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Introduction 

 
Projected climate and land cover changes in the 21st century profoundly impact the 

functioning of the earth’s water cycle. Identifying the components that contribute to the persistence 

and resilience of watersheds in light of climate change constitutes a research priority of global 

relevance, and will enable detect the areas most sensitive to climate variability and landcover changes. 

Global vulnerability of ecosystem services, particularly water service provision, needs to be urgently 

and continually assessed, given the unceasing human and climate-induced changes in land cover 

conditions worldwide. Given the increasing rate of extreme weather events, we present three 

interrelated research studies evaluating the impact of climate variability and land cover changes on 

hydrologic responses while displaying the direction of hydrologic behavior and climate conditions.   

Previous studies have documented hydrologic responses to climate variability in a few 

catchments within geographically limited regions. Because of this limited geographic extent, other 

important landscape factors such as elevation, slope, and aspect, which influence climate 

variabilities, have not been assessed at a large scale. Thus, there is a lack of a global synthesis 

evaluating the hydrologic responses to climatic variability, while evaluating the role of the 

topography in altering the response. In terms of the effects of landcover changes and their impact 

on hydrologic responses, previous studies have mainly focused on the effect of forest cover loss on 

Temperate Coniferous forests and the tropical Amazonia region, emphasizing the need for 

understanding the impacts across other forest types or other basins of similar biome to reveal the 

directions that major water resources are heading in a global scale. Although there is evidence of 

changing water yield (increasing or decreasing) under forest disturbance, there is no consensus on 

the direction of hydrologic changes. Also, most of these studies have not been assessed 

quantitatively limiting our knowledge of the reliable extent of the land cover effects on hydrologic  
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changes. 

Human-driven deforestation and wildfires are major causes of tree cover loss. Many of these 

events occur in highly threatened-biodiverse tropical rainforests and boreal ecosystems.  However, 

their impacts on hydrologic processes have not been systematically studied and the directions in which 

hydrologic changes may be occurring are still unclear. For example, although the Amazon basin has 

been extensively studied (Chambers & Artaxo, 2017; Lawrence & Vandecar, 2015; Leite-Filho et al., 

2021; Malhi et al., 2008; Spracklen Xu et al., 2022 & Garcia-Carreras, 2015), other important tropical 

basins that have a major influence on global climates, such as the Central African and Southeast Asian 

forests have received less attention (Lawrence & Vandecar, 2015). Furthermore, the frequency of fire 

and forest exploitation leading to forest clearing in boreal systems is proportionally second to that in 

tropical ecosystems (Hansen et al., 2013), but only a few studies evaluate these impacts on boreal 

hydrology (Pimentel & Arheimer, 2021). Compounded with the loss of tree cover, changes in land 

surface properties reinforce current climatic trends such as rising temperatures leading to increasing 

snowmelt in high-latitude regions. Studies evaluating the role of forest clearing in these dynamics are 

missing or fragmented (te Wierik et al., 2021; Valeo et al., 2003). Given the lack of clarity on the 

effects of forest disturbance on hydrologic responses and the thresholds driving changes in water yield 

and regional climate, reporting the tipping points leading to significant changes in the hydrologic 

sensitivity in the world’s major forests is critical to aid in forest management strategies to prevent 

irreversible or permanent changes in freshwater resources. 

First, we present a global assessment assessing the sensitivity of the world’s water landscapes 

to climate variability during 2001-2016, using a new metric called the Hydrologic Sensitivity Index 

(HSi) (Chapter 2). This equation is based on the well-known Budyko curve that uses annual values of 

Potential and Actual Evapotranspiration (PET and AET), and Precipitation (P), to assess the hydrologic 

behavior of a location under a given climatic condition by plotting the Evaporative Index (EI, AET/P) 
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against the Dryness Index (DI, PET/P). For values 𝐻𝑆i ≥1: Sensitive and 𝐻𝑆i<1: Resilient. We also point 

out whether the sensitive areas resulted in a decrease or increase in water yield and warmer vs cooler climate 

conditions. Also, since elevation, slope, and aspect are the three defining factors in temperature and 

humidity regimes, we evaluate their influence on HSi. Moreover, the variables used for computing HSi 

are evaluated against in-site measurement to confirm the use of high-quality datasets throughout the entire 

study. Next, we document critical thresholds of deforestation in 45 regions that underwent extensive 

forest cover loss induced by either drought, fire, or clear-cutting during the 2001-2016 period and 

report if these trends lead to increasing or decreasing water yield and warmer or cooler climate 

conditions (Chapter 3). HSi is used in this study to evaluate departures in historic hydrologic behavior 

in the face of land cover disturbances such as tree cover loss using 3-year HSi averages of before and 

after-disturbance periods. The Hydrologic Sensitive Area (HSia) was obtained by computing the 

portion of the area with high HSi values (HSi>1) relative to the entire disturbed area. We identified 

the critical threshold in forest cover loss before hydrologic responses are detected and the speed at 

which the disturbed area attains complete sensitivity once this threshold is surpassed, while also 

detecting if the observed changes in hydrologic regime increase or decrease water yield and if they 

are accompanied by warmer or cooler climate conditions. Lastly, we document the most 

hydrologically sensitive ecoregions to tree cover loss within the Amazon basin by reporting the 

differences in response in HSia to the most recent extreme drought events (Amazon drought in 2005, 

2010, and 2015) while exploring the underlying factors leading to such responses. 
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Chapter 1: Global Analysis of the Hydrologic Sensitivity to Climate 

Variability 

Abstract 

Identifying the regions with the greatest changes in their hydrologic behavior under 

extreme weather events in the 21st century constitutes a study priority of global impact. 

Here, we present a global assessment assessing the sensitivity of the world’s water landscapes 

to climate variability during 2001-2016, using a new metric called the Hydrologic Sensitivity 

Index (HSi). This equation is based on the well-known Budyko curve that uses annual values 

of Potential and Actual Evapotranspiration (PET and AET), and Precipitation (P), to assess 

the hydrologic behavior of a location under a given climatic condition by plotting the 

Evaporative Index (AET/P) against the Dryness Index (PET/P). For values 𝐻𝑆i ≥1: Sensitive 

and 𝐻𝑆i<1: Resilient. Also, since elevation, slope, and aspect are the three o defining factors 

in temperature and humidity regimes, we evaluate their influence on HSi. Overall, the 

majority of the world’s biomes display a tendency toward a drier state. Particularly, we 

identify the regions with hydrologic sensitivity to climate variability in tropical rainforests 

accompanied by decreasing water yields and warmer/drier conditions evident along the 

southernmost part of the Amazon the and central part of the Congo basin. High sensitivity is 

also seen along easternmost Canadian and Eurasian arctic tundra and boreal forests 

with increasing water yield trends and dominant warmer/drier climate conditions. The 

hydrologic sensitivity is amplified at high elevations and steep-sloped terrain outlining the 

importance of the topography in modulating these effects. We direct the attention towards 

climate warming resulting in decreased forest cover as a potential mechanism driving the 

decreasing water yield patterns in tropical zones, while snowmelt and increasing 

precipitation in the tundra and boreal forests result in surplus water yields. Our global 

study highlights the particular locations with the greatest hydrologic changes to climate 
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variability while outlining the main water yield and climate directions—a study that 

indicates where water resources have been changing the greatest and in what ways. 

  
1.1 Background 

Global warming and human interventions are changing the behavior of Earth’s water 

cycle (Stott, 2016, Easterling et al., 2017, Sterling et al, 2013, Rodell et al., 2018, Tabari, 2020). 

Although there is evidence that extreme weather events and increasing climatic variability are 

intensifying hydrologic processes worldwide (Held & Soden, 2006, Milly et al., 2015, Huntingon, 

2006, Tabari, 2020, Creed et al., 2014), there is still no consensus on the direction or the 

magnitude in which different components of the water cycle will respond in the world’s major 

terrestrial ecosystems under these imposed changes (Stott, 2016, Zhan et al., 2012, Salmoral et 

al., 2015, Martens et al., 2018, Padron et al., 2017). As the current human population arrives at a 

critical environmental carrying capacity, and the world enters a warmer climate, our planet’s 

ecosystems are changing and adapting (Seddon et al., 2016, Pecl et al., 2017), bringing along 

changes in the way water is partitioned in the landscape (Milly et al., 2005; Held & Soden, 2006; 

Huntington 2006; Creed et al., 2014; Tabari, 2020). Whether natural or human-induced, 

ecosystems’ alterations to the water cycle at the global scale need to be urgently assessed. 

Particularly in the face of increasing climate variability and the rising numbers and intensity of 

extreme weather events altering hydrologic processes worldwide (Stott, 2016; Milly et al., 2005; 

Zhan et al., 2012). Thus, looking at variations in hydrologic response as a function of the 

variability in climatic forcing offers an opportunity to detect regions where hydrologic dynamics 

are changing (Gao et al., 2016). Furthermore, identifying locations with changing hydrologic 

responses to climatic variability is important for detecting regions arriving at critical thresholds 

that may compromise the availability of water for both ecosystems and human settlements. 
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1.2 Concept of Elasticity 

Assessing the hydrologic sensitivity to climate variability can be approached from the concept of 

elasticity. Elasticity here is defined as the capacity of a system to keep a consistent response in 

spite of sudden perturbations, and/or extreme climatic variability (i.e. hydrologic resilience; 

Creed et al., 2014). Thus, in that sense, hydrologic sensitivity is the inverse of elasticity and can 

be used to detect regions with unstable hydrologic systems. The elasticity concept has been 

devised using the well-known and widely used Budyko’s curve (Creed et al., 2014, Roderick et 

al., 2014, Helman et al., 2017, Sinha et al., 2018, Padron et al.,2017), which provides a reference 

condition on the behavior of the long term mean water balance as a function of the average 

climatic condition of an area (Trenberth, 2011, Roderick et al., 2014, Helman et al., 2017, Li et 

al., 2019, Budyko, 1974, Greve et al., 2016) (Figure 1). It uses annual values of Potential and 

Actual Evapotranspiration (PET and AET respectively), and Precipitation (P) and examines 

changes in the Evaporative Index (i.e. hydrologic response, EI=AET/P) against changes in the 

Dryness Index (i.e. climate condition, DI; PET/P) over defined periods of time. Simply put, 

Budyko’s curve represents the historical average of multiple catchments across varying climate 

types. Therefore, a region’s EI can be obtained along the curve given information on its climate 

(DI). Thus, elasticity (e) is quantified by how far the EI deviates from Budyko’s curve relative to 

the change in DI defined as the ratio between the range of the dryness index (ΔDI) and that of the 

evaporative index relative to the curve (ΔEIR) (Creed et al., 2014) (Equation 1). Positive deviation 

(+ΔEI, more AET) indicates less water yield (-Q, water left over on Earth’s surface after 

evaporation has taken place) while negative deviation (-ΔEI, less AET) indicates greater water 

yield (+Q) (Figure 1). A catchment has high elasticity when there is a small deviation in EIR 

relative to a change in DI (e >1=ΔDI > ΔEIR, resilient) and low elasticity when a great deviation of 

EIR occurs relative to DI (e <1=s ΔDI < ΔEIR, sensitive). 
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                                                                         (1) 
 
 

 
 

Figure 1: Budyko’s Framework. The framework plots the evaporative index against the dryness index. When the 

evaporative index increases (decreases) the water yield decreases (increases). The solid lines represent the energy 

(red) and water limit (blue) lines, and the dashed line represents the historical average of where regions would plot 

given information on their climate (known as the original Budyko curve) (Creed et al., 2014, Budyko, 1974) . 

 
1.3 Novelty of this global assessment 

Although previous studies have documented regions undergoing hydrological changes 

using the concept of elasticity for showing how varying climate and the intensification of human 

activities can have a strong influence on year-to-year changes in hydrologic responses, (Wu et al, 

2017b, Creed et al., 2014, Helman, 2017, Li et al., 2019, Wu et al., 2017), they have only been 

assessed in a few catchments within geographically limited regions. Because of this limited 

geographic extent, other important factors known to modulate climatic variabilities, such as 

elevation, slope, and aspect, have been obviated. For example, elevation and aspect in complex 

terrain alter temperature and humidity regimes across different land conditions within similar 

climatic zones. Elevation leads to changes in temperature and precipitation regimes which are 

further amplified by slope and aspect creating distinct microclimates (Gutiérrez-Jurado et al., 
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2006, Sristava et al., 2020). Together, these factors influence the partitioning of water in the 

landscape and hence its hydrologic response over time (Gutiérrez-Jurado et al., 2007), raising 

questions about which of them plays a major role in maintaining a consistent hydrologic behavior 

in spite of large climatic perturbations (e.g. climatic deviations from the normal). Changes to 

hydrologic functioning in response to climatic perturbations are expected to vary widely 

according to land cover conditions, topographic complexity of the terrain and geographic location 

(Sterling et al., 2013), specifically in places where sensitive characteristics to these perturbations 

are relevant. Thus, it is important to evaluate the hydrologic responses to climatic variability 

globally, and to assess the recurrence (frequency) of heightened responses, while evaluating the 

role of terrain properties in locations where relatively minor perturbations result in significant 

changes in hydrologic functioning. 

In this study, we evaluate the hydrologic responses to climatic variability globally, and 

assess the frequency of these responses, while evaluating the role of major topographic factors in 

modulating these responses. Given that different biomes (climate types) have unique 

characteristics and the way they respond to extreme climate forcing is inextricably linked to how 

it will affect water resources (Padron et al., 2017, Motew & Kucharick, 2013, Gudmunsson et al., 

2016), we explore the resulting hydrologic sensitive areas for each of the different terrestrial 

biomes in the world. Finally, we document the average direction in which hydrologic changes 

occur in these sensitive areas, noting if these regions are shifting to drier (+∆DI) or wetter state 

(-∆DI) and if they are yielding more (-∆EI) or less (+∆EI) water. 

 

2. Methods 
 

2.1 Data Collection 

We use annual values of the 3 key variables (AET, PET and P) for the period of January 
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2001 to December 2016 due to the availability of datasets. The main characteristics (i.e. 

component, product, temporal resolution, spatial resolution) of the satellite products used are 

listed in Table 1. AET is derived from Penman-Monteith Leuning version 2 (PML-V2) at 500m 

resolution (Zhang et al., 2019). The PML_V2 product performs well against observations at 95 

flux sites across the globe and is similar to or noticeably better than major state-of-the-art AET 

products such as PML-V1, MOD16, and GLEAM (Zhang et al., 2019). PET is derived from the 

Moderate-Resolution Imaging Spectroradiometer (MOD16A2) version 6 onboard the Terra 

satellite and produced at 500m resolution (Running et al., 2019). It has been validated over 46 

eddy flux towers, and the close agreement in the seasonality between data reveals the 

reasonability (magnitude, range and directions of variations) for valid pixels (Running et al., 

2019). P is derived from the Multi-Source Weighted-Ensemble Precipitation dataset (MSWEPv2) 

at 0.1-degree resolution (Beck et al., 2019a). This dataset, MSWEPv2, combines gauge and 

satellite products, with multiple corrections for regional differences and has shown to be a robust 

dataset when compared to other P products with a high spatial resolution (Beck et al., 2019b) is 

(≤0.1°,) which include Climate Hazards Group Infrared Precipitation with Stations (CHIRPS; 

0.05°), CPC morphing technique (CMORPH; 0.07°), Global Satellite Mapping of Precipitation 

(GSMaP; 0.1°), Integrated Multi satellite Retrievals for Global Precipitation Measurement 

(IMERG; 0.1°), and Precipitation Estimation from Remotely Sensed Information Using Artificial 

Neural Networks–Cloud Classification System (PERSIANN-CCS; 0.04°). Overall, the three 

products used in this study have been tested worldwide and span a variety of climates and land 

cover types providing the opportunity to apply these datasets for studies of global terrestrial water 

and energy cycles and environmental changes. 

Table 1: Data Collection. List of products with temporal and spatial resolution used to evaluate HSi. 
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2.1.1 Testing the quality of the hydrologic datasets 

 
We selected as many in-situ measurement for each variable (AET, PET, and P) from Ameriflux  

with more than 4 years of continuous data during 2001-2016 period and compare them to our satellite 

data. The Ameriflux is a network of in-situ instrumentation measuring ecosystem CO2, water, and 

energy fluxes in North, Central and South America (Novick et al., 2018). It was established to connect 

research on field sites representing major climate and ecological biomes, including tundra, grasslands, 

savanna, crops, and conifer, deciduous, and tropical forests. The daily data available was added to 

compute annual values of AET and P. Values of PET was not a direct flux tower measurement and 

had to be computed with 11 parameters identified in Ameriflux dataset (See Appendix Equation 

A1).The following charts display the correlation coefficient (R2), regression coefficient (y=B1x+B0), 

where B1=slope or relationship between variables, and the Nash-Sutcliffe efficiency coefficient (NSH) 

for  annual values of AET, PET, and P between satellite product and in-situ Ameriflux data. These 3 

variables test the relationship between variables where values close to 1 indicate high correlation. For 



11 

P, there is a clear positive correlation between datasets with a R2=0.71, B1= 0.875, and NSH=0.69. 

For PET, R2=0.72, y=0.875, and NSH=-.69. For AET, R2 = 0.61, B1=0.99, and NSH=0.61. These 

results indicate that the satellite datasets chosen (PML-v2 for AET, MSWEP-v2 for P, and MODIS 

for PET) are suitable for large-scale spatial analysis. Also, HSi was computed using in-situ 

measurements and compared to satellite-based HSi with a resulting correlation coefficient of R2=0.69 

across 30 sites. 

a)  

b)  
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             c)  
 

d)  

 

Figure 1.1 a-d: Correlation test of satellite datasets with in-situ measurements. Comparison between 

MSWEP-V2, MODIS, and PMLV-2 against Ameriflux data where a) P, b) PET, and c) AET, and d) 

HSia are compared, respectively. 

 
2.2 A new metric: Hydrologic Sensitivity Index 

This study focuses on identifying regions that are most sensitive or are likely change to an 

alternative or permanent state in hydrologic functioning. Thus, we developed a new metric called 

the Hydrologic Sensitivity Index (HSi) by taking the inverse of the elasticity formulation. 
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However, since Budyko’s framework is limited to steady-state conditions (Greve et al., 2016) 

and this study is executed at an interannual scale, Budyko’s formulation needs an adjustment. 

Specifically, at sub-annual and interannual timescales, changes in storage water terms such as 

soil moisture, groundwater, snow storage, or human interventions result in AET>P (additional 

water other than P) does not characterize steady-state conditions (Greve et al., 2016). 

Consequently, we apply the adapted Budyko formulation presented by Greve et al., 2016 to 

account for changes in storage (BA) (Equation 2a and Figure 2) using the parameter y0, which 

represents a measure of the maximum amount of additional water besides P being available to 

AET (Equation 2b). This parameter is calculated as the difference between AET and P (only 

when AET-P >0) normalized by PET. The parameter k is a free model constant that can be 

interpreted as a factor other than the aridity index that influences the water partitioning of EI and 

was determined to be κ = 2.6 corresponding to the best fit to the original Budyko function 

However since this parameter varies by region it must be estimated (Greve et al., 2016). 

               (2a) 

                                          (2b) 
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Figure 2: Adapted Budyko Curve. The Budyko framework accounts for changes in storage for regions where AET- 

P>0, so the range in EIR is in reference to the adjusted curve, while the range in DI is not affected. HSi is calculated 

as the ratio of a catchment’s range in EI to its range in DI between consecutive pair of years.. HSi= (∆DI)/(∆EIR), 

where a) high sensitivity (HSi > 1, red) (i.e., approximating theoretical behavior), and (b) low hydrologic sensitivity 

(HSi<0, green) (i.e., deviating from theoretical behavior). 

Hence, by tracking the changes in hydrologic response (ΔEIR) of a location or region relative 

to the adapted curve (BA), that is, its water yield deviation to interannual climatic variability (ΔDI) 

for consecutive years, we can calculate the hydrologic sensitivity in the following manner: 

HSi = ΔEIR =|
Δ(EIR− BA)

|, (3) 
ΔDI ΔDI 

where sensitive regions will display HSi>1, and resilient locations will show HSi <1 (Equation 3). It 

is important to note that HSi evaluates the absolute difference between DI and EIR between 

successive years, regardless of which year was warmest or wettest. A conceptual diagram depicting 

the algorithm used is shown in Figure 2, of which a detailed description is provided next. HSi 

evaluates the absolute ratio between ranges in DI and EIR values between consecutive years (e.g. HSi 

= |ΔEIR/∆ DI| = | ΔEIR,2001−2002/ΔDI2001−2002|.        
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2.3 Computing HSi 

 

Knowing the year-to-year hydrologic sensitivity is more meaningful when looking over a 

longer period of time. Regions consistently showing sensitive behavior can be identified by 

looking at the frequency with which HSi >1 is detected. Figure 3 displays the algorithm for 

computing HSi frequency. First, we compute annual values of AET, PET, P, and y0. Next, we 

compute HSi for every successive pair of years from 2001 to 2016. All computations leading to 

the HSi are performed in the Google Earth Engine Platform (Golerick et al., 2017). A total of 

15 HSi maps were obtained representing the HSi for each consecutive pair of years. For each 

map, where HSi >1, regions are classified as Sensitive, and for HSi ≤1, Resilient. To provide a 

synthesis of the general trend of global hydrologic sensitivity, we display the frequency of HSi, 

showing the recurrence of HSi >1 for every terrestrial location with a range of 0 (low frequency) 

to 15 (high frequency). Regions where frequency HSi 7 are considered highly recurring and as 

such are deemed as the most hydrologically sensitive. 

 

Figure 3: HSi Algorithm. Flowchart for computing HSi. Input data layers are shown in medium blue, intermediate 

data layers computed in Google Earth Engine as part of the algorithm are shown in light blue, and final output is 

displayed as a map of HSi Frequency. 
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2.4 Computing Mean Sensitive Area 

 

Besides the geographic occurrence of hydrologic sensitive areas, identifying the percentage of 

sensitive areas relative to the total area in a biome can help inform the regions of the world where 

the hydrologic response has been consistently changing. Figure 4 displays the algorithm for 

estimating the mean hydrologic sensitive area for each terrestrial biome. For this analysis, the biome 

boundaries were obtained from Terrestrial Ecosystems of the World (TEOW) shapefiles (Figure 5) 

by the World Wildlife Fund (Olson et al., 2001). The 15 pairs of EIR’s and 

DI’s per biome are used to quantify sensitivity for every consecutive pair of years. Hydrologic-

sensitive areas are represented by the colored quadrants (green and red or light and dark blue). 

All colored area shows that the interannual absolute change in the evaporative index, |∆EI|, is 

greater than the interannual absolute change in the dryness index, |∆DI| which is equivalent to 

|HSi|>1. The diagram is split into 4 quadrants indicating the possible climate and water yield 

directions: drier (+∆DI) wetter (-∆DI) and less water yield (+∆EI) and more water yield (-∆EI). 

Sensitive area (grid cells) where |HSi|>1 = |∆EIR|>|DI| equivalent to: 

I = EIR > DI = less water yield and drier climate; 

 

II = EIR > -DI = less water yield and wetter climate; 
 

III = -EIR < -DI = more water yield and wetter climate; 
 

IV = EIR < DI = more water yield and drier climate. 
 

Sensitive area is defined by the percentage of sensitive grid cells (HSi>1) to the total 

number of grid cells within each biome. Once we obtain all 15 values (one per pair of years) of 

sensitive area per biome, we compute the temporal average. Additionally, we display sensitive 

areas with the direction of change by including the portion of the sensitive area allocated toward 

drier vs wetter climate conditions (Figure 4a) and less vs greater water yield (Figure 4b) and 



17 

direction of change. For instance, the percentage of sensitive grid values toward warmer/drier 

(∆DI) and colder/wetter (-∆DI) values define the climate direction, while decreasing (∆EI) and 

increasing (-∆EI) water yield define the water yield direction. Also, the fraction of the sensitive 

area is plotted relative to the global land area to provide a global areal extent of sensitivity for 

each biome. In addition, we created two maps to spatially display the median climate and water 

yield trends for regions with HSi>1 and Frequency ≥7. 

 

  
 

Figure 4: Mean Hydrologic Sensitive Area Concept. The diagrams show how the hydrologically sensitive area is 

calculated. a) Quadrant 1 and IV where hydrologic sensitive areas have become drier (red), so that the change in +DI 

is positive, while in quadrant II and III represents the areas which have become wetter the absolute change in -DI is 

negative (green). b) Quadrant I and II represent the condition where hydrologic sensitive areas show decreasing water 

yield trends, so that the change in +EIR is positive (light blue), while quadrants III and IV represent the areas that 

show increasing water yield trends so that the change in -EIR is negative (dark blue). 
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Figure 5: Global Terrestrial Ecosystems. A total of 14 Major Terrestrial Ecosystems reflect the diverse climate 

types (we do not consider lakes and rock ice biomes for this study). Terrestrial communities represented here include 
the full extent of continental topographic relief (Oslon, 2001). 

2.5 Computing the effect of elevation, slope, and aspect 

We evaluate the effect of topography on hydrologic sensitivity by plotting the average HSi 

frequency for all elevation ranges (binned every 100 m), aspects (binned every 22.5), and slope 

steepness (binned every 5) against latitudinal change. For this analysis, we used global digital 

elevation models (DEMS) from the Shuttle Radar Topography Mission (SRTM, Jarvis et al., 

2008) data (90 m resolution; version 4, for latitudes < 60◦ N and GTOPO30 (1◦ resolution; 

http://lta.cr.usgs.gov/GTOPO30) for latitudes > 60◦ N as seen in Table 1. Slope and aspect maps 

were derived from the DEMs using standard GIS-based methods in ArcMap 10.7. (Burrough et 

al., 2015). The elevation range used is 0 to7000 meters above sea level (m.a.s.l), aspect (N, NE, 

E, SE, S, SW, W, NW) specifically above slope values greater than 10 (no flat areas used), and 

slope 0 to 90 degree. 

3. Results 

http://lta.cr.usgs.gov/GTOPO30)
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3.1 Average annual excess water used from storage (y0) (i.e., groundwater-dependent 

ecosystems) 

We note that water storage was used to supplement precipitation to satisfy the annual AET 

(y0>0; Figure 6), except in locations where “no data” values in either AET or PET impeded the 

calculation of y0 (gray areas in Figure 6). In particular, high values (y0>0.2) occur along the 

Yucatan Peninsula (y0~0.3-0.4, Mexico), California (y0~0.30-0.35, USA) a,nd Great plains 

(y0~0.25, USA), Patagonia (y0~0.28-0.41, Argentina), Tamil Nadu and Rajasthan (y0~0.3-0.4 

India), Caatinga forest (y0~ 0.26-0.38, Brazil) and Eastern Africa (y0~0.40-0.65). Some of these 

regions showing large y0 values correspond to groundwater-fed irrigated croplands where 

significant abstraction of water resources subsidizes high AET rates (e.g. Central Valley, 

California and Central Midwestern USA, Northern India, Northeastern China; Aeschbach-Hertig 

& Gleeson, 2012). Other areas with large y0 values show groundwater-dependent ecosystems 

where vegetation has continual access to water regardless of precipitation conditions yielding 

high annual AET (e.g. Yucatan Peninsula; Uuh-Sonda et al., 2018). Other regions along the high 

Artic tundra, northernmost boreal zones, and equatorial tropical zones display no excess storage 

(y0~0), while all other regions have slight excess water storage (y0>0-0.20) (see Figure 6). 
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Figure 6: Average excess water used from storage. 16-year average excess water storage as a fraction of the 

potential evapotranspiration (additional water other than P available to AET standardized by PET). The values range 

from 0 (no significant changes in storage) to 0.4 or greater (red, high changes in storage). Areas with dominant barren 

land and permanent ice (no data) are shown in grey. Pixel resolution is 500m. Map created in Google Earth Engine 

and modified with continental outline shapefile in ArcGIS 10.7 software. 

 

 
3.2 Frequency HSi 

The areas exhibiting the most frequent hydrologic sensitivity during the 2001-2016 period 

were located in the tropical rainforests (tropical & subtropical moist broadleaf forest) of Central 

and South America (Amazon Basin), central-western Africa (Congo Basin), and southeast Asia 

(Himalayan region, Indochinese Peninsula, and the Malay Archipelago), the Arctic tundra, parts of 

the boreal forest, and tropical and subtropical coniferous forests scattered throughout North 

America and Eurasia (Figure 7). Overall, arid and semiarid areas worldwide display low 

frequency (<2) of HSi, and the areas displaying the highest frequency (>7) are in general 

surrounded by a zone of increasingly lower HSi frequency (orange and yellow areas in Figure 7) 

outwards. 

] 
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Figure 7: Frequency of Hydrologic Sensitivity. Tendency to high hydrologic response to climate variability (based 

on the recurrence of HSi 1). The index ranges from 0 (no frequency, dark green) to 15 (high frequency, red). Areas 

with dominant barren land and permanent ice (no data) are shown in grey. Wetland areas, as identified by the Global 

Lakes and Wetlands Database, are mapped in blue. Pixel resolution, 500m; period, 2001–2016. Map created in 

Google Earth Engine and modified with continental outline shapefile in ArcGIS 10.7 software 

 

The areas where no hydrologic sensitivity is detected during the period of study (2001-2016) are 

regions with large interannual variability in climatic conditions. A map showing the coefficient 

of variation (CV) of the Dryness Index (DI) reveals that the regions of the world where this 

coefficient is large (values close to 1 show locations with high variability) closely match those 

with no hydrologic sensitivity (0 frequency of HSi >1; Figure 8. a). In those places, the interannual 

variability of the DI outweighs any moderate or even large variabilities in Evaporative Index (EI; 

Figure 8. b). By contrast, the areas where the highest frequency of hydrologic sensitivity is 

observed, correspond to locations with low or moderate interannual variability in DI and EI (i.e. 

CV of DI and EI < 0.4). This suggests that hydrologic sensitivity, as measured by HSi, is largely 

dependent on the prevailing interannual variability of the fluctuations in climatic conditions 
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expressed by the DI. This finding gives confidence in the ability of the HSi to detect those 

locations where in spite of having low year-to-year variations in climatic conditions, relatively 

large variations in the evaporative index are occurring. 

 
Figure 8. Coefficient of Variation of (a) Dryness Index (DI) and (b) Evaporative Index (EI) for the study period 

(2001-2016). The coefficient ranges from 0 (low variability, light yellow) to 1 (high variability, red). Areas with 

dominant sterile soil and permanent ice (no data) are shown in gray. Wetland areas, identified by Global Lakes and 

Wetlands Database, are mapped in blue. Pixel resolution is 500m. Map created in Google Earth Engine and modified 

(a) 

(b) 



23 

to include continental schema basemap and lakes in ArcGIS 10.7 software. 

3.3 Mean sensitive area per biome w/climate and water yield direction 

Figure 9 displays the mean sensitive area per biome arranged from largest to least 

hydrologic sensitive. The biomes displaying the largest sensitive area in descending order are 

tropical rainforests, the Arctic tundra, tropical and subtropical coniferous forests, and boreal 

forests. Tropical and subtropical rainforests and coniferous forests display decreasing water yields, 

while tundra and boreal systems display increasing water yields. Relative to global land, boreal 

forests have the greatest actual areal extent of hydrologic sensitive land followed by tropical 

rainforests and grasslands (tropical and subtropical grassland, savannas, and shrublands). The 

hydrologic-sensitive area in the majority of the biomes (12 out of 14 biomes) has a clear tendency 

towards decreasing water yield conditions with the exception of the Arctic tundra and temperate 

broadleaf mixed forests (mixed forests) which display a neutral behavior. Although the climate 

direction is roughly neutral for most biomes, the hydrologic sensitive area in 9 out of 14 biomes 

is slightly inclined toward drier conditions with the exception of the Arctic tundra, mixed forests, 

temperate coniferous forests, tropical & subtropical coniferous forests, and tropical rainforests, 

which lean toward wetter/colder conditions. 
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Figure 9: Hydrologic Sensitive Area. Average sensitive area per biome (relative to biome area) with portion 

indicating direction of change, where drier (red) and wetter (green) conditions refer to the climate direction; less 

(light blue) and greater water yield (dark blue) refers to the hydrologic direction; average sensitive area relative to 

the global land area (orange) refers actual extent of sensitivity. Values are computed on Google Earth Engine 

platform at ~1000m resolution. 

 
 

3.4 Water yield and climate direction for regions with high HSi frequency 

 

Focusing on only those regions where HSi frequency >7 (mainly equatorial and northern high 

latitudes) the median direction in water yield (∆EI) and climate direction (∆DI) is displayed in Figure 

10 and Figure 11 respectively. In particular, Figure 10 displays dominant decreasing water yield (light 

orange) for the majority of pixels within the tropical forest (equatorial zones) while increasing water 

yields (blue) are evident in the northern high latitude regions, particularly along Alaskan, easternmost 

Canadian and Eurasian arctic regions and boreal forests. Figure 11 displays a general neutral tendency 

in climate conditions in dry (red) versus wet (blue) for these same regions. Nonetheless, the map 

displays drying/warmer conditions along the southern part of and the southern edge of the Amazon 

basin, the western and central Congo Basin, and the northeastern part of the Canadian and Eurasian 
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continents. Colder/wetter conditions are seen along the northern part of the Amazon basin and 

northmost Siberia. 

 
 

Figure 10: Water yield direction of hydrologically sensitive regions. For display purposes, observed results are 

based on median values of interannual change in evaporative index, ∆EI, only for regions where the frequency of 

HSi≥7. The values range from less water yield (+∆EI, light orange) to greater water yield (-∆EI, dark blue) conditions. 

Areas with dominant sterile soil and permanent ice (No Data) and non-sensitive areas are shown in gray. Pixel 

resolution is 500m. Map created in Google Earth Engine and modified to include continental schema basemap in 

ArcGIS 10.7 software. 
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Figure 11: Climatic direction of hydrologically sensitive regions. For displaying purposes observed results are 

based on median values of interannual change in dryness index, ∆DI, only for regions where the frequency of HSi≥7. 

The index ranges from colder/wetter (-∆DI, blue) to drier/warmer (+∆DI, red) climate conditions. Areas with dominant 

sterile soil and permanent ice (no data) and non-sensitive areas are shown in gray. Pixel resolution is 500m. Map 

created in Google Earth Engine and modified to include continental schema base map in ArcGIS 10.7 software. 

 

3.5 Effect of topographic parameters on HSi 
 

The topographic effects on hydrologic sensitive areas are most apparent along high 

latitude regions, particularly at mountainous locations in both hemispheres, including the Tibetan 

Plateau (33N) as seen in Figure 12a-c For example, in Figure 12a elevation appears to be a 

defining parameter driving hydrologic sensitivity beyond 45 latitudes in both the Northern and 

Southern hemispheres. Conversely, midlatitude regions (between 20 and 40) in both South and 

North hemispheres appear to be somewhat hydrologically insensitive to changes in elevation, but 

most markedly and for a larger latitudinal stretch in the Southern hemisphere. The latitudinal 

stretch in the Northern Hemisphere where HSi values are low across all elevation ranges is 

5shorter than in the Southern Hemisphere (20 to 40 vs -30 to -45 respectively). Along 
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the equatorial belt, in between 15 S and 7 N, high HSi values appear at the lowlands (0-500 

m.a.s.l) and above ~1500 m.a.s.l throughout all the elevation ranges, with the highest sensitivity 

above 2000 m.a.s.l. In the same latitudes, where high HSi is found across elevation gradients, 

steep slopes (slopes greater than 30°) display high HSi values in Figure 11b, mainly attributed to 

the various effects of mountainous landscapes that are generally associated with having steep-

sloped topography compared to low elevations (Riebe et al., 2015). Along the equatorial zone 

(~7°N and ~10°S) high HSi values are found at the majority of slope angles but with the highest 

sensitivity at slopes greater than 15°. In the Northern hemisphere, HSi gradually increases 

beginning at latitude 45° and beyond, but has specific thin latitudinal stretches (~2°) of higher 

sensitivity at slopes greater than 30° around 50°, 60°, 70°, and 80°. In the Southern hemisphere, 

HSi increases abruptly at higher latitudes beginning at -40° and beyond with the highest 

sensitivity for very steep slopes (slope>60 °). HSi in regions between latitudes of -20 and -40 

(location of arid lands) appear to be insensitive at all slope angles and elevations. In our analysis, 

the aspect (orientation of the terrain) did not show an effect on HSi (Figure 12c). This is possibly 

due to the inability of the HSi data to capture the fine-scale microclimatic variability in areas with 

complex terrain due to the native spatial resolution of the data (>500m). There is evidence that 

varying aspects in complex terrain modulate the hydrologic response to extreme hydroclimatic 

events (Gutiérrez-Jurado et al., 2007) and could potentially amplify or mute the HSi of headwater 

catchments constituting some of the largest inland water-yielding areas. Further studies 

addressing this shortcoming in the analysis with the use of higher-resolution data, should provide 

a clearer picture of the impact of terrain attributes on the HSi of these regions. 
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Figure 12: Frequency HSi [0,7+] at varying values of a) elevation [100,7000] in m.a.s.l. b) slope steepness [0,90] 

in degrees, and c) aspect[0,359] in degrees against latitudinal change from 80N to -55.5S from low frequency (blue) 

to high frequency (red). Graphs created in MATLAB 2019 software using pixel resolution at 90m for each variable. 
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4. Discussion 
 

4. Discussion 

In this study we showed a global map displaying excess storage water. These regions 

agree with locations of some of the world’s groundwater-dependent ecosystems and groundwater-

fed irrigated croplands (Rodell et al., 2018, Aeschbach-Herring & Gleeson, 2012). Regions 

displaying no excess water storage such as northern high latitude regions and equatorial tropical 

zones are mostly explained by being energy-limited regions and receiving large amounts of 

precipitation resulting in larger moisture influxes relative to evapotranspiration outfluxes. The 

relatively simple computation of y0 can provide the first insight into out-of-water-balance areas that 

can alter the estimates of hydrologic sensitivity by raising AET totals substantially at the annual 

scale. Our analyses indicate that the majority of the regions detected as hydrologic sensitive areas 

are changing towards drier conditions with decreasing water yields. This observation coincides 

with a phenomenon suggested by Cook et al., (2014), in which vast regions of land on the planet 

are experiencing at least moderate drying as a warmer climate—generally more able to evaporate 
 

moisture from the land surface– in combination with hotter temperatures will favor increasing 
 

dryness. 

 

Our results showed that the locations with the highest HSi can be clustered in two regions: 

 

(1) tropical zones across all elevation ranges (2) along arctic tundra and boreal zones. For the first 

region, at equatorial latitudes, we found hydrologic sensitivity in tropical rainforests associated 

with changing water yields. A majority of tropical regions show decreasing water yields while 

fewer regions show increasing trends (Figure 8). There is still no consensus as to whether reduced 

forest cover will increase or decrease water yields across these regions (Bruijinzeel et al., 2004, 

Zhoue et al., 2013, Roudier et al., 2014, Reyer et al., 2017, Deb et al., 2018). Reduced forest 

cover, which has shown to alter precipitation patterns (Ellison et al., 2011, van der Ent et 

https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall
https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall
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al., 2010) resulting in reductions in leaf gas exchanges (Seddon et al., 2016, Clark et al., 2003, 

Staal et al., 2018, Wu et al., 2019) along these regions is a potential explanation to the observed 

reductions in water yields. Placed in a large-scale context, a great portion of tropical forests’ 

rainfall is water recycled within these basins by forest evapotranspiration (van der Ent et al., 2010, 

Lenton et al., 2008). For instance, approximately one-third of rainfall in the Amazon (Staal et al., 

2018, van der Ent et al., 2010, Lenton et al., 2008), Congo (van der Ent et al., 2010, Dyer et al., 

2017), and northern Indonesia and Papua New Guinea basins is regional recycled precipitation 

(van der Ent et al., 2010). Hence, a reduction in tropical forest cover leads to decreases in forest 

evapotranspiration which in turn results in reduced precipitation. Consequently, reduced regional 

recycled precipitation at large scales implies a tendency toward decreasing water yields. This 

highlights the hydrologic sensitivity of tropical regions to forest cover changes. Continuing 

deforestation and human land use and disturbances at the continental scale, currently highest in 

this terrestrial biome (Crowther et al., 2015), have the potential to amplify the negative impact 

observed in water yields (Davidson et al., 2012). In contrast, regions south of Indonesia and Papua 

New Guinea where ocean moisture is the main precipitation source, show the areas where forest 

cover loss is accompanied by increasing water yield trends (van der Ent et al., 2010). In addition, 

there is evidence that regional recycling ratios are amplified in mountainous regions globally 

since these areas are able to block moisture from entering continents or easily capture moisture 

from the atmosphere (van der Ent et al., 2010). Accelerating vegetation changes involving 

biodiversity loss and reduction of tropical alpine areas (Buytaert et al., 2011) is therefore a 

plausible cause for decreased water yields within these regions. 

For the second region, at high latitudes, in the past three decades, temperatures have 

increased rapidly, mainly in the northern hemisphere (Hartmann et al, 2013). As a consequence, 

rapid rates of snow melt have been observed in Arctic tundra and boreal forests in response to 
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warming temperatures (López-Moreno et al., 2020, Najafi et al., 2015, Pepin et al., 2015, Myers- 

Smith et al., 2015, Lamprecht et al., 2015). These regions are warming more rapidly than lower 

latitudes due to polar amplification of temperature, water vapour, and surface albedo feedbacks 

(Myers-Smith et al., 2015, Chapin et al., 2005, Hinzman et al., 2013). There is also evidence that 

this effect is enhanced at high-elevation regions where snow accumulation is greatest and changes 

in precipitation patterns are occurring (e.g regions in the Tibetan Plateau, Rocky Mountains, 

Greater Alpine Region) (Pepin et al., 2015, Ohmura, 2012, Zhang et al., 2013, Yan et al., 2016, 

Palazzi et al., 2019). For example, recent findings have shown increases in lake levels and 

volumes in the Tibetan Plateau related to temperature amplification resulting in enhanced 

precipitation from a faster warming rate compared to the mean global warming (Zhang et al., 

2020). Also, high latitude and mountainous regions of Siberian and Canadian Arctic and boreal 

zones have seen increasing water yield trends due to ice-sheet loss, increasing precipitation, 

thawing, and shrub growth in steep slopes (Rodell et al., 2018, Myers-Smith et al., 2015, Zhang 

et al., 2013). These lines of evidence are consistent with our findings of high HSi areas leaning 

toward higher water yields in these regions, particularly those along the Siberian and easternmost 

Canadian and Eurasian Arctic. 

 

 

 

 

 

 

5. Conclusions 
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We identified regions with hydrologic sensitivity to climate variability globally and at high 

spatial and temporal resolution within high and low latitudes. At high latitudes, boreal and arctic 

zones show heightened hydrologic sensitivity accompanied by increasing water yields, while at low 

latitudes, tropical rainforests show the largest hydrologic sensitivity with the majority of their 

sensitive area trending towards decreasing water yields. We found that hydrologic sensitivity is 

amplified at high elevations and in steep-sloped terrain, outlining the importance of topography in 

modulating these effects with strong implications for high water-yielding headwater catchments. 

We direct the attention toward climate warming resulting in increasing snow melt and precipitation 

in Arctic tundra and boreal forests and increasing tree cover loss in tropical forests, as possible 

mechanisms driving the observed patterns. Although there is no clear consensus yet on the direction 

surface water yields would take in tropical zones as a result of climate variability, our findings 

suggest that hydrologic sensitivity may be linked to vegetation changes. Other land cover changes 

associated with altered climatic patterns across high-latitude regions may be contributing to 

changing hydrologic dynamics (Myers-Smith et al., 2015) in areas displayed in our HSi analysis as 

highly sensitive locations. Globally, boreal and tropical forests, the two biomes producing the 

greatest water yields also display the greatest extent of hydrologic sensitive land. This makes them 

hotspots for hydrologic surveillance of expected impacts from further increases in climatic shifts 

with the potential to significantly alter the global water cycle. Future work should determine if the 

hydrologic sensitivity patterns found in this study represent tipping points in changing hydrologic 

dynamics within each biome, and assess at the regional and local scale their cascading impacts on 

ecosystems and human settlements. 

 

Code Availability 

Code and datasets used to conduct this analysis are available online from our Google Earth 
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Engine link https://code.earthengine.google.com/9efbe6a3ccfb488eef80a903d923a30f. A 

MATLAB code and associated data to reproduce the topographic analyses is available for 

download in the following open access repository: http://doi.org/10.5281/zenodo.4479716. 
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𝑭𝒄 = fraction of incoming radiation absorbed by plant (MOD15A2H.006 : Fraction of 

Photosynthetic Active Radiation) 

𝜟= slope between SVP and temp. Δ =
ⅆⅇ∗

ⅆ𝑇
=

𝑒𝑠
∗−𝑒𝑎

𝑇𝑠−𝑇𝑎
, As T increases so does kinetic energy of 

molecules. Hence pressure is higher. 

𝒑𝒂= air density (1.22 
𝑘𝑔

𝑚3 at sea level) 

𝒄𝒂= air heat capacity (1005 𝐽/𝐾 ⋅ 𝐶0) 

𝑹𝒏=Net incoming radiation W/m2 

𝒆𝒂 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑢𝑟𝑒 (𝑒𝑎
∗ ⋅ 𝑅𝐻,  𝑘𝑃𝑎) 

𝒆𝒂
∗ = (𝑘𝑃𝑎 )𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝑎; (𝒆𝒂

∗ ) = 𝟎. 𝟔𝟏𝟏 × 𝟏𝟎(
𝟏𝟕.𝟑⋅𝑻𝒂

𝟐𝟑𝟕.𝟑+𝑻𝒂
), 

𝒆𝒔
∗ = (𝑘𝑃𝑎 )𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡  𝑠𝑢𝑟𝑓𝑎𝑐𝑒  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,  𝑻𝒔; (𝒆𝒔

∗)

= 𝟎. 𝟔𝟏𝟏 × 𝟏𝟎(
𝟏𝟕.𝟑⋅𝑻𝒔

𝟐𝟑𝟕.𝟑+𝑻𝒔
), 

𝑽𝑷𝑫 = 𝑉𝑎𝑝𝑜𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 (𝑘𝑃𝑎) 

𝑭𝒘𝒆𝒕 = {
0                    𝑅𝐻 < 70%

 𝑅𝐻4         70% ≤ 𝑅𝐻 ≤ 100%
  =water cover fraction 

rvc=latent heat transfer (rtot=𝑟𝑎 + 𝑟𝑠; aerodynamic resistance +surface resistance s/m) 

𝒓𝒉𝒓𝒄 = 𝒓𝒂𝒔 =
𝑟ℎ𝑠 ∗ 𝑟𝑟𝑠

𝑟ℎ𝑠 + 𝑟𝑠
 

𝒓𝒉𝒔 = 𝒓𝒕𝒐𝒕 = 𝒓𝒗𝒄 = 𝑟𝑎 + 𝑟𝑠 
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𝒓𝒂 =
208

𝑊𝑠
= 𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 ,  𝑠/𝑚 (𝑾𝒔 = 𝑤𝑖𝑛𝑠𝑝𝑒𝑒𝑑 (

𝑚

𝑠
)), force exerted by air on 

liquid 

                  𝒓𝒔 =70
𝑠

𝑚
 

= (
𝑅𝐼

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
) 

RI=stomatal resistance (100s/m for well-watered grass) 

𝑳𝑨𝑰𝒂𝒄𝒕𝒊𝒗𝒆=0.5*LAI 

LAI=24*𝑧𝑣𝑒𝑔 (𝑧𝑣𝑒𝑔= 0.12m for well-watered grass),leaf area/ground area 

𝒓𝒓𝒔 =
𝑝𝑎⋅𝑐𝑎

4σ(𝑇𝑎+273.15)
,resistance to radiative heat transfer 

𝝈 = Stefan − Boltzman constant (5.670373319 × 10−8 𝑊 ∕ 𝑚2𝐾4), total intensity radiated by 

a blackbody 

𝑨𝑪 = 𝐹𝐶𝑅𝑛= part of net radiation allocated to the canopy (𝑊 ∕ 𝑚2) 

𝑨𝒔𝒐𝒊𝒍 = (1 − 𝐹𝑐)𝑅𝑛 − 𝐺=part of net radiation partitioned on the soil surface (𝑊 ∕ 𝑚2) 

G= soil heat flux (𝑊 ∕ 𝑚2) 

𝜶 = equilibrium ET (rate of ET)over a wide range of conditions. 

𝜸= relates pressure of water in air to Ta. 

Conversion of units to mm/min =
𝑊 

𝑚2
 =

𝐽 

𝑚2∗𝑠
*(

1 𝑘𝑔

2454000 𝐽
) *(60*30) 

𝑚𝑚

𝑚𝑖𝑛
 = 

𝑚𝑚

30𝑚𝑖𝑛
 

 

 

 

 

 

Chapter 2: Global forest tipping points leading to changing hydrologic 

responses. 

 

Abstract 
 

Global forest cover is decreasing at an unprecedented rate, bringing alterations to the 
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water cycling of large freshwater-producing regions of the world. However, the critical 

thresholds before these alterations become irreversible are currently unknown across different 

forest types. Here, we document critical thresholds of deforestation in regions that underwent 

extensive forest cover loss induced by either drought, fire, or clear-cutting during the 2001-2016 

period and report if these trends lead to increasing or decreasing water yield and warmer or 

cooler climate conditions. Our analysis shows substantial decreases in water yield at the early 

stages of tree cover loss in tropical rainforests, particularly in the Congo, Borneo, Sumatra, and 

Chilean Andean forests (<19%) compared to the Amazonia (~27%), with profound implications 

for their biodiversity and the global-scale ecosystem services that these forests provide. Boreal 

forests also show low thresholds of tree cover loss (~32%) leading to unstable hydrologic 

behavior although without a clear trend in water yield conditions.  On the other hand, temperate 

forests display higher thresholds of tree cover loss (~46-53%) leading to changing hydrologic 

regimes but occurring rapidly once the threshold is surpassed. This study provides quantitative 

evidence of the tipping points of tree cover loss under which forests can maintain a stable 

hydrologic behavior. The thresholds and the speed of the alterations they induce should be 

useful to predict rapid hydrologic changes in forests expected to experience more frequent 

droughts, wildfires, and human-driven deforestation. Thus, results from this study could help 

inform (reassess) new (current) policies designed to contain further deforestation in areas close 

to surpassing their tipping points.  

1. Background 

 
Droughts, wildfires, and related deforestation events in the past two decades (2001-2021) have 

resulted in 437 million hectares of tree cover loss globally, an area measuring approximately one-half 

the size of Brazil (equivalent to an 11% global tree cover reduction since 2000) (Hansen et al., 2013; 

Watch, 2020) with local, regional and large-scale impacts on the water cycle and regional climate 
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(Goeking & Tarboton, 2020; Marengo et al., 2018; Sheil, 2018; Zhang et al., 2017). For example, tree 

cover loss, in general, decelerates the water cycle by weakening evapotranspiration processes, leading 

to changing precipitation and temperature patterns in large forested regions (Ellison et al., 2012). 

Increases in climate variability patterns, in turn, have an impact on the amount of precipitation 

reaching the landscape affecting the quantity of surface streamflow (water yield) that varies in 

magnitude across continents (Ellison et al., 2012). However, the extent to which forests may continue 

to maintain stable water yields despite losing significant portions of tree cover and their impact on 

regional climate is currently unknown.  

Although there is evidence of changing water yield under forest disturbance, the direction of 

these changes remains unclear (Ellison et al., 2012; Goeking & Tarboton, 2020). For example, a 

comprehensive review of multiple studies evaluating the effects of tree cover loss on water yield 

reports no clear consensus and consistent direction of hydrologic changes; in some cases, water yield 

is increasing, in others decreasing and in some no significant changes have been detected (Goeking & 

Tarboton, 2020). The same work concludes that most of these studies were evaluated categorically 

and not quantitatively and points to the fact that the majority of those studies focused on Temperate 

Coniferous Forests, highlighting the need for a quantitative approach across and a synthesis effort on 

different forests types that could reveal the directions that major water resources are headed at a global 

scale. 

Human-driven deforestation and wildfires are major causes of tree cover loss. Many of these 

events occur in highly threatened-biodiverse tropical rainforests (Crowther et al., 2015) and boreal 

ecosystems (Hansen et al., 2013). However, their impacts on hydrologic processes have not been 

systematically studied and the directions in which hydrologic changes may be occurring are still 

unclear. For example, although the Amazon basin has been extensively studied (Chambers & Artaxo, 

2017; Lawrence & Vandecar, 2015; Leite-Filho et al., 2021; Malhi et al., 2008; Spracklen Xu et al., 
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2022 & Garcia-Carreras, 2015), other important tropical basins that have a major influence on global 

climates, such as the Central African and Southeast Asian forests have received less attention 

(Lawrence & Vandecar, 2015). Furthermore, the frequency of fire and forest exploitation leading to 

forest clearing in boreal systems is proportionally second to that in tropical ecosystems (Hansen et al., 

2013), but only a few studies evaluate these impacts on boreal hydrology (Pimentel & Arheimer, 

2021). Compounded with the loss of tree cover, changes in land surface properties reinforce current 

climatic trends such as rising temperatures leading to increasing snowmelt in high-latitude regions. 

Studies evaluating the role of forest clearing on these dynamics are missing, or at best fragmented (te 

Wierik et al., 2021; Valeo et al., 2003). Given the lack of clarity on the effects of forest disturbance 

on hydrologic responses and the thresholds driving changes in water yield and regional climate, 

reporting the tipping points leading to significant changes in the hydrologic sensitivity in the world’s 

major forests is critical to aid in forest management strategies to prevent irreversible or permanent 

changes in freshwater resources. 

A region’s fragility to experiment with changes in its hydrologic behavior to climatic 

perturbations can be assessed by means of a hydrologic sensitivity analysis (Domínguez-Tuda & 

Gutiérrez-Jurado, 2021). The Hydrologic Sensitivity Index (HSi), is a metric conceived to detect 

changes in hydrologic responses to climate variability and it is based on the changes of actual 

evapotranspiration (AET) against changes in the potential evapotranspiration (PET) normalized by 

precipitation (P), where HSi>1 show disproportionate hydrologic responses to changing climatic 

conditions(Domínguez-Tuda & Gutiérrez-Jurado, 2021). HSi is used in this study to evaluate 

departures in historic hydrologic behavior in the face of land cover disturbances such as tree cover 

loss using 3-year HSi averages of before and after-disturbance periods  (see Methods). To do this, we 

compute Hydrologic Sensitive area (HSia) as the percentage of deforested area with high HSi (>1) 

and plot against percent tree cover loss (TCL,%) in 45 selected regions across 5 different forest types 
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(Tropical Rainforests, Boreal forests and Temperate Coniferous, Mediterranean, and Mixed forests) 

which have undergone extensive tree cover loss due to either drought, wildfire, or deforestation during 

the period 2001-2016 (Figure 1) (see Appendix Table A1-A5 for details of each deforestation event). 

We report global forest tipping points (𝑐 = critical thresholds) of tree cover loss leading to rapid shifts 

in hydrologic behavior, the speed (𝛽 = sensitivity rate) at which this occurs once the threshold is 

surpassed and the initial mean HSi of the forest under undisturbed conditions (δ = inherent mean 

hydrologic sensitivity). Also, through the same methodological approach, we find and report the effect 

of tree cover loss on increasing vs decreasing water yield and warming vs cooling trends for each 

forest type. 

2. Methods 

 

2.1 Concept of Hydrologic Sensitivity 

Changes in the water cycling of ecosystems that have undergone disturbances altering the 

physical properties of the landscape can be assessed using hydrologic metrics (Creed et al., 2014; 

Helman et al., 2017; Sinha et al., 2019) that are able to identify deviations from normal average climate 

conditions. For instance, the Hydrologic Sensitivity Index (HSi), a metric that has been used to 

evaluate changes in hydrologic response to climate variability can also be used to evaluate departures 

in historic hydrologic behavior in the face of land cover disturbances such as tree cover loss 

(Domínguez-Tuda & Gutiérrez-Jurado, 2021). 

Hydrologic sensitivity to climate variability can be understood by how responsive water 

cycling behaves to large or small perturbations in climatic conditions in any given region. That is if a 

region disproportionally changes its hydrologic functioning (becomes hydrologically unstable) when 

exposed to a climate disturbance or extreme weather, it is considered hydrologically sensitive 

(Domínguez-Tuda & Gutiérrez-Jurado, 2021). In this work, to understand the effects of forest 

conditions on hydrologic responses, the HSi metric (Equation 1) is used to evaluate the relationship 
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between hydrologic sensitive areas and tree cover loss resulting from human and/or climate-induced 

disturbances. 

The HSi is based on the widely used Budyko framework (Creed et al., 2014; Helman et al., 

2017; Roderick et al., 2014; Sinha et al., 2019), which plots hydrologic responses relative to climate 

providing a reference on the behavior of the long-term mean water balance as a function of the average 

climatic conditions (i.e., Budyko’s Curve: dashed line) of an area (Budyko, 1974; Greve et al., 2016; 

Helman et al., 2017; Roderick et al., 2014; Trenberth, 2011) (Figure 1). The Budyko framework 

evaluates the relationship between annual values of Actual Evapotranspiration and Potential 

Evapotranspiration (AET and PET respectively) normalized by Precipitation (P, total water available 

for ET in a closed water balance scenario). In simple terms, the Budyko framework captures the 

hydrologic behavior, known as the Evaporative Index (EI; AET/P) of any location under a given 

climatic condition, and the Dryness Index (DI; PET/P).    

                 
Figure 1. Budyko’s Framework. The framework plots the evaporative index against the dryness index. When 

the evaporative index increases (decreases) the water yield decreases (increases). The solid lines represent the energy 

(red) and water limit (blue) lines, and the dashed line represents the historical average of where regions would plot given 

information on their climate (known as the original Budyko curve) (Budyko, 1974; Domínguez-Tuda & Gutiérrez-

Jurado, 2021). 

Therefore, a region's EI can be obtained along the curve given information on its DI (climate). 

HSi is quantified by how far the EI deviates from Budyko’s curve (the normal) relative to the change 
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in DI. Thus, HSi is defined as the ratio between the interannual change in the evaporative index relative 

to the curve (ΔEIR)  and the interannual change in the range of the dryness index (ΔDI)  (Domínguez-

Tuda & Gutiérrez-Jurado, 2021). It is important to point out that HSi evaluates the absolute difference 

between DI and EIR, as the first step to evaluating the overall hydrologic response to variations in the 

climate. Afterward, the respective signs of the dryness index  (± ΔDI) and evaporative index (±ΔEIR) 

are used to explore the impact of tree cover loss on climate and water yield direction, respectively. 

For the purpose of this study, we utilize HSi as the ratio between the change in the 3-year 

averages of pre-disturbance (gray dot) and post-disturbance (black dot) periods for each forest clearing 

event to evaluate hydrologic responses to tree cover loss (Figure 2). We conceive forested areas as 

being hydrologically sensitive if the pixel values within a disturbed region (tree cover loss>0%) 

display HSi>1. That is, high sensitivity occurs when a small change in DI leads to a large change in 

EIR (HSi >1 = ΔEIR > ΔDI, sensitive) and low sensitivity (i.e. resilient) occurs when a large change 

in DI results in a small change of EIR (HSi<1=|ΔDI<ΔEIR|, resilient) before and after the event.  

The HSi metric uses the adapted Budyko formulation (Greve et al., 2016), BA, which accounts 

for changes in storage water terms (y0=AET-P/PET only when AET-P>0) making this metric useful 

to compute hydrologic responses at any spatiotemporal scale (Domínguez-Tuda & Gutiérrez-Jurado, 

2021). Thus, by tracking the changes in hydrologic response (ΔEIR) of a location or region relative to 

Budyko’s curve (BA), that is, its water yield deviation to climatic variability before and after tree cover 

loss (ΔDI), we can calculate the hydrologic sensitivity in disturbed regions in the following manner:  

                                 HSi = 
Δ𝐄𝐈𝐑

𝚫𝐃𝐈
=|

EIRdisturbed(3−yr)− EIRundisturbed(3−yr)

(DIdisturbed(3−yr)− DIundisturbed(3−yr).)
|,                                      (1) 

                                               where EIR = EI − BA  

where sensitive regions will display HSi>1, and resilient locations will show HSi ≤1. All 

computations leading to HSi are carried out in the Google Earth Engine platform (Gorelick et al., 
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2017)  

 
Figure 2. Adapted Budyko Curve. The Budyko framework accounts for changes in storage for regions where 

y0= AET-P>0, so that the range in EIR is in reference to the adjusted curve, while the range in DI is not affected.  HSi is 

calculated as the ratio of a catchment’s range in 3-year average in EI to its range in DI prior (gray dot) and post (black 

dot) the deforestation event: HSi= (∆DI)/(∆EIR), where a) high sensitivity (HSi > 1, red) (i.e., approximating theoretical 

behavior), and (b) low hydrologic sensitivity (HSi<0, green) (i.e., deviating from theoretical behavior).                                                    

2.2 List of disturbed forested regions  

Increasing wildfire activity, drought, and other deforestation events have been reported in many 

regions of the world (Allen et al., 2010; Watch, 2020). This study evaluates 45 regions encompassing 

five different climate types (9 Boreal forests, 14 Temperate Coniferous Forests, 5 Mixed Forests, 5 

Mediterranean Forests, and 12 Tropical Rainforests) from the period 2001-2016. The selected regions 

underwent in aggregate a total of 28 wildfires, 9 deforestation, and 8 droughts. Figure 3 shows the 

location of each one of the events and their characteristics are described in detail in the Appendix 

(Tables A1-A5). 
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Figure 3. Map ID events. The location of 45 events that underwent either drought, wildfire, and/or a deforestation event 

leading to severe tree cover loss during 2001-2016 period. Each number corresponds to one event (detailed descriptions 

for each event are listed in Appendix Table A1-A5). Map created in ArcGIS 10.7.1 software.  

 

2.3 Variables for computing HSia 

We use annual values of AET, PET, and P, along with the percent tree cover for the period of 

January 2001 to December 2016 due to the availability of datasets. The satellite products used for this 

analysis are described in Table 1. AET is derived from Penman-Monteith Leuning version 2 (PML-

V2) at 500m resolution and is noticeably better than major state-of-the-art AET products including 

PML-V1, MOD16, and GLEAM (Zhang et al., 2019). PET is derived from the Moderate-Resolution 

Imaging Spectroradiometer (MOD16A2) Version 6 onboard the Terra satellite at 500m resolution 

(Running et al., 2017). P is derived from the Multi-Source Weighted-Ensemble Precipitation dataset 

(MSWEPv2) at 0.1-degree resolution combining gauge and satellite products, and multiple corrections 

for regional differences making it of the most high-quality P products available with spatial resolution 
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≤0.1° (Beck et al., 2019; Domínguez-Tuda & Gutiérrez-Jurado, 2021). 

Percent tree cover defined as a vertically projected area of vegetation (including leaves, stems, 

branches, etc.) of woody plants above a given height is obtained from Global Forest Cover Change 

(GFCC) (Feng et al., 2016) with 30m resolution and available for four epochs every 5 years: 2000, 

2005, 2010 and 2015. This tree cover dataset is the highest-resolution multi-temporal depiction of 

Earth's tree cover available demonstrating global accuracy (Feng et al., 2016) in depicting the extent 

of wildfire events with more precision than the Burned Area dataset obtained from MODIS 

(MCD64A1.006) (Giglio et al., 2018) at 500m resolution is used along with the GFCC dataset. 

Overall, these products used in this study have been tested worldwide for their accuracy with ground-

based sampling and span a variety of climates and land cover types providing confidence in applying 

these datasets for studies of global terrestrial water and energy cycles and environmental changes 

(Table 1).  

 

 

 
Table 1: Data Collection. Variables and datasets used to compute HSi and tree cover loss with their temporal and spatial 

resolution 
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2.4 Hydrologic Sensitive Area against tree cover loss  

The affected area was located on a global map using the annual values of percent tree cover 

and Burned Area from MODIS for wildfire events. The percent tree cover loss (TCL) was obtained 

by computing the difference in percent tree cover between the year prior and the year post disturbance 

according to the availability of the dataset. For example, TCL for a wildfire event occurring in 2004 

was obtained by computing the difference between the percent tree cover in 2000 and 2005 (%tree 

cover2005 - %tree cover2000=%TCL2005-2000). Once the area where TCL>0% is located for each event, 

we compute HSia on those grid cells. These locations are verified with the coordinates reported for 

each event (See references in Appendix Table A1-A5). HSi values were computed by taking the 

difference EIR and DI between the 3-year average prior and post-disturbance (Equation 1). The 

Hydrologic Sensitive Area (HSia) was obtained by computing the ratio of grid cells with values of 

HSi>1 relative to the total number of grid cells in the encircled disturbed area (grid cells with 

TCL>0%). The HSia was computed for every 10% TCL and plotted. When plotting HSia [0,100] 

against TCL [0,100] for each event, the trend of data points for the majority of the events shows a 

sigmoidal trajectory. For instance, Figure 4 illustrates the data points (red dots) for Event No. 1 

(Appendix A1), where the growth in HSia remains low until a critical tree cover loss is reached and a 

sudden exponential increase in the relationship leads to 100% of the area being hydrologically 

sensitive (HSi area=100%, see Appendix A6-A9). To define this trend mathematically, this behavior 

is modeled using Richard’s Curve Growth function (black line in Figure 4) with 5 parameters and is 

computed as follows: 

                            f(x; α, β, γ, 𝛅) = 𝛅 +
𝛂−𝛅

1+ⅇxp(−β∗(x−γ))
 ,                       (2) 

where, α represents maximum sensitive area (α=100%, upper asymptote), β= growth rate of 

sensitivity area, γ = percent tree cover loss (x) when y= α-δ/2 , and δ= initial sensitive area (given 
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value, lower asymptote) (Birch, 1999). 

3  

Figure 4. Richard’s Growth function of 5 parameters. Diagram displays Richard’s curve (black line) for Event ID 1 

during a severe drought in northwestern Russia (2004-2006) approximating the observed data points (red dots). The 

5 parameters used to fit the observations were: 𝛿 = 16.87% (initial value), 𝛽 = 0.22 (growth rate of sensitive area, 

c=49% (critical point of acceleration), and 𝛾 = 55% (x value when 𝛼 − 𝛿/2). 

 

Figure 5. (a-c) Critical threshold step-by-step computation. Illustration showing how critical points were obtained 

by numerically computing Richard’s function derivatives using Event #1 as an example. 5a) Original Richard’s 

Curve function, 5b) first derivative of Richard's function; 5c) second derivative of Richard’s function: The critical 

points used in this study are those in which maximum growth acceleration is attained [y” value on c)]. 

The critical threshold, c, is obtained by plotting the second derivative of the Richards curve 

function. In Figure 5c, the critical points are defined as the x value that corresponds to the maximum 

or minimum y’’ value (maximum HSia acceleration and minimum HSia deceleration). For this study, 

the 𝑐 of interest is the maximum HSia acceleration (black dot) that is the x value corresponding to 

maximum y’’ value (Figure 5c). In this case, Event No. 1, TCL above 49%, constitutes a critical point 
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resulting in rapidly growing hydrologic responses. 

Richards curve function is computed for each event to obtain c, where 𝛽  and 𝛾 parameters are 

inferred by observing which values best adjust the curve to the data points while 𝛼 and 𝛿 are given 

values (𝛼=100% and 𝛿 =initial value) (Figure 5). Events 7, 12, 18, 29, and 31 are discarded for this 

part of this analysis since irregular patterns in their diagrams could not be reasonably adjusted by 

Richard’s growth function. For these events, however, the water yield and climate direction were 

attainable and included in the analysis. The resulting functions for each event are grouped into forest 

type (see Appendix: Figure A1-A5) and are plotted along with the average trend (Figure 7). Violin 

plots are used to plot the variability in 𝑐 and 𝛽 parameters (Figure 8).  

2.5 Computing climate and water yield direction 

Additionally, Figure 6 plots ∆EIR against ∆DI conceptually showing how climate and water yield 

direction can be obtained from HSi. For instance, all colored areas represent hydrologic sensitivity 

(HSi>1=|∆EIR|>|∆DI|).  For obtaining the climate and water yield direction, the signs of the numerator 

and denominator in the HSi metric (non-absolute values, ±) are considered since changes in the 

evaporative index (±∆EIR) and dryness index (±∆DI) give us information of less water yield vs greater 

water yield and warmer vs cooler conditions, respectively. For instance, figure 6a displays the climate 

direction scenario where the warmer climate (+∆DI) is indicated by yellow, and the cooler state (-

∆DI) is represented by red color. Similarly, figure 6b displays the water yield direction, where 

decreasing water yield (+∆EIR or -Q) is in yellow color and increasing water yield (-∆EIR or +Q) is in 

blue color. The diagram is split into 4 quadrants indicating the possible climate and water yield 

directions: Each quadrant is read as follows: 

Quadrant I = less water yield and warmer climate; 

Quadrant II = less water yield and cooler climate; 
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Quadrant III = greater water yield and cooler climate; 

Quadrant IV = less water yield and warmer climate. 

The sum of the sensitive grid cells (colored region) in Quadrant I and II indicate the total HSia 

that is decreasing in water yield (+∆EIR). Similarly, the sum of sensitive grid cells in Quadrant III and 

IV indicate the total HSia that is increasing water yield (-∆EIR). The sum of sensitive grid cells in 

Quadrant I and IV indicate the total HSia that is increasing in warmer conditions (+∆DI). The sum of 

sensitive grid cells in Quadrant II and III indicate the total HSia that is decreasing in water yield (-

∆DI). For each event, the HSia is plotted against tree cover loss along a colored grid indicating the 

directions in climate and water yield (Results: Figure 9 and 10). 

 

Figure 6. Mean Hydrologic Sensitive Area Concept. The diagrams show how the hydrologically sensitive area is 

computed and how it is partitioned in its climate and water yield direction. All deforested areas have pixel values, where 

each pixel represents a point that can be either hydrologically sensitive or resilient. All colored areas represent the case 

when a point or pixel value would fall in a sensitive area (HSi>1) since |ΔEIR | > |ΔDI|  over line 1:1 (slope=1), while 

white or uncolored regions in the diagram represent points that would fall resilient areas (HSi≤ 1) since |ΔEIR |<|ΔDI|  on 

or below the 1:1 line. However, the quadrant they fall in represents the climate and water yield direction. For instance, 

the diagram on the left a) Climate direction concept:  Quadrant I and IV represent the case where hydrologic sensitive 

areas are becoming drier/warmer (yellow) so that the change in +ΔDI is positive, while in quadrants II and III represents 

the areas which have become cooler/wetter the change in -ΔDI is negative (red). The diagram on the right  ) Water yield 

direction concept: Quadrants I and II represent the condition where hydrologic sensitive areas show decreasing water 

yield tends so that the change in +ΔEIR is positive (yellow), while quadrants III and IV represent the areas that show 

increasing water yield trends so that the change in -ΔEIR is negative (blue). 

3. Results 
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To identify global forest tipping points of tree cover loss leading to high hydrologic sensitivity 

and speed at which this occurs, we analyzed 45 areas affected by drought, wildfire, and deforestation 

leading to extensive tree cover loss. In Figure 7, we synthesized the results by grouping the average 

trend in hydrologic behavior as a function of tree cover loss for each forest type. Tropical rainforests 

display the lowest critical thresholds, and average sensitivity rate values (𝑐 =~19-27%, 𝛽= 0.17, 

respectively). This is followed by Boreal forests that display the second-lowest critical values and 

lowest sensitivity rate (𝑐 =32%, 𝛽= 0.14, respectively). Mixed Forest displays high critical values, 

and high sensitivity rates  (𝑐 =46%, 𝛽= 0.21). Temperate Coniferous Forests and Mediterranean 

Woodlands display the highest critical threshold, and highest sensitivity rate (𝑐 =52-53%, 𝛽= 0.23-

0.29). The initial value of HSia (δ) on the y-axis, represents the inherent hydrologic sensitivity value 

for each forest, where Tropical rainforest (δ=49%) and Boreal forest (δ =25%) have the highest value 

followed by the Temperate forest group (Temperate Coniferous, Mixed, and Mediterranean forests). 

The shaded area shows +/- one standard deviation for all ecosystems indicating that the majority of 

events in each ecosystem are slightly more or less sensitive than the average value. 
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Figure 7. Hydrologic Sensitive Areas against tree cover loss. Defined as the average values of Richard’s curve 

parameters per biome (with standard deviation shade)  and plotted against percent tree cover loss. Labels represent the 

sensitivity rates (β) and critical points, (c) where: Tropical Rainforests (c=27%, black), Boreal forests (c=32%, blue), 

Temperate Broadleaf and Mixed Forests (c=46%, green), Temperate Coniferous Forest (c=52%, red), Mediterranean 

Woodlands and Scrub (c=53%, yellow). Diagram created in MATLAB R2019a. 

  
The relationship between critical points and sensitivity rates (Figure 8a) varies for each forest 

type. In general, the critical threshold is positively proportional to the increase in sensitivity rate; 

particularly, Mediterranean (R2=0.97) and Mixed (R2=0.88), forests display a strong correlation, 

Tropical forests (R2=0.50) show a moderate correlation, and Boreal (R2=0.25) and Temperate 

Coniferous forests (R2=0.22) show a weak correlation. Tropical and Mixed forests show the largest 

variability in critical thresholds (Figure 8b). Tropical forests have a higher probability at low values. 

Figure 8c shows that Tropical and Temperate Coniferous forests have high variability in sensitivity 

rates. Critical points and sensitivity rates are high in Temperate Coniferous, Mixed and 

Mediterranean forests, while the lowest is displayed in Tropical and Boreal forests. Overall, tropical 

and boreal forests are most hydrologically sensitive to tree cover loss since they display the lowest 
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critical thresholds. Particularly, the forests of Borneo, Sumatra, Congo, and Chile (subtropical) have 

lower-than-average critical thresholds compared to the rest of the affected tropical events (see 

Appendix Table A6). Also, the sensitivity rates increase (decrease) with increasing (decreasing) 

critical thresholds and when initial values of HSia are low (high). 
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Figure 8a-c.  Critical threshold values and sensitivity rates. Violin plots where a) Correlation of sensitivity rates 

(𝛽) and critical points (𝑐) across different forest types. The distribution of 𝑐 and 𝛽 per biome is shown with violin 

plots in (b) and (c) respectively. The violin plots show the median values (dashed line in thick colored line), the 

interquartile range (thick colored line), and the thin gray line represents the rest of the distribution, except for outliers. 

The area of the violin that is wide indicates high probability. The longer (shorter) the violin the higher (lower) the 

variability in values. 

 

Second, for all 45 events, we document whether tree cover loss led to increasing or decreasing 

water yield (Figure 9) and if this resulted in a cooler or warmer climate state in the affected areas 

(Figure 10). The results show 42% of events resulted in a warmer climate with decreasing water 

yield due to forest cover loss. Of this total, 47% occurred in Tropical rainforests; 36% occurred in 

Temperate Coniferous, Mixed, and Mediterranean forests, and 21%  occurred in Boreal forests. On 

the other hand,  33% of the total events resulted in a cooler climate and greater water yield. Of this 

total, 73% occurred in Temperate forests and 26.7% occurred in either Boreal or Tropical forests. 
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Finally, 11% of events resulted in neutral conditions. Opposite trends were seen in 13.4 % of events 

where 6.7% of events resulted in warmer climates accompanied by increasing water yield and the 

other 6.7% of events resulted in cooler climates with decreasing water yields.  

In general, Tropical Rainforests display a clear tendency toward decreasing water yield and 

warmer climate states at the early stages of tree cover loss. Boreal forests display a clear tendency 

towards warming conditions but no clear tendency in direction of water yield. Results show both 

increasing and decreasing water yield trends. Temperate Coniferous forests display a tendency 

toward a cooler climate and increasing water yield. However, there are also minor regions with a 

tendency toward the opposite direction: warmer states and decreasing water yield. Mixed forests 

display a tendency toward a warmer climate direction and decreasing water yield. Mediterranean 

forests display a tendency towards increasing water yield and an increase in cooler climate 

conditions. 

In Tropical Rainforest, only events 37 and 38 display a cooler climate and increasing water yield 

due to disturbance, while events 34, 35, 36, 39, 40, 41, 42, 43, and 44 display a warmer climate 

accompanied by decreasing water yield. Event 45 is neutral for both parameters. In Boreal forests, 

events 1, 3, 4, and 8, display a warmer climate with less water yield; Events 5 and 6 display warmer 

conditions but with an increase in water yield; Event 2 displays a cooler climate with a decrease in 

water yield, and events 7 and 9 display cooler conditions with increasing water yield. In Temperate 

Coniferous forests, Events 10, 13, 15, 17, 19, 20, and 22, display cooler conditions with increasing 

water yield (dominant trend); Events 18, 21, and 23 display warmer conditions with decreasing 

water yield; events 11 and 17 display neutral climate conditions with increasing water yields; Event 

12 displays cooler conditions with decreasing water yield; Event 14 displays a neutral trend in both 

climate and water yield direction.   

In Mixed forests, events 24 and 26 display a warmer climate with less water yield; Event 25 
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displays a cooler climate with increasing water yield; event 28 displays a cooler climate with 

decreasing water yield, and Event 26 displays a warmer climate with a neutral water yield direction. 

In Mediterranean forests, events 30, 31, and 32 display a cooler climate with increasing water yield; 

event 29 displays a warmer climate with increasing water yield; Event 33 displays a warmer climate 

with decreasing water yield.  

 
Figure 9. Water yield direction. Hydrologic sensitive areas are partitioned into decreasing water yield (based on the 

portion of disturbed area with +∆EI) or increasing water yield  (based on a portion of disturbed area with -∆EI) as a 

function of tree cover loss (for intervals of 10%). The absolute sum of each pair of rows equals the total HSia. Events 

1-45 are grouped by forest type and next to each event is the event number and the dominant direction for each event: 

+, for less water yield, - for increased water yield, and  +/- for neutral direction. The first row for each pair equals the 

portion of total HSia towards decreasing water yield [0,100] (blue-green to yellow), while the second row of each pair 

equals the portion of the HSia towards increasing water yield [0,-100] (blue-green to dark blue). Data is computed in 

Google Earth Engine and the diagram is created in MATLAB R2019a software 
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Figure 10. Climate direction.  Hydrologic sensitive areas are partitioned into drier climate conditions (based on the 

portion of disturbed area with +∆DI) or wetter/colder states (based on the portion of disturbed area with -∆DI) as a 

function of tree cover loss (for intervals of 10%). The absolute sum of each pair of rows equals the total HSia. Events 

1-45 and area grouped by forest type and next to each event is the event number and the dominant direction for each 

event: +, for drier/warmer climate, - for colder/wetter climate, and  +/- neutral direction. The first row for each pair 

equals the portion of total HSia towards decreasing water yield [0,100] (yellow to red), while the second row of each 

pair equals the portion of the HSia towards increasing water yield [0,-100] (yellow to blue). Data is computed in Google 

Earth Engine and the diagram is created in MATLAB R2019a software. 

4. Discussion 

Our analysis shows that tree cover loss leads to changes in the hydrologic behavior in all forests 

and that for each type, a mean critical threshold can be found, leading to changes in the hydrologic 

regime. This study also shows the speed at which the disturbed area attains complete sensitivity once 

a threshold in forest cover loss is surpassed, while also detecting if the observed changes in hydrologic 
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regime increase or decrease water yield and if they are accompanied by warmer or cooler climate 

conditions. Overall, tropical and boreal forests were among the most hydrologically sensitive to tree 

cover loss as compared to temperate forests. The former show hydrologic changes occurring at very 

early stages of tree cover loss (low critical threshold), while temperate forests had to reach around 

~50% tree cover loss to surpass the critical threshold, but the speed at which these forests attained 

complete hydrologic sensitivity occurred much faster compared to boreal and tropical forests. At lower 

critical thresholds, there is a higher density of tree cover and therefore it will take longer to reach 

complete hydrologic sensitivity (gradual slope and low speed), while at high critical thresholds, there 

is lower tree cover left and escalation to full hydrologic sensitivity proceeds abruptly (steep slope and 

high speed). 

In the last decades, deforestation and other land use changes have significantly reduced global 

terrestrial evapotranspiration resulting in warmer and drier climate conditions (te Wierik et al. 2021) 

and a reduction in rainfall  (Chambers and Artaxo 2017b; Crompton et al. 2021; Kumagai, Kanamori, and 

Yasunari 2013; Leite-Filho et al. 2021b) and surface water yields for some regions (Domínguez-Tuda and 

Gutiérrez-Jurado 2021). The most notorious case of this feedback between forest cover loss and water 

yields is found in tropical rainforests. In those regions, vast canopies pump water from the land into 

the atmosphere through transpiration which together with surface evaporation from open water bodies 

contributes to maintaining high atmospheric moisture. This atmospheric vapor returns to the landscape 

as rainfall in a process known as rainfall recycling that can account for about 30% of the annual 

precipitation in those areas (Staal et al. 2018). Hence, lower tree cover due to deforestation diminishes 

the amount of rainfall (Leite-Filho et al. 2021b) and surface water yields in tropical basins. This study 

shows a mean critical threshold of TCL before significant reductions in water yields occur in tropical 

forests of ~27% TCL, in agreement with recent reports of a similar threshold (25-30%) for the 

Amazonia (Leite-Filho et al. 2021b). However, lower than the average critical thresholds are observed 
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in the Central African (~11% TCL) and Southeast Asian tropical rainforests (~20% TCL), as well as 

in the Chilean subtropical rainforest (Appendix: Table A6). Possible causes for those extremely low 

critical thresholds are discussed next. 

Low critical thresholds in Tropical and Sub-Tropical Forests.  

The mechanisms by which the Congo, Borneo, Sumatra, and sub-tropical Chile forests attain 

hydrologically sensitive conditions so rapidly after low values of TCL are not well understood. 

Various leads point to the unique physiographic conditions of such forests making them highly 

vulnerable to TCL. For example, it has been shown that mountainous terrains with steep slopes are 

hotspots of hydrologic sensitivity (Domínguez-Tuda and Gutiérrez-Jurado 2021), where high 

elevation traps atmospheric moisture, enhancing rainfall recycling(van der Ent et al. 2010). These 

elements coincide with high rates of deforestation of tropical forests in mountainous regions (Zeng et 

al. 2020) and may explain the low critical threshold values observed in Sumatra (Barisan Mountains) 

(Zeng et al. 2020), and extratropical tropical Andean Chilean forests (Pabón-Caicedo et al. 2020).  

Borneo island is also highly mountainous, but low thresholds can also be attributed to the basin having 

the largest recent increase in forest cover loss rates globally(Hansen et al. 2013b). Borneo has lost half 

of its forest cover reducing precipitation and leading to drier conditions (Kumagai, Kanamori, and 

Yasunari 2013). The Congo basin has been identified as one of the regions of the globe where the 

effects of land surface conditions on regional climate and dynamics are most pronounced (Koster et 

al. 2004). In this region, deforestation has led to significant decreases in evapotranspiration resulting 

in increases in surface temperatures and annual precipitation reductions of up to 50% (Nogherotto et 

al. 2013), explaining the significant reduction in surface water yield. Generally, these results suggest 

that slight forest perturbations in tropical ecosystems in high-elevation and complex terrain, lead to 

heightened hydrologic responses and regional warming with some of the greater effects in forests 

outside the Amazon.   
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Boreal Forests 

Various studies have reported that high-latitude, snow-dominated regions are becoming 

warmer, changing the length of the growing season in boreal ecosystems and consequently their 

hydrologic behavior and other important processes for land cover conditions such as forest fire 

dynamics (Buermann et al. 2013; Debeer et al. 2021; Du et al. 2019). As forest fires increase in boreal 

forests, changes in their hydrologic behavior are rapidly occurring and recent as well as past 

works(Valeo, Beaty, and Hesslein 2003; te Wierik et al. 2021) documenting them provide important 

clues to the observed alterations in their water cycling. However, in this study the impacts of a forest 

clearing on the direction in which hydrologic changes occur in these ecosystems have not shown a 

consistent trend: in some cases, water yield increased while in others decreased. Despite showing no 

clear direction in water yields, these ecosystems report low mean critical thresholds of tree cover loss 

at ~32% TCL and in most cases resulting in warmer climatic conditions. In general, the contrasting 

responses in water yield and climate conditions in boreal forests can be a result of multiple factors 

including bio-physiographic conditions, scale, the intensity of disturbance, and time rates of recovery. 

For example, variations in the heterogeneity of the different elements of the landscape such as 

topography, the composition of tree species, stand age, structure, and forest change patterns all affect 

their hydrologic response; differences in topography where higher elevation slopes with equator-

facing aspects are more hydrologically sensitive than lower elevations with polar-facing aspects 

because  ET rates are higher and snow melting is enhanced (M. Zhang et al. 2017b); differences in 

precipitation regimes where rain-dominated areas are more sensitive than snow-dominated areas to 

forest cover loss since tree cover loss can produce less impact on runoff on snow-dominated areas. It 

is also important to consider that TCL’s short versus longer-term effects might result in mixed 

directions in hydrologic trends of boreal forests. For example, the immediate effects of forest clearing 

leading to warmer trends with increasing water yield can be attributed to significant reductions in 
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albedo and larger portions of land being directly exposed to incoming solar radiation after the removal 

of tree cover. Both processes lead to rising surface temperatures, enhancing snowmelt and permafrost 

thawing favoring runoff conditions (Valeo, Beaty, and Hesslein 2003; Yoshikawa et al. 2003). 

Additionally, if TCL was the result of a forest fire, this may increase water yield in the short term as 

some of the immediate impacts of forest clearings result in decreases in canopy interception and 

evapotranspiration, increases in soils’ hydrophobicity, and large reductions in soil water infiltration, 

thus increasing net precipitation, base-flow, and surface water yield (Valeo, Beaty, and Hesslein 

2003). However, depending on their rate (speed) of recovery, water losses due to younger emerging 

forests with higher ET rates (Aguilos et al. 2021) than mature undisturbed stands can result in 

decreasing water yields (Valeo, Beaty, and Hesslein 2003). Also, at large scales albedo changes play 

a major role in defining climate conditions despite the high latitude amplification of CO2-induced 

warming. Deforestation and post-replacement of the trees by emerging grasses and shrubs may 

increase surface albedo resulting in cooler temperatures by up to 0.25 [-]  (Bala et al. 2007). The 

inconsistent trends in water yield directions after TCL of boreal forests beg for more detailed and 

focused analysis beyond the scope of this current work. 

Temperate Forests 

Temperate Coniferous, Mediterranean, and Mixed forests have been reported to consistently 

display increasing water yields as a result of tree cover loss (Gimeno-García, Andreu, and Rubio 2007; 

Goeking and Tarboton 2020b; Soulis et al. 2021; Vieira et al. 2016; M. Zhang et al. 2017b). This 

agrees with a review of many studies concluding that water yield increases in these forests after 

wildfire events. Our study found that wildfire-induced tree cover loss in temperate forests mainly leads 

to increasing water yield and cooler climate conditions. Cooler temperatures can be attributed to an 

increase in surface albedo in the disturbed area with higher fractions of terrain exposing brighter 

surfaces or brighter emerging vegetation (Bala et al. 2007). Similar to previous studies, increasing 
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water yields in temperate forests following a wildfire are attributed to reduced plant tran, interception-

related losses, and decreases in infiltration (from hydrophobic soils) resulting in a higher proportion 

of rainfall becoming runoff (Goeking and Tarboton 2020b). However, a decrease or no change in 

water yield in response to wildfire-induced tree cover loss is also reported and can occur when trees 

are replaced with shrubs with higher leaf area index and higher transpiration rates (Goeking and 

Tarboton 2020b). 

Differences in water yield after TCL in these forests can also be a result of differences in 

topography, climate, and vegetation patterns. For instance, the topographic aspect controls the effects 

of trees on snowmelt via their modulation of shortwave radiation (Gutiérrez-Jurado and Vivoni 2013). 

Wildfires can result in earlier snowmelt relative to unburned stands (Maxwell, Call, and st. Clair 

2019). Climate can affect water yield since warmer climate results in more precipitation falling as 

rainfall rather than snow (Jacobs 2015). Also, warmer temperatures can lead to tree die-off, affecting 

evapotranspiration patterns and rates.  

 In general, temperate systems display relatively slow changes to their hydrologic sensitivity 

to forest cover loss before reaching their critical threshold (~46-53%). However, once they surpass 

this threshold, the speed at which the forest attains complete hydrologic sensitivity escalates quickly, 

and in the majority of cases leads to increasing water yield and cooler climate conditions. This agrees 

with studies that report low hydrologic sensitivity in large temperate forested watersheds (Havel, 

Tasdighi, and Arabi 2018; M. Zhang et al. 2017b). Similarly, to boreal forests, evidence suggests that 

variability in hydrologic response in these forests similar to forest types depends on a combination of 

factors such as vegetation structure, climate, and topography which may result in either an increase or 

decrease in water yield (Goeking and Tarboton 2020b). 

5. Conclusions 



67 

Analyses of changes in the hydrologic sensitivity of forests around the world to various degrees 

of deforestation provided evidence of significant shifts in hydrologic responses to climate variability. 

We documented hydrologic-regime tipping points in 45 regions across various forest types that 

underwent extensive tree cover loss induced by either drought, fire, or deforestation during the 2001-

2016 period and reported whether the observed changes lead to increasing or decreasing water yield 

and warmer vs cooler climate conditions. Notably, rapid and substantial changes in the hydrologic 

regimes of tropical and boreal forests have been detected after TCL events. Tropical systems were the 

most hydrologically sensitive to tree cover loss and its impact on water yield and climate occurs at the 

very early stages of tree cover loss (~27%; warmer climate and reduced water yield) followed by 

Boreal (~32%; warmer climate with both increase and decrease in water yield), and Temperate forests 

(46-53%; cooler climate and increasing water yield). Our study shows that tree cover loss leads to a 

decrease in surface water yield and warmer climates in tropical regions with lower-than-average 

thresholds in Congo, Borneo, Sumatra, and Chilean Andean regions. Since both boreal and tropical 

forests are hydrologically highly sensitive to tree cover loss and they influence the global climate in 

multiple ways (Bala et al. 2007), further studies should focus on assessing the effects of forest clearing 

on hydrologic processes and accounting for different landscape factors. 
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APPENDIX 

TABLE A1: Documented cases of drought and or wildfire induced tree cover loss in Boreal Forests. 
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TABLE A2: Documented cases of drought and or wildfire forest induced tree cover loss in Temperate Coniferous Forests. 
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TABLE A3: Documented cases of drought and or wildfire-induced tree cover loss in Temperate Broadleaf and Mixed 

Forests.  

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

TABLE A4: Documented cases of drought and or wildfire-induced tree cover loss in Mediterranean Woodlands and 
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Scrub.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE A5: Documented cases of drought and deforestation-induced tree cover loss in Tropical Rainforests.  
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Figure A1-A5: Hydrologic sensitive area against tree cover loss for all 45 events. Grouped by forest 
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type with mean value (red dashed line). 

 

Figure A1: HSia against TCL for Boreal Forests. 

 

Figure A2: HSia against TCL for  Temperate Coniferous Forests. 
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Figure A2: HSia against TCL for Temperate Broadleaf & Mixed Forests. 

 

Figure A4: HSia against TCL for Mediterranean Woodlands and Scrub.. 
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Figure A5: HSia against TCL for Tropical Rainforest.. 
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TABLE A6: Richard’s curve parameters for all events. Note: Event IDs with No Data values are due to irregular patterns 

in diagrams not approachable with Richards’s growth function. α=100% 
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Chapter 3: Hydrologic sensitivity in Amazonia ecoregions to drought-induced 

tree cover loss. 

Abstract 

 
We know that different ecosystems are affected differently by climate variability. However, 

the Amazon basin has been studied as a homogenous ecosystem, although it contains a 

heterogenous landscape divided up into 30 different ecoregions. Thus, the impacts of forest 

disturbance on hydrologic responses may vary across the basin. Identifying the impact of 

extreme drought in different Amazonia ecoregions leading to unstable hydrologic behavior is 

important to understanding the role different vegetation species have in water cycling dynamics 

and identify locations of hydrologic sensitivity under extreme climate events. Here, we use the 

hydrologic sensitivity index that measures hydrologic responses to climate variability, to 

document the most hydrologically sensitive ecoregions within the basin and report the 

differences in response to the most recent extreme Amazon drought events (Amazon droughts 

in 2005, 2010, and 2015). Also, we document anomalies in vegetation greenness as a proxy for 

the transpiration process for each drought event against a historical mean for sensitive 

ecoregions using the improved nonlinear-generalized version of the normalized difference 

vegetation index (kNDVI). We identify clusters of hydrologic sensitivity areas within north, 

northwestern, and southwestern ecoregions. We observe negative anomalous values of 

transpiration in the majority of ecoregions during the consequent year of drought. Ultimately, 

we identify which parts of the Amazon basin are closer to reaching a critical threshold that 

may lead to irreversible changes in ecosystem services and water dynamics and which 

vegetation communities need urgent conservation strategies. 
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1. Background 
The Amazon is one of the most important elements maintaining the stability of the Earth 

system, and it constitutes the world's most biodiverse and water-yielding basin. However, climate 

warming and extreme weather events have led to forest cover loss resulting in decreasing water yields 

(Dominguez-Tuda & Gutierrez-Jurado, 2021). Moreover, the Amazon basin is divided into ecoregions 

characterized by different plant communities, which have been exposed to novel environmental 

conditions that are beyond the range to which they are adapted. Although specific plant communities 

may have evolved resilience to extreme weather events and climate change, the fact that water 

availability is highly dependent on the thriving of forest vegetation, since a major part of rainfall is 

recycled within the basin through plant transpiration (Ellison, 2012), an assessment evaluating their 

role in hydrologic responses in the Amazon basin has not been completed. 

In the last two decades, the Amazon Rainforest has been impacted by increasingly intense and 

frequent droughts, leading to major forest cover loss with a slow rate of recovery. Specifically, the 

most recent and severe drought events in Amazon history occurred in 2005, 2010, and 2015, leading 

to tree death affecting 40% to 80% of the basin, with each event worse than the previous one 

(Panniset, 2018). Also, reduced rainfall or drought events have an amplifying effect resulting in 

further tree cover loss (reference of amplifying), and some species might be able to adapt better than 

others giving us information on which will thrive in the future and how patterns of migration may 

occur.  Given the dependence of water security and ecosystems services on plant community 

evolution (Becklin, 2016) and the increasing droughts events, defining tipping points of tree cover 

loss leading to high hydrologic sensitivity across different ecoregions within the basin, will help in 

identifying the most vulnerable ecosystems that regulate Amazon services to prioritize and trigger 

specific solutions to maintaining forest health and productivity. Also, we will be able to understand 

the role that different vegetation species play in Amazon hydrology, and which are expected to thrive 
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in the future. 

2. Methods 

2.1 Defining the Amazon ecoregions 

An ecoregion is defined as a large unit of land or water containing a geographically distinct 

assemblage of species, natural communities, and environmental conditions (WWF; Oslon, 2001). The 

Amazon basin contains ecoregions that include rainforests, seasonal forests, deciduous forests, 

flooded forests, bamboo stands, palm forests, savannas, dry forests, and cloud forests which are all 

included in this assessment. Figure 1 displays Amazon ecoregions that were obtained from the World 

Wildlife Fund (WWF; Oslon, 2001). Figure 2a-c displays the method for discriminating the Amazon 

ecoregions affected by drought. Figure 3a displays the reference images obtained from Panniset, 2018 

that defines the drought or affected area based on values reporting negative anomalies in precipitation, 

higher than normal land surface temperatures, and solar radiation within the basin. Figure 3b, displays 

the same boundaries as in Figure 3a but is drawn out as a shapefile for data processing using 

ArcMap10.7.1. Figure 2c displays the intersection between the drought area (Figure 3b) and the 

Amazon ecoregion (Figure 1) so that the resulting shapefiles for data processing are the Amazon 

ecoregion portion affected by drought.  

 

 

 

 

 

Table 1: Data Collection. List of products with temporal and spatial resolution used to evaluate HSi. 



90 

           

Figure 1: Amazon ecoregions. Obtained from the Forest Ecoregions World Wildlife Fund (WWF). Image created 

in ArcMap10.7.1. 

 

2.2 Delimiting the affected area for each drought event.  

 

Figure 3a-c displays the method used to define the affected area for each drought event in order 

to consider only that area for each ecoregion. Figure 3a displays the reference images obtained from 

a previous study that defines the drought or affected area based on values reporting negative 

anomalies in precipitation (Panniset, 2018), higher than normal land surface temperatures, and solar 

radiation within the basin. Figure 3b, displays the same boundaries as in Figure 3a but is drawn out 

as a shapefile for data processing using ArcMap10.7.1. Figure 3c displays the intersection between 

the drought area (Figure 3b) and the Amazon ecoregion so that the resulting shapefiles for data 

processing are the Amazon ecoregion portion affected by drought. Table 2 displays the characteristics 

of each of the 3 drought events and the meteorological variables and drivers of drought for each 
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extreme drought event. 

2.3 Computing HSia and percent tree cover loss 

To evaluate the effect of forest loss on hydrologic sensitivity in different vegetation types 

within the Amazon basin, we first compute the hydrologic sensitive area (HSia). The Hydrologic 

Sensitive Index (HSi) is used to evaluate hydrologic responses to climate variability within deforested 

areas. By taking the 3-yr average post- and 3-yr average pre-disturbance periods for the 3 different 

droughts occurring during 2005, 2010, and 2015, we are able to evaluate HSi for each grid cell. The 

Hydrologic Sensitive area (HSia) is defined by the portion of grid cells (with tree cover loss >0%) 

with HSi value>1 relative to the entire area of the affected ecoregion. Percent tree. The HSia is 

computed and plotted against intervals of 10% tree cover loss.  Percent tree cover loss (TCL) is 

computed by taking the difference for each pair of available years of percent tree cover (every 5-years) 

globally. That is, TCL is computed by taking the difference in percent tree cover between the years 

2000, 2005, 2010, and 2015. Depending on the year(s) of disturbance the pair of years of annual values 

are selected.   

The HSi index is computed as a ratio of change hydrologic response (ΔEIR) of a location or 

region relative to Budyko’s curve or historical average (BA), to climatic variability before and after 

tree cover loss (ΔDI). This index is computed in disturbed regions in the following manner:  

                                 HSi = 
Δ𝐄𝐈𝐑

𝚫𝐃𝐈
=|

EIRdisturbed(3−yr)− EIRundisturbed(3−yr)

(DIdisturbed(3−yr)− DIundisturbed(3−yr).)
|,                                      (1) 

                                               where EIR = EI − BA  

                                        HSia = 
Grid Cells in disturbed area with HSi>1

Total Griⅆ Cⅇlls in ⅆisturbⅇⅆ arⅇa
|,                                               (2)                                    

where sensitive regions will display HSi>1, and resilient locations will show HSi ≤1 (Equation 2. All 

computations leading to HSi are carried out in the Google Earth Engine platform (Gorelick et al., 

2017). More detail for equation (Chapter 2 Methods Section). By plotting HSia [0,100] against TCL 
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[0,100] for each ecoregion, these display a growth trend. This trend is approximated using Richards 

curve function (Chapter 2, Methods section). The critical threshold, c, is obtained by plotting the 

second derivative of the Richards curve function (Figure 2). Since the maximum acceleration critical 

threshold, c1, oscillates between similar values at around ~0-10 %, it is not used to distinguish the 

most sensitive ecoregions (Figure 4a-c). The maximum deceleration critical threshold, c2, is useful to 

identify the most sensitive ecoregions since values vary and it indicates those which regions that arrive 

at a complete HSia (y-axis) at very early stages of tree cover loss. The c2 is computed for all ecoregions 

and for each drought and is used to select the top 11 most sensitive ecoregions and is also used to list 

the ecoregions from least to greatest hydrologic sensitivity.  

 

 

Figure 2. (a-c) Step-by-step computation of critical threshold. Illustration showing how critical points were obtained 

by numerically computing Richard’s function derivatives. 2a) Original Richard’s Curve function; 2b) First derivative of 

Richard's function; 2c) Second derivative of Richard’s function: The critical points used in this study are those in which 

maximum deceleration is attained, the c2=x value when y’’ is at its minimum. 
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Figure 3 a-c. Amazon drought area. Shapefiles created for data processing. From left to right displays the Amazon 

drought extent from 2005, 2010, and 2015 where a) displays the reference images where the drought area occurred; b) 

displays the polygons drawn out in ArcMap 10.7.1, and c) displays intersection of between the Amazon ecoregions and 

drought area and below the respective legends for each. 
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2.4 Time series for observing anomalies in Vegetation 

After identifying the hydrologically sensitive ecoregions in the Amazonia basin, we evaluate the 

changes in vegetation for each system to distinguish the magnitude of response relative to the historical 

average during 2002-2019 period. We use the nonlinear generalization of the normalized difference 

vegetation index (kNDVI), which is the improved version of NDVI (Camps-Valls et al., 2021). We 

compute kNDVI as  

                                                      kNDVI=tanh (NDVI 2 )                                                          (3), 

 where NDVI is obtained from  MODIS at 250m resolution (MOD13Q1.061 Terra Vegetation 

Indices 16-day Global). Since kNDVI is also a proxy for measuring the fraction of total solar radiation 

absorbed by living plants for photosynthetic activity (FAPAR), it is also useful for measuring changes 

in transpiration, as both of these parameters are coupled  (occur at the same moment and their values 

are interrelated). Specifically, the opening of stomata (pores of leaves) is the process through which 

the plant can permit solar radiation to be absorbed, while at the same time, the water inside the stomata 

is released to the atmosphere (transpiration). Thus, a change in kNDVI also reflects a change in 

transpiration of the same magnitude. In other words, if kNDVI decreases, there is no photosynthetic 

activity, which in turn declines transpiration response. In the face of drought, we expect to detect 

negative anomalies in kNDVI for the majority of ecoregions. Thus, by plotting the time series of 

kNDVI for the sensitive ecoregions during drought years, relative to a historical mean, we are able to 

identify the magnitude of the changes in transpiration. We include three maps to display these 

anomalies at basin-wide scale (entire Amazon basin) for each drought event.  

 

 

2.5 Data Collection 
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Table 1 displays the characteristics for each of the 3 drought events and the meteorological variables 

and drivers of drought for each extreme drought event. The drought of 2005/06 was mainly driven by 

the elevated warming in the tropical North Atlantic Ocean, with a precipitation deficit of +1.8 standard 

deviation (SD) during June-September period. The drought mainly affected the western and 

southwestern Amazon, representing 37.9% of the area and tree cover loss equivalent to a release of 

1.6x1015 g of carbon (Panniset et al., 2018). The drought of 2010/11 was a result of elevated warming 

sea surface temperatures in the Atlantic and Pacific Ocean resulting in more severe conditions 

compared to 2005, with a precipitation deficit of +2.1 SD during June-September period (Panniset et 

al., 2018). The drought affected western, southwestern, and southeastern Amazon representing 43% 

of the area and tree cover loss equivalent to 2.2x1015 g of carbon. The drought of 2015/16 was driven 

by elevated warming of Atlantic and Pacific resulting in more severe conditions than 2005 and 2010 

drought with a precipitation deficit of +3.5 SD. The drought affected 80% of the basin with higher 

concentration on eastern Amazon with tree cover loss of 30,000km2 (Panniset et al., 2018). 

 

 

 

 

 

 

 

Table 1: Drought comparison chart. Overview of the differences between the 3 major drought-induced forest cover loss 

in the Amazon basin 
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Table 2 describes the corresponding datasets used to compute HSi, tree cover percentage and 

vegetation index.  Actual evapotranspiration is obtained from the Penman-Monteith Leunig Version 
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2 dataset with a 8-day temporal resolution and a 500 m spatial resolution (Zhang et al., 2019). This 

dataset stands out from previous AET datasets, since it measures AET coupled with gross primary 

productivity (GPP) which is linked to this parameter providing higher quality data. Also, this is the 

only product to date to provide evaporation, transpiration and interception as independent values 

which previous datasets do not provide. This dataset has been tested across different climates against 

multiple in site measurements displaying high correlation (Table 2, References). Potential 

evapotranspiration is obtained from MODIS product MOD16A2.006 at 8-day temporal resolution and 

500m spatial resolution (https://doi.org/10.5067/MODIS/MOD16A2.006). Precipitation is obtained 

from Multi-Source Weighted Ensemble Precipitation dataset Version 2 at daily temporal resolution 

and 0.1-degree spatial resolution (11,100m) (Beck et al., 2019). Percent tree cover loss is obtained 

from Global Forest Cover Change at 5-year temporal resolution and at 30 m spatial resolution (Sexton 

et al., 2019). Normalized difference Vegetation Index is obtained from MODIS product 

MOD13Q1.061 Terra Vegetation Indices at 16-day temporal resolution and at 250 m spatial resolution 

(https://doi.org/10.5067/MODIS/MOD13Q1.061).  

 

 

 

 

 

 

Table 2: Data Collection. Variables and datasets used to compute HSia and tree cover loss with their temporal and spatial 

resolution. 

https://doi.org/10.5067/MODIS/MOD16A2.006
https://doi.org/10.5067/MODIS/MOD13Q1.061
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3. Results 

By plotting percent Hydrologic Sensitive Area against tree cover loss percentage for all 

ecoregions, we are able to distinguish the ecoregions with lowest critical thresholds. In Figure 4, the 

critical threshold decreases between each event (steeper slope line). The top 11 ecoregions with lowest 

thresholds were color-coded, while the rest of the ecoregions (higher thresholds) were grayed out. 

These highly responsive ecoregions group along the northwestern, central, and southwestern areas. 

Many of these ecoregions are found in the eastern slopes of the Andes where elevation, rainfall, and 

vegetation growth is high compared to the rest of the basin (Weng et al., 2018) (Figure 5). 

Hydrologically sensitive ecoregions that appear to be sensitive in all three drought events and are 

found in the Southwest and part of the north-central Amazon include the Peruvian Yungas, Bolivian 

Yungas, and Negro Branco forests. Hydrologically sensitive regions that appeared both in the 2005 

and 2010 drought are found in the Northwestern Amazon: Gurupa Varzea, Rio Negro Campirana, 

Japura Solimoes-Negro, and Jurua Purus Forest. Hydrologically sensitive ecoregions that appear both 
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in the 2010 and 2015 drought are Solimoes-Japura, Caquetá, and Eastern Cordillera Real. All other 

ecoregions only appeared as sensitive during a specific drought, in the 2005 drought: Marajo Varzea, 

Monte Alegre Varzea, Uatuma Trombetas and Ucayali forests; in the 2010 drought: Napo and Purus 

forests; and in 2015: Northwestern, Pantepui, Guianan Highlands, Guianan Piedmont forests. In figure 

5a, the 2005 drought displays the sensitive ecoregions are clustered along the central and northern part 

of the basin. In figure 5b, the 2010 drought displays the sensitive ecoregions clustered mainly along 

northwest and southwestern part of the basin. In figure 5c, the 2015 drought display the sensitive 

ecoregions along the north and southwestern part of the basin. Figure 5d indicates all in one figure 

that the hotspot for sensitivity occurs within the pristine Amazon Forest in the western part of the 

basin, specifically the northwest and southwest, and central areas. All drought events impacted the 

southwest region. Apart from the southwest regions, the 2005 drought mainly impacted the central 

Amazon hydrology, the 2010 drought affected the northwestern edge of basin, while the 2015 drought 

affected the northern Amazon hydrology basin in general.  
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a)  

b)  
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  c)         
Figure 4a-c: Sensitive Ecoregions for each drought event. Based on the trend of HSia plotted against percent TCL for 

each Amazonia ecoregion. Colored lines display the top 11 hydrologically sensitive ecoregions, while all other regions 

are grayed out. 

 
Figure 5 a-d: Hydrologically sensitive Amazon ecoregions. Results of sensitive regions for a) Drought 2005 (green); 

b) Drought 2010 (orange); c) Drought 2015 (pink) and d) All sensitive areas grouped together. Ecoregions with low 

sensitivity are grayed out.  
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We document times-series diagrams to observe changes in kNDVI for the 2005/06, 

2010/2011, and 2015/16 drought years against the historical mean of the 2002-2019 period (the 

average does not include the latter drought years).  The anomalies for kNDVI show a clear negative 

deviation from the historical mean in majority of ecoregions. In figure 6 for drought 2005/06, eight 

out of ten ecoregions display a clear negative anomaly between days 73 and 150 of year 2006. The 

highest anomalies are observed in Marajo Varzea (-0.34) and Rio Negro Campinarana (-0.24). In 

figure 7, for drought 2010/11, seven out of ten regions display anomalies at varying months during 

2010 and 20111.  The highest anomalies are observed in Bolivian Yungas (-0.201), Rio Negro 

Campinarana (-0.147), and Caqueta (-0.126). In figure 8, for drought 2015/16, all ecoregions display 

clear negative anomalies, with the most apparent during 2016. The highest anomalies are observed 

in Northwestern Andean Montane (-0.304), Eastern Cordillera Real (-0.213), and Pantepui (-0.18) 

ecoregions. 

 
Figure 6: Time series of kNDVI for hydrologically sensitive ecoregions in Drought 2005/2006. Time series for 2005 

(orange) and 2006 (blue) years are plotted relative to the historical mean 2002-2019 period. The historical mean does not 

include drought years. 
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Figure 7: Time series of kNDVI for hydrologically sensitive ecoregions in Drought 2010/2011. Time series for 2010 

(orange) and 2011 (blue) year are plotted relative to the historical mean 2002-2019 period. The historical mean does not 

include drought years. 

 

Figure 8: Time series of kNDVI for hydrologically sensitive ecoregions during Drought 2015/2016. The time series 

for 2015 (orange) and 2016 (blue) year are plotted relative to the historical mean 2002-2019 period. The historical mean 

does not include drought years. 
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In spatial retrospect, for the 2005/06 drought the kNDVI anomalies are concentrated on the 

southwestern and northern ecoregions. For the non-sensitive ecoregions, the southeastern part of the 

basin, the high anomalies is attributed to the arc of deforestation. In the 2010/11 drought, the north 

central area has a greater anomaly, while in 2015/16 and negative anomalies are basin-wide with 

greater clusters in the northern and northeastern areas (Figure 9). 

 

Figure 9: Amazon kNDVI anomalies relative to 2002-2019 period. Based on the difference of average kNDVI of 

2005/06, 2010/11, 2015/16 relative to historical average 2002-2019 period. The historical average does not include 

extreme drought years. The figures display decrease (red) and increase (green) in transpiration or photosynthetic activity. 

                                                           

4. Discussion 

 

At large scales reduced tree cover is known to decrease recycled rainfall up to ~30% (Staal et 

al., 2018, Spracklen et al., 2015, Leite-Filho. 2021) and is easily driven by drought (Staal et al., 2020; 

Zemp et al., 2017), resulting in an increase in longer dry seasons (Ruiz-Vasquez et al., 2020, 

Wunderling et al., 2022, Bagley et al., 2014) making tropical rainforests hydrologically sensitive to 

tree cover loss. Another study indicates that previous rainfall recycle values are underestimated and 

that loss of tree transpiration in the Amazon could result in a 55-70% decrease in precipitation 
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annually. Although all ecoregions in Amazon are hydrologically sensitive, our study shows the highest 

hydrologic sensitivity occurs along central, northern, and southwestern Amazonia ecoregions. The 

attribution for these results in the southwestern areas (Peruvian and Bolivian Yungas) is primarily due 

to local recycled rainfall where ~70% of their rainfall is generated in the Amazon (Zemp et al., 2017, 

Weng et al., 2018, Sierra et al., 2022). For the southwestern ecoregions, the dependency on rainfall 

recycling (which is ~30-50%) (Mu, 2021, Weng et al, 2018) is high, but slightly lower than the 

southwestern regions. This makes it hydrologically sensitive to tree cover loss. For the northern and 

central areas, a great source of rainfall stems from incoming Atlantic moisture, which is reduced 

during drought (Mu, 2021), representing up to 60% of rainfall within these ecoregions. Thus, the 

combination of a reduction in both recycled generated rainfall and incoming Atlantic moisture is a 

plausible explanation for high hydrologic sensitivity to tree cover loss and a drier climate state. 

In contrast, although the non-sensitive ecoregions (southeastern grayed area) (figure 5) also 

benefit from moisture recycling (40%) (Connor et al., 2021), they have gained a degree of resilience 

to drought since they have been highly deforested in recent years resulting in a constant drier/warmer 

climate with more drought resistant vegetation species. This tropical savanna area, representing 20% 

of the Amazon basin, has undergone large-scale deforestation and conversion to pastureland where 

crops exert lower evapotranspiration rates compared to tropical native vegetation. Thus, this is a 

potential explanation as to why these ecoregions do not show relatively high values of hydrologic 

responses to drought or tree cover loss as compared to the rest of the basin.  

The clear negative anomalies of the kNDVI values relative to the historical mean 2002-2019 

for the majority of ecoregions support the hypothesis that tree cover loss results in the reduction in 

vegetation-generated rainfall. Since kNDVI is a strong proxy for photosynthetic activity coupled to 

transpiration processes responsible for the changes in rainfall patterns in Amazonia, observing 
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anomalous patterns in this index allows us to detect the ecoregions with the greatest transpiration 

losses (negative anomaly on kNDVI) during extreme drought. In the 2005/06 drought, the Marajo 

Varzea and Rio Negro Campinarana found in the western-central Amazon where this drought had a 

greater impact, show large anomalies in kNDVI along these ecosystems. Moreover, the Marajo Varzea 

ecoregion lies at the mouth of the Amazon River and largely separates the Atlantic Ocean from inland 

rivers. The predominance of palms such as burit and acai represents most of its vegetation (Sears, 

2018). The most severe threat to this fairly intact region is recent human-induced habitat loss. Rio 

Negro Campinarana, on the other hand, is dominated by herbaceous savannas, lichens, and grasses. 

Epiphytic orchids and bromeliads are also abundant (Sears & Lemos, 2018). In the 2010/11 drought, 

the Bolivian Yungas found at the eastern foothills of the Andean Mountains had large negative kNDVI 

anomalies. The anomalies in transpiration are attributed to the high dependency on rainfall recycling. 

Moreover, the mountains block moisture from the North Atlantic trade winds enhancing this feedback. 

Slash and burn practices threaten most unprotected areas.  Forest clearing occurs in foothills for crop 

cultivation which has endangered over 20 species. The Caqueta ecoregion, located in the northwestern 

Amazon, has resulted in the clearing of forests near the headwaters of the Vaupes region for large 

scale cattle ranching (Sears & Marin, 2018). These ecoregions are also found at the foothills of the 

Andean Mountains. The 2015/16 drought affected the Northwestern Andean Montane ecoregion 

where 50 % of plants are endemic species. The Eastern Cordillera Real Montane ecoregion, also 

affected in 2015/16, sits at eastern foothills of middle Andean mountains extending north-south from 

southern Colombia through Ecuador, and Northern Peru. The dominant vegetation species are tropical 

evergreens but species vary dramatically with elevation (Salcedo, 2018). The Pantepui ecoregion has 

relatively high elevation making it a quite intact area, but it is hydrologically sensitive due to its ability 

to capture moisture when recycling occurs. Overall, most of these impacted regions were found int 
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very sensitive areas of intact Amazon forested vegetation, regions threatened by increasing human 

activities.  

5. Conclusions 

Studies agree that the pristine areas are critical for a thriving Amazon ecosystem, particularly, 

for acting as a resilient system against climate change and intensifying droughts. In this study, 

however, we identify that the pristine and relatively intact Amazon areas are hydrologically sensitive 

to drought-induced tree cover loss, particularly along north, northwestern and southwestern 

Amazonia. Ecoregions within these areas include: Bolivian, Peruvian Yungas (southwest), Negro-

Branco, Gurupa Varzea, Rio Negro Campirana, Japura Solimoes, Uatuma, Negro Campirana, Jurua 

Purus, Solimoes-Japura, Caqueta, Napo, Eastern Cordillera Real Montane, and Cordillera Oriental 

Montane (northern, northwestern and central). We attribute this impact to the high dependency on 

these regions on incoming rainfall generated from forest evapotranspiration relative to the rest of the 

basin. In this study, we also identified the ecoregions with greatest transpiration anomalies.: Rio Negro 

Campirnarana, Caqueta,  Eastern Real Montane, Northwestern Andean montane, Pantepui, Bolivian 

Yungas, and Marajo Varzea. Previous studies have reported that recycled rainfall accounts for up to 

70% (Weng et al., 2017) in the southwest region, and has a relatively long dry season. Thus, reduced 

rainfall can have major impacts on these ecosystems. Moreover, the recycled rainfall feedback 

accounts for up to 50% in the north and northwestern regions. In addition, a great portion of the rainfall 

in these regions also depends on incoming Atlantic moisture that is significantly reduced during 

drought, especially during the El Niño Southern Oscillation (Drought 2005 and 2010). Although the 

Northwestern Amazon is a well-preserved tropical forest, there is still a high level of misunderstanding 

as to the regional dynamics of land use and land cover change which will  define the fate of  the 

hydrologic processes for these ecoregions. There are traces of land use and land cover changes such 
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as illicit crops, logging, pastures, and forest regeneration due to land abandonment (Baker & 

Spracklen, 2019). How these ecological impacts will play out depends on where proximal land use 

change will take place, whether the Atlantic trade winds change in intensity, and how the behavior of 

new dry seasons will proceed (Wu et al., 2017). 
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Conclusions and Future Work 

 

For the first study, I assessed the hydrologic sensitivity to climate variability for all 

terrestrial biomes. We established a novel metric, the Hydrologic Sensitivity Index, which measures 

the hydrologic response of any region to climate variability and can be applied to small and large 

scales. This index is based on annual values of PET and AET, and P, to assess the interannual change 

in hydrologic behavior (ΔAET/P) of a location relative to a change in climatic condition (ΔPET/P). 

For values 𝐻𝑆i ≥1: Sensitive and 𝐻𝑆i<1: Resilient. This index is also useful to determine the hydrologic 

and climate condition direction. For instance, a decrease in water yield (+ΔAET/P, higher AET) or an 

increase in water yield (-ΔAET/P, higher AET) plus an increase in warmer conditions (+ΔPET/P) or 

cooler conditions (-ΔPET/P). In summary, this study indicates that the majority of the regions detected 

as hydrologic sensitive areas are changing towards drier conditions with decreasing water yields. 

Moreover, the highest responses of hydrologic sensitivity to climate variability were identified 

within high and low latitudes during the 2001-2016 period. Particularly, tropical rainforests show 

the largest hydrologic sensitivity with the majority of their sensitive area trending towards 

decreasing water yields followed by boreal systems with increasing water yields. We found that 

sensitivity is amplified at high elevations and in steep-sloped terrain (high slope angle), outlining 

the importance of topography on hydrologic responses. We direct the attention toward climate 

warming resulting in increasing snow melt and precipitation in Arctic tundra and boreal forests and 

increasing tree cover loss in tropical forests, as possible mechanisms driving the observed patterns. 

Globally, boreal and tropical forests, the two biomes producing the greatest water yields also display 

the greatest extent of hydrologic sensitive land. This makes them hotspots for hydrologic 

surveillance of expected impacts from further increases in climatic shifts with the potential to 

significantly alter the global water cycle. Future work (second study) should determine if the 
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hydrologic sensitivity patterns found in this study represent tipping points in changing hydrologic 

dynamics within each biome and assess at the regional and local scale their cascading impacts on 

ecosystems and human settlements. 

For the second study, we globally synthesized the hydrologic sensitivity to forest cover loss 

by computing the critical thresholds (tipping points) of forest cover loss across different forest types 

that underwent either drought, wildfire, or deforestation-induced tree mortality. Using the novel HSi 

metric we computed the sensitive area in 45 events covering five distinct forest types (Tropical, 

Boreal, Temperate Coniferous, Mixed and Mediterranean forests) and plotted the results against tree 

cover loss. The trends were useful to compute the sensitive rate (the speed at which the affected area 

attains hydrologic sensitivity) once the critical thresholds were surpassed. Forests with lower-than-

median critical thresholds of tree cover loss before heightened hydrologic responses are established 

(<19%) were identified particularly within the Congo basin, Sumatra Island, Borneo island, and 

Chilean subtropical areas. Overall, this study shows that tropical rainforests display more sensitivity 

to land cover changes indicating that flourishing tree cover represents a key role in providing stability 

in their hydrologic systems. This trend is followed by the boreal systems with low critical thresholds 

(~32%) while high critical thresholds (46-53%) are seen in the Temperate Forest group (Temperate 

Coniferous, Mixed, and Mediterranean). Studies agree that the tree cover loss (mainly deforestation 

and drought) in the tropics results in decreases in recycled precipitation, accounting for up to 30-70% 

which is our major explanation for the high hydrologic responses to tree cover loss. Boreal system 

hydrologic has not been widely assessed in previous work and we identified that their hydrology also 

becomes unstable due to tree cover loss (mainly as a result of wildfire events). 

For the third and final study, we assessed the hydrologic sensitivity to drought-induced tree cover 

loss for the 30 distinct Amazonia ecoregions during 2005, 2010, and 2015 droughts. We identified 

pronounced hydrologic sensitivity to tree cover loss in the pristine Amazon area within the southwestern, 
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central, and northwestern ecoregions. Studies agree that the most sensitive regions are located in the 

southwest since 70% of its rainfall is generated by tree transpiration. This area is dominated by the 

Peruvian and Bolivian Yungas, The northwestern and central pristine areas are also dependent on 

vegetation for generating 50% of their rainfall in addition as well as the incoming Atlantic moisture 

which are both reduced during extreme drought. These ecoregions include: Negro-Branco, Gurupa 

Varzea, Rio Negro Campirana, Japura Solimoes, Uatuma, Negro Campirana, and Jurua Purus, 

Solimoes-Japura, Caqueta, Napo, Eastern Cordillera Real Montane, and Cordillera Oriental Montane. 

Anomalies in transpiration were evaluated for each ecoregion where the Bolivian Yungas, Marajo 

varzea, Rio Negro Campinarana, Northwestern Andean Montane, and Eastern Cordilleran Real 

Montane display the greatest transpiration loss due to drought relative to a historical average 2002-

2019 period. The majority of these ecoregion are located at eastern foothills of the Andes mountains 

with high endemism of species. 
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