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Abstract 

The field of biomechatronics is evolving quickly with advances in computer science, 

biology, and electrical and mechanical engineering. Coupled with increased interests in machine 

learning (ML) across all industry sectors, there are opportunities to leverage advanced analytics in 

uniquely complex problems. This study aimed to deploy real-time ML predictions in a novel 

microprocessor-controlled prosthetic knee (MPK) device capable of identifying and responding to 

stumble-events to reduce amputee fall prevalence. Innately, stumbling is a chaotic event. Current 

MPKs operate by detecting gait characteristics and reacting to preprogrammed states. While these 

systems are beneficial in significant ways, such as energy expenditure and stability, chaotic events 

can mislead traditional gait interpretation methods. A novel method was designed to implement 

an ML model capable of predicting amputee stumble occurrences using Long-Short Term Memory 

(LSTM) architecture on three-dimensional acceleration and velocity obtained from inertial 

measurement units (IMUs). This innovative approach had four main aims: (1) develop a cost-

constrained prototype MPK, the GKnee; (2) collect in vivo stumble-induction data and train an 

ML model for the unique use-case; (3) create a control system to use the ML model to incorporate 

into the GKnee; and (4) combine and test components in a comprehensive stumble-induction study 

against a passive mechanical knee and industry standard MPKs. 

For the first aim, the prototype GKnee was designed to bear a 100 kg patient during heavy 

loading activities with an additional safety factor (three times body weight). The developed 

prosthetic knee does not limit flexion and dampening does not prevent normal leg swing. It was 

equipped with accelerometers, gyroscopes, and a servo to allow data collection and microprocessor 

control. The final system cost was $1,392, which was approximately $900 above the hypothesized 

cost. 
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Towards the second aim, an initial patient trial was conducted with three subjects and each 

was induced to stumble under three different methods: bungee (n=42), obstacle (n=43), and uneven 

surface (n=65). With an IMU-equipped knee, the data from these trials was recorded and labeled 

for ML training. An LSTM ML model was then developed to classify the data and achieved an 

average step accuracy of 66.9%.  

Building on the ML model, the third aim involved developing a novel control system that 

switched between “walking” and “stumbling” conditions in real-time to control the GKnee with 

an electronically actuated hydraulic system. The control system was able to change between true 

states in less than 0.15 seconds and switch out of false states in less than 0.034 seconds. 

Additionally, the system interpreted and improved the classification rates of the ML model and 

increased the step accuracy of the system to 91.4%. 

As part of the fourth aim, a final five-subject in vivo trial was conducted that compared the 

GKnee to industry standard MPK systems and a mechanical passive system during stumble 

inductions. A total of 500 stumbles were induced across all patients, knees, and stumble induction 

modes. With a statistical significance of p = 0.0422, the GKnee was found to have a large effect 

improvement over both the MPK (Cohen’s d = 1.63) and M3 (Cohen’s d = 1.91) in stumble 

recovery rate. An error during data collection made it clear that this improvement resulted purely 

from the mechanical portion of the GKnee with no active control methods. Thus, while the ML 

model and control system performed according to their objectives, they ultimately had no effect 

on the improved recovery rate during testing. 

Overall, this research contributes an in-depth, transfemoral-amputee stumble dataset with 

an effective ML model network while also presenting a cost-constrained prosthetic knee prototype 
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that effectively reduces amputee fall incidence rate during treadmill induced stumbles compared 

to industry standard devices. 
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Chapter 1: Introduction 

Limb loss affects 36 to 58 million people globally, with transfemoral (TF) amputations 

affecting approximately 25% of that population and growing by 44,400 per year within the United 

States (Amputee Coalition, 2012; Center for Orthotic & Prosthetic Care, 2008; Michael, 2001; 

WHO, 2011). The current commercial prosthetic knee market ranges from low-cost, purely 

mechanical devices to high-end electronic prosthetics. However, an affordable, technology-rich 

prosthetic knee does not currently exist. Studies have shown that microprocessor-controlled 

prosthetics are more adaptable to individual walking patterns, require significantly lower patient 

exertion, and reduce complications when walking compared to passive mechanical systems 

(Hafner et al., 2007; Johansson et al., 2005). Despite these significant advantages over simple 

passive knees, the cost of electronic systems keeps this technology out of reach for the majority of 

amputees. To the subject, microprocessor knees start around $30,000, while more advanced 

models easily reach $80,000. With a US median income of $67,521 in 2020, such systems cost 

44% and 118% of a yearly wage, respectively (Shrider et al., 2021). Health insurance provides 

these systems to many, but for the less fortunate in the US and other countries, no affordable 

advanced system exists. 

Nevertheless, even subjects wearing electronic systems experience periodic stumbles and 

falls. Traditional electronic systems use state programming to determine changes in activity. With 

the chaotic nature of stumbles and variability of normal gait, false negatives and false positives 

can occur and result in a fall. The following research proposes a combination of machine learning, 

control systems, and in vivo testing to create a low-cost microprocessor prosthetic knee that will 

identify and prevent stumbles, adapt to patient gait, and be comparable to high-tech systems at less 

than 5% of the cost. 
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The purpose of prosthetic knees is to restore functionality to patients by mimicking the 

articulation of natural limb joints. Current knee systems accomplish this goal admirably, but more 

work needs to be done, especially in fall prevention. In the United States, a hospitalizing fall can 

have an average direct medical cost of $25,600 (Mundell et al., 2017). Fear of falling affects 

approximately half of lower limb amputees (Miller et al., 2001). Statistically, even though active 

knees show an improvement over passive knees in falling, almost all patients still fall (Hafner et 

al., 2007; Kahle et al., 2008), and more than 50% of lower limb patients report falling at least once 

a year (Highsmith et al., 2010). Current programming of active knees (like MPKs) moves between 

the discrete states of gait based on the system inputs (Torrealba & Fonseca-Rojas, 2019; Wen et 

al., 2017). However, falling is a naturally chaotic event. Therefore, a system is needed that will 

more accurately predict stumbles to prevent falls. One solution is to use non-discrete programming 

by drawing conclusions from sensor data in conjunction with machine learning methods. 

1.1.1 Stumble Literature 

Stumbles have been studied for many years with various levels of intensity. To-date, there 

are eight stumble studies involving able-bodied subjects (Cordero et al., 2004a; Forner-Cordero et 

al., 2011; Grabiner et al., 1993; Hajj Chehade et al., 2012; King et al., 2019; Lawson et al., 2010a; 

Schillings et al., 1996a; Yoo et al., 2019). Though some numbers were difficult to ascertain from 

methods, the number of subjects in these studies ranged from 4 to 18 (avg: 8 ±4), and each subject 

stumbled between 1 and 27 times (avg: 11 ±9). The most common methods of stumble induction 

were an obstacle, a line, or a treadmill perturbation. For the most part, these were set at either a 

preprogrammed position or gait phase. Other than Eveld et al., which proposed a method for 

inducing stumbles, the studies conflated perturbation with stumbling. Eveld et al. indicated 

attempted versus induced stumble perturbations (Eveld et al., 2021). 
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Among TF amputees, there are more variables to consider, like knee type and stumble side 

(intact or prosthetic). Fewer stumble studies were found for TF amputees, and the methodology 

was often not clearly delineated. While there are some assumptions with the able-bodies subject 

trials, several of the amputee subject trials have stumbling time or summative stumbles. The 

studies had on average nine subjects (±6) but were often mixed between TF and able-bodies 

subjects (Bellmann et al., 2019; Blumentritt et al., 2009a; Crenshaw et al., 2013; Hak et al., 2013; 

Highsmith et al., 2014; K. Kaufman et al., 2008; Sessoms et al., 2014; Shirota et al., 2015). Outside 

of two studies, the average amount of stumbles was six (±4), and repeatability is further reduced 

by the stumbles being split across leg sides and types of knees. Those two studies, though both 

still with mixed subject pools (including transtibial), performed a large quantity of induced 

stumbles (Shawen et al., 2017; Shirota et al., 2015). With the study by Shirota et al. having high 

levels of repeatability of 36 stumbles per amputee per side with only one knee tested. The study 

by Shawen et al. was much less repeatable with stumble induction methods ranging from self-

induced tripping to poorly defined pushes from the side, but still inducing stumbles 36 times per 

amputee. These two studies offer a large pool of stumble inductions but are both limited in variance 

of controlled induction type and in scope of knee systems compared repeatably. 

1.1.2 Research Scope 

To address both the cost of MPKs and the potential weaknesses of state-based 

programming, the overarching objective of this research was to develop a stumble prediction 

machine learning (ML) algorithm that would be deployed in a low-cost prosthetic knee. The 

project was thus broken into four sections: development of a knee, development of an ML 

algorithm to detect stumbles, integration of both knee and ML model in a control system, and 

testing and evaluation of the completed system. Specific aims are given in Chapter 2.  
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Further, each section required its own development phases, data collection, and evaluation. 

The knee development, Aim 1, includes mathematical modeling and analysis, experimental 

evaluation, material sourcing, and prototype evaluation. Novel data was collected to develop the 

ML algorithm for Aim 2. This aim includes data collection, multiple ML models, and model 

evaluations. In Aim 3, both Aim 1 and 2 were brought together in a control system. This aim 

focuses on the implementation methods and subsequent effect on the stumble classification and 

reaction. The final evaluation of all previous aims working in conjunction are discussed in Aim 4. 

This aim evaluates a passive system, an MPK, and the developed prototype in a comparative 

stumble induction study to ascertain the rate of recovery compared with falls with each system. 

Therefore, the data collection trials with TF amputees can be split into three separate trials: 

initial data collection (Aim 2), knee evaluation and comparison (Aim 4), and GKnee control 

system recollection (Aim 4). The subject pool for the Aim 2 trial is separate from that of Aim 4. 

Throughout this paper, subjects from the Aim 2 trial will have the prefix “S”, e.g., S1 as the first 

subject in the Aim 2 trials; and those of Aim 4 will have the prefix “P”, e.g., P1 as the first patient 

in the Aim 4 trials. “S” and “P” were arbitrarily derived from “Subject” and “Patient”. In both sets 

of trials, a patient consented, but was unable to complete the trial. Thus, both trials have a 

subject/patient number that is skipped (S3 and P5). 
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Chapter 2: Aims and Objectives 

The purpose of the proposed research is to develop and test an affordable intelligent 

prosthetic knee with patient adaptation and stumble control through the use of machine learning 

software and microprocessor-controls. Interconnectivity of the aims can be seen in Figure 2.1 

below. 

Figure 2.1: Pictographical layout of aims. 

Aim 1: Develop and construct a low-cost polycentric prosthetic knee with electronically-
controlled swing dampening.  

For this aim, it is hypothesized that the developed prosthetic knee will support a 100 kg 

patient, allow knee swing up to 500 degrees per second, and have a component cost less than $500. 

The primary objectives are to optimize and construct an electronic damper that interfaces with 

existing knee design in the most efficient manner, so that it may be used to control the knee by 

limiting flexion. 

Develop and construct a 
low-cost polycentric 
prosthetic knee with 
electronically-controlled 
swing dampening. 

Aim 1 

Implement a machine 
learning classification 
system for gait during 
the activities of 
walking and stumbling 
through data from 
wearable IMUs on a 
unilateral knee 
prosthesis. 

Aim 2 

Develop a control 
algorithm for the knee 
mechanism of Aim 1 
using the machine 
learning system of Aim 
2 as an environmental 
differentiator to switch 
between control models 
for the purpose of 
emulating human 
activity.  

Aim 3 

Compare assembled 
system of Aims 1, 2, and 
3 to industry standards 
and base prototype M3. 

Aim 4 
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Aim 2: Implement a machine learning classification system for gait during the activities of 
walking and stumbling through data from wearable IMUs on a unilateral knee prosthesis.  

It is hypothesized that the system will achieve an activity classification accuracy greater 

than 90% and detect stumble with a precision greater than 75% and a recall greater than 60%. The 

output of this aim will be a program trained to classify gait activity for integration with the 

electronic control system of the knee. This will provide the basis of adaptive software control for 

the device. 

Aim 3: Develop a control algorithm for the knee mechanism of Aim 1 using the machine 
learning system of Aim 2 as an environmental differentiator to switch between control models 
for the purpose of emulating human activity.  

The control algorithm will switch between true changes in state within 0.15 seconds and 

will switch out of a false change of state within 0.30 seconds. Using embedded sensor information 

from the device, the control algorithm will adapt to current gait speed and transition to alternative 

activity models based on the activity classifier. This will use the additional sensor information 

along with the predicted activity from Aim 2 to control the physical knee device from Aim 1 – 

achieving predictive, reactive, and adaptive control for each wearer. 

Aim 4: Compare assembled system of Aims 1, 2, and 3 to industry standards and base 
prototype M3.  

It is hypothesized that the system will have a smaller rate of falls per stumble event than 

the M3 and will have no statistical difference in rate of falls per stumble compared with the 

subject’s MPK. It is also hypothesized that the system will exhibit increased gait symmetry 

compared to the M3 and decreased gait symmetry compared with the subject’s MPK. This aim 

seeks to evaluate the prototype knee system (GKnee) when compared to current passive and active 
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knee systems in the categories of falling prevalence and walking mechanics. Performance in this 

aim will ultimately be a summative performance of the overall research project. 
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Chapter 3: Aim 1 - Develop and construct a low-cost polycentric prosthetic 
knee with electronically-controlled swing dampening. 

3.1 OBJECTIVE 

For this aim, it is hypothesized that the developed prosthetic knee will support a 100 kg 

patient, allow knee swing up to 500 degrees per second, and have a component cost less than $500. 

The primary objectives are to optimize and construct an electronic damper that interfaces with 

existing knee design in the most efficient manner, so that it may be used to control the knee by 

limiting flexion. 

3.2 INTRODUCTION 

Transfemoral (TF), or above knee (AK), amputees utilize a full-leg prosthetic system 

consisting of a socket, knee, pylon, foot, and necessary connective hardware (Sagawa et al., 2011). 

While there is room for improvement in all systems, the operational joints, such as the knee and 

ankle, have received the most attention by researchers due to their complexity. Most prosthetic 

ankle-joint movements are represented in a flexible foot prosthesis, though there is ongoing 

research for powered ankle mechanisms housed separately from the foot (Shepherd & Rouse, 

2017; Sup, Varol, et al., 2008). Because of its vital role in ambulation, the knee has drawn attention 

in major research efforts over the years. While passive knees (which have limited support phases 

and are not dynamically controlled) have existed for many years with reasonable success, 

emergence of dynamically adjusting microprocessor knees (MPKs) within the last thirty years has 

greatly improved the gait for patients worldwide. MPKs can adjust to patient gait, even in mid-

stride, and have shown reduced metabolic energy expenditure (Johansson et al., 2005). 

Approximately 82% of amputees prefer MPKs to the passive alternatives (Hafner et al., 2007). 

While the benefits of the MPKs include increased stability, biomechanical symmetry, and other 

functional benefits, these knees currently cost, on average, $20,000 to the prosthetist and nearly 
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twice as much to the patient. This price point is unreachable for 80% of the world’s population 

that earns less than $10 per day (Chen & Ravallion, 2010). An affordable solution with the features 

of a high-end system is needed for the majority of amputees in the world. 

The design work of this aim focused on improving a validated system from previous results 

while incorporating major changes (Galey, 2016). Components and systems were evaluated and 

validated on an ongoing basis. Two major prototype iterations were completed, and the systems 

were evaluated for load bearing capacity, pressure ratings, hydraulic fluid flow, dampening 

capabilities, and component cost. 

3.2.1 Knee Geometry 

Prosthetic knees are designed to provide optimal support and swing. While the possible 

geometric arrangements are endless, there are three main categories most knees fall under: single 

axis, four-bar, and six-bar. Four-bar and six-bar are both polycentric mechanisms, meaning that 

the center of rotation moves as the knee flexes. Through mathematical optimization, polycentric 

knees are able to offer increased stance stability and toe clearance (Gard et al., 1996). 

Single Axis 

Within the field of actively controlled knees, single axis devices are the most common, 

most likely due to the single center of rotation and the simple application of torque. The three most 

popular MPKs (Ottobock C-Leg®, Össur Rheo Knee®, and Freedom Innovation Plié® 3) use 

different hardware mechanisms, but all utilize a single axis (Freedom Innovations, 2015; Össur, 

2016; Ottobock, 2016). Actively controlled knee mechanisms have the advantage of applied torque 

for the purpose of stability, which is why passive knees often avoid single axis designs. A single 

axis without an adaptive system is difficult to design for both body weight support and free swing 

during gait. 
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Four-Bar Mechanism 

Four-bar mechanisms are the most common form of polycentric knees (Chauhan & 

Bhaduri, 2011). Seen in Figure 3.1, the basic governing principle of this system is that at full 

extension, the system rests against itself during vertical loading, providing stability to the stance 

phase. This allows the resistance of the system to determine the leg swing speed but is not 

responsible for supporting the weight of the patient. An advantage to this system is the shortening 

of the functional prosthesis length during flexion, which allows the system to give patients greater 

toe clearance (Tang et al., 2008). Increased ground clearance helps patients walk more naturally 

by avoiding lateral sway during gait, decreasing lateral hip rotation, and reducing risk of secondary 

injury (Gailey et al., 2008; Gard et al., 1996). 

Figure 3.1: Four-bar knee mechanism. Dotted lines indicate the moving center of rotation. Path 
of center of rotation throughout flexion is given. From (Gard et al., 1996). 

Center of 
Rotation Path 
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Six-bar Mechanism 

As used by the Össur Total Knee system, six-bar mechanisms augment the innate stability 

of a four-bar system. The function of the two additional linkages depends on the designer, but the 

most common application is to allow the knee to effectively lock during full-extension and vertical 

loading. While four-bar mechanisms achieve mechanical stability at full extension under vertical 

loading, six-bar mechanisms subjected to this situation will also be resistant to horizontal forces, 

such as an impact to the knee from the side (Jin et al., 2003). This system still allows the knees to 

swing freely while flexing but maintains greater stability during knee-extended loading. 

Figure 3.2: Example configurations of six-bar mechanism. From (Jin et al., 2003). 

3.2.2 Gait Data 

Many studies have documented gait patterns over the years. As discussed in later chapters, 

this data has been used to model and to predict gait characteristics and outcomes. Gait data has 

been shown to be repeatable with known variance bounds between subjects (Riley et al., 2007; 
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Winter, 1990). Ground Reaction Forces (GRFs) are the measured forces of a person’s gait upon 

the ground. These follow established patterns that correspond to different gait events such as heel 

strike, toe off, and stance phase. Seen below in Figure 3.3 are knee angle and GRFs as measured 

by Winter. Because such forces and angles are repeatable and known, they can be used for force 

loading of prosthetic systems during various angles of knee flexion to simulate gait. 

Figure 3.3: Knee angle and Ground Reaction Forces in knee during healthy gait. Adapted data 
from (Winter, 1990). 

3.2.3 Control Methods 

Though the topic of control methods is explored more extensively in the introduction to 

Aim 3, a basic understanding is needed to discuss Aim 1 as well. Prosthetic knees generally come 
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in two variants: passive control or active control (microprocessor control). The fundamental 

difference is that passive systems are non-adaptive to environmental changes. They have 

resistances to flexion and extension that are either set or adjusted manually. Microprocessor knees 

have sensors that detect knee activity and thus can dampen the knee in a corresponding manner 

automatically. Common methods for controlling the joint movement of prosthetic knees include 

the following: mechanical (K. R. Kaufman et al., 2008; Sup, Varol, et al., 2008), pneumatic 

(Radcliffe & Lamoreux, 1968; Sup, Bohara, et al., 2008; Tang et al., 2008), hydraulic (Bellmann 

et al., 2010; Johansson et al., 2005; Tang et al., 2008), and magnetorheological (Herr & 

Wilkenfeld, 2003a; Johansson et al., 2005; Ochoa-Diaz et al., 2014). 

3.2.4 Previous Work 

Previous work conducted in 2016 established the first iteration of a feasible low-cost, 

microprocessor-controlled knee device (E-Knee) for the current study to build upon (Galey, 2016; 

Galey & Gonzalez, 2022). The E-Knee, shown in Figure 3.4, was found to be a viable prototype 

that met low-cost, electronic-control design specifications and had comparable stability to 

commercial systems in qualitative and quantitative analysis. Preliminary testing of the E-Knee 

prototype suggested that it performed more closely to the Ottobock C-Leg than the LIMBS M3 

passive knee. Though the E-Knee had reduced functionality compared to currently available 

commercial MPKs, it was shown to have comparable stability to the C-Leg while its components 

cost 2.4% the C-Leg’s commercial cost. 
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Figure 3.4: Fully assembled 2016 prototype (E-Knee). Knee is flexed and Niagara foot is 
attached. (A. LIMBS M3 Knee, B. Modified Backlink, C. Hydraulic Damper, D. Angle Sensors, 
E. Microprocessor, F. Locking Mechanism, G. Power Supply). From (Galey & Gonzalez, 2022). 

3.3 METHODS 

This research aimed to combine the mechanical advantages presented by four-bar knee 

systems with an electro-hydraulic damper so that the prototype knee system (GKnee) could 

provide active control. The primary geometric design was based on the linkage from the LIMBS 

International M3 and was used in the previous E-Knee device discussed above (Galey, 2016). The 

LIMBS M3 has innate stability up to six degrees of flexion. This research addressed the following 

limitations of the 2016 E-Knee system: restricted flexion range (90 degrees max), subpar 

dampening capabilities (could not arrest motion), and elevated power requirements (mainly due to 
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the solenoid). Additionally, the flexion stopping mechanism and the damper were separate units 

and should be united. 

Based on the previous E-Knee prototype, the damper remained an electro-hydraulic 

system. Components were previously selected based on the following criteria: stroke length, flow 

rate, and pressure response (Galey, 2016). Using the force model from the geometric analysis in 

section 3.3.2, the system was optimized so that the damper could fully arrest flexion while the 

subject was running. The damper restricted flow resulting in stance support that could hold up to 

three times the body weight of a 100 kg patient, ISO P4. From the literature, running puts up to 

two and a half times the body weight on the knee, and a safety factor of one-half the body weight 

was added (Keller et al., 1996). 

Based on the previous work and limitations, Table 3.1 outlines design specifications for 

the overall capabilities of the GKnee.  

Table 3.1: Design Specifications of the prototype knee system (GKnee) 

Criteria Specification 
Stability  Provide mechanism to arrest flexion. 
Weight Limit Support patient of 100 kg. 
Maintenance ease Use retail parts commonly available. 
Cost  Cost less than $500. 
Variable cadence  Include mechanism for variable swing control. 
Immediate support on step initiation  Must be able to detect step. 
Supportive yield for sitting down Include mechanism for variable knee resistance. 
Knee locking  Must have immediate effect from stability mechanism. 
Redesign amount  Minimally redesign IM knee. 
Degree of flexion  Minimum 120 degrees of flexion. 
Weight  Weigh less than 2.27 kg (5 lb). 
Endurance 12-hour electric capacity. 

3.3.2 Geometry Kinetic and Kinematic Analysis 

The piston attachment point was a key point goal of the redesign. The previous work 

attached externally to maximize the linkage moment arm, but this configuration limited the flexion 
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capabilities of the system (to 90 degrees). Therefore, a mathematical model was developed to find 

appropriate internal attachment points and maximize the ratio between damper stroke and 

maximum force. The geometry of the GKnee was mathematically modeled in Python using a 

linkage fixing model to calculate angles and positions of all links throughout the gait cycle. A 

model of forces and moments acting through each link member was created using kinetic and 

kinematic gait data from Godest et al. and Winter (Godest et al., 2002; Winter, 1990). A pseudo-

static system was used to calculate the forces moving through the components at every time-

increment.  

Free Body Diagram 

The first step in analyzing the forces acting on the various linkages was establishing the 

free body diagram (FBD) and defining the various components in effect. Figure 3.5, below, shows 

the basic configuration of the forces. The analysis of the system was done during static locking, 

therefore, the forces acting on the system from gait were two-dimensional vectors that were 

translated through the tibia from the GRFs. The tibia angle was used to translate the vertical GRF 

into a tibia vector. For this study, the analysis focused primarily on the force vector acting on the 

piston. This was done to appropriately select hydraulic components that could withstand gait. The 

posterior axle on the lower block, denoted by a black dot in the figure below, was the point from 

which the forces were considered. 
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Figure 3.5: Free body diagram (FBD) for the four-bar IM knee mechanism. Shown are the forces 
acting upon the linkages relevant to the point of calculation (black dot in axle hole). The external 
force is the force exerted by the ground through the tibia on the bottom block (B). This force is 
not uniaxial but can have perpendicular components as well. The forces acting through the back 
link (L), piston (P), and kneecap (C) are uniaxial because they are attached to rotating axles. The 
piston attached to the lower block on a rotating axle lower than the image shows. The lower link 

was considered unmoving for force analysis. 

Force Calculations 

An objective of the knee design was to build a system that could resist loading during gait 

and stumble. Because the piston (P) prevented further movement when it was locked into position 

during activities requiring it, the forces acting through the system could be assumed to be static. 

Though a static analysis simplified conditions, the system is a four-bar mechanism, which made 

the forces acting through the various linkages more difficult to determine initially. The first step 

to analyzing the forces through each component was to solve the angles of each linkage 

corresponding to the flexion of the knee system. The lower block and back link intersection was 
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considered the reference point in both angle and force calculations. For a four-bar analysis, the 

back link (L; 36 mm), kneecap (C; 50 mm), upper block (T; 25 mm), and lower block (B; 30 mm) 

are considered. Because the system is a double-rocker linkage, meaning that both the back link 

and the kneecap do not complete full rotations and have constrained angles, continuous motion is 

not possible. Therefore, the angles were calculated by trigonometric geometry using the set link 

lengths. These angle formulas were validated with CAD calculations on the linkage. 

From the reference point, three equations were established: a sum of the moments, a sum 

of the forces in x, and a sum of the forces in y. Generalized equations can be seen below in Equation 

3.1, Equation 3.2, and Equation 3.3. These equations were calculated for a given load for all angles 

of the gait cycle. 

Equation 3.1 ∑𝑀𝑀 = 
 𝑃𝑃 ∗ sin𝜃𝜃p ∗ 𝐴𝐴𝜃𝜃𝜃𝜃𝐴𝐴𝐴𝐴ℎ𝑥𝑥 − 𝑃𝑃 ∗ cos 𝜃𝜃p ∗ 𝐴𝐴𝜃𝜃𝜃𝜃𝐴𝐴𝐴𝐴ℎ𝑦𝑦 +
𝐶𝐶 ∗ sin𝜃𝜃c ∗ 𝐵𝐵𝑙𝑙 − 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝐴𝐴𝑦𝑦 ∗

𝐵𝐵𝑙𝑙
2

+ 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝐴𝐴𝑥𝑥 ∗ 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝐴𝐴𝑙𝑙 

Equation 3.2 ∑𝐹𝐹𝑥𝑥 =   𝑃𝑃 ∗ cos 𝜃𝜃p + 𝐿𝐿 ∗ cos𝜃𝜃L + 𝐶𝐶 ∗ cos 𝜃𝜃c − 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝐴𝐴𝑥𝑥  

Equation 3.3 ∑𝐹𝐹𝑦𝑦 =   𝑃𝑃 ∗ sin𝜃𝜃p + 𝐿𝐿 ∗ sin𝜃𝜃L + 𝐶𝐶 ∗ sin𝜃𝜃c − 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝐴𝐴𝑦𝑦  

In these formulas, the letters representing the linkages are being used to display the force 

in each respective link. The primary force components were piston (P), Tibia, kneecap (C), and 

back link (L). The angle values are given by “θ” with the respective linkage subscript. Linkage 

lengths were given by the subscript “l”. Finally, the subscripts “x” and “y” were used to give 

reference frame force and distance information. “Attach” was the coordinates of the piston 

attachment to the lower block. 
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Validation 

The mathematical model was validated by constructing a knee frame with the same 

established dimensions and inserting an s-beam load cell in place of the piston. The knee frame 

was then inserted into a testing rig that had a pneumatic piston at the bottom and a load cell at the 

top. Because the GRF data was the known quantity, the knee was inserted upside down so that the 

force on the simulated tibia of the system would be read directly. The femur of the system would 

be pressed on by the pneumatic cylinder. At the start of both the femur and the tibia were axle 

joints that allowed the forces exerted to attempt to flex the knee. 

A threaded bolt was used to adjust the faux piston length to set the knee to several different 

knee angles. At each set angle, the system was subjected to a loading cycle. The pneumatic cylinder 

applied force at a rate of 100 N/s and would hold at the set load for 30 seconds. During this time, 

the s-beam and the rig load cell were collecting data at 10 and 100 Hz, respectively. An angle 

finder (accuracy: ±0.1 degrees) was used to collect the following angles: tibia, femur, knee flexion. 

These were needed so that the mathematical model would apply the simulated GRF forces to the 

knee at the appropriate angles. 

At each set angle, the first load cycle was 200 N to settle the frame and remove any motion 

in the system. This angle value was recorded and became the set angle label. Loading cycles were 

conducted at 7, 12, 19, 24, 29, and 39 degrees. At each set angle, the true load cycles started at 

1,000 N and increased in steps of 200 N. The load cycles were discontinued after the s-beam read 

approximately 8,000 N or the load angle reached 3,000 N, which reflected the s-beam’s maximum 

load (1 imperial ton) and more than the maximum running weight of a 100 kg patient (~3,000 N 

when including a factor of safety). The data was then used to validate both the accuracy of the 

mathematical model and also quantitatively measure the forces that would be acting on the piston 
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throughout gait. The validity of the mathematical model allows it to be used for future attachment 

optimization and material selection. 

3.3.3 Hydraulic Components 

The force calculations were used to establish two parameters for the hydraulic system – the 

piston load and the piston attachment points. A balance had to be struck between the cylinder size, 

the maximum fluid pressure, and the flowrate of fluid. A larger cylinder would decrease the fluid 

pressure but would increase the fluid flow rate. Additionally, the points of connection between the 

components could limit the flowrate and thus necessitate a higher-pressure system, which 

decreased the options for component selection. Therefore, these three variables were carefully 

balanced during the selection and design process. 

Cylinder Selection 

Due to the design specifications for cost and maintenance ease, component selection was 

restricted largely to off-the-shelf components without additional customization costs. Electric 

linear dampers were considered as well but were ultimately disregarded; though they can apply 

great force, it comes at a trade for speed. Based on preliminary data of knee angular velocity during 

gait, it was determined that the stroke speed of the cylinder would be at least four cm/s. 

Additionally, even if such systems had both the speed and load capabilities necessary, they would 

need to be powered during every gait cycle. This was considered an unacceptable power constraint. 

Fundamentally, two types of cylinders were left to consider: single acting and double 

acting. Because the primary function of the hydraulic system was to provide dampening, there was 

no practical advantage to the double acting cylinder category. Therefore, the more affordable 

single acting cylinder was chosen. From there, the selection criteria were dependent on balancing 
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the force and fluid flow calculations. Systems of various specifications were readily available from 

commercial vendors. 

Valve Selection 

Fluid flowrate and valve actuation method were the primary considerations in selecting an 

appropriate valve for the system. Early in the process of the mathematical model, an error led to a 

force specification increased by an order of magnitude. To mitigate this, larger cylinders were 

selected. These large cylinders came with the condition of needing a large amount of fluid as well, 

and a flowrate of 7.11 liters per minute (lpm). Therefore, flow testing for several valves for 

Prototype 1 was conducted and ultimately proven to be unnecessary. However, despite the flowrate 

calculations being found incorrect, flowrate control remained necessary. To increase or decrease 

dampening of the hydraulic system, the valve needed to have proportional control.  

Valve flow methods range from ball mechanisms to very small orifices, and actuation 

methods include mechanical and electrical inputs. Methods that allow large flow, such as ball 

valves, allow more fluid but would be more difficult to actuate. Electronic proportional valves, 

such as the SV08-25 cartridge by HydraForce, exist, but most function through activation of a 

solenoid. As determined by the previous work, a solenoid was not ideal for a portable knee due to 

the power consumption required of continuous electromagnet operation. Methods that use motors 

to actuate valves do exist, but none were found preassembled within the pressure, flow, and size 

requirements. Therefore, mechanical proportional valves were explored with the intent of 

electronically innervating them with a small positional motor. 

Mechanical valves were evaluated on the following criteria: pressure rating (>20 MPa), 

flow rate (>7.11 lpm), and operating torque (<25 kg/cm). The operating torque limitation was 

established by finding a compact servo with the appropriate speed and voltage requirements, 
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presented in the results below. While pressure rating was a product specification, flow rate and 

operating torque often were not disclosed. Therefore, tests were conducted on the systems 

considered to validate their capability. 

Fluid Flow and Reservoir 

Noncompressible oils come in many viscosities, densities, and prices—they were evaluated 

accordingly for use in this system. By calculating the head loss between the various sections of 

Prototype 1, the total pressure drop for the system could be calculated. The characteristics of each 

oil changed the pressure drop and was used to evaluate its performance. The oils considered for 

this system were the following: olive oil, canola oil, brake fluid, motor oil, power steering fluid, 

industrial hydraulic fluid, and transmission fluid. Although more advanced oils are available, these 

were analyzed because they were also low-cost. The pressure drop calculations were also in 

consideration during design or selection phases of any connections or manifolds because the 

change in diameter would affect the head loss of that section. 

The hydraulic system, when acting as a damper, was not applying force toward moving, 

but rather restricting flow. As the fluid flowed out of the cylinder, it needed to be stored so that 

when the cylinder was extended again, the negative pressure would refill the cylinder. Therefore, 

a reservoir system was explored. Its primary specification was that it could hold at least the volume 

of fluid equal to that of the stroke of the cylinder during use. 

Validation 

A key component to the hydraulic system selection was identifying the optimal fluid flow. 

Too much restriction would establish a base dampening force that would not allow the knee to 

move freely. Therefore, if a candidate valve did not have a manufacturer provided datasheet, a 

flow test was conducted. The flow test was conducted with water from a garden hose. A flow 
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sensor collected data at the valve’s output. The flow test established two specifications: the flow 

rate and flow control profile of the valve. 

To evaluate the torque required to turn the valve and thus aid in selecting a servo with 

enough capacity to do so, the valves were tested with a simple movement test. A bar was attached 

to the valve and weight was added until the valve began to turn (called break-away torque). This 

was done with a 7 cm and 11 cm lever arm, and the results were averaged. 

The hydraulic assembly of the system was tested within the assembled knee. Because the 

system was designed and components selected to meet pressure parameters, the primary validation 

of this system was to confirm that the sealing of the system had been successful. Body weight 

(99.8 kg) was applied to the locked system at various angles. The researcher would balance on the 

system so that it bore the whole weight. The vertical weight was applied up to a 0.30-meter offset, 

resulting in a 30.4 kg.m moment when the knee was flexed to 30 degrees.  

Additionally, the mathematical model was used to calculate the force on the piston, and 

therefore pressure on the hydraulic system, for the three-times body weight test of a 100 kg patient 

in recovery. Recovery in this case was set to a 20-degree knee angle, which is approximately 26% 

of a gait cycle before regular heel strike, and an 85-degree tibia angle, which is higher than typical 

during gait. It should be noted that this is a worst-case scenario simulation where not only is the 

subject running (2.5 times body weight on the system), but the safety factor is considered (0.5 

times body weight on the system), and the subject is also stumbling at drastic knee angle. 

During intact-leg gait, subjects show an average peak angular velocity of 250 deg/s 

(Mentiplay et al., 2018). From preliminary data collected of the M3 Knee, 400 deg/s were regularly 

reached during gait. Therefore, the objective was to exceed both with a measure of safety of 100 

deg/s. Baring a severe flow restriction, the hydraulic system could be forced to move quickly 
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enough with enough pressure. However, this would not test the angular velocity capabilities of the 

prototype in a realistic manner. To assess whether the knee was able to swing at 500 deg/s, walking 

data of the trials in Aim 4 were evaluated. These trials used the GKnee, and knee angular velocity 

was calculated by finding the difference between the recorded sensor data for the shank and thigh.  

3.3.4 Electronic Components 

Components for the electronic system were chosen around the microprocessor unit. With 

a restriction to Python-based machine learning systems, several options were considered such as 

the Google Coral or the Raspberry Pi. Ultimately, the Google Coral was the only system, at the 

time of design, that was a ready-built, machine-learning-capable microprocessor unit. Therefore, 

components were selected that worked within its Mendel Linux distribution used by the processor. 

The compatibility of electronic components with the Python and Linux environment was the 

largest deciding factor when choosing sensors.  

Servos were selected based on speed, torque capabilities, and size. Because the servo was 

to actuate the valve, the selection of this component occurred after initial valve break-away torque 

testing. Smaller servos were desirable to keep the system compact, but smaller servos often operate 

in the grams/cm range at any reasonable speed. The objective was to have a servo that was 

powerful enough to actuate the valve, but minimal in size. 

3.4 RESULTS 

Adhering to the methods described in Section 3.3, the following force calculation models 

were created (shown below in Figure 3.6). From these calculations, it was determined that the 

piston needed to support a force up to 14,800 N. The forces shown are a theoretical simulation 

from a static evaluation. 
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Figure 3.6: Results of the force calculations for the damper attachment point. Left shows the 
basic configuration of forces on the prosthetic knee system (shaded components) and right shows 

simulated forces if piston had to perform a complete stop. Force calculations were done with 
patient’s weight (100 kg) with the calculated maximum forces during running.  

The mathematical model was first used to establish attachment points for the two 

prototypes, and then was validated by force measurement. Figure 3.7 highlights both the validation 

of the mathematical model and a summary of the forces acting on the piston at various loads and 

angles. Note that angle 39 has been excluded from the figure below. Angles 29 and 39 began at 

300 N and increased in 100 N steps until the limits had been reached because the normal 1,000 N 

starting load already exceeded the measurement limitations. Despite this, angle 39 was at such 

flexion that the test only had two datapoints (not shown). 
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Figure 3.7: Measured (solid line) and calculated (dashed line) forces acting on the piston during 
loading at various set angles. The “x” markers indicate actual datapoints. The degree given is the 

settling (200 N) angle of that test run. 

Table 3.2: Measured and calculated forces acting on the piston difference error percentage at the 
various set angles. 

  7 deg 12 deg 19 deg 24 deg 29 deg 

Average Error 51% 12% 6% 4% 5% 
 

3.4.2 Prototype 1 

Built to exceed the force requirements of the mathematical model, Prototype 1 was 

overengineered, but served as a first fitting for all components. The frame was made of 6062 

aluminum and clamped to the pylon at the distal end. 

Hydraulic Assembly 

The major components of Prototype 1’s hydraulic assembly were as follows: VekTek 1-

5/16-Inch threaded cylinder, HAWE AC 13-1/4 diaphragm accumulator, 316 stainless steel 1/8-
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inch ball valve, and a custom 6061 aluminum manifold. The component with the smallest 

maximum pressure was the ball valve, which limited the pressure to 20.7 MPa (10,382 N). 

Figure 3.8: Assembled prototype 1 knee system. Left shows actual assembly. Middle and right 
show rendering of the full assembly and the hydraulic system in detail, respectively. A legend is 

included to label the various components. 

Testing 

The ball valve was tested for flow performance and its flowrate was six lpm. Figure 3.9, 

below, shows the flow profile of the valve. While it is not perfectly linear, the shape was repeatable 

and consistent across opening and closing of the valve. The torque needed to open the ball valve 

while dry was 3.73 kg.cm. 
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Figure 3.9: Flow profile of the ball valve. At fully open, the flowrate was six lpm. 

3.4.3 Prototype 2 (GKnee) 

The changes between Prototypes 1 and 2 were relatively simple adjustments with two 

notable exceptions. While Prototype 1 had a servo and an Arduino to control it, these were used 

for testing purposes only. The GKnee, on the other hand, had a full electronic system with 

microprocessor and input/output system, which is described in greater detail in the Electronic 

System, below. The second primary change was the adoption of a rotary valve. Because the valve 

was shaped as a cartridge both machined manifold pieces were combined into a singular, more 

compact manifold. It should be noted that in this aim, the designation “GKnee” refers to the purely 

physical construct, but in later aims also includes the control system of Aim 3. 

Hydraulic Assembly 

The rotary valve was the Eaton Vickers MRV2-10V flow control valve. Similar to 

Prototype 1, this system was limited by the valve to a pressure of 21 MPa (10,635 N). The other 

hydraulic components remained the same. 3D printing was used to construct the gears to interface 

the servo with the valve, and to create mounting hardware for the various low-force components. 
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Figure 3.10: Assembled prototype 2 (GKnee) system. Left shows actual assembly. Middle and 
right show rendering of the full assembly and the hydraulic system in detail, respectively. A 

legend is included to label the various components. 

Electronic System 

The electronic components of the GKnee prototype were relatively simple in design and 

nature. For computation, the system needed a microcontroller; for input, the system needed a set 

of inertial measurement units (IMUs) and for output, the system needed a servo. Figure 3.11, 

below, shows all the components and their wiring diagram. 
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Figure 3.11: Component and connection diagram of the electronic system of the GKnee. Major 
components are the Google Coral, 2 IMUs, Logic Level Shifter, Button, and Servo. The dotted 
lines between the Button and the Google Coral represent a long wire. There are two IMUs, but 

since they are connected via I2C, they are connected to the same wires, and thus shown grouped. 

The Google Coral was chosen as the system’s microcontroller because it was designed for 

deployable machine learning models. It is a single-board computer capable of performing four 

trillion operations per second and operates on a Linux derivative. Its key features are the following: 

1 GB of RAM, 8 GB of flash memory, WiFi, LAN, 3.3V GPIO rail, and 5V input power. The 

RAM and flash memory seemed very suited for a portable model, and the WiFi meant that the 

system could be controlled untethered. 

The inputs to the system are a button and two IMUs. The button was designed to be 

activated from an extended distance and was therefore tethered by a 10-foot wire. The button was 

a simple through-hole tactile push button. It was mounted on a piece of prototyping board for grip 
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and connected to the two leads. The button was a normally open device that closed the circuit when 

pressed. The two leads were connected to the 3.3V source and a GPIO on the Google Coral. 

Therefore, when the button was pressed, the GPIO was connected to the 3.3V, and would read 

HIGH. Additionally, a 100 Ohm resistor pulled the GPIO to ground. Thus, when the button was 

not pressed, the GPIO would be connected to ground, and read LOW. The IMU units that were 

selected and used interchangeably were the LSM9DS1 and the LSM6DS3. Both featured 

accelerometers and gyroscopes and were integrated into the CircuitPython libraries. Originally, it 

was planned to use the sensors at 120 Hz, but only the LSM9DS1 was able to perform at this level 

with the CircuitPython and Google Coral. The LSM6DS3 peaked out at approximately 80 Hz. 

However, in practice, the system ran at 60 Hz; thus, both devices were functional. Their software 

libraries were similar enough that a toggle portion of code could enable one or the other sensor. 

Both operate over I2C protocol and thus when a set of IMUs, one for shank and one for thigh, was 

connected, they attached to the same pins (3.3V, ground, SDA, and SCL). Therefore, one set of 

wires connected to the relevant pins on the Google Coral, and later split to attach to both sensors. 

The only physical output to the electronics system was the servo motor. Though the logic 

of the PWM output of the Google Coral is 3.3V, the servo required 5V logic. Therefore, a logic 

level shifter was used to step the voltage from 3.3V to 5V. The servo was a DS3225MG RC motor 

rated for 4.8-6.8V operating voltage. At 5V, its operating speed was 0.15 sec/60 degrees. Its range 

was 180 degrees, and it had a stall torque of 21 kg.cm at that voltage. The servo interfaced with 

the hydraulic system valve, allowing the Google Coral to control the dampening of the prosthetic 

knee effectively. 
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Cost 

Displayed in Table 3.3 is the cost breakdown by component for the GKnee. The total cost 

of the system was $1,392. The costs shown include machining and material costs. 

Table 3.3: Cost breakdown by component of Prototype 2 (GKnee). Costs include raw materials 
and machining and are shown in US Dollars ($). 

Component Cost (USD) 
Kneecap  $15 
Top Block  $50 
Frame  $80 
Cylinder  $249 
Rotary Valve  $45 
Accumulator  $220 
Manifold  $300 
Cylinder Adapter  $80 
Back Link  $100 
Miscellaneous  $32 

Google Coral  $180 
IMU (2)  $15 
Servo  $25 
Wiring  $2 

Total  $1,392 

Weight 

Shown below in Table 3.4 is the weight breakdown of the GKnee. Smaller components 

were summed together into overarching categories. The total weight of the system is 3.33 kg (7.34 

lbs). 
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Table 3.4: Weight breakdown by component/category of Prototype 2 (GKnee) in kilogram. 
Weight does not include external adapters. 

Component Weight (kg) 
Kneecap 0.11 
Top Block 0.17 
Frame 0.68 
Cylinder 0.50 
MR2 Rotary Valve 0.08 
Accumulator 0.30 
Manifold 0.44 
Cylinder Adapter 0.07 
Back Link 0.04 
Miscellaneous 0.65 

Electronics 0.15 
Printed Components 0.14 
Automatic Transmission 
Fluid 0.01 

Total 3.33 

Component Testing 

For the rotary valve, the manufacturer provided flow characteristics therefore flow testing 

was unnecessary. The valve has a max rated flow of 18.9 L/min, which exceeds the minimum 

requirement, and its flow profile is linear to the valve openness. The tested break-away torque for 

the valve was approximately 0.08 kg.cm, which is significantly less than the capabilities of the 

servo.  

System Testing 

Using the mathematical model, the position that optimized piston force, stroke length, and 

hydraulic system pressure was found to be 54 cm forward and 157 cm downward when measured 

from the back link bottom axle. At this attachment point, for a 100 kg patient, the stroke would be 

equal to 1.67 cm with the recovery piston force of 9,896 N and recovery hydraulic pressure of 19.4 
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MPa. For the max pressure of the rotary valve, which is the limiting component of the system, the 

GKnee should be able to bear a 10,635 N force.  

As stated in the methods, the system was tested up to a 30.4 kg.m moment to evaluate the 

piston’s seal. No leakage was found, and the system resisted flexion through the moment. During 

the trials of Aim 4, the knee system routinely exceeded 500 deg/s, which validates minimum 

dampening capacity. 

Design Specifications 

Table 3.5 shows the design specifications from the methods along with the feature that 

accomplishes the specification. The primary design criteria that were not achieved were the 

following: cost, redesign amount, and weight. 

Table 3.5: Design Specifications of the prototype knee system (GKnee) with the resulting 
feature. 

Specification Feature 
Provide mechanism to arrest flexion.  Hydraulic system 
Support patient of 100 kg. Able 
Use retail parts commonly available. Partial success 
Cost less than $500. $1,392 
Include mechanism for variable swing control. Rotary valve with servo 
Must be able to detect step. Microcontroller 
Include mechanism for variable knee resistance. Rotary valve with servo 
Must have immediate effect from stability mechanism. Valve can lock within 0.15 seconds 
Minimally redesign IM knee. Not achieved 
Minimum 120 degrees of flexion. Flexion of 146 degrees 
Weigh less than 2.27 kg (5 lb). 3.33 kg 
12-hour electric capacity. Low-power components selected 

 

The final assembled prototype can be seen in Figure 3.12, below. This was the functional 

system used during the trails of Aim 4. Any changes and adaptations mentioned in Aim 4 were 

changes to software and not physical design or assembly. In this GKnee, the electronic components 

were coated in a protective layer of hot-melt adhesive. 



35 

Figure 3.12: Final assembled GKnee prototype. Seen are the electronic system and the hydraulic 
system together within the frame as a functional prototype. The foot pictured is a modified 

Niagara Foot v1. 

3.5 DISCUSSION 

The overarching components of this aim were the mathematical model and the GKnee 

prototype. To evaluate the forces the GKnee is subjected to, the mathematical model had to first 

be developed and verified.  
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Mathematical Model 

Though early mathematical models developed had considerable error, the final version of 

the model showed a consistent performance when compared to the s-beam force measurement. 

The highest error was 12 percent with exception for the seven-degree run (51%). A large portion 

of the force calculations depend on the angle of the input forces and the flexion of the system. 

With an angle measurement accuracy of 0.1 degrees, the forces were expected to have offset errors; 

however, using a safety factor of 0.5 body weight (~500 N) controls for this error. A high error in 

the seven-degree run is to be expected as well. As mentioned previously, the four-bar mechanism 

of the system has innate stability up to approximately six degrees. At seven degrees, with error, 

the system wavers between stable and unstable: not fully unstable, but no longer stable. Much 

would depend on small amounts of ductility in the joints that would allow the knee to deform in 

either direction: flexion or extension. Therefore, it is expected that the model is less accurate at 

this angle. Figure 3.7 also shows the large effect of knee angle on the forces transmitted to the 

piston demonstrating similar phenomena.  

Figure 3.6 highlights the maximum forces during gait on the piston. At first glance, it seems 

that the 14,800 N clearly exceeds the limitation of the hydraulic valve (10,635 N). However, this 

force is seen at toe-off when intact gait already has an elevation of knee angle, which amputee data 

has not demonstrated. This is a limitation of using healthy gait and GRF data to model the forces 

acting through the piston during gait. Future work will include an amputee specific GRF and 

kinematic standard on which to model the forces expected. The limiting factor of the GKnee 

system is the rotary valve. It is unsure what its failure mode would be at such high forces, but it is 

likely that it would result in greater leakage instead of catastrophic failure. 

The largest multiplier on piston force loading is the knee angle during load. As the Figure 

3.7 demonstrates by the slight curvature of each line, the knee deformation past the set angle 
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continues to increase the piston force. Based on the geometry of the four-bar mechanism, it was 

estimated that near 23 degrees of flexion the piston would become less effective at arresting 

flexion. This occurs because past this angle, minute angle increments of the back link, and the 

piston attached, cause substantially larger changes in overall knee flexion. Therefore, a limitation 

of the system is the ductility and tolerances. Further testing would be needed to isolate the sources 

of the ductility completely, but likely culprits are the kneecap and the axle joints. The kneecap is 

made from Delrin 100p, which has worked well for the M3 relief knee, but its flexibility in this 

case may be detrimental to arresting flexion in certain, specific situations. The axle joints were 

precision machined into the frame, but the anterior axles do not go through the whole system, but 

rather only pair the kneecap and the frame. A short axle has a much greater likelihood of movement 

because the contact points are spaced more closely spaced. 

GKnee 

Several design specifications were established early on as ideals to pursue. However, with 

the complexity of the novel systems, it became apparent that a legitimate, working prototype 

achieved more than a within-specifications, unreliable prototype. Therefore, several specifications 

were put on hold to establish a system that functioned dependably and correctly. While a battery 

system was an initial specification, it became apparent that during sensitive data collection, power 

interruptions would vastly complicate trials and require recollections. A minimal redesign of the 

IM knee was simply not possible once the magnitude of the forces became apparent. Essentially, 

the cost of the system is triple the specification. While this is not ideal, many of the associated 

costs were that of prototyping, not of final production. 

The same principle applies to the system’s weight; the GKnee is over the specification by 

more than 1 kg. Though frame and manifold redesign between Prototypes 1 and 2 may not appear 
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to be a large difference, the weight difference in the frame alone is 0.45 kg. As can been seen in 

both designs, the prototype frames are thicker than they need to be to support patient weight.  

Limitations 

The current GKnee system is functional and was used successfully in the latter aims. 

However, this study is limited to the tests conducted at several loading conditions—ISO 10328 

tests were not performed. In that ISO, there are established loading conditions (force vectors, 

durations, etc.) for a simulated 100 kg patient with a fully extended knee system. Because such 

tests apply maximum loads and can take more than a month to complete, the time delay and 

potential destruction to the system were not considered worth the benefit. 

Likewise, the electronic system was limited to hobbyist components and easily removable 

connections. This warrants further testing to be fully evaluated. They were neither expensive nor 

guaranteed to be consistently accurate. While such considerations may not influence the 

performance in the short-term, these components are unlikely to be suited to long-term usage in 

their current configuration. Additionally, the electronics were selected to be used with the ML 

components; therefore, hardware and software limitations of the Google Coral restricted the 

components to specific sensors. Others were tested, but most had incompatible libraries for quicker 

refresh rates. 

Lastly, the current weight of the system is limiting because it is close to double that of 

commercial systems. Anecdotally, patients did not have a problem with the weight, but studies 

have demonstrated that heavier systems increase patient fatigue and discomfort. This can also lead 

to poor gait and habits in the long run. Therefore, it would not be recommended to use such a 

heavy system for extended periods beyond evaluation. Largely, this is due to the constraint of 

using commercially available hydraulic components. 
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Future Work 

While the prototype knee addresses many of the concerns of the previous system, there is 

still room for improvement. The primary aims for future work are the total cost ($1,392), weight 

(3.33 kg), and the lack of portable power. 

The modular components of this system allowed for simplicity but came at a cost for both 

price and weight. The manifold was not optimized for weight or reduction of material. At $300 

and 0.44 kg, the simplification of this component would have a large impact. Because it fits to the 

cylinder via threading, using a cylinder with built-in attachments would greatly reduce cost and 

weight. The current frame was designed during an earlier iteration of the mathematical model, 

which means that it was designed for much larger forces than are acting through the system. It is 

estimated that the frame and the manifold can each be reduced to half of their size and still be 

overengineered for the same loads—reducing the weight by 0.56 kg. Additionally, though the 

reservoir fulfills a vital fluid storage function, it became clear that a machined system with 

backpressure functionality was unnecessary in this design. The accumulator is never subjected to 

pressures because the pressures acting on the system do so on the piston-side of the valve. A simple 

bladder system would save up to $200 and 0.3 kg. 

To include portable power in the system, the power consumption would need to be 

measured. Components were selected to be low power, but analysis would be needed to develop a 

battery system with enough capacity. To that end, components such as the servo should be re-

evaluated. With the application of the rotary valve, which has a much lower torque than expected, 

the large size, weight, and strength of the servo is no longer necessary. A smaller servo would 

improve these specifications. However, the frame does have the spatial capacity to include portable 

batteries with a 25 Ah capacity. Because the system uses a servo instead of solenoid valve, such a 

power supply should be adequate for a day-long usage. 
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Many parts of this system can be redesigned, and current work seeks to address them. 

However, the overall findings of this aim do support the hypotheses that the knee will support a 

100 kg patient and that the knee can swing at 500 deg/s. 
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Chapter 4: Aim 2 - Implement a machine learning classification system for 
gait during the activities of walking and stumbling through data from 

wearable IMUs on a unilateral knee prosthesis. 

4.1 OBJECTIVE 

It is hypothesized that the system will achieve an activity classification accuracy greater 

than 90% and detect stumble with a precision greater than 75% and a recall greater than 60%. The 

output of this aim will be a program trained to classify gait activity for integration with the 

electronic control system of the knee. This will provide the basis of adaptive software control for 

the device. 

4.2 INTRODUCTION 

Gait characteristics have been well documented by the literature. Both in individuals with 

healthy gait and pathological diagnoses, such as those with cerebral palsy or muscular dystrophy, 

key defining gait characteristics have been found (Benedetti et al., 1999; Gard, 2006; Kelleher et 

al., 2010; White et al., 1999; Wise et al., 2004). The field of gait classification has seen growth in 

the area of applied machine learning (ML), specifically in differentiation between healthy and 

pathological gait (Alaqtash et al., 2011; Mannini et al., 2016; Tahir & Manap, 2012). Likewise, 

human gait activity, such as walking, running, and standing, has been documented by datasets, 

such as HuGaDB, and classified by machine learning algorithms with high levels of success 

(Badawi et al.: accuracy: 98.6%; Keçeci et al.: accuracy: >99% with many networks) (Badawi et 

al., 2019; Chereshnev & Kertész-Farkas, 2017; Keçeci et al., 2018).  

Additionally, the literature shows several implementations of real-time gait event 

detections using sensors, and many more gait activity classifications with potential for real-time 

applications (Hanlon & Anderson, 2009; Lambrecht et al., 2017; Maqbool et al., 2017; Marayong 

et al., 2017; Rueterbories et al., 2010). However, with the limitation of studies that measure human 
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stumble characteristics, especially constrained to patients with amputations, no studies have been 

found that attempt to classify stumbles in gait in real-time. Even most gait activity studies are 

limited to postliminary processing. The work presented in this chapter seeks to fill that gap, both 

by beginning to provide the scientific community with gait data pertaining to amputees during 

stumble-events and by presenting a first approach to classifying those stumbles and gait events 

using ML. 

4.2.1 Gait Data 

Some of the most complete research done in gait analysis was by Sagawa et al. who 

reviewed the preferred biomechanical and physiological parameters that are most often used in 

determining gait characteristics. While their results were inconclusive, the most common 

parameters pertaining to the knee joint were oxygen consumption, knee flexion angle, gait 

velocity, cadence, stride length, stance time, and maximum vertical ground reaction force (Sagawa 

et al., 2011). While some of these parameters are not feasible to measure within a prosthetic knee 

system, the following sensors are commonly used to determine knee-joint parameters: 

accelerometers (Lawson et al., 2010b; Seel et al., 2014; Torrealba et al., 2010), gyroscopes 

(Miyazaki, 1997; Seel et al., 2014), goniometers (Boonstra et al., 1993; Kumar et al., 2010), 

magnetometers (Chelius et al., 2011), and linear sensors (i.e. hall pass or linear potentiometer). 

Many lower-limb prosthetic systems use hybrid arrays with a combination of different sensors to 

contribute to the knee’s sensing capabilities. These hybrid arrays are often called inertial 

measurement units (IMUs). 

While most gait movement happens on the sagittal plane (forward and backward 

movements), the transverse (up and down) and frontal (side-to-side) planes do also show 

significant movement, especially in female gait due to physiological differences in hip joint 
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anatomy. The planes and related axes of the lower limb skeleton are shown in Figure 4.1. In 

practical application, the center of this coordinate system can be shifted to apply directly to each 

body segment, such as the thigh and shank. The vertical axis of such shifted systems would then 

lie parallel to the long axis of the segment, but the sagittal plane would remain the same. 

Figure 4.1: Planes and axes of the lower limb skeleton. Figure adapted from (Ren et al., 2019). 

IMUs attached to body segments can be oriented along the planes and axes described 

above. Figure 4.2 is an example of an IMU that contains a three-axes accelerometer, gyroscope, 

and magnetometer. Both the accelerometer and magnetometer measure linear movement, while 

the gyroscope (second image in the trio) measures rotational movement along the axes. 
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Figure 4.2: SparkFun 9-DoF Sensor Sticks with axes orientations for accelerometer (left), 
gyroscope (middle), and magnetometer (right). Image from sparkfun.com/products/13944. 

4.2.2 Machine Learning Networks 

As stated previously, ML networks have been successful in classifying a variety of gait 

types and conditions and differentiating between gait activities. The types of networks used have 

varied between Nearest Neighbor, Random Forest, Neural Networks, and combinations of those 

and more. Fundamentally, the classifications of those networks have focused on gait mode 

classification (walking, running, etc.). Though the input data is time-dependent, gait mode 

classification is not considered a forecasting task. 

However, the current research does involve forecasting and gait classification due to the 

machine’s requirement to use a continuous time-dependent data stream to predict gait mode. To 

do this, forecasting on a time series requires different configurations or types of ML networks that 

retain information from previous predictions known as recurrent neural networks (RNN). A 

popular RNN is Long Short-Term Memory (LSTM), see Figure 4.3 below (Hochreiter & 

Schmidhuber, 1997). 
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Figure 4.3: Visual representation of a Long Short-Term Memory (LSTM) network block. Image 
from (Mittal, 2019). 

Figure 4.4: More detailed visual representation of a LSTM. Image from (Gosthipaty et al., 2022). 
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LSTMs function by using three types of data gates within each memory block: forget, 

remember/input, and output. As time progresses, the network retains previous information via two 

recurrent states, the memory state (ct) and the hidden state (ht) , seen in detail in Figure 4.4. The 

blocks of the network receive the network input (xt), the hidden output of the previous block (ht-

1), and the memory data stream from the previous block (ct-1). Learning layers (memory blocks 

between the initial input and final output of the network) decide what information to forget from 

the data stream, what information to add to the data stream, and what prediction to make (yt). The 

output is a combination of the current block’s data stream and the block’s prediction. The 

dependency on past predictions coupled with the ability to discard old information, allows LSTMs 

to function in time series where the subsequent output depends on the previous output.  

LSTMs use a non-linear sigmoid function (σ) which outputs either 0 or 1 and is multiplied 

to the data stream to either open or close a given gate. The input and output gates also pass data 

through a tanh function to determine how much of the stream is passed to the memory state (ct) 

and the hidden or prediction state (ht or yt, respectively). Coefficients or weights (W) are 

determined through model training and tuning for each gate and output by minimizing an error 

function. 

The weights for the network are determined using a training data set of previously collected 

instances where the gait phase (classification) is already known. This ground-truth data allows the 

network to learn the weights as it uses historic input data to predict the gait phase class. The 

network is then tested against a hold-out test sample of historic gait data and its performance on 

the test set is measured against the known truth. 

The combination of different classifications models into one final prediction is called 

ensembling. With each model tuned to observe slightly different patterns or occurrences, 
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ensembles improve overall prediction accuracy. Transfer learning is an additional method to 

improve prediction accuracy. It is done when networks that have been trained for one application 

are used in a similar, but separate context (transferred to a new context). This is used regularly 

when larger, more general datasets exist to train networks for broad classification tasks using 

comparable forms of data (Weiss et al., 2016). Those general networks are then more accurate 

when used with similar data in a more specific application. For example, using large amounts of 

healthy patient gait data to train a network that will learn to identify amputee walking and 

stumbling events. The weights and biases of these pretrained models are then used to initiate the 

network for the specific data and predictions of interest. 

4.2.3 Evaluation Metrics 

While error functions are used to optimize an ML network, accuracy is often the metric 

used to evaluate the performance of the network. Standard evaluation of networks is done by 

presenting the network with a new set of inputs and comparing the predicted outputs to the known 

ground truth. Table 4.1 shows a standard confusion matrix that compares the predicted 

classifications to the actual, ground truth classifications (Chawla et al., 2002).  

Table 4.1: Standard confusion matrix comparing predicted class to actual class. 

Predicted Class 

Positive Negative 

Actual Class 
Positive TP FN 

Negative FP TN 
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In addition to accuracy, other metrics, such as precision and recall, can be calculated 

depending on use-case requirements given that each metric focuses on different performance goals. 

Formulas for each of these metrics are given below (Olson & Delen, 2008). 

Equation 4.1 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹 =    
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

Equation 4.2 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =    
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

Equation 4.3       𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =    
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑇𝑇
 

Equation 4.4           𝐹𝐹𝑃𝑃𝑅𝑅 =    
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑇𝑇
 

Equation 4.5   𝐹𝐹‒ 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 =    2 ∗
𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 

Accuracy measures the ratio of all true (correct) predictions, positive or negative, over the 

sum of all predictions made. Precision measures the ratio of correctly classified positives to the 

total number of predicted positives (i.e. of all positive predictions made, the ratio classified 

correctly). Recall, also known as True Positive Rate (TPR), measures the ratio of correctly 

classified positives to the total number of actual positives (i.e. of the total instances in the positive 

class, the ratio of instances identified correctly). False Positive Rate (FPR) measures the ratio of 

incorrectly classified positives to the total number of actual negatives (i.e. of the total instances of 

the negative class, the ratio of instances identified incorrectly). Finally, the F-Score is a 

combination of precision and recall that balances both measures against each other. It measures 

the model’s ability to predict the positive case both completely (recall) and accurately (precision). 

4.3 METHODS 

To train the ML network, appropriate data first needed to be collected and classification 

labels added manually. Amputee gait and stumble data were collected using a sensor system 
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embedded in the LIMBS M3 prosthetic knee. The knee had the same rotational geometry of the 

intended and completed design for Aim 1, and the sensor array was made of two, nine degrees-of-

freedom (DoF) sensors—one attached to the thigh and one to the shank segment of the knee 

(pictured in Figure 4.5). Each sensor recorded data from a unique perspective. From a position-

time perspective, the data progressed from position (magnetometer) to change in position 

(gyroscope) to the rate of change of position (accelerometer). Furthermore, the sensors did this 

from different reference frames. The magnetometer, which measured magnetic force, displayed 

information about the sensor's orientation with respect to the earth's magnetic field, assuming there 

was no other large magnetic force nearby. The gyroscope measured angular velocity, allowing 

analysis of the rotational components of the system. Finally, the accelerometer measured linear 

acceleration, which added a final dimension to the data. 

Figure 4.5: Data collection system. Left shows model with sensors, pylon, and socket. Right 
shows device with coordinate systems for the sensors. 
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Subjects were asked to walk at selected speeds on a treadmill while in a safety harness, and 

stumbles were induced three different ways: (1) to simulate inadequate leg momentum during a 

step, a bungee attached to the foot applied a breaking force to their prosthesis during gait; (2) to 

simulate tripping over an obstacle, a bumper was inserted in front of their prosthesis during gait; 

(3) to simulate uneven surfaces, an object was dropped onto the treadmill while the subject was 

stepping. These three events cover the primary forms of stumble during gait as described by the 

literature and aided in collecting a variety of stumble simulations to train the ML network to predict 

gait activity modes. For the purpose of classification, the data was split into four events: walking, 

bungee stumble, obstacle stumble, and uneven stumble.  

4.3.2 Gait Trials 

The study was reviewed and approved by The University of Texas at El Paso’s (UTEPs) 

IRB for study 1329153-3. Four subjects consented to the study. Due to a technical error, one 

subject was rescheduled after consenting, but not collecting data. The study was permanently put 

on hold due to Covid-19 before data could be collected for that subject. Therefore, the training 

study had data from three subjects, but are labeled S1, S2, and S4. Subject qualifying criteria were 

as follows: age between 21 and 60, unilateral transfemoral amputation, no secondary health 

conditions or neurological disorders, activity level of at least K3, and general good health. 

The trials were conducted at UTEP in the Virtual Reality and Motor Control (VRMC) lab, 

located in Room 114 in the Campbell Building, using the data collection system, Biodex 

RTM600™ Rehabilitation Treadmill, and Biodex Unweighing Harness. Sherie Ford, CPO, from 

Hanger Clinic performed the prosthetic fitting. The data collection system was made up of two 

SparkFun nine-DoF Sensor Sticks and a Raspberry Pi 3 (or Google Coral). 



51 

The unweighing harness was rated up to 300 pounds and used to support patients when the 

prosthesis did not support their weight. It featured three shared points of pressure through the hip 

straps, the gluteal straps, and the lumbar-thoracic harness. Harnesses similar to this have been used 

throughout the literature to prevent injury during trials that induced stumbling (Cordero et al., 

2004b; Schillings et al., 1996b; Zhang et al., 2011). To prevent chances of injury, the harness was 

adjusted so that in the event of a fall, neither the patient’s arms nor knees touched the ground.  

The data collected was: three-axis linear acceleration, three-axis rotational velocity, and 

three-axis magnetic fields for both the shank and thigh of the subject’s prosthetic leg, along with 

the corresponding timestamps and labeled stumble instances (example in Table 4.2). Data was 

collected during walking and stumbling activities using a treadmill and unweighing harness to 

prevent injury risk. The induced stumbles were also timed and recorded. Subjects were aware of 

stumble induction types, but not the precise timing of each event. 

Table 4.2: Example data collected for one sensor (nine values per sensor). “g” is gyroscope, “a” 
is accelerometer, and “m” is magnetometer. Each is represented on the x, y, and z planes. Actual 
data collection contained two sensors for 18 total values plus the stumble marker column of zero 

or one for walking or stumbling classes, respectively. 

time g2_x g2_y g2_z a2_x a2_y a2_z m2_x m2_y m2_z stumble 

xt 32.12 -61.2 -148 0.73 0.43 0.907 -0.3 -0.46 0.117 0 

The subjects were fitted with a LIMBS M3 knee that contained the sensor array. The array 

in no way impeded the normal movement of the prosthetic knee. A prosthetist fitted the prosthetic 

appropriately and restored the original prosthesis at the end of the trial. The foot on the knee system 

was the Niagara Foot v1 with a rubber sole. Subjects were fit with the harness before walking on 

the treadmill.  
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Subjects were asked to walk at three self-selected speeds for five minutes, and a final five 

minutes of walking at speeds that were varied within the self-selected speed ranges. This walk was 

without induced stumbles. After this acclimation period, the patients were asked to wear a pair of 

glasses that restricted their vision of the ground. These were worn to prevent the subjects from 

reflexively predicting stumbles as they saw them approaching. Patients were asked to walk 

normally at a speed they selected between 0.8 m/s and 1.5 m/s. Stumbles were induced during that 

time. The patients were asked to allow themselves to fall naturally until caught by the harness. 

This process continued until a minimum of 30 stumbles had been recorded. Finally, subjects were 

asked to stand for one minute while shifting their weight on and between legs. 

Recorded Data 

Each stumble-event was recorded and tracked with the time of the data stream. The 

frequency of the data recording was 60 Hz. Data recordings from each sensor included three-

dimensional sensor data of acceleration, velocity, and magnetic field for the prosthetic knee. The 

data collection system had one sensor attached to the thigh and one sensor attached to the shank. 

Each sensor was oriented for acceleration and magnetic field to be orthogonal to and velocity to 

be rotational on the Frontal (X), Transverse (Y), and Sagittal (Z) planes with respect to the body 

segment, Figure 4.6. If the subjects stumbled, a researcher pressed a button that tracked stumble 

alongside the sensor data. 
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Figure 4.6: Data collection system (left) with anatomical orientation (right). Skeletal figure 
adapted from (Ren et al., 2019). 

During data evaluation and preparation, it was observed that several of the tracked stumbles 

were not aligned with actual stumble induction. By observing all channels of sensor data, the 

stumbles were manually re-marked, and several were deleted for being indiscernible from normal 

gait. The distribution of the cleaned stumbles can be seen in the results section. 

4.3.3 Machine Learning 

The overarching method behind training the ML model was incremental testing with 

increasingly complex mechanisms. The ML architecture was implemented through Keras and 

TensorFlow (Abadi et al., 2015; Chollet & others, 2015) Described below are the methods used 

with specifics being found in the “Models” section. 
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Classes 

Fundamentally, the data had four classes: walking, stumbling by bungee, stumbling by 

obstacle, and stumbling by uneven. However, the classes were also at times combined into simply 

walking and stumbling. In this case, the separate stumble classes were summed into one. 

To train the networks, the data was split into training and testing data sets. Training sets 

were used to identify data stream patterns that lead to successful predictions; test sets were used 

to evaluate the model’s performance. Because of the time-series-dependent nature of the data and 

prediction sequences (motions leading up to a stumble or non-stumble are sequential and time-

dependent), samples could not simply be randomized and split for training and testing. Rather, to 

avoid compromising network integrity, the train/test split used a leave-one-out (LOO) 

methodology. LOO views each subject as one complete case, so that the sampling will iterate 

through all subjects as the test set. This eliminated the overlap of training and testing data and 

allowed the network to be trained on two subjects while predicting the events of the third 

iteratively. To offset data class imbalances, artificial data points were created during stumbling 

events based on raw data curve fitting techniques. 

Additionally, the classes of standing and sitting were deemed outside the scope of this 

project due to lack of data, proper evaluation methods, and impact on control methods. In the end, 

the remaining classes were a summative “stumble” and “walking.” 

Ensembling and Optimizing 

Ensembling several networks was done by training networks with variations and choosing 

the most likely prediction from their combined results. A few methods were applied to increase 

accuracy and decrease the computational load. First, the features were evaluated, and it was 

determined that magnetometer data was not highly reproducible. Though easy to interpret and 
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understand, as demonstrated in section 0, magnetometer data is dependent on the sensor’s 

orientation relative to the magnetic field of the earth. Therefore, the lab setup made the data for all 

three initial subjects comparable, but there was no guarantee that future tests would have similar 

and consistent orientations. Therefore, all six magnetometer features were eliminated. 

Transfer Learning 

Using a larger more general dataset to pretrain a model that is then fine-tuned with a more 

specific dataset is a common method called transfer learning. The justification is that when using 

similar types of data, the model can learn the shape of the data type, and that knowledge will then 

be used in the specific model even if the output classes are dissimilar. The methods used for the 

transfer learning in this study were as follows: develop a base network with reasonable success on 

the HuGaDB, freeze learning on some layers of this network, and add components of the stumble 

network as unfrozen layers. The base network for the HuGaDB dataset was the same as being 

tuned for stumble prediction, and it performed remarkably well, achieving an accuracy of 99.1% 

and similarly high scores on all precisions and recalls for four classes: walking, running, sitting, 

and standing. Therefore, all but the last layer (output layer) in the HuGaDB trained model were 

alternatively frozen, unfrozen, included, and excluded with various parts of stumble model grafted 

on. This process was repeated exhaustively while using the standard LOO practices.  

Hyperparameter Tuning 

The final stage of network configuration was hyperparameter tuning within the bounds 

established by the earlier testing. The table below highlights the parameters tuned, the ranges, and 

the steps. Training batch size was also evaluated separately within 60, 80, 120, 200, 400, and 600. 

Hyperparameter evaluation was set to maximize accuracy and F-Score. This was implemented 

through the KerasTuner (O’Malley et al., 2019) 
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Table 4.3: Hyperparameter tuning parameters, minimum and maximum range, and step size. 

Parameter Min Max Step 
LSTM 1 Units 25 500 25 
LSTM 2 Units 25 500 25 
Dense Units 25 500 25 
Dropout Rate 0 0.9 0.1 

Various combinations of the different layers were also tried with the layer orders being 

switched, disabled, or tuned individually. The hyperparameter output was evaluated for the top 

three combinations of values for each LOO dataset. The combination that was the most common 

across the different datasets was chosen as the final output. 

Models 

Classification of the data was done in two major stages: initial and deployed. Neither of 

these stages represents one network, but rather the result of many iterations. A difference is made 

between them because the initial network was developed after an exploration of different ML 

algorithms and basic data cleaning methods. The deployed network refined the basic methodology 

set by the initial network and implemented a more robust algorithm application. 

Before the gait trials were conducted, the gait data from HuGaDB was explored and 

classified with a simple LSTM network. Because HuGaDB included similar data as intended to be 

used, namely thigh and shank accelerometer and gyroscope data, the principles learned were 

applied to this study. While the LSTM network was preselected for its success with the HuGaDB, 

Gradient Recurrent Unit (GRU) and Simple Recurrent Neural Network (SimpleRNN) were still 

tested in comparison by evaluating all three networks’ performances with different networks sizes 

(50, 100, 200, and 400) and output layer activation functions (softmax, sigmoid, or none). This 

was done at the beginning with just an input and output layer model. For the recurrent networks, 
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the data was transformed to include 10 past data points along with the current sensor sample 

(example below in Figure 4.7). 

Figure 4.7: Illustration of how the historic data was compiled into one row of data for the 
network. The data on the right represents one “sample,” and each data point “x” included all the 

sensor data shown previously (12 values per data point). 

Additionally, to model the rule-based method of commercial prosthetic knees, a simple 

rule classification model was developed. This model used a calculated knee angle (>25 deg) with 

knee angular velocity (>100 deg/s; extension) obtained from the sensors to determine step 

occurrences, particularly the leg extension phase. During each such extension, the model checked 

for three rules: bungee, obstacle, and uneven detection. Each used repeatable sensor information 

to establish whether that type of stumble occurred. When a stumble was detected, it would continue 

for 0.5 seconds after the last detection. Further details on this rule system can be found in Appendix 

9.1. This “Simple Rule” model was used as a baseline comparison for the ML developed through 

this aim. 

Thereafter, data was cleaned with a MinMax scaler that adjusted each data channel to fall 

between 0 and 1. It was fit to training data and applied to transform validation and test data. 

Training files were augmented with artificial data and manually marked stumble data was used. 
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Various learning rates and optimizers were attempted, but RMSprop with its default learning rate 

of 0.0001 performed well most consistently.  

The initial machine learning algorithm applied to the collected data was an LSTM network 

with one input layer, three hidden layers, and one output layer. The layers were a 300-node input 

LSTM, a 200-node LSTM hidden layer, a 100-node dense hidden layer, a 0.9-dropout hidden layer, 

and a two-class output with softmax activation layer. The train length was 20 epochs with a 

categorical cross entropy loss function using the RMSprop optimizer. Training involved the full 

18 features from the sensors and included 10 historical datapoints. The three different forms of 

stumble were trained as one general “stumble” class. Because there were only three subjects, LOO 

was used and two were used for training and one for testing. For the purpose of training, the data 

collected during the induced stumbles was used. This data included both gait and stumble-events 

at a roughly 9:1 ratio, though artificial data shifted that ratio to 4:1. The validation dataset was 

15% of the training data. At this stage, one minute of non-stumble walking data from the test 

subject was added to the training data. This was thought to keep the algorithm from overfitting and 

to help the system be aware of the subject’s specific gait. 

After hyperparameter tuning, the deployed network retained all three hidden layers. The 

layer parameters chosen during tuning were a 200-node input LSTM, a 50-node LSTM hidden 

layer, a 300-node dense hidden layer, a 0.1-dropout hidden layer, and a two-class output layer with 

softmax activation. The train length was 30 epochs with a categorical cross entropy loss function 

using the RMSprop optimizer at a learning rate of 0.001. The data included 12 features from the 

two sets of 3D accelerometers and gyroscopes, and the current data was given with 10 historic 

datapoints equally distributed across the last 20 samples. As before, the three different forms of 

stumbles were combined into one “stumble” class, and artificial stumble data was used to balance 
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the data. Different from before, the cleaned stumble data was used. As before, LOO was used in 

conjunction with a small batch of non-stumble walking data from the test subject. The sum of 

changes between the initial and deployed networks are the following: hyperparameter tuning, 

feature reduction, manual data marking. Each LOO procedure was run three times and the results 

averaged. 

4.3.4 Result Evaluation 

Traditionally, ML algorithms are evaluated by various metrics, such as accuracy, precision, 

recall, and F-score, which all depend on the prediction to ground-truth comparison. The results 

given in the Data Classification section of the results highlight this principle. Yet, it became clear 

that for this application the ground-truth comparisons were more difficult to ascertain. The marked 

stumbles were often not initiated at the most accurate time, nor did they end exactly when the 

stumbles were over. This phenomenon was one of the reasons why the stumble data used for 

training was cleaned manually. However, even with a cleaned stumble, the true positive prediction 

would often not coincide perfectly with a marker. This led to errors in accuracy. Since an improper 

reaction to a few false positive predictions could cause an artificial stumble, a different metric had 

to be applied. Therefore, instead of predictions evaluated against the ground-truth on a rolling data-

sample basis (as described in Figure 4.19 above), the predictions and ground-truths were used to 

evaluate individual steps instead. Steps were identified using the cyclic angular velocity peaks 

from the data to identify the gait cycle. Within each step, the rolling samples were evaluated, and 

a small six sample buffer was applied to eliminate spikes of FPs. If 80% of the six samples were 

positive, then the ML model was predicting a stumble for the step. This was essentially a first step 

toward the control system. 
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4.4 RESULTS 

The data shown in the subsequent subsections are the results of the three-patient trial 

discussed in the methods. While data from the subsequent trial in Aim 4 would greatly enhance 

the results, those are outside of the objective of this aim. The positive prediction class is “stumble.” 

4.4.1 Data Collection 

The data collection methodology described in Section 4.3 was successfully completed with 

three subjects successfully. Subjects 1 and 4 were male, and subject 2 was female. All amputations 

were the result of trauma, but with no secondary gait complications. Height ranged from 

approximately 1.63 to 1.85 m, and weight from approximately 54 to 95 kg. For each subject, 

approximately 900 total steps were collected. The distribution of the different stumble-events can 

be seen in Table 4.4, below. Measurements and data recording all happened on the side of the 

prosthetic knee. 

Table 4.4: Breakdown of stumble-event occurrences per subject. 
Bungee Obstacle Uneven TOTAL 

Subject 1 11 5 12 28 

Subject 2 12 18 29 59 

Subject 4 19 20 24 63 

Total 42 43 65 150 

Stumble-events were induced until a minimum of ten of each event had been collected per 

subject. Exceptions occurred when the subject did not wish to proceed with a specific stumble-

event. As mentioned in the methods, the stumbles were manually validated and re-marked, and 

some were eliminated. The updated table is shown below, Table 4.5. 
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Table 4.5: Breakdown of stumble-event occurrences per subject manually re-marked. Some 
stumbles were removed when there was no observable effect. Removed occurrences are marked 

in parentheses (-n). Total is summed after removing ignored cases. 
 

Bungee Obstacle Uneven TOTAL 
Subject 1 11 (-2) 5 (-0) 12 (-2) 24 

Subject 2 12 (-1) 18 (-1) 29 (-1) 56 

Subject 4 19 (-3) 20 (-0) 24 (-10) 50 

Total 42 (-6) 43 (-1) 65 (-13) 130 

Examples of the different stumble induction methods can be seen in Figure 4.8, below. 

 

Figure 4.8: Examples of stumble induction for Subject 4 for stumble with bungee (left), obstacle 
(middle), and stumble with uneven ground (right). Leftmost image, demonstrating stumble with 

a bungee, is a simulated image showing the attachment point. 

An example of sensor data during walking can be seen in Figure 4.9. Examples of the 

sensor data during the different stumble-events can be seen in Figure 4.10, Figure 4.11, and Figure 

4.12. Each figure displays the full sensor array data, grouped by sensor type and body segment, 

and the tracked stumble (horizontal red line). Additionally, approximate gait events (heel strike, 

mid-stance, and toe-off) and beginning of stumble (vertical red line) were added. These additions 

were estimates but reflect historical measurements and specific sensor indications.   
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Figure 4.9: Sample of Subject 1 prosthetic knee sensor data for walking. No stumble occurred. 
Each column of graphs represents one sensor, and each row of graphs represents a sensor type. 

X, Y, and Z represent vectors orthogonal to (accelerometer and magnetometer) and rotational on 
(gyroscope) to the frontal (X), transverse (Y), and sagittal (Z) planes respective to the two body 
segments (thigh and shank). The horizontal axis shows the data respective to gait percentage and 

is cyclical. Vertical (grey) dotted lines represent key gait phase events of the prosthetic knee 
(blue). Gait events shown are heel strike (HS), mid-stance (MS), and toe-off (TO). Gait phase 

figures adapted from (Pirker & Katzenschlager, 2017).  
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Figure 4.10: Sample of Subject 1 prosthetic knee sensor data for stumble by bungee. Stumble 
data recording indicated by red horizontal line. Approximate begin of actual stumble marked by 

vertical red line. Each column of graphs represents one sensor, and each row of graphs represents 
a sensor type. X, Y, and Z represent vectors orthogonal (accelerometer and magnetometer) and 
parallel (gyroscope) to the frontal (X), transverse (Y), and sagittal (Z) planes respective to the 

two body segments (thigh and shank). The horizontal axis shows the data respective to gait 
percentage and is cyclical. Vertical (grey) dotted lines represent key gait phase events of the 
prosthetic knee (blue). Gait events shown are heel strike (HS), mid-stance (MS), and toe-off 
(TO). Arrow one highlights magnetometer troughing, Arrow two highlights angular velocity 

spikes, and Arrow three highlights acceleration spikes. Gait phase figures adapted from (Pirker 
& Katzenschlager, 2017). 
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Figure 4.11: Sample of Subject 1 prosthetic knee sensor data for stumble by obstacle. Stumble 
data recording indicated by red horizontal line. Approximate beginning of actual stumble marked 

by vertical red line. Each column of graphs represents one sensor, and each row of graphs 
represents a sensor type. X, Y, and Z represent vectors orthogonal (accelerometer and 

magnetometer) and parallel (gyroscope) to the frontal (X), transverse (Y), and sagittal (Z) planes 
respective to the two body segments (thigh and shank). The horizontal axis shows the data 

respective to gait percentage and is cyclical. Vertical (grey) dotted lines represent key gait phase 
events of the prosthetic knee (blue). Arrow one highlights magnetometer troughing, Arrow two 
highlights angular velocity spikes, Arrow three highlights acceleration spikes, and Arrow four 
shows the obstacle hitting the shank. Gait events shown are heel strike (HS), mid-stance (MS), 

and toe-off (TO). Gait phase figures adapted from (Pirker & Katzenschlager, 2017). 
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Figure 4.12: Sample of Subject 1 prosthetic knee sensor data for stumble by uneven surface. 
Stumble data recording indicated by red horizontal line. Approximate beginning of actual 

stumble marked by vertical red line. Each column of graphs represents one sensor, and each row 
of graphs represents a sensor type.  X, Y, and Z represent vectors orthogonal (accelerometer and 
magnetometer) and parallel (gyroscope) to the frontal (X), transverse (Y), and sagittal (Z) planes 

respective to the two body segments (thigh and shank). The horizontal axis shows the data 
respective to gait percentage and is cyclical. Vertical (grey) dotted lines represent key gait phase 

events of the prosthetic knee (blue). Gait events shown are heel strike (HS), mid-stance (MS), 
and toe-off (TO). Arrow one highlights magnetometer troughing and Arrow two highlights 

acceleration spikes from HS. Gait phase figures adapted from (Pirker & Katzenschlager, 2017). 
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4.4.2 Machine Learning Algorithm  

This section describes the results of the initial data exploration, transfer learning, and 

ensembling methods implemented to improve the performance of the machine learning model. 

Data Exploration 

The data below, Table 4.6, represents the first foray into different recurrent networks. 

SimpleRNN appears to not perform well despite the variances of structure. Though the results are 

very similar for GRU and LSTM, the previous experience with LSTM made it the more logical 

choice to continue on with.  
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Table 4.6: Accuracy output of simple recurrent models using one recurrent layer (variable 
“Network”) and one Dense for class output to walking and all three stumble modes. Data is 

filtered to show only accuracies above 0.50 (and thus excludes all “None” activations). 
Configurations with accuracies of 0.70 or greater are bolded. The “Simple Rule” results for all 

three subjects given last row. 

Network Net Size Activation Accuracy 
LSTM 50 softmax 0.70 
LSTM 100 softmax 0.71 
LSTM 200 softmax 0.76 
LSTM 400 softmax 0.67 
LSTM 50 sigmoid 0.70 
LSTM 100 sigmoid 0.66 
LSTM 200 sigmoid 0.76 
LSTM 400 sigmoid 0.67 
GRU 50 softmax 0.60 
GRU 100 softmax 0.73 
GRU 200 softmax 0.76 
GRU 400 softmax 0.74 
GRU 50 sigmoid 0.60 
GRU 100 sigmoid 0.73 
GRU 200 sigmoid 0.76 
GRU 400 sigmoid 0.74 
SimpleRNN 50 softmax 0.67 
SimpleRNN 200 softmax 0.52 
SimpleRNN 400 softmax 0.53 
SimpleRNN 50 sigmoid 0.64 
SimpleRNN 200 sigmoid 0.57 
SimpleRNN 400 sigmoid 0.60 

Simple Rule 0.79 

Initially, three stumble classes were defined: obstacle, uneven, and bungee. However, 

preliminary work showed that specifying between these different types of stumbles decreased 

predictive power, increased error, and learning these classes ultimately led to overfitting. 

Therefore, all types of stumbling were combined into the one “stumble” class. Combining these 

classes led to an accuracy increase of 2% (78%) with a LSTM of size 200. 
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Transfer Learning 

It was assumed that transfer learning would be beneficial for this work. A large dataset, 

HuGaDB, exists with IMU sensor data for healthy subjects during many activities including 

running, walking, standing, and sitting (Chereshnev & Kertész-Farkas, 2017). While the data did 

not directly overlap in sensor selection (the database does not include magnetometer data) nor 

prosthetic devices, the trends and pattern recognition from a large dataset (~600 minutes) were 

expected to aid the performance of the network. However, even though several problems, 

including corrupt data from the dataset, were overcome, the transfer learning ultimately did not 

achieve any decent results. 

Ensembling 

While it was planned to use different recurrent machine learning algorithms to ensemble 

and categorize the data, this ultimately met with some logistical alterations. Though several LSTM, 

GRU, or possibly even N-Beats networks running concurrently and ensembling their predictions 

would likely have a positive impact upon results, the practical reality of real-time predictions in a 

limited environment had to be considered. The Google Coral performed admirably well at making 

real-time predictions at a rate of 60-80 Hz. However, testing showed that adding even one 

alternative network slowed the predictions down enough that 60 Hz could not be maintained 

without compounding error.  

4.4.3 Data Classification 

As mentioned in the methods, the classification results were split into two different models, 

“Initial” and “Deployed.” Both sets of results relate to the same dataset of three subjects. The 

improvements to these models has resulted in an increase in accuracy over the 78.8% of the simple 

rule baseline. 
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Initial 

Table 4.5 shows the confusion matrix of a network that was trained by Subjects 1 and 2, 

and evaluated by Subject 4 with no data overlap. The right column shows the metrics measured: 

recall, precision, FPR, F-Score, and accuracy (83.0%). 

Table 4.7: Confusion matrix for trained LSTM network without test-subject walking data. Right 
column is recall, precision, false positive rate (FPR), F-Score, and accuracy. Evaluated on 

Subject 4. 

Predicted Recall 24.8% 
Stumble Walking Precision 65.8% 

Actual Stumble 1072 3247 FPR 3.1% 
Walking 558 17526 F-Score 36.0% 

Accuracy 83.0% 

In later trainings, the training data also included a one-minute sample of the variable speed 

walking with no stumbles for the test subject (Subject 4). The confusion matrix for this preliminary 

network is shown in Table 4.8. All metrics of the network increased, and there was an overall 

accuracy of 85.5%. 

Table 4.8: Confusion matrix for trained LSTM network including test-subject walking data. 
Right column is recall, precision, false positive rate (FPR), F-Score, and accuracy. Evaluated on 

Subject 4. 

Predicted Recall 43.4% 
Stumble Walking Precision 69.9% 

Actual Stumble 1875 2444 FPR 4.5% 
Walking 809 17275 F-Score 53.5% 

Accuracy 85.5% 

Deployed 

Table 4.9 shows the breakdown of the LOO training for each subject. It shows the network 

metrics, such as accuracy and recall, calculated in the typical sample-by-sample method. 
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Additionally, it shows an analysis of from the perspective of individual steps with the metrics listed 

accordingly. Each subject’s data is the average of three trainings.  

Table 4.9: LOO comparison and average for deployed ML model. “Network” data is sample 
evaluation. Data includes evaluation of step events. Each subject’s data is an average of three 

runs of the same model. 

Metric Subject 1 Subject 2 Subject 4 Average 

Network Accuracy 84.7% 87.8% 93.6% 88.7% 

Network Precision 14.0% 32.2% 67.0% 37.7% 

Network Recall 51.9% 50.5% 46.5% 49.6% 

Network FPR 14.0% 9.1% 2.1% 8.4% 

Network F1_Score 21.2% 37.9% 57.4% 38.8% 

Total Steps 225 271 196 231 

Total Stumbles 24 56 50 44 

Caught Stumbles 23 (97%) 33 (57%) 41 (79%) 33 (73%) 

False Stumbles 136 (60%) 54 (20%) 2 (1%) 64 (28%) 

Step Accuracy 39.1% 70.7% 93.3% 66.9% 

Step Precision 14.7% 38.0% 94.7% 33.8% 

Step Recall 97.2% 57.5% 79.5% 73.1% 

Step FPR 67.8% 25.6% 1.6% 31.7% 

Step F1_Score 25.5% 45.8% 86.4% 46.2% 

4.5 DISCUSSION 

The objectives of this aim were to perform according to specific metrics for an ML model. 

However, first, the data had to be collected and the process of building an ML network iteratively 

considered. 

Gait Trials 

It is important to note that though the beginning of the stumble was an estimate, so was the 

tracked stumble event. The tracked stumble-events were recorded by a researcher when the 
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stumbles were induced, and the subject stumbled. However, the bungee method had significant 

delay between induction and actual stumble, whereas the obstacle was a near instantaneous 

stumble. Therefore, tracked events should be seen more as a highlighting of which gait cycle had 

stumbles as opposed to the exact instance of the stumble. 

The various stumble modes were all selected to model scenarios encountered by amputees 

during normal gait. The bungee stumble was chosen to simulate a lack of adequate forward 

momentum of the prosthetic to lock the passive knee in preparation for heel strike. As can be seen 

in Figure 4.10, the data shows distinct differences. Arrow 1 highlights the magnetic sensor, which 

gives relative position and angle of the segment with respect to earth’s magnetic field. In contrast 

with the walking data, X and Y for this sensor do not completely trough, as it previously did after 

MS, before peaking again. Arrows 2 and 3 point to large spikes in angular velocity and linear 

acceleration, respectively. This is especially apparent in the velocity graph, where X and Y show 

large spikes that are atypical for walking gait. The abnormal accelerations indicate rotation and 

imbalance. 

The reactionary sensor data of stumbling with an obstacle does not seem to drastically vary 

from stumbling with a bungee. As seen in Figure 4.11: Arrow 1, the thigh and shank also do not 

fully trough in their movement. Similar to bungee stumble, the non-sagittal (X and Y) angular 

velocities and the Y and Z accelerations once again show spikes (Arrow 2). The key difference is 

the presence of the obstacle impact (Arrow 3). A large difference to the bungee Orthogonally to 

the frontal plane (X), there is a sudden spike of acceleration. This is the instance that the object 

struck the shank and began the stumble. This gait imbalance is resolved very similarly to bungee 

stumble, and gait appears to resume. In both instances, it appears as though the subject did not 

fully extend the knee (Arrow 1), and quickly proceeded into a shaky flexion again. 
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In contrast to both of these, Figure 4.12 shows stumbling with an uneven surface. This 

stumble once again has a diminished trough (Arrow 1), yet it can be highlighted by Arrow 2 that 

the subject has had a successful heel strike. This is supported by the spike in the X (orthogonal to 

transverse) acceleration and Z (sagittal plane) gyroscopes that can be seen in normal walking to 

accompany heel strike. Although, as in the previous stumble modes, there were increases in 

acceleration and angular velocity indicating imbalance, the subject clearly recovered and 

completed a step. Though the subject had to accelerate their step frequency, the sensor data shows 

that the subject resumed gait after stumbling. 

Machine Learning Classification 

As seen in the results, the initial networks showed very little difference between GRU and 

LSTM. Even though the scores above 70% favored the GRU on average, the LSTM performed an 

equal maximum (76 %) and was selected for its familiarity and success on predicting the HuGaDB 

dataset. The “Simple Rule” prediction performed better than all the initial ML models and was 

therefore used as a comparative standard. However, it was developed with very specific rules, and 

likely would have been limited in its accuracy bounds. Once the ML models were diversified 

beyond input and output layers, the models quickly exceeded the 78.8% accuracy of the simple 

rule baseline model with 83.0 and 85.5%. Likely, a rule-based model could be developed that 

approached such accuracies for stumbles, but the reliance on very specific conditions would 

plausibly limit its generalization. With a combination of the different stumble methods into one 

class, the ML models showed a generalization that would likely be applicable to chaotic stumbles 

that did not match defined expected stumble patterns. 

Through the ML model development process, several oversights were discovered and 

addressed iteratively. This is to be expected when developing such a model. For instance, in typical 
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machine learning, data is randomized and divided into training, testing, and validation sets. 

However, this dataset contains time series data with historic datapoints. Therefore, a randomized 

dataset could very well yield a train and test sample separated by milliseconds. This was addressed 

by LOO, but initially many iterations of the network did not account for this. Previous experience 

with the similar HuGaDB dataset also encouraged the application of a similar successful ML 

network to this stumble dataset. Additionally, the original dataset was not cleaned to account for 

human error during the stumble marking. Though the methods of testing different networks were 

still employed, these assumptions and oversights potentially could indicate that the current model 

is not the most suited model for this data. The model methods were chosen almost exclusively with 

Subject 4 (S4) being the test set. This is reflected in the results where predictions for S4 are more 

accurate and precise. Though hyperparameter turning was performed with consideration for all 

three subjects, either S1 and S2 predict very well for S4 or the networks are still more 

fundamentally inclined to benefit that subject.  

The objectives for this aim were to achieve a classification system with accuracy greater 

than 90%, precision greater than 75%, and recall greater than 60%. These values were 

optimistically chosen when considering the confusion matrix of Subject 4 during the Initial model 

trained with walking data (Table 4.8: accuracy 85.5%, precision 69.9%, and recall 43.4%). With 

more data and finer tuning, such goals may have been achieved. However, at that stage it was 

realized that the traditional approach of analyzing model performance by the sample was not 

practical. A stumble classification could be 0.01 seconds early and be considered a FP, and the 

stumble markings were never intended to perfectly extend to the end of each stumble. In fact, it 

became clear that the end of a stumble may be more difficult to ascertain and classify than the 

beginning. It was therefore realized that more realistic metrics would address not samples, but 
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stumble inductions and complete gait cycles for performance. The switch of metrics on the same 

output can be seen in Table 4.9. According to these new “instance” definitions, the model’s 

performance on each subject averaged 66.9% accuracy, 33.8% precision, and 49.6% recall. This 

is a decrease for the traditional model metrics, and below the objectives of this aim. By these 

standards, the hypothesis of Aim 2 was unsupported by the results. However, for practical 

application, this result may still be improved with the implantation of a robust control system. 

Limitations 

A fundamental constraint of the ML model is the dataset of the three subjects. Though 

more subjects were scheduled, initial Covid-19 lockdowns prevented further data collection. 

Artificial data and data cleaning methods were used, but the fact remains that ML models require 

high quality, labeled data, and more diverse datasets yield more beneficial models. More data was 

collected during the Aim 4 trials, but this data was not available to train this model. 

Because the control systems of commercial knees are proprietary, there are no direct 

comparisons that can be made for the evaluation of the ML model. Therefore, the limitation is that 

a “Simple Rule” model had to be developed to be used as a baseline comparison. However, the 

score achieved by this system is not meant to be seen as representative of what commercial systems 

would be able to achieve, rather as standard by which the new ML models could be evaluated 

against.  

Further, many different approaches were attempted, and data was processed and 

reprocessed several times. It is not clear whether the current model is the absolute best model for 

the data as it is applied currently. Additionally, the low number of subjects potentially restricted 

the model selection with overfitting of the general parameter selection process. Therefore, while 
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the model has performed admirably, the model may be constrained to data similar to the training 

data. 

Future Work 

Future work would include revisiting the model selection process and hyperparameter 

tuning to validate the model and parameter choices with all data transformations, such as, feature 

selection, data cleaning, artificial data, and stumble mode combination. 

Exploration of the data gathered in Aim 4 would likely improve the model’s performance. 

With the early limitation of subjects during the initial trials, the expansion of the dataset provides 

opportunity to greatly improve the classification model and parameter choices. The additional 

methods, such as ensembling and transfer learning warrant further investigation. Particularly for 

ensembling, a feature selection method should be applied. The current system uses twelve channels 

of data, but it is unclear if all of them are useful or if some of the calculated data, such as angle or 

knee velocity, could not replace and improve on the current features. With proper feature selection, 

there is the possibly of a more accurate and more compact model. If the networks could be made 

smaller, the possibility of multiple parallel ensembled models in real-time could result in greater 

network performance. Overall, this research establishes the base protocol, but there are many 

avenues for exploration for continued work with this dataset. 

Broader Implications 

Time series data classification is no new task, and several studies have suggested networks 

that can be implemented in real-time either because of their usefulness or because their architecture 

was designed to be low impact. The deployed network demonstrated in this aim not only was 

designed to be deployed in real-time but was successfully deployed in the later aims. Additionally, 

as the HuGaDB initial classification suggested, the activities of standing, sitting, and running are 
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accurately classifiable by the LSTM architecture. Future work should include an expansion of the 

classes for more versatile knee applications. 

A fundamental shift in the research occurred during the model development process and 

displaying their data. Though traditional sample-based analysis is a comfortable and known 

quantity, it does not apply to all datasets necessarily. For this study, it became apparent that 

sample-based metrics were giving much higher accuracy than was realistic. The imbalance of 

classes contributed to this especially. A new perspective on the data was developed and applied in 

Aim 3, but continued, future analysis of this data should be conducted. Different tuning methods, 

such as utilizing a cost-matrix with custom weights with penalties and rewards for step metrics, 

should be implemented, and the data should be retrained according to this different set of metrics. 

This would allow a more customized tuning based on perceived costs of certain types of errors. 
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Chapter 5: Aim 3 - Develop a control algorithm for the knee mechanism of 
Aim 1 using the machine learning system of Aim 2 as an environmental 

differentiator to switch between control models for the purpose of emulating 
human activity.  

5.1 OBJECTIVE 

The control algorithm will switch between true changes in state within 0.15 seconds and 

will switch out of a false change of state within 0.30 seconds. Using embedded sensor information 

from the device, the control algorithm will adapt to current gait speed and transition to alternative 

activity models based on the activity classifier. This will use the additional sensor information 

along with the predicted activity from Aim 2 to control the physical knee device from Aim 1 – 

achieving predictive, reactive, and adaptive control for each wearer. 

5.2 INTRODUCTION 

The control of a prosthetic knee depends on if the knee is passive or active. Passive systems 

are nonreactive to external input and are fully dependent on the current physical configuration of 

the knee. Such systems have a set, albeit somewhat adjustable, stiffness to the flexion and 

extension of the knee. Active knees depend on a form of computational system and are most 

commonly controlled by microprocessors. These systems are deemed active because they monitor 

the environmental factors through sensors and respond accordingly. The types of sensors used 

range from Hall Effect distance sensors to multi-axis accelerometers.  

Passive Control 

Up until 26 years ago, passive knees were the only type of prosthetic knees available. They 

are still heavily used as a reliable cost-effective alternative to microprocessor-controlled systems. 

The two distinctions between active and passive systems are that in passive systems the knee swing 

dampening is not dynamically adjusted, and the support phase of the knee occurs in a narrow 
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window of knee flexion angles. Knee flexion and extension are controlled through one of several 

methods of applying torque to the system, discussed in the Control Methods of Aim 1. Passive 

systems rely on preset torque control methods that may often be adjusted manually. However, the 

changes require gait interruption, which means the system can only be adjusted to one ideal speed. 

At that speed, the system functions most naturally and would be comparable to the swing control 

of an active system (Johansson et al., 2005). The diversity among activities, patients, and knee 

systems means that this ideal speed is not usually employed for all activities the wearer will 

experience.  

With no sensing component, passive systems offer support in a limited range. The support 

system depends on the geometry of the knee. For example, the passive, four-bar LIMBS M3 knee 

has functional support from full extension to six degrees of flexion (Galey, 2016). At that point, 

the mechanical stability of the joint will no longer support the patient. This drawback often leads 

patients to adapt a gait with increased hip rotation and strong prosthetic heel impact to ensure that 

the knee system is fully extended. Such movement can lead to secondary injury throughout the hip 

and healthy limb (Gailey et al., 2008). 

Active Control: Microprocessor Control 

On the other end of the spectrum, active control represents a knee system that is capable of 

dynamically adjusting flexion and extension dampening parameters to adjust to the gait 

environment of the patient. This translates into stumble control, fall prevention, and dynamic gait 

capabilities (Goldfarb, 2013). Knee sensors detecting a rapid collapse or simple application of 

weight can allow the system to apply the appropriate preventative dampening torque. Current 

programming of active knees uses discrete states of gait that are altered by predetermined 

combinations of sensory inputs (Torrealba & Fonseca-Rojas, 2019; Wen et al., 2017). In addition 
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to the stability of patient gait, a reactive system allows for the recognition of gait speed. 

Dynamically adjusting to the preferred gait speed of the patient allows the system to behave more 

naturally and reduces secondary stresses on the patient. It should be noted that the only commercial 

knee that currently adds mechanical energy to gait is the Power Knee© by Össur. Though powered 

knees are currently a topic of research interest (Kalanovic et al., 2000; Kapti & Yucenur, 2006; 

Martinez-Villalpando & Herr, 2009; Sup, Bohara, et al., 2008), other active knees simply adjust 

the dampening applied to the system during flexion and extension. Overall, the use of MPKs has 

ensured reduced metabolic rate, up to 5% (Johansson et al., 2005), greater stability (Kahle et al., 

2008), and dynamic gait adaption (K. R. Kaufman et al., 2007). 

Control Overview 

Control systems are used to manage behavior in electro-mechanical devices. A common 

example of a feedback control system is shown in Figure 5.1, below. Such systems compare the 

feedback elements to the input to adjust the output. These systems can function quite effectively 

if the variances and bounds of the variances are understood. However, effectively switching 

between control models is more challenging and is the subject of much research and development 

(Narendra & Balakrishnan, 1997).  
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Figure 5.1: Example of a negative feedback closed loop control system. The controller is the 
model that governs the system. The plant is the component that is being controlled. Feedback 

elements in applied systems are often from sensors that monitor specific variables. 

When only one gait mode is considered, the literature shows that adapting to gait patterns 

using simple adaptive control systems in powered prosthetic knees has been very successful (Kapti 

& Yucenur, 2006; Quintero et al., 2018). In fact, the literature shows that such systems often resort 

to more complicated measurements and controls due to the type of feedback received from sensors 

and the control variables available. Potential exists in applying the methods of machine learning 

models to the principles laid out by Narandra et al.. 

Components 

As introduced thoroughly in Aim 1, the electrical system of the GKnee consists of the 

Google Coral, two gyroscope and accelerometer IMUs, a servo, and a few other assorted 

components. In terms of the control system, the Google Coral is the controller with the servo 

functioning as the plant. As the system goes through gait, the sensors function as the feedback 

elements. In a sense, the Google Coral adjusts its output and actions based on the interpretation of 

the feedback elements. 
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Figure 5.2: Google Coral used for Machine Learning model deployment. Image from 
coral.ai/products/dev-board.  

5.3 METHODS 

As the studies by Narandra et al. suggest, the difficulty in controlling one system within 

different environments lies in the control models not having the ability to adapt to multiple 

situations. Therefore, as Narandra proposes, this research uses a switching mechanism in the 

GKnee. Aim 2 developed an ML classifier that detects current gait activity. With this classifier as 

an environmental differentiator, the control models were simple constrained systems.  

It was intended that the controller use a PID model for each of the activities. However, 

with the restraint of the Aim 2 to focus on walking and stumbling, there was no sophisticated 

ongoing tuning required. The actual controlled value of the knee system is the degree of valve 

opening of the damper. If the control system allowed maximum knee angular velocity, then the 
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damper valve was fully open. If the controller limited knee angular velocity like in the case of a 

stumble, then the damper valve was closed. 

For each of the two activity categories, walk and stumble, a reactionary system was 

established. During stumble, the profile focused on support and therefore a minimization of knee 

angular velocity. On the other hand, the profile for walking focused on allowing knee freedom of 

motion—unrestrained angular velocity. The Aim 2 environmental differentiator was adapted to 

switch between the control models. 

5.3.1 Control Algorithm 

From a high-level view, the control system of the GKnee receives sensor data, uses the ML 

algorithm to determine gait mode, and then reacts to the gait mode by adjusting the valve of the 

hydraulic system. The main loop of the program operates at 60 Hz. However, a secondary, 

background thread is continually running and dedicated to collecting data and interpreting with the 

ML algorithm. Individually, each task could delay the program too long for one cycle to complete 

quickly enough before the next cycle begins. Therefore, the external loop cycles quickly and waits 

for timestamps that indicate another cycle is occurring. Each cycle is broken into four components: 

data collection, preparation, interpretation, and reaction. The following sections will elaborate on 

the methods used to accomplish those functions more specifically. Detailed code can be found in 

Appendix 9.1. 

Data Collection 

The only function of the first section of the control cycle is to initiate the data collection 

from the sensors. It was found that different sensors reacted at different rates, which seemed 

correlated with the ability of their software libraries to access the native peripherals of the Google 

Coral device. While some sensors, namely the LSM9DS1, were able to function in a sequential 
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loop at close to 120 Hz, others, such as the LSM6DS3, were unable to consistently perform beyond 

80 Hz in a sequential loop. Additionally, even at 60 Hz, errors and cycle skips due to processing 

delays were common. However, implementing multithreading allowed the sensors to collect data 

while other processing steps occurred, which mitigated the errors and cycle skips at 60 Hz. 

Data Preparation 

The data from the sensors were processed in a variety of ways to be used throughout the 

control methods. First, raw data from the sensors were transformed by the same scaler that had 

been fit to the training data previously. This transformed data was saved in a rolling history (0.33 

seconds long) for predicting. Additional rolling histories were kept for angular velocity (20 

seconds), flatness of angular velocity (15 seconds), and angle (15 seconds). 

Angular velocity was calculated using the sagittal plane gyroscope sensors. Since the 

velocities of these sensors are angular, no additional transformation was needed other than to 

subtract the velocity of the thigh segment from the shank segment. The resulting angular velocity 

categorizes the angular velocity of the knee joint. 

To determine if the knee was relatively stable and unflexing, the change in velocity of the 

knee joint was categorized. The “flatness of angular velocity” was calculated using a 0.33 second 

window. A standard deviation function was used and a 15 second memory was kept. 

Early attempts of the angle calculation (θ) depended on the integration of the knee angular 

velocity, shown below. Though such an integration would be relative, showing change in angle, it 

was believed that enough ground truth existed in the physical system to account for this because a 

reference angle could be inferred from full knee extension during gait. 

Equation 5.1 𝜃𝜃𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃) =   
𝜔𝜔(𝜃𝜃) + 𝜔𝜔(𝜃𝜃 − 1)

2
∆𝜃𝜃 + 𝜃𝜃𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃 − 1) 
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Though the angle would drift over time (seen in Figure 5.3), depending on the biases of the 

gyroscope sensors, the fully extended knee could be used to correct the angle to zero. It was found, 

however, that this depended on the magnitude of bias in each gyroscope sensor. In an attempt to 

detrend the signal drift, the approximate bias of the sensors was found and continuously subtracted 

from the input. Testing of this method on the preliminary data was successful, but experimentally, 

ineffective during the final trials, most likely due to sensor differences. An additional correcting 

bias was introduced to return the angle to zero periodically, which occurred naturally during gait, 

but ultimately this method was also inconsistent. 

Figure 5.3: Example of calculated knee angle drift during trials. Angle (θgyr) calculated using 
gyroscope integration. 

Angle can be calculated from accelerometers because of the constant pull of gravity. 

However, these calculations work best in a static environment because accelerometers are highly 

sensitive to vibrations. The angle formulas for each segment are given below where “α” represents 

acceleration in the x, y, and z planes, Equation 5.2 and Equation 5.3. 
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Equation 5.2 𝜃𝜃𝑥𝑥 =   𝜃𝜃𝐴𝐴𝑃𝑃−1(
𝐴𝐴𝑥𝑥

�𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑧𝑧2
) 

Equation 5.3 𝜃𝜃𝑦𝑦 =   𝜃𝜃𝐴𝐴𝑃𝑃−1(
𝐴𝐴𝑦𝑦

�𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑧𝑧2
) 

As shown in the formulas, the angles of each segment are calculated by accelerometers on 

different planes; therefore, the knee angle was first calculated separately on the x and y planes by 

taking the difference of each segment’s angle. Lastly, the two planar knee angles were averaged. 

Theoretically, these angles should have been identical, however, in practice, the sensor limitations 

(according to position relative to gravity) warranted an averaging to reduce error. As can be seen 

in Figure 5.4, these calculated angles (θacc) were prone to error during movement (sporadic spikes 

and noise in the signal). 

 

Figure 5.4: Example of acceleration calculated knee angle (θacc). 

Fortunately, as demonstrated by Seel et al., knee angle can also be calculated by combining 

angle calculations from the gyroscopes and accelerometers with a Kalman filter (Seel et al., 2014). 
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An example of the Kalman filter is given below in Equation 5.4 where lambda (λ) represents the 

weight distribution of the angle source. 

Equation 5.4 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎+𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃) =  𝜆𝜆𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎(𝜃𝜃) + (1 − 𝜆𝜆)(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎+𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃 − 1) + 𝜃𝜃𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃) − 𝜃𝜃𝑔𝑔𝑦𝑦𝑔𝑔(𝜃𝜃 − 1) 

 

In our use, λ was set to 0.025, which is somewhat higher than the example value by Seel et 

al. but proved to be more accurate with the gyroscope biases in this device. The result of the 

combination of angles from angular velocity and acceleration are shown below in Figure 5.5. 

 

Figure 5.5: Example of combination of calculated knee angles. θacc is calculated from 
acceleration, θgyr is calculated from angular velocity, and θacc+gyr is calculated by combining both 

using the Kalman filter. 

Data Interpretation 

During the data interpretation step of the device-control process, the background thread is 

triggered to use the previously scalar-transformed sensor data in a ML prediction by the interpreter. 

The interpreter is given the current transformed sensor data and 10 historic data steps, skipping 

one step (0.0167 seconds) between each. The prediction is stored in a variable for later use. 
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Data Reaction 

To address problems with false positives and improper stumble flagging, the data reaction 

step is broken into several components. First, it is determined whether the ML algorithm is 

predicting a stumble. Then, environmental factors, such as knee angle, are considered to determine 

if knee locking is necessary. Finally, the knee velocity and open position of the hydraulic dampener 

are evaluated for the base level of knee dampening. 

The first portion of the reactionary period is observing the predictions from the previous 

data interpretation step. A stumble prediction (positive class) is made if the stumble probability 

score is greater than or equal to 0.8 and if more than three of the last six predictions were positive 

(stumbles) as well. A stumble prediction stays active until six predictions have been negative (non-

stumble class). Once the stumble prediction has been obtained, the system continually evaluates 

the physical state of the prosthesis. If during that evaluation the knee angle exceeds 10 degrees and 

the knee is no longer extending rapidly (>-200 deg/s), then knee-locking is triggered. Locking sets 

the damper valve to its closed position which prevents further flexion but not extension. 

The knee unlocks if the following three conditions are met: there is no active stumble 

prediction, the knee velocity standard deviation (STD) is less than 10 degrees per second for the 

last 0.167 seconds, and the knee angle is less than 15 degrees. 

Similar to Herr et al., the system is designed with a maximum acceptable knee flexion 

during gait (Herr & Wilkenfeld, 2003b). While their system had an upper limit of 70 degrees, a 

review of the initial data and literature showed that a 60-degree limit for prosthetic knees appeared 

more realistic (Chauhan & Bhaduri, 2011; Ochoa-Diaz et al., 2014; Torrealba & Fonseca-Rojas, 

2019). Therefore, if the historic max flexion angle was less than 50 degrees, the valve open position 

would be decreased by four degrees, which allowed more flow and decreased dampening. 

Conversely, if the max flexion angle exceeded 60 degrees, the servo would increase by four 
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degrees, which restricted flow and increased dampening. A maximum flexion angle between 50 

and 60 degrees was the desired outcome during gait. 

Supplemental Program Features 

Though data collection and reaction occurred at 60 Hz, the program was designed to 

operate up to 120 Hz. The program was designed to maintain accurate time counts by establishing 

future timestamps and only initiating the appropriate functions during the corresponding periods. 

This also allows the program to account for delays in processing and record when delay errors 

occur. Additionally, the program received inputs from the testing button Input/Output pin to record 

stumble markers manually as described in the Recorded Data section of Aim 2 and the Electronic 

System section of 1. 

The output of the program is a file containing the following features: timestamp, 

accelerometer and gyroscope data, manual stumble marker, any error messages, knee angle, 

stumble prediction, and program reactions, such as when the system locked or confirmed a stumble 

prediction. The control algorithm was designed to operate in real-time with all predictions, 

calculations, reactions, and recordings happening on the device’s Coral microprocessor. 

5.3.2 Aim Evaluation 

To prevent rapid model switching (between knee locking and unlocking) for possible false 

positives (FP) or false negatives (FN), a small buffer of six samples, over 0.10 seconds, was 

applied. The buffer requires that classifications be positive for multiple, consecutive iterations 

before the control models switch, but no longer than 0.15 seconds. This was done to mitigate the 

potentially disastrous effects of arresting knee flexion during FP would cause to natural gait. There 

was an expectation that the control methods would affect the activity classification metrics (recall, 

precision, f-score, and accuracy). Because the control system of this aim was developed with, built 
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on, and transformed the classification of Aim 2, the assessment of this control system was done 

on activity classification during the deployed gait trials of Aim 4. As such, detailed procedures can 

be found in the methods section of Aim 4. The evaluation of the current aim was performed by 

categorizing the reaction times of the control system, and by evaluating the final activity 

classification using recall, precision, f-score, and accuracy in confusion matrices. 

Reaction Times 

To assess the achievement of this aim, different sets of reaction times needed to be 

calculated – switching between true states and switching out of false states. The transition from 

walking to stumble was clearly marked in the trials, albeit with some human errors. As described 

in the control system above, however, the transition from stumbling to walking depends on the 

system recognizing gait stability first. Therefore, the true state-switching-reaction-time will be the 

time taken to switch from walking to stumbling states as predicted by the device. Likewise, if the 

prediction switched from stumbling to walking incorrectly, such a prediction would be subsumed 

by the control system awaiting gait stability. Thus, the reaction time in switching from a false state 

must be calculated from how quickly incorrect stumbles are reverted to the correct walking state. 

It should be noted that in all calculations, the stumbling and walking classifications should be 

understood to be when the control system activated or deactivated the locking mechanism, 

respectively.  

 Switches between true walking and stumbling were calculated using the timestamps of the 

manually marked stumbles along with the timestamps of the system beginning locking. Marking 

code seen in Appendix 9.3. As an additional point of clarification, the timestamps of the prediction 

system classifying a stumble were calculated as well. Every marked stumble was manually 
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examined to confirm whether a stumble or locking prediction truly occurred near it. The reaction 

times were calculated as the differences between the predicted and true timestamps. 

 The reaction time of the control system when switching from an incorrect locking was 

calculated by averaging the durations of every locking instance that was classified as a FP. This 

meant that the locking did not align with a marked stumble and was manually marked as such. 

5.4 RESULTS 

Shown in the sections below are the results of the implemented control algorithm: 

visualized processing steps of the algorithm, reaction times when switching between states, and 

the effect on the prediction outcomes. 

5.4.1 Processing Steps 

While the data collection and ML predictions are difficult to visualize, the processing steps 

of the control algorithm outlined in the methods were plotted sequentially in Figure 5.6, Figure 

5.7, and Figure 5.8. 

Figure 5.6, below, highlights the data collection and preparation steps presented in the 

methods. The incoming sensor information was used to calculate the knee angular velocity and 

knee angle. This data was tracked and used in future reactions. Periods of flatness, such as between 

gait cycles, were tracked in the STD history for locking release. 
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Figure 5.6: Knee Velocity and Knee Angle as calculated by the control algorithm and output 
during data collection. Sample from P1 during Obstacle stumbles. 

As a part of the patient trials, stumbles were induced, and each induction was marked by 

the researchers pressing a button tethered to the GKnee. An example of this can be seen in Figure 

5.7, below. It should be noted that the rest of the control system was unaware of this trigger 

information. The stumble indications were saved to the files but were not used in any part of the 

control process. Below, stumble inductions can be seen as the dotted lines labeled “Actual.” 
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Figure 5.7: Knee Velocity and Knee Angle as calculated by the control algorithm, and Actual 
Stumbles as marked during data collection by researchers. Sample from P1 during Obstacle 

stumbles. 

Lastly, Figure 5.8, highlights both the interpretation and prediction steps of the control 

algorithm. The green line, “Predicted,” demonstrates the output of the ML algorithm interpreter. 

The purple “Locking” line shows the instances where the control algorithm reacted to the 

prediction conditions. As can be seen below, predictions were not always responded to 

immediately, and in some situations the marked stumbles were not predicted or responded to at all 

(as in the first stumble induction for example). 
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Figure 5.8: Knee Velocity and Knee Angle as calculated by the control algorithm, Actual 
Stumbles as marked during data collection by researchers, Predicted Stumbles as predicted by 

the ML algorithm, and Locking Stumbles as when the control algorithm determined reactions to 
stumbles. Sample from P1 during Obstacle stumbles. 

5.4.2 Reaction Times 

The following two tables show the reaction time results for the system. Table 5.1 shows 

the difference in time between the marked stumbles and the control system recognizing stumble 

or locking across all patient data. Table 5.2 shows the system reaction time in correcting after a 

false positive during which the system locked and then turned back to the true class of walking. 
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Table 5.1: Control system reaction times for recognizing stumble and locking events.  The right 
column shows the difference between these two numbers. The bottom row shows the respective 
standard deviation (STD). Data shown is the average between all Patients 1, 2, 3, 4, and 6 for all 

reactions of that type. 

Stumble Reaction Locking Reaction Difference 

Average 0.147 s 0.158 s 0.013 s 

STD 0.241 s 0.255 s 0.059 s 

Table 5.2: Control system reaction time in correcting been a false predicted stumble, during 
which the control system locked, back to the true class of walking. The average is the time in 
seconds of how long the system locked. The bottom cell shows the standard deviation (STD). 

Data shown is the average between all Patients 1, 2, 3, 4, and 6. 

Recovery Reaction 

Average 0.034 s 

STD 0.385 s 

5.4.3 Stumble and Walking Positive and Negative Rates 

Similar to the confusion matrices presented for the ML network in Aim 2, the summary of 

the effectiveness of the control algorithm is given below in a set of confusion matrices. The right 

column shows the metrics measured: recall, precision, FPR, F-Score, and accuracy. As discussed 

in greater detail in the methods of Aim 2, the counted data are the individual categorized steps. 

The steps were obtained during the Aim 4 stumble induction trials while patients were wearing the 

GKnee, (see Aim 4 for more details). The following tables display the confusion matrix by 

individual patient: Table 5.3, Table 5.4, Table 5.5, Table 5.6, and Table 5.7. On the other hand, 

Table 5.8 displays the effectiveness of control system as a whole in a summative table. 
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Individual 
Table 5.3 : Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 

shown is for P1 during the GKnee stumble induction data runs. Right column is recall, precision, 
false positive rate (FPR), F-Score, and accuracy. 

Predicted Recall 92.3% 
Stumble Walking Precision 100.0% 

Actual Stumble 36 3 FPR 0.0% 
Walking 0 161 F-Score 96.0% 

Accuracy 98.5% 

Table 5.4: Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 
shown is for P2 during the GKnee stumble induction data runs. Right column is recall, precision, 

false positive rate (FPR), F-Score, and accuracy. 

Predicted Recall 69.6% 
Stumble Walking Precision 97.0% 

Actual Stumble 32 14 FPR 0.8% 
Walking 1 130 F-Score 81.0% 

Accuracy 91.5% 

Table 5.5: Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 
shown is for P3 during the GKnee stumble induction data runs. Right column is recall, precision, 

false positive rate (FPR), F-Score, and accuracy. 

Predicted Recall 81.3% 
Stumble Walking Precision 89.7% 

Actual Stumble 26 6 FPR 2.4% 
Walking 3 121 F-Score 85.2% 

Accuracy 94.2% 

Table 5.6: Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 
shown is for P4 during the GKnee stumble induction data runs. Right column is recall, precision, 

false positive rate (FPR), F-Score, and accuracy. 

Predicted Recall 76.5% 
Stumble Walking Precision 56.5% 

Actual Stumble 26 8 FPR 19.2% 
Walking 20 84 F-Score 65.0% 

Accuracy 79.7% 
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Table 5.7: Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 
shown is for P6 during the GKnee stumble induction data runs. Right column is recall, precision, 

false positive rate (FPR), F-Score, and accuracy. 

Predicted Recall 69.4% 
Stumble Walking Precision 71.4% 

Actual Stumble 25 11 FPR 5.6% 
Walking 10 170 F-Score 70.4% 

Accuracy 90.3% 

Summative 
Table 5.8: Confusion matrix of the counted step data gathered during the Aim 4 trials. Data 

shown is summative for P1, P2, P3, P4, and P6 during the GKnee stumble induction data runs. 
The right column is recall, precision, false positive rate (FPR), F-Score, and accuracy.  

Predicted Recall 77.5% 
Stumble Walking Precision 81.0% 

Actual Stumble 145 42 FPR 4.9% 
Walking 34 666 F-Score 79.2% 

Accuracy 91.4% 

5.5 DISCUSSION 

The objectives for this aim were to switch between true states in 0.15 seconds and switch 

out of a false state within 0.30 seconds. As can be seen in the results Table 5.1, the achievement 

of this goal was moderately successful. A complete switch from walking to stumble locking took 

0.158 seconds on average. However, it is important to consider that there are several layers of 

interpretation between the ML model prediction of stumble before the system physically reacts to 

the stumble by locking.  

The final level of interpretation is an analysis of physical gait characteristics, such as knee 

extension velocity and current knee angle, before locking the system for a stumble prediction. The 

stumble reaction time given in Table 5.1 is the time at which the system has clearly recognized a 

stumble and awaits the physical gait characteristics to not be positive movements towards 

extension. By this metric, the system achieved the objective with a switch time of 0.15 seconds. 
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The average switch out of a false state took 0.034 seconds, thus achieving the objective of 0.30 

seconds.  

While it is clear then, that the system achieved the objectives of this aim, it should also be 

noted that these reaction times have deviations. In part, this can be attributed to the inaccuracy of 

stumble marking during the trials. Though good efforts were made, errors in timing must be 

considered. This is especially true for stumble induction methods such as bungee or uneven 

because both add uncertainty. The beginning of a bungee stumble was often marked when the 

researchers began pulling on it; however, at that stage a physical effect would have been impossible 

to detect visually or in sensor data, and the time to a measurable physical effect would vary with 

the speed of bungee pulling and current leg swing. In fact, stumble and locking reaction times for 

many stumble inductions take place before the recorded stumble induction marking; though these 

were not considered as negative values for the reaction average, but rather as zero-time reactions. 

A future, more thorough analysis of these reactions would require a manual re-marking of stumble 

inductions, as performed for Aim 2. Though these results appear to signify success, the more 

important factor is how the control algorithm affected the final classification results. 

Despite using the same model that performed with an average step accuracy of 66.9%, a 

precision of 33.8%, and a recall of 73.1%, the final classification of the control system showed a 

step accuracy of 91.4%, a recall of 77.5%, and a precision of 81.0%. One difference between these 

models is that the deployed model of Aim 2 was trained with three subjects in a LOO, and the final 

implemented model of Aim 4 used a LOO with the three subjects as training and each subject from 

the Aim 4 trial as the test. The only other difference between the models is that the control system 

interpreted the predictions according to the physical knee environment and thus switched between 
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walking and stumbling with much greater reliability. It should be noted that with the addition of 

the control system, the objectives of Aim 2 are achieved. 

Limitations 

Though the control system accomplished the objectives established for it, there remain 

limitations in its application and evaluation. For example, the control system was designed to 

switch between just two different gait states, stumbling and walking. While this was constrained 

for the scope of this research, inclusion of further states, such as sitting or standing, would be 

beneficial to a multipurpose knee system. A primary overarching objective of the research was to 

diverge from rule-based control systems. While the ML classifier is a large step away from rules, 

the use of the knee environmental data still constrained the system to a small set of inputs, albeit 

inputs with a much-decreased room for error. 

While statistical significance was achieved in Aim 4 with the number of subjects, the 

evaluation of the control system had no statistical analysis. Additionally, the three training subjects 

included one female, but the evaluation occurred on five males. There are no reasons why the 

results would not be applicable to a larger and more diverse patient population, but the current 

evaluation is limited in its evaluations on this population.  

Lastly, one of the underlying assumptions of this work has been that a knee reaction or 

locking time in less than 200 milliseconds would coincide with established human reaction times, 

and thus be fast enough to enable a subject to use the knee for stumble recovery. However, as the 

deviation of the stumble and locking reaction times suggests, there are still large variances despite 

having an average stumble reaction time of less than 150 milliseconds. Coupled with the 

previously discussed potential error in stumble marking, this may indicate that though the objective 
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for this aim was achieved, the 200 milliseconds of standard human reaction may be exceeded 

regularly. 

Future Work 

Continued development of this research would ideally attempt to address many of the 

limitations. As mentioned, watching videos and manual marking stumbles would shed much 

greater light on the exact timings of both stumble and reaction. Further, with the expansion of the 

training pool for the Aim 2 classifier, the control system should both be re-evaluated in its 

accuracies and metrics with a larger pool, but also perhaps reduce the number of environmental 

tunings required to produce accurate labels. Additionally, the knee environment factors could be 

included into the system as an additional ML network, or input to the system as calculated features. 

Ideally, such a change would move the control system to a purely ML classifier-based system for 

all gait states. 

Lastly, though implemented in code, the flexion angle dampening mechanism was never 

formally deployed nor tested on subjects walking at various gait speeds. Further research would 

include a set of gait trails that greatly varied walking speed and compared the various gait 

parameters with the active angle dampening system enabled. 

Broader Implications 

Human stumbles are a common occurrence, and while healthy gait recovery strategies and 

situational comparisons have been conducted, the literature is bereft of a comprehensive study that 

not only has many stumbles conducted, but also has conducted these stumbles across a wider range 

of approaches. While a couple of studies compare two different modes of stumble induction, this 

study has included three separate modes. Half of the studies in the literature have compared more 

than one knee system, but this study has compared three: a mechanical passive knee, an MPK, and 
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a prototype MPK that was tested both mechanically (passive) and electronically (active). Apart 

from Shawen et al. and Shirota et al., no studies conducted any significant number of stumbles per 

subject (Shawen et al., 2017; Shirota et al., 2015). This study inducted 100 stumbles per subject. 

The data presented alone in this study has a combination of knee systems, number of stumbles, 

and variance of stumble modes that has never been published before. This data will be useful for 

follow-up studies and allow the scientific community to better understand stumbles, especially in 

amputee patients, so that future injury and discomfort can be minimized. 
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Chapter 6: Aim 4 - Compare assembled system of Aims 1, 2, and 3 to industry 
standards and base prototype M3. 

6.1 OBJECTIVE 

It is hypothesized that the system will have a smaller rate of falls per stumble event than 

the M3 and will have no statistical difference in rate of falls per stumble compared to the subject’s 

own MPK. It is also hypothesized that the system will exhibit increased gait symmetry compared 

to the M3 and decreased gait symmetry compared with the subject’s MPK. This aim seeks to 

evaluate the GKnee when compared to current passive and active knee systems in the categories 

of falling prevalence and walking mechanics. Ultimately, the device’s performance in this aim will 

be a summative performance of the overall research project. 

6.2 INTRODUCTION 

As described in the introduction of Chapter 4, many different sensors and measurements 

have been used to compare and evaluate gait characteristics in the literature. Stumble and fall 

kinematics in healthy gait are documented, but within amputee gait few studies have been 

conducted. Studies that observe the effects of rapid acceleration or deceleration of a treadmill 

during gait have successfully induced stumbles (Sessoms et al., 2013; Zhang et al., 2011). 

Additionally, stumble modes from specific gait activities have been evaluated in direct 

comparisons between different prosthetic knees (Blumentritt et al., 2009b). However, studies have 

not thoroughly evaluated stumble-events in prosthetic knee systems with the rigor that healthy 

stumbles have been addressed. 

6.3 METHODS 

This aim evaluated the final assembly of the previous aims and the GKnee’s effectiveness 

as a whole system when compared to industry-available prosthetic knee systems. Further, the 
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primary objectives of this final aim were to measure rate of falls and biomechanical parameters 

between the GKnee, LIMBS M3, and the subjects’ current MPKs. Therefore, the basic 

methodology of the walking trials described in Chapter 4 were repeated with the previous notable 

differences focusing on overall evaluation.  

This trial took place at The University of Texas Southwestern Medical Center 

(UTSouthwestern) in the Physical Therapy Gym located on the 1st Floor of the School of Health 

Professions Building. The prosthetic fitting and adjustments were performed by 

UTSouthwestern’s Tiffany Graham, CPO, and Jan Karel Petric, CPO. Subject qualifying criteria 

were as follows: age between 21 and 60, unilateral transfemoral amputation, no secondary health 

conditions or neurological disorders (specifically things that affect gait normalcy), activity level 

of at least K3, and general good health. Additionally, the subject’s everyday prosthetic knee was 

to be an MPK. 

The biomechanical parameters were compared through a hybrid system of knee sensor data 

and video recordings. The subjects completed intervals of walking and of stumble induction in a 

safety harness as described in Aim 2. Also, as in Aim 2, stumbles were induced via three modes: 

obstacle, bungee, and uneven surface. In contrast to Aim 2, gait parameters were compared, and 

the methods were repeated for the three leg systems. 

Because the order in which the knees could be tested was limited (M3 before GKnee, 

discussed below in GKnee Methods), and to reduce the amount of time by limiting knee fittings, 

subjects used the knees in two different orders, which were first randomized, and then alternated. 

The subjects either used their MPK, then the M3, and then the GKnee; or they used the M3, then 

the GKnee, and then the MPK. Subjects used their MPK with their regular foot and used the GKnee 

and M3 with the Niagara Foot® v1. Though some gait parameters can be affected by different feet, 
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it was deemed not significant enough to not change their foot alignment or comfort for 

standardization of the feet across the trials. 

6.3.1 Data Collection 

The data collected was: three-axis linear acceleration and three-axis rotational velocity for 

both shank and thigh of the subject’s prosthetic leg; videos of stumble inductions for classification 

of stumble type; temporal symmetry measurements of gait; and stumble activities. The M3 and the 

GKnee already had similar sensor configurations, and the MPK of each subject was also retrofitted 

with the same two sensors to extract knee angle information. 

As established by Orendurff et al. and Segal et al., biomechanical parameters are only 

validly comparable during similar gait speeds (Orendurff et al., 2006; Segal et al., 2006). 

Therefore, subjects had a time for self-selected walking speed, within the range of 0.5 – 1.0 m/s 

but were set at 0.8 m/s for the stumble trials. The rest of the experimental procedure and protocol 

remained the same between all three devices with induced stumbling conditions, but now repeated 

while wearing different prosthetic devices. Thus, the flow of the trials for each knee was as follows: 

fitting by a prosthetist, acclimation period, static sample, walking at self-selected speeds, induced 

stumbles by bungee, induced stumbles by obstacle, and induced stumbles by uneven all at 0.8 m/s. 

This is outlined in Figure 6.1, below. 
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Figure 6.1: The order of each knee trial. Fitting and acclimation involved the prosthetist and did 

not include data recording. Static and walk were performed on the treadmill with the sensors 
recording for 1 and 3 minutes, respectively. Bungee, obstacle, and uneven were the different 

methods by which stumbles were induced. These were conducted until 10 of each type had been 
collected. 

In total, each subject walked on three different prosthetic devices, was subjected to three 

different types of stumble inductions per knee and was induced approximately 10 times per type 

of stumble. This accounts for approximately 90 stumble inductions per subject.  

GKnee Methods 

As established in Aim 2, the addition of one minute of subject-specific gait data greatly 

improved the classification capabilities of the ML system. Therefore, subjects completed the knee 

trials on the M3 before the GKnee, and walking data from the M3 was used to train a subject-

specific ML model for the GKnee trial. Details of this code can be found in Appendix 9.5. 

While each subject was being fit for the GKnee, the trial data files were pulled from the 

M3 data collection system. The one-minute sample of walking data was pulled from the walking 

file and transformed into a usable input dataset for the ML model. The subject-specific data was 

then combined with all three subjects’ data from the initial data collection and a scaler was fit 

to/transformed the data, as described in Models in the methods of Aim 2. The developed ML model 

discussed in Aim 2 was then retrained on this expanded data set, and the patient-specific model 

was converted and saved by the TensorFlow TFLiteConverter. The outputs of this process were a 
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subject-specific ML model and fit scaler. These were then loaded onto the GKnee with the control 

system file and used during that patient’s GKnee trial. 

GKnee Control Evaluation Recollection 

During the trials, it became clear that angle calculation was not performing correctly. As 

discussed in Aim 3, this was addressed by the incorporation of accelerometer data to account for 

the drift of the gyroscope data. However, a solution was needed mid-trial when the performance 

issue was identified. Therefore, during the trials, the locking mechanism was disabled which 

allowed the trials to proceed with software-level data collection and classification, but without 

physical interaction with the knee system. 

Therefore, a partial recollection of data was conducted within the same population. P2, P3, 

and P4 consented to the abbreviated retrial. The general methods of the trial remained the same, 

but the subjects walked and stumbled on the GKnee under two conditions: control system on, and 

control system off. Essentially, it tested whether the interaction of the servo would affect recovery 

or fall incidences. During this recollection, the M3 and MPK were not evaluated. The same 

statistical methods were employed for the patients during the on/off conditions.  

6.3.2 Data Processing 

Stumbles and falls were an incidence metric compared between the knee systems. Gait step 

parameters and knee angles were collected by analyzing video footage and sensor calculations (as 

described in Chapter 5). The resulting data was analyzed by the statistical repeated measures 

ANOVA method to determine significant variances between knee systems and subjects. Safety of 

the systems was comparatively assessed by the stumble and fall incidences. Gait symmetry was 

assessed by the gait parameters. Final comparisons between the three systems were made using 

these measurements and outcomes. 



106 

Stumble Classification 

During the initial data collection for Aim 2, the gait classifications were either walking or 

stumbling, with manually marked differentiations between the three modes of stumbling (bungee, 

obstacle, and uneven surface). However, to evaluate the differences between knee systems it 

became apparent that additional stumble classifications were necessary. Originally, it was thought 

that a subclassification of stumbling into “falling” or “recovery” would allow the falling incidences 

to be evaluated between the different knee systems. While this was true, it assumed that each 

stumble induction was enough to trigger a stumble. In the bungee and uneven inductions, it quickly 

became clear that some inductions may be manually marked by researchers without any or minimal 

effect on the gait of the subjects. 

Therefore, stumble inductions were classified into four categories: unaffected gait (U), 

affected gait (A), recovery (R), and fall (F). Unaffected gait (U) occurred when the stumble 

induction had no visible effect on the subject’s gait. This occurred when the induction was too 

close to the heel strike or was done too lightly. The induction was classified as affected gait (A) 

when there were visible signs of the inductions’ interference with the patient’s gait, but no gait 

adjustment was necessary to overcome them. Examples of this included subjects stepping on the 

object during the uneven surface induction, or the bungee being pulled too lightly or too late in the 

gait cycle. These actions may have shown a hitch in gait, but the subjects were able to continue 

walking unperturbed. Therefore, U and A were considered ineffective inductions. Recovery (R) 

and fall (F) were considered effective inductions because in both instances the gait of the amputee 

was perturbed and recovery was attempted, successfully in R and unsuccessfully in F. 

Though the specific stumble subclassification was originally recorded during the trial by 

the researcher who was also pressing the button to mark the stumble induction, this proved to split 

the researcher’s attention too much to provide accurate information in both tasks (marking the 
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subtype and pressing the button). Therefore, when the U, A, R, and F subclassification system was 

applied, all previously classified stumble inductions were revised manually by watching back the 

video footage and recording the subclass using timestamps. This also created a manual data-

verification process to ensure the classifications were marked uniformly across patients and knees. 

Additionally, every step and locking events were also manually reviewed and classified. Details 

of this code can be found in Appendices 9.3 and 9.4. 

Statistical Analysis 

Two statistical methods were used to quantitatively compare the knee systems: repeated 

measures ANOVA and Cohen’s D. Repeated measures ANOVA was chosen because of the trial’s 

design; the pool of participants remained constant, and each participant repeated the same trials as 

the others. Further, the same measurements were taken during every trial. Therefore, this statistical 

approach was chosen to establish that any differences found were the result of differences between 

the knees (M3, GKnee, or MPK) as opposed to differences between the subjects themselves. 

Cohen’s D was chosen to compare the effect size of the differences between devices. 

For the purposes of this analysis, the different stumble induction types were summed 

according to classification per knee per subject. This was done because each stumble induction 

type per knee per subject generally contained 10 samples. There was not enough difference 

between these samples to establish significant differences between the stumble induction method. 

The metric considered paramount was the rate of recoveries versus the amount of effective stumble 

inductions (R/(R+F)). The data was processed for this metric in Python through the “statsmodels” 

library. Statistical significance was considered at p less than or equal to 0.05. 

Because statistical significance can be established for even small effect with a large enough 

population, Cohen’s D was calculated between each the knees (M3-MPK, MPK-GKnee, and 
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GKnee-M3) on the same metric (recovery percentage per effective induction). Cohen’s D was used 

to measure the effect size of the differences between the means of the knees. The benchmarks 

established by Cohen for effect sizes were small (d = 0.2), medium (d = 0.5), and large (d = 0.8) 

(Cohen, 1988). Though these benchmarks were somewhat arbitrary when established, the effects 

of the trials were measured accordingly. 

6.4 RESULTS 

Six subjects were recruited and completed the informed consent according to UTEP IRB 

Study 1842954-2 and according to UTSouthwestern IRB Study STU-2022-0145. Of these, one 

subject (P5), could not participate in the trials due to mobility and prosthetic leg abduction during 

gait, which prevented unsupported gait on a treadmill. 

Table 6.1: Deployed knee trials subject demographics and amputation information. 

Demographics P1 P2 P3 P4 P6 
Sex M M M M M 
Age 30 31 42 50 43 
Height (m) 1.75 1.68 1.75 1.88 1.68 
Mass (kg) 73 59 82 127 103 

Amputation 
Age 12 26 13 3 15 

Side Left Right Left Left Right 

Cause Trauma Bone Cancer Trauma Vascular 
Complication 

Trauma 

Socket Double Wall 
(Pin) 

Suction Suction Socketless 
Socket 

Suction 

Knee C-Leg 4 Rheo XC C-Leg 4 C-Leg 4 X3 

Foot Proprio Flexfoot Low Profile 
Triton 

Triton Low Profile 
Triton 
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The five subjects (all male) who completed the study ranged in age from 30-50 years 

(average 39 ±8 years), weighed on average 89 ±24 kg, and had an average height of 1.75 ±0.07 m. 

Table 6.1, above, highlights both the demographic and amputation-specific details of the subject 

group. The microprocessor knees used in this study are the C-Leg® 4 and X3 by Otto Bock 

(Duderstadt, Germany), and Rheo Knee® XC by Össur (Reykjavik, Iceland). The feet used were 

two version of the Triton Foot® by Otto Bock, and the Proprio Foot® and Flexfoot® by Össur. 

6.4.2 Stumble Classification 

The following tables show the gait trial results for each patient (P) wearing the three knee 

devices (M3, GKnee, and MPK) categorized by stumble induction mode (bungee, obstacle, and 

uneven surface) and outcome subclassification (unaffected gait, affected gait, recovery, or fall). 

The last two rows of each table show the counts per knee and stumble mode that were effective or 

ineffective at inducing a potential stumble. “Ineffective Induced” is the sum of “Unaffected Gait” 

and “Affected Gait,” while “Effective Induced” is the sum of “Recovery” and “Fall” instances. 

Recovery rate is the sum of recoveries per knee over the sum of effective inductions per knee. 

Individual Tables 
Table 6.2: For P1, all counts of stumble inductions separated by various types of stumble 

induction modes and categorized by knee type. Each knee includes a sum of induction modes, a 
total sum for the subject is in the right column, and total summative values are shown for 

ineffective, effective, and total induced stumbles. 

Knee M3 GKnee MPK   
Mode bun obs une sum bun obs une sum bun obs une sum SUM 
Unaffected Gait 0 1 0 1 5 0 0 5 4 4 0 8 14 
Affected Gait 3 3 0 6 9 5 2 16 3 4 3 10 32 
Recovery 5 4 1 10 2 5 7 14 4 3 8 15 39 
Fall 4 4 10 18 0 0 1 1 2 1 1 4 23 
                            
Ineffective Induced 3 4 0 7 14 5 2 21 7 8 3 18 46 
Effective Induced 9 8 11 28 2 5 8 15 6 4 9 19 62 
Total Induced 12 12 11 35 16 10 10 36 13 12 12 37 108 
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For P1, the most effective inductions were seen on the M3 (n=28, 80%), followed by the 

MPK (n=19, 51%), with the lowest effective inductions occurring on the GKnee (n=15, 42%). P1 

fell one time while wearing the GKnee, four times on the MPK, and eighteen times with the M3. 

Recovery rate was highest on the GKnee at 93%, followed by the MPK (79%) and the M3 (36%). 

Table 6.3: For P2, all counts of stumble inductions separated by various types of stumble 
induction modes and categorized by knee type. Each knee includes a sum of induction modes, 
and total summative values are shown for ineffective, effective, and total induced stumbles. 

Knee M3 GKnee MPK   
Mode bun obs une sum bun obs une sum bun obs une sum SUM 
Unaffected Gait 2 0 0 2 3 0 2 5 3 0 0 3 10 
Affected Gait 7 2 4 13 3 5 5 13 4 4 7 15 41 
Recovery 2 5 4 11 7 6 2 15 3 4 3 10 36 
Fall 0 3 2 5 1 0 4 5 3 3 1 7 17 
                            
Ineffective Induced 9 2 4 15 6 5 7 18 7 4 7 18 51 
Effective Induced 2 8 6 16 8 6 6 20 6 7 4 17 53 
Total Induced 11 10 10 31 14 11 13 38 13 11 11 35 104 

For P2, the most effective inductions were seen on the GKnee (n=20, 53%), followed by 

the M3 (n=16, 52%), with the fewest effective inductions occurring on the MPK (n=17, 48%). P2 

fell five times while wearing the M3 and GKnee, and seven times on the MPK. Recovery rate was 

best for the GKnee (75%) followed by the M3 at 69% and lastly for the MPK (59%). 
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Table 6.4: For P3, all counts of stumble inductions separated by various types of stumble 
induction modes and categorized by knee type. Each knee includes a sum of induction modes, 
and total summative values are shown for ineffective, effective, and total induced stumbles. 

Knee M3 GKnee MPK   
Mode bun obs une sum bun obs une sum bun obs une sum SUM 
Unaffected Gait 4 0 0 4 7 1 0 8 5 2 0 7 19 
Affected Gait 4 6 6 16 4 6 5 15 2 4 5 11 42 
Recovery 1 5 4 10 2 5 1 8 1 3 3 7 25 
Fall 2 0 2 4 0 0 0 0 4 1 0 5 9 
                            
Ineffective Induced 8 6 6 20 11 7 5 23 7 6 5 18 61 
Effective Induced 3 5 6 14 2 5 1 8 5 4 3 12 34 
Total Induced 11 11 12 34 13 12 6 31 12 10 8 30 95 

For P3, the most effective inductions were seen on the M3 (n=14, 41%), followed by the 

MPK (n=12, 40%), with the fewest effective inductions occurring on the GKnee (n=8, 26%). P3 

fell five times while wearing the MPK, four times on the M3, and zero times on the GKnee. 

Recovery rate was 100% for the GKnee, followed by the M3 at 71% and MPK at 58%. 

Table 6.5: For P4, all counts of stumble inductions separated by various types of stumble 
induction modes and categorized by knee type. Each knee includes a sum of induction modes, 
and total summative values are shown for ineffective, effective, and total induced stumbles. 

Knee M3 GKnee MPK   
Mode bun obs une sum bun obs une sum bun obs une sum SUM 
Unaffected Gait 3 0 0 3 1 0 0 1 4 0 0 4 8 
Affected Gait 4 13 0 17 9 10 2 21 6 7 6 19 57 
Recovery 0 7 1 8 1 1 5 7 3 3 1 7 22 
Fall 2 0 4 6 0 0 4 4 0 1 2 3 13 
                            
Ineffective Induced 7 13 0 20 10 10 2 22 10 7 6 23 65 
Effective Induced 2 7 5 14 1 1 9 11 3 4 3 10 35 
Total Induced 9 20 5 34 11 11 11 33 13 11 9 33 100 

For P4, the most effective inductions were seen on the M3 (n=14, 41%), followed by the 

GKnee (n=11, 33%), with the fewest effective inductions occurring on the MPK (n=10, 30%). P4 

fell six times while wearing the M3, four times on the GKnee, and three times on the MPK. 

Recovery rate was 63% for the GKnee, followed by the MPK at 70% and M3 at 57%. 
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Table 6.6: For P6, all counts of stumble inductions separated by various types of stumble 
induction modes and categorized by knee type. Each knee includes a sum of induction modes, 
and total summative values are shown for ineffective, effective, and total induced stumbles. 

Knee M3 GKnee MPK 
Mode bun obs une sum bun obs une sum bun obs une sum SUM 
Unaffected Gait 1 2 1 4 3 0 1 4 4 0 0 4 12 
Affected Gait 3 1 5 9 3 4 6 13 3 6 4 13 35 
Recovery 1 2 2 5 5 7 3 15 2 5 1 8 28 
Fall 5 5 0 10 1 0 0 1 4 1 2 7 18 

Ineffective Induced 4 3 6 13 6 4 7 17 7 6 4 17 47 
Effective Induced 6 7 2 15 6 7 3 16 6 6 3 15 46 
Total Induced 10 10 8 28 12 11 10 33 13 12 7 32 93 

For P6, the most effective inductions were seen on the M3 (n=15, 54%), followed by 

GKnee (n=16, 48%) and MPK (n=15, 47%). P6 fell ten times while wearing the M3, seven times 

on the MPK, and one time on the GKnee. Recovery rate was 94% for the GKnee, followed by the 

MPK at 53% and M3 at 33%. 

Summed Tables 

Below, in Table 6.7 and Table 6.8, are shown the total summed classification of stumble 

inductions by patient and by knee, respectively. More detailed summed tables can be found in 

Appendix 9.6.  

Table 6.7: Summed counts of stumble inductions shown by patient. The categories of stumble 
induction mode and knee were summed for these counts. The rightmost column shows a 

summary of each row. 

Patient P1 P2 P3 P4 P6 SUM 
Unaffected Gait 14 10 19 8 12 63 
Affected Gait 32 41 42 57 35 207 
Recovery 39 36 25 22 28 150 
Fall 23 17 9 13 18 80 

Ineffective Induced 46 51 61 65 47 270 
Effective Induced 62 53 34 35 46 230 
Total Induced 108 104 95 100 93 500 
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The percentage of ineffective and effective induced stumbles for all subjects is 54% and 

46%, respectively. For P1, the ratio of effective versus ineffective is higher than for other subjects. 

P2 and P6 are nearly balanced. P3 and P4 have a lower effective versus ineffective ratio. 

Table 6.8: Summed counts of stumble inductions shown by knee. The categories of stumble 
induction mode and patient were summed for these counts. The rightmost column shows a 

summary of each row. 

Knee M3 GKnee MPK SUM 
Unaffected Gait 14 23 26 63 
Affected Gait 61 78 68 207 
Recovery 44 59 47 150 
Fall 43 11 26 80 

Ineffective Induced 75 101 94 270 
Effective Induced 87 70 73 230 
Total Induced 162 171 167 500 

GKnee Recollection 

Data in Table 6.9 are the total stumble incidences during the recollection trials for each 

individual patient and knee mode (on or off). “On” indicates that the control system was actively 

locking the piston during the trial. “Off” indicates the control system was only collecting data 

internally. 

Table 6.9: Summed counts of stumble inductions shown by individual. The category of stumble 
induction mode was summed for these counts. The rightmost columns show a summary. 

Patient P2 P3 P4 SUM 
Mode Off On Off On Off On Off On Total 
Unaffected Gait 3 4 3 4 13 4 19 12 31 
Affected Gait 15 12 16 19 15 16 46 47 93 
Recovery 11 13 11 6 5 7 27 26 53 
Fall 1 1 2 2 3 3 6 6 12 

Ineffective Induced 18 16 19 23 28 20 65 59 124 
Effective Induced 12 14 13 8 8 10 33 32 65 
Total Induced 30 30 32 31 36 30 98 91 189 
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In total, the recovery rate was 81% for both the “on” and “off” systems. 

6.4.3 Gait Parameters 
Table 6.10: Average ± standard deviation of temporal parameters: step length (m), step duration 
(s), and knee angle (deg) across patients 1, 2, 3, 4, 6. Values separated by knee type and by leg 

side. 

Parameter 
Intact Limb Prosthetic Limb 

M3 GKnee MPK M3 GKnee MPK 
Step Length (m) 0.55 ± 0.01 0.57 ± 0.04 0.54 ± 0.05 0.55 ± 0.02 0.57 ± 0.04 0.54 ± 0.05 
Step Duration (s) 0.91 ± 0.04 0.92 ± 0.07 0.89 ± 0.08 0.78 ± 0.03 0.82 ± 0.08 0.79 ± 0.06 
Knee Angle (deg)    75.7 ± 9.5 57.2 ± 8.5 59.8 ± 4.9 

6.4.4 Statistical Analysis 

Below are the statistical analyses for the primary data collection (Figures 6.2 through 6.4) 

and the GKnee recollection (Figures 6.5 through 6.7). 

Primary Collection 

Cohen’s D 
MPK-M3 0.72 
M3-GKnee 1.91 
GKnee-MPK 1.63 

Figure 6.2: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 
as mean with standard deviation bars. With five subjects, statistical significance was achieved 

(p=0.042). Right column shows Cohen’s D effect size between the means of paired knee 
systems. 
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Figure 6.3: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 
as individual data per knee. 

Figure 6.4: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 
as knee order per individual. 

GKnee Recollection 

The recollection of data for the GKnee was performed on three subjects (P2, P3, P4), and 

compared the GKnee with the control system enabled (on) or disabled (off). 
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Cohen’s D 
Off-On 0.02 

Figure 6.5: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 
as mean with standard deviation bars. With three subjects, statistical significance was achieved 
in affirming the null hypothesis (p=0.956). Right column shows Cohen’s D effect size between 

the means of two conditions. 

Figure 6.6: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 
as individual data per condition.  
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Figure 6.7: Recovery rate of total effectively induced stumbles (recovery and fall). Data is shown 

as knee condition order per individual. 

6.5 DISCUSSION 

This aim was evaluated by classifying the stumbles and calculating gait parameters. 

Because the primary evaluation of this study was the fall rates between knee systems, the classified 

stumbles were subjected to statistical analysis. 

Stumble Classifications 

 The subclassification of stumbles can raise questions of data classification subjectivity of 

the data classification. The original distinction between walking, stumbling, and falling was to be 

quite straightforward, but that stemmed from the false assumption that every stumble induction 

would lead to patients stumbling or falling. While this study attempts to maintain rigor without 

bias, the lines between the subclassifications of unaffected gait, affected gait, and recovery are 

partially subjective. To mitigate this, all subclassifications were done per patient in a continuum 

to preserve the classification “state of mind.” However, fundamentally, the potential subjectivity 

has no effect on the statistical significance between the knees. Because the recovery percentage is 
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dependent enough on the fall rate, that even with recoveries reduced to zero, there is still a 

significant difference between the knees based on falling incidences alone. Also noting that the 

subclassification of falls was the most quantifiable measure because the conditions of falling were 

not open to subjective interpretation. 

Gait Parameters 

One of the hypotheses of this aim was that the gait symmetry across subjects would be 

different between the knee systems. However, for both step length and step duration, limited 

variance was seen when comparing knee system in terms of symmetry. While there are minor 

differences in step length between the knees themselves, they are within normal deviations. The 

step durations have evident differences between the intact and prosthetic limbs, but comparatively, 

these differences appear to be consistent across knees.  

The symmetrical effect may be due to several factors. Though gait symmetry comparisons 

between knees is not uncommon in the literature, it appears that several studies compare two knee 

systems primarily, the Ottobock C-Leg and the Mauch SNS. From the studies, the C-Leg performs 

better than the Mauch SNS, but the results were generalized to apply to all non-microprocessor 

knees (K. R. Kaufman et al., 2007, 2012). Other studies have concluded that minimal 

biomechanical differences exist between the two (Segal et al., 2006).  

The results presented in this aim are perhaps the least differentiated to date. A possible 

explanation could be the acclimation period allowed. In some studies, patients are given weeks to 

become acclimated. It could be that everyday MPK users do not vary their gait parameters much 

when switching between knees for a brief period. A more long-term study would bring clarity to 

this subject. The only gait parameter that shows certain differences between the knees is prosthetic 

limb angle during gait. The GKnee and MPK performed very similarly, while the M3 had a very 
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large angle. This could indicate that the stiffness of the knee should be adjusted. However, no 

patients made comments on this during the trials. 

Statistical Analysis 

The primary result of this study is the comparison of the recovery and fall rates between 

knee systems. As can be seen in Figure 6.2, the means of the recovery rate are statistically 

significant between the knee systems, and the effect of the difference is large or nearly so (MPK-

M3). It should be noted that the order switching methodology appears to have been effective, and 

highlights that the order of the trials was not a predicting factor of the outcome, seen in Figure 6.4. 

Additionally, the recovery ratio is dependent on the fall rate, and the significant differences 

between the knees remain if the recoveries approach zero. Since the fall rate is the least subjective 

subclassification of the data, this gives assurance that the differences between the systems are 

legitimate. 

However, it must be clarified that in these results, the GKnee was a purely mechanical 

system. Due to the angle errors discussed in Aim 3, the locking mechanism was disabled for the 

duration of the primary data collection of Aim 4. The recollection comparison between the GKnee 

with the control system “on” and “off” yields no statistically significant differences between the 

recovery rates (p=0.956). Therefore, it can be taken as affirming the null hypothesis and indicates 

that any difference is likely due to chance. This is affirmed by the comparison of subjects by knee 

order (Figure 6.7), where the visible trend is not the order or the GKnee mode, but rather the 

subjects themselves. Thus, the underlying objective of Aim 4 was not achieved despite a ML-

based control system meeting the objectives of Aim 2 and 3. Why the reactions of the control 

system did not impact the ratio of recovery and falls is unknown but discussed below. 
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A possible reason for this is that of measurement error, namely the low rate of falls that are 

associated with the GKnee, which are shown in Table 6.8 and Table 6.9. The low rate of falls is 

what causes the large difference between the GKnee and the MPK and M3, but in this case also 

may be obscuring the legitimate differences that may be found between the purely physical GKnee 

and the GKnee with an ML-based control system locking in response to the stumble inductions. 

Another reason could be the reaction times of the control system. As discussed previously, the 

limitation of the marked stumbles could imply that the true reaction time is not fast enough to 

make a difference for the subject in recovery. If, as the data imply, there is no difference between 

the control system enabled or disabled, and the control system meets the objectives of Aim 2 and 

3, then the assumptions of those objectives must be flawed. 

Lastly, a potential reason for the GKnee’s improved performance over the MPKs could be 

the weight of the system. Commercial MPKs advertise lightness and though an objective, this has 

not been realized in the GKnee. An estimate of the C-Leg’s moment of inertia is 9.18e-3 kg*m2. 

By contrast, the GKnee has a moment of inertia of 8.59e-2 kg*m2.  Though this difference should 

be mitigated by the foot, the difference in momentum may help patients overcome stumble 

inductions. The effectiveness of the physical GKnee would not have been realized if not for the 

errors in the control system during the primary data collection. 

Limitations 

This aim incorporates the objectives of the other three Aims; therefore, the constraints of 

each must also be considered for this final comparison. While the performance of the Aim 2 

classifier appeared to be a large obstacle, the results of Aim 3 improved and overcame it. However, 

Aim 3 did highlight the issues of stumble marking and reaction times. The limitations of this aim 

are the subject pool, duration, stumble repeatability, and ultimately the performance of the GKnee. 
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 The subjects of this Aim came from a relatively uniform pool. Though age and weight 

varied a considerate amount, height had little variation, and all subjects were male. Since one of 

the subjects in the initial data collection was female, there is no reason to assume that the stumble 

classifications would turn out differently if patients were female in the later trials, but this cannot 

be assumed. Additionally, though statistical significance was achieved with large effects, the 

number of subjects was relatively low. 

The trails of this aim were relatively long, in some cases the data collection took three 

hours. However, though there is no definitive established standard, some literature studies 

compared knee systems after months of acclimation. This was not possible in the GKnee because 

it is both tethered and not configured for gait activities outside of walking and stumbling. While 

this is more common for short-term studies, the lack of change in the gait parameters may indicate 

that walking patterns had not adapted to the different systems sufficiently. Long-term studies may 

find greater differences between the gait parameters and the recovery rates. 

Another limitation is the inexact timing of the gait perturbation. While this was intentional 

in both training and testing, to simulate the chaotic nature of stumbles, it restricts exact analysis of 

stumble inductions and simple comparisons to tightly controlled studies. 

Future Work 

The GKnee should be evaluated in further studies that are both long-term and with an 

expanded population. However, before this can occur, the continued work of the other Aims must 

first be addressed. Namely, the physical characteristics of the GKnee must be redesigned, 

improved, and streamlined; the classification system of Aim 2 should be improved with a larger 

training population and an overhaul of the methods; and the control system of Aim 3 must be 

revisited to ensure that the system reaction to stumbles occurs quickly enough to be effective. 
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After those improvements have been made the GKnee should be subjected to further 

studies and evaluation. Additionally, the data from these trials should be used to simulate further 

studies. To date, stumble data is very scarce, and the addition of these datasets should be used to 

develop systems that are even more effective and predicting stumbles. 

Lastly, the recovery ratio results must be investigated more fully to find both the reasons 

for the physical GKnee outperforming the MPKs, but also to determine why the ML model and 

control system were unable to effect any changes. There are several possibilities for the GKnee’s 

stability, such as, the four-bar mechanism, the moment of inertia, or the dampening characteristics 

of the hydraulic system; but each of these will require further tests and exploration to make a 

definitive statement. As stated, the reasons for the control system’s lack of efficacy may be issues 

of timing in both marking and reacting to stumbles, or a function of the relatively low sample size 

for the recovery ratio of the GKnee. Each of these will be explored further in the future to establish 

whether the control system was simply ineffective in application or whether ML models are not 

suited to improving this process entirely. 

Broader Implications 

As stated previously, the literature contains many examples of MPKs outperforming 

passive mechanical systems. Specific studies reference energy expenditure (Johansson et al., 2005) 

or stability (Blumentritt et al., 2009a) as the factors to consider for greater MPK performance. 

However, as Segal et al. pointed out, biomechanical differences between the mechanical systems 

and MPKs can be minimal. Since the control system had no effect on the results, this study has 

outlined how a mechanical knee outperformed an MPK in the specific case of a multi-mode 

stumble induction trial. 
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Chapter 7: Conclusion 

The field of biomechatronics is evolving quickly with advances in computer science, 

biology, and electrical and mechanical engineering. Coupled with increased interests in machine 

learning across all industry sectors, there are opportunities to leverage advanced analytics in 

uniquely complex problems. This study deployed a machine learning model in real-time to predict 

stumble inductions in a microprocessor-controlled prosthetic knee.  

Aim 1 demonstrated the characteristics of a hydraulic prosthetic knee that could withstand 

the worst-case loading conditions of a 100 kg patient with a built-in safety-factor. It showed the 

feasibility of a servo actuated hydraulic with flow characteristics that did not impede gait and 

allowed the prosthetic knee to swing freely at 500 degrees/second. 

A LSTM machine learning model was developed in Aim 2 to predict “stumbling” and 

“walking” in real-time. Though the accuracy and other metrics of this aim did not achieve the 

hypothesized values, the control system of Aim 3 demonstrated the hypothesized prediction 

switching times and compensated for Aim 2 by achieving step accuracy of 91.4%, recall of 77.5%, 

and precision of 81.0%.  

Aim 4 established that the proposed system accomplished its two primary tasks: accurate 

stumble prediction with controlled reaction and a statistically significant improvement in the 

recovery rate among patients while wearing the GKnee. However, while the ML algorithm 

accurately predicted stumbles, its implementation in the control system did not result in any 

improvement to the recovery ratio of the GKnee trials. Therefore, this study demonstrated a control 

system with real-time prediction of stumbles; and surprisingly also demonstrated a passive cost-

constrained prosthetic knee with a measurable reduction in fall incidences. 



124 

Chapter 8: References 
 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., 
Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., 
Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-Scale 
Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ 

Alaqtash, M., Sarkodie-Gyan, T., Yu, H., Fuentes, O., Brower, R., & Abdelgawad, A. (2011). 
Automatic classification of pathological gait patterns using ground reaction forces and 
machine learning algorithms. Proceedings of the Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, EMBS, 2011, 453–457. 
https://doi.org/10.1109/IEMBS.2011.6090063 

Amputee Coalition. (2012). Amputee statistics you ought to know. 
http://www.advancedamputees.com/amputee-statistics-you-ought-know 

Badawi, A. A., Al-Kabbany, A., & Shaban, H. (2019). Multimodal Human Activity Recognition 
From Wearable Inertial Sensors Using Machine Learning. 2018 IEEE-EMBS Conference on 
Biomedical Engineering and Sciences (IECBES), 402–407. 
https://doi.org/10.1109/iecbes.2018.8626737 

Bellmann, M., Köhler, T. M., & Schmalz, T. (2019). Comparative biomechanical evaluation of 
two technologically different microprocessor-controlled prosthetic knee joints in safety-
relevant daily-life situations. Biomedizinische Technik, 64(4), 407–420. 
https://doi.org/10.1515/bmt-2018-0026 

Bellmann, M., Schmalz, T., & Blumentritt, S. (2010). Comparative Biomechanical Analysis of 
Current Microprocessor-Controlled Prosthetic Knee Joints. Archives of Physical Medicine and 
Rehabilitation, 91(4), 644–652. https://doi.org/10.1016/j.apmr.2009.12.014 
Benedetti, M. G., Piperno, R., Simoncini, L., Bonato, P., Tonini, A., & Giannini’, S. (1999). Gait 

abnormalities in minimally impaired multiple sclerosis patients. Multiple Sclerosis, 5(5), 
363–368. https://doi.org/10.1177/135245859900500510 

Blumentritt, S., Schmalz, T., & Jarasch, R. (2009a). The safety of C-leg: Biomechanical tests. 
Journal of Prosthetics and Orthotics, 21(1), 2–15. 
https://doi.org/10.1097/JPO.0b013e318192e96a 

Blumentritt, S., Schmalz, T., & Jarasch, R. (2009b). The safety of C-leg: Biomechanical tests. 
Journal of Prosthetics and Orthotics, 21(1), 2–15. 
https://doi.org/10.1097/JPO.0b013e318192e96a 

Boonstra, a M., Fidler, V., & Eisma, W. H. (1993). Walking speed of normal subjects and 
amputees: aspects of validity of gait analysis. Prosthetics and Orthotics International, 
17(2), 78–82. https://doi.org/10.3109/03093649309164360 

Center for Orthotic & Prosthetic Care. (2008). Amputation Statistics Fact Sheet. 200(1999), 
2002. 

Chauhan, S. S., & Bhaduri, S. C. (2011). Evaluation of the Polycentric above Knee Prosthesis. 
15th National Conference on Machines and Mechanisms, 6, 7. 
http://www.nacomm2011.ammindia.org/files/papers/nacomm2011_attachment_21_1.pdf 

Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic 
minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. 
https://doi.org/10.1613/jair.953 

Chelius, G., Braillon, C., Pasquier, M., Horvais, N., Gibollet, R. P., Espiau, B., & Azevedo 
Coste, C. (2011). A wearable sensor network for gait analysis: A six-day experiment of 



125 

running through the desert. IEEE/ASME Transactions on Mechatronics, 16(5), 878–883. 
https://doi.org/10.1109/TMECH.2011.2161324 

Chen, S., & Ravallion, M. (2010). China is Poorer than We Thought, but No Less Successful in 
the Fight against Poverty. Debates on the Measurement of Global Poverty, November, 
1577–1625. https://doi.org/10.1093/acprof:oso/9780199558032.003.0015 

Chereshnev, R., & Kertész-Farkas, A. (2017). HuGaDB: Human Gait Database for Activity 
Recognition from Wearable Inertial Sensor Networks. In Springer. 
https://github.com/romanchereshnev/HuGaDB. 

Chollet, F., & others. (2015). Keras. 
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. In Statistical Power 

Analysis for the Behavioral Sciences (2nd Editio). Routledge. 
https://doi.org/10.4324/9780203771587 

Cordero, A. F., Koopman, H. J. F. M., & Van Der Helm, F. C. T. (2004a). Mechanical model of 
the recovery from stumbling. Biological Cybernetics, 91(4), 212–220. 
https://doi.org/10.1007/s00422-004-0508-0 

Cordero, A. F., Koopman, H. J. F. M., & Van Der Helm, F. C. T. (2004b). Mechanical model of 
the recovery from stumbling. Biological Cybernetics, 91(4), 212–220. 
https://doi.org/10.1007/s00422-004-0508-0 

Crenshaw, J. R., Kaufman, K. R., & Grabiner, M. D. (2013). Trip recoveries of people with 
unilateral, transfemoral or knee disarticulation amputations: Initial findings. Gait and 
Posture, 38(3), 534–536. https://doi.org/10.1016/j.gaitpost.2012.12.013 

Eveld, M. E., King, S. T., Vailati, L. G., Zelik, K. E., & Goldfarb, M. (2021). On the basis for 
stumble recovery strategy selection in healthy adults. Journal of Biomechanical 
Engineering, 143(7). https://doi.org/10.1115/1.4050171 

Forner-Cordero, A., Ackermann, M., & De Lima Freitas, M. (2011). A method to simulate motor 
control strategies to recover from perturbations: Application to a stumble recovery during 
gait. Proceedings of the Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS, 7829–7832. 
https://doi.org/10.1109/IEMBS.2011.6091929 

Freedom Innovations. (2015). Plié® 3. http://www.freedom-innovations.com/plie-3/ 
Gailey, R., Allen, K., Castles, J., Kucharik, J., & Roeder, M. (2008). Review of secondary 

physical conditions associated with lower-limb amputation and long-term prosthesis use. 
Journal of Rehabilitation Research and Development, 45(1), 15–29. 
https://doi.org/10.1682/JRRD.2006.11.0147 

Galey, L. J. (2016). Development and initial testing of a low-cost, electronic, microprocessor-
controlled prosthetic knee. In ETD Collection for University of Texas, El Paso. 
http://digitalcommons.utep.edu/dissertations/AAI10251518 

Galey, L. J., & Gonzalez, R. V. (2022). Design and Initial Evaluation of a Low-Cost 
Microprocessor-Controlled Above-Knee Prosthesis: A Case Report of 2 Patients. 
Prosthesis, 4(1), 60–72. https://doi.org/10.3390/prosthesis4010007 

Gard, S. A. (2006). Use of Quantitative Gait Analysis for the Evaluation of Prosthetic Walking 
Performance. JPO Journal of Prosthetics and Orthotics, 18, P93–P104. 
https://doi.org/10.1097/00008526-200601001-00011 

Gard, S. A., Childress, D. S., & Uellendahl, J. E. (1996). The Influence of Four-Bar Linkage 
Knees on Prosthetic Swing-Phase Floor Clearance. Journal of Prosthetic and Orthotics, 
8(2), 34–40. https://doi.org/10.1097/00008526-199603000-00006 



126 

Godest, A. C., Beaugonin, M., Haug, E., Taylor, M., & Gregson, P. J. (2002). Simulation of a 
knee joint replacement during a gait cycle using explicit finite element analysis. Journal of 
Biomechanics, 35(2), 267–275. https://doi.org/10.1016/S0021-9290(01)00179-8 

Goldfarb, M. (2013). Consideration of Powered Prosthetic Components as They Relate to 
Microprocessor Knee Systems. JPO Journal of Prosthetics and Orthotics, 25(4S), 65–75. 
https://doi.org/10.1097/jpo.0b013e3182a8953e 

Gosthipaty, A. R., Chakraborty, D., & Raha, R. (2022). Long Short-Term Memory Networks. 
PyImageSearch. https://pyimagesearch.com/2022/08/01/long-short-term-memory-networks/ 

Grabiner, M. D., Koh, T. J., Lundin, T. M., & Jahnigen, D. W. (1993). Kinematics of recovery 
from a stumble. Journals of Gerontology, 48(3), 97–102. 
https://doi.org/10.1093/geronj/48.3.M97 

Hafner, B. J., Willingham, L. L., Buell, N. C., Allyn, K. J., & Smith, D. G. (2007). Evaluation of 
Function, Performance, and Preference as Transfemoral Amputees Transition From 
Mechanical to Microprocessor Control of the Prosthetic Knee. Archives of Physical 
Medicine and Rehabilitation, 88(2), 207–217. https://doi.org/10.1016/j.apmr.2006.10.030 

Hajj Chehade, N., Ozisik, P., Gomez, J., Ramos, F., & Pottie, G. (2012). Detecting stumbles with 
a single accelerometer. Proceedings of the Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, EMBS, 6681–6686. 
https://doi.org/10.1109/EMBC.2012.6347527 

Hak, L., Van Dieën, J. H., Van Der Wurff, P., Prins, M. R., Mert, A., Beek, P. J., & Houdijk, H. 
(2013). Walking in an unstable environment: Strategies used by transtibial amputees to 
prevent falling during gait. Archives of Physical Medicine and Rehabilitation, 94(11), 
2186–2193. https://doi.org/10.1016/j.apmr.2013.07.020 

Hanlon, M., & Anderson, R. (2009). Real-time gait event detection using wearable sensors. Gait 
& Posture, 30(4), 523–527. https://doi.org/10.1016/J.GAITPOST.2009.07.128 

Herr, H., & Wilkenfeld, A. (2003a). User-adaptive control of a magnetorheological prosthetic 
knee. Industrial Robot, 30(1), 42–55. https://doi.org/10.1108/01439910310457706 

Herr, H., & Wilkenfeld, A. (2003b). User-adaptive control of a magnetorheological prosthetic 
knee. Industrial Robot, 30(1), 42–55. https://doi.org/10.1108/01439910310457706 

Highsmith, M. J., Kahle, J. T., Bongiorni, D. R., Sutton, B. S., Groer, S., & Kaufman, K. R. 
(2010). Safety, energy efficiency, and cost efficacy of the C-Leg for transfemoral amputees: 
A review of the literature. Prosthetics and Orthotics International, 34(4), 362–377. 
https://doi.org/10.3109/03093646.2010.520054 

Highsmith, M. J., Kahle, J. T., Shepard, N. T., & Kaufman, K. R. (2014). The Effect of the C-
Leg Knee Prosthesis on Sensory Dependency and Falls During Sensory Organization 
Testing. Technology & Innovation, 15(4), 343–347. 
https://doi.org/10.3727/194982413x13844488879212 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. In MEMORY Neural 
Computation (Vol. 9, Issue 8). http://www7.informatik.tu-
muenchen.de/~hochreithttp://www.idsia.ch/~juergen 

Jin, D., Zhang, R., Dimo, H. O., Wang, R., & Zhang, J. (2003). Kinematic and dynamic 
performance of prosthetic knee joint using six-bar mechanism. Journal of Rehabilitation 
Research and Development, 40(1), 39–48. https://doi.org/10.1682/JRRD.2003.01.0039 

Johansson, J. L., Sherrill, D. M., Riley, P. O., Bonato, P., & Herr, H. (2005). A clinical 
comparison of variable-damping and mechanically passive prosthetic knee devices. 



127 

American Journal of Physical Medicine & Rehabilitation / Association of Academic 
Physiatrists, 84(8), 563–575. https://doi.org/10.1097/01.phm.0000174665.74933.0b 

Kahle, J. T., Highsmith, M. J., & Hubbard, S. L. (2008). Comparison of nonmicroprocessor knee 
mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking 
tests, stair descent, and knee preference. Journal of Rehabilitation Research and 
Development, 45(1), 1–14. https://doi.org/10.1682/JRRD.2007.04.0054 

Kalanovic, V. D., Popovic, D., & Skaug, N. T. (2000). Feedback error learning neural network 
for trans-femoral prosthesis. IEEE Transactions on Rehabilitation Engineering, 8(1), 71–
80. https://doi.org/10.1109/86.830951 

Kapti, A. O., & Yucenur, M. S. (2006). Design and control of an active artificial knee joint. 
Mechanism and Machine Theory, 41(12), 1477–1485. 
https://doi.org/10.1016/j.mechmachtheory.2006.01.017 

Kaufman, K., Anderson, T., Schneider, G., Walsh, K., & Bme, M. S. (2008). Mechanisms of 
Stumble Recovery : Non-Microprocessor Controlled Compared To Microprocessor-
Controlled Prosthetic Knees. Knee, The, 1–4. 

Kaufman, K. R., Frittoli, S., & Frigo, C. A. (2012). Gait asymmetry of transfemoral amputees 
using mechanical and microprocessor-controlled prosthetic knees. Clinical Biomechanics, 
27(5), 460–465. https://doi.org/10.1016/j.clinbiomech.2011.11.011 

Kaufman, K. R., Levine, J. A., Brey, R. H., Iverson, B. K., McCrady, S. K., Padgett, D. J., & 
Joyner, M. J. (2007). Gait and balance of transfemoral amputees using passive mechanical 
and microprocessor-controlled prosthetic knees. Gait and Posture, 26(4), 489–493. 
https://doi.org/10.1016/j.gaitpost.2007.07.011 

Kaufman, K. R., Levine, J. A., Brey, R. H., McCrady, S. K., Padgett, D. J., & Joyner, M. J. 
(2008). Energy Expenditure and Activity of Transfemoral Amputees Using Mechanical and 
Microprocessor-Controlled Prosthetic Knees. Archives of Physical Medicine and 
Rehabilitation, 89(7), 1380–1385. https://doi.org/10.1016/j.apmr.2007.11.053 

Keçeci, A., Yildirak, A., & Özyazici, K. (2018). Gait Recognition via Machine Learning. In 
International Conference on Cyber Security and Computer Science (ICONCS’18). 
http://www.iconcs.org/papers/Paper_70.pdf 

Kelleher, K. J., Spence, W., Solomonidis, S., & Apatsidis, D. (2010). Disability and 
Rehabilitation The characterisation of gait patterns of people with multiple sclerosis The 
characterisation of gait patterns of people with multiple sclerosis. 
https://doi.org/10.3109/09638280903464497 

Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. 
(1996). Relationship between vertical ground reaction force and speed during walking, slow 
jogging, and running. Clinical Biomechanics, 11(5), 253–259. https://doi.org/10.1016/0268-
0033(95)00068-2 

King, S. T., Eveld, M. E., Martínez, A., Zelik, K. E., & Goldfarb, M. (2019). A novel system for 
introducing precisely-controlled, unanticipated gait perturbations for the study of stumble 
recovery. Journal of NeuroEngineering and Rehabilitation, 16(1), 69. 
https://doi.org/10.1186/s12984-019-0527-7 

Kumar, N., Soni, S., Kumar, A., & Sohi, B. S. (2010). Low cost prototype development of 
electronic knee. Industrial Research, 69(June), 444–448. 

Lambrecht, S., Harutyunyan, A., Tanghe, K., Afschrift, M., De Schutter, J., & Jonkers, I. (2017). 
Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical 
Model †. Sensors 2017, Vol. 17, Page 671, 17(4), 671. https://doi.org/10.3390/S17040671 



128 

Lawson, B. E., Varol, H. A., Sup, F., & Goldfarb, M. (2010a). Stumble detection and 
classification for an intelligent transfemoral prosthesis. 2010 Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 511–514. 
https://doi.org/10.1109/IEMBS.2010.5626021 

Lawson, B. E., Varol, H. A., Sup, F., & Goldfarb, M. (2010b). Stumble detection and 
classification for an intelligent transfemoral prosthesis. 2010 Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 511–514. 
https://doi.org/10.1109/IEMBS.2010.5626021 

Mannini, A., Trojaniello, D., Cereatti, A., & Sabatini, A. M. (2016). A machine learning 
framework for gait classification using inertial sensors: Application to elderly, post-stroke 
and huntington’s disease patients. Sensors (Switzerland), 16(1). 
https://doi.org/10.3390/s16010134 

Maqbool, H. F., Husman, M. A. B., Awad, M. I., Abouhossein, A., Iqbal, N., & Dehghani-Sanij, 
A. A. (2017). A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and 
Evaluation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(9), 
1500–1509. https://doi.org/10.1109/TNSRE.2016.2636367 

Marayong, P., Khoo, I.-H., Krishnan, V., Sciortino, A., & Daniel Crews BS, B. J. (2017). Real-
Time Estimation of Knee Angle, Heel-Strike, and Toe-Off Events for Gait Rehabilitation 
Devices. https://search.proquest.com/docview/1949398483?pq-origsite=gscholar 

Martinez-Villalpando, E. C., & Herr, H. (2009). Agonist-antagonist active knee prosthesis: A 
preliminary study in level-ground walking. The Journal of Rehabilitation Research and 
Development, 46(3), 361. https://doi.org/10.1682/JRRD.2008.09.0131 

Mentiplay, B. F., Banky, M., Clark, R. A., Kahn, M. B., & Williams, G. (2018). Lower limb 
angular velocity during walking at various speeds. Gait and Posture, 65, 190–196. 
https://doi.org/10.1016/j.gaitpost.2018.06.162 

Michael, J. (2001). Article on Amputee Demographics. 
http://www.oandp.com/news/jmcorner/2001-02/2.asp 

Miller, W. C., Deathe, A. B., Speechley, M., & Koval, J. (2001). The influence of falling, fear of 
falling, and balance confidence on prosthetic mobility and social activity among individuals 
with a lower extremity amputation. Archives of Physical Medicine and Rehabilitation, 
82(9), 1238–1244. https://doi.org/10.1053/apmr.2001.25079 

Mittal, A. (2019). Understanding RNN and LSTM. What is Neural Network? Medium. 
https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e 

Miyazaki, S. (1997). Long-term unrestrained measurement of stride length and walking velocity 
utilizing a piezoelectric gyroscope. IEEE Transactions on Biomedical Engineering, 44(8), 
753–759. https://doi.org/10.1109/10.605434 

Mundell, B., Maradit Kremers, H., Visscher, S., Hoppe, K., & Kaufman, K. (2017). Direct 
medical costs of accidental falls for adults with transfemoral amputations. Prosthetics and 
Orthotics International, 030936461770480. https://doi.org/10.1177/0309364617704804 

Narendra, K. S., & Balakrishnan, J. (1997). Adaptive control using multiple models. IEEE 
Transactions on Automatic Control, 42(2), 171–187. https://doi.org/10.1109/9.554398 
Ochoa-Diaz, C., Rocha, T. S., de Levy Oliveira, L., Paredes, M. G., Lima, R., Bo, A. Padilha. L., 

& Borges, G. A. (2014). An above-knee prosthesis with magnetorheological variable-
damping. 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and 
Biomechatronics, 108–113. https://doi.org/10.1109/BIOROB.2014.6913761 



129 

Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. In Advanced Data Mining 
Techniques. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-76917-0 

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & others. (2019). 
KerasTuner. 

Orendurff, M. S., Segal, A. D., Klute, G. K., McDowell, M. L., Pecoraro, J. a, & Czerniecki, J. 
M. (2006). Gait efficiency using the C-Leg. Journal of Rehabilitation Research and 
Development, 43(2), 239–246. https://doi.org/10.1682/JRRD.2005.06.0095 

Össur. (2016). Rheo Knee 3. Össur Catalog. http://www.ossur.com/prosthetic-
solutions/products/dynamic-solutions/rheo-knee-3 

Ottobock. (2016). C-Leg® 4. http://www.ottobockus.com/prosthetics/lower-limb-
prosthetics/solution-overview/c-leg-above-knee-system/ 

Pirker, W., & Katzenschlager, R. (2017). Gait disorders in adults and the elderly: A clinical 
guide. In Wiener Klinische Wochenschrift (Vol. 129, Issues 3–4, pp. 81–95). Springer-
Verlag Wien. https://doi.org/10.1007/s00508-016-1096-4 

Quintero, D., Villarreal, D. J., Lambert, D. J., Kapp, S., & Gregg, R. D. (2018, June). 
Continuous-Phase Control of a Powered Knee&#x2013;Ankle Prosthesis: Amputee 
Experiments Across Speeds and Inclines. IEEE Transactions on Robotics, 34(3), 686–701. 
https://doi.org/10.1109/TRO.2018.2794536 

Radcliffe, C. W., & Lamoreux, L. (1968). Uc-Bl Pneumatic Swing-Control Unit for Above-Knee 
Prostheses. Bulletin of Prosthetics Research-Fall, 73–89. 
http://www.rehab.research.va.gov/jour/68/5/2/73.pdf 

Ren, B., Liu, J., & Chen, J. (2019). Simulating human–machine coupled model for gait trajectory 
optimization of the lower limb exoskeleton system based on genetic algorithm. 
International Journal of Advanced Robotic Systems, 16(6). 
https://doi.org/10.1177/1729881419893493 

Riley, P. O., Paolini, G., Della Croce, U., Paylo, K. W., & Kerrigan, D. C. (2007). A kinematic 
and kinetic comparison of overground and treadmill walking in healthy subjects. Gait and 
Posture, 26(1), 17–24. https://doi.org/10.1016/j.gaitpost.2006.07.003 

Rueterbories, J., Spaich, E. G., Larsen, B., & Andersen, O. K. (2010). Methods for gait event 
detection and analysis in ambulatory systems. In Medical Engineering and Physics (Vol. 
32, Issue 6, pp. 545–552). Med Eng Phys. https://doi.org/10.1016/j.medengphy.2010.03.007 

Sagawa, Y., Turcot, K., Armand, S., Thevenon, A., Vuillerme, N., & Watelain, E. (2011). 
Biomechanics and physiological parameters during gait in lower-limb amputees: A 
systematic review. Gait and Posture, 33(4), 511–526. 
https://doi.org/10.1016/j.gaitpost.2011.02.003 

Schillings, A. M., Van Wezel, B. M. H., & Duysens, J. (1996a). Mechanically induced stumbling 
during human treadmill walking. Journal of Neuroscience Methods, 67(1), 11–17. 
https://doi.org/10.1016/0165-0270(95)00149-2 

Schillings, A. M., Van Wezel, B. M. H., & Duysens, J. (1996b). Mechanically induced stumbling 
during human treadmill walking. Journal of Neuroscience Methods, 67(1), 11–17. 
https://doi.org/10.1016/0165-0270(95)00149-2 

Seel, T., Raisch, J., & Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. 
Sensors (Basel, Switzerland), 14(4), 6891–6909. https://doi.org/10.3390/s140406891 

Segal, A. D., Orendurff, M. S., Klute, G. K., McDowell, M. L., Pecoraro, J. A., Shofer, J., & 
Czerniecki, J. M. (2006). Kinematic and kinetic comparisons of transfemoral amputee gait 



130 

using C-Leg® and Mauch SNS® prosthetic knees. Journal of Rehabilitation Research and 
Development, 43(7), 857–870. https://doi.org/10.1682/JRRD.2005.09.0147 

Sessoms, P. H., Wyatt, M., Grabiner, M., Collins, J. D., Kingsbury, T., Thesing, N., & Kaufman, 
K. (2014). Method for evoking a trip-like response using a treadmill-based perturbation 
during locomotion. Journal of Biomechanics, 47(1), 277–280. 
https://doi.org/10.1016/j.jbiomech.2013.10.035 

Sessoms, P. H., Wyatt, M., Grabiner, M., Collins, J.-D., Kingsbury, T., Thesing, N., & Kaufman, 
K. (2013). Method for evoking a trip-like response using a treadmill-based perturbation 
during locomotion. Journal of Biomechanics, 47, 277–280. 
https://doi.org/10.1016/j.jbiomech.2013.10.035 

Shawen, N., Lonini, L., Mummidisetty, C. K., Shparii, I., Albert, M. V, Kording, K., & 
Jayaraman, A. (2017). Fall Detection in Individuals With Lower Limb Amputations Using 
Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications. 
JMIR MHealth and UHealth, 5(10), e151. https://doi.org/10.2196/mhealth.8201 

Shepherd, M. K., & Rouse, E. J. (2017). Design of a quasi-passive ankle-foot prosthesis with 
biomimetic, variable stiffness. 2017 IEEE International Conference on Robotics and 
Automation (ICRA), 6672–6678. https://doi.org/10.1109/ICRA.2017.7989788 

Shirota, C., Simon, A. M., & Kuiken, T. A. (2015). Transfemoral amputee recovery strategies 
following trips to their sound and prosthesis sides throughout swing phase. Journal of 
NeuroEngineering and Rehabilitation, 12(1), 1–11. https://doi.org/10.1186/s12984-015-
0067-8 

Shrider, E. A., Kollar, M., Chen, F., & Semega, J. (2021). Income and Poverty in the United 
States: 2020. US Census Bureau, Current Population Reports, 60–273. 
http://www.census.gov/content/dam/Census/library/publications/2021/demo/p60-273.pdf 

Sup, F., Bohara, A., & Goldfarb, M. (2008). Design and Control of a Powered Transfemoral 
Prosthesis. The International Journal of Robotics Research, 27(2), 263–273. 
https://doi.org/10.1177/0278364907084588 

Sup, F., Varol, H. A., Mitchell, J., Withrow, T., & Goldfarb, M. (2008). Design and control of an 
active electrical knee and ankle prosthesis. Proceedings of the 2nd Biennial IEEE/RAS-
EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 
2008, 2008, 523–528. https://doi.org/10.1109/BIOROB.2008.4762811 

Tahir, N. M., & Manap, H. H. (2012). Parkinson Disease gait classification based on machine 
learning approach. Journal of Applied Sciences, 12(2), 180–185. 
https://doi.org/10.3923/jas.2012.180.185 

Tang, P. C. Y., Ravji, K., Key, J. J., Mahler, D. B., Blume, P. A., & Sumpio, B. (2008). Let 
Them Walk! Current Prosthesis Options for Leg and Foot Amputees. Journal of the 
American College of Surgeons, 206(3), 548–560. 
https://doi.org/10.1016/j.jamcollsurg.2007.10.007 

Torrealba, R. R., & Fonseca-Rojas, E. D. (2019). Toward the Development of Knee Prostheses: 
Review of Current Active Devices. In Applied Mechanics Reviews (Vol. 71, Issue 3, p. 
030801). American Society of Mechanical Engineers. https://doi.org/10.1115/1.4043323 

Torrealba, R. R., Pérez-D’Arpino, C., Cappelletto, J., Fermín-León, L., Fernández-López, G., & 
Grieco, J. C. (2010). Through the development of a biomechatronic knee prosthesis for 
transfemoral amputees: Mechanical design and manufacture, human gait characterization, 
intelligent control strategies and tests. Proceedings - IEEE International Conference on 
Robotics and Automation, 2934–2939. https://doi.org/10.1109/ROBOT.2010.5509674 



131 

Weiss, K., Khoshgoftaar, T. M., & Wang, D. D. (2016). A survey of transfer learning. Journal of 
Big Data, 3(1). https://doi.org/10.1186/s40537-016-0043-6 

Wen, Y., Brandt, A., Liu, M., Huang, H., & Si, J. (2017). Comparing Parallel and Sequential 
Control Parameter Tuning for a Powered Knee Prosthesis Joint Department of Biomedical 
Engineering. IEEE Int., Conf. Sys., Man and Cybern., 1716–1721. 
http://www.smc2017.org/SMC2017_Papers/media/files/0831.pdf 

White, R., Agouris, I., Selbie, R. D., & Kirkpatrick, M. (1999). The variability of force platform 
data in normal and cerebral palsy gait. Clinical Biomechanics, 14(3), 185–192. 
https://doi.org/10.1016/S0268-0033(99)80003-5 

WHO. (2011). World Report on Disability. Geneva. 
Winter, D. A. (1990). Biomechanics and Motor Control of Human Movement (2nd ed.). John 

Wiley & Sons. 
Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., & Najafi, K. (2004). Wireless 

implantable microsystems: High-density electronic interfaces to the nervous system. 
Proceedings of the IEEE, 92(1), 76–97. https://doi.org/10.1109/JPROC.2003.820544 

Yoo, D., Seo, K. H., & Lee, B. C. (2019). The effect of the most common gait perturbations on 
the compensatory limb’s ankle, knee, and hip moments during the first stepping response. 
Gait and Posture, 71, 98–104. https://doi.org/10.1016/j.gaitpost.2019.04.013 

Zhang, F., D’andrea, S. E., Nunnery, M. J., Kay, S. M., & Huang, H. (2011). Towards design of 
a stumble detection system for artificial legs. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 19(5), 567–577. https://doi.org/10.1109/TNSRE.2011.2161888 

  



132 

Chapter 9: Appendices 

9.1 APPENDIX A: SIMPLE RULE-BASED CONTROL 
import numpy as np 
import pandas as pd 
 
def angles(): 
    global cax1, cay1, caz1, cax2, cay2, caz2 
    ang_x1 = np.degrees(np.arctan(cax1/(np.sqrt(cay1**2+caz1**2)+0.0001))) 
    ang_y1 = np.degrees(np.arctan(cay1/(np.sqrt(cax1**2+caz1**2)+0.0001))) 
    ang_x2 = np.degrees(np.arctan(cax2/(np.sqrt(cay2**2+caz2**2)+0.0001))) 
    ang_y2 = np.degrees(np.arctan(cay2/(np.sqrt(cax2**2+caz2**2)+0.0001))) 
    ang_x = ang_x1-ang_x2 
    ang_y = ang_y1-ang_y2 
     
    ang = np.mean((ang_x, ang_y)) 
    return ang 
 
run_name = 'Simple_Control' 
 
subjects = ["S1", "S2", "S4"] 
in_dir = "..//Compiled//" 
headers = 
["time","var1(t)","var2(t)","var3(t)","var4(t)","var5(t)","var6(t)","var7(t)"
,"var8(t)","var9(t)","var10(t)","var11(t)","var12(t)","var13(t)","var14(t)","
var15(t)","var16(t)","var17(t)","var18(t)","sbu","sbo","sw","walking"] 
 
TP = 0 
FP = 0 
TN = 0 
FN = 0 
 
for sub in subjects: 
# sub = "S1" 
 
    print(sub) 
    data = pd.read_excel(in_dir+sub+".xlsx", usecols=headers).to_numpy() 
     
    times = data[:,0] 
    data_x = data[:,1:19] 
    data_y = np.stack((np.sum(data[:,19:22], axis=1), data[:,22]), axis=1) 
     
    pred_y = np.zeros(data_y.shape) 
     
    history = np.zeros((21, 12)) 
    history_long = np.zeros((1200)) #angular velocity 
    angle = np.zeros((900)) 
     
    stumb_count = 0 
    flex = False 
    ext = False 
    cross = False 
    step = 0 
    bun = False 
    obs = False 
    une = False 
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    knee_vel_off = 0 
     
    std_win = 20 
    old_stamp = 0 
    angle_gyr = 0 
    angle_acc = 0 
    epsilon = 0.025 
     
    for i in range(1,len(times)-1): 
        cgx1, cgy1, cgz1, cax1, cay1, caz1, cmx1, cmy1, cmz1, cgx2, cgy2, 
cgz2, cax2, cay2, caz2, cmx2, cmy2, cmz2 = data_x[i, :] 
        stamp = times[i] 
        old_stamp = times[i-1] 
         
        history = np.roll(history, -1, axis=0) 
        history_long = np.roll(history_long, -1, axis=0) 
        angle = np.roll(angle, 1, axis=0) 
        mag_hist = np.roll(history, 1, axis=0) 
         
        history[-1] = cgx1, cgy1, cgz1, cax1, cay1, caz1, cgx2, cgy2, cgz2, 
cax2, cay2, caz2 
        history_long[-1] = cgz2-cgz1 + knee_vel_off 
        area_gyr = sum(history_long[-2:]) / 2 * (stamp-old_stamp) 
        old_stamp = stamp 
         
        angle_gyr += area_gyr 
        angle_acc = angles() 
         
        angle[0] = epsilon*angle_acc+(1-epsilon)*(angle[1]+area_gyr) 
        if angle[0] < 0: angle[0] = 0 
         
        if history_long[-1] > 100: 
            flex = True 
            cross = False 
        if history_long[-1] < -200: 
            flex = False 
            ext = True 
            cross = False 
        if history_long[-1] > -20: 
            ext = False 
            if history_long[-1] < 20: cross = True 
             
         
        if history_long[-1] > 100 and angle[0] > 25: 
            step = 30 
        else: step -= 1 
         
        if step < 0: step = 0 
         
         
        if step > 0: 
             
            #bungee detection 
            if not flex and not ext and history_long[-1] < -100:  
                bun = True 
                 
            #obstacle detection 
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            if flex and cross and history_long[-1] > 30: 
                obs = True 
             
            #uneven detection 
            if angle[0] > 25 and abs(caz2) > 1.5: 
                une = True 
             
            if bun or une or obs: 
                stumb = True 
                stumb_count = 30 
                bun = False 
                une = False 
                obs = False 
             
        stumb_count -= 1 
         
        if stumb_count > 0: 
            pred_y[i,0] = 1 
         
        if stumb_count < 0: 
            stumb = False 
            stumb_count = 0 
        if stumb_count == 0: 
            pred_y[i,1] = 1 
             
        if pred_y[i,0] == data_y[i,0]: 
            if data_y[i,0] == 1: TP += 1 
            else: TN += 1 
        else: 
            if data_y[i,0] == 1: FN += 1 
            else: FP += 1 
 
acc = (TP+TN)/(TP+FP+TN+FN) 
prec = (TP)/(TP+FP) 
rec = (TP)/(TP+FN) 
fpr = (FP)/(FP+TN) 
fscore = 2*(prec*rec)/(prec+rec) 
 
print("Accuracy: {:.1f}%".format(acc*100)) 
print("Precision: {:.1f}%".format(prec*100)) 
print("Recall: {:.1f}%".format(rec*100)) 
print("FPR: {:.1f}%".format(fpr*100)) 
print("F-Score: {:.1f}%".format(fscore*100)) 
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9.2 APPENDIX B: CONTROL SYSTEM 
import numpy as np 
import math 
import tflite_runtime.interpreter as tflite 
import board 
import busio 
import digitalio 
import pickle 
import time 
import threading 
from scipy.signal import find_peaks 
from periphery import PWM 
import argparse 
parser = 
argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatte
r) 
 
class myThread(threading.Thread): 
    def __init__(self): 
        threading.Thread.__init__(self) 
    def run(self): 
        tester() 
 
def tester(): 
    global pred, interpreter, input_details, output_details, history, 
interpret, collect, sensor1, sensor2, cgx1, cgy1, cgz1, cax1, cay1, caz1, 
cgx2, cgy2, cgz2, cax2, cay2, caz2 
     
    while not end: 
        if collect: 
            cax1, cay1, caz1 = sensor1.acceleration 
            cgx1, cgy1, cgz1 = sensor1.gyro 
            cax2, cay2, caz2 = sensor2.acceleration 
            cgx2, cgy2, cgz2 = sensor2.gyro 
            collect = False 
        if interpret: 
            input_data = np.expand_dims(history[::2], 
axis=0).astype("float32") 
            interpreter.set_tensor(input_details[0]['index'],input_data) 
            interpreter.invoke() 
            pred = interpreter.get_tensor(output_details[0]['index'])[0] 
            interpret = False 
        time.sleep(.002) 
 
def angles(): 
    global cax1, cay1, caz1, cax2, cay2, caz2 
    ang_x1 = np.degrees(np.arctan(cax1/(np.sqrt(cay1**2+caz1**2)+0.0001))) 
    ang_y1 = np.degrees(np.arctan(cay1/(np.sqrt(cax1**2+caz1**2)+0.0001))) 
    ang_x2 = np.degrees(np.arctan(cax2/(np.sqrt(cay2**2+caz2**2)+0.0001))) 
    ang_y2 = np.degrees(np.arctan(cay2/(np.sqrt(cax2**2+caz2**2)+0.0001))) 
    ang_x = ang_x1-ang_x2 
    ang_y = ang_y1-ang_y2 
     
    ang = np.mean((ang_x, ang_y)) 
    return ang 
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parser.add_argument("-f","--freq", type=int, help="set frequency in hertz 
(default", default=480) 
parser.add_argument("-t","--time", type=float, help="set time in minutes", 
default=10) 
parser.add_argument("-n","--name", help="set file name", default='') 
parser.add_argument("-r","--ratio", type=int, help="set how many cycles pass 
to collect one IMU sample", default=8) 
parser.add_argument("-m","--model_f", help="patient for model file", 
default='') 
parser.add_argument("-s","--sensor", type=int, help="use LSM6 sensor (default 
is LSM9)", default=0) 
parser.add_argument("-e","--enable", type=int, help="master enable") 
args = parser.parse_args() 
 
if args.sensor: from new_lsm6ds import LSM6DS as lsm 
else: import new_lsm9ds1 as lsm 
 
if type(args.enable) != int: print("Need to specify master enable") 
 
master_enable = args.enable 
model_file = "Patient_Walk_" + args.model_f 
name = args.name 
freq = args.freq 
tot_time = args.time 
dur = int(float(tot_time)*60) 
ratio = args.ratio 
cycles = dur*freq 
dec = 1/freq*1000 
 
#Load LSTM Model 
interpreter = tflite.Interpreter(model_path="model_"+model_file+".tflite") 
interpreter.allocate_tensors() 
input_details = interpreter.get_input_details() 
output_details = interpreter.get_output_details() 
 
scaler = pickle.load(open(model_file+'_Scaler.pkl', 'rb')) 
 
 
print('EMG Fequency = {}Hz; IMU Fequency = {}Hz; Time = 
{:2}:{:2}:{:2}'.format(freq, int(freq/ratio), int(tot_time//60), 
int(tot_time%60//1), int(tot_time%60%1*60))) 
 
file_name = time.strftime("%y.%m.%d_%I.%M.%S_", time.localtime())+ name + 
".csv" 
 
file = open("data/"+file_name, 'w') 
file.write("frequency,duration,date,time\n") 
file.write("{},{:2}:{:2}:{:2},{}\n".format(freq, int(tot_time//60), 
int(tot_time%60//1), 
           int(tot_time%60%1*60),time.strftime("%y.%m.%d,%I.%M", 
time.localtime()))) 
file.write("time,g1_x,g1_y,g1_z,a1_x,a1_y,a1_z,g2_x,g2_y,g2_z,a2_x,a2_y,a2_z,
ch1,ch2,ch3,stumble,error,knee angle,prediction,stumb,locking\n") 
print("Started. Saving to file "+file_name) 
 
#Sensors, Button, and Servo Declaration 
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i2c = busio.I2C(board.SCL, board.SDA, frequency=400000) 
 
if args.sensor: 
    sensor1 = lsm(i2c, address=0x6B) #Thigh high 
    sensor2 = lsm(i2c, address=0x6A) #Shank ground 
else: 
    sensor1 = lsm.LSM9DS1_I2C(i2c, mag_address=0x1E, xg_address=0x6B) #Thigh 
    sensor2 = lsm.LSM9DS1_I2C(i2c, mag_address=0x1C, xg_address=0x6A) #Shank 
 
button = digitalio.DigitalInOut(board.D24) 
button.direction = digitalio.Direction.INPUT 
 
range_low = .9 #ms from spec 
range_high = 2.1 #ms from spec 
duty_range = range_high - range_low 
 
pwm = PWM(2, 0) 
pwm.frequency = 50 
pwm.enable() 
def servo(pwm, angle, duty_range, range_low): 
    pwm.duty_cycle_ns = int(1000000 * ((angle/180 * duty_range) + range_low)) 
    return 
 
 
#Tracked Info 
stamps = np.trunc(np.arange(dec, dur*1000+81*dec, dec)).astype(int) 
history = np.zeros((21, 12)) 
history_long = np.zeros((1200)) 
angle = np.zeros((900)) 
std_hist = np.zeros ((900)) 
std_peaks = np.empty((1)) 
out=[] 
end = False 
interpret = False 
collect = False 
 
#Calculation Variables 
gait_len = np.zeros((int(cycles))) 
error=0 
stumb = False 
counter = 0 
stumb_count = 0 
act = True 
act_count = 0 
locking = False 
knee_vel_off = 0 
cal1 = True 
cal2 = True 
area_out = np.zeros((0)) 
j = 0 
i = 0 
c = 0 
e = 0 
k = 0 
cgx1, cgy1, cgz1, cax1, cay1, caz1, cgx2, cgy2, cgz2, cax2, cay2, caz2 = 
0,0,0,0,0,0,0,0,0,0,0,0 
pred = [0, 1] 
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ratio_prep = 2 
ratio_interp = 2 
ratio_react = 0 
ratio1 = 4 
 
#Customization Parameters 
threshold = .8 
pred_offset = 6 
pred_sum =  3 
cal1_period = int(5*freq/ratio) 
cal2_period = int(15*freq/ratio) 
std_win = 20 
prev = 0 
servo_open = 60 
servo_closed = 155 
servo_move = np.copy(servo_open) 
servo(pwm, servo_move, duty_range, range_low) 
adjustment = False 
old_stamp = 0 
angle_gyr = 0 
angle_acc = 0 
epsilon = 0.025 
 
try: 
    thread1 = myThread() 
    thread1.start() 
    start = time.time() 
    while c+1 < cycles: 
        stamp = np.round(time.time() - start, 3) 
        stamp_trunk = math.trunc(stamp*1000) 
        if stamp_trunk > stamps[c]: 
            if stamp_trunk > stamps[c+80]: 
                print("Got Real Issues Now", stamp_trunk, stamps[c]) 
                break 
            for j in range(1,80): 
                if stamp_trunk == stamps[c+j]: 
                    e = j 
                    c+=j 
                    break 
     
     
        if stamp_trunk == stamps[c]: 
            k += 1 
            ch0, ch1, ch2 = 0, 0, 0 
             
            if k == ratio: k = 0 
             
            if k == ratio1: collect = True 
             
             
            if k == ratio_prep: 
                # print(stamp) 
                i = c // ratio 
                history = np.roll(history, -1, axis=0) 
                history_long = np.roll(history_long, -1, axis=0) 
                angle = np.roll(angle, 1, axis=0) 
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                history[-1, :] = scaler.transform([[cgx1, cgy1, cgz1, cax1, 
cay1, caz1, cgx2, cgy2, cgz2, cax2, cay2, caz2],[cgx1, cgy1, cgz1, cax1, 
cay1, caz1, cgx2, cgy2, cgz2, cax2, cay2, caz2]])[0] 
                history_long[-1] = cgz2-cgz1 + knee_vel_off 
                area_gyr = sum(history_long[-2:]) / 2 * (stamp-old_stamp) 
                old_stamp = stamp 
                # if area_long[0] < 0: area_long[0] -= 0.5 
                # print(area_long[0]) 
                angle_gyr += area_gyr 
                angle_acc = angles() 
                 
                angle[0] = epsilon*angle_acc+(1-epsilon)*(angle[1]+area_gyr) 
                if angle[0] < 0: angle[0] = 0 
                 
                 
                if i > std_win: 
                    std_hist = np.roll(std_hist, -1, axis=0) 
                    std_hist[-1] = np.std(history_long[-std_win:]) 
     
                peaks = find_peaks(history_long[:], height=100, 
distance=30)[0][1:-1] 
                # print(history_long[peaks]) 
                if len(peaks) > 1: gait_len[i] = np.average(np.diff(peaks)) 
 
             
            if k == ratio_interp: 
                # pass 
                interpret = True 
             
            if k == ratio_react: 
                try: std_peak = find_peaks(-std_hist[-300:], height=-20, 
distance=30)[0][-1]+i-300 
                except : std_peak = np.nan 
                if np.diff((std_peaks[-1], std_peak)) > 20: 
                    # adjustment = True 
                    j += 1 
                    std_peaks = np.append(std_peaks, std_peak) 
 
                 
                if pred[0] > threshold and i >= cal1_period: 
                    counter+=1 
                    prev = 1 
                    if counter > pred_offset: counter = pred_offset 
                else: 
                    if prev == 0: counter-=1 
                    prev = 0 
                    if counter < 0: counter = 0 
     
                if counter > pred_sum: 
                    stumb = True 
                    #print(stumb) 
                    stumb_count = 20 
                elif counter == 0: 
                    stumb = False 
                    #print(stumb) 
                    if stumb_count > 0: stumb_count -= 1 
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                if stumb and angle[0] > 10 and history_long[-1] > -200: 
                    if master_enable: servo(pwm, servo_closed, duty_range, 
range_low) 
                    locking = True 
                    if act: 
                        act_count += 1 
                        print(stamp, 'Locking') 
                        act = False 
                if not stumb and (np.std(history_long[-10:]) < 10) and 
angle[0] < 15: 
                    if master_enable: servo(pwm, servo_move, duty_range, 
range_low) 
                    act = True 
                    locking = False 
                 
                if adjustment: 
                    if servo_move > servo_open and max(angle[-180:])<50: 
servo_move -= 4 
                    if max(angle[-60:])>=60: servo_move += 4 
                    adjustment = False 
     
            
out.append("%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,
%i,%i,%i,%i,%.2f,%.2f,%.4f,%i,%i" % (stamp, cgx1, cgy1, cgz1, cax1, cay1, 
caz1, cgx2, cgy2, cgz2, cax2, cay2, caz2, ch0, ch1, ch2, button.value, e, 
angle[0], pred[0], stumb, locking)) 
     
            if e >= 1: error+= int(e // 1) 
            elif e % 1 > 0: error+=1 
            if stamp_trunk % 60000 == 0: print("Collecting...", stamp_trunk 
// 60000, "min") 
            e=0 
            c+=1 
         
except KeyboardInterrupt: 
    print("Cancelation") 
except: 
    print("Error") 
 
stop = time.time() - start 
end = True 
 
time.sleep(.1) 
 
for lines in out: 
    file.write(lines + "\n") 
print("%i Errors (%i%%), %.1f Errors/s" % (error, int(error/len(out)*100), 
int(error/stop))) 
print("Done. Saved to file "+file_name) 
 
file.close() 
print("Finished") 

9.3 APPENDIX C: LOCKING EVENT MARKER 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
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mpl.rcParams['figure.dpi'] = 300 
import numpy as np 
import pandas as pd 
import os 
 
def find_files(input_directory, end="xlsx"): 
    file = [] 
    name = [] 
    paths = [] 
    for path, subdirs, files in os.walk(input_directory): 
        for filename in files: 
            if str(filename).endswith(end): 
                f = os.path.join(path, filename) 
                file.append(str(f)) 
                name.append(filename) 
                paths.append(path) 
    return file, name, paths 
 
 
root_dir = "C:\\Users\\lucas\\OneDrive - University of Texas at El 
Paso\\Research\\Programming\\Python\\Dissertation\\Data - UTSoutwestern\\" 
if not os.path.isdir(root_dir): 
    root_dir = "C:\\Users\\ljgaley\\OneDrive - University of Texas at El 
Paso\\Research\\Programming\\Python\\Dissertation\\Data - UTSoutwestern\\" 
 
data_dir = root_dir + "ReDone_Processed" 
notes_dir = root_dir + "Patient Notes" 
# folder = "\\P3\\M3" 
 
pats = ["P1", "P2", "P3", "P4", "P6"] 
# pats = ["P6"] 
# knees = ["M3", "MPK", "GKnee"] 
knees = ["GKnee"] #only here are we actually having reactions to events 
stumbles = ["bun", "obs", "une"] 
# stumbles = ["bun"] #only got bun the first time 
 
saving = True 
 
catch = [] 
beg = 60 
 
for pat in pats:     
    for knee in knees: 
        folder = "\\"+pat+"\\"+knee 
         
        files, names, paths = find_files(data_dir+folder) 
              
        for j, f in enumerate(files): 
            # file = 5 
            # print(names[j]) 
            data0 = pd.read_excel(f, index_col='time') 
            # plt.plot(data['stumble']) 
             
            for stumble in stumbles: 
                if stumble in names[j]: 
                    file_name = ("_").join(names[j].split("_")[2:])[:-5] 
                    stumb = 1 
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                    prev = 0 
                    for i, num in enumerate(data0['locking']): 
                        if num == 1 and prev == 0: 
                            if i < 60: beg = i 
                            for k in range(300): 
                                if data0['locking'].iloc[i+k] == 0: break 
                                else: pass 
                            end_time = data0.index[i+k] 
                            data = data0.iloc[i-beg:i+120] 
                             
                             
                             
                            fig, ax = plt.subplots() 
                            ax.set_xlim(data.index[0], data.index[-1]) 
                            ax2 = ax.twinx() 
                            ax3 = ax.twinx() 
                            ax4 = ax.twinx() 
                             
                            ax.set_title(file_name+" locking "+str(stumb)) 
                            ax.set_xlabel("Time (s)") 
                            ax.set_ylabel("Angular Velocity (deg/s)", color = 
"tab:orange") 
                            ax2.set_ylabel("Angle (deg)", color = "tab:blue") 
                            ax3.axis('off') 
                            ax4.axis('off') 
                             
                             
                            # ax3.axvline(data.index[60], color = 'black', 
label='Actual', linewidth=2, linestyle=':') 
                                 
                            ax3.plot(data.index, data['prediction']*.8, color 
= "tab:green", label='Predicted', zorder=-1) 
                            ax3.plot(data.index, data['locking']*.90, "_", 
color = "m", label='Locking', zorder=0) 
                            ax3.plot(data.index, data['stumble']*.3, color = 
'black', label='Actual', linewidth=2, linestyle=':', zorder=0) 
                             
                             
                            lns1 = ax.plot(data.index, data['g2_z']-
data['g1_z'], color = "tab:orange", label='Knee Velocity') 
                            ax.plot(np.zeros((len(data.index))), color = 
"black", linewidth = .5, zorder=1) 
                            lns2 = ax2.plot(data.index, data['knee angle'], 
color = "tab:blue", label='Knee Angle') 
                             
                            ax.set_ylim(-550,800) 
                            ax2.set_ylim(-75, 110) 
                            # ax2.set_ylim(-0, 50) 
                            ax3.set_ylim(-5, 1) 
                             
                             
                            lns = lns1+lns2 
                            labs = [l.get_label() for l in lns] 
                            ax3.legend(bbox_to_anchor=(1,0), loc="lower 
right", framealpha=0.9, title="Stumbles") 
                            ax4.legend(lns, labs, bbox_to_anchor=(0,0), 
loc="lower left", framealpha=0.9) 
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                            plt.show() 
                            
catch.append([pat,file_name,stumble,stumb,input("Classify this locking: 
"),data.index[beg], end_time]) 
                            # 
catch.append([pat,file_name,stumble,stumb,1,data.index[beg], end_time]) 
                            # 1 true lock 
                            # 2 false lock 
                            # 3 repeat lock (within window of true) 
                            # 4 not real lock (start or stop of file) 
                             
                             
                            stumb += 1 
                            beg = 60 
                         
                        prev = num 
  



144 

9.4 APPENDIX D: STEP EVENT MARKER 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
mpl.rcParams['figure.dpi'] = 300 
import numpy as np 
import pandas as pd 
import os 
from scipy.signal import find_peaks 
 
def find_files(input_directory, end="xlsx"): 
    file = [] 
    name = [] 
    paths = [] 
    for path, subdirs, files in os.walk(input_directory): 
        for filename in files: 
            if str(filename).endswith(end): 
                f = os.path.join(path, filename) 
                file.append(str(f)) 
                name.append(filename) 
                paths.append(path) 
    return file, name, paths 
 
def plotter(data, file_name):   
    fig, ax = plt.subplots() 
    ax.set_xlim(data.index[0], data.index[-1]) 
    ax2 = ax.twinx() 
    ax3 = ax.twinx() 
    ax4 = ax.twinx() 
     
    ax.set_title(file_name) 
    ax.set_xlabel("Time (s)") 
    ax.set_ylabel("Angular Velocity (deg/s)", color = "tab:orange") 
    ax2.set_ylabel("Angle (deg)", color = "tab:blue") 
    ax3.axis('off') 
    ax4.axis('off') 
     
    if (data['stumble'] == .5).any(): color = 'orange' 
    else: color = 'black' 
     
    ax.axvline(data.index[60], color = 'red', label='Current', linewidth=2, 
linestyle=':') 
         
    ax3.plot(data.index, data['prediction']*.8, color = "tab:green", 
label='Predicted', zorder=-1) 
    ax3.plot(data.index, data['locking']*.90, "_", color = "m", 
label='Locking', zorder=0) 
    ax3.plot(data.index, data['stumble']*.5, color = color, label='Actual', 
linewidth=2, linestyle=':', zorder=0) 
     
    lns1 = ax.plot(data.index, data['g2_z']-data['g1_z'], color = 
"tab:orange", label='Knee Velocity') 
    ax.plot(np.zeros((len(data.index))), color = "black", linewidth = .5, 
zorder=1) 
    lns2 = ax2.plot(data.index, data['knee angle'], color = "tab:blue", 
label='Knee Angle') 
     



145 

    ax.set_ylim(-550,800) 
    ax2.set_ylim(-75, 110) 
    # ax2.set_ylim(-0, 50) 
    ax3.set_ylim(-5, 1) 
     
     
    lns = lns1+lns2 
    labs = [l.get_label() for l in lns] 
    ax3.legend(bbox_to_anchor=(1,0), loc="lower right", framealpha=0.9, 
title="Stumbles") 
    ax4.legend(lns, labs, bbox_to_anchor=(0,0), loc="lower left", 
framealpha=0.9) 
     
    plt.show() 
    return 
 
root_dir = "C:\\Users\\lucas\\OneDrive - University of Texas at El 
Paso\\Research\\Programming\\Python\\Dissertation\\Data - UTSoutwestern\\" 
if not os.path.isdir(root_dir): 
    root_dir = "C:\\Users\\ljgaley\\OneDrive - University of Texas at El 
Paso\\Research\\Programming\\Python\\Dissertation\\Data - UTSoutwestern\\" 
 
data_dir = root_dir + "ReDone_Processed" 
notes_dir = root_dir + "Patient Notes" 
# folder = "\\P3\\M3" 
 
pats = ["P1", "P2", "P3", "P4", "P6"] 
pats = ["P1"] 
# knees = ["M3", "MPK", "GKnee"] 
knees = ["GKnee"] #only here are we actually having reactions to events 
stumbles = ["bun", "obs", "une"] 
# stumbles = ["bun"] #only got bun the first time 
 
 
data_dir = root_dir + "Round3_Processed" 
pats = ["P2", "P3", "P4"] 
knees = ["Off", "On"] 
stumbles = ["bun", "obs", "une"] 
 
 
saving = True 
 
catch = [] 
beg = 60 
 
for pat in pats:     
    for knee in knees: 
        folder = "\\"+pat+"\\"+knee 
         
        files, names, paths = find_files(data_dir+folder) 
              
        for j, f in enumerate(files): 
            # file = 5 
            # print(names[j]) 
            data0 = pd.read_excel(f, index_col='time') 
            # plt.plot(data['stumble']) 
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            for stumble in stumbles: 
                if stumble in names[j]: 
                    file_name = ("_").join(names[j].split("_")[2:])[:-5] 
                    stumb = 1 
                    prev = 0 
                     
                    angles = data0['knee angle'] 
                    peaks = find_peaks(angles, height=20, distance=25) 
                     
                     
                    for num in peaks[0]: 
                        beg = 60 
                        if num < 60: beg = num 
                         
                        file_name = "{} {} {} 
{:.1f}s".format(pat,knee,stumble,data0.index[num]) 
                         
                         
                        if (data0["locking"].iloc[num-beg:num+60] == 1).any() 
or (data0["stumble"].iloc[num-beg:num+60] == 1).any(): 
                            plotter(data0.iloc[num-beg:num+120], file_name) 
                            
catch.append([pat,knee,stumble,data0.index[num],input("Classify this step: 
")]) 
                            # catch.append([pat,stumble,data0.index[num],1]) 
                        else: 
                            catch.append([pat,stumble,data0.index[num],1]) 
                         
                        # 1 step empty 
                        # 2 step stumble marked and predicted (R or F) 
                        # 3 step stumble marked and predicted (U or A) 
                        # 4 step stumble marked 
                        # 5 step stumble predicted 
                        # 6 discard (beginning, end) 
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9.5 APPENDIX E: DEPLOYED LEARNING 
# %%  
# Initialize 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
 
import os 
import pickle 
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" 
import tensorflow as tf 
 
from sklearn.preprocessing import MinMaxScaler 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.models import load_model 
from tensorflow.keras.layers import Dense 
from tensorflow.keras.layers import Dropout 
from tensorflow.keras.layers import LSTM 
from tensorflow.keras.optimizers import RMSprop 
from tensorflow.keras.callbacks import ModelCheckpoint 
from tensorflow.keras.callbacks import EarlyStopping 
from tensorflow.keras.callbacks import TensorBoard 
from datetime import datetime 
 
gpus = tf.config.experimental.list_physical_devices('GPU') 
if gpus: 
  try: 
    # Currently, memory growth needs to be the same across GPUs 
    for gpu in gpus: 
      tf.config.experimental.set_memory_growth(gpu, True) 
    logical_gpus = tf.config.experimental.list_logical_devices('GPU') 
    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") 
  except RuntimeError as e: 
    # Memory growth must be set before GPUs have been initialized 
    print(e) 
 
def plotter(i, data, act_col, pred_col): 
    start = i-200 
    if start < 0: start = 0 
    stop = i+200 
     
     
    x_axis = np.arange(start, stop) 
    data_stumb = np.ma.masked_where(data[start:stop, act_col] < 1, 
data[start:stop, act_col])*480 
    data_stumb2 = np.ma.masked_where(data[start:stop, pred_col] < 1, 
data[start:stop, pred_col])*475 
     
    fig, ax = plt.subplots() 
    ax.set_ylim(-500, 500) 
    ax.plot(x_axis, data[start:stop, 0], 'b', label="Knee Angular Velocity") 
    ax.plot(x_axis, data_stumb, 'r', label="Stumble Actual") 
    ax.plot(x_axis, data_stumb2, 'orange', label="Stumble Predicted") 
    ax.axvline(i, color='orange', linewidth=.5) 
    ax.legend(loc='lower right') 
    plt.show() 
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# %% 
# load dataset 
global class_total 
#Both load_data and load_npy will load the walking data 
load_data = False 
load_npy = True 
transfer = False 
if load_data and load_npy: 
    input("Disable either load_data or load_npy") 
load_prev_model = False 
prev_model = "5.0.0" 
run_name = "5.0.1" 
note = "Fine Tuning" 
com_stumble = True 
sep_subjects = True 
modified = True 
deleting = True 
epochs = 30 
learning_rate = 0.001 
dropout = .1 
# train_array = np.arange(1, 19) 
scaler = MinMaxScaler(feature_range=(0, 1)) 
scaler_save = MinMaxScaler(feature_range=(0, 1)) 
n_hist = 11 
n_features = 18 
# Deleting mag cols 
delete_cols = np.hstack([np.arange(6, n_hist*n_features, 9), np.arange(7, 
n_hist*n_features, 9), np.arange(8, n_hist*n_features, 9)]) 
class_total = 4 
events = np.array(["Bungie", "Obstacle", "Uneven", "Walking"]) 
data_mod = "_art" 
preq = "Mod_" 
 
train_files = ["S1_train_art", "S1_val_art", "S2_train_art", "S2_val_art", 
"S4_train_art", "S4_val_art"] 
val_files = ["S1_test", "S2_test", "S4_test"] 
 
if modified: 
    train_files = [preq + s for s in train_files] 
    val_files = [preq + s for s in val_files] 
 
# if modified: 
#     train_files = ["Mod_" + loo + s for s in train_files] 
#     val_files = ["Mod_" + loo + s for s in val_files] 
#     test_files = ["Mod_" + loo + s for s in test_files] 
 
 
if deleting: n_features -= int(len(delete_cols)/n_hist) 
 
# train_files = [s+"_train"+data_mod for s in train_files] 
# val_files = [s+data_mod for s in val_files] 
# test_files = [s+"_test"+data_mod for s in test_files] 
 
logs_weights_dir = "C:\\Users\\lucas\\Documents\\Learning\Machine 
Learning\\Dissertation\\Logs and Weights" 
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logs_weights_dir = "C:\\Users\\ljgaley\\Documents\\Learning\Machine 
Learning\\Dissertation\\Logs and Weights" 
in_dir = "Compiled\\" 
out_dir = "Results\\" 
send_dir = "Deploy\\On Device\\Sending 2\\" 
walking_data = "Patient_Walk" 
 
# %% 
# Load Data 
print('Loading Patient Walk') 
walk = pd.read_excel(in_dir+walking_data+".xlsx", 
index_col='time').to_numpy() 
n_obs = n_hist * n_features 
x_walk_u, y_walk = walk[:, :n_obs], walk[:, -class_total:] 
 
if com_stumble: y_walk = np.stack([np.abs(y_walk[:,-1]-1), y_walk[:, -1]], 
axis=1) 
 
if load_data: 
    print('Loading New Data') 
    train = [] 
    val = [] 
 
    for i in range(len(train_files)): 
        print("Loading Train File: "+train_files[i]) 
        train.append(pd.read_excel(in_dir+train_files[i]+".xlsx", 
index_col='time')) 
    train = np.vstack(train) 
 
 
    for i in range(len(val_files)): 
        print("Loading Validation File: "+val_files[i]) 
        val.append(pd.read_excel(in_dir+val_files[i]+".xlsx", 
index_col='time')) 
    val = np.vstack(val) 
     
     
    if deleting: 
        train = np.delete(train, delete_cols, 1) 
        val = np.delete(val, delete_cols, 1) 
     
    # split into input and outputs 
    x_train_u, y_train = train[:, :n_obs], train[:, -class_total:] 
 
    x_val_u, y_val = val[:, :n_obs], val[:, -class_total:] 
     
 
    if com_stumble: 
        y_train = np.stack([np.abs(y_train[:,-1]-1), y_train[:, -1]], axis=1) 
        y_val = np.stack([np.abs(y_val[:,-1]-1), y_val[:, -1]], axis=1) 
     
    descr = np.sum(y_train, axis=0)/np.sum(y_train)     
     
    x_train_u2 = np.vstack([x_train_u, x_walk_u]) 
     
    # Scale data according to training set 
    _ = scaler_save.fit(x_train_u2[:,:n_features]) 
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    x_train = scaler.fit_transform(x_train_u2) 
    x_val = scaler.transform(x_val_u) 
     
    # reshape input to be 3D [samples, timesteps, features] 
    x_train = x_train.reshape((x_train.shape[0], n_hist, n_features)) 
    x_val = x_val.reshape((x_val.shape[0], n_hist, n_features)) 
 
    np.save(in_dir+"Deploy - x_train_u.npy", x_train_u) 
    np.save(in_dir+"Deploy - x_val_u.npy", x_val_u) 
     
    np.save(in_dir+"Deploy - y_train.npy", y_train) 
    np.save(in_dir+"Deploy - y_val.npy", y_val) 
    pickle.dump(scaler_save, open(out_dir+walking_data+'_Scaler.pkl', 'wb')) 
    y_train = np.vstack([y_train, y_walk]) 
       
    print('Data Loaded') 
 
if load_npy: 
    x_train_u = np.load(in_dir+"Deploy - x_train_u.npy") 
    x_val_u = np.load(in_dir+"Deploy - x_val_u.npy") 
     
    x_train_u2 = np.vstack([x_train_u, x_walk_u]) 
     
    # Scale data according to training set 
    _ = scaler_save.fit(x_train_u2[:,:n_features]) 
    x_train = scaler.fit_transform(x_train_u2) 
    x_val = scaler.transform(x_val_u) 
     
    # reshape input to be 3D [samples, timesteps, features] 
    x_train = x_train.reshape((x_train.shape[0], n_hist, n_features)) 
    x_val = x_val.reshape((x_val.shape[0], n_hist, n_features)) 
     
    y_train = np.load(in_dir+"Deploy - y_train.npy") 
    y_train = np.vstack([y_train, y_walk]) 
    y_val = np.load(in_dir+"Deploy - y_val.npy") 
    pickle.dump(scaler_save, open(send_dir+walking_data+'_Scaler.pkl', 'wb')) 
     
    print('Npy Data Loaded') 
     
if com_stumble:  
    class_total = 2 
    events = np.array(["Stumble", "Walking"]) 
 
metric_list = ['accuracy'] 
# for i in range(class_total): 
#     metric_list.append(Precision(class_id=i, name='Precision_'+ events[i])) 
 
# %%  
# Learning 
# Model 
model = Sequential() 
model.add(LSTM(200, return_sequences=True, input_shape=(x_train.shape[1], 
x_train.shape[2]))) 
model.add(LSTM(50)) 
model.add(Dense(300)) 
model.add(Dropout(dropout)) 
model.add(Dense(class_total, activation='softmax')) 
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filepath=logs_weights_dir+"\\Weights\\model_improve_{epoch:02d}.h5" 
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=0, 
save_best_only=True, save_freq='epoch') 
logdir = logs_weights_dir+"\\Logs\\" + datetime.now().strftime("%Y%m%d-
%H%M%S") 
tensorboard_callback = TensorBoard(log_dir=logdir, profile_batch=0, 
update_freq='epoch') 
stopping = EarlyStopping(monitor='val_loss', patience=25, 
restore_best_weights=True) 
callback_list = [checkpoint, tensorboard_callback] 
 
if not load_data: print('Previous Data Reused') 
print('Current Run: '+run_name) 
if load_prev_model or transfer: 
    model = load_model('Weights\\model_'+prev_model+'.h5') 
    print("Loaded Previous Model: "+prev_model) 
     
    model.layers[0].trainable = True 
    model.layers[1].trainable = True 
     
     
    if transfer: 
        # model.layers[0].trainable = False 
        # model.layers[1].trainable = False 
        model2 = Sequential() 
         
        for layer in model.layers[:-1]: 
            model2.add(layer) 
        # model2.add(Dense(class_total, activation='softmax')) 
        model2.add(Dense(class_total, activation='softmax')) 
        model = model2 
        print(model.summary()) 
 
model.compile(loss='categorical_crossentropy', 
optimizer=RMSprop(centered=True, learning_rate=learning_rate), 
metrics=[metric_list]) 
 
print(model.summary())               
history = model.fit(x_train, y_train, epochs=epochs, batch_size=400, 
validation_data=(x_val, y_val), callbacks=callback_list, verbose=1, 
shuffle=True) 
model.save('Weights\\model_'+run_name+'.h5') 
print('\n', "Finished Training Run: "+run_name) 
 
# %% 
# Saving 
 
converter = tf.lite.TFLiteConverter.from_keras_model(model) 
converter.optimizations = [tf.lite.Optimize.DEFAULT] 
tflite_model = converter.convert() 
open(send_dir+'model_'+walking_data+'.tflite', "wb").write(tflite_model) 
 
# %% 
# Plotting 
plot_list = list(history.history) 
plot_num = int(len(plot_list)/2) 
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# Set up plots         
fig, ax = plt.subplots(plot_num,1,figsize=((10,2*plot_num+5))) 
 
# Plot each set of metrics 
for i in range(plot_num): 
    ax[i].plot(history.history[plot_list[i]]) 
    ax[i].plot(history.history[plot_list[i+plot_num]], ':') 
    ax[i].set_ylim([0,1]) 
    ax[i].set_title('Model '+plot_list[i]) 
    ax[i].set_ylabel(plot_list[i]) 
    ax[i].set_xlabel('Epoch') 
    ax[i].legend(['Train', 'Validation'], loc='upper left') 
plt.tight_layout() 
plt.savefig(out_dir+run_name+'_Graph.png', bbox_inches='tight', dpi=150) 
plt.show() 
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9.6 APPENDIX F: STUMBLE COUNTS SUMMARIZED 
Table 9.1: Counts of stumble inductions shown by patient, by knee, and by mode. 

 
 

Table 9.2: Counts of stumble inductions shown by patient and by knee. Mode counts have been summed. 
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