University of Texas at El Paso ScholarWorks@UTEP

Open Access Theses & Dissertations

2023-05-01

Multi-Objective Optimization Framework For Electrified Vehicle Penetration Based On Life Cycle Assessment And Life Cycle Cost.

Eva Alondra Diaz Lozano University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

Part of the Engineering Commons, and the Sustainability Commons

Recommended Citation

Diaz Lozano, Eva Alondra, "Multi-Objective Optimization Framework For Electrified Vehicle Penetration Based On Life Cycle Assessment And Life Cycle Cost." (2023). *Open Access Theses & Dissertations*. 3783.

https://scholarworks.utep.edu/open_etd/3783

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org by an authorized administrator of ScholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please contact www.web.access.org by a scholarWorks@UTEP. For more information, please.org

MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR ELECTRIFIED VEHICLE PENETRATION BASED ON LIFE CYCLE ASSESSMENT

AND LIFE CYCLE COST

EVA ALONDRA DIAZ LOZANO

Master's Program in Industrial Engineering

APPROVED:

Ana Cram, Ph.D., Chair

Ivonne Santiago, Ph.D.

Sergio Luna, Ph.D.

Stephen L. Crites, Jr., Ph.D. Dean of the Graduate School Copyright ©

2023

by

Eva Alondra Díaz Lozano

Dedication

I dedicate this thesis to the most important people in my life - my mom and my sister. Thank you for always believing in me and encouraging me to pursue my dreams. I am forever grateful for the sacrifices you have made and the countless ways you have helped me along the way. This achievement would not have been possible without your constant motivation and inspiration. This thesis is as much yours as it is mine.

MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR ELECTRIFIED VEHICLE

PENETRATION BASED ON LIFE CYCLE ASSESSMENT

AND LIFE CYCLE COST

by

EVA ALONDRA DIAZ LOZANO

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Industrial, Manufacturing and Systems Engineering THE UNIVERSITY OF TEXAS AT EL PASO

May 2023

Acknowledgments

I could not have accomplished this without the support and encouragement of many people. I wish to acknowledge and thank specific individuals who have played a significant role in my success, and I take this chance to express my gratitude to them.

This material is based upon work supported by the National Science Foundation (NSF) Engineering Research Center for Advancing Sustainability through Powered Infrastructure for Roadway Electrification (ASPIRE) Award # 1941524. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

In addition, I would like to express my sincere gratitude to the Mexican National Council of Science and Technology (CONACYT) for awarding me the scholarship to pursue my master's degree. This opportunity has not only allowed me to further my education but has also helped me develop the skills necessary to grow in my field.

I want to take this opportunity to express my sincere gratitude to my thesis advisor, Dr. Ana C. Cram, for her exceptional guidance and support throughout the course of my thesis work. Her expertise, dedication, and encouragement have been invaluable in guiding me through the complexities of the thesis process. Thank you, Dr. Cram, for your exceptional mentorship and for believing in my potential.

I wish to express my gratitude to Dr. Ivonne Santiago and Dr. Sergio Luna for their valuable guidance and support throughout my research work. Their insightful feedback and suggestions have played an instrumental role in shaping my work and ensuring its success. Furthermore, I would like to thank the Department of Industrial, Manufacturing, and Systems Engineering at The

V

University of Texas at El Paso for their support in this journey and I also want to thank Dr. Juan Fernandez for his support and contributions to this thesis work.

Lastly, I would like to thank my family, my boyfriend, and my friends, who have been a constant source of support and motivation throughout my academic journey. Their constant encouragement has been essential in keeping me focused and motivated during challenging times. I am grateful for their love, patience, and understanding, which have allowed me to pursue my academic aspirations with confidence. Their presence in my life has been a source of joy and inspiration, and I am fortunate to have such a wonderful support system.

Abstract

This research proposed a novel framework for creating optimal transportation scenarios that consider multiple objectives such as minimum greenhouse gas emissions, air pollutant levels, and cost of ownership. The thesis approach is a multi-objective evolutionary algorithm coupled with the AFEET tool, allowing us to efficiently explore the complex trade-offs between these objectives and identify a diverse set of optimal solutions. Through several case studies and a design of experiments, this demonstrates the effectiveness and practicality in different scenarios. This approach has significant implications for policymakers and industry professionals seeking to make sustainable and cost-effective decisions in the transportation sector.

Dedication	iii
Acknowledgments	V
Abstract	vii
Table of Contents	viii
List of Tables	xi
List of Figures	xii
Chapter 1: Introduction	1
1.1 International Panel on Climate Change	1
1.2 Transportation Sector	5
1.3 Biofuels	6
1.4 Fuel Costs	8
1.5 Energy-efficient vehicles	10
1.5.1 Battery Electric Vehicles	11
1.5.2 Hybrid Electric Vehicles	12
1.5.3 Fuel Cell Vehicles	15
1.6 Vehicle Penetration	16
Chapter 2: Literature Review	18
Chapter 3: Optimization	23
3.1 Linear programming	24
3.2 Multi-Objective Optimization	25
3.2.1 Pareto Optimality Theory	26
3.3 MOP Evolutionary Algorithm Approaches	27
3.3.1 A Priori Techniques	
Lexicographic ordering	
Linear aggregating functions	29
Nonlinear aggregating functions	30
3.3.2 Progressive Techniques	30
3.3.2 A Posteriori Techniques	31

Independent sampling techniques	31
Criterion Selection Techniques	31
Aggregation techniques	
Constraint technique	34
Pareto sampling techniques	34
3.4 Multi-objective Genetic Algorithms (MOGA)	35
Chapter 4: Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool	36
Chapter 5: Methodology	
5.1 Methodology Structure	
5.2 AFLEET Tool	
5.2.1Collect fuel data for passenger cars and passenger trucks	
5.2.2 Input data in On-Road Fleet Footprint Calculator	41
5.2.3 Extract and save CO, NOx, and GHG data from the AFLEET tool	45
5.2.4 Input Light-duty vehicle information in AFLEET Tool	46
5.2.5 Extract and save Total Cost of Ownership Calculator results	49
5.2.6 Result Tables	49
5.3 MOEA	59
5.3.1 Initialization	60
5.3.2 Evaluation	62
5.3.3 Fitness assignment	62
5.3.4 Selection	63
5.3.5 Crossover	63
5.3.6 Mutation	65
5.3.7 Termination	66
Chapter 6: Case Studies	67
6.1 Case Studies	67
6.2 Case Study 1	67
6.3 Case Study 2	72
6.4 Case Study 3	76
6.5 Case Study 4	81

Chapter 7: Design of Experiments	
7.1 Results	
Chapter 8: Conclusions and Future Work	96
8.1 Conclusion	96
8.2 Future Work	
References	
Vita 107	

List of Tables

Table 1.1: The ten largest oil producers and share of total world oil production in 2021	9
(EIA, 2022)	9
Table 1.2: Characteristics of BEV, HEV, and FCV (Chan et al., 2010)	11
Table 5.1: Passenger cars fuel information (ORNL, 2022).	39
Table 5.1. Passenger cars fuel information continuation (ORNL, 2022)	40
Table 5.2: Passenger truck's fuel information (ORNL, 2022)	40
Table 5.3: Average cost of vehicles (Edmunds, 2022).	46
Table 5.3: Average cost of vehicles (Edmunds, 2022).	47
Table 5.3: Type of vehicles	50
Table 5.4: GHG output values	51
Table 5.4: GHG output values (continuation)	52
Table 5.5: CO output values	53
Table 5.5: CO output values (continuation)	54
Table 5.6: NOx output values	55
Table 5.6: NOx output values (continuation).	56
Table 5.7: TCO output values	57
Table 5.7: TCO output values (continuation).	58
Table 6.1: MOEA Parameters	67
Table 6.2: Solutions for Case Study 1.	68
Table 6.3: Solutions for Case Study 2.	73
Table 6.4: Solutions for Case Study 3.	77
Table 6.5: Solutions for Case Study 4.	81
Table 7.1: MOEA parameters for the Design of Experiments	86
Table 7.3: Analysis of variance for Solution and computational time	88
Table 7.3: Analysis of variance for a normalized solution.	90
Table 7.4: Analysis of variance for computational time	92

List of Figures

Figure 1.1: Total U.S. Emissions in 2019, 6,558 million metric tons CO2 equivalent (excludes	
land sector) (EPA, 2021b)	3
Figure 1.2: 2014 Global CO2 fossil fuel combustion and industrial processes emissions (EPA, 2022)	4
Figure 1.3: 2010 U.S. carbon dioxide emissions by source (FPA 2021b)	т Л
Figure 1.4: Gasoline prices (Goolding, 2022)	т
Figure 1.5: Diagol prices (Goolding, 2022).	10
Figure 1.5. Diesei pinces (Goolding, 2022).	. 10
Figure 1.0: BEV configuration (Yoush et al., 2011).	. 12
Figure 1.7. Series HEVs configuration (Fayyad et al., 2012).	. 13
Figure 1.8: Parallel HEV configuration (Fayyad et al., 2012)	. 14
Figure 1.9: Series-parallel HEV configuration (Fayyad et al., 2012).	. 14
Figure 1.10: FCV configuration (Guo et al., 2013).	. 15
Figure 1.11: Registered vehicles in the U.S. from 2013 - 2019 (Paulus et al., 2022)	. 17
Figure 3.1: Flow chart of modeling physical problems to get an optimal solution (Nayak, 2020)). 22
Figure 3.2: An example of a problem with two objective functions: cost and efficiency	. 23
Figure 3.3: Priori weight selection for a bi-objective example in linear aggregating technique.	
$w_1r_1+w_2r_2$ (Coello et al. 2007)	30
Figure 3.4: Schematic of VEGA's selection mechanism	32
Figure 3.5: Schematic of VEGA's (Coello et al. 2007)	. 32
Figure 2.6: The concert of Perete entimelity as related to non-dominance in a maximization	. 55
MOD (Coollo et al. 2007)	24
Figure 2.7 MOCA Decode code (Coello et al. 2007)	. 34
Figure 3.7: MOGA Pseudo code (Coello et al., 2007)	. 33
Figure 5.3: Example of GHG, CO, and NOX values for a 2012 gasoline passenger car – AFLE	EI
Tool screenshot.	. 45
Figure 5.4: Example of GHG, CO, and NOx values for a 2012 gasoline passenger truck –	
AFLEET Tool screenshot.	. 45
Figure 5.5: Example of the key vehicle and fuel inputs for Passenger Cars - AFLEET Tool	
screenshot	. 48
Figure 5.6: Representation of the Simple Payback Calculator - AFLEET Tool screenshot	. 48
Figure 5.7: Example of the TCO calculator - AFLEET tool screenshot	. 49
Figure 5.8: Example of the result table	. 59
Figure 5.9: MOEA	. 59
Figure 5.10: Example of the initial individual.	. 60
Figure 5.12: Generation of the new individual.	. 61
Figure 5.13: Example of the initial population	. 62
Figure 5.14: Single-point crossover process	65
Figure 5.15: Evaluation of the crossover constraints	65
Figure 5.16: Mutation process	66
Figure 6.1. Pareto Ontimality for Case Study 1	71
Figure 6.2: Derete Optimality for Case Study 2	76
Figure 0.2. Fareto Optimality for Case Study 2	. /0
Figure 0.5. Pareto Optimality for Case Study 5	. 60
Figure 0.4: Pareto Optimality for Case Study 4	. 83
Figure /.1: Normal plot of the effects for the normalized solution and computational time	. 89

Figure 7.2. Pareto chart of the standardized effects for the normalized solution and con	mputational
time	89
Figure 7.3: Normal plot of the effects for the normalized solution.	
Figure 7.4: Pareto chart of the standardized effects for the normalized solution	
Figure 7.5: Normal plot of the effects for computational time	
Figure 7.6: Pareto chart of the standardized effects for computational time	
Figure 7.7: The Main Effects Plot for the response Solution	
Figure 7.8: Response Optimization	

Chapter 1: Introduction

Since the mid-20th century, anthropogenic activities have strongly influenced climate change and are attributed to the observed rise in average global warming, resulting in profound disruption to humans and the ecosystem (Allen et al., 2018).

1.1 INTERNATIONAL PANEL ON CLIMATE CHANGE

The International Panel on Climate Change (IPCC) is a scientific and intergovernmental committee dedicated to providing the world with the most updated scientific and objective information regarding climate change and its potential economic, social, and political impacts.

The latest IPCC report (2021) presented observations related to the climate changes in every region, such as extreme weather, floods, increases in droughts, sea level rise, and biodiversity loss, all representing an unprecedented risk to susceptible populations (Allen et al., 2018). These risks depend on the magnitude and warming percentage, geographic location, development and vulnerability levels, and decisions and implementation of adaptation and mitigation options (IPCC, 2018).

The greenhouse effect is a million-year-old natural process discovered by Joseph Fourier in 1827. This effect is a primary factor in keeping the earth warm as it helps to prevent heat from escaping from the atmosphere. Thus, the average global temperature would be colder without the greenhouse effect, not allowing life to exist on earth as we know it (Kweku et al., 2018). According to Kweku et al. (2018), the greenhouse gas effect is mainly caused by the interaction of the radiation from the sun and greenhouse gases, trapping heat in the atmosphere.

Between 1880 and 2012 global average surface warming temperature observed was 0.85°C (Allen et al., 2018). However, according to the IPCC report Climate Change: The Physical Science Basis (2021), Greenhouse Gas (GHG) emissions generated by anthropogenic activities caused an

increase to approximately 1.1°C of average warming and are projected to reach, or exceed, 1.5°C of the global temperature over the next 20 years, based on datasets to assess historical warming. Still, around 20% to 40% of the worldwide population has experienced over 1.5°C warming above pre-industrial in at least one season (Allen et al., 2018). In addition, the IPCC (2021) report presented new estimates of the chances of surpassing the global warming level of 1.5°C in the following decades. It stated that taking action to reduce GHG emissions on a large scale is essential. Otherwise, warming will be surpassed by 1.5°C or even beyond 2°C, which could take 20 to 30 years to stabilize global temperatures. However, substantial and continuous reductions in GHG emissions would establish a limit for climate change (IPCC, 2021).

The United States Environmental Protection Agency (EPA) (2021b) stated that carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), and fluorinated gases are some of the most predominant GHG emissions in the US (Figure 1). Fossil fuels, solid waste, and other biological materials are significant contributors to the formation of (CO_2), in the atmosphere. On the other hand, methane (CH_4) is emitted during the production and transportation of natural gas, coal, and oil, as well as in other agricultural practices and land use. Nitrous oxide (N_2O) is also emitted during agricultural but also industrial activities, combustion of fossil fuels, and solids. Additionally, fluorinated gases are usually cast in smaller quantities, sometimes called high Global Warming Potential (GWP) gases.

Figure 1.1: Total U.S. Emissions in 2019, 6,558 million metric tons CO₂ equivalent (excludes land sector) (EPA, 2021b).

The rapid increase in atmospheric GHG concentration has caused climate change and the global warming effect, which has motivated international efforts on climate change to monitor, prevent and overturn adverse outcomes. Greenhouse gas in global warming is commonly expressed in GWP, which allows assessing the differences between global warming impact of the gases, typically CO₂ (Kweku et al., 2018).

According to EPA (2021b), the primary greenhouse gas emitted through anthropogenic activities is CO_2 , accounting for approximately 80% of all U.S. GHG emissions from anthropogenic activities in 2019, such as CO_2 , are present in the atmosphere naturally as part of the earth's carbon cycle. However, the carbon cycle is being affected by human activities by adding more CO_2 to the atmosphere, disrupting the ability of forests and soils to remove and store those CO_2 emissions. According to EPA, the top CO_2 emitters are China, the United States, the European Union, India, the Russian Federation, and Japan (Figure 1.2). The data in figure 2 is based on fossil fuel emissions, as well as cement manufacturing and gas flaring, accounting for a considerable portion of total global CO_2 emissions (EPA, 2022).

Figure 1.2: 2014 Global CO₂ fossil fuel combustion and industrial processes emissions (EPA, 2022).

The main anthropogenic activity that leads to CO_2 emissions increase in fossil fuel combustion to supply energy, industrial, and transportation systems (Figure 1.3) (Kazancoglu et al., 2021).

Figure 1.3: 2019 U.S. carbon dioxide emissions by source (EPA, 2021b).

Fossil fuels are the most significant sources of energy to generate electricity in the U.S. In 2020, natural gas accounted for 40% of its electricity generation. Coal was the third largest with 19% of the U.S. electricity generation, and petroleum accounted for 1%, leaving renewable and nuclear energy electricity generation at 20% (EIA, 2019).

1.2 TRANSPORTATION SECTOR

Over the past 20 years, the transportation sector accounted for almost a quarter of CO_2 emissions from global energy use (Woodcock et al., 2019). As transportation sector accounted for nearly 29% of GHG emissions and 28% of total energy consumption in the U.S. (Wang et al., 2021). More than 50% of transportation-related GHG emissions result from passenger cars, medium- and heavy-duty trucks, and light-duty trucks, such as sport utility vehicles, pickup trucks, and minivans. On the other hand, commercial aircraft, ships, boats, and trains, as well as pipelines and lubricants, are responsible for the remaining GHG emissions from the transportation sector (EPA, 2021a; Woodcock et al., 2019).

Internal combustion engine vehicles (ICEV) are the source of other climate pollutants, such as CH_4 , N_2O , black carbon, and ozone (O_3) (Woodcock et al., 2019). In addition, a small amount of hydrofluorocarbon (HFC) emissions is created in the transportation sector. These emissions result from the increased use of mobile air conditioners and refrigerated transport (EPA, 2021a). Likewise, the number of Vehicle Miles Traveled (VMT) also harms the environment and has increased by 48% from 1990 to 2019. Therefore, sustainable transportation options should be considered to reduce environmental impacts such as climate change, global warming, and other climate change impact categories (EPA, 2021a; Ercan & Tatari, 2015).

Since emissions from transport are increasing faster than from energy-using sectors, and the trend is expected to increase by 80% between 2007 and 2030, significant reductions in GHG

emissions are needed to prevent severe climate destabilization (Woodcock et al., 2019). According to McCollum & Yang (2009), scientific studies suggest that global annual GHG emissions should be reduced by 50% to 80% by 205 to avoid destructive climate change impacts.

Furthermore, there are diverse opportunities to decrease GHG emissions related to transportation. Reducing travel demand through urban planning and reducing the number of VMT per individual each day by building public transit, sidewalks, and bike paths are great alternatives to decrease the use of motor vehicles (EPA, 2021a; Woodcock et al., 2019). However, switching to fuels that emit less CO_2 , and intensifying alternative sources such as biofuels, renewable electricity, and other renewable sources would significantly reduce transport related GHG emissions (EPA, 2021a).

1.3 BIOFUELS

To rely less on oil resources, the demand for renewable energy production increases, especially biomass conversion to biofuels. The Energy Independence and Security Act of 2007 (EISA) mandates expanding biofuel volumes and extending target dates to 2022. First, in 2008, the Renewable Fuel Standard required 9 billion gallons of biofuels to be produced and consumed. The target for 2022 is to produce 36 billion gallons of biofuels, where at least 16 billion should be obtained from cellulosic ethanol. Biofuels are considered one of the most influential and low-cost fuels. When diluted with gasoline help decrease harmful pollutants to human health, such as carbon monoxide, benzene, and exhaust hydrocarbons (Cram, 2019). The intensification of renewable energy technologies such as biofuels can meet global energy demand and are essential to reducing GHG emissions. However, their commercial production remains in the process (Girdhar et al., 2017). Generally, biofuels are classified as first-, second-, and third generation.

First-generation biofuels are sourced from crop plants as energy-containing molecules like sugars, oils, and cellulose (Aro, 2016). These biofuels are made through fermentation or chemical processes that convert the biomass's oils, sugars, and starches into liquid fuels. First-generation biofuel markets and technologies are well-established. The most common in the U.S. is corn ethanol, blended into most gasoline sold domestically, providing new economic opportunities by expanding markets for conventional commodity crops (Nagler & Gerace, n.d.). However, there are concerns about the environmental impacts, setting limits in the increasing production of this classification of biofuels, as it is claimed that they are not cost-efficient emission abatement technology. Therefore, it is recommended to have more efficient alternatives (Naik et al., 2010). The main disadvantage of first-generation biofuels is the food versus fuel debate. The rapid expansion of biofuel crops with food crops, decreasing food supply and increasing food prices (Nagler & Gerace, n.d.).

In contrast, second-generation biofuels are manufactured from lignocellulosic biomass such as corn stover, wheat straw, miscanthus, switchgrass, poplar, willow, and wood (Geismar et al., 2022). This type of biofuel is more suited to being grown on land not used for food production (Nagler & Gerace, n.d.; Aro, 2016). Second-generation biofuel's advantages include lower greenhouse gas emissions through their life cycle than grain alcohol. Another advantage is the ability to be produced from grasses that grow on low-quality marginal lands since these fuels have a fundamental non-food nature (Geismar et al., 2022). However, a significant challenge for a biofuel supply chain is the seasonal availability of biomass. Most harvest windows of crops are approximately eight weeks, and none exceed 11 (Hess et al., 2009). Thus, the supply of over 40

weeks must be stored. Therefore, the design and operation of the biomass supply chain are essential for a biorefinery's success (Geismar et al., 2022).

Finally, third-generation biofuels, such as microalgae, are currently considered an ideal biofuel feedstock due to their rapid growth rate, CO_2 fixation ability and high production capacity of lipids can be produced on non-arable land. In addition, microalgae have bioenergy potential as they can be used to produce liquid transportation and heating fuels, such as biodiesel and bioethanol (Dragone et al., 2010). According to Christi et al. (2007), biodiesel production by microalgae will not compromise the production of food, fodder, and other crop products. However, technological developments, including advances in microalgal biomass harvesting, drying, and processing, are significant areas that may lead to enhanced cost-effectiveness. Therefore, effective commercial implementation of the biofuel from microalgae strategy (Dragone et al., 2010).

In 2007, the Low Carbon Fuel Standard (LCFS) aimed to reduce GHG emissions generated by petroleum-based transportation. Using a market-based cap and trade approach by establishing a requirement for fuel producers would reduce the carbon intensity of their products under the LCFT, allowing importers, refiners, and wholesalers to develop low-carbon fuel products (Cram, 2019).

1.4 FUEL COSTS

Given the essential role of crude oil in the world economy, the impact of crude oil prices on the economy has been a matter of great concern to economists. Several studies have focused on the U.S. economy since it is the most significant oil importer (Wang et al., 2013). The U.S. produced 20% of the world share total in 2021, almost 18.88 million barrels per day. Saudi Arabia and Russia are the second and third most significant oil importers. They accounted for 10.84 million and 10.78 million barrels per day, respectively, as shown in Table 1.1 (EIA, 2022).

Country	Million barrels per day	Share of world total
United States	18.88	20%
Saudi Arabia	10.84	11%
Russia	10.78	11%
Canada	5.54	6%
China	4.99	5%
Iraq	4.15	4%
United Arab Emirates	3.79	4%
Brazil	3.69	4%
Iran	3.46	4%
Kuwait	2.72	3%
Total top 10	68.82	72%
World total	95.57	
	(EIA 2022)	a

Table 1.1: The ten largest oil producers and share of total world oil production in 2021

(EIA, 2022)

According to West Texas Intermediate (WTI), oil prices have risen from an average of \$71 per barrel in December 2021 to \$109 in May 2022. U.S. gasoline and diesel inventories are running low, refining capacity is strained, and export demand remains strong (Goolding, 2022). However, according to an article published in the Federal Reserve Bank of Dallas, the monthly national average for regular-grade gasoline, which reached \$4.46 per gallon in May, has not reached the 2008 peak of \$5.35 realistically. Gasoline prices between 2011 and 2014 were consistently at or above recent (gasoline and diesel prices in the U.S. are at record levels on a nominal (non-inflation-adjusted) basis for Figure 1.4 and Figure 1.5 (Goolding, 2022).

Figure 1.4: Gasoline prices (Goolding, 2022).

Historically, U.S. consumers only slowly reduce fuel consumption when prices increase since most consumers need to drive daily to work, school, grocery stores, and other destinations. Public transportation is an alternative, mainly for those in dense urban areas. Buying a more fuelefficient or electric vehicle when fuel prices increase is not an option for most people (Goolding, 2022).

1.5 ENERGY-EFFICIENT VEHICLES

The automotive industry is one of the leading worldwide industries, not only in the economic aspect but also in research and development (Sanguesa et al., 2021). The significant growth of today's cities has led to increased transportation use, resulting in increased pollution and severe environmental problems (Hannan et al., 2014). Therefore, with the accelerated increase in the number of vehicles, mitigation of the dependence of vehicles on petroleum to reduce pollutant emissions is becoming one of the main approaches (Xueliang et al. 2015). However, one of the automotive industry's most significant challenges is developing near-zero-emission technologies (Hannan et al., 2014).

Due to the increase in oil and gas usage leading to environmental problems, automotive companies have started developing new technologies to offer more sustainable vehicle options (Prajapati et al., 2014). The development of these new vehicle technologies has focused on total electric traction (Lanzarotto et al. 2018). Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV), and Fuel Cell Vehicles (FCV) are the three typical vehicles that are proposed to replace conventional vehicles with ICEVs (Kebriaei et al., 2015). Table 1.2 shows a comparison of the significant characteristics of EVs, HEVs, and FCVs. Such comparisons are made based on five attributes: (1) Propulsion; (2) Energy Storage Subsystem (ESS); (3) Energy source and infrastructure; (4) Characteristics; and (5) Major issues.

	BEV	HEV	FCV
Propulsion	 Electric motor drives 	Electric motor drives	Electric motor drives
		 Internal combustion engines 	
Energy storage	Battery	Battery	Hydrogen tank
subsystem	 Supercapacitor 	 Supercapacitor 	 Battery / supercapacitor needed to
(ESS)		 Fossil or alternative fuels 	enhance power density.
Energy source	 Electrical grid charging facilities 	Gasoline stations	 Hydrogen
& infrastructure		 Electrical grid charging facilities (for Plug-In 	 Hydrogen production and
		Hybrid)	transportation infrastructure
Characteristics	 Zero local emissions 	Low local emissions	 Zero low local emissions
	 High energy efficiency 	 High fuel economy 	 High energy efficiency
	 Independent of fossil fuel 	 Long driving range 	 Independent of fossil fuels (if not using
	 Relatively short range 	 Dependence on fossil fuels 	gasoline to produce H2)
	 High initial cost 	 Higher cost than ICE vehicles 	 High cost
	 Commercially available 	 Commercially available 	Under development
Major issues	 Battery sizing and management 	 Battery sizing and management 	 Fuel cell cost, life cycle and reliability
	 Charging facilities 	Control, optimization and management of multiple	 Hydrogen production and distribution
	• Cost	energy sources.	infrastructure
	 Battery Lifetime 		Cost

Table 1.2: Characteristics of BEV, HEV, and FCV (Chan et al., 2010).

1.5.1 Battery Electric Vehicles

BEVs are proposed as a long-term solution to the harmful effects of traditional transportation, especially on the environment (Onat et al., 2019), as BEVs are characterized to be more eco-efficient due to their great potential to minimize the emissions related to transportation (Emadi, 2014). BEVs have only one energy source, namely, an electric battery. BEVs need to be periodically connected to a battery source to replenish the start, which has been the primary subject of ongoing research (Selvakumar, 2021). Because the vehicle is powered only by batteries or other

electrical energy sources, zero-emission can be achieved (Figure 6) (Chan, 2010). The typical range of a BEV is estimated to be around 100-150 km on a full charge, but high-end models of the BEV can extend this range to about 300-350 km (Grunditz and Thiringer, 2016).

Figure 1.6: BEV configuration (Yousfi et al., 2011).

1.5.2 Hybrid Electric Vehicles

HEVs are experiencing rapid sales growth compared to BEVs and FCVs, as they maintain the advantages of conventional vehicles. Furthermore, HEVs incorporates internal composition engine, electric machines, and power electronic equipment, operating in charging environments of different fuel types, load levels, and weather conditions (Liu, 2013; Kebriaei et al., 2015). Manufacturing HEVs can reduce fuel consumption, lowering GHG and pollutant emissions (Lanzarotto et al. 2018).

An HEV's composition consists of storing energy on board in two or more forms. In a typical HEV, gasoline with an engine is used as a fuel converter. Another form is a bidirectional electrical storage device, reducing the fuel consumption of the HEV by recovering energy during braking, downsizing the engine, operating the engine more efficiently, and shutting the engine off

when it is not moving (Kebriaei et al., 2015). More modern HEVs use efficiency-improving technologies, such as regenerative braking, converting the vehicle's kinetic energy into electric energy to charge the battery, avoiding wasting it as heat energy as conventional breaks do (Kebriaei et al., 2015).

Depending on the way the two powertrains are integrated, there are generally three basic HEV architectures: (1) Series hybrid; (2) Parallel hybrid; and (3) Series-parallel hybrid. Describing the Series HEV, the Internal Combustion Engine (ICE) has no mechanical connection with the traction load, never directly powering the vehicle. The traction power is converted to electricity, and the sum of energy from the two power sources is made in an electric node (Figure 1.7) (Chan et al., 2010).

Figure 1.7. Series HEVs configuration (Fayyad et al., 2012).

Parallel hybrid systems have an ICE and electric motor connected to a mechanical transmission, allowing the battery to recharge during regenerative braking and cruising. However, due to a fixed mechanical link between the wheels and the motor, the battery cannot be charged when the car is not moving (Figure 1.8) (Kebriaei et al., 2015).

Figure 1.8: Parallel HEV configuration (Fayyad et al., 2012).

Series–parallel HEVs can take advantage of the positive attributes of both series and parallel HEVs and are dominating the current passenger HEV market, requiring a transmission device to couple the engine and electric machines with the vehicle. For hybrid vehicles, the coupling mechanism must be compact, efficient, easy to control, and low-cost (Figure 1.9) (Chen et al., 2011).

Figure 1.9: Series-parallel HEV configuration (Fayyad et al., 2012).

1.5.3 Fuel Cell Vehicles

An FCV refers to an EV that uses a fuel cell instead of batteries or a supercapacitor to power an electric motor (Figure 1.10) (Das et al., 2017). The fuel cell is a direct chemical converter into electrical energy. The process consists in generating electrical power if fuel and oxidants are provided to the fuel cell in sufficient quantities (Eberle et al., 2012). However, the adoption of FCV is mainly affected by the inflated cost of vehicles and infrastructure distribution, compared to EVs, which are the optimal choice for addressing environmental problems and the energy crisis, as they do not consume oil (Sun et al., 2019).

Technological measures to reduce vehicle pollutants might reduce emissions, but health effects would be more negligible. Therefore, the combination of reduced reliance on motorized travel, such as hybrid or electric automobiles, with the vigorous implementation of low-emission technology like energy generated from lower-carbon or non-fossil fuels, will offer the best outcomes in terms of climate change mitigation and public health (Woodcock et al., 2019; EPA, 2021a). In addition, according to Ercan & Tatari (2015), electricity as the power source has been

suggested as the future primary energy source for most vehicles due to its potential environmental benefits. Some studies show that the electric sector has the lowest marginal emissions reduction costs and, as a result, would provide the bulk of near-term mitigation in an economy-wide policy regime (McCollum & Yang, 2009).

Increased life expectancy and income have accompanied global economic growth. However, environmental degradation and pollution in many regions are related to significant poverty and severe inequality in income distribution and access to resources, amplifying vulnerability to climate change (Allen et al., 2018).

1.6 VEHICLE PENETRATION

As the demand for passenger vehicles and freight transportation rapidly rises, adverse effects such as traffic congestion, traffic accidents, and air pollution increase. Consequently, the demand for fossil fuels is constantly growing while oil self-sufficiency has significantly declined (Shigeru et al., 2020). With the rapid growth of the U.S. economy, ownership of private vehicles has been increasing. According to the Federal Highway Administration, the total number of cars registered in the U.S. reached 276,491,191 in 2019, being 6% higher compared to the number of vehicles registered in 2014 (Paulus et al., 2022). Figure 1.11 shows the number of registered vehicles in the US from 2013 to 2019.

Figure 1.11: Registered vehicles in the U.S. from 2013 - 2019 (Paulus et al., 2022).

BEVs have recently gained tremendous popularity as vehicles that generate fewer carbon emissions, are less polluting, and depend less on fossil fuel, becoming a promising alternative for daily personal transportation. However, adopting this type of transport does not rely solely on demand for BEVs. Still, it is also subject to supply-side restrictions, which include battery performance and cost and the level of access to charging infrastructure (Nemry & Brons, 2011).

The implementation of BEVs is assumed to reduce oil consumption and air pollution. However, it will increase the electricity demand. Depending on the power generation sectors (generation mix, input fuels, etc.), countries might not become energy self-sufficient or solve their environmental problems (Shigeru et al., 2020).

Chapter 2: Literature Review

Over the years, many scientists have studied the life cycle performance related to biofuels, BEVs, HEVs, and fuel costs. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model and the Alternative Fuel Life-cycle Environmental and Economic Transportation (AFLEET) tool allow stakeholders to consider the variable of cost of ownership have already established comprehensive databases for further studies (Argonne National Laboratory, n.d.).

Based on the GREET database, Hawkins has performed complete life cycle assessments on various kinds of vehicles in Europe, showing results where the life cycle GHG emissions of a BEV was about 200 g CO₂eq/km, about 10–20% lower than that of an ICEV (Hawkins et al., 2013). Thus, BEVs could work for GHG emission reduction if managed with green battery production, low-carbon electricity, and EV recycling (Qiao et al., 2019). China Automotive Technology & Research Center also published a study where an LCA utilized data for vehicle components and the battery material obtained from the GREET2 2017 model. This information was used to calculate and compare the GHG emissions from BEV's and ICEV's life cycle from 2010, 2014, and 2020 under different scenarios, considering different electricity mixes, electricity generation technologies, and combined heat and power scales. The study found the total life cycle's GHG reduction potential of BEVs will progressively improve by up to 13.4% in 2020 relative to ICEVs (Wu et al., 2018).

Conventional diesel medium- and heavy-duty vehicles (MHDVs) contributed 23% to the total GHG emissions in the transportation sector in 2018, which is the most significant GHG emission sector in the United States (EPA, 2021). With the reduction in the cost of batteries and the development of new technologies, BEVs are increasingly attractive options for improving

energy efficiency and reducing air emissions of MHDVs (Liu et al., 2020). A Well-to-wheels analysis was conducted utilizing the GREET model, comparing MHD BEVs and conventional MHDVs' air pollutant emissions. It was found that MHD BEVs significantly improve the environmental sustainability of MHDVs by reducing WTW GHGs, nitrogen oxides, volatile organic compounds, and carbon monoxide emissions compared to conventional MHDVs (Liu et al., 2020).

Nevertheless, it is essential to consider the contribution of lithium-ion batteries to the life cycle of BEVs energy consumption and environmental impacts. A study by Dun et al. (2014) stated the significance of lithium-ion batteries in BEVs and the need for reducing battery assembly cradle-to-gate impacts. Recycling metals in cathode materials would help to minimize the total energy and emissions intensity of battery production, primarily when assembly facilities operate at high capacity (Dunn et al., 2014). Additionally, it concluded that BEVs consume less petroleum and emit less GHG than ICEVs on a life-cycle basis. The only scenario in which a BEV generated more GHGs than an ICEV was when it used only coal-derived electricity as a fuel source. However, sulfur oxide (SOx) emissions were up to four times greater for BEVs than ICEVs (Dunn et al., 2014).

Most studies approaching vehicle carbon footprints mainly focus on the vehicle cycle. However, Wong et al. (2021) analyzed the GREET LCA to analyze the fuel cycle, focusing on different hydrogen production pathways for fueling up Hydrogen Fuel Cell Vehicles (HFCV) to compare the product carbon footprint (PCF) of a BEV and an HFCV. The results indicate that the fuel cycle contributed significantly to the PCF and concluded that the cleaner the hydrogen production is, the lower the environmental impact of vehicles' emissions. Biofuels are the alternative solutions in the fossil fuel family and have been mainly utilized to reduce ICEV emissions (Hira et al., 2022). Biofuels can reduce GHG emissions by converting to 85–100% biofuels without requiring major engine modifications (Ternel et al., 2021). Many pioneer works have been done to improve the accuracy of the climate change impact assessment of biofuels in LCA, such as the consideration of biogenic CO_2 emissions, emissions from land-use practice change, and carbon loss (Liu et al., 2018; Searchinger et al., 2008; Arbault et al., 2014). However, Liu et al. (2020) developed a framework that considers all the components, such as fossil fuel-derived GHG emissions, biogenic CO_2 emissions, from land-use practice change, regrowth for compensation, and differences in carbon storage within the time horizon. Results indicated that fossil fuel produced CO_2 emissions, biogenic CO_2 emissions and regrowth for compensation contributed most of the positive impact. It also suggests that land-use practice changes and differences in carbon sequestration could have adverse effects. Still, biofuels would be attractive due to their sustainability and renewability.

According to Hira et al. (2022), methanol produced by gasification is the bestrecommended fuel for combustion with the lowest emission levels. This study showed that using methanol fuel produced by gasification results in the lowest GHG emission value of 11.44 gm using the GREET model compared to fossil fuels. Comparative biofuel production from corn stover fast pyrolysis and subsequent hydrotreating and hydrocracking LCA was conducted based on a GREET model and investigated three different cases of different hydrogen treatments in biooil. The results showed an essential net non-renewable energy demand reduction of 147.5% and a net GWP reduction of 119.4% compared to conventional gasoline and diesel (Dang et al., 2014). Another LCA of energy consumption and GHG emissions for various biofuel vehicles has been performed, focusing on four potential fuels for vehicles: switchgrass ethanol, corn ethanol, soybean biodiesel, and bio-hydrogen from corn ethanol with the fuel cycle model developed in GREET, showing that the Flexible Fuel Vehicles (FFVs) ran with an ethanol fuel blend of 85% switchgrass ethanol and 15% gasoline (E85) have the most significant benefits in GHG emission reduction by 59.4% (Chang et al., 2017).

On the other hand, the AFLEET tool allows stakeholders to consider the variable cost of ownership (Argonne National Laboratory, n.d.). Based on that, Ercan et al. performed a study focused on optimizing the economic and sustainability impacts of transit bus fleet operation to reduce CO_2 emissions and other air pollutants related to health and environmental damage costs by utilizing the AFLEET tool to analyze different weight scenarios to provide solutions for decision-makers with various budget constraints or emission reduction requirements (Ercan et al., 2015).

Furthermore, a modeling and analysis method called the Electric Vehicles Regional Optimizer (EVRO) was proposed by Noori et al. (2015) to address the uncertainties and predict the optimal combination of the LCC, Environmental Damage Cost (EDC), and Water Footprint (WFP) of different vehicle types modeled for other U.S. electricity grid regions for the year 2030. Noori et al. (2015) utilized the AFLEET tool to find the LCC of different EVs, concluding that the optimal fleet composition in 2030 is HEVs, EREV (Gasoline Extended Range Electric Vehicles), and BEVs. HEVs dominate most regions since they have better fuel efficiency and less environmental impact. The combined share of EREV and BEVs ranges between 40% and 51% throughout the entire U.S. since electric technology reduces the EDC dramatically, with the lowest EDC. However, BEVs consume the most water, mainly due to electricity generation and battery production, and HEVs have the smallest footprint.

In addition, Plug-in Electric Vehicles (PEVs) are one sustainable solution to reduce emissions from road transportation. Furthermore, a multiple regression model was developed to assess the effect of charging station infrastructure and other cost-related and socio-demographic factors on the PEV adoption rate in 58 California counties. The model's results helped to estimate decreases in life-cycle air pollutants emissions, GHG, and fossil fuel emissions and calculate the benefit-cost ratio that would result from expanding charging stations and growing PEVs across California utilizing the AFLEET tool (Javid et al., 2019). However, the results show that the infrastructure expansion scenario is more advantageous in reducing air pollutants compared to GHGs, as the GHG emission reduction is approximately 0.006% of annual GHG emission in the state, and the air pollutant emission reduction is about 0.17% of the yearly statewide air pollutant emissions tool (Javid et al., 2019).

Moreover, the sustainable energy technology and policies book conducted a lifecyclebased cost-benefit analysis to evaluate the net ownership costs and net external benefits serving as decision-support for policymakers regarding alternative vehicle technologies utilizing the AFLEET and GREET tools (Lopez et al., 2018). The data presented reflected the excellent health and social benefits of BEVs. However, this study also shows high fueling infrastructure investment costs (Lopez et al., 2018). In addition, using a lifecycle-based approach, another analysis was performed to calculate ownership savings and societal benefits for numerous alternative vehicle technologies compared to their baseline vehicle technology, such as diesel and gasoline, utilizing the AFLEET and GREET databases. The results found significant societal benefits from BEVs and FCVs. However, they also lead to high ownership costs (Lopez et al., 2020). Therefore, the diesel hybrid electric vehicle can soon have both favorable societal and operational costs for public transportation if a shift to diesel with 20% biodiesel or 85% methanol is made (Lopez et al., 2020).
Chapter 3: Optimization

The attention to cost minimization, energy saving, environmental protection, and sustainable development issues in different fields, such as engineering or scientific research, is growing. Therefore, a solution to manage our production, manufacturing, experiments, and living activities more efficiently and friendly way is needed (Cui et al., 2017).

Optimization algorithms are essential in engineering and scientific design activities, which help solve many decision-making problems (Nayak, 2020). A variety of activities can be described as systems, and the efficient operation of these systems often requires the optimization of several indices that measure the system's performance (Foulds, 2012). Optimization techniques are applied to obtain the values of a set of parameters that maximize or minimize the objective function of interest (Everitt, 2012) to find the best combination of activities with the available resources (Schrage, 2009).

The basic procedure of optimization for any problem is shown in figure 3.1. Inputs and resources are necessary information to model the problem mathematically. The problem is formulated with the help of the objective function and the constraints. Then, applying the optimization techniques, the solutions are investigated, creating the output to get optimal solutions (Nayak, 2020).

Figure 3.1: Flow chart of modeling physical problems to get an optimal solution (Nayak, 2020).

3.1 LINEAR PROGRAMMING

One particularly important subclass of programming problems is called a linearprogramming problem, which can be stated using relationships called "straight-line" or linear (Gass, 2003). Mathematically, these relationships can be expressed in the form:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_j x_j + \dots + \alpha_n x_n = b^t$$
(Eq. 3.1)

Where α_j and b are known coefficients and x_j is an unknown variable. To complete a mathematical statement of a linear-programming problem, a set of linear equations representing the conditions of the problem and a linear function expressing the objective of the problem are needed (Gass, 2003).

With the added condition of optimizing an objective function, the linearprogramming problem can now select a solution that satisfies all the problem conditions. However, the problem might have multiple answers (Gass, 2003). Combining the optimization of a linear objective function with the linear constraints of the programming problem transforms an undetermined system of linear equations with many viable solutions to a system that can be solved for an optimal solution (Gass, 2003).

The general mathematical model of the linear-programming problem "minimize the objective function" can be expressed in the form:

$$c_1x_1 + c_2x_2 + \cdots + c_jx_j + \cdots + c_nx_n$$

Subject to the conditions

$$\alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1j}x_j + \cdots + \alpha_{1n}x_n = b_1$$

$$\alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2j}x_j + \cdots + \alpha_{2n}x_n = b_2$$

$$\alpha_{i1}x_1 + \alpha_{i2}x_2 + \cdots + \alpha_{ij}x_j + \cdots + \alpha_{in}x_n = b_i$$

.....

 $\alpha_{m1}x_1 + \alpha_{m2}x_2 + \cdots + \alpha_{mj}x_j + \cdots + \alpha_{mn}x_n = b_m$

And

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_j \ge 0$$

$$x_n \ge 0$$

$$x \ne 0$$

(Eq. 3.2)

Were c_j for j = 1, 2, ..., n; b_j for i = 1, 2, ..., m; and α_{ij} are all constants and m < n (Gass, 2003).

Every linear-programming problem has either no solution, in terms of nonnegative values of the variables, or a nonnegative solution that yields a finite value to the objective function. A nonnegative solution generates an infinite value to the objective function (Gass, 2003).

3.2 MULTI-OBJECTIVE OPTIMIZATION

The optimal solution can be found through optimization, looking for maximum or minimum value utilizing one objective or multi-objective function (Gunantara, 2018). Multi-objective Optimization Problems (MOPs) or vector optimization problem is the process of optimizing systematically and simultaneously a set of objective functions (Marlet & Arora, 2004). Moreover, the objective functions tend to contradict each other as an optimal solution is suitable for one function, but it may conflict with the others (Cui et al., 2017). Therefore, not all solutions can satisfy all objective functions. Thus, there exists a set of feasible solutions (Cui et al., 2017).

The general mathematical model of the MOP "minimize the objective function" can be expressed in the form:

$$F(x) = (f_1(x), \dots, f_k(x),))^T$$

(Eq. 3.3)

Where k is the number of objective functions in the MOP being solved, and x is an independent variable. Subject to:

$$g_i(x) \le 0$$

 $x^{lower} \le x \le x^{upper}$

(Eq. 3.4)

Where $g_i(x)$ is the feasible solution space and x^{lower} and x^{upper} are the independent variable's lower and upper bounds (Cram, 2019).

Multi-criterion optimization will have multiple individual optimal solutions for each objective function, creating conflict with each other, which leads to a significant difference between the optimal solutions (Cram, 2019). Thus, there is not a unique solution but a set of solutions. However, those solutions can be found using Pareto Optimality Theory (Coello et al., 2007). Compared to single-criterion optimization, which has only one global optimal solution (Cram, 2019).

3.2.1 Pareto Optimality Theory

In MOPs, there is no single global solution, and it is often necessary to determine a set of points that all fit in a definition of optimum points (Marler & Arora, 2004). Therefore, the concept of Pareto optimality is used to define optimality for MOPs (Schütze & Hernández, 2021), which is defined as follows:

A point, $x^* \in X$, is Pareto optimal if there does not exist another point, $x \in X$, such that $F(x) \le F(x^*)$, and $F_i(x) < F_i(x^*)$ for at least one function (Marler & Arora, 2004).

Figure 3.2: An example of a problem with two objective functions: cost and efficiency.

The Pareto front or trade-off surface is delineated by a curved line (Coello et al., 2007). The definition of Pareto optimal states that x^* is optimal if no feasible vector x exists, which would decrease some criterion without causing a simultaneous increase in at least one other criterion (assuming minimization) (Coello et al., 2007).

3.3 MOP EVOLUTIONARY ALGORITHM APPROACHES

Over the past 30 years, MOP Evolutionary Algorithms (MOEA) have attracted much research since MOEAs can estimate the Pareto optimal set in a single run (Zhu et al., 2011). Also, MOEAs generate a trade-off performance such as efficiency and effectiveness for specific systems model objectives such as cost/profit, constraints, and other mutually conflicting objectives (Coello et al., 2007). MOEA approaches have been classified into three major categories described as follows:

- A Priori Techniques: Lexicographic, linear, and nonlinear fitness combination.
- Progressive Techniques: Progressive techniques or interactive computational steering.
- A Posteriori Techniques: Independent sampling, criterion selection, aggregation selection, Pareto-based selection, Pareto rank- and niche-based selection, Pareto deme-based selection, Pareto elitist-based selection, and hybrid selection (Coello et al., 2007).

3.3.1 A Priori Techniques

The a priori techniques require a previous search to the Decision Maker (DM) to define the MOP objective's relative importance, as this is usually reflected in weights related to the aggregated sum of the objectives. Establishing the DM's preferences aims to evaluate and compare solutions to the Multi-Criteria Decision Making (MCDM) problem. Finding the one solution of interest to the DM for real-world problems is essential. Therefore, objective quality prioritization is needed to find all adequate solutions (Coello et al., 2007).

Lexicographic ordering

The DM is asked to classify the objectives in order of importance to obtain the optimum solution by minimizing the objective functions in sequence according to the order of importance assigned to the objectives. When the priority is unknown, selecting an objective randomly to be optimized at each generation is possible. However, randomly choosing an objective equivalent to a weighted combination of objectives (tournament selection) with this approach makes a significant difference compared to other techniques, such as the Vector Evaluated Genetic Algorithm (VEGA), as its main weakness is that it tends to favor more certain objectives when present in the problem due to the randomness involved in the process (Coello et al., 2007).

Linear aggregating functions

The mathematical form for linear aggregation functions to compute fitness is expressed as follows:

$$fitness = min \sum_{i=1}^{k} w_i f_i(x)$$

(Eq. 3.5)

Were $w_i \ge 0$ and i = 1...k are the weighting coefficients representing the relative importance of the DM in the k objective functions of the MOP. It is usually assumed for normalization that:

$$\sum_{i=1}^{k} w_i = 1$$
(Eq. 3.6)

Regardless of the simplicity of the linear fitness combination technique, it is a popular approach because of its simplicity. Figure 3.3 shows parallel lines, which indicate when the search finds a single Pareto front point A at a minimum cost when it is on the convex hull of the Pareto front. Even though point B may be found, it is not retained as a smaller aggregate objective function value is found at point A. However, the linear aggregating algorithm does not tend to find all Pareto front points of interest since these points are defined as non-supported points because they are not on the convex hull of the Pareto front (Coello et al., 2007).

Figure 3.3: Priori weight selection for a bi-objective example in linear aggregating technique, $w_1x_1+w_2x_2$ (Coello et al., 2007). *Nonlinear aggregating functions*

In contrast to linear aggregating functions, nonlinear aggregating functions (multiplicative methods) are uncommon in the literature since it requires overhead to determine the appropriate probability of acceptance or utility functions. However, overhead does not justify the quality of the resulting solutions (Coello et al., 2007).

Additionally, combining an evolutionary algorithm and a target-vector approach can minimize the current solution according to the vector difference of the desired goals. Target-vector strategies also require the definition of goals to be achieved and require extra computational effort, which can result in additional problems. However, it is more commonly used than multiplicative methods (Coello et al., 2007).

3.3.2 Progressive Techniques

The progressive technique approach demands the DM's time and effort at its premium as it requires supporting the search when defining the goals or scheme of preference. It could be assumed that the closer the interaction between the DM and searchers would increase the efficiency of the discovered solutions. However, progressive techniques may be complicated and inefficient when nothing about the problem is known (Coello et al., 2007).

3.3.2 A Posteriori Techniques

The focus of the a posteriori technique is to find P_{true} and PF_{true} . Thus, an extensive search is needed to generate as many elements of the Pareto optimal set as possible since the decision-making process will occur after the search is done (Coello et al., 2007). The a posteriori technique is composed of the following a posteriori sub-techniques:

- Independent sampling techniques
- Criterion selection techniques
- Aggregation techniques (linear, nonlinear)
- ϵ -constraint technique
- Pareto sampling techniques

Independent sampling techniques

Since several independent sampling approaches tend to have reduced effectiveness, the independent sampling technique utilizes fitness combinations where the weights assigned to each objective are varied over several separate MOEA runs, the variability of the difference concerning a priori linear aggregating process. However, not always these points are evenly distributed at the Pareto front. Simplicity and efficiency are what make this approach convenient. However, this approach applies only to specific types of problems. For instance, this method is not very useful when the number of objectives is low (Coello et al., 2007).

Criterion Selection Techniques

The VEGA approach, proposed by David Shaffer, considers the first implementation of the MOEA. This approach randomly selects a fraction of the objectives in every generation based on

separate objective performance. VEGA tends to converge to solutions close to local optima regarding each objective (Coello et al., 2007).

For a problem with k objectives, k subpopulations of size M/k each would be generated, and only one of the k objectives will be considered a fitness function. These sub-populations are then rearranged to obtain a new population of size M, on which the Genetic Algorithm (GA) would apply the crossover and mutation operators in the usual way. Shuffling is done before subpopulation partitioning to reduce positional population bias (Figure 3.4). The population size is assumed to be M, and there are k objective functions (Coello et al., 2007).

The structural representation of the VEGA process is shown in figure 3.5:

Figure 3.5: Schematic of VEGA's (Coello et al., 2007).

Aggregation techniques

This technique integrates several techniques to solve MOPs, such as hybrid approaches, weighted sums, and constraint and objective combinations. Nevertheless, this approach utilizes different weight combinations between generations and each function evaluation instead of static objective weights (Coello et al., 2007).

Several solutions can be generated utilizing aggregation techniques in a single run of MOEA. However, when the weighted sum approach is employed, individuals of the PF_{true} may be missed. Thus, a meaningful effort is required to use both constraint/objective combination and hybrid search approaches (Coello et al., 2007).

Constraint technique

Selecting a primary objective function followed by bounding the others with different predefined ϵ -constraint values is the base of the constraint technique. To generate another point in the Pareto front (phenotype), the ϵ -constraints are changed, resulting in finding elements in the Pareto optimal set (genotype). The distribution of the Pareto front is usually non-uniform, and the smooth implementation of this technique is their main advantage (Coello et al., 2007).

Pareto sampling techniques

The Pareto sampling technique offers the realistic objective of finding P_{known} and PF_{known} . It refers to techniques that utilize the capability of the MOEA's population to create several elements of the Pareto optimal set in a single stochastic computational run (Coello et al., 2007). Two objective understandings of Pareto optimality are presented in Figure 3.6. Nevertheless, the graphical definition of nondominated and nominated points must be related to the objective space and the solutions corresponding to the variable (Coello et al., 2007).

Figure 3.6: The concept of Pareto optimality as related to non-dominance in a maximization MOP (Coello et al., 2007).

3.4 MULTI-OBJECTIVE GENETIC ALGORITHMS (MOGA)

The "Multi-objective Genetic Algorithm" (MOGA) technique variation was proposed by Carlos M. Fonseca and Peter J. Fleming, in which the rank of a specific individual correlates to the number of chromosomes in the current population by which is dominated (Coello et al., 2007). For example, an individual x_i at t generation, is dominated by $p_i^{(t)}$ Individuals in the current generation. Therefore, a rank is assigned to the individual by the rule: rank $(x_i, t) = 1 + p_i^{(t)}$ (Coello et al., 2007). The pseudo-code of MOGA is shown in figure 3.7.

> Initialize Population **Evaluate Objective Values** Assign Rank Based on Pareto Dominance Compute Niche Count Assign Linearly Scaled Fitness Assign Shared Fitness For i = 1 to number of Generations Selection via Stochastic Universal Sampling Single Point Crossover Mutation Evaluate Objective Values Assign Rank Based on Pareto Dominance Compute Niche Count Assign Linearly Scaled Fitness Assign Shared Fitness End Loop

Figure 3.7: MOGA Pseudo code (Coello et al., 2007).

Fitness is assigned by sorting the population according to a fitness function, from best to worst. This procedure maintains the global population fitness constant (Coello et al., 2007).

, the niche-formation method distributes the population over the Pareto-optimal region, sharing the objective function values instead of the parameter values to avoid premature convergence caused by significant selection pressure (Coello et al., 2007).

Chapter 4: Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool

The AFLEET Tool was developed by Argonne National Laboratory (Argonne) and cosponsored by the U.S. Environmental Protection Agency (EPA). It assists metropolitan areas and Clean Cities partnerships in estimating criteria for air pollutant reductions achieved by the nearterm introduction of alternative-fueled vehicles (Burnham, 2020). In 2009, the Department of Energy's (DOE's) Clean Cities requested Argonne to create a calculator known as the GREET Fleet Footprint Calculator to measure GHG emissions caused by petroleum displacement of medium and heavy-duty alternative fuel vehicles. This tool was developed for Clean Cities stakeholders to estimate these values utilizing excel spreadsheet inputs (Burnham, 2020).

In compliance with having a tool with the capacity to estimate the benefits of using alternative fuel and advanced vehicles (AFVs) and measure both environmental and economic costs, Argonne Laboratory has developed the AFLEET tool. This tool allows stakeholders to estimate GHG emissions, air pollutant emissions, fossil fuel use, and costs of ownership for light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) depending on the user's goals (Burnham, 2020).

The AFLEET tool provides six calculation methods according to the user's objectives. The first method is the Simple Payback Calculator, which examines acquisitions and annual operating costs to estimate a payback for buying a new AFV compared to its counterpart, as well as yearly GHGs, air pollutant emissions, and petroleum use. The Total Cost of Ownership (TCO) Calculator is the second option the AFLEET tool provides. This option evaluates the net present value of operating and fixed costs related to the years of planned ownership of a new vehicle and petroleum use, air pollutant emissions, and GHG emissions. The third option is the On-Road Fleet Footprint

Calculator. In this option, the annual petroleum use, GHGs, and air pollutant emissions of new and existing on-road vehicles considering the higher emissions that older vehicles produce. Off-Road Fleet Footprint Calculator is the fourth methodology that can be utilized. This calculator estimates the annual petroleum use, GHGs, and air pollutant emissions of new and existing off-road equipment, considering that typically older equipment produces higher pollutant emissions than the latest equipment. Electric Vehicle Charging Calculator is another option the AFLEET tool provides, which estimates the same emissions as previous calculators. However, the emissions are related to public electric vehicle charging infrastructure benefits. Additionally, the Idle Reduction (IR) Calculator examines the acquisition and annual operating costs to determine the payback for purchasing a new AFV compared to conventional vehicles and their emissions (Burnham, 2020).

Chapter 5: Methodology

This chapter explains the methodology approach, which is to couple a Multi-objective Evolutionary Algorithm (MOEA) with the Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool to develop an Optimization Framework that can provide optimal BEV penetration scenarios considering minimum emissions, air pollutants, and cost of ownership.

5.1 METHODOLOGY STRUCTURE

In this study, the AFLEET tool was utilized to perform a Life Cycle Assessment to obtain CO, NOx, and GHG emissions produced from passenger cars and passenger trucks, as well as a Life Cycle Cost to get the Total Cost of Ownership depending on the fuel type. The structure followed to collect and input the data into the utilized tool is explained in the next subchapters.

After retrieving the outputs from the AFLEET Tool, a MOEA is performed to create multiple scenarios with different BEV percentages.

5.2 AFLEET TOOL

5.2.1Collect fuel data for passenger cars and passenger trucks

Information related to average gallons per mile of fossil fuel depending on the type of car was retrieved from the official U.S. government source for fuel economy information developed by the Department of Energy is needed to begin with the AFLEET tool. Also, the information related to the Vehicles' Miles Traveled (VMT) was necessary to utilize the On-Road Fleet Footprint Calculator. This study used the same number of VMTs for all vehicles.

ICEVs that utilize regular gasoline, diesel, and E85 were included in this study, along with HEVs, PHEVs, and BEVs. This research considered several types of cylinder capacity and the vehicle's fuel type and model from 2012 to 2022. Lastly, the two categories utilized were passenger

cars and passenger trucks. The passenger truck category includes light-duty trucks and SUVs. Tables 5.1 and 5.2 show the gallons per mile and Miles Per Gallon of Gasoline Equivalent (MPGGE) according to the category of cars, fuel type, and model.

		Passeng	ger Cars		
	ICEVs - Gasolin	ie		ICEVs - Diesel	
Year	gal/100 miles	MPGGE	Year	gal/100 miles	MPGGE
2012	4.33	23.09	2012	3.40	29.41
2013	4.33	23.08	2013	3.80	26.32
2014	4.03	24.79	2014	2.80	35.71
2015	4.20	23.81	2015	3.75	26.67
2016	4.20	23.81	2016	3.35	29.85
2017	4.27	23.44	2017	3.00	33.33
2018	4.00	25.00	2018	3.40	29.41
2019	3.50	28.57	2019	2.90	34.48
2020	3.97	25.21	25.21 2020 2.7 24.79 2021 2.7		37.10
2021	4.03	24.79	2021	2.70	37.10
2022	4.03	24.79	2022	2.70	37.10
		Passeng	ger Cars		
	HEVs			BEVs	
Year	gal/100 miles	MPGGE	Year	kWh/100 miles	MPkWhE
2012	2.55	39.22	2012	38.00	2.63
2013	2.65	37.74	2013	38.00	2.63
2014	2.65	37.74	2014	38.00	2.63
2015	2.65	37.74	2015	38.00	2.63
2016	2.55	39.22	2016	38.00	2.63
2017	2.10	47.62	2017	33.00	3.03
2018	2.10	47.62	2018	35.00	2.86
2019	2.85	35.09	2019	33.00	3.03
2020	2.50	40.00	2020	29.00	3.45
2021	2.85	35.09	2021	28.00	3.57
2022	3.20	31.25	2022	28.00	3.57
		PHEVs			
Year	gal/100 miles	hWh/100 miles	MPGGE	MPkWhE	
2012	2.00	29.00	50.00	3.45	
2013	2.60	37.00	38.46	2.70	
2014	2.60	37.00	38.46	2.70	
2015	2.60	37.00	38.46	2.70	
2016	2.60	37.00	38.46	2.70	
2017	2.40	35.00	41.67	2.86	
2018	2.40	35.00	41.67	2.86	
2019	2.40	33.00	41.67	3.03	
2020	2.40	33.00	41.67	3.03	
2021	2.40	31.00	41.67	3.23	
2022	1.90	28.00	52.63	3.57	

Table 5.1: Passenger cars fuel information (ORNL, 2022).

	ICEVs - E	85 gasoline	
Year	gal/100 miles	MPGGE	
2012	6.45	15.50	
2013	5.20	19.23	
2014	5.20	19.23	
2015	6.15	16.26	
2016	5.75	17.39	
2017	5.25	19.05	
2018	5.60	17.86	
2019	5.85	17.09	
2020	5.85	17.09	
2021	5.85	17.09	
2022	5.85	17.09	

Table 5.1. Passenger cars fuel information continuation (ORNL, 2022).

Table 5.2: Passenger truck's fuel information (ORNL, 2022).

		Passeng	er Truck		
	ICEVs - Gasoline			ICEVs - Diesel	
Year	gal/100 miles	MPGGE	Year	gal/100 miles	MPGGE
2012	5.2	24.00	2012	6.1	16.48
2013	5.3	18.87	2013	6.0	16.67
2014	5.1	25.00	2014	4.0	24.79
2015	5.2	19.08	2015	3.8	26.55
2016	4.9	26.00	2016	3.7	27.40
2017	5.2	19.38	2017	3.5	28.99
2018	4.8	27.00	2018	3.5	28.99
2019	5.1	19.46	2019	3.7	27.27
2020	4.7	28.00	2020	3.33	30.00
2021	4.9	20.49	2021	4.1	24.39
2022	4.8	29.00	2022	4.35	22.99
	HEVs			BEVs	
Year	gal/100 miles	MPGGE	Year	kWh/100 miles	MPkWhE
2012	4.80	20.83	2012	49.00	2.04
2013	4.80	20.83	2013	44.00	2.27
2014	4.80	20.83	2014	44.00	2.27
2015	4.80	20.83	2015	44.00	2.27
2016	4.80	20.83	2016	44.00	2.27
2017	4.80	20.83	2017	44.00	2.27
2018	5.60	17.86	2018	30.00	3.33
2019	4.80	20.83	2019	34.00	2.94
2020	5.00	20.00	2020	50.00	2.00
2021	4.00	25.00	2021	54.00	1.85
2022	4.00	25.00	2022	48.00	2.08

		PHEVs			
Year	gal/100 miles	kWh/100 miles	MPGGE	MPkWhE	
2012	2.53	32	39.5	3.13	
2013	2.53	32	39.5	3.13	
2014	2.53	32	39.5	3.13	
2015	2.53	32	39.5	3.13	
2016	2.60	29	38.46	3.45	
2017	3.80	45	26.32	2.22	
2018	5.30	80	18.87	1.25	
2019	5.30	80	18.87	1.25	
2020	5.30	80	18.87	1.25	
2021	5.30	80	18.87	1.25	
2022	5.00	63	20.00	1.59	
	IC	CEVs - E85 gasolin	ne		
	Year	gal/100 miles	MPGGE		
	2012	7.33	13.65		
	2013	6.88	14.55		
	2014	6.98	14.33		
	2015	7.34	13.62		
	2016	6.98	14.33		
	2017	6.86	14.58		
	2018	6.80	14.71		
	2019	7.90	12.66		
	2020	8.00	12.50		
	2021	4.41	22.70		
	2022	4.41	22.70		

Table 5.2: Passenger trucks fuel information continuation (ORNL, 2022).

5.2.2 Input data in On-Road Fleet Footprint Calculator

The AFLEET tool On-Road Fleet Footprint Calculator estimates GHGs, air pollutant emissions, and externality costs of existing and new on-road vehicles. The calculator considers that older vehicles cause higher air pollutant emission rates (Burnham, 2020). The critical inputs for this sheet are:

- Vehicle type
- Model year
- Annual vehicle mileage
- Fuel use

The first step in utilizing this calculator is to choose between the two vehicle type categories. In this case, passenger cars and passenger trucks were selected. If the user wants to examine more vehicles than is provided in this sheet, the user can copy and paste the entire row(s) with calculations (Burnham, 2020). Thus, six rows for each year were assigned since there are six types of vehicles. A range of 10 years was utilized for this research from 2012 to 2022. The state of Texas was selected for this study. In compliance with the Federal Highway Administration, an annual vehicle millage of 14,240 miles was standardized for all the models of vehicles based on the average miles driven per year by Americans (Covington, 2022). The data collected for passenger cars and passenger trucks presented in tables 5.1 and 5.2 were also assigned in the fuel use section. One row was utilized for each type of fuel to obtain the emissions of each fuel separately.

On-Road Fleet Footprin	nt Calo	ulator							
TEXAS		_							
						_		Fuel Us	8
		Annual			Gasolin	Gasolin	Gasolin	Electric	
Vahiola Type	Vear	Mileane	Gasoline	Diesel	e HEV	e PHEV	e PHEV	lby (NVN)	E86 (cal)
Dates your Car	2012	14.280	618	(Men)	(gen)	(Queri)	(Arrest)	(Kern)	(Qui)
Passenger Car	2012	14,260	010	495					
Passenger Car	2012	14,260			378				
Passenger Car	2012	14,260				285	4,135		
Passenger Car	2012	14,260						5,420	
Passenger Car	2012	14,260							920
Passenger Car	2013	14,260	618						
Passenger Car Desenger Car	2013	14,260		542	279				
Passenger Car Passenger Car	2013	14,200			376	285	5.278		
Passenger Car	2013	14,260				2000		5,420	
Passenger Car	2013	14,260							742
Passenger Car	2014	14,260	575						
Passenger Car	2014	14,260		400	0.00				
Passenger Car Passenger Car	2014	14,260			378	205	5 070		
Passenger Car	2014	14,200				200	0,276	5.420	
Passenger Car	2014	14,260						0,000	742
Passenger Car	2015	14,260	600						
Passenger Car	2015	14,260		535					
Passenger Car	2015	14,260			378				
Passenger Car	2015	14,260				285	5,276		
Passenger Car	2015	14,260						5,420	000
Passenger Car Passenger Car	2018	14,200	800						000
Passenger Car	2016	14,260	000	478					
Passenger Car	2016	14,260			378				
Passenger Car	2016	14,260				285	5,276		
Passenger Car	2016	14,260						5,420	
Passenger Car	2016	14,260							820
Passenger Car Dassenger Car	2017	14,200	009	428					
Passenger Car	2017	14,260		-	300				
Passenger Car	2017	14,260				342	4,991		
Passenger Car	2017	14,260						4,710	
Passenger Car	2017	14,260							750
Passenger Car	2018	14,260	507						
Passenger Car Desenger Car	2018	14,260		485	200				
Passenger Car Passenger Car	2018	14,200			300	342	4 991		
Passenger Car	2018	14,260						4,990	
Passenger Car	2018	14,260							800
Passenger Car	2019	14,260	523						
Passenger Car	2019	14,260		413					
Passenger Car	2019	14,280			406	242	4.004		
Passenger Car Passenger Car	2019	14,280				342	4,991	4710	
Passenger Car	2019	14,260						4,710	840
Passenger Car	2020	14,260	566						
Passenger Car	2020	14,260		385					
Passenger Car	2020	14,260			360				
Passenger Car	2020	14,280				342	4,991	4.400	
Passenger Car Passenger Car	2020	14,280						4,135	840
Passenger Car	2021	14,260	575						u-lu
Passenger Car	2021	14,260		385					
Passenger Car	2021	14,260			406				
Passenger Car	2021	14,260				342	4,991		
Passenger Car	2021	14,260						3,990	
Passenger Car Pessenger Car	2021	14,260	575						840
Passenger Car	2022	14,200	0/0	385					
Passenger Car	2022	14,260		000	460				
Passenger Car	2022	14,260				271	3,993		
Passenger Car	2022	14,260						3,990	
Passenger Car	2022	14,260							840

Figure 5.1: On-Road Fleet Footprint Calculator for passenger cars (Burnham, 2020).

On-Road Fleet Footprin	nt Calo	ulator							
TEXAS									
				_			_	Fuel Us	e
Vehicle Type	Model Year	Annual Vehicle Mileage	Gasoline (gal)	Diesel (gal)	Gasolin e HEV (gal)	Gasolin e PHEV (gal)	Gasolin e PHEV (kWh)	Electric ity (kWh)	E86 (gal)
Passenger Truck	2012	14,260	739						
Passenger Truck	2012	14,260		865	005				
Passenger Truck	2012	14,260			000	0	0		
Passenger Truck	2012	14,260						6,275	
Passenger Truck	2012	14,280							1,033
Passenger Truck	2013	14,260	755	955					
Passenger Truck	2013	14,260		000	685				
Passenger Truck	2013	14,260				0	0		
Passenger Truck	2013	14,260						6,275	000
Passenger Truck Passenger Truck	2013	14,260	727						980
Passenger Truck	2014	14,260		575					
Passenger Truck	2014	14,260			685				
Passenger Truck	2014	14,280				0	0	8.775	
Passenger Truck	2014	14,200						0,275	995
Passenger Truck	2015	14,280	747						
Passenger Truck	2015	14,260		540					
Passenger Truck	2015	14,260			685				
Passenger Truck Passenger Truck	2015	14,260				U	U	6 275	
Passenger Truck	2015	14,260						0,210	1,046
Passenger Truck	2016	14,260	696						
Passenger Truck	2016	14,260		540	005				
Passenger Truck Passenger Truck	2016	14,280			685	370	4 135		
Passenger Truck	2016	14,260				ara	4,100	6,275	
Passenger Truck	2016	14,260							995
Passenger Truck	2017	14,260	736						
Passenger Truck Passenger Truck	2017	14,280		540	695				
Passenger Truck	2017	14,260			0.00	540	6,417		
Passenger Truck	2017	14,260						4,278	
Passenger Truck	2017	14,260							980
Passenger Truck Passenger Truck	2018	14,280	690	540					
Passenger Truck	2018	14,260			685				
Passenger Truck	2018	14,260				755	11,408		
Passenger Truck	2018	14,260						4,278	1.010
Passenger Truck Passenger Truck	2018	14,260	733						1,010
Passenger Truck	2019	14,260	755	525					
Passenger Truck	2019	14,280			685				
Passenger Truck	2019	14,260				755	11,408	4.050	
Passenger Truck Passenger Truck	2019	14,280						4,850	1.120
Passenger Truck	2020	14,260	673						1,120
Passenger Truck	2020	14,280		480					
Passenger Truck	2020	14,260			715	-	44.475		
Passenger Truck Passenger Truck	2020	14,260				755	11,480	7 130	
Passenger Truck	2020	14,260						1,100	1,140
Passenger Truck	2021	14,260	705						
Passenger Truck	2021	14,280		585					
Passenger Truck	2021	14,260			570	755	11,490		
Passenger Truck	2021	14,260				700	11,400	7,670	
Passenger Truck	2021	14,260							1,180
Passenger Truck	2022	14,260	690						
Passenger Truck Passenger Truck	2022	14,260		620	570				
Passenger Truck	2022	14,200			3/0	713	8,980		
Passenger Truck	2022	14,260						6,845	
Passenger Truck	2022	14,260							1,140

Figure 5.2: On-Road Fleet Footprint Calculator for passenger cars (Burnham, 2020).

5.2.3 Extract and save CO, NOx, and GHG data from the AFLEET tool

Once the On-Road Fleet Footprint Calculator is completed, the GHG, CO, and NOx values will be displayed under the vehicle operation section. Each value will represent the vehicle operation emissions from a specific fuel used in each year of each model. Figure 5.3 and 5.4 shows an example of the emissions of a 2012 gasoline passenger car and a 2012 gasoline passenger truck respectively.

On-Road Fleet Footprint	Calcula	ator				
State TEXAS						
				Vehicle	Vehicle C Air Pollut)peration tants (lb)
		Annual	Well-to-	Production		
	Model	Vehicle	Wheels GHGs	GHGs (short		
Vehicle Type	Year	Mileage	(short tons)	tons)	CO	NOx
Passenger Car	2012	14,260	7.3	0.6	82.7	1.1
Passenger Car	2012	14,260	6.7	0.6	95.6	2.1
Passenger Car	2012	14,260	4.4	0.0	82.7	0.9
Passenger Car	2012	14,260	4.9	0.9	0.0	0.0
Passenger Car	2012	14,260	2.0	0.9	0.0	0.0
Passenger Car	2012	14,260	5.3	0.6	82.7	1.1

Figure 5.3: Example of GHG, CO, and NOx values for a 2012 gasoline passenger car – AFLEET Tool screenshot.

On-Road Fleet Footprint	Calcula	ator				
State TEXAS						
				Vehicle	Vehicle C Air Pollut	peration ants (lb)
		Annual	Well-to-	Production		
	Model	Vehicle	Wheels GHGs	GHGs (short		
Vehicle Type	Year	Mileage	(short tons)	tons)	CO	NOx
Passenger Truck	2012	14,260	8.7	0.7	90.9	1.5
Passenger Truck	2012	14,260	11.9	0.7	34.5	29.9
Passenger Truck	2012	14,260	8.1	0.0	90.9	1.2
Passenger Truck	2012	14,260	0.0	0.0	90.9	1.2
Passenger Truck	2012	14,260	2.4	1.1	0.0	0.0
Passenger Truck	2012	14,260	5.9	0.7	90.9	1.5

Figure 5.4: Example of GHG, CO, and NOx values for a 2012 gasoline passenger truck – AFLEET Tool screenshot.

5.2.4 Input Light-duty vehicle information in AFLEET Tool

The AFLEET tool provides default data for the calculator inputs (Burnham, 2020). However, for more accurate results, the number of vehicles to be compared, the amount of time in years, annual vehicle mileage, fuel economy values on a mile-per-gasoline gallon equivalent (MPGGE), and the purchase price were modified. Table 5.3 represents the average cost of purchasing a specific model in 2022. Prices of 4-cylinder, 6-cylinder, and 8-cylinder models from 2012 to 2022 were collected to generate an average cost for the three prices in the simulation.

	Vehicle Type -	Passenger Ca	rs
	ICEVs - Gasoline	0	ICEVs - Diesel
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$10,500.00	2012	\$14,000.00
2013	\$11,500.00	2013	\$15,750.00
2014	\$13,666.67	2014	\$17,000.00
2015	\$14,833.33	2015	\$19,500.00
2016	\$16,000.00	2016	\$21,750.00
2017	\$17,100.00	2017	\$23,500.00
2018	\$18,266.67	2018	\$28,000.00
2019	\$19,633.33	2019	\$25,000.00
2020	\$21,166.67	2020	\$27,000.00
2021	\$23,500.00	2021	\$27,000.00
2022	\$27,966.67	2022	\$27,000.00
	HEVs		BEVs
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$8,950.00	2012	\$29,000.00
2013	\$10,100.00	2013	\$31,000.00
2014	\$13,000.00	2014	\$33,000.00
2015	\$14,000.00	2015	\$36,000.00
2016	\$18,500.00	2016	\$40,000.00
2017	\$22,000.00	2017	\$43,000.00
2018	\$24,000.00	2018	\$50,000.00
2019	\$26,500.00	2019	\$65,000.00
2020	\$28,500.00	2020	\$75,000.00
2021	\$32,250.00	2021	\$80,000.00
2022	\$40,000.00	2022	\$100,000.00
	PHEVs	IC	CEVs - E85 gasoline
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$16,000.00	2012	\$11,250.00
2013	\$17,000.00	2013	\$11,500.00
2014	\$18,000.00	2014	\$16,000.00
2015	\$19,000.00	2015	\$19,250.00
2016	\$20,000.00	2016	\$19,750.00
2017	\$21,000.00	2017	\$19,750.00
2018	\$22,000.00	2018	\$21,500.00
2019	\$23,000.00	2019	\$22,200.00
2020	\$25,000.00	2020	\$20,000.00
2021	\$28,000.00	2021	\$20,000.00
2022	\$29,000.00	2022	\$20,000.00

Table 5.3: Average cost of vehicles (Edmunds, 2022).

	Vehicle Type - P	assenger Truc	ks
]	ICEVs - Gasoline		ICEVs - Diesel
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$13,166.67	2012	\$17,500.00
2013	\$14,266.67	2013	\$18,500.00
2014	\$16,666.67	2014	\$21,000.00
2015	\$18,000.00	2015	\$22,000.00
2016	\$19,666.67	2016	\$24,500.00
2017	\$22,833.33	2017	\$27,500.00
2018	\$25,166.67	2018	\$32,500.00
2019	\$30,333.33	2019	\$34,500.00
2020	\$36,666.67	2020	\$41,500.00
2021	\$39,666.67	2021	\$50,000.00
2022	\$48,100.00	2022	\$57,000.00
	HEVs		BEVs
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$15,000.00	2012	\$18,000.00
2013	\$16,000.00	2013	\$19,000.00
2014	\$16,500.00	2014	\$19,000.00
2015	\$17,000.00	2015	\$19,800.00
2016	\$18,000.00	2016	\$21,000.00
2017	\$18,500.00	2017	\$22,000.00
2018	\$20,000.00	2018	\$26,000.00
2019	\$30,000.00	2019	\$35,000.00
2020	\$40,000.00	2020	\$39,000.00
2021	\$50,000.00	2021	\$49,000.00
2022	\$60,000.00	2022	\$50,000.00
	PHEVs	IC	EVs - E85 gasoline
Year	Purchase Price (\$/vehicle)	Year	Purchase Price (\$/vehicle)
2012	\$38,500.00	2012	\$13,166.67
2013	\$38,500.00	2013	\$14,266.67
2014	\$38,500.00	2014	\$16,666.67
2015	\$38,500.00	2015	\$18,000.00
2016	\$21,800.00	2016	\$19,666.67
2017	\$46,000.00	2017	\$22,833.33
2018	\$59,000.00	2018	\$25,166.67
2019	\$62,000.00	2019	\$30,333.33
2020	\$68,000.00	2020	\$36,666.67
2021	\$80,000.00	2021	\$39,666.67
2022	\$85,000.00	2022	\$48,100.00

Table 5.3: Average cost of vehicles (Edmunds, 2022).

In addition, figure 5.5 shows the key vehicle and fuel inputs required in the Total Cost of Ownership Calculator. First, the primary vehicle location selected was El Paso County in Texas. For the "vehicle type," passenger car and passenger truck were selected once at a time. Under the column "number of light-duty vehicles," light-duty fuel types such as gasoline, diesel, gasoline HEV, gasoline PHEV, All-EV, and Ethanol (E85) were selected with the number 1 since that will only account for the emissions of one vehicle of each. The "annual vehicle mileage" was the same for all types of vehicles. However, the "fuel economy (MPGGE)" and the "purchase price" were modified with the data presented in Tables 5.1 and 5.2, and 5.3. Figure 5.6 illustrates the Simple Payback Calculator. Since BEVs and PHEVs utilizes electricity, the kWh/mi must be accounted for. Thus, the red numbers represent an example of the data modified to obtain an accurate Total Cost of Ownership.

Key Vehicle and Fuel Inputs					
Primary Vehicle Location					
State	TEXAS				
County	EL PASO				
Light-Duty Vehicle Information					
Vehicle Type	Passenger Car				
Vocation Type	Car				
					Maintenance
		Annual Vehicle	Fuel Economy	Purchase Price	& Repair
Light-Duty Fuel Type	Number of Light-Duty Vehicles	Mileage	(MPGGE)	(\$/vehicle)	<u>(\$/mi)</u>
Gasoline	1	14,260	23.0	\$20,000	\$0.15
Diesel	1	14,260	29.4	\$27,000	\$0.23
Gasoline Hybrid Electric Vehicle (HEV)	1	14,260	39.2	\$22,000	\$0.14
Gasoline Plug-in Hybrid Electric Vehicle (PHEV)	1	14,260	50.0	\$27,000	\$0.13
Gasoline Extended Range Electric Vehicle (EREV)	0	14,260	44.4	\$33,000	\$0.13
All-Electric Vehicle (EV)	1	14,260	106.0	\$37,000	\$0.09
Gaseous Hydrogen (G.H2) Fuel Cell Vehicle (FCV)	0	14,260	73.5	\$50,000	\$0.09
Biodiesel (B20)	0	14,260	37.1	\$27,000	\$0.23
Biodiesel (B100)	0	14,260	37.1	\$27,000	\$0.23
Renewable Diesel (RD20)	0	14,260	37.1	\$27,000	\$0.23
Renewable Diesel (RD100)	0	14,260	37.1	\$27,000	\$0.23
Ethanol (E85)	1	14,260	15.5	\$20,000	\$0.15
Propane (LPG)	0	14,260	30.9	\$26,000	\$0.15
Compressed Natural Gas (CNG)	0	14,260	29.4	\$27,000	\$0.15

Figure 5.5: Example of the key vehicle and fuel inputs for Passenger Cars - AFLEET Tool screenshot.

On-Road Vehicle Inputs							
Light-Duty Vehicle Inputs							
Vehicle Type	Pa	ssenger Truc	<u>k</u>				
Number of LDVs		1	1	1	1	0	1
Annual Mileage		14,260	14,260	14,260	14,260	14,260	14,260
Fuel Economy (MPGGE)		29.0	23.0	25.0	18. <mark>9</mark>	27.4	69.5
CD Electricity Use (kWh/100mi)					80.0	57.7	38.0
CD Electricity Use (GGE/100mi)					2.4	1.8	
CD Gasoline Use (GGE/100mi)					5. <mark>3</mark>	0.0	
PHEV CD Range (miles)					22.6	<u>46.0</u>	
Charges/day					1.0	1.0	
Days driven/week					5	5	
Share of CD miles					41%	84%	

Figure 5.6: Representation of the Simple Payback Calculator - AFLEET Tool screenshot.

5.2.5 Extract and save Total Cost of Ownership Calculator results

This sheet summarizes the output of the Total Cost of Ownership (TCO) Calculator (Burnham, 2020). This study considers the depreciation, fuel, maintenance, repair, insurance, license, and registration to generate the TCO for the vehicles.

T	Total Cost of Ownership Calculator Output									
L	Lifetime Cost of Ownership Calculator Output - Costs									
			Gasoline	Gasoline						
	Gasoline	Diesel	HEV	PHEV	EV	E85				
	Light-Duty Pass	enger Truck F	leet and Infr	astructure						
	\$0	\$0	\$0	\$0	\$0	\$0				
	\$13,949	\$16,530	\$17,400	\$24,650	\$14,500	\$13,949				
	\$1,618	\$2,435	\$1,877	\$3,041	\$793	\$2,269				
	\$0	\$35	\$0	\$0	\$0	\$0				
	\$1,084	\$1,647	\$991	\$946	\$683	\$1,084				
	\$2,631	\$3,003	\$3,128	\$4,172	\$2,711	\$2,631				
	\$51	\$51	\$51	\$51	\$51	\$51				
	T \$19,332	\$23,699	\$23,446	\$32,859	\$18,738	\$19,984				

Figure 5.7: Example of the TCO calculator - AFLEET tool screenshot.

5.2.6 Result Tables

After utilizing the data in the AFLEET tool, a result table for the LCA and LCC is created. The table size is a 132x5 matrix, where the 132 columns identify the type of vehicle (Table 5.3). Table 5.4, 5.5, 5.6, and 5.7 shows the GHGs, CO, NOx, and TCO output data, which will conform to the result table. Figure 5.8 shows an example of one result table for a simulation with 132 types of vehicles. The first row saves the number of vehicles in the simulation. Rows 2, 3, and 4 keep the results in lbs. of GHG, CO, and NOx emissions generated by the number of vehicles in each column, respectively, and the TCO is accounted for in row 5.

Vehicle Type - Passenger Cars				Vehicle Type - Passenger Trucks			
1	2012 - Gasoline	34	2017 - PHEV	67	2012 - Gasoline	100	2017 - PHEV
2	2012 - Diesel	35	2017 - EV	68	2012 - Diesel	101	2017 - EV
3	2012 - HEV	36	2017 - E85	69	2012 - HEV	102	2017 - E85
4	2012 - PHEV	37	2018 - Gasoline	70	2012 - PHEV	103	2018 - Gasoline
5	2012 - EV	38	2018 - Diesel	71	2012 - EV	104	2018 - Diesel
6	2012 - E85	39	2018 - HEV	72	2012 - E85	105	2018 - HEV
7	2013 - Gasoline	40	2018 - PHEV	73	2013 - Gasoline	106	2018 - PHEV
8	2013 - Diesel	41	2018 - EV	74	2013 - Diesel	107	2018 - EV
9	2013 - HEV	42	2018 - E85	75	2013 - HEV	108	2018 - E85
10	2013 - PHEV	43	2019 - Gasoline	76	2013 - PHEV	109	2019 - Gasoline
11	2013 - EV	44	2019 - Diesel	77	2013 - EV	110	2019 - Diesel
12	2013 - E85	45	2019 - HEV	78	2013 - E85	111	2019 - HEV
13	2014 - Gasoline	46	2019 - PHEV	79	2014 - Gasoline	112	2019 - PHEV
14	2014 - Diesel	47	2019 - EV	80	2014 - Diesel	113	2019 - EV
15	2014 - HEV	48	2019 - E85	81	2014 - HEV	114	2019 - E85
16	2014 - PHEV	49	2020 - Gasoline	82	2014 - PHEV	115	2020 - Gasoline
17	2014 - EV	50	2020 - Diesel	83	2014 - EV	116	2020 - Diesel
18	2014 - E85	51	2020 - HEV	84	2014 - E85	117	2020 - HEV
19	2015 - Gasoline	52	2020 - PHEV	85	2015 - Gasoline	118	2020 - PHEV
20	2015 - Diesel	53	2020 - EV	86	2015 - Diesel	119	2020 - EV
21	2015 - HEV	54	2020 - E85	87	2015 - HEV	120	2020 - E85
22	2015 - PHEV	55	2021 - Gasoline	88	2015 - PHEV	121	2021 - Gasoline
23	2015 - EV	56	2021 - Diesel	89	2015 - EV	122	2021 - Diesel
24	2015 - E85	57	2021 - HEV	90	2015 - E85	123	2021 - HEV
25	2016 - Gasoline	58	2021 - PHEV	91	2016 - Gasoline	124	2021 - PHEV
26	2016 - Diesel	59	2021 - EV	92	2016 - Diesel	125	2021 - EV
27	2016 - HEV	60	2021 - E85	93	2016 - HEV	126	2021 - E85
28	2016 - PHEV	61	2022 - Gasoline	94	2016 - PHEV	127	2022 - Gasoline
29	2016 - EV	62	2022 - Diesel	95	2016 - EV	128	2022 - Diesel
30	2016 - E85	63	2022 - HEV	96	2016 - E85	129	2022 - HEV
31	2017 - Gasoline	64	2022 - PHEV	97	2017 - Gasoline	130	2022 - PHEV
32	2017 - Diesel	65	2022 - EV	98	2017 - Diesel	131	2022 - EV
33	2017 - HEV	66	2022 - E85	99	2017 - HEV	132	2022 - E85

Table 5.3: Type of vehicles

	Vehicle Type - Passenger Cars								
No.	Year and Fuel	Tons	No.	Year and Fuel	Tons				
1	2012 - Gasoline	7.2685	34	2017 - PHEV	5.9034				
2	2012 - Diesel	6.6532	35	2017 - EV	1.7751				
3	2012 - HEV	4.4458	36	2017 - E85	4.2895				
4	2012 - PHEV	4.9104	37	2018 - Gasoline	5.9630				
5	2012 - EV	2.0427	38	2018 - Diesel	6.6532				
6	2012 - E85	5.2618	39	2018 - HEV	3.5284				
7	2013 - Gasoline	7.2685	40	2018 - PHEV	5.9034				
8	2013 - Diesel	7.4351	41	2018 - EV	1.8806				
9	2013 - HEV	4.4458	42	2018 - E85	4.5755				
10	2013 - PHEV	5.3404	43	2019 - Gasoline	6.1512				
11	2013 - EV	2.0427	44	2019 - Diesel	5.6655				
12	2013 - E85	4.2438	45	2019 - HEV	4.7751				
13	2014 - Gasoline	6.7628	46	2019 - PHEV	5.9034				
14	2014 - Diesel	5.4872	47	2019 - EV	1.7751				
15	2014 - HEV	4.4458	48	2019 - E85	4.8043				
16	2014 - PHEV	5.3404	49	2020 - Gasoline	6.6569				
17	2014 - EV	2.0427	50	2020 - Diesel	5.2814				
18	2014 - E85	4.2438	51	2020 - HEV	4.2341				
19	2015 - Gasoline	7.0568	52	2020 - PHEV	5.9034				
20	2015 - Diesel	7.3391	53	2020 - EV	1.5584				
21	2015 - HEV	4.4458	54	2020 - E85	4.8043				
22	2015 - PHEV	5.3404	55	2021 - Gasoline	6.7628				
23	2015 - EV	2.0427	56	2021 - Diesel	5.2814				
24	2015 - E85	5.0331	57	2021 - HEV	4.7751				
25	2016 - Gasoline	7.0568	58	2021 - PHEV	5.9034				
26	2016 - Diesel	6.5571	59	2021 - EV	1.5037				
27	2016 - HEV	4.4458	60	2021 - E85	4.8043				
28	2016 - PHEV	5.3404	61	2022 - Gasoline	6.7628				
29	2016 - EV	2.0427	62	2022 - Diesel	5.2814				
30	2016 - E85	4.6899	63	2022 - HEV	5.4102				
31	2017 - Gasoline	7.1626	64	2022 - PHEV	4.6922				
32	2017 - Diesel	5.8713	65	2022 - EV	1.5037				
33	2017 - HEV	3.5284	66	2022 - E85	4.8043				

Table 5.4: GHG output values

	Vehicle Type - Passenger Trucks								
No.	Year and Fuel	Tons	No.	Year and Fuel	Tons				
67	2012 - Gasoline	8.6916	100	2017 - PHEV	8.7695				
68	2012 - Diesel	11.8660	101	2017 - EV	1.6123				
69	2012 - HEV	8.0565	102	2017 - E85	5.6050				
70	2012 - PHEV	0.0000	103	2018 - Gasoline	8.1153				
71	2012 - EV	2.3649	104	2018 - Diesel	7.4077				
72	2012 - E85	5.9081	105	2018 - HEV	8.0565				
73	2013 - Gasoline	8.8798	106	2018 - PHEV	13.1792				
74	2013 - Diesel	11.7288	107	2018 - EV	1.6123				
75	2013 - HEV	8.0565	108	2018 - E85	5.7766				
76	2013 - PHEV	0.0000	109	2019 - Gasoline	8.6210				
77	2013 - EV	2.3649	110	2019 - Diesel	7.2019				
78	2013 - E85	5.6050	111	2019 - HEV	8.0565				
79	2014 - Gasoline	8.5505	112	2019 - PHEV	13.1792				
80	2014 - Diesel	7.8878	113	2019 - EV	1.8278				
81	2014 - HEV	8.0565	114	2019 - E85	6.4057				
82	2014 - PHEV	0.0000	115	2020 - Gasoline	7.9154				
83	2014 - EV	2.3649	116	2020 - Diesel	6.5846				
84	2014 - E85	5.6908	117	2020 - HEV	8.4093				
85	2015 - Gasoline	8.7857	118	2020 - PHEV	13.2063				
86	2015 - Diesel	7.4077	119	2020 - EV	2.6871				
87	2015 - HEV	8.0565	120	2020 - E85	6.5201				
88	2015 - PHEV	0.0000	121	2021 - Gasoline	8.2917				
89	2015 - EV	2.3649	122	2021 - Diesel	8.0250				
90	2015 - E85	5.9825	123	2021 - HEV	6.7039				
91	2016 - Gasoline	8.1859	124	2021 - PHEV	13.2063				
92	2016 - Diesel	7.4077	125	2021 - EV	2.8906				
93	2016 - HEV	8.0565	126	2021 - E85	6.7489				
94	2016 - PHEV	5.9101	127	2022 - Gasoline	8.1153				
95	2016 - EV	2.3649	128	2022 - Diesel	8.5051				
96	2016 - E85	5.6908	129	2022 - HEV	6.7039				
97	2017 - Gasoline	8.6563	130	2022 - PHEV	11.7702				
98	2017 - Diesel	7.4077	131	2022 - EV	2.5797				
99	2017 - HEV	8.0565	132	2022 - E85	6.5201				

Table 5.4: GHG output values (continuation).

	Vehicle Type - Passenger Cars								
No.	Year and Fuel	lb.	No.	Year and Fuel	lb.				
1	2012 - Gasoline	82.7132	34	2017 - PHEV	0.0000				
2	2012 - Diesel	95.5713	35	2017 - EV	0.0000				
3	2012 - HEV	82.7132	36	2017 - E85	28.0741				
4	2012 - PHEV	0.0000	37	2018 - Gasoline	26.4707				
5	2012 - EV	0.0000	38	2018 - Diesel	28.9858				
6	2012 - E85	82.7132	39	2018 - HEV	26.4707				
7	2013 - Gasoline	70.3581	40	2018 - PHEV	0.0000				
8	2013 - Diesel	81.8015	41	2018 - EV	0.0000				
9	2013 - HEV	70.3581	42	2018 - E85	26.4707				
10	2013 - PHEV	0.0000	43	2019 - Gasoline	25.8105				
11	2013 - EV	0.0000	44	2019 - Diesel	27.2252				
12	2013 - E85	70.3581	45	2019 - HEV	25.8105				
13	2014 - Gasoline	70.4000	46	2019 - PHEV	0.0000				
14	2014 - Diesel	81.8000	47	2019 - EV	0.0000				
15	2014 - HEV	70.4000	48	2019 - E85	25.8105				
16	2014 - PHEV	0.0000	49	2020 - Gasoline	24.1758				
17	2014 - EV	0.0000	50	2020 - Diesel	25.4647				
18	2014 - E85	70.4000	51	2020 - HEV	24.1758				
19	2015 - Gasoline	58.9000	52	2020 - PHEV	0.0000				
20	2015 - Diesel	67.0000	53	2020 - EV	0.0000				
21	2015 - HEV	58.9000	54	2020 - E85	24.1758				
22	2015 - PHEV	0.0000	55	2021 - Gasoline	22.6923				
23	2015 - EV	0.0000	56	2021 - Diesel	23.7458				
24	2015 - E85	58.9000	57	2021 - HEV	22.6923				
25	2016 - Gasoline	58.9000	58	2021 - PHEV	0.0000				
26	2016 - Diesel	67.0000	59	2021 - EV	0.0000				
27	2016 - HEV	58.9000	60	2021 - E85	22.6923				
28	2016 - PHEV	0.0000	61	2022 - Gasoline	21.2088				
29	2016 - EV	0.0000	62	2022 - Diesel	22.0270				
30	2016 - E85	58.9000	63	2022 - HEV	21.2088				
31	2017 - Gasoline	28.0741	64	2022 - PHEV	0.0000				
32	2017 - Diesel	30.7148	65	2022 - EV	0.0000				
33	2017 - HEV	28.0741	66	2022 - E85	21.2088				

Table 5.5: CO output values

	Vehicle Type - Passenger Trucks								
No.	Year and Fuel	lb.	No.	Year and Fuel	lb.				
67	2012 - Gasoline	90.9499	100	2017 - PHEV	0.0000				
68	2012 - Diesel	34.4874	101	2017 - EV	0.0000				
69	2012 - HEV	90.9499	102	2017 - E85	43.1328				
70	2012 - PHEV	90.9499	103	2018 - Gasoline	31.3122				
71	2012 - EV	0.0000	104	2018 - Diesel	23.6099				
72	2012 - E85	90.9499	105	2018 - HEV	31.3122				
73	2013 - Gasoline	79.0349	106	2018 - PHEV	0.0000				
74	2013 - Diesel	34.0158	107	2018 - EV	0.0000				
75	2013 - HEV	79.0349	108	2018 - E85	31.3122				
76	2013 - PHEV	79.0349	109	2019 - Gasoline	30.3062				
77	2013 - EV	0.0000	110	2019 - Diesel	22.6667				
78	2013 - E85	79.0349	111	2019 - HEV	30.3062				
79	2014 - Gasoline	79.0349	112	2019 - PHEV	0.0000				
80	2014 - Diesel	48.1629	113	2019 - EV	0.0000				
81	2014 - HEV	79.0349	114	2019 - E85	30.3062				
82	2014 - PHEV	79.0349	115	2020 - Gasoline	28.0112				
83	2014 - EV	0.0000	116	2020 - Diesel	21.7550				
84	2014 - E85	79.0349	117	2020 - HEV	28.0112				
85	2015 - Gasoline	66.9942	118	2020 - PHEV	0.0000				
86	2015 - Diesel	42.2211	119	2020 - EV	0.0000				
87	2015 - HEV	66.9942	120	2020 - E85	28.0112				
88	2015 - PHEV	66.9942	121	2021 - Gasoline	26.0119				
89	2015 - EV	0.0000	122	2021 - Diesel	20.8413				
90	2015 - E85	66.9942	123	2021 - HEV	26.0119				
91	2016 - Gasoline	66.9942	124	2021 - PHEV	0.0000				
92	2016 - Diesel	42.2211	125	2021 - EV	0.0000				
93	2016 - HEV	66.9942	126	2021 - E85	26.0119				
94	2016 - PHEV	0.0000	127	2022 - Gasoline	24.0126				
95	2016 - EV	0.0000	128	2022 - Diesel	19.9275				
96	2016 - E85	66.9942	129	2022 - HEV	24.0126				
97	2017 - Gasoline	43.1328	130	2022 - PHEV	0.0000				
98	2017 - Diesel	28.6714	131	2022 - EV	0.0000				
99	2017 - HEV	43.1328	132	2022 - E85	24.0126				

Table 5.5: CO output values (continuation).

Vehicle Type - Passenger Cars								
No.	Year and Fuel	lb.	No.	Year and Fuel	lb.			
1	2012 - Gasoline	1.0689	34	2017 - PHEV	0.0000			
2	2012 - Diesel	2.1378	35	2017 - EV	0.0000			
3	2012 - HEV	0.8979	36	2017 - E85	0.6602			
4	2012 - PHEV	0.0000	37	2018 - Gasoline	0.5973			
5	2012 - EV	0.0000	38	2018 - Diesel	0.6288			
6	2012 - E85	1.0689	39	2018 - HEV	0.5017			
7	2013 - Gasoline	0.9746	40	2018 - PHEV	0.0000			
8	2013 - Diesel	1.9806	41	2018 - EV	0.0000			
9	2013 - HEV	0.8186	42	2018 - E85	0.5973			
10	2013 - PHEV	0.0000	43	2019 - Gasoline	0.5344			
11	2013 - EV	0.0000	44	2019 - Diesel	0.5344			
12	2013 - E85	0.9746	45	2019 - HEV	0.4489			
13	2014 - Gasoline	1.0000	46	2019 - PHEV	0.0000			
14	2014 - Diesel	2.0000	47	2019 - EV	0.0000			
15	2014 - HEV	0.8000	48	2019 - E85	0.5344			
16	2014 - PHEV	0.0000	49	2020 - Gasoline	0.4716			
17	2014 - EV	0.0000	50	2020 - Diesel	0.4716			
18	2014 - E85	0.8000	51	2020 - HEV	0.3961			
19	2015 - Gasoline	0.9000	52	2020 - PHEV	0.0000			
20	2015 - Diesel	1.8000	53	2020 - EV	0.0000			
21	2015 - HEV	0.8000	54	2020 - E85	0.4716			
22	2015 - PHEV	0.0000	55	2021 - Gasoline	0.4272			
23	2015 - EV	0.0000	56	2021 - Diesel	0.4157			
24	2015 - E85	0.9000	57	2021 - HEV	0.3588			
25	2016 - Gasoline	0.9000	58	2021 - PHEV	0.0000			
26	2016 - Diesel	1.8000	59	2021 - EV	0.0000			
27	2016 - HEV	0.8000	60	2021 - E85	0.4272			
28	2016 - PHEV	0.0000	61	2022 - Gasoline	0.3828			
29	2016 - EV	0.0000	62	2022 - Diesel	0.3598			
30	2016 - E85	0.9000	63	2022 - HEV	0.3216			
31	2017 - Gasoline	0.6602	64	2022 - PHEV	0.0000			
32	2017 - Diesel	0.6916	65	2022 - EV	0.0000			
33	2017 - HEV	0.5546	66	2022 - E85	0.3828			

Table 5.6: NOx output values

	Vehicle Type - Passenger Trucks								
No.	Year and Fuel	lb.	No.	Year and Fuel	lb.				
67	2012 - Gasoline	1.4776	100	2017 - PHEV	0.0000				
68	2012 - Diesel	29.8975	101	2017 - EV	0.0000				
69	2012 - HEV	1.2412	102	2017 - E85	0.5973				
70	2012 - PHEV	1.2412	103	2018 - Gasoline	0.5659				
71	2012 - EV	0.0000	104	2018 - Diesel	4.9043				
72	2012 - E85	1.4776	105	2018 - HEV	0.4753				
73	2013 - Gasoline	1.2890	106	2018 - PHEV	0.0000				
74	2013 - Diesel	38.7001	107	2018 - EV	0.0000				
75	2013 - HEV	1.0827	108	2018 - E85	0.5659				
76	2013 - PHEV	1.0827	109	2019 - Gasoline	0.5344				
77	2013 - EV	0.0000	110	2019 - Diesel	4.3384				
78	2013 - E85	1.2890	111	2019 - HEV	0.4489				
79	2014 - Gasoline	1.2890	112	2019 - PHEV	0.0000				
80	2014 - Diesel	14.7444	113	2019 - EV	0.0000				
81	2014 - HEV	1.0827	114	2019 - E85	0.5344				
82	2014 - PHEV	1.0827	115	2020 - Gasoline	0.4401				
83	2014 - EV	0.0000	116	2020 - Diesel	3.7726				
84	2014 - E85	1.2890	117	2020 - HEV	0.3697				
85	2015 - Gasoline	1.0375	118	2020 - PHEV	0.0000				
86	2015 - Diesel	11.3491	119	2020 - EV	0.0000				
87	2015 - HEV	0.8715	120	2020 - E85	0.4401				
88	2015 - PHEV	0.8715	121	2021 - Gasoline	0.3975				
89	2015 - EV	0.0000	122	2021 - Diesel	3.6325				
90	2015 - E85	1.0375	123	2021 - HEV	0.3339				
91	2016 - Gasoline	1.0375	124	2021 - PHEV	0.0000				
92	2016 - Diesel	11.3491	125	2021 - EV	0.0000				
93	2016 - HEV	0.8715	126	2021 - E85	0.3975				
94	2016 - PHEV	0.0000	127	2022 - Gasoline	0.3548				
95	2016 - EV	0.0000	128	2022 - Diesel	3.4924				
96	2016 - E85	1.0375	129	2022 - HEV	0.2980				
97	2017 - Gasoline	0.5973	130	2022 - PHEV	0.0000				
98	2017 - Diesel	7.1050	131	2022 - EV	0.0000				
99	2017 - HEV	0.5017	132	2022 - E85	0.3548				

Table 5.6: NOx output values (continuation).

Vehicle Type - Passenger Cars								
No.	Year and Fuel	Av	verage cost	No.	Year and Fuel	Average cost		
1	2012 - Gasoline	\$	7,101.61	34	2017 - PHEV	\$	66,862.00	
2	2012 - Diesel	\$	8,635.18	35	2017 - EV	\$	62,600.00	
3	2012 - HEV	\$	5,673.44	36	2017 - E85	\$	77,603.00	
4	2012 - PHEV	\$	7,922.90	37	2018 - Gasoline	\$	66,641.00	
5	2012 - EV	\$	11,390.08	38	2018 - Diesel	\$	86,865.00	
6	2012 - E85	\$	8,641.35	39	2018 - HEV	\$	58,566.00	
7	2013 - Gasoline	\$	7,433.36	40	2018 - PHEV	\$	66,862.00	
8	2013 - Diesel	\$	9,442.36	41	2018 - EV	\$	62,600.00	
9	2013 - HEV	\$	6,101.86	42	2018 - E85	\$	79,615.00	
10	2013 - PHEV	\$	8,593.07	43	2019 - Gasoline	\$	65,584.00	
11	2013 - EV	\$	12,053.58	44	2019 - Diesel	\$	83,683.00	
12	2013 - E85	\$	8,079.77	45	2019 - HEV	\$	62,459.00	
13	2014 - Gasoline	\$	68,179.00	46	2019 - PHEV	\$	66,714.00	
14	2014 - Diesel	\$	83,054.00	47	2019 - EV	\$	62,600.00	
15	2014 - HEV	\$	61,420.00	48	2019 - E85	\$	81,066.00	
16	2014 - PHEV	\$	68,048.00	49	2020 - Gasoline	\$	65,954.00	
17	2014 - EV	\$	62,600.00	50	2020 - Diesel	\$	83,942.00	
18	2014 - E85	\$	77,320.00	51	2020 - HEV	\$	60,643.00	
19	2015 - Gasoline	\$	69,217.00	52	2020 - PHEV	\$	66,714.00	
20	2015 - Diesel	\$	89,038.00	53	2020 - EV	\$	62,600.00	
21	2015 - HEV	\$	61,420.00	54	2020 - E85	\$	81,066.00	
22	2015 - PHEV	\$	68,048.00	55	2021 - Gasoline	\$	68,355.00	
23	2015 - EV	\$	62,600.00	56	2021 - Diesel	\$	82,392.00	
24	2015 - E85	\$	82,783.00	57	2021 - HEV	\$	62,497.00	
25	2016 - Gasoline	\$	67,380.00	58	2021 - PHEV	\$	66,567.00	
26	2016 - Diesel	\$	86,519.00	59	2021 - EV	\$	62,600.00	
27	2016 - HEV	\$	60,901.00	60	2021 - E85	\$	81,066.00	
28	2016 - PHEV	\$	68,048.00	61	2022 - Gasoline	\$	65,315.00	
29	2016 - EV	\$	62,600.00	62	2022 - Diesel	\$	82,392.00	
30	2016 - E85	\$	80,485.00	63	2022 - HEV	\$	64,277.00	
31	2017 - Gasoline	\$	69,561.00	64	2022 - PHEV	\$	63,751.00	
32	2017 - Diesel	\$	84,314.00	65	2022 - EV	\$	62,600.00	
33	2017 - HEV	\$	58,566.00	66	2022 - E85	\$	81,066.00	

Table 5.7: TCO output values

Vehicle Type - Passenger Trucks								
No.	o. Year and Fuel Average cost		No. Year and Fuel		Average cost			
67	2012 - Gasoline	\$ 89,893.00	100 2	017 - PHEV	\$	51,081.00		
68	2012 - Diesel	\$ 126,560.00	101 2	017 - EV	\$	105,066.00		
69	2012 - HEV	\$ 54,055.00	102 2	017 - E85	\$	107,708.00		
70	2012 - PHEV	\$ 40,709.00	103 2	018 - Gasoline	\$	87,489.00		
71	2012 - EV	\$ 105,066.00	104 2	018 - Diesel	\$	110,053.00		
72	2012 - E85	\$ 110,395.00	105 2	018 - HEV	\$	58,200.00		
73	2013 - Gasoline	\$ 95,774.00	106 2	018 - PHEV	\$	61,378.00		
74	2013 - Diesel	\$ 126,124.00	107 2	018 - EV	\$	105,066.00		
75	2013 - HEV	\$ 54,055.00	108 2	018 - E85	\$	107,359.00		
76	2013 - PHEV	\$ 40,709.00	109 2	019 - Gasoline	\$	94,940.00		
77	2013 - EV	\$ 105,066.00	110 2	019 - Diesel	\$	111,425.00		
78	2013 - E85	\$ 107,789.00	111 2	019 - HEV	\$	54,055.00		
79	2014 - Gasoline	\$ 89,028.00	112 2	019 - PHEV	\$	61,378.00		
80	2014 - Diesel	\$ 113,737.00	113 2	019 - EV	\$	105,066.00		
81	2014 - HEV	\$ 54,055.00	114 2	019 - E85	\$	113,690.00		
82	2014 - PHEV	\$ 40,709.00	115 2	020 - Gasoline	\$	86,802.00		
83	2014 - EV	\$ 105,066.00	116 2	020 - Diesel	\$	109,321.00		
84	2014 - E85	\$ 108,396.00	117 2	020 - HEV	\$	55,090.00		
85	2015 - Gasoline	\$ 95,471.00	118 2	020 - PHEV	\$	61,378.00		
86	2015 - Diesel	\$ 112,051.00	119 2	020 - EV	\$	105,066.00		
87	2015 - HEV	\$ 54,055.00	120 2	020 - E85	\$	114,272.00		
88	2015 - PHEV	\$ 40,709.00	121 2	021 - Gasoline	\$	93,599.00		
89	2015 - EV	\$ 105,066.00	122 2	021 - Diesel	\$	114,154.00		
90	2015 - E85	\$ 110,488.00	123 2	021 - HEV	\$	49,898.00		
91	2016 - Gasoline	\$ 88,229.00	124 2	021 - PHEV	\$	61,378.00		
92	2016 - Diesel	\$ 111,315.00	125 2	021 - EV	\$	105,066.00		
93	2016 - HEV	\$ 54,055.00	126 2	021 - E85	\$	99,016.00		
94	2016 - PHEV	\$ 43,706.00	127 2	022 - Gasoline	\$	86,163.00		
95	2016 - EV	\$ 105,066.00	128 2	022 - Diesel	\$	115,728.00		
96	2016 - E85	\$ 108,396.00	129 2	022 - HEV	\$	49,898.00		
97	2017 - Gasoline	\$ 95,050.00	130 2	022 - PHEV	\$	58,603.00		
98	2017 - Diesel	\$ 110,053.00	131 2	022 - EV	\$	105,066.00		
99	2017 - HEV	\$ 54,055.00	132 2	022 - E85	\$	99,016.00		

Table 5.7: TCO output values (continuation).
Vehicle Type	1	2	3	4	5	6	7	8	6	 132
Random number of vehicles	1	1	1	1	1	1	1	1	1	 1
GHGs	7.26	6.65	4.44	4.91	2.04	5.26	7.26	7.43	4.44	 6.52
со	82.71	95.57	82.71	3.9	3.9	82.71	70.35	81.80	70.35	 24.01
NOx	1.06	2.13	0.89	2.3	2.3	1.06	0.97	1.98	0.81	 0.35
Cost	7101.61	8635.18	5673.44	7922.90	11390	8641.35	9442.36	9442.36	6101.86	 19983.5

Figure 5.8: Example of the result table.

5.3 MOEA

This study adjusts four different fitness functions to guarantee that multiple objectives are considered when searching for an optimal solution. The MOEA flowchart is presented in figure 5.9.

Figure 5.9: MOEA

The MOEA creates a random initial population where the individuals are evaluated to rank their environmental performance and life cost. Later, the individuals are assessed under the metric functions utilized in this algorithm. When creating new populations, the best-fitted individuals from the current population are selected. The process repeatedly runs until the optimal solution is found, given by Pareto optimality.

5.3.1 Initialization

At the beginning of the algorithm, a set of possible solutions called individuals is produced. These individuals are differentiated from others by the structure of their genes, better known as chromosome encoding. In this study, the number of vehicles is equal to the number of genes of an individual. The individuals represent possible scenarios and are produced by combining the outputs of CO, NOx, GHG, and TCO generated by the AFLEET tool presented in the result table. Maintaining a diverse population is essential to ensure the search space's efficiency. Figure 5.10 shows a representation of the process of how an individual is created. For this study, the individuals are created by assigning a random number of each type of vehicle corresponding to the first row. However, the total number of vehicles could not be greater or less than the number of vehicles assigned for the simulation, corresponding to the number of vehicles registered in the region under study. One restriction to be considered is setting a percentage of the total number of vehicles to BEVs.

Figure 5.10: Example of the initial individual.

After generating the first random row, the algorithm multiplies each random number of vehicles by the lbs. of GHG, CO, and NOx emissions caused by just one vehicle, as well as the TCO, as shown in figure 5.11. After the multiplication, a new 132x5 matrix is generated, corresponding to the new individual shown in figure 5.12.

Figure 5.12: Generation of the new individual.

The variable assigned to the initial population corresponding to a set of random individuals is given at the beginning of the algorithm. This variable constantly persists throughout the entire algorithm, helping the MOEA towards the Pareto optimal front by providing a base for succeeding populations. Figure 5.13 shows an example of an initial population of 10 individuals.

Figure 5.13: Example of the initial population

5.3.2 Evaluation

In this phase of the MOEA, four objective functions evaluate each individual in the current generation. It is essential to mention that the algorithm considers the concept of Pareto dominance; only the nondominated individuals survive, while the dominated individuals are removed. By applying the Pareto criterion, a count of the individuals dominated by a single solution is performed.

5.3.3 Fitness assignment

Diversity of population and proximity to the Pareto front are the two main objectives to be evaluated in this MOEA. The evaluation is performed according to the following fitness metrics:

• First Fitness Metric: Distance-based $f_1(i)$

The purpose of the distance-based metric is to maintain the variety of the solutions given by the Pareto optimal front by assigning higher fitness to individuals farther away from others. There are two steps to measure the individuals: normalization and distances. Normalization refers to removing unit inconsistencies. The equation to normalize every result of the objective is expressed as shown in equation 5.1.

$$\frac{f_i(x) - f_i^{min}}{f_i^{max} - f_i^{min}}$$
(Eq. 5.1)

Were $f_i(x)$ corresponds to the value in the nondominated set, f_i^{min} belongs to the minimum value in the nondominated set, and f_i^{max} is the maximum value in the nondominated set (Cram, 2019).

• Second Fitness Metric: Dominance count-based $f_2(i)$

This fitness metric aims to approximate the Pareto front by choosing the more dominating individuals. The dominance count concept is the base of this metric (Cram, 2019).

• Aggregated Fitness Metric

This fitness metric aims to find the two most common desirable characteristics in the MOEA, which correspond to proximity and diversity. Equal weights for individuals in the two previous fitness metrics are aggregated (Cram, 2019).

5.3.4 Selection

Some of the most fitted individuals survive into the next generation during selection. This process is called elitism. Individuals with the greatest fittest value have the highest probability of reproducing, filling the remaining spots by reproduction. Secondly, tournament selection is applied, where two individuals are randomly selected. The fittest individual selected is chosen to be parent 1, and the tournament selection process is repeated to find parent 2. The new parents are intended to produce new individuals through a crossover process, which will be explained in the following subsection.

5.3.5 Crossover

In the MOEAs, there exist different types of ways to achieve the reproduction of parents through a crossover. Knowing the type of chromosome encoding of the problem will help to achieve effectiveness during the crossover method. For this research, the technique utilized was the random single-point crossover. However, the MOEA needs to fulfill the constraint assigned to the individual, which consists of having a sum equal to the number of vehicles the user selects for a specific scenario. Figure 5.14 shows a graphic representation of the crossover technique. First, a random point through the 132 genes is chosen to divide the chromosomes into two segments. Once the chromosomes are divided, segment 1 of the first parent is joined with segment 2 of the second parent. Likewise, segment 2 of the first parent is joint with segment 1 of the second parent. This way, two new children will serve as new parents to populate the next generation.

It is essential to mention that to satisfy the constraint, a MATLAB code evaluates the sum of all the types of vehicles in one individual, as shown in figure 5.15. If the sum of the child equals the total number of vehicles the user selects, it will satisfy the constraint. In contrast, if the child's sum is less than the total number of vehicles assigned, the code will choose a random gene and sum the remaining vehicles' number to that gene to achieve the desired sum. However, a possible scenario would be that the selected gene's number of vehicles and the difference number surpass the desired sum. In that case, the code will re-evaluate the sum, select another random gene, and rest the surplus. This process will repeat itself until we achieve the desired number of vehicles.

Nevertheless, the code will not choose any gene corresponding to the BEVs since another constraint is that 10% of the total vehicles will be destined for BEVs. Additionally, suppose the individual's sum exceeds the total number of vehicles. In that case, the code will perform the same operation, select a random gene to rest the surplus, and re-evaluate the new sum until the constraints are satisfied.

Figure 5.14: Single-point crossover process.

Figure 5.15: Evaluation of the crossover constraints.

5.3.6 Mutation

In the mutation step, the new individuals have a 0.01% chance of mutation, which will increase the variation of solutions to avoid falling into the local optimum (Cram, 2019). If new individuals mutate, genes will be swapped, as shown in figure 5.16.

5.3.7 Termination

Depending on the study's objectives, MOEAs have multiple ways to terminate the iterative process. For this research, reaching the predetermined number of generations and the predetermined number of generations assigned at the beginning of the MOEA will stop the iterative process. The algorithm will re-evaluate the non-dominated solutions to find the solution closes to the objective vector $[0\ 0\ 0]$. The closest solution will be the most optimal solution.

Chapter 6: Case Studies

This chapter presents four case studies utilizing the developed optimization model explained in chapter 5. Additionally, these case studies demonstrate that the percentage of BEVs can be modified to simulate different scenarios.

6.1 CASE STUDIES

The following subsections utilized MATLAB code to run a MOEA simulation. The four case studies are based on the data obtained from the Texas region. The total number of vehicles used to run the MOEA is 704,274, which is the number of vehicles registered in the City of El Paso, TX., in 2021, according to El Paso District Statistics (cite). The simulation parameters must be defined at the beginning of the algorithm shown in table 6.1. Each of these parameters is going to be explained in the following subsections.

	.15
Number of individuals	100
Number of generations	100
Elitism	0.25
Crossover	0.75
Mutation	0.01

Table 6.1: MOEA Parameters

6.2 CASE STUDY 1

According to the Edison Electric Institute, in 2030, the projected number of BEVs will make up nearly 10% of the 259 million light-duty vehicles (cars and light trucks) expected to be on U.S. roads (2022). Therefore, the percentage established in this case study for BEVs was 10%, equal to 70,425 EVs. The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo computer, with an 11th Gen Intel® Core™ i7-1165G7 processor operating at 2.80 GHz

and 16 GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 GHz and 256 GB of RAM.

The optimal solution given with the parameters selected is shown in table 6.2. The wellto-wheel analysis of the fuel and vehicle production produced 4,506,356.86 tons of GHG emissions, while the air pollutants such as CO and NOx produced 22,576,079.51 lbs. and 872,636.58 lbs., respectively, along with a TCO of \$8,748,478,084.31 US dollars. In this MOEA, the number of non-dominated solutions found was 44, shown in figure 6.1. Non-dominated solutions are represented by blue dots, while the optimal solution found is represented by a red dot.

				2012 Passe	nger	Cars		
				Туре о	f fue	ł		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicl	es	2942	891	11489		30055	3301	12079
COx		243342.13	85154.00	950291.54		117214.50	12873.90	999092.31
NOx		3144.67	1904.76	10315.59		69126.50	7592.30	12911.11
GHGs		23063.57	6450.60	51077.53		175991.81	9863.28	70433.28
TCO	\$	20,892,936.62	\$ 7,693,945.38	\$ 65,182,152.16	\$	238,122,759.50	\$ 37,598,654.08	\$ 104,378,866.65
				2013 Passe	nger	Cars		
				Туре о	f fue	ł		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicl	es	1864	8984	4817		381	3464	5628
COx		131147.43	734904.35	338914.78		1485.90	13509.60	395975.17
NOx		1816.61	17793.61	3943.41		876.30	7967.20	5484.91
GHGs		14612.68	72066.54	21415.31		2394.84	10350.32	27087.58
TCO	\$	13,855,783.04	\$ 84,830,162.24	\$ 29,392,659.62	\$	3,273,959.67	\$ 41,753,601.12	\$ 45,472,945.56
_				2014 Passe	nger	Cars		
_				Туре о	f fue	el de la companya de		
_		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicl	es	592	22284	273		5274	3880	8555
COx		41676.80	1822831.20	19219.20		20568.60	15132.00	602272.00
NOx		592.00	44568.00	218.40		12130.20	8924.00	6844.00
GHGs		4341.54	135346.68	1213.70		33150.64	11593.31	41175.24
TCO	\$	4,743,459.20	\$ 207,016,131.60	\$ 1,928,455.62	\$	47,069,500.68	\$ 49,342,270.40	\$ 81,894,020.75
				2015 Passe	nger	Cars		
				Туре о	f fue	el de la companya de		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicl	es	11131	4125	3030		4083	5134	2802
COx		655615.90	276375.00	178467.00		15923.70	20022.60	165037.80
NOx		10017.90	7425.00	2424.00		9390.90	11808.20	2521.80
GHGs		84904.10	32693.22	13470.71		25664.40	15340.23	15697.58
TCO	\$	94,364,722.15	\$ 43,964,745.00	\$ 22,408,940.70	\$	37,794,575.31	\$ 70,399,102.22	\$ 31,214,392.08

Table 6.2:	Solutions	for Cas	se Study 1.

						2016 Passe	nger	Cars				
							f fuo					
		Constant		D'l			1 Tue			TN/		E95
		Gasoline		Diesel		HEV		PHEV		EV		E85
7 of vehicles		3730		2563		10143		3102		2146		4863
COx		219697.00		171721.00		597422.70		12097.80		8369.40		286430.70
NOx		3357.00		4613.40		8114.40		7134.60		4935.80		4376.70
GHGs		28451.38		18309.33		45093.52		19498.16		6412.18		25575.07
тсо	\$	33,065,704.00	\$	28,648,675.77	\$	89,680,855.95	\$	29,742,968.64	\$	32,274,402.18	\$	53,979,737.67
						2017 Passe	nger	Cars				
						Туре о	f fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		5624		4416		869		27542		370		14001
COx		157888 52		135636 76		24396 36		107413 80		1443.00		393064 93
NOw		2712.04		2054.26		481.02		62246 60		251.00		0242 41
CHCa		12102 59		29517.72		401.72		199625 74		1006 54		69027 46
GIGS	¢	43493.36	¢	20317.72	¢	5000.17	¢	100023.74	¢	5 022 704 60	¢	151 700 100 00
100	\$	52,082,907.92	\$	51,048,032.64	\$	8,509,048.13	\$	270,240,176.06	\$	5,932,794.60	\$	151,799,122.02
						2018 Passe	nger	Cars				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
<pre># of vehicles</pre>		16804		7856		12693		1033		4382		1848
COx		444814.10		227712.14		335992.94		4028.70		17089.80		48917.90
NOx		10037.37		4939.53		6368.70		2375.90		10078.60		1103.85
GHGs		109795.87		56875.36		44785.91		7074.66		12383.14		9507.45
тсо	\$	160.020.291.00	\$	104.325.166.08	\$	137,174,139,51	\$	10.478.421.44	\$	80,439,629.06	\$	21,441,826,56
						2019 Passe	nger	Cars		, ,		
						Туре о	f fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		6828		5505		63		5425		1018		6239
COx		176234 31		149874 93		1626.06		21157 50		3970.20		161031 90
NOx		3649 19		2942 12		28.28		12477 50		2341.40		3334.40
CHCa		45909 46		2/417 52		20.20		27152.07		2341.40		22525.29
GIGS	¢	43898.40	¢	34417.33	¢	300.83	¢	5/155.97	¢	2709.33	¢	33525.28
100	\$	66,516,737.28	\$	164,762,448.00	\$	733,095.72	\$	56,829,207.75	\$	23,753,075.44	\$	/4,648,825.95
				-		2020 Passe	nger	Cars				
		~				Туре о	of fue					
		Gasoline		Diesel		HEV		PHEV		EV		E85
⁷ of vehicles		12385		1139		11656		17489		4041		7264
COx		299416.78		29004.31		281792.65		68207.10		15759.90		175612.72
NOx		5840.38		537.12		4617.15		40224.70		9294.30		3425.48
GHGs		89516.68		6683.59		49352.36		119776.18		10117.38		39033.12
TCO	\$	129,660,918.15	\$	14,291,989.76	\$	141,455,234.48	\$	183,204,795.27	\$	107,694,993.78	\$	81,611,185.28
						2021 Passe	nger	Cars				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		13115		3249		2031		7130		5147		1502
COx		297609.57		77150.25		46088.07		27807.00		20073.30		34083.84
NOx		5602.54		1350 54		728 80		16399.00		11838-10		641.63
CHCs		96181 25		10064.96		9698 22		18830.93		12605 19		8071.00
TCO	¢	147 972 019 45	¢	1004.00	¢	27 507 864 00	¢	40050.75 96 516 702 40	¢	145 708 121 51	¢	16 875 000 04
100	¢	147,072,010.45	Þ	40,707,932.10	¢	27,307,804.00	ۍ م	80,310,703.40	¢	145,706,121.51	φ	10,875,000.04
-						2022 Fasse	nger e e					
		Casalina		Diagol			1 Tue	DUEV		EV/		F95
4 - C 1 1		Gasonne		Diesei		<u>пе</u> у 2121		PHEV		<u>Ev</u>		E05
7 of vehicles		18		58		2121		9019		40		10593
COx		1654.29		1277.56		44983.97		35174.10		156.00		224665.34
NOx		29.86		20.87		682.02		20743.70		92.00		4055.03
GHGs		572.03		340.34		11475.05		50844.46		97.96		56921.51
TCO	\$	995,016.36	\$	727,774.72	\$	34,528,522.56	\$	111,212,567.48	\$	1,397,773.20	\$	119,012,566.86
						2012 Passen	ger 1	Frucks				
						Туре о	f fue	el se				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1131		5145		1199		615	_	708		2732
COx		102864.34		177437.66		109048.93		55934.19		3256.80		248475.12
NOx		1671.15		153822.43		1488.16		763.32		1982.40		4036.75
CHCs		10611.83		64640.87		9659.74		0.00		2485.36		18025 34
GIUS												

						2013 Passen	oer	Trucks				
						Type o	f fu	el				
		Gasoline		Diesel		HEV	<u>, 1 10</u>	PHFV		FV		F85
t of vobiolog	,	5646		502		3012		6048		4571		1365
		446231.20		20127 27		238053 20		478003 24		4 371 21026 60		107882.68
NOr		7277 44		20137.37		236033.20		478003.24		12708 80		1750 42
NUX		7277.44		22910.45		3201.10		0348.30		12798.80		1759.42
GHGs		54037.18		/356.57		24266.18		0.00		16046.01		8592.30
тсо	\$	50,681,319.00	\$	7,023,044.00	\$	27,785,097.60	\$	95,538,864.96	\$	38,641,679.86	\$	13,690,922.70
						2014 Passen	ger	Trucks				
		Casalina		Diagol			of fu	el		EV		E95
4 of wobiolog	,	4075		2718		1409		F HE V 8044		EV 0772		£05
# of venicles		4975		2/18		4408		8044		9/12		6181
COx		393198.76		130906.74		348385.96		635/56.96		44951.20		488514.89
NOx		6412.55		40075.24		4772.64		8709.42		27361.60		7967.03
GHGs		45976.77		23335.77		35513.06		0.00		34303.56		39437.97
TCO	\$	45,586,273.25	\$	31,466,748.06	\$	41,394,073.36	\$	127,069,217.88	\$	82,609,165.52	\$	67,252,494.12
						2015 Passen	iger	Trucks				
						Туре о	of fu	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles	<u>i</u>	863		2767		10367		2100		654		559
COx		57816.00		116825.85		694528.92		140687.83		3008.40		37449.76
NOx		895.32		31402.93		9034.42		1830.06		1831.20		579.94
GHGs		8178.47		22427.96		83521.75		0.00		2295.80		3729.76
тсо	\$	8,792,149,07	\$	32.531.951.04	\$	99.072.753.85	\$	33,173,217,00	\$	5,702,265,24	\$	6.434.330.37
	т	.,,	Ŧ	,,,	Ŧ	2016 Passen	ger	Trucks	Ŧ	.,	Ŧ	.,,
						Туре о	of fu	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles	5	2180		9981		596		3068		4955		4415
COx		146047.37		421409.05		39928.55		14112.80		22793.00		295779.41
NOx		2261.64		113275.25		519.39		8590.40		13874.00		4580.35
GHGs		19351 78		80901 14		4801.67		21646 48		17394.00		28169.98
TCO	\$	21 940 065 00	¢	124 963 716 96	¢	5 893 426 80	¢	31 516 306 12	¢	45 175 527 80	¢	52 334 836 05
100	ψ	21,740,005.00	φ	124,705,710.70	φ	2017 Posson	φ	Trucks	ψ	45,175,527.00	ψ	52,554,650.05
						ZUI7 Tassen	igei					
		Casoline		Diesel		HEV	<u>, 1 10</u>	PHFV		FV		F85
t of vobiolog	,	045		1005		10002		6301		5738		6742
f of venicles		74 3 40760 52		20014 74		10774		28084 60		3730		200801 50
		40760.32		28814.74		4/4110.00		28984.00		20394.80		290801.50
NOX		564.47		/140.49		5515.23		1/642.80		16066.40		4027.13
GHGs		8833.31		8146.04		88557.06		62474.54		15824.11		42439.04
TCO	\$	11,106,745.65	\$	13,695,949.05	\$	110,515,436.64	\$	119,558,891.59	\$	54,217,845.58	\$	86,734,481.60
						2018 Passen	iger	Trucks				
		~ "				Туре о	of fu	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
7 of vehicles	<u>.</u>	759		13951		2669		8415		2569		15244
COx		23765.93		329381.39		83572.17		38709.00		11817.40		477322.67
NOx		429.50		68420.10		1268.69		23562.00		7193.20		8626.31
GHGs		6684.05		113080.03		21502.80		120542.23		7084.72		98572.39
тсо	\$	8,989,550.46	\$	210,109,454.03	\$	29,162,401.46	\$	203,925,659.85	\$	27,683,312.79	\$	207,433,492.20
						2019 Passen	iger	Trucks				
						Туре о	of fu	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1770		12105		3263		2074		2195		934
COx		53641.89		274380.88		98888.98		9540.40		10097.00		28305.95
NOx		945.97		52516.73		1464.87		5807.20		6146.00		499.17
GHGs		16482.47		95626.43		26288.36		29709 40		6526.50		6627.14
TCO	\$	25 189 489 50	\$	191 834 471 70	\$	45 255 525 90	\$	52 324 614 16	\$	30 206 843 70	\$	14 839 999 10
100	φ	25,107,407.50	ψ	171,034,471.70	ψ	2020 Paccon	Ψ IGer	Trucks	φ	50,200,045.70	ψ	17,037,777.10
						Type o	f fu	el				
		Gasoline		Diesel		HEV	-110	PHEV		EV		E85
# of vehicles		2730		145		11245		2575		788		8823
COv		76470 54		3154 48		314985 78		11845.00		3624 80		247142 69
NOv		1201 56		547.02		4157 20		7210.00		2206.40		3883 27
CHC.		22405 61		1055.05		4157.57		26055.04		2000.40		62612 21
	ሱ	42 570 827 20	æ	2 (07 150 75	¢	74303.03	¢	70,000,000,70	ሱ	3020.11	æ	05012.51
100	\$	42,579,837.30	Э	2,007,150.75	\$	194,510,656.15	\$	/0,089,800.50	3	11,889,864.08	\$	139,181,830.87

				2021 Passen	ger]	Trucks		
				Туре о	f fue	1		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicle	×	1799	1470	7159		1844	3010	8236
COx		46795.40	30636.66	186219.15		8482.40	13846.00	214233.96
NOx		715.02	5339.73	2390.10		5163.20	8428.00	3273.41
GHGs		16160.08	12822.54	47993.58		26464.76	12148.76	61264.33
TCO	\$	30,954,277.62	\$ 31,216,140.90	\$ 144,100,790.58	\$	57,533,426.96	\$ 55,402,541.60	\$ 141,540,272.16
				2022 Passen	ger]	Trucks		
				Туре о	f fue	1		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicle	×	5807	8044	1219		866	2544	12754
COx		139441.18	160296.77	29271.36		3983.60	11702.40	306256.72
NOx		2060.16	28092.82	363.27		2424.80	7123.20	4524.76
GHGs		51138.73	74028.48	8172.11		11184.96	9476.94	91954.14
TCO	\$	112,263,595.22	\$ 190,638,456.24	\$ 28,580,820.28	\$	28,455,971.94	\$ 47,669,243.04	\$ 254,870,069.16

Figure 6.1: Pareto Optimality for Case Study 1.

The computational time used to run this MOEA to find the optimal solution shown in Case Study 1 was 2 hours 9 mins.

6.3 CASE STUDY 2

The percentage established in this case study for EVs was 8%, equal to 56,342 vehicles. The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo computer, with an 11th Gen Intel® Core[™] i7-1165G7 processor operating at 2.80 GHz and 16 GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 GHz and 256 GB of RAM.

The optimal solution given with the parameters selected is shown in table 6.2. The wellto-wheel analysis of the fuel and vehicle production produced 4,479,447.05 tons of GHG emissions, while the air pollutants such as CO and NOx produced 22,164,602.89 lbs. and 563,440.09 lbs., respectively, along with a TCO of \$8,966,197,155.59 US dollars. In this MOEA, the number of non-dominated solutions found was 48, shown in figure 6.1. Non-dominated solutions are represented by blue dots, while the optimal solution found is represented by a red dot.

						2012 Passe	nger	Cars				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1694		5989		3155		11913		409		14355
COx		140116.10		572376.35		260960.03		46460.70		1595.10		1187347.47
NOx		1810.70		12803.16		2832.77		27399.90		940.70		15343.90
GHGs		13279.98		43358.77		14026.43		69758.46		1222.08		83704.76
TCO	\$	12,030,127.34	\$	51,716,093.02	\$	17,899,703.20	\$	94,385,507.70	\$	4,658,542.72	\$	124,046,579.25
						2013 Passe	nger	Cars				
		Constant		Direct		Туре о	f fue	DUEX		T 2X 7		F95
# of vobialog		Gasoline		7857		2107		PHEV		1221		£85 5612
# of venicles		5072 216120.07		7837 642714 10		224024 72		20		1231		204010 80
		210139.97		15561 40		224934.72		50.80		4800.90		5470.20
CHCe		24082 70		63026.14		14213.15		163.43		2651.50		27015 38
TCO	¢	24082.70	¢	74 188 622 52	¢	19 507 646 42	¢	223 /10 82	¢	1/ 837 956 98	¢	45 351 749 01
100	ψ	22,033,201.72	φ	74,100,022.52	ψ	2014 Passe	φ nger	Cars	φ	14,057,750.70	φ	45,551,747.01
						Type o	f fue					
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		2163		11807		2203		85		4422		1268
COx		152275.20		965812.60		155091.20		331.50		17245.80		89267.20
NOx		2163.00		23614.00		1762.40		195.50		10170.60		1014.40
GHGs		15862.76		71712.36		9794.05		534.28		13212.79		6102.89
тсо	\$	17,331,253.80	\$	109,685,849.30	\$	15,561,859.82	\$	758,609.70	\$	56,234,927.76	\$	12,138,120.20
						2015 Passe	nger	Cars				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		6273		9125		11841		8601		4969		130
COx		369479.70		611375.00		697434.90		33543.90		19379.10		7657.00
NOx		5645.70		16425.00		9472.80		22362.60		12919.40		117.00
GHGs		47848.66		72321.37		52642.45		54063.07		14847.21		728.30
100	\$	53,180,298.45	\$	97,255,345.00	\$	87,572,365.29	\$	79,615,758.57	\$	68,136,567.77	\$	1,448,205.20
						2016 Passe	nger f fuol					
		Gasoline		Diesel		HEV ISPE 0	Tue	PHEV		FV		F85
# of vehicles		2160		305		1463		288		731		16786
COx		127224 00		20435.00		86170 70		1123.20		2850.90		988695 40
NOx		1944 00		549.00		1170.40		662 40		1681 30		15107.40
GHGs		16475.87		2178.83		6504.17		1810.27		2184.20		88279.49
тсо	\$	19,147,968.00	\$	3.409.225.95	\$	12.935.333.95	\$	2,761,436,16	\$	10.993.750.23	\$	186.326.110.74
		- , - ,	· ·	-,,		2017 Passe	nger	Cars	· ·	- , ,		
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		4718		10615		3955		22706		3967		18473
COx		132453.42		326038.10		111032.91		88553.40		15471.30		518612.13
NOx		3114.81		7341.70		2193.30		52223.80		9124.10		12195.81
GHGs		36486.97		68549.72		13954.80		155505.63		10791.77		89755.83
TCO	\$	43,692,595.94	\$	122,707,170.85	\$	38,726,450.35	\$	222,789,682.58	\$	63,609,178.86	\$	200,284,635.46
						2018 Passe	nger	Cars				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		20119		1396		3809		555 2164 50		2184		15/21
		532564.57		40464.12		100827.00		2164.50		8517.60		416146.31
		12017.49		8/1.15		1911.16		12/0.50		5025.20		9390.47
GHGS	¢	151455.80	¢	10100.07	¢	13439.66	¢	5 620 742 40	¢	01/1./9	¢	80880.25
100	Э	191,388,207.25	Э	10,000,400.28	\$	41,104,129.03	Э	3,029,742.40	Э	40,091,310./2	\$	102,400,301.12

Table 6.3: Solutions for Case Study 2.

						2019 Passe	nger	Cars				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		4633		1062		20975		15942		829		2782
COx		119580.19		28913.20		541375.89		62173.80		3233.10		71804.90
NOx		2476.08		567.58		9416.38		36666.60		1906.70		1486.82
GHGs		31143.46		6639.68		100157.60		109181.31		2255.20		14949.08
тсо	\$	45,133,574.08	\$	31,785,235.20	\$	244,074,329.00	\$	166,999,305.06	\$	19,343,123.32	\$	33,286,268.34
						2020 Passe	nger	Cars				
		Cacalina		Diagol		Туре о	of fue			EV		E95
# of vobialog		1784		5284		6071		18507		2106		1505
# of venicles		1704		J204 124555 55		146771.04		10397		12464 40		26284 52
		43129.55		134333.33		140//1.04		/2528.50		7250.00		30384.32
NOX		841.28		2491.77		2404.83		42//3.10		/350.80		/09./1
GHGs	¢	12894.45	¢	31006.24	¢	25705.06	¢	12/364.49	¢	8001.77	¢	8087.12
100	\$	18,677,034.96	\$	66,302,786.56	\$	73,676,623.93	\$	194,811,571.71	\$	85,175,253.68	\$	16,908,705.10
						2021 Passe	nger					
		Gasoline		Diesel		HEV	1 Iue	PHEV		EV		E85
# of vehicles		8475		24570		7845		748		345		1682
COx		192317.28		583435.43		178021.13		2917.20		1345.50		38168.46
NOx		3620.40		10213.24		2815.07		1720.40		793.50		718.53
GHGs		62152.96		144175 47		37460.61		5122.80		844 92		9038 23
TCO	\$	95 555 879 25	\$	308 300 428 80	\$	106 252 680 00	\$	9 076 366 64	\$	9 766 718 85	\$	18 897 303 64
100	Ψ	<i>ye,eee,ery</i> 12e	Ψ	200,200,120,000	Ψ	2022 Passe	nger	Cars	Ψ	3,700,710100	Ψ	10,077,000101
						Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		9798		362		3944		12817		3861		11812
COx		207804.31		7973.77		83647.70		49986.30		15057.90		250518.93
NOx		3750.70		130.24		1268.21		29479.10		8880.30		4521.67
GHGs		71855.42		2124.20		21337.85		72255.63		9455.73		63471.80
тсо	\$	124,989,362.76	\$	4,542,318.08	\$	64,205,795.84	\$	158,045,401.64	\$	134,920,058.13	\$	132,708,056.24
						2012 Passen	ger 1	Frucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1773		148		6833		934		964		7251
COx		161254.17		5104.13		621460.66		84947.21		4434.40		659477.71
NOx		2619.75		4424.82		8480.91		1159.25		2699.20		10713.95
GHGs		16635.52		1859.45		55050.07		0.00		3384.02		47841.04
TCO	\$	14,296,674.15	\$	1,712,472.48	\$	60,766,210.65	\$	14,754,183.18	\$	7,829,521.24	\$	71,653,294.35
						2013 Passen	ger 1	frucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		37		621		6611		7639		830		1349
COx		2924.29		21123.83		522499.90		603747.81		3818.00		106618.12
NOx		47.69		24032.75		7157.87		8270.91		2324.00		1738.80
GHGs		354.12		7716.95		53261.53		0.00		2913.63		8491.59
TCO	\$	332,130.50	\$	7,367,078.25	\$	60,985,152.80	\$	120,671,526.03	\$	7,016,537.80	\$	13,530,443.02
						2014 Passen	ger 1	Trucks				
		~				Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		<u>E85</u>
# of vehicles		292		2559		460		2154		4680		308
COx		23078.20		123248.84		36356.07		170241.23		21528.00		24342.76
NOx		376.37		37730.88		498.05		2332.18		13104.00		397.00
GHGs		2698.54		21970.65		3705.99		0.00		16428.64		1965.20
тсо	\$	2,675,616.44	\$	29,625,978.03	\$	4,319,708.20	\$	34,026,242.58	\$	39,563,128.80	\$	3,351,200.16
						2015 Passen	ger 1	l'rucks				
		Casalin		Diagol		Туре о	f fue			EX7		F95
# of robial		Gasonne		Diesel		950		PHEV 7672		1050		E05
# of vehicles		0/03		80		838		/0/2		1950		4079
		449062.15		3031.02		3/481.03		515979.54		8970.00		2/3209.30
		0954.04		970.02		/4/./1		0.00		5400.00		4231.70
GHGS	¢	00022.91	¢	097.07	ተ	0912.48	ሱ	0.00	¢	0843.27	ተ	2/213.93
100	\$	08,289,426.67	Э	1,011,112.32	Э	0,199,519.90	Э	121,192,819.44	\$	17,002,167.00	Э	40,931,043.97

						2016 Passen	ger T	Trucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		13260		623		3653		9399		7060		756
COx		888343.15		26303.76		244729.83		43235.40		32476.00		50647.62
NOx		13756.60		7070.48		3183.44		26317.20		19768.00		784.31
GHGs		117708.51		5049.74		29430.40		66315.28		24783.38		4823.67
TCO	\$	133,451,955.00	\$	7,800,059.68	\$	36,121,959.90	\$	96,552,073.41	\$	64,367,149.60	\$	8,961,525.72
						2017 Passen	ger T	frucks				
		~				Туре о	f fue	1				
		Gasoline		Diesel				PHEV		EV		E85
# of vehicles		161		6552		3101		16460		126		391
		6944.38		18/854.89		1555.02		/5/16.00		579.60		10804.93
		96.17		40551.70		1555.92		46088.00		352.80		255.55
GHGS	¢	1 802 260 27	¢	20 280 411 12	¢	24985.21	¢	105201.25	¢	347.48	¢	2401.24 5.020.126.80
100	\$	1,892,200.57	ф	89,289,411.12	¢	2018 Passon	ۍ ۲ ممت	512,521,751.40	\$	1,190,362.00	\$	5,030,130.80
						Z010 T assen	f fue					
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		786		8805		13131		2889		13233		1238
COx		24611.36		207884.97		411160.06		13549.41		62062.77		38764.46
NOx		444.78		43182.50		6241.71		8089.20		37052.40		700.56
GHGs		6921.83		71369.05		105789.92		41384.02		36493.63		8005.29
тсо	\$	9,309,336.84	\$	132,607,966.65	\$	143,473,770.54	\$	70,010,841.51	\$	142,597,617.03	\$	16,846,146.90
						2019 Passen	ger T	frucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1707		2627		1365		3902		414		6409
COx		51732.60		59545.52		41367.90		17949.20		1904.40		194232.14
NOX		912.30		11397.06		612.79		10925.60		1159.20		3425.26
GHGs	¢	15895.81	¢	20/52.63	¢	10997.12	¢	55894.92	¢	1230.97	¢	454/4.6/
100	\$	24,292,914.45	\$	41,631,487.58	\$	18,931,594.50	ر ۲ ممت	98,442,933.68	\$	5,697,327.24	\$	101,830,357.85
						Z020 T assen Type o	f fue					
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		2537		4839		2389		4989		748		35167
COx		71064.38		105272.64		66918.72		22949.40		3440.80		985069.36
NOx		1116.61		18255.37		883.24		13969.20		2094.40		15478.08
GHGs		21834.57		35239.74		20089.91		71601.23		2866.80		253548.00
тсо	\$	39,569,614.37	\$	87,006,913.65	\$	41,282,565.03	\$	135,797,287.26	\$	11,286,317.68	\$	634,472,112.23
						2021 Passen	ger T	ſrucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		363		25		14958		66		10		234
COx		9442.32		521.03		389085.91		303.60		46.00		6086.78
NOX		144.27		90.81		4993.87		184.80		28.00		93.00
GHGs	¢	3260.76	¢	218.07	¢	100277.68	¢	947.22	¢	40.36	¢	1/40.63
100	\$	6,245,915.94	\$	530,886.75	\$	301,083,897.96	ر مصعر	2,059,222.44	\$	184,061.60	\$	4,021,421.04
						ZU22 Fassen	f fuo	ITUCKS				
		Gasoline		Diesel		HEV	Tuc	PHEV		EV		F85
# of vehicles		14949		2296		6275		1885		183		7254
COx		358964 39		45753.53		150679 08		8671.00		841.80		174187 41
NOx		5303.49		8018.54		1870.00		5278.00		512.40		2573.52
GHGs		131646 77		21129.96		42067.28		24346.01		681.71		52300.09
TCO	\$	289,000,944.54	\$	54,413,960.16	\$	147,124,403.00	\$	61,939,384.65	\$	3,429,037.53	\$	144,960,599.16

Figure 6.2: Pareto Optimality for Case Study 2.

The computational time used to run this MOEA to find the optimal solution shown in Case Study 2 was 2 hours 18 mins.

6.4 CASE STUDY 3

The percentage established in this case study for EVs was 12%, equal to 84,513 vehicles. The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo computer, with an 11th Gen Intel® Core[™] i7-1165G7 processor operating at 2.80 GHz and 16 GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 GHz and 256 GB of RAM.

The optimal solution given with the parameters selected is shown in table 6.2. The wellto-wheel analysis of the fuel and vehicle production produced 4,182,367.31 tons of GHG emissions, while the air pollutants such as CO and NOx produced 25,202,901.06 lbs. and 845,978.86 lbs., respectively, along with a TCO of \$8,727,315,002.87 US dollars. In this MOEA, the number of non-dominated solutions found was 41, shown in figure 6.1. Non-dominated solutions are represented by blue dots, while the optimal solution found is represented by a red dot.

				2012 Passe	nger	· Cars		
				Туре о	f fue	el		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	Į.	2519	8200	29798		3045	2562	15441
COx		208354.46	783684.43	2464686.85		11875.50	9991.80	1277173.96
NOx		2692.53	17529.78	26754.64		7003.50	5892.60	16504.72
GHGs		19747.50	59365.83	132475.27		17830.48	7655.17	90037.28
TCO	\$	17,888,955.59	\$ 70,808,476.00	\$ 169,057,165.12	\$	24,125,230.50	\$ 29,181,384.96	\$ 133,431,085.35
				2013 Passe	nger	· Cars		
				Туре о	f fue	el		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	1	4812	4521	2753		4766	2714	4498
COx		338562.99	369824.42	193695.74		18587.40	10584.60	316470.56
NOx		4689.66	8954.24	2253.73		10961.80	6242.20	4383.64
GHGs		37723.28	36265.90	12239.22		29957.51	8109.34	21648.88
тсо	\$	35,769,328.32	\$ 42,688,909.56	\$ 16,798,420.58	\$	40,954,571.62	\$ 32,713,416.12	\$ 36,342,805.46
				2014 Passe	nger	· Cars		
				Туре о	f fue	el		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	9	14492	2266	2008		1941	4244	2031
COx		1020236.80	185358.80	141363.20		7569.90	16551.60	142982.40
NOx		14492.00	4532.00	1606.40		4464.30	9761.20	1624.80
GHGs		106279.73	13763.04	8927.12		12200.49	12680.93	9775.21
TCO	\$	116,118,599.20	\$ 21,050,913.40	\$ 14,184,391.52	\$	17,323,075.62	\$ 53,971,287.52	\$ 19,442,052.15
				2015 Passe	nger	· Cars		
				Туре о	f fue	el		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	9	11861	1117	9107		18960	903	4132
COx		698612.90	74839.00	536402.30		73944.00	3521.70	243374.80
NOx		10674.90	2010.60	7285.60		43608.00	2076.90	3718.80
GHGs		90472.33	8852.93	40487.69		119176.35	2698.13	23148.61
тсо	\$	100,553,406.65	\$ 11,905,120.04	\$ 67,352,548.83	\$	175,504,567.20	\$ 12,382,233.99	\$ 46,030,645.28

Table 6.4: Solutions for Case Study 3.

						2016 Passe	enge	er Cars				
						Туре о	of fu	ıel				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		732		101		8609		4874		14234		4879
COx		43114.80		6767.00		507070.10		19008.60		55512.60		287373.10
NOx		658.80		181.80		6887.20		11210.20		32738.20		4391.10
GHGs		5583.49		721.51		38273.70		30636.37		42530.73		25659.22
TCO	\$	6 489 033 60	\$	1 128 956 79	\$	76 117 764 85	\$	46 733 471 68	\$	214 069 823 22	\$	54 157 339 11
100	Ψ	0,109,055.00	Ψ	1,120,950.79	Ψ	2017 Passe	φ mσ <i>i</i>	er Cars	Ψ	211,009,025.22	Ψ	51,157,559.11
						Type o	of fi	iel				
		Gasoline		Diesel		HEV	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	PHEV		EV		F85
4 of vehicles		3377		4401		0708		2106		1266		23760
		04806 11		135176.04		275060 65		8213.40		1200		667030 70
NO-		2220.49		2042.99		5422.62		4842.80		2011.80		15686.26
NUX CHC:		2229.48		3043.88		3433.03		4845.80		2911.80		15080.20
GIGS	¢	20110.20	¢	28420.85	¢	343/1.21	¢	14425.27	¢	3444.01	¢	115444.08
100	\$	31,273,822.91	\$	50,874,635.79	\$	95,939,762.46	\$	20,663,924.58	\$	20,299,778.28	\$	257,606,395.20
						2018 Passe	enge	er Cars				
		<i>a</i>				Туре о	of fu	iel				705
		Gasoline		Diesel		HEV		PHEV		EV		E85
<pre># of vehicles</pre>		711		6011		741		8409		1723		6427
COx		18820.69		174233.41		19614.81		32795.10		6719.70		170127.37
NOx		424.69		3779.47		371.80		19340.70		3962.90		3838.98
GHGs		4645.61		43518.05		2614.54		57590.37		4869.05		33065.16
TCO	\$	6,770,675.25	\$	79,824,156.48	\$	8,008,038.87	\$	85,298,205.12	\$	31,628,818.09	\$	74,570,681.44
						2019 Passe	enge	er Cars				
						Туре о	of fu	ıel				
		Gasoline		Diesel		HEV		PHEV		EV		E85
f of vehicles		3140		2384		3239		6780		3174		2079
COx		81045.07		64904.97		83600.31		26442.00		12378.60		53660.09
NOx		1678.16		1274.12		1454.10		15594.00		7300.20		1111.11
GHGs		21107.38		14904.88		15466.53		46433.90		8634.51		11171.51
тсо	\$	30,589,126,40	\$	71.352.166.40	\$	37,690,429,16	\$	71.023.415.40	\$	74.059.195.92	\$	24.874.964.73
						2020 Passe	enge	er Cars		, ,		
						Туре о	of fu	ıel				
		Gasoline		Diesel		HEV		PHEV		EV		E85
f of vehicles		2638		259		9703		10326		3337		8272
COx		63775.65		6595.36		234577.39		40271.40		13014.30		199981.88
NOx		1244.00		122.14		3843.53		23749.80		7675.10		3900.82
GHGs		19067.02		1519.80		41083.22		70719.24		8354.79		44449.61
TCO	\$	27 617 723 22	\$	3 249 890 56	\$	117 753 958 49	\$	108 169 290 18	\$	88 932 985 46	\$	92 936 085 44
100	Ψ	27,017,720.22	Ψ	2,217,070120	Ψ	2021 Passe	nor	er Cars	Ψ	00,702,700110	Ψ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
						Type o	ng.					
		Casoline		Diecol		HEV	<u>, 11</u>	PHEV		FV		F85
4 of vehicles		1636		16161		5005		1/301		5954		3440
		37124 61		383756 61		136040 36		56124.00		22220.60		78061 53
NO		200 90		6717 70		2151 22		22000.20		12604 20		1460 52
CHCa		11007.00		0/17.79		2131.22		08550.04		14591 56		19494.92
GIGS	¢	11997.90	¢	94631.90	¢	28020.09	¢	96559.04	¢	14361.30	¢	10404.03
100	\$	18,445,949.08	Э	202,785,042.24	\$	81,196,280.00	Э	1/4,022,984.38	Э	108,555,750.82	\$	38,048,408.80
						2022 Passe	enge	er Cars				
		<i>a</i> . "		D: 1			DI IL	lei		T 1 X 7		T07
		Gasoline		Diesei		HEV		PHEV		EV		E85
7 of vehicles		1593		18/1		8506		3624		2422		25473
COx		33785.70		41212.48		180402.47		14133.60		9445.80		540253.02
NOx		609.81		673.17		2735.14		8335.20		5570.60		9751.14
GHGs		11682.56		10978.93		46019.20		20430.24		5931.57		136879.21
TCO	\$	20,321,295.66	\$	23,477,008.64	\$	138,472,236.16	\$	44,687,254.08	\$	84,635,167.26	\$	286,189,664.46
						2012 Passen	iger	Trucks				
						Туре о	of fu	ıel				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		3199		5112		3867		281		4549		4345
COx		290948.73		176299.57		351703.26		25556.92		20925.40		395177.31
NOx		4726.79		152835.82		4799.60		348.77		12737.20		6420.09
GHGs		30015.25		64226.27		31154.49		0.00		15968.78		28667.67
тсо	\$	25,795,296.45	\$	59,149,725.12	\$	34,389,424.35	\$	4,438,892.37	\$	36,946,568.59	\$	42,936,638.25

						2013 Doccor	anr'	Francisco				
						ZUIS Tassen	f for					
-		Casalina		Diagol)1 1u			TX/		F95
		Gasoline		Diesei		HEV		PHEV		EV		£85
7 of vehicles		3107		2594		1792		601		1458		2998
COx		245561.52		88237.06		141630.59		47499.99		6706.80		236946.71
NOx		4004.78		100388.00		1940.24		650.72		4082.40		3864.29
GHGs		29736.72		32234.72		14437.25		0.00		5118.15		18871.59
TCO	\$	27,889,985.50	\$	30,773,270.50	\$	16,530,841.60	\$	9,493,858.77	\$	12,325,436.28	\$	30,069,880.04
						2014 Passen	ger '	Frucks				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		F85
4 of vobielos		1576		6438		1011		8885		768		2885
		124550.05		210072 (0		1711		702225 22		2522.90		2005
COX		124559.05		3100/2.69		151035.75		/02225.33		3532.80		228015.77
NOx		2031.39		94924.34		2069.08		9619.98		2150.40		3718.63
GHGs		14564.70		55274.35		15395.97		0.00		2695.98		18407.79
TCO	\$	14,440,998.32	\$	74,533,820.46	\$	17,945,570.37	\$	140,354,301.45	\$	6,492,410.88	\$	31,390,300.20
						2015 Passen	iger '	Frucks				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		3669		6747		3639		40779		5527		174
COx		245801 74		284865 93		243791 91		2731956 67		25424 20		11656.99
NOv		2406 41		76572 30		243791.91		2751750.07		15475.60		180.52
CHO		24770.24		54697.01		20217.01		0.00		10401.04		1160.52
GHGS		34770.34		54687.91		29317.61		0.00		19401.94		1160.96
100	\$	37,379,368.41	\$	79,325,288.64	\$	34,776,285.45	\$	644,176,483.83	\$	48,190,244.62	\$	2,002,814.82
						2016 Passen	iger '	Frucks				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
<pre># of vehicles</pre>		18816		9		3164		8148		2037		2358
COx		1260562.95		379.99		211969.66		37480.80		9370.20		157972.33
NOx		19520.68		102.14		2757.30		22814.40		5703.60		2446.31
GHGs		167028.90		72.95		25490.77		57488.77		7150.67		15045.26
TCO	\$	189,368,928.00	\$	112,681.44	\$	31,286,581.20	\$	83,701,063.32	\$	18,571,654.92	\$	27,951,425.46
						2017 Passen	ger '	Trucks				
						Type o	of fue					
		Gasoline		Diesel		HEV		PHEV		EV		F85
4 of vehicles		13105		710		3/0		8702		1/83		5461
r of venicies		560127.62		20256.69		15052.26		40020 20		(921.90		225549.25
		509157.02		20550.08		15055.50		40029.20		0821.80		233346.33
NOX		/881.64		5044.53		1/5.11		24365.60		4152.40		3261.97
GHGs		123339.13		5754.92		2811.72		86280.50		4089.78		34375.50
TCO	\$	155,083,078.15	\$	9,675,745.10	\$	3,508,905.33	\$	165,116,882.18	\$	14,012,733.53	\$	70,254,672.80
						2018 Passen	iger '	Frucks				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
<pre># of vehicles</pre>		19559		5219		161		5012		4339		775
COx		612434.67		123219.95		5041.26		23055.20		19959.40		24266.93
NOx		11068.10		25595.62		76.53		14033.60		12149.20		438.56
GHGs		172244.25		42302.68		1297.10		71795.32		11965.98		5011.39
TCO	\$	231 655 622 46	\$	78 600 906 07	\$	1 759 140 74	\$	121 458 753 08	\$	46 756 673 49	\$	10 545 851 25
100	Ψ	201,000,022110	Ψ	10,000,200101	Ψ	2019 Passen	oer '	Frucks	Ψ	10,700,07017	Ψ	10,0 10,00 1120
						Type o	f fna	al al				
		Gasoline		Diesel		HEV	/1 1u	PHFV		FV		F85
4 of vobielos		7740		1062		3255		382		14588		3304
		1147		24072.09		5255		1757.20		14366		100121 52
COX		234842.38		24072.08		98646.53		1/5/.20		6/104.80		100131.53
NOx		4141.41		4607.42		1461.28		1069.60		40846.40		1765.81
GHGs		72159.69		8389.53		26223.91		5472.03		43375.18		23443.33
TCO	\$	110,278,731.15	\$	16,830,087.48	\$	45,144,571.50	\$	9,637,416.88	\$	200,755,096.08	\$	52,496,099.60
						2020 Passen	iger '	Frucks				
						Туре о	of fue	el				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1097		147		8200		893		363		5254
COx		30728.27		3197.99		229691.72		4107.80		1669.80		147170.77
NOx		482.82		554.56		3031.62		2500.40		1016.40		2312.45
-												
GHGs		9441.28		1070.52		68956.59		12816.18		1391.24		37880.43

				2021 Passen	ger]	Trucks		
				Туре о	f fue	1		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicle	ŧ	97	669	434		2341	146	6770
COx		2523.15	13942.81	11289.16		10768.60	671.60	176100.52
NOx		38.55	2430.12	144.89		6554.80	408.80	2690.75
GHGs		871.33	5835.57	2909.51		33597.61	589.28	50359.34
TCO	\$	1,669,018.86	\$ 14,206,529.43	\$ 8,735,821.08	\$	73,039,995.94	\$ 2,687,299.36	\$ 116,346,241.20
				2022 Passen	ger]	Trucks		
				Туре о	f fue	1		
		Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicle	5	1082	3988	2483		6172	6722	3431
COx		25981.64	79470.85	59623.29		28391.20	30921.20	82387.24
NOx		383.86	13927.67	739.96		17281.60	18821.60	1217.22
GHGs		9528.52	36701.34	16645.91		79715.44	25040.87	24736.92
TCO	\$	20,917,721.72	\$ 94,513,446.48	\$ 58,216,715.96	\$	202,806,303.48	\$ 125,956,231.02	\$ 68,563,525.74

Figure 6.3: Pareto Optimality for Case Study 3.

The computational time used to run this MOEA to find the optimal solution shown in Case Study 3 was 2 hours 6 mins.

6.5 CASE STUDY 4

The percentage established in this case study for EVs was 15%, equal to 105,641 vehicles. The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo computer, with an 11th Gen Intel® Core[™] i7-1165G7 processor operating at 2.80 GHz and 16 GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 GHz and 256 GB of RAM.

The optimal solution given with the parameters selected is shown in table 6.2. The wellto-wheel analysis of the fuel and vehicle production produced 4,260,865.66 tons of GHG emissions, while the air pollutants such as CO and NOx produced 26,224,903 and 563,795.37 lbs., respectively, along with a TCO of \$8,611,203,464.81. In this MOEA, the number of nondominated solutions found was 23, shown in figure 6.1. Non-dominated solutions are represented by blue dots, while the optimal solution found is represented by a red dot.

			2012 Passe	nger	Cars		
			Туре о	f fue	1		
	Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	5196	22936	2181		365	4649	3387
COx	429777.60	2192022.71	180397.41		1423.50	18131.10	280149.49
NOx	5553.95	49032.09	1958.25		839.50	10692.70	3620.33
GHGs	40733.62	166050.57	9696.24		2137.32	13891.06	19749.78
тсо	\$ 36,899,965.56	\$ 198,056,488.48	\$ 12,373,772.64	\$	2,891,858.50	\$ 52,952,481.92	\$ 29,268,252.45
			2013 Passe	nger	Cars		
			Туре о	f fue	1		
	Gasoline	Diesel	HEV		PHEV	EV	E85
# of vehicles	4926	931	3078		1084	8142	8610
COx	346583.81	76157.16	216562.11		4227.60	31753.80	605782.91
NOx	4800.76	1843.93	2519.78		2493.20	18726.60	8391.09
GHGs	38616.98	7468.16	13684.10		6813.67	24328.03	41439.95
тсо	\$ 36,616,731.36	\$ 8,790,837.16	\$ 18,781,525.08	\$	9,314,887.88	\$ 98,140,248.36	\$ 69,566,819.70

Table 6.5: Solutions for Case Study 4.

						2014 Passe	nger	Cars				
		Casalina		Diagol		Туре о	of fue			EX/		E95
# . 6		Gasoline		Diesel		HEV		PHEV 12100		EV		E85
# of venicles		14486		/13		2331		13109		1882		29843
		1019814.40		58525.40		164102.40		31125.10		/339.80		2100947.20
NOX		14486.00		1426.00		1864.80		30150.70		4328.60		23874.40
GHGs		106235.72		4330.56		10363.11		82398.88		5623.35		143634.43
TCO	\$	116,070,523.60	\$	6,623,698.70	\$	16,466,044.14	\$	116,995,465.38	\$	23,933,544.56	\$	285,676,593.95
						2015 Passe	nger	Cars				
		Gasoline		Diesel		HEV	1 Tue	PHEV		EV		E85
# of vehicles		7973		1403		10165		30654		1161		3659
COx		469609.70		94001.00		598718.50		119550.60		4527.90		215515.10
NOx		7175.70		2525.40		8132.00		70504.20		2670.30		3293.10
GHGs		60815 77		11119.66		45191 33		192681-00		3469.03		20498 73
TCO	\$	67 592 303 45	\$	14 953 342 36	\$	75 177 188 85	\$	283 750 896 78	\$	15 920 015 13	\$	40 761 406 36
100	Ψ	07,572,505.15	Ψ	11,955,512.50	Ψ	2016 Passe	nger	Cars	Ψ	15,720,015.15	Ψ	10,701,100.50
						Туре о	of fuel	l				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		1572		2117		2610		2699		11529		16990
COx		92590.80		141839.00		153729.00		10526.10		44963.10		1000711.00
NOx		1414.80		3810.60		2088.00		6207.70		26516.70		15291.00
GHGs		11990.77		15123.23		11603.48		16965.03		34448.28		89352.35
тсо	\$	13,935,465.60	\$	23,663,381.43	\$	23,076,706.50	\$	25,878,875.68	\$	173,388,435.57	\$	188,590,529.10
						2017 Passe	nger	Cars				
						Туре о	of fue	l				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		3195		9924		1588		2584		1157		2911
COx		89696.63		304814.14		44581.61		10077.60		4512.30		81723.59
NOx		2109.33		6863.78		880.65		5943.20		2661.10		1921.83
GHGs		24708.75		64087.37		5603.09		17696.93		3147.49		14143.84
TCO	\$	29,588,351.85	\$	114,719,355.96	\$	15,549,330.76	\$	25,354,027.12	\$	18,552,009.06	\$	31,561,120.22
						2018 Passe	nger	Cars				
						Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		10365		339		1310		10364		10250		26324
COx		274369.09		9826.17		34676.65		40419.60		39975.00		696815.43
NOx		6191.23		213.15		657.29		23837.20		23575.00		15723.86
GHGs		67724.01		2454.27		4622.20		70979.49		28965.59		135429.78
тсо	\$	98,703,303,75	\$	4.501.811.52	\$	14.157.261.70	\$	105,129,099,52	\$	188,157,507,50	\$	305.430.001.28
						2019 Passe	nger	Cars				
						Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		3588		1533		3696		1519		5806		2458
COx		92608.19		41736.29		95395.72		5924.10		22643.40		63442.29
NOx		1917.59		819.30		1659.26		3493.70		13353.80		1313.66
GHGs		24118.87		9584.39		17648.75		10403.11		15794.56		13208.07
TCO	\$	34 953 434 88	\$	45 882 076 80	\$	43 008 282 24	\$	15 912 178 17	\$	135 471 862 48	\$	29 409 650 46
	Ŧ	,, ,	Ŧ	,,	Ŧ	2020 Passe	nger	Cars	Ŧ	,	-	
						Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		8466		1651		16544		6793		1497		4362
COx		204671.98		42042.24		399963.76		26492.70		5838.30		105454.66
NOx		3992.30		778.56		6553.37		15623.90		3443.10		2056.98
GHGs		61190.81		9687.98		70048.51		46522.93		3748.01		23439.22
TCO	\$	88,632,162.54	\$	20,716.483.84	\$	200,775.171.52	\$	71,159.595.99	\$	39,895.918.26	\$	49,007.157.24
100		,,		, .,		2021 Passe	nger	Cars		,,		,,
100						_	e e					
						Туре о	of fue	l				
		Gasoline		Diesel		Type o HEV	of fue	l PHEV		EV		E85
# of vehicles		Gasoline 16971		Diesel 728		Туре о НЕV 4768	of fue	PHEV 7868		EV 2807		E85 9149
# of vehicles COx		Gasoline 16971 385111.10		Diesel 728 17286.98		Type o HEV 4768 108196.91	or rue	PHEV 7868 30685.20		EV 2807 10947.30		E85 9149 207611.89
# of vehicles COx NOx		Gasoline 16971 385111.10 7249.77		Diesel 728 17286.98 302.61		Type o HEV 4768 108196.91 1710.93	or rue	PHEV 7868 30685.20 18096.40		EV 2807 10947.30 6456.10		E85 9149 207611.89 3908.32
# of vehicles COx NOx GHGs		Gasoline 16971 385111.10 7249.77 124459.92		Diesel 728 17286.98 302.61 4271.87		Type o HEV 4768 108196.91 1710.93 22767.65		PHEV 7868 30685.20 18096.40 53885.24		EV 2807 10947.30 6456.10 6874.45		E85 9149 207611.89 3908.32 49162.17

						2022 Passe	nger	Cars				
		Casalina		Diagol		Туре о	f fue			EV		E95
# of vobialos		550		2802		7006		1608		2040		E05 8762
# of venicles		350		2802		/090		4008		3049		8/02
NOr		210.54		1008 12		130496.00		1/9/1.20		7012 70		2254 12
NUX		210.54		1008.15		2281.75		10598.40		7012.70		5554.12
GHGs	¢	4033.53	¢	16441.99	¢	38390.82	¢	25977.52	¢	/46/.11	¢	47082.62
100	\$	7,016,141.00	\$	35,159,047.68	\$	115,518,338.56	\$	56,820,879.36	\$	106,545,262.17	\$	98,441,245.24
						2012 Passen Type o	ger 1	Trucks				
		Gasoline		Diesel		HEV	<u>1 1uc</u>	PHEV		EV		E85
# of vehicles		8926		1650		763		9365		2280		12512
COx		811818.79		56904.20		69394.77		851745.80		10488.00		1137965.13
NOx		13188.90		49330.81		947.01		11623.55		6384.00		18487.51
GHGs		83749.96		20730.31		6147.11		0.00		8003.70		82552.34
TCO	\$	71 975 247 30	\$	19 091 754 00	\$	6 785 397 15	\$	147 936 751 05	\$	18 517 954 80	\$	123 641 707 20
	-	,,	Ŧ		Ŧ	2013 Passen	ger T	rucks	Ŧ		Ŧ	
						Туре о	of fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		500		77		4890		572		3067		7996
COx		39517.46		2619.22		386480.79		45207.98		14108.20		631963.28
NOx		644.48		2979.91		5294.51		619.32		8587.60		10306.48
GHGs		4785.44		956.85		39396.29		0.00		10766.38		50332.63
TCO	\$	4,488,250.00	\$	913,470.25	\$	45,109,272.00	\$	9,035,752.44	\$	25,927,375.22	\$	80,199,720.08
						2014 Passen	ger T	rucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		5545		1936		48		3880		631		5060
COx		438248.67		93243.36		3793.68		306655.52		2902.60		399916.73
NOx		7147.25		28545.13		51.97		4200.96		1766.80		6522.11
GHGs		51244.46		16621.80		386.71		0.00		2215.06		32285.42
TCO	\$	50,809,223.15	\$	22,413,401.12	\$	450,752.16	\$	61,291,467.60	\$	5,334,259.46	\$	55,055,431.20
						2015 Passen	ger T	rucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		14498		1532		1102		2065		460		11394
COx		971281.98		64682.76		73827.61		138343.03		2116.00		763331.97
NOx		15040.97		17386.80		960.35		1799.56		1288.00		11820.72
GHGs		137394.48		12417.65		8878.26		0.00		1614.78		76023.11
TCO	\$	147,704,029.22	\$	18,011,907.84	\$	10,531,318.10	\$	32,620,330.05	\$	4,010,767.60	\$	131,149,839.42
						2016 Passen	ger T	rucks				
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		17757		1536		13755		1928		7644		7070
COx		1189616.09		64851.65		921505.28		8868.80		35162.40		473649.03
NOx		18422.02		17432.20		11986.92		5398.40		21403.20		7334.78
GHGs		157628.20		12450.07		110817.17		13603.13		26833.45		45110.25
тсо	\$	178,710,887,25	\$	19.230.965.76	\$	136.013.566.50	\$	19,805,553,52	\$	69,691,571.04	\$	83,806,860,90
		, ,				2017 Passen	ger T	rucks		, ,		
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		773		2547		122		2669		2896		628
COx		33341.67		73026.01		5262.20		12277.40		13321.60		27087.41
NOx		461.73		18096.36		61.21		7473.20		8108.80		375.12
GHGs		7225.55		20644.75		982.89		26463.19		7986.51		3953.09
тсо	\$	9,085.200.41	\$	34,710.032.07	\$	1,226.608.74	\$	50,643.180.71	\$	27,364.043.36	\$	8,079.094.40
		,,		, .,		2018 Passen	ger T	Trucks		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,
						Туре о	f fue	1				
		Gasoline		Diesel		HEV		PHEV		EV		E85
# of vehicles		992		1007		1616		890		257		3544
												110070.00
COx		31061.67		23775.15		50600.46		4094.00		1182.20		110970.32
COx NOx		31061.67 561.36		23775.15 4938.65		50600.46 768.15		4094.00 2492.00		1182.20 719.60		2005.49
COx NOx GHGs		31061.67 561.36 8735.94		23775.15 4938.65 8162.25		50600.46 768.15 13019.31		4094.00 2492.00 12748.97		1182.20 719.60 708.75		2005.49 22916.59

			2019 Passen	ger T	rucks					
			Туре о	f fuel						
	Gasoline	Diesel	HEV		PHEV	EV		E85		
# of vehicles	340	576	1667		982	6907		1060		
COx	10304.09	13056.04	50520.36		4517.20	31772.20		32124.52		
NOx	181.71	2498.94	748.37		2749.60	19339.60		566.51		
GHGs	3166.12	4550.25	13430.19		14066.84	20536.90		7521.17		
TCO	\$ 4,838,659.00	\$ 9,128,183.04	\$ 23,120,123.10	\$	24,774,720.88	\$ 95,051,785.62	\$	16,841,969.00		
			2020 Passen	ger T	rucks					
			Туре о	f fuel						
	Gasoline	Diesel	HEV		PHEV	EV		E85		
# of vehicles	8043	1314	13029		1367	4092		17777		
COx	225293.96	28586.12	364957.74		6288.20	18823.20		497954.84		
NOx	3539.97	4957.13	4816.95		3827.60	11457.60		7824.21		
GHGs	69221.68	9569.13	109565.30		19618.94	15683.09		128169.10		
TCO	\$ 125,446,751.43	\$ 23,626,179.90	\$ 225,144,637.83	\$	37,208,837.78	\$ 61,742,796.72	\$	320,727,123.13		
			2021 Passen	ger T	rucks					
			Туре о	f fuel						
	Gasoline	Diesel	HEV		PHEV	EV		E85		
# of vehicles	1378	91	8230		1315	8993		2571		
COx	35844.39	1896.56	214077.89		6049.00	41367.80		66876.58		
NOx	547.69	330.55	2747.66		3682.00	25180.40		1021.85		
GHGs	12378.32	793.78	55173.51		18872.64	36296.95		19124.65		
TCO	\$ 23,710,391.64	\$ 1,932,427.77	\$ 165,658,542.60	\$	41,028,447.10	\$ 165,526,596.88	\$	44,184,074.76		
			2022 Passen	ger T	rucks					
			Туре о	f fuel						
	Gasoline	Diesel	HEV		PHEV	EV		E85		
# of vehicles	1915	1380	2404		1491	16485		4724		
COx	45984.13	27499.94	57726.30		6858.60	75831.00		113435.53		
NOx	679.39	4819.50	716.41		4174.80	46158.00		1675.94		
GHGs	16864.24	12700.06	16116.30		19257.25	61410.12		34059.22		
TCO	\$ 37,021,660.90	\$ 32,705,254.80	\$ 56,364,472.48	\$	48,992,903.19	\$ 308,894,446.35	\$	94,402,242.96		

Figure 6.4: Pareto Optimality for Case Study 4.

The computational time used to run this MOEA to find the optimal solution shown in Case Study 4 was 1 hour 35 mins.

Chapter 7: Design of Experiments

A Design of Experiments (DOE) was performed in Minitab® to identify the effect of the selected parameters over the optimal solutions. The parameters under the statistical analysis were the number of individuals, number of generations, percentage of elitism, percentage of crossover, and percentage of mutation. Thus, a factorial design of two levels was created with two responses of 32 runs and resolution V. Tables 7.1 shows the low and high parameters selected for this DOE. Table 7.2 presents the full factorial DOE with the parameters chosen previously. The first response corresponds to the normalized solution utilizing the formula provided in chapter 5 (eq. 5.1) for the optimal solutions of the four objectives in this research. The second response is the MATLAB code's computational time to find an optimal solution.

	0	
Parameters	Low	High
Number of Individuals	50	300
Number of generations	100	350
Elitism	0.10	0.30
Crossover	0.50	0.80
Mutation	0.001	0.05

Table 7.1: MOEA parameters for the Design of Experiments.

Number of individuals	Number of generations	Elitism	Crossover	Mutation	Solution	Time
50	100	0.1	0.5	0.001	0.58068904	6.407
300	100	0.1	0.5	0.001	1.34810947	59.463
50	350	0.1	0.5	0.001	1.18087205	36.821
300	350	0.1	0.5	0.001	1.14235544	952.795
50	100	0.3	0.5	0.001	0.8506811	5.427
300	100	0.3	0.5	0.001	1.14235544	125.6874
50	350	0.3	0.5	0.001	1.18087205	62.841
300	350	0.3	0.5	0.001	0.76382746	275.628
50	100	0.1	0.8	0.001	1.40263332	4.72
300	100	0.1	0.8	0.001	1.38061218	185.329
50	350	0.1	0.8	0.001	1.39813104	73.027
300	350	0.1	0.8	0.001	0.94668508	483.901
50	100	0.3	0.8	0.001	1.30285794	5.359
300	100	0.3	0.8	0.001	1.54323554	126.314
50	350	0.3	0.8	0.001	1.18087205	44.394
300	350	0.3	0.8	0.001	1.37080013	750.658
50	100	0.1	0.5	0.05	1.59898134	4.796
300	100	0.1	0.5	0.05	0.79398404	190.789
50	350	0.1	0.5	0.05	1.01184567	19.566
300	350	0.1	0.5	0.05	0.91331399	262.468
50	100	0.3	0.5	0.05	0.75238112	3.479
300	100	0.3	0.5	0.05	1.17798008	49.178
50	350	0.3	0.5	0.05	1.07941666	137.17
300	350	0.3	0.5	0.05	0.71835295	162.48
50	100	0.1	0.8	0.05	0.91969843	5.333
300	100	0.1	0.8	0.05	0.7043893	54.972
50	350	0.1	0.8	0.05	1.39813104	18.839
300	350	0.1	0.8	0.05	1.03873899	443.69
50	100	0.3	0.8	0.05	1.37341832	4.576
300	100	0.3	0.8	0.05	0.5758879	48.945
50	350	0.3	0.8	0.05	1.28739128	20.234
300	350	0.3	0.8	0.05	0.70636142	300.025

Table 7.2: Design of experiments full factorial.

7.1 RESULTS

After analyzing the full factorial design, according to the Analysis of Variance (ANOVA) presented in table 7.3, for the normalized solution and the computational time, a P-value of 0.005

and an F-value of 18.48 corresponding to the "number of individuals," a P-value of 0.015 and an F-value of 11.45 corresponding to the "number of generations," and a P-value of 0.041 and an F-value of 6.69 corresponding to the 2 way interaction of the factors "number of individuals*number of generations," with a significance level of 0.05, proves that the means are statistically significant to the responses.

Analysis of variance						
Source	DF		Adj SS	Adj MS	F-Value	P-Value
Model		25	1388276	55531	2.03	0.192
Linear		5	901293	180259	6.6	0.02
Number of individuals		1	504845	504845	18.48	0.005
Number of generations		1	312794	312794	11.45	0.015
Elitism		1	14472	14472	0.53	0.494
Crossover		1	1449	1449	0.05	0.826
Mutation		1	67733	67733	2.48	0.166
2-Way Interactions		10	343649	34365	1.26	0.405
Number of individuals*Number of generations		1	182736	182736	6.69	0.041
Number of individuals*Elitism		1	25791	25791	0.94	0.369
Number of individuals*Crossover		1	5392	5392	0.2	0.672
Number of individuals*Mutation		1	63210	63210	2.31	0.179
Number of generations*Elitism		1	4872	4872	0.18	0.688
Number of generations*Crossover		1	1721	1721	0.06	0.81
Number of generations*Mutation		1	41974	41974	1.54	0.261
Elitism*Crossover		1	17201	17201	0.63	0.458
Elitism*Mutation		1	543	543	0.02	0.893
Crossover*Mutation		1	210	210	0.01	0.933

Table 7.3: Analysis of variance for Solution and computational time

The normal plot of the standardized effects and the Pareto chart of the standardized effects are shown in figure 7.1 and figure 7.2, respectively. The two factors significant to the normalized solution and the computational time are the number of individuals utilized in the algorithm and the number of generations. The factors that are not significant to the responses include Elitism, crossover, and mutation rates. On the other hand, the only significant iteration for the responses is the number of individuals*number of generations.

Figure 7.1: Normal plot of the effects for the normalized solution and computational time.

Figure 7.2. Pareto chart of the standardized effects for the normalized solution and computational time.

The ANOVA for the normalized solution response, presented in table 7.3, and a P-value of 0.046 and an F-value of 4.68 corresponding to the 2-way interaction of the factors "number of

individuals*mutation," with a significance level of 0.05, proves that the mean is statistically significant to the response.

Analysis of Vallance						
Source	DF		Adj SS	Adj MS	F-Value	P-Value
Model		15	1.39471	0.092981	1.24	0.338
Linear		5	0.56031	0.112062	1.49	0.247
Number of individuals		1	0.15567	0.155666	2.07	0.169
Number of generations		1	0.00053	0.000528	0.01	0.934
Elitism		1	0.01769	0.017695	0.24	0.634
Crossover		1	0.16443	0.164426	2.19	0.158
Mutation		1	0.222	0.221997	2.95	0.105
2-Way Interactions		10	0.8344	0.08344	1.11	0.411
Number of individuals*Number of generations		1	0.12529	0.125289	1.67	0.215
Number of individuals*Elitism		1	0.00143	0.001427	0.02	0.892
Number of individuals*Crossover		1	0.09691	0.096906	1.29	0.273
Number of individuals*Mutation		1	0.35125	0.351253	4.68	0.046
Number of generations*Elitism		1	0.01674	0.016739	0.22	0.643
Number of generations*Crossover		1	0.00448	0.004481	0.06	0.81
Number of generations*Mutation		1	0.01294	0.012944	0.17	0.684
Elitism*Crossover		1	0.03485	0.034854	0.46	0.506
Elitism*Mutation		1	0.01375	0.013749	0.18	0.675
Crossover*Mutation		1	0.17676	0.17676	2.35	0.145

Table 7.3: Analysis of variance for a normalized solution. Analysis of Variance

The normal plot of the standardized effects and the Pareto chart of the standardized effects are shown in figure 7.3 and figure 7.4, respectively. There is just one significant factor to the normalized solution, which is the 2-way interaction between the number of individuals*mutation rate. The factors that are not significant to the responses include Elitism rate, crossover rate, mutation rate, and the 2-way interactions: number of individuals*number of generations, number of individuals*elitism, number of individuals*crossover, number of generations*elitism, number of generations*mutation, elitism*crossover, elitism*mutation, and crossover*mutation.

Figure 7.3: Normal plot of the effects for the normalized solution.

Figure 7.4: Pareto chart of the standardized effects for the normalized solution.

The ANOVA conducted for the computational time response, presented in table 7.4, has a P-value of 0.000 and an F-value of 26.29 corresponding to the "number of individuals," a P-value of 0.000 and an F-value of 16.29 corresponding to the "number of generations," and a P-value of

0.007 and an F-value of 9.52 corresponding to the 2 way interaction of the factors "number of individuals*number of generations," with a significance level of 0.05, proves that the means are statistically significant to the responses.

Analysis of variance						
Source	DF		Adj SS	Adj MS	F-Value	P-Value
Model		15	1244942	82996	4.32	0.003
Linear		5	901293	180259	9.39	0.000
Number of individuals		1	504845	504845	26.29	0.000
Number of generations		1	312794	312794	16.29	0.001
Elitism		1	14472	14472	0.75	0.398
Crossover		1	1449	1449	0.08	0.787
Mutation		1	67733	67733	3.53	0.079
2-Way Interactions		10	343649	34365	1.79	0.144
Number of individuals*Number of generations		1	182736	182736	9.52	0.007
Number of individuals*Elitism		1	25791	25791	1.34	0.263
Number of individuals*Crossover		1	5392	5392	0.28	0.603
Number of individuals*Mutation		1	63210	63210	3.29	0.088
Number of generations*Elitism		1	4872	4872	0.25	0.621
Number of generations*Crossover		1	1721	1721	0.09	0.769
Number of generations*Mutation		1	41974	41974	2.19	0.159
Elitism*Crossover		1	17201	17201	0.9	0.358
Elitism*Mutation		1	543	543	0.03	0.869
Crossover*Mutation		1	210	210	0.01	0.918

Table 7.4: Analysis of variance for computational time.

The normal plot of the standardized effects and the Pareto chart of the standardized effects are shown in figure 7.5 and figure 7.6, respectively. The two significant factors in computational time are the number of individuals utilized in the algorithm and the number of generations. The factors that are not significant to the responses include Elitism, crossover, and mutation rates. On the other hand, the only significant iteration for the responses is number of individuals*number of generations.

Figure 7.5: Normal plot of the effects for computational time.

Figure 7.6: Pareto chart of the standardized effects for computational time.

The Main Effects Plot for the response Solution is shown in figure 7.7. The best parameters to utilize in the MOEA to minimize the solution would be 300 individuals with 350 generations, using an elitism rate of 30% and a crossover rate of 50% combined with a 5% of mutation.

Figure 7.7: The Main Effects Plot for the response Solution

The response optimizer graph in figure 7.8 presents the optimal combination of parameters and the best possible solution to minimize the response. The number of individuals selected was 300 and 350 for the number of generations. For elitism, crossover, and mutation, the values of 0.3, 0.8, and 0.05 were selected.

Figure 7.8: Response Optimization

Chapter 8: Conclusions and Future Work

8.1 CONCLUSION

The transportation sector accounts for almost a third of the total CO2 U.S. emissions, with ICEVs being the primary source. Therefore, there has been a growing push towards transitioning to BEVs as a more sustainable way of transportation since BEVs produce fewer GHGs while operating. However, there are challenges related to infrastructure and production of BEVs. Effective policy and regulatory frameworks are needed to support this shift to a more sustainable future, considering the significant reduction in emissions, potential for substantial long-term cost savings, and improved air quality that BEVs offer.

The rising urge to achieve a more sustainable way of transportation has pushed the need for more suitable tools to analyze alternative scenarios and their respective emissions, considering long-term cost savings. Coupling life cycle assessments and life cycle costs with heuristic multiple objective evolutionary algorithms is a feasible approach to recognizing the optimal scenario that can potentially decrease emissions and cost for the transportation system.

This thesis proposed a coupled modeling framework to create optimal scenarios to minimize GHGs, air pollutants, and total cost of ownership. This framework Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool with a Multi-Objective Optimization Algorithm to simulate and compare different BEV penetration scenarios by minimizing the objective functions. This algorithm takes into account GHGs, air pollutants such as CO and NOx, and TCO generated by different vehicle types depending on their fuel type and model year.

This optimization approach can be applied to analyze and simulate different scenarios for decision-makers when exploring resources to reduce emissions and costs caused by transportation systems. Additionally, it was demonstrated the proposed methodology is flexible since it can be applied in other regions with similar data available.

8.2 FUTURE WORK

For future research, considering weights in the objective functions is essential in prospective studies to ensure better decision-making. For this research, the objective functions are to minimize GHGs, air pollutants, and vehicle ownership costs. Each of these objectives is equally important for this research. Thus, assigning the same weight to all objective functions may not result in an optimal solution that satisfies, in totality, all objectives. However, giving weights according to the importance of the objective will help the decision-maker to emphasize the need to minimize objectives over others. This approach will help achieve informed decisions more aligned with the user's goals.

The proposed model considers six different fuel types (gasoline, diesel, HEV, PHEV, BEV, E85%) that can be used to analyze the current transportation system. However, the AFLEET tool can include Gasoline Extended Range Electric Vehicle (EREV), Gaseous Hydrogen (G.H2) Fuel Cell Vehicles (FCV), Diesel Hybrid Electric Vehicles (HEV), Diesel Hydraulic Hybrid Vehicles (HHV), Biodiesel (B20) and (B100), Renewable Diesel (RD20) and (RD100), Propane (LPG), Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG) and LNG / Diesel Pilot Ignition vehicles, to expand the analysis in the current framework.

Moreover, this modeling approach can be utilized in other areas with similar data inputs. Since the AFLEET tool can be adapted to any region of the U.S. Applying the methodology to different areas can lead to sustainable transportation solutions.

References

- Allen, M. R., Pauline Dube, O., Solecki, W., Aragón-Durand, F., Cramer France, W., Humphreys,
 S., Dasgupta, P., Millar, R., Dube, O., Solecki, W., Aragón-Durand, F., Cramer, W.,
 Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu,
 M., ... Waterfield, T. 2018. Framing and Context. Australia: In Global Warming of 1.5°C.
- Arbault, D., Rivière, M., Rugani, B., Benetto, E., & Tiruta-Barna, L. 2014. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of the total environment.
- Aro, E. M. 2016. From first-generation biofuels to advanced solar biofuels. Ambio.
- Burnham, A. 2020. User Guide for AFLEET Tool 2019. Energy Systems Division, Argonne National Laboratory. Systems Assessment Center.
- Chan, C. C., Bouscayrol, A. & Chen, K. 2010. Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling. IEEE Transactions on Vehicular Technology. Vol. 59, no. 2.
- Chang, W. R., Hwang, J. J., & Wu, W. 2017. Environmental impact and sustainability study on biofuels for transportation applications. Renewable and Sustainable Energy Reviews.
- Chen, L., Zhu, F., Zhang, M., Huo, Y., Yin, C. & Peng, H. 2011. Design and Analysis of an Electrical Variable Transmission for a Series–Parallel Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology.

Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances. Formatex Research Center.

Cram, A. 2019. A coupled modeling framework for allocation design in land-use and land-cover changes to optimize biofuel feedstock production. The University of Texas at El Paso.

- Coello, C. A. Lamont, G. B. & Van Veldhuizen, D. A. 2007. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer
- Covington, T. 2022. Average miles are driven per year in the U.S. The Zebra. https://www.thezebra.com/resources/driving/average-miles-driven-per-year/#infographic
- Cui, Y., Geng, Z., Zhu, Q., & Han, Y. 2017. Multi-objective optimization methods and application in energy saving. Energy.
- Dang, Q., Yu, C., & Luo, Z. 2014. Environmental life cycle assessment of biofuel production via fast pyrolysis of corn stover and hydroprocessing.
- Dragone, G., Fernandes, B., Vicente, A. & Teixeira, J. 2007. Third-generation biofuels from microalgae. Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho.
- DOT. 2021. El Paso District Statistics: Vehicles Registered (FY 2021). http://www.dot.state.tx.us/apps-cg/discos/default.htm?dist=ELP&stat=vr
- EIA. 2019. Electricity in the United States is produced (generated) with diverse energy sources and technologies. Electricity in the United States.
- Edmunds. 2022. New Cars, Used Cars, Car Reviews and Pricing. Retrieved from: https://www.edmunds.com/
- Emadi, A. 2014. Advanced Electric Drive Vehicles. UK: CRC Press, Taylor & Francis Group: Abingdon.
- EPA. 2021a. Sources of Greenhouse Gas Emissions. Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

- EPA. 2021b. Overview of greenhouse gases. Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/overview-greenhouse-gases
- EPA. 2022. Global Greenhouse Gas Emissions Data. Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
- EPA. 2021. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018. Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissionsand-sinks-1990-2018
- Ercan, T., & Tatari, O. 2015. A hybrid life cycle assessment of public transportation buses with alternative fuel options. International Journal of Life Cycle Assessment.
- Ercan, T., Zhao, Y., Tatari, O. & Pazour, J. 2015. Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options. Energy.
- Everitt, B. 2012. Introduction to optimization methods and their application in statistics.
- Fayyad, S., & Abuzalata, M., Momani, M. & Abu-Ein, S. 2012. Optimization of the Electrical Motor Generator in Hybrid Automobiles. Al-Balqa' Applied University, Faculty of Engineering Technology.
- Foulds, L. R. 2012. Optimization techniques: an introduction. Springer Science & Business Media.
- Gass, S. I. 2003. Linear programming: methods and applications. Courier Corporation.
- Geismar, N., McCarl B. & Searcy, S. 2022. Optimal design and operation of a second-generation biofuels supply chain. IISE Transactions.
- Gunantara, N. 2018. A review of multi-objective optimization: Methods and its applications. Cogent Engineering.

- Guo, A., Chen, W., Li, Q., Liu, Z. & Que, H. 2013. Air flow control based on optimal oxygen excess ratio in fuel cells for vehicles. Journal of Modern Transportation. 21.
- Hannan, M. A., Azidin, F. A., & Mohamed, A. 2014. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews.
- Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. 2013. Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of industrial ecology.
- Hess, J.R., Kenney, K.L., Ovard, L.P., Searcy, E.M. and Wright, C.T. 2009. Commodity-scale production of an infrastructure-compatible bulk solid from herbaceous lignocellulosic biomass. Uniform-Format Bioenergy Feedstock Supply System Design Report Series. Idaho National Lab.
- Hira, J., Chaudhary, N., Dogra, B. A., Sharma, R., Kumar, V., & Rani, K. 2022. Comparison of the emissions of different biofuels with fossil fuel through the utilization of GREET Model. In IOP Conference Series: Materials Science and Engineering. IOP Publishing.
- IPCC. 2018. Global warming of 1.5°C. IPCC.
- IPCC. 2021. Climate change widespread, rapid, and intensifying. IPCC.
- Javid, R. J., Salari, M., & Javid, R. J. 2019. Environmental and economic impacts of expanding electric vehicle public charging infrastructure in California' s counties. Transportation Research Part D: Transport and Environment.
- Kazancoglu, Y., Ozbiltekin-Pala, M., & Ozkan-Ozen, Y. D. 2021. Prediction and evaluation of greenhouse gas emissions for sustainable road transport within Europe. Sustainable Cities and Society.

- Kebriaei, M. & Halvaei, N. 2015. Hybrid Electric Vehicles: An Overview. International Conference on Connected Vehicles and Expo (ICCVE).
- Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., &Adormaa, B. 2018. Greenhouse Effect: Greenhouse Gases and Their Impact on GlobalWarming. Journal of Scientific Research and Reports.
- Lanzarotto, D., Marchesoni, M., Passalacqua, M., Pini Prato, A. & Repetto, M. 2018. Overview of different hybrid vehicle architectures. IFAC-PapersOnLine.
- Liu, W. 2013. Introduction to hybrid vehicle system modeling and control. John Wiley & Sons.
- Liu, X., Elgowainy, A., Vijayagopal, R., & Wang, M. 2020. Well-to-wheels analysis of zeroemission plug-in battery electric vehicle technology for medium-and heavy-duty trucks. Environmental Science & Technology.
- Liu, W., Yu, Z., Xie, X., Von Gadow, K., & Peng, C. 2018. A critical analysis of the carbon neutrality assumption in life cycle assessment of forest bioenergy systems. Environmental Reviews.
- Lopez, N. S., Soliman, J., & Biona, J. B. M. 2018. Life cycle cost and benefit analysis of low carbon vehicle technologies. In Sustainable Energy Technology and Policies. Singapore: Springer.
- Lopez, N. S., Soliman, J., Biona, J. B. M., & Fulton, L. 2020. Cost-benefit analysis of alternative vehicles in the Philippines using immediate and distant future scenarios. Transportation Research Part D: Transport and Environment.
- Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn,J. 2019. Hydrogen fuel cell vehicles; current status and future prospect. Applied Sciences.

- Marler, R. T., & Arora, J. S. 2004. Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization.
- McCollum, D., & Yang, C. 2009. Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications. Energy Policy.
- Nagler, A. & Gerace, S. n. d. First and second-generation biofuels.
- Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. 2010. Production of first- and secondgeneration biofuels: a comprehensive review. Renewable and sustainable energy reviews.
- Nemry, F. & Brons, M. 2011. Market Penetration Scenarios of Electric-Drive Vehicles. Association for European Transport and Contributors 2011. European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS).
- Noori, M., Gardner, S., & Tatari, O. 2015. Electric vehicle cost, emissions, and water footprint in the United States: development of a regional optimization model. Energy.
- Nayak, S. 2020. Fundamentals of Optimization Techniques with Algorithms. Academic Press.
- Oak Ridge National Laboratory (ORNL). 2022. Shared Fuel Economy Estimates. https://www.fueleconomy.gov/feg/browseList.jsp?src=feg
- Onat, N.C.; Kucukvar, M.; Afshar, S. N. d. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean.
- Pašagić Škrinjar, J., Abramović, B., Bukvić, L., & Marušić, Ž. 2020. Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company. Sustainability.
- Paulus, N., Page, J. & Bausch, J. 2022. Car ownership statistics in the US. Monkeygeek. https://www.moneygeek.com/insurance/auto/car-ownership-

statistics/#:~:text=More%20than%20276%20million%20vehicles,among%20all%20state s%20with%2031%2C247%2C270.

- Prajapati, K. C., Patel, R., & Sagar, R. 2014. Hybrid vehicle: A study on technology. International Journal of Engineering Research & Technology.
- Qiao, Q., Zhao, F., Liu, Z., & Hao, H. 2019. Electric vehicle recycling in China: Economic and environmental benefits. Resources, Conservation and Recycling.
- Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. 2021. A review on electric vehicles: Technologies and challenges. Smart Cities.
- Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., ... & Yu, T. H.2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science.
- Selvakumar, S. G. 2021. Electric and Hybrid Vehicles A Comprehensive Overview. 2021 IEEE 2nd International Conference on Electrical Power and Energy Systems.
- Sen, B., Ercan, T., & Tatari, O. 2017. Does a battery-electric truck make a difference? –Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of cleaner production.

Schrage, L., 2009. Optimization modeling with LINGO. Lindo systems inc.

Shigeru, S. & Alloysius Joko, P. 2020. The influence on energy and the economy of electrified vehicles penetration in ASEAN. Economic Research Institute for ASEAN and East Asia.

- Schütze, O., Hernández, C. 2021. Multi-objective Optimization. In: Archiving Strategies for Evolutionary Multi-objective Optimization Algorithms. Studies in Computational Intelligence, vol 938. Springer, Cham.
- Ternel, C., Bouter, A., & Melgar, J. 2021. Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030. Transportation Research Part D: Transport and Environment.
- Wang, Y., Wu, C. & Yang, L. 2013. Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics.
- Wang, S., Wang, H., Xie, P., & Chen, X. 2021. Life-cycle assessment of carbon footprint of bikeshare and bus systems in campus transit. Switzerland: Sustainability.
- Wong, E. Y. C., Ho, D. C. K., So, S., Tsang, C. W., & Chan, E. M. H. 2021. Life cycle assessment of electric vehicles and hydrogen fuel cell vehicles using the greet model—A comparative study. Sustainability.
- Woodcock, J., Edwards, P., Tonne, C., Armstrong, B. G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, O. H., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A., & Roberts, I. 2019. Public health benefit ts of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet.
- Wu, Z., Wang, M., Zheng, J., Sun, X., Zhao, M., & Wang, X. 2018. Life cycle greenhouse gas emission reduction potential of battery electric vehicle. Journal of Cleaner Production.
- Xueliang, T., Liu, X. & Zuo, J. 2015. The development of new energy vehicles for a sustainable future: A review. Renewable and Sustainable Energy Reviews.

- Yousfi, D., Elbacha, A. & Ouahman, A. 2011. Efficient Sensorless PMSM Drive for Electric Vehicle Traction Systems. 10.5772/16600.
- Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhang, Q. 2011. Multi objective evolutionary algorithms: A survey of the state of the art. Swarm and evolutionary computation.

Vita

Eva Alondra Díaz Lozano was born in Ciudad Juárez, Chihuahua, México. She received her Bachelor of Science in Industrial and Systems Engineering from the Universidad Autónoma de Ciudad Juarez in May 2020. After graduating, in January 2021, she started her Master of Science in Industrial Engineering and received a scholarship sponsored by The National Council for Science and Technology in México. In November 2021, she became a research assistant at the engineering research center on the Advancing Sustainability through Powered Infrastructure for Roadway Electrification (ASPIRE) student association sponsored by the National Science Foundation (NSF). Her research interests include sustainability, optimization, and manufacturing.