 1.81 times speedup, and 4 processors generated 3.77 times speedup.

A similar relation is observed for the BTC data. Processing 2759 data points of the daily

close values using 2 processors generated 1.75 times speedup, whereas 4 processors gen-

erated 2.34 times speedup. For the high-frequency 5-mins BTC data with 772339 data
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samples, 2 processors generated 1.96 times speedup whereas 4 processors generated 3.86

times speedup.

The computation shows that the speedup ratio of the two largest data with 153K and

772K samples, respectively, is ”asymptotic” to the ideal speedup with increased processors.

Figures (5.13) and (5.14) show that the speedup ratios from both DJI and BTC data go

close but do not achieve the ideal speedup (linear speedup or Amdahl’s law) [49]. We

observe a sub-linear speedup ratio as the number of processors increases.

4.4.3 Parallel Efficiency of PCDFA

The efficiency of the PCDFA is calculated as the ratio of the speedup, Sp to the number

of processors p. Efficiency measures the fraction of time for which a processor is usefully

utilized in computing Hurst’s exponent of the CDFA.

Parallel Efficiency, Ep = Sp/p = T1/pTp, 0 ≤ Ep ≤ 1. (4.3)

Table 4.12: PCDFA Parallel Efficiency Analysis of DJI & BTC

Data E1 E2 E3 E4

DJI daily 1 0.63 0.56 0.31

DJI 1 hour 1 0.69 0.92 0.92

DJI 30 mins 1 0.88 0.95 0.93

DJI 5 mins 1 0.91 0.96 0.94

BTC daily 1 0.88 0.78 0.59

BTC 1 hour 1 0.88 0.90 0.86

BTC 30 mins 1 0.97 0.93 0.95

BTC 5 mins 1 0.98 0.94 0.97

49



For the DJI daily recorded data, 2 processors produce 63% efficiency while 4 processors

generate 31% efficiency. However, for the high-frequency 5-min-by-min DJI data, 2 proces-

sors produce 91% efficiency while 4 processors generate 94% efficiency.

The daily BTC data show a similar relationship where 2 processors generate 88% effi-

ciency to 59% efficiency resulting from 4 processors. For the high-frequency 5-min-by-min

BTC data, we generate 98% efficiency from 2 processors compared to 97% efficiency from

4 processors.

We can see from the results of the computation in Table (4.12), Figures (5.15), and (5.16)

that the efficiency of the PCDFA method increases when there is enough computation to

undertake (i.e. big data). Small data renders some of the processors idle, thus, resulting

in low efficiency as more and more processors are employed. Parallel optimization of the

CDFA is essential and efficient when there is more computation. Also, because of Amdahl’s

law, we observed sub-linear speedup ratios. This results in less than 100% efficiency every

time.

4.4.4 Parallel Overhead of PCDFA

In parallel computation, several factors appear as overhead including

• inter-process interaction: communication time between processors.

• idling: periods when not all the available processors are performing useful tasks.

• excess computation: excess activities the serial program does not perform.

For an efficient parallel program, these overheads are minimized to zero, but this is not

always possible.

Parallel Overhead : T0 = pTp − T1 (4.4)
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Table 4.13: PCDFA Parallel Overhead Analysis of DJI & BTC

Data T0
1 T0

2 T0
3 T0

4

DJI daily 0 0.03 0.04 0.11

DJI 1 hour 0 0.10 0.02 0.02

DJI 30 mins 0 0.05 0.02 0.03

DJI 5 mins 0 0.23 0.10 0.13

BTC daily 0 0.01 0.02 0.05

BTC 1 hour 0 0.13 0.10 0.15

BTC 30 mins 0 0.05 0.14 0.11

BTC 5 mins 0 0.22 0.65 0.36

We observe from the overheads in Table (4.13) that, parallel overheads increase for

the smallest data while it decreases for the most part when dealing with large data sets.

Empirically, the overheads obtained are minimized close to zero as the number of processors

increases which depict a good performance of the PCDFA.

4.5 Q-DEA for Dow Jones Industrial Average (DJI)

Figure 4.3 below shows a plot of diffusion entropy versus scale for q weighted in the range 0

to 4 for DJI during April 2013 to April 2021. Observe that at some diffusion time t, entropy

decreases with the increase in q weights, whereas entropy increases with the increase in q

weights at some diffusion time. This is because the Rényi entropy changes more promptly

at large q weights as compared to small q weights.

51



Figure 4.3: Q-order Diffusion Entropy as a function of diffusion time constructed based on

different q values of the Rényi family of entropies using DJI

4.6 CDE and MS-CDE of DJI from April 2013 to

April 2021

Here, we present results by looking into the stability of the stock market throughout the

COVID-19 pandemic stock market crash using the multi-scale conditional diffusion entropy

(MS-CDE). The S&P 500 index dropped 34%, 1145 points, from its peak of 3386 on

February 19, 2020 to 2237 on March 23, 2020 . This crash was part of a worldwide recession

caused by the COVID-19 lockdowns.

Figures 5.17 - 5.26 show the monthly conditional diffusion entropy Cq(t) at different
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time scales from April 2013 to April 2021 where Cq(t) = 1 for random behavior in the

financial market, Cq(t) > 1 during a bull market and is less than 1 during a bear market.

Figure 4.4: Daily Close Prices Plot of DJI. The gray region corresponds to the Covid-19

US Stock Market Crash of February/March 2020

Figure 4.4 shows instances of bull and bear markets in the DJI index. The highlighted

portion represents the period from late February 2020 to early April 2020, depicting the

2020 coronavirus stock market crash. During this period, the COVID-19 pandemic spread

globally during the week of February 24-28, causing a significant decline in global stock

markets. The DJI dropped 11-12%, marking the most significant weekly decline since the

2007/2008 financial crisis. On March 12, a day after the announcement of a travel ban from

Europe, the DJI fell sharply by 10%. After it became clear that a recession was inevitable,
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the DJI dropped another 12.93% on March 16. Stock market indices briefly recovered to

their levels at the end of February 2020 by early June 2020.

Figure 4.4 shows the fluctuations in the series over time. Many values of the conditional

diffusion entropy at a time scale t = 2 are larger than 1 during bull market periods. In

contrast, they are less than 1 during periods of the financial crisis (or bear market), as

shown by the grey highlighted part of Figure 5.17. Observe that, as the time scale increases

from t = 2 to t = 256, the conditional diffusion entropy approach is a random behavior

where most of the Cq(t) ≈ 1. During this period, the market is indifferent. Beyond the

time scale of t = 256, conditional diffusion entropy is less than 1, indicating that the bear

market is dominant. Therefore, the conditional diffusion entropy value coincides with the

state of the stock market. Still, at different time lags, the conditional diffusion entropy

depicts the other states of the stock market. A shorter time lag scale like t = 2 to t = 256

coincides more with the state of the stock market than larger time lag scales like t = 256

to t = 1024. This is because, for a short time lag, extreme fluctuations in the conditional

diffusion entropy are observed.

At the same time, smoother (or averaged-out) fluctuations result in lower values of the

conditional diffusion entropy. Thus, care should be taken when using conditional diffusion

entropy to analyze the state of the stock market. Preferably, the conditional diffusion

entropy of a time series is more informative if we investigate using a multi-time lag scale.
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Chapter 5

Conclusion

This study compared and quantified the scaling parameters and long-term memory be-

havior of financial and geophysical time series using the DFA, Q-DFA, DEA, and Q-DEA

methods. We also characterize the relevant time series with the TLF process to obtain

the most robust Lévy distribution parameters. The stock market and volcanic eruption

time series exhibit long memory behavior because 0.5 < H, δ < 1. Note that the choice of

parameter α for the Lévy process is stochastic. Corresponding time variables T = 1, 4, 8, 16

affect it. Therefore, we select the appropriate TLF parameters for the period. Note that

the numerical simulations adjust the value of A, the arbitrary scale parameter l, and the

characteristic exponent α of the TLF model to best fit the TLF process cumulative func-

tion. The empirical data in Tables 4.1 and 4.2 suggest an inverse relationship between

the DFA H parameter and the resulting TLF α parameter. Similarly, there is an inverse

relationship between the δ DEA and the α TLF parameters. We support this proof of the

relationship.

The DFA sometimes overestimates or underestimates the Hurst exponents based on

the segment sizes. We generate better estimates of Hurst exponents by automating seg-

ment sizes in the DFA algorithm using the number base three(3) theory of the Cantor Set

(1/3n, n ≥ 0). Here, we divide the time series into multiples of 3 at each level. We call this

approach the Cantor Detrended Fluctuation Analysis (CDFA). It curbs the overestimation

problem of the H by determining segment sizes based on the fractal phenomena depicted

by the Cantor set while correctly predicting the memory behavior of the time series using

Hc. We show this in Table 4.6, where we compare H and Hc exponents with the scal-

ing exponent (α) of the TLF. We can apply the CDFA approach to time series with odd
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lengths, time series whose lengths are not divisible by 2, time series whose lengths do not

permit equal segment sizes after subdividing, etc. These series exist in several industries

like finance, geophysics, etc. We can use the CDFA as a control experiment for the ordi-

nary DFA. We have also proved that the Hurst exponent is homeomorphic to the Cantor

Set. Using real-time series in Tables 4.3 - 4.5, we verify the proof by describing the fractal

phenomenon represented by the Cantor set.

We also exploit the Q-DFA to analyze the highly irregular behavior of daily cases of

COVID-19 in the United States before and after drugmakers announced in November 2020

that they had developed and tested 90 percent effective vaccines. We use the multifractal

spectrum of the Q-DFA to characterize the path and predict the memory behavior of the

time series on different time scales. Empirical results from the generalized Hurst exponent

(gHE) indicate moderate variations over time after 11/1/2020 compared to the period

before that. Also, the multifractal spectrum estimation before November 2020 has a long

tail. It means high sensitivity to small fluctuations in the recorded cases. We record

moderate sensitivity to small and large fluctuations after 11/1/2020. This results in the

closeness to the symmetry of the multifractal spectrum. It implies that after 11/1/2020,

daily covid-19 cases started becoming less fractal. Over time, the amount of daily change

becomes steady.

We then investigated the effect of low and high-frequency data on estimating CDFA’s

Hurst index. We propose a PCDFA method to detect memory behavior in time series.

We also calculate the speed-up ratios, efficiency, and overheads to evaluate PCDFA perfor-

mance. The speed-up ratio from the implementation provided sub-linear speed-ups as the

number of processors increased. The efficiency of the PCDFA method is directly related

to data size or computational cost. We minimize inter-process interactions, idling, and

implementation time overhead to zero by increasing the number of available processors.

Finally, we investigate the stability of the Dow Jones Industrial Average (DJI) from the

US stock markets using a multi-scale normalized diffusion entropy and conditional diffusion

entropy. We observe that conditional diffusion entropy (CDE) is used to analyze fluctua-
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tions (or volatility) in the stock market data. It also depicts bear and bull markets, but

we must be careful when using them. At different time lag scales, the conditional diffusion

entropy can show conflicting information about the state of the stock market. Therefore,

a multi-time lag scale (MS-CDE) is more informative for investigating the complex state

of a financial market time series (or any time series), as shown in this paper. It is because

they are often multifractal in nature.

For future work, we aim to investigate the memory behavior in time series using deep

learning techniques from computer vision. Train a multi-layer convolutional neural network

(CNN) by converting the time series to images and then applying cross-validation. To check

the performance of this model, we will compute the root mean square errors and compare

the results to that of VSMs and PSMs.
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rilla M.; Santos P. M. Analysis of parallel computing strategies to accelerate ultrasound

imaging processes. IEEE Trans Parallel Distrib Syst. 2016, 27 (12), 3429-3440.

[75] https://tasks.illustrativemathematics.org /content-standards /tasks /929

66



• BLUE points depict the Normalized Data

• RED curve depicts the Cumulative Distribution Function

• GREEN curve depicts the Gaussian(Normal) distribution fit.

Relationships Between DFA, DEA and TLF using Fi-

nancial Time Series

Figure 5.1: TLF model fits for HSI
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Figure 5.2: TLF model fits for SP500 USA

Relationships Between DFA, DEA and TLF using Geo-

physical Time Series
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Figure 5.3: DFA Plot for HSI
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Figure 5.4: DFA for SP500 USA
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Figure 5.5: DEA for HSI
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Figure 5.6: DEA for SP500 USA
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Figure 5.7: TLF model fit for Volcanic Eruption 2
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Figure 5.8: TLF model fit for Volcanic Eruption 8
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Figure 5.9: DFA for Volcanic Eruption 2
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Figure 5.10: DFA for Volcanic Eruption 8
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Figure 5.11: DEA for Volcanic Eruption 2
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Figure 5.12: DEA for Volcanic Eruption 8
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PCDFA Applied to Financial Time Series

Speedup Ratio of PCDFA

Figure 5.13: Speedup Ratio plot of PCDFA for low-to-high frequency DJI data

79



Figure 5.14: Speedup Ratio plot of PCDFA for low-to-high frequency BTC data

Parallel Efficiency of PCDFA
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Figure 5.15: Efficiency plot of PCDFA for low-to-high frequency DJI data
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Figure 5.16: Efficiency plot of PCDFA for low-to-high frequency BTC data
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CDE and MS-CDE Applied to DJI

Figure 5.17: Monthly Conditional Entropy of DJI at Time Scale t=2

Figure 5.18: Monthly Conditional Entropy of DJI at Time Scale t=4
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Figure 5.19: Monthly Conditional Entropy of DJI at Time Scale t=8

Figure 5.20: Monthly Conditional Entropy of DJI at Time Scale t=16
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Figure 5.21: Monthly Conditional Entropy of DJI at Time Scale t=32

Figure 5.22: Monthly Conditional Entropy of DJI at Time Scale t=64
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Figure 5.23: Monthly Conditional Entropy of DJI at Time Scale t=128

Figure 5.24: Monthly Conditional Entropy of DJI at Time Scale t=256
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Figure 5.25: Monthly Conditional Entropy of DJI at Time Scale t=512

Figure 5.26: Monthly Conditional Entropy of DJI at Time Scale t=1024
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