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Abstract 

This research proposed a novel framework for creating optimal transportation scenarios 

that consider multiple objectives such as minimum greenhouse gas emissions, air pollutant levels, 

and cost of ownership. The thesis approach is a multi-objective evolutionary algorithm coupled 

with the AFEET tool, allowing us to efficiently explore the complex trade-offs between these 

objectives and identify a diverse set of optimal solutions. Through several case studies and a design 

of experiments, this demonstrates the effectiveness and practicality in different scenarios. This 

approach has significant implications for policymakers and industry professionals seeking to make 

sustainable and cost-effective decisions in the transportation sector. 
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Chapter 1: Introduction 

Since the mid-20th century, anthropogenic activities have strongly influenced climate 

change and are attributed to the observed rise in average global warming, resulting in profound 

disruption to humans and the ecosystem (Allen et al., 2018).  

1.1 INTERNATIONAL PANEL ON CLIMATE CHANGE 

The International Panel on Climate Change (IPCC) is a scientific and intergovernmental 

committee dedicated to providing the world with the most updated scientific and objective 

information regarding climate change and its potential economic, social, and political impacts. 

The latest IPCC report (2021) presented observations related to the climate changes in 

every region, such as extreme weather, floods, increases in droughts, sea level rise, and 

biodiversity loss, all representing an unprecedented risk to susceptible populations (Allen et al., 

2018). These risks depend on the magnitude and warming percentage, geographic location, 

development and vulnerability levels, and decisions and implementation of adaptation and 

mitigation options (IPCC, 2018). 

The greenhouse effect is a million-year-old natural process discovered by Joseph Fourier 

in 1827. This effect is a primary factor in keeping the earth warm as it helps to prevent heat from 

escaping from the atmosphere. Thus, the average global temperature would be colder without the 

greenhouse effect, not allowing life to exist on earth as we know it (Kweku et al., 2018). According 

to Kweku et al. (2018), the greenhouse gas effect is mainly caused by the interaction of the 

radiation from the sun and greenhouse gases, trapping heat in the atmosphere.  

Between 1880 and 2012 global average surface warming temperature observed was 0.85°C 

(Allen et al., 2018). However, according to the IPCC report Climate Change: The Physical Science 

Basis (2021), Greenhouse Gas (GHG) emissions generated by anthropogenic activities caused an 
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increase to approximately 1.1°C of average warming and are projected to reach, or exceed, 1.5°C 

of the global temperature over the next 20 years, based on datasets to assess historical warming. 

Still, around 20% to 40% of the worldwide population has experienced over 1.5°C warming above 

pre-industrial in at least one season (Allen et al., 2018). In addition, the IPCC (2021) report 

presented new estimates of the chances of surpassing the global warming level of 1.5°C in the 

following decades. It stated that taking action to reduce GHG emissions on a large scale is 

essential. Otherwise, warming will be surpassed by 1.5°C or even beyond 2°C, which could take 

20 to 30 years to stabilize global temperatures. However, substantial and continuous reductions in 

GHG emissions would establish a limit for climate change (IPCC, 2021). 

The United States Environmental Protection Agency (EPA) (2021b) stated that carbon 

dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases are some of the most 

predominant GHG emissions in the US (Figure 1). Fossil fuels, solid waste, and other biological 

materials are significant contributors to the formation of (CO2), in the atmosphere. On the other 

hand, methane (CH4) is emitted during the production and transportation of natural gas, coal, and 

oil, as well as in other agricultural practices and land use. Nitrous oxide (N2O) is also emitted 

during agricultural but also industrial activities, combustion of fossil fuels, and solids. 

Additionally, fluorinated gases are usually cast in smaller quantities, sometimes called high Global 

Warming Potential (GWP) gases. 
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Figure 1.1: Total U.S. Emissions in 2019, 6,558 million metric tons CO2 equivalent (excludes 

land sector) (EPA, 2021b). 

 

The rapid increase in atmospheric GHG concentration has caused climate change and the 

global warming effect, which has motivated international efforts on climate change to monitor, 

prevent and overturn adverse outcomes. Greenhouse gas in global warming is commonly 

expressed in GWP, which allows assessing the differences between global warming impact of the 

gases, typically CO2 (Kweku et al., 2018). 

According to EPA (2021b), the primary greenhouse gas emitted through anthropogenic 

activities is CO2, accounting for approximately 80% of all U.S. GHG emissions from 

anthropogenic activities in 2019, such as CO2, are present in the atmosphere naturally as part of 

the earth’s carbon cycle. However, the carbon cycle is being affected by human activities by adding 

more CO2 to the atmosphere, disrupting the ability of forests and soils to remove and store those 

CO2 emissions. According to EPA, the top CO2 emitters are China, the United States, the European 

Union, India, the Russian Federation, and Japan (Figure 1.2). The data in figure 2 is based on fossil 

fuel emissions, as well as cement manufacturing and gas flaring, accounting for a considerable 

portion of total global CO2 emissions (EPA, 2022). 
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Figure 1.2: 2014 Global CO2 fossil fuel combustion and industrial processes emissions (EPA, 

2022). 

 

The main anthropogenic activity that leads to CO2 emissions increase in fossil fuel 

combustion to supply energy, industrial, and transportation systems (Figure 1.3) (Kazancoglu et 

al., 2021). 

 
Figure 1.3: 2019 U.S. carbon dioxide emissions by source (EPA, 2021b). 
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Fossil fuels are the most significant sources of energy to generate electricity in the U.S. In 

2020, natural gas accounted for 40% of its electricity generation. Coal was the third largest with 

19% of the U.S. electricity generation, and petroleum accounted for 1%, leaving renewable and 

nuclear energy electricity generation at 20% (EIA, 2019). 

1.2 TRANSPORTATION SECTOR 

Over the past 20 years, the transportation sector accounted for almost a quarter of CO2 

emissions from global energy use (Woodcock et al., 2019). As transportation sector accounted for 

nearly 29% of GHG emissions and 28% of total energy consumption in the U.S. (Wang et al., 

2021). More than 50% of transportation-related GHG emissions result from passenger cars, 

medium- and heavy-duty trucks, and light-duty trucks, such as sport utility vehicles, pickup trucks, 

and minivans. On the other hand, commercial aircraft, ships, boats, and trains, as well as pipelines 

and lubricants, are responsible for the remaining GHG emissions from the transportation sector 

(EPA, 2021a; Woodcock et al., 2019). 

Internal combustion engine vehicles (ICEV) are the source of other climate pollutants, such 

as CH4, N2O, black carbon, and ozone (O3) (Woodcock et al., 2019). In addition, a small amount 

of hydrofluorocarbon (HFC) emissions is created in the transportation sector. These emissions 

result from the increased use of mobile air conditioners and refrigerated transport (EPA, 2021a). 

Likewise, the number of Vehicle Miles Traveled (VMT) also harms the environment and has 

increased by 48% from 1990 to 2019. Therefore, sustainable transportation options should be 

considered to reduce environmental impacts such as climate change, global warming, and other 

climate change impact categories (EPA, 2021a; Ercan & Tatari, 2015). 

 Since emissions from transport are increasing faster than from energy-using sectors, and 

the trend is expected to increase by 80% between 2007 and 2030, significant reductions in GHG 
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emissions are needed to prevent severe climate destabilization (Woodcock et al., 2019). According 

to McCollum & Yang (2009), scientific studies suggest that global annual GHG emissions should 

be reduced by 50% to 80% by 205 to avoid destructive climate change impacts.  

Furthermore, there are diverse opportunities to decrease GHG emissions related to 

transportation. Reducing travel demand through urban planning and reducing the number of VMT 

per individual each day by building public transit, sidewalks, and bike paths are great alternatives 

to decrease the use of motor vehicles (EPA, 2021a; Woodcock et al., 2019). However, switching 

to fuels that emit less CO2, and intensifying alternative sources such as biofuels, renewable 

electricity, and other renewable sources would significantly reduce transport related GHG 

emissions (EPA, 2021a).  

1.3 BIOFUELS 

To rely less on oil resources, the demand for renewable energy production increases, 

especially biomass conversion to biofuels. The Energy Independence and Security Act of 2007 

(EISA) mandates expanding biofuel volumes and extending target dates to 2022. First, in 2008, 

the Renewable Fuel Standard required 9 billion gallons of biofuels to be produced and consumed. 

The target for 2022 is to produce 36 billion gallons of biofuels, where at least 16 billion should be 

obtained from cellulosic ethanol. Biofuels are considered one of the most influential and low-cost 

fuels. When diluted with gasoline help decrease harmful pollutants to human health, such as carbon 

monoxide, benzene, and exhaust hydrocarbons (Cram, 2019). The intensification of renewable 

energy technologies such as biofuels can meet global energy demand and are essential to reducing 

GHG emissions. However, their commercial production remains in the process (Girdhar et al., 

2017). Generally, biofuels are classified as first-, second-, and third generation.  
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First-generation biofuels are sourced from crop plants as energy-containing molecules like 

sugars, oils, and cellulose (Aro, 2016). These biofuels are made through fermentation or chemical 

processes that convert the biomass's oils, sugars, and starches into liquid fuels. First-generation 

biofuel markets and technologies are well-established. The most common in the U.S. is corn 

ethanol, blended into most gasoline sold domestically, providing new economic opportunities by 

expanding markets for conventional commodity crops (Nagler & Gerace, n.d.). However, there are 

concerns about the environmental impacts, setting limits in the increasing production of this 

classification of biofuels, as it is claimed that they are not cost-efficient emission abatement 

technology. Therefore, it is recommended to have more efficient alternatives (Naik et al., 2010). 

The main disadvantage of first-generation biofuels is the food versus fuel debate. The rapid 

expansion of first-generation biofuel production could impact global food production due to the 

competition of biofuel crops with food crops, decreasing food supply and increasing food prices 

(Nagler & Gerace, n.d.). 

In contrast, second-generation biofuels are manufactured from lignocellulosic biomass 

such as corn stover, wheat straw, miscanthus, switchgrass, poplar, willow, and wood (Geismar et 

al., 2022). This type of biofuel is more suited to being grown on land not used for food production 

(Nagler & Gerace, n.d.; Aro, 2016). Second-generation biofuel’s advantages include lower 

greenhouse gas emissions through their life cycle than grain alcohol. Another advantage is the 

ability to be produced from grasses that grow on low-quality marginal lands since these fuels have 

a fundamental non-food nature (Geismar et al., 2022). However, a significant challenge for a 

biofuel supply chain is the seasonal availability of biomass. Most harvest windows of crops are 

approximately eight weeks, and none exceed 11 (Hess et al., 2009). Thus, the supply of over 40 
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weeks must be stored. Therefore, the design and operation of the biomass supply chain are essential 

for a biorefinery’s success (Geismar et al., 2022). 

Finally, third-generation biofuels, such as microalgae, are currently considered an ideal 

biofuel feedstock due to their rapid growth rate, CO2 fixation ability and high production capacity 

of lipids can be produced on non-arable land. In addition, microalgae have bioenergy potential as 

they can be used to produce liquid transportation and heating fuels, such as biodiesel and 

bioethanol (Dragone et al., 2010). According to Christi et al. (2007), biodiesel production by 

microalgae will not compromise the production of food, fodder, and other crop products. However, 

technological developments, including advances in microalgal biomass harvesting, drying, and 

processing, are significant areas that may lead to enhanced cost-effectiveness. Therefore, effective 

commercial implementation of the biofuel from microalgae strategy (Dragone et al., 2010). 

In 2007, the Low Carbon Fuel Standard (LCFS) aimed to reduce GHG emissions generated 

by petroleum-based transportation. Using a market-based cap and trade approach by establishing 

a requirement for fuel producers would reduce the carbon intensity of their products under the 

LCFT, allowing importers, refiners, and wholesalers to develop low-carbon fuel products (Cram, 

2019). 

1.4 FUEL COSTS  

Given the essential role of crude oil in the world economy, the impact of crude oil prices 

on the economy has been a matter of great concern to economists. Several studies have focused on 

the U.S. economy since it is the most significant oil importer (Wang et al., 2013). The U.S. 

produced 20% of the world share total in 2021, almost 18.88 million barrels per day. Saudi Arabia 

and Russia are the second and third most significant oil importers. They accounted for 10.84 

million and 10.78 million barrels per day, respectively, as shown in Table 1.1 (EIA, 2022). 
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Table 1.1: The ten largest oil producers and share of total world oil production in 2021  

 
(EIA, 2022) 

 

According to West Texas Intermediate (WTI), oil prices have risen from an average of $71 

per barrel in December 2021 to $109 in May 2022. U.S. gasoline and diesel inventories are running 

low, refining capacity is strained, and export demand remains strong (Goolding, 2022). However, 

according to an article published in the Federal Reserve Bank of Dallas, the monthly national 

average for regular-grade gasoline, which reached $4.46 per gallon in May, has not reached the 

2008 peak of $5.35 realistically. Gasoline prices between 2011 and 2014 were consistently at or 

above recent (gasoline and diesel prices in the U.S. are at record levels on a nominal (non-inflation-

adjusted) basis for Figure 1.4 and Figure 1.5 (Goolding, 2022). 

 
Figure 1.4: Gasoline prices (Goolding, 2022). 
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Figure 1.5: Diesel prices (Goolding, 2022). 

 

Historically, U.S. consumers only slowly reduce fuel consumption when prices increase 

since most consumers need to drive daily to work, school, grocery stores, and other destinations. 

Public transportation is an alternative, mainly for those in dense urban areas. Buying a more fuel-

efficient or electric vehicle when fuel prices increase is not an option for most people (Goolding, 

2022). 

1.5 ENERGY-EFFICIENT VEHICLES  

The automotive industry is one of the leading worldwide industries, not only in the 

economic aspect but also in research and development (Sanguesa et al., 2021). The significant 

growth of today's cities has led to increased transportation use, resulting in increased pollution and 

severe environmental problems (Hannan et al., 2014). Therefore, with the accelerated increase in 

the number of vehicles, mitigation of the dependence of vehicles on petroleum to reduce pollutant 

emissions is becoming one of the main approaches (Xueliang et al. 2015). However, one of the 

automotive industry's most significant challenges is developing near-zero-emission technologies 

(Hannan et al., 2014). 
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Due to the increase in oil and gas usage leading to environmental problems, automotive 

companies have started developing new technologies to offer more sustainable vehicle options 

(Prajapati et al., 2014). The development of these new vehicle technologies has focused on total 

electric traction (Lanzarotto et al. 2018). Battery Electric Vehicles (BEV), Hybrid Electric 

Vehicles (HEV), and Fuel Cell Vehicles (FCV) are the three typical vehicles that are proposed to 

replace conventional vehicles with ICEVs (Kebriaei et al., 2015). Table 1.2 shows a comparison 

of the significant characteristics of EVs, HEVs, and FCVs. Such comparisons are made based on 

five attributes: (1) Propulsion; (2) Energy Storage Subsystem (ESS); (3) Energy source and 

infrastructure; (4) Characteristics; and (5) Major issues. 

Table 1.2: Characteristics of BEV, HEV, and FCV (Chan et al., 2010). 

 

 

1.5.1 Battery Electric Vehicles 

BEVs are proposed as a long-term solution to the harmful effects of traditional 

transportation, especially on the environment (Onat et al., 2019), as BEVs are characterized to be 

more eco-efficient due to their great potential to minimize the emissions related to transportation 

(Emadi, 2014). BEVs have only one energy source, namely, an electric battery. BEVs need to be 

periodically connected to a battery source to replenish the start, which has been the primary subject 

of ongoing research (Selvakumar, 2021). Because the vehicle is powered only by batteries or other 
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electrical energy sources, zero-emission can be achieved (Figure 6) (Chan, 2010). The typical 

range of a BEV is estimated to be around 100-150 km on a full charge, but high-end models of the 

BEV can extend this range to about 300-350 km (Grunditz and Thiringer, 2016). 

 
Figure 1.6: BEV configuration (Yousfi et al., 2011). 

 

1.5.2 Hybrid Electric Vehicles 

HEVs are experiencing rapid sales growth compared to BEVs and FCVs, as they maintain 

the advantages of conventional vehicles. Furthermore, HEVs incorporates internal composition 

engine, electric machines, and power electronic equipment, operating in charging environments of 

different fuel types, load levels, and weather conditions (Liu, 2013; Kebriaei et al., 2015). 

Manufacturing HEVs can reduce fuel consumption, lowering GHG and pollutant emissions 

(Lanzarotto et al. 2018).  

An HEV's composition consists of storing energy on board in two or more forms. In a 

typical HEV, gasoline with an engine is used as a fuel converter. Another form is a bidirectional 

electrical storage device, reducing the fuel consumption of the HEV by recovering energy during 

braking, downsizing the engine, operating the engine more efficiently, and shutting the engine off 
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when it is not moving (Kebriaei et al., 2015). More modern HEVs use efficiency-improving 

technologies, such as regenerative braking, converting the vehicle’s kinetic energy into electric 

energy to charge the battery, avoiding wasting it as heat energy as conventional breaks do (Kebriaei 

et al., 2015). 

Depending on the way the two powertrains are integrated, there are generally three basic 

HEV architectures: (1) Series hybrid; (2) Parallel hybrid; and (3) Series-parallel hybrid. Describing 

the Series HEV, the Internal Combustion Engine (ICE) has no mechanical connection with the 

traction load, never directly powering the vehicle. The traction power is converted to electricity, 

and the sum of energy from the two power sources is made in an electric node (Figure 1.7) (Chan 

et al., 2010).  

 
Figure 1.7. Series HEVs configuration (Fayyad et al., 2012). 

 

Parallel hybrid systems have an ICE and electric motor connected to a mechanical 

transmission, allowing the battery to recharge during regenerative braking and cruising. However, 

due to a fixed mechanical link between the wheels and the motor, the battery cannot be charged 

when the car is not moving (Figure 1.8) (Kebriaei et al., 2015).  
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Figure 1.8: Parallel HEV configuration (Fayyad et al., 2012). 

 

Series–parallel HEVs can take advantage of the positive attributes of both series and 

parallel HEVs and are dominating the current passenger HEV market, requiring a transmission 

device to couple the engine and electric machines with the vehicle. For hybrid vehicles, the 

coupling mechanism must be compact, efficient, easy to control, and low-cost (Figure 1.9) (Chen 

et al., 2011). 

 
Figure 1.9: Series-parallel HEV configuration (Fayyad et al., 2012). 
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1.5.3 Fuel Cell Vehicles 

An FCV refers to an EV that uses a fuel cell instead of batteries or a supercapacitor to 

power an electric motor (Figure 1.10) (Das et al., 2017). The fuel cell is a direct chemical converter 

into electrical energy. The process consists in generating electrical power if fuel and oxidants are 

provided to the fuel cell in sufficient quantities (Eberle et al., 2012). However, the adoption of 

FCV is mainly affected by the inflated cost of vehicles and infrastructure distribution, compared 

to EVs, which are the optimal choice for addressing environmental problems and the energy crisis, 

as they do not consume oil (Sun et al., 2019).  

 
Figure 1.10: FCV configuration (Guo et al., 2013). 

 

Technological measures to reduce vehicle pollutants might reduce emissions, but health 

effects would be more negligible. Therefore, the combination of reduced reliance on motorized 

travel, such as hybrid or electric automobiles, with the vigorous implementation of low-emission 

technology like energy generated from lower-carbon or non-fossil fuels, will offer the best 

outcomes in terms of climate change mitigation and public health (Woodcock et al., 2019; EPA, 

2021a). In addition, according to Ercan & Tatari (2015), electricity as the power source has been 
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suggested as the future primary energy source for most vehicles due to its potential environmental 

benefits. Some studies show that the electric sector has the lowest marginal emissions reduction 

costs and, as a result, would provide the bulk of near-term mitigation in an economy-wide policy 

regime (McCollum & Yang, 2009). 

Increased life expectancy and income have accompanied global economic growth. 

However, environmental degradation and pollution in many regions are related to significant 

poverty and severe inequality in income distribution and access to resources, amplifying 

vulnerability to climate change (Allen et al., 2018). 

1.6 VEHICLE PENETRATION  

As the demand for passenger vehicles and freight transportation rapidly rises, adverse 

effects such as traffic congestion, traffic accidents, and air pollution increase. Consequently, the 

demand for fossil fuels is constantly growing while oil self-sufficiency has significantly declined 

(Shigeru et al., 2020). With the rapid growth of the U.S. economy, ownership of private vehicles 

has been increasing. According to the Federal Highway Administration, the total number of cars 

registered in the U.S. reached 276,491,191 in 2019, being 6% higher compared to the number of 

vehicles registered in 2014 (Paulus et al., 2022). Figure 1.11 shows the number of registered 

vehicles in the US from 2013 to 2019.  
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Figure 1.11: Registered vehicles in the U.S. from 2013 - 2019 (Paulus et al., 2022). 

 

BEVs have recently gained tremendous popularity as vehicles that generate fewer carbon 

emissions, are less polluting, and depend less on fossil fuel, becoming a promising alternative for 

daily personal transportation. However, adopting this type of transport does not rely solely on 

demand for BEVs. Still, it is also subject to supply-side restrictions, which include battery 

performance and cost and the level of access to charging infrastructure (Nemry & Brons, 2011). 

The implementation of BEVs is assumed to reduce oil consumption and air pollution. 

However, it will increase the electricity demand. Depending on the power generation sectors 

(generation mix, input fuels, etc.), countries might not become energy self-sufficient or solve their 

environmental problems (Shigeru et al., 2020).  

 



18 

Chapter 2: Literature Review 

Over the years, many scientists have studied the life cycle performance related to biofuels, 

BEVs, HEVs, and fuel costs. The Greenhouse Gases, Regulated Emissions, and Energy Use in 

Transportation (GREET) Model and the Alternative Fuel Life-cycle Environmental and Economic 

Transportation (AFLEET) tool allow stakeholders to consider the variable of cost of ownership 

have already established comprehensive databases for further studies (Argonne National 

Laboratory, n.d.). 

Based on the GREET database, Hawkins has performed complete life cycle assessments 

on various kinds of vehicles in Europe, showing results where the life cycle GHG emissions of a 

BEV was about 200 g CO2eq/km, about 10–20% lower than that of an ICEV (Hawkins et al., 2013). 

Thus, BEVs could work for GHG emission reduction if managed with green battery production, 

low-carbon electricity, and EV recycling (Qiao et al., 2019). China Automotive Technology & 

Research Center also published a study where an LCA utilized data for vehicle components and 

the battery material obtained from the GREET2 2017 model. This information was used to 

calculate and compare the GHG emissions from BEV’s and ICEV’s life cycle from 2010, 2014, 

and 2020 under different scenarios, considering different electricity mixes, electricity generation 

technologies, and combined heat and power scales. The study found the total life cycle’s GHG 

reduction potential of BEVs will progressively improve by up to 13.4% in 2020 relative to ICEVs 

(Wu et al., 2018).  

Conventional diesel medium- and heavy-duty vehicles (MHDVs) contributed 23% to the 

total GHG emissions in the transportation sector in 2018, which is the most significant GHG 

emission sector in the United States (EPA, 2021). With the reduction in the cost of batteries and 

the development of new technologies, BEVs are increasingly attractive options for improving 
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energy efficiency and reducing air emissions of MHDVs (Liu et al., 2020). A Well-to-wheels 

analysis was conducted utilizing the GREET model, comparing MHD BEVs and conventional 

MHDVs’ air pollutant emissions. It was found that MHD BEVs significantly improve the 

environmental sustainability of MHDVs by reducing WTW GHGs, nitrogen oxides, volatile 

organic compounds, and carbon monoxide emissions compared to conventional MHDVs (Liu et 

al., 2020).  

Nevertheless, it is essential to consider the contribution of lithium-ion batteries to the life 

cycle of BEVs energy consumption and environmental impacts. A study by Dun et al. (2014) stated 

the significance of lithium-ion batteries in BEVs and the need for reducing battery assembly 

cradle-to-gate impacts.  Recycling metals in cathode materials would help to minimize the total 

energy and emissions intensity of battery production, primarily when assembly facilities operate 

at high capacity (Dunn et al., 2014). Additionally, it concluded that BEVs consume less petroleum 

and emit less GHG than ICEVs on a life-cycle basis. The only scenario in which a BEV generated 

more GHGs than an ICEV was when it used only coal-derived electricity as a fuel source. 

However, sulfur oxide (SOx) emissions were up to four times greater for BEVs than ICEVs (Dunn 

et al., 2014).  

Most studies approaching vehicle carbon footprints mainly focus on the vehicle cycle. 

However, Wong et al. (2021) analyzed the GREET LCA to analyze the fuel cycle, focusing on 

different hydrogen production pathways for fueling up Hydrogen Fuel Cell Vehicles (HFCV) to 

compare the product carbon footprint (PCF) of a BEV and an HFCV. The results indicate that the 

fuel cycle contributed significantly to the PCF and concluded that the cleaner the hydrogen 

production is, the lower the environmental impact of vehicles’ emissions.  
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Biofuels are the alternative solutions in the fossil fuel family and have been mainly utilized 

to reduce ICEV emissions (Hira et al., 2022). Biofuels can reduce GHG emissions by converting 

to 85–100% biofuels without requiring major engine modifications (Ternel et al., 2021). Many 

pioneer works have been done to improve the accuracy of the climate change impact assessment 

of biofuels in LCA, such as the consideration of biogenic CO2 emissions, emissions from land-use 

practice change, and carbon loss (Liu et al., 2018; Searchinger et al., 2008; Arbault et al., 2014). 

However, Liu et al. (2020) developed a framework that considers all the components, such as fossil 

fuel-derived GHG emissions, biogenic CO2 emissions, emissions from land-use practice change, 

regrowth for compensation, and differences in carbon storage within the time horizon. Results 

indicated that fossil fuel produced CO2 emissions, biogenic CO2 emissions and regrowth for 

compensation contributed most of the positive impact. It also suggests that land-use practice 

changes and differences in carbon sequestration could have adverse effects. Still, biofuels would 

be attractive due to their sustainability and renewability. 

According to Hira et al. (2022), methanol produced by gasification is the best-

recommended fuel for combustion with the lowest emission levels. This study showed that using 

methanol fuel produced by gasification results in the lowest GHG emission value of 11.44 gm 

using the GREET model compared to fossil fuels. Comparative biofuel production from corn 

stover fast pyrolysis and subsequent hydrotreating and hydrocracking LCA was conducted based 

on a GREET model and investigated three different cases of different hydrogen treatments in bio-

oil. The results showed an essential net non-renewable energy demand reduction of 147.5% and a 

net GWP reduction of 119.4% compared to conventional gasoline and diesel (Dang et al., 2014). 

Another LCA of energy consumption and GHG emissions for various biofuel vehicles has been 

performed, focusing on four potential fuels for vehicles: switchgrass ethanol, corn ethanol, 
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soybean biodiesel, and bio-hydrogen from corn ethanol with the fuel cycle model developed in 

GREET, showing that the Flexible Fuel Vehicles (FFVs) ran with an ethanol fuel blend of 85% 

switchgrass ethanol and 15% gasoline (E85) have the most significant benefits in GHG emission 

reduction by 59.4% (Chang et al., 2017). 

On the other hand, the AFLEET tool allows stakeholders to consider the variable cost of 

ownership (Argonne National Laboratory, n.d.). Based on that, Ercan et al. performed a study 

focused on optimizing the economic and sustainability impacts of transit bus fleet operation to 

reduce CO2 emissions and other air pollutants related to health and environmental damage costs 

by utilizing the AFLEET tool to analyze different weight scenarios to provide solutions for 

decision-makers with various budget constraints or emission reduction requirements (Ercan et al., 

2015). 

Furthermore, a modeling and analysis method called the Electric Vehicles Regional 

Optimizer (EVRO) was proposed by Noori et al. (2015) to address the uncertainties and predict 

the optimal combination of the LCC, Environmental Damage Cost (EDC), and Water Footprint 

(WFP) of different vehicle types modeled for other U.S. electricity grid regions for the year 2030. 

Noori et al. (2015) utilized the AFLEET tool to find the LCC of different EVs, concluding that the 

optimal fleet composition in 2030 is HEVs, EREV (Gasoline Extended Range Electric Vehicles), 

and BEVs. HEVs dominate most regions since they have better fuel efficiency and less 

environmental impact. The combined share of EREV and BEVs ranges between 40% and 51% 

throughout the entire U.S. since electric technology reduces the EDC dramatically, with the lowest 

EDC. However, BEVs consume the most water, mainly due to electricity generation and battery 

production, and HEVs have the smallest footprint. 
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In addition, Plug-in Electric Vehicles (PEVs) are one sustainable solution to reduce 

emissions from road transportation. Furthermore, a multiple regression model was developed to 

assess the effect of charging station infrastructure and other cost-related and socio-demographic 

factors on the PEV adoption rate in 58 California counties. The model's results helped to estimate 

decreases in life-cycle air pollutants emissions, GHG, and fossil fuel emissions and calculate the 

benefit-cost ratio that would result from expanding charging stations and growing PEVs across 

California utilizing the AFLEET tool (Javid et al., 2019). However, the results show that the 

infrastructure expansion scenario is more advantageous in reducing air pollutants compared to 

GHGs, as the GHG emission reduction is approximately 0.006% of annual GHG emission in the 

state, and the air pollutant emission reduction is about 0.17% of the yearly statewide air pollutant 

emissions tool (Javid et al., 2019). 

Moreover, the sustainable energy technology and policies book conducted a lifecycle-

based cost-benefit analysis to evaluate the net ownership costs and net external benefits serving as 

decision-support for policymakers regarding alternative vehicle technologies utilizing the 

AFLEET and GREET tools (Lopez et al., 2018). The data presented reflected the excellent health 

and social benefits of BEVs. However, this study also shows high fueling infrastructure investment 

costs (Lopez et al., 2018). In addition, using a lifecycle-based approach, another analysis was 

performed to calculate ownership savings and societal benefits for numerous alternative vehicle 

technologies compared to their baseline vehicle technology, such as diesel and gasoline, utilizing 

the AFLEET and GREET databases. The results found significant societal benefits from BEVs 

and FCVs. However, they also lead to high ownership costs (Lopez et al., 2020). Therefore, the 

diesel hybrid electric vehicle can soon have both favorable societal and operational costs for public 

transportation if a shift to diesel with 20% biodiesel or 85% methanol is made (Lopez et al., 2020).  
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Chapter 3: Optimization 

The attention to cost minimization, energy saving, environmental protection, and 

sustainable development issues in different fields, such as engineering or scientific research, is 

growing. Therefore, a solution to manage our production, manufacturing, experiments, and living 

activities more efficiently and friendly way.is needed (Cui et al., 2017).  

Optimization algorithms are essential in engineering and scientific design activities, which 

help solve many decision-making problems (Nayak, 2020). A variety of activities can be described 

as systems, and the efficient operation of these systems often requires the optimization of several 

indices that measure the system's performance (Foulds, 2012). Optimization techniques are applied 

to obtain the values of a set of parameters that maximize or minimize the objective function of 

interest (Everitt, 2012) to find the best combination of activities with the available resources 

(Schrage, 2009).  

The basic procedure of optimization for any problem is shown in figure 3.1. Inputs and 

resources are necessary information to model the problem mathematically. The problem is 

formulated with the help of the objective function and the constraints. Then, applying the 

optimization techniques, the solutions are investigated, creating the output to get optimal solutions 

(Nayak, 2020). 

 
Figure 3.1: Flow chart of modeling physical problems to get an optimal solution (Nayak, 2020). 
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3.1 LINEAR PROGRAMMING  

One particularly important subclass of programming problems is called a linear-

programming problem, which can be stated using relationships called “straight-line” or linear 

(Gass, 2003). Mathematically, these relationships can be expressed in the form: 

𝛼1𝑥1 +  𝛼2𝑥2  + ⋯ 𝛼𝑗𝑥𝑗 + ⋯ +  𝛼𝑛𝑥𝑛 =  𝑏𝑡 

          (Eq. 3.1) 

Where 𝛼𝑗 and b are known coefficients and 𝑥𝑗 is an unknown variable. To complete a 

mathematical statement of a linear-programming problem, a set of linear equations representing 

the conditions of the problem and a linear function expressing the objective of the problem are 

needed (Gass, 2003). 

 With the added condition of optimizing an objective function, the linear-

programming problem can now select a solution that satisfies all the problem conditions. However, 

the problem might have multiple answers (Gass, 2003). Combining the optimization of a linear 

objective function with the linear constraints of the programming problem transforms an 

undetermined system of linear equations with many viable solutions to a system that can be solved 

for an optimal solution (Gass, 2003).  

The general mathematical model of the linear-programming problem “minimize the 

objective function” can be expressed in the form: 

𝑐1𝑥1 +  𝑐2𝑥2  + ⋯ 𝑐𝑗𝑥𝑗 + ⋯ +  𝑐𝑛𝑥𝑛 

Subject to the conditions 

𝛼11𝑥1 +  𝛼12𝑥2  + ⋯ 𝛼1𝑗𝑥𝑗 + ⋯ +  𝛼1𝑛𝑥𝑛 =  𝑏1 

 

𝛼21𝑥1 +  𝛼22𝑥2  + ⋯ 𝛼2𝑗𝑥𝑗 + ⋯ +  𝛼2𝑛𝑥𝑛 =  𝑏2 

 

… … … … … … … … … … … … … … … … … … … … … .. 
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𝛼𝑖1𝑥1 +  𝛼𝑖2𝑥2  + ⋯ 𝛼𝑖𝑗𝑥𝑗 + ⋯ +  𝛼𝑖𝑛𝑥𝑛 =  𝑏𝑖 

 

… … … … … … … … … … … … … … … … … … … … … .. 
 

𝛼𝑚1𝑥1 +  𝛼𝑚2𝑥2  + ⋯ 𝛼𝑚𝑗𝑥𝑗 + ⋯ +  𝛼𝑚𝑛𝑥𝑛 =  𝑏𝑚 

 

And 

𝑥1                               ≥ 0 

 

       𝑥2                     ≥ 0 

 

             𝑥𝑗              ≥ 0 

 

                    𝑥𝑛    ≥ 0 

 

                     𝑥     ≠ 0 

          (Eq. 3.2) 

Were 𝑐𝑗 for j = 1, 2, …, n; 𝑏𝑗 for i = 1, 2, …, m; and 𝛼𝑖𝑗 are all constants and m < n (Gass, 

2003).  

Every linear-programming problem has either no solution, in terms of nonnegative values 

of the variables, or a nonnegative solution that yields a finite value to the objective function. A 

nonnegative solution generates an infinite value to the objective function (Gass, 2003).  

3.2 MULTI-OBJECTIVE OPTIMIZATION  

The optimal solution can be found through optimization, looking for maximum or 

minimum value utilizing one objective or multi-objective function (Gunantara, 2018). Multi-

objective Optimization Problems (MOPs) or vector optimization problem is the process of 

optimizing systematically and simultaneously a set of objective functions (Marlet & Arora, 2004). 

Moreover, the objective functions tend to contradict each other as an optimal solution is suitable 

for one function, but it may conflict with the others (Cui et al., 2017). Therefore, not all solutions 

can satisfy all objective functions. Thus, there exists a set of feasible solutions (Cui et al., 2017).  
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The general mathematical model of the MOP “minimize the objective function” can be 

expressed in the form: 

𝐹(𝑥) = (𝑓1(𝑥), … , 𝑓𝑘(𝑥), ))𝑇 

          (Eq. 3.3) 

Where k is the number of objective functions in the MOP being solved, and x is an 

independent variable. Subject to: 

𝑔𝑖(𝑥) ≤ 0 

𝑥𝑙𝑜𝑤𝑒𝑟  ≤  𝑥 ≤  𝑥𝑢𝑝𝑝𝑒𝑟 

          (Eq. 3.4) 

Where 𝑔𝑖(𝑥) is the feasible solution space and 𝑥𝑙𝑜𝑤𝑒𝑟 and 𝑥𝑢𝑝𝑝𝑒𝑟 are the independent 

variable's lower and upper bounds (Cram, 2019). 

Multi-criterion optimization will have multiple individual optimal solutions for each 

objective function, creating conflict with each other, which leads to a significant difference 

between the optimal solutions (Cram, 2019). Thus, there is not a unique solution but a set of 

solutions. However, those solutions can be found using Pareto Optimality Theory (Coello et al., 

2007). Compared to single-criterion optimization, which has only one global optimal solution 

(Cram, 2019). 

3.2.1 Pareto Optimality Theory 

In MOPs, there is no single global solution, and it is often necessary to determine a set of 

points that all fit in a definition of optimum points (Marler & Arora, 2004). Therefore, the concept 

of Pareto optimality is used to define optimality for MOPs (Schütze & Hernández, 2021), which 

is defined as follows: 
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A point, 𝒙∗𝜖 𝑿, is Pareto optimal if there does not exist another point, 𝒙 𝜖 𝑿, such that 

𝑭(𝒙) ≤ 𝑭(𝒙∗), and 𝐅𝐢(𝐱) < 𝐅𝐢(𝐱∗) for at least one function (Marler & Arora, 2004). 

 
Figure 3.2: An example of a problem with two objective functions: cost and efficiency. 

 

The Pareto front or trade-off surface is delineated by a curved line (Coello et al., 2007). 

The definition of Pareto optimal states that x* is optimal if no feasible vector x exists, which would 

decrease some criterion without causing a simultaneous increase in at least one other criterion 

(assuming minimization) (Coello et al., 2007). 

3.3 MOP EVOLUTIONARY ALGORITHM APPROACHES 

Over the past 30 years, MOP Evolutionary Algorithms (MOEA) have attracted much 

research since MOEAs can estimate the Pareto optimal set in a single run (Zhu et al., 2011). Also, 

MOEAs generate a trade-off performance such as efficiency and effectiveness for specific systems 

model objectives such as cost/profit, constraints, and other mutually conflicting objectives (Coello 

et al., 2007). MOEA approaches have been classified into three major categories described as 

follows:  
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• A Priori Techniques: Lexicographic, linear, and nonlinear fitness combination. 

• Progressive Techniques: Progressive techniques or interactive computational steering. 

• A Posteriori Techniques: Independent sampling, criterion selection, aggregation selection, 

Pareto-based selection, Pareto rank- and niche-based selection, Pareto deme-based 

selection, Pareto elitist-based selection, and hybrid selection (Coello et al., 2007). 

3.3.1 A Priori Techniques 

The a priori techniques require a previous search to the Decision Maker (DM) to define the 

MOP objective's relative importance, as this is usually reflected in weights related to the 

aggregated sum of the objectives. Establishing the DM’s preferences aims to evaluate and compare 

solutions to the Multi-Criteria Decision Making (MCDM) problem. Finding the one solution of 

interest to the DM for real-world problems is essential. Therefore, objective quality prioritization 

is needed to find all adequate solutions (Coello et al., 2007).  

Lexicographic ordering  

The DM is asked to classify the objectives in order of importance to obtain the optimum 

solution by minimizing the objective functions in sequence according to the order of importance 

assigned to the objectives. When the priority is unknown, selecting an objective randomly to be 

optimized at each generation is possible. However, randomly choosing an objective equivalent to 

a weighted combination of objectives (tournament selection) with this approach makes a 

significant difference compared to other techniques, such as the Vector Evaluated Genetic 

Algorithm (VEGA), as its main weakness is that it tends to favor more certain objectives when 

present in the problem due to the randomness involved in the process (Coello et al., 2007). 
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Linear aggregating functions 

The mathematical form for linear aggregation functions to compute fitness is expressed as 

follows: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑚𝑖𝑛 ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑘

𝑖=1

 

          (Eq. 3.5) 

Were 𝑤𝑖 ≥ 0 and i = 1. . . k are the weighting coefficients representing the relative 

importance of the DM in the k objective functions of the MOP. It is usually assumed for 

normalization that: 

∑ 𝑤𝑖 = 1

𝑘

𝑖=1

 

          (Eq. 3.6) 

Regardless of the simplicity of the linear fitness combination technique, it is a popular 

approach because of its simplicity. Figure 3.3 shows parallel lines, which indicate when the search 

finds a single Pareto front point A at a minimum cost when it is on the convex hull of the Pareto 

front. Even though point B may be found, it is not retained as a smaller aggregate objective 

function value is found at point A. However, the linear aggregating algorithm does not tend to find 

all Pareto front points of interest since these points are defined as non-supported points because 

they are not on the convex hull of the Pareto front (Coello et al., 2007).  
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Figure 3.3: Priori weight selection for a bi-objective example in linear aggregating technique, 

𝑤1𝑥1+𝑤2𝑥2 (Coello et al., 2007). 

Nonlinear aggregating functions 

In contrast to linear aggregating functions, nonlinear aggregating functions (multiplicative 

methods) are uncommon in the literature since it requires overhead to determine the appropriate 

probability of acceptance or utility functions. However, overhead does not justify the quality of 

the resulting solutions (Coello et al., 2007). 

Additionally, combining an evolutionary algorithm and a target-vector approach can 

minimize the current solution according to the vector difference of the desired goals. Target-vector 

strategies also require the definition of goals to be achieved and require extra computational effort, 

which can result in additional problems. However, it is more commonly used than multiplicative 

methods (Coello et al., 2007). 

3.3.2 Progressive Techniques 

The progressive technique approach demands the DM’s time and effort at its premium as 

it requires supporting the search when defining the goals or scheme of preference. It could be 

assumed that the closer the interaction between the DM and searchers would increase the efficiency 
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of the discovered solutions. However, progressive techniques may be complicated and inefficient 

when nothing about the problem is known (Coello et al., 2007). 

3.3.2 A Posteriori Techniques 

The focus of the a posteriori technique is to find 𝑃𝑡𝑟𝑢𝑒 and 𝑃𝐹𝑡𝑟𝑢𝑒. Thus, an extensive 

search is needed to generate as many elements of the Pareto optimal set as possible since the 

decision-making process will occur after the search is done (Coello et al., 2007). The a posteriori 

technique is composed of the following a posteriori sub-techniques: 

• Independent sampling techniques 

• Criterion selection techniques 

• Aggregation techniques (linear, nonlinear) 

• ϵ-constraint technique 

• Pareto sampling techniques 

Independent sampling techniques 

Since several independent sampling approaches tend to have reduced effectiveness, the 

independent sampling technique utilizes fitness combinations where the weights assigned to each 

objective are varied over several separate MOEA runs, the variability of the difference concerning 

a priori linear aggregating process. However, not always these points are evenly distributed at the 

Pareto front. Simplicity and efficiency are what make this approach convenient. However, this 

approach applies only to specific types of problems. For instance, this method is not very useful 

when the number of objectives is low (Coello et al., 2007). 

Criterion Selection Techniques 

The VEGA approach, proposed by David Shaffer, considers the first implementation of the 

MOEA. This approach randomly selects a fraction of the objectives in every generation based on 
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separate objective performance. VEGA tends to converge to solutions close to local optima 

regarding each objective (Coello et al., 2007).  

For a problem with k objectives, k subpopulations of size M/k each would be generated, 

and only one of the k objectives will be considered a fitness function. These sub-populations are 

then rearranged to obtain a new population of size M, on which the Genetic Algorithm (GA) would 

apply the crossover and mutation operators in the usual way. Shuffling is done before sub-

population partitioning to reduce positional population bias (Figure 3.4). The population size is 

assumed to be M, and there are k objective functions (Coello et al., 2007). 

 
Figure 3.4: Schematic of VEGA’s selection mechanism.  

 

The structural representation of the VEGA process is shown in figure 3.5: 
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Figure 3.5: Schematic of VEGA’s (Coello et al., 2007). 

 

Aggregation techniques 

This technique integrates several techniques to solve MOPs, such as hybrid approaches, 

weighted sums, and constraint and objective combinations. Nevertheless, this approach utilizes 

different weight combinations between generations and each function evaluation instead of static 

objective weights (Coello et al., 2007). 

Several solutions can be generated utilizing aggregation techniques in a single run of 

MOEA. However, when the weighted sum approach is employed, individuals of the 𝑃𝐹𝑡𝑟𝑢𝑒 may 

be missed. Thus, a meaningful effort is required to use both constraint/objective combination and 

hybrid search approaches (Coello et al., 2007). 
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Constraint technique  

Selecting a primary objective function followed by bounding the others with different 

predefined ϵ-constraint values is the base of the constraint technique. To generate another point in 

the Pareto front (phenotype), the ϵ-constraints are changed, resulting in finding elements in the 

Pareto optimal set (genotype). The distribution of the Pareto front is usually non-uniform, and the 

smooth implementation of this technique is their main advantage (Coello et al., 2007). 

Pareto sampling techniques 

The Pareto sampling technique offers the realistic objective of finding 𝑃𝑘𝑛𝑜𝑤𝑛 and 

𝑃𝐹𝑘𝑛𝑜𝑤𝑛. It refers to techniques that utilize the capability of the MOEA’s population to create 

several elements of the Pareto optimal set in a single stochastic computational run (Coello et al., 

2007). Two objective understandings of Pareto optimality are presented in Figure 3.6. 

Nevertheless, the graphical definition of nondominated and nominated points must be related to 

the objective space and the solutions corresponding to the variable (Coello et al., 2007). 

 
Figure 3.6: The concept of Pareto optimality as related to non-dominance in a maximization 

MOP (Coello et al., 2007). 
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3.4 MULTI-OBJECTIVE GENETIC ALGORITHMS (MOGA) 

The “Multi-objective Genetic Algorithm” (MOGA) technique variation was proposed by 

Carlos M. Fonseca and Peter J. Fleming, in which the rank of a specific individual correlates to 

the number of chromosomes in the current population by which is dominated (Coello et al., 2007). 

For example, an individual 𝑥𝑖 at t generation, is dominated by 𝑝𝑖
(𝑡)

 Individuals in the current 

generation. Therefore, a rank is assigned to the individual by the rule: rank (𝑥𝑖, t) = 1 + 𝑝𝑖
(𝑡)

 (Coello 

et al., 2007). The pseudo-code of MOGA is shown in figure 3.7. 

 
Figure 3.7: MOGA Pseudo code (Coello et al., 2007). 

 

Fitness is assigned by sorting the population according to a fitness function, from best to 

worst. This procedure maintains the global population fitness constant (Coello et al., 2007). 

, the niche-formation method distributes the population over the Pareto-optimal region, 

sharing the objective function values instead of the parameter values to avoid premature 

convergence caused by significant selection pressure (Coello et al., 2007). 
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Chapter 4: Alternative Fuel Life-Cycle Environmental and Economic Transportation 

(AFLEET) Tool 

The AFLEET Tool was developed by Argonne National Laboratory (Argonne) and co-

sponsored by the U.S. Environmental Protection Agency (EPA). It assists metropolitan areas and 

Clean Cities partnerships in estimating criteria for air pollutant reductions achieved by the near-

term introduction of alternative-fueled vehicles (Burnham, 2020). In 2009, the Department of 

Energy’s (DOE’s) Clean Cities requested Argonne to create a calculator known as the GREET 

Fleet Footprint Calculator to measure GHG emissions caused by petroleum displacement of 

medium and heavy-duty alternative fuel vehicles. This tool was developed for Clean Cities 

stakeholders to estimate these values utilizing excel spreadsheet inputs (Burnham, 2020). 

In compliance with having a tool with the capacity to estimate the benefits of using 

alternative fuel and advanced vehicles (AFVs) and measure both environmental and economic 

costs, Argonne Laboratory has developed the AFLEET tool. This tool allows stakeholders to 

estimate GHG emissions, air pollutant emissions, fossil fuel use, and costs of ownership for light-

duty vehicles (LDVs) and heavy-duty vehicles (HDVs) depending on the user’s goals (Burnham, 

2020). 

The AFLEET tool provides six calculation methods according to the user’s objectives. The 

first method is the Simple Payback Calculator, which examines acquisitions and annual operating 

costs to estimate a payback for buying a new AFV compared to its counterpart, as well as yearly 

GHGs, air pollutant emissions, and petroleum use. The Total Cost of Ownership (TCO) Calculator 

is the second option the AFLEET tool provides. This option evaluates the net present value of 

operating and fixed costs related to the years of planned ownership of a new vehicle and petroleum 

use, air pollutant emissions, and GHG emissions. The third option is the On-Road Fleet Footprint 
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Calculator. In this option, the annual petroleum use, GHGs, and air pollutant emissions of new and 

existing on-road vehicles considering the higher emissions that older vehicles produce. Off-Road 

Fleet Footprint Calculator is the fourth methodology that can be utilized. This calculator estimates 

the annual petroleum use, GHGs, and air pollutant emissions of new and existing off-road 

equipment, considering that typically older equipment produces higher pollutant emissions than 

the latest equipment. Electric Vehicle Charging Calculator is another option the AFLEET tool 

provides, which estimates the same emissions as previous calculators. However, the emissions are 

related to public electric vehicle charging infrastructure benefits. Additionally, the Idle Reduction 

(IR) Calculator examines the acquisition and annual operating costs to determine the payback for 

purchasing a new AFV compared to conventional vehicles and their emissions (Burnham, 2020). 
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Chapter 5: Methodology 

This chapter explains the methodology approach, which is to couple a Multi-objective 

Evolutionary Algorithm (MOEA) with the Alternative Fuel Life-Cycle Environmental and 

Economic Transportation (AFLEET) Tool to develop an Optimization Framework that can provide 

optimal BEV penetration scenarios considering minimum emissions, air pollutants, and cost of 

ownership. 

5.1 METHODOLOGY STRUCTURE 

In this study, the AFLEET tool was utilized to perform a Life Cycle Assessment to obtain 

CO, NOx, and GHG emissions produced from passenger cars and passenger trucks, as well as a 

Life Cycle Cost to get the Total Cost of Ownership depending on the fuel type. The structure 

followed to collect and input the data into the utilized tool is explained in the next subchapters.  

After retrieving the outputs from the AFLEET Tool, a MOEA is performed to create 

multiple scenarios with different BEV percentages. 

5.2 AFLEET TOOL 

5.2.1Collect fuel data for passenger cars and passenger trucks 

Information related to average gallons per mile of fossil fuel depending on the type of car 

was retrieved from the official U.S. government source for fuel economy information developed 

by the Department of Energy is needed to begin with the AFLEET tool. Also, the information 

related to the Vehicles’ Miles Traveled (VMT) was necessary to utilize the On-Road Fleet 

Footprint Calculator. This study used the same number of VMTs for all vehicles. 

ICEVs that utilize regular gasoline, diesel, and E85 were included in this study, along with 

HEVs, PHEVs, and BEVs. This research considered several types of cylinder capacity and the 

vehicle's fuel type and model from 2012 to 2022. Lastly, the two categories utilized were passenger 
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cars and passenger trucks. The passenger truck category includes light-duty trucks and SUVs. 

Tables 5.1 and 5.2 show the gallons per mile and Miles Per Gallon of Gasoline Equivalent 

(MPGGE) according to the category of cars, fuel type, and model. 

Table 5.1: Passenger cars fuel information (ORNL, 2022). 

 

 
 

Year gal/100 miles MPGGE Year gal/100 miles MPGGE

2012 4.33 23.09 2012 3.40 29.41

2013 4.33 23.08 2013 3.80 26.32

2014 4.03 24.79 2014 2.80 35.71

2015 4.20 23.81 2015 3.75 26.67

2016 4.20 23.81 2016 3.35 29.85

2017 4.27 23.44 2017 3.00 33.33

2018 4.00 25.00 2018 3.40 29.41

2019 3.50 28.57 2019 2.90 34.48

2020 3.97 25.21 2020 2.70 37.10

2021 4.03 24.79 2021 2.70 37.10

2022 4.03 24.79 2022 2.70 37.10

Year gal/100 miles MPGGE Year kWh/100 miles MPkWhE

2012 2.55 39.22 2012 38.00 2.63

2013 2.65 37.74 2013 38.00 2.63

2014 2.65 37.74 2014 38.00 2.63

2015 2.65 37.74 2015 38.00 2.63

2016 2.55 39.22 2016 38.00 2.63

2017 2.10 47.62 2017 33.00 3.03

2018 2.10 47.62 2018 35.00 2.86

2019 2.85 35.09 2019 33.00 3.03

2020 2.50 40.00 2020 29.00 3.45

2021 2.85 35.09 2021 28.00 3.57

2022 3.20 31.25 2022 28.00 3.57

Year gal/100 miles hWh/100 miles MPGGE MPkWhE

2012 2.00 29.00 50.00 3.45

2013 2.60 37.00 38.46 2.70

2014 2.60 37.00 38.46 2.70

2015 2.60 37.00 38.46 2.70

2016 2.60 37.00 38.46 2.70

2017 2.40 35.00 41.67 2.86

2018 2.40 35.00 41.67 2.86

2019 2.40 33.00 41.67 3.03

2020 2.40 33.00 41.67 3.03

2021 2.40 31.00 41.67 3.23

2022 1.90 28.00 52.63 3.57

ICEVs - Gasoline ICEVs - Diesel

Passenger Cars

PHEVs

Passenger Cars

HEVs BEVs
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Table 5.1. Passenger cars fuel information continuation (ORNL, 2022). 

 

 

Table 5.2: Passenger truck’s fuel information (ORNL, 2022). 

 
 

 

 

 

 

 

Year gal/100 miles

2012 6.45

2013 5.20

2014 5.20

2015 6.15

2016 5.75

2017 5.25

2018 5.60

2019 5.85

2020 5.85

2021 5.85

2022 5.85

17.09

17.09

17.39

19.05

17.86

17.09

17.09

MPGGE

15.50

19.23

19.23

16.26

ICEVs - E85 gasoline

Year gal/100 miles MPGGE Year gal/100 miles MPGGE

2012 5.2 24.00 2012 6.1 16.48

2013 5.3 18.87 2013 6.0 16.67

2014 5.1 25.00 2014 4.0 24.79

2015 5.2 19.08 2015 3.8 26.55

2016 4.9 26.00 2016 3.7 27.40

2017 5.2 19.38 2017 3.5 28.99

2018 4.8 27.00 2018 3.5 28.99

2019 5.1 19.46 2019 3.7 27.27

2020 4.7 28.00 2020 3.33 30.00

2021 4.9 20.49 2021 4.1 24.39

2022 4.8 29.00 2022 4.35 22.99

Year gal/100 miles MPGGE Year kWh/100 miles MPkWhE

2012 4.80 20.83 2012 49.00 2.04

2013 4.80 20.83 2013 44.00 2.27

2014 4.80 20.83 2014 44.00 2.27

2015 4.80 20.83 2015 44.00 2.27

2016 4.80 20.83 2016 44.00 2.27

2017 4.80 20.83 2017 44.00 2.27

2018 5.60 17.86 2018 30.00 3.33

2019 4.80 20.83 2019 34.00 2.94

2020 5.00 20.00 2020 50.00 2.00

2021 4.00 25.00 2021 54.00 1.85

2022 4.00 25.00 2022 48.00 2.08

ICEVs - Gasoline ICEVs - Diesel

HEVs

Passenger Truck

BEVs
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Table 5.2: Passenger trucks fuel information continuation (ORNL, 2022). 

 
 

5.2.2 Input data in On-Road Fleet Footprint Calculator 

The AFLEET tool On-Road Fleet Footprint Calculator estimates GHGs, air pollutant 

emissions, and externality costs of existing and new on-road vehicles. The calculator considers 

that older vehicles cause higher air pollutant emission rates (Burnham, 2020). The critical inputs 

for this sheet are: 

• Vehicle type 

• Model year 

• Annual vehicle mileage 

• Fuel use 

Year gal/100 miles kWh/100 miles MPGGE MPkWhE

2012 2.53 32 39.5 3.13

2013 2.53 32 39.5 3.13

2014 2.53 32 39.5 3.13

2015 2.53 32 39.5 3.13

2016 2.60 29 38.46 3.45

2017 3.80 45 26.32 2.22

2018 5.30 80 18.87 1.25

2019 5.30 80 18.87 1.25

2020 5.30 80 18.87 1.25

2021 5.30 80 18.87 1.25

2022 5.00 63 20.00 1.59

Year gal/100 miles MPGGE

2012 7.33 13.65

2013 6.88 14.55

2014 6.98 14.33

2015 7.34 13.62

2016 6.98 14.33

2017 6.86 14.58

2018 6.80 14.71

2019 7.90 12.66

2020 8.00 12.50

2021 4.41 22.70

2022 4.41 22.70

ICEVs - E85 gasoline

PHEVs
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The first step in utilizing this calculator is to choose between the two vehicle type 

categories. In this case, passenger cars and passenger trucks were selected. If the user wants to 

examine more vehicles than is provided in this sheet, the user can copy and paste the entire row(s) 

with calculations (Burnham, 2020). Thus, six rows for each year were assigned since there are six 

types of vehicles. A range of 10 years was utilized for this research from 2012 to 2022. The state 

of Texas was selected for this study. In compliance with the Federal Highway Administration, an 

annual vehicle millage of 14,240 miles was standardized for all the models of vehicles based on 

the average miles driven per year by Americans (Covington, 2022). The data collected for 

passenger cars and passenger trucks presented in tables 5.1 and 5.2 were also assigned in the fuel 

use section. One row was utilized for each type of fuel to obtain the emissions of each fuel 

separately.   
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Figure 5.1: On-Road Fleet Footprint Calculator for passenger cars (Burnham, 2020). 
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Figure 5.2: On-Road Fleet Footprint Calculator for passenger cars (Burnham, 2020). 
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5.2.3 Extract and save CO, NOx, and GHG data from the AFLEET tool 

Once the On-Road Fleet Footprint Calculator is completed, the GHG, CO, and NOx values 

will be displayed under the vehicle operation section. Each value will represent the vehicle 

operation emissions from a specific fuel used in each year of each model. Figure 5.3 and 5.4 shows 

an example of the emissions of a 2012 gasoline passenger car and a 2012 gasoline passenger truck 

respectively. 

 
Figure 5.3: Example of GHG, CO, and NOx values for a 2012 gasoline passenger car – AFLEET 

Tool screenshot. 

 

 
Figure 5.4: Example of GHG, CO, and NOx values for a 2012 gasoline passenger truck – 

AFLEET Tool screenshot. 
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5.2.4 Input Light-duty vehicle information in AFLEET Tool 

The AFLEET tool provides default data for the calculator inputs (Burnham, 2020). 

However, for more accurate results, the number of vehicles to be compared, the amount of time in 

years, annual vehicle mileage, fuel economy values on a mile-per-gasoline gallon equivalent 

(MPGGE), and the purchase price were modified. Table 5.3 represents the average cost of 

purchasing a specific model in 2022. Prices of 4-cylinder, 6-cylinder, and 8-cylinder models from 

2012 to 2022 were collected to generate an average cost for the three prices in the simulation. 

Table 5.3: Average cost of vehicles (Edmunds, 2022). 

 

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $10,500.00 2012 $14,000.00

2013 $11,500.00 2013 $15,750.00

2014 $13,666.67 2014 $17,000.00

2015 $14,833.33 2015 $19,500.00

2016 $16,000.00 2016 $21,750.00

2017 $17,100.00 2017 $23,500.00

2018 $18,266.67 2018 $28,000.00

2019 $19,633.33 2019 $25,000.00

2020 $21,166.67 2020 $27,000.00

2021 $23,500.00 2021 $27,000.00

2022 $27,966.67 2022 $27,000.00

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $8,950.00 2012 $29,000.00

2013 $10,100.00 2013 $31,000.00

2014 $13,000.00 2014 $33,000.00

2015 $14,000.00 2015 $36,000.00

2016 $18,500.00 2016 $40,000.00

2017 $22,000.00 2017 $43,000.00

2018 $24,000.00 2018 $50,000.00

2019 $26,500.00 2019 $65,000.00

2020 $28,500.00 2020 $75,000.00

2021 $32,250.00 2021 $80,000.00

2022 $40,000.00 2022 $100,000.00

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $16,000.00 2012 $11,250.00

2013 $17,000.00 2013 $11,500.00

2014 $18,000.00 2014 $16,000.00

2015 $19,000.00 2015 $19,250.00

2016 $20,000.00 2016 $19,750.00

2017 $21,000.00 2017 $19,750.00

2018 $22,000.00 2018 $21,500.00

2019 $23,000.00 2019 $22,200.00

2020 $25,000.00 2020 $20,000.00

2021 $28,000.00 2021 $20,000.00

2022 $29,000.00 2022 $20,000.00

Vehicle Type - Passenger Cars

ICEVs - Gasoline ICEVs - Diesel

HEVs BEVs

PHEVs ICEVs - E85 gasoline
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Table 5.3: Average cost of vehicles (Edmunds, 2022). 

 

 

In addition, figure 5.5 shows the key vehicle and fuel inputs required in the Total Cost of 

Ownership Calculator. First, the primary vehicle location selected was El Paso County in Texas. 

For the “vehicle type,” passenger car and passenger truck were selected once at a time. Under the 

column “number of light-duty vehicles,” light-duty fuel types such as gasoline, diesel, gasoline 

HEV, gasoline PHEV, All-EV, and Ethanol (E85) were selected with the number 1 since that will 

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $13,166.67 2012 $17,500.00

2013 $14,266.67 2013 $18,500.00

2014 $16,666.67 2014 $21,000.00

2015 $18,000.00 2015 $22,000.00

2016 $19,666.67 2016 $24,500.00

2017 $22,833.33 2017 $27,500.00

2018 $25,166.67 2018 $32,500.00

2019 $30,333.33 2019 $34,500.00

2020 $36,666.67 2020 $41,500.00

2021 $39,666.67 2021 $50,000.00

2022 $48,100.00 2022 $57,000.00

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $15,000.00 2012 $18,000.00

2013 $16,000.00 2013 $19,000.00

2014 $16,500.00 2014 $19,000.00

2015 $17,000.00 2015 $19,800.00

2016 $18,000.00 2016 $21,000.00

2017 $18,500.00 2017 $22,000.00

2018 $20,000.00 2018 $26,000.00

2019 $30,000.00 2019 $35,000.00

2020 $40,000.00 2020 $39,000.00

2021 $50,000.00 2021 $49,000.00

2022 $60,000.00 2022 $50,000.00

Year Purchase Price ($/vehicle) Year Purchase Price ($/vehicle) 

2012 $38,500.00 2012 $13,166.67

2013 $38,500.00 2013 $14,266.67

2014 $38,500.00 2014 $16,666.67

2015 $38,500.00 2015 $18,000.00

2016 $21,800.00 2016 $19,666.67

2017 $46,000.00 2017 $22,833.33

2018 $59,000.00 2018 $25,166.67

2019 $62,000.00 2019 $30,333.33

2020 $68,000.00 2020 $36,666.67

2021 $80,000.00 2021 $39,666.67

2022 $85,000.00 2022 $48,100.00

HEVs BEVs

PHEVs ICEVs - E85 gasoline

Vehicle Type - Passenger Trucks

ICEVs - Gasoline ICEVs - Diesel
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only account for the emissions of one vehicle of each. The “annual vehicle mileage” was the same 

for all types of vehicles. However, the “fuel economy (MPGGE)” and the “purchase price” were 

modified with the data presented in Tables 5.1 and 5.2, and 5.3. Figure 5.6 illustrates the Simple 

Payback Calculator. Since BEVs and PHEVs utilizes electricity, the kWh/mi must be accounted 

for. Thus, the red numbers represent an example of the data modified to obtain an accurate Total 

Cost of Ownership. 

 
Figure 5.5: Example of the key vehicle and fuel inputs for Passenger Cars - AFLEET Tool 

screenshot. 

 

 

 
Figure 5.6: Representation of the Simple Payback Calculator - AFLEET Tool screenshot. 

 

On-Road Vehicle Inputs

Light-Duty Vehicle Inputs Gasoline Diesel Gasoline Gasoline Gasoline Gasoline

Vehicle Type Passenger Truck

Number of LDVs 1 1 1 1 0 1

Annual Mileage 14,260 14,260 14,260 14,260 14,260 14,260

Fuel Economy (MPGGE) 29.0 23.0 25.0 18.9 27.4 69.5

CD Electricity Use (kWh/100mi) 80.0 57.7 38.0

CD Electricity Use (GGE/100mi) 2.4 1.8

CD Gasoline Use (GGE/100mi) 5.3 0.0

PHEV CD Range (miles) 22.6 46.0

Charges/day 1.0 1.0

Days driven/week 5 5

Share of CD miles 41% 84%
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5.2.5 Extract and save Total Cost of Ownership Calculator results 

This sheet summarizes the output of the Total Cost of Ownership (TCO) Calculator 

(Burnham, 2020). This study considers the depreciation, fuel, maintenance, repair, insurance, 

license, and registration to generate the TCO for the vehicles. 

 
Figure 5.7: Example of the TCO calculator - AFLEET tool screenshot. 

 

5.2.6 Result Tables 

After utilizing the data in the AFLEET tool, a result table for the LCA and LCC is created. 

The table size is a 132x5 matrix, where the 132 columns identify the type of vehicle (Table 5.3). 

Table 5.4, 5.5, 5.6, and 5.7 shows the GHGs, CO, NOx, and TCO output data, which will conform 

to the result table. Figure 5.8 shows an example of one result table for a simulation with 132 types 

of vehicles. The first row saves the number of vehicles in the simulation. Rows 2, 3, and 4 keep 

the results in lbs. of GHG, CO, and NOx emissions generated by the number of vehicles in each 

column, respectively, and the TCO is accounted for in row 5. 

 

Total Cost of Ownership Calculator Output

Lifetime Cost of Ownership Calculator Output - Costs

 Gasoline  Diesel 

 Gasoline 

HEV 

 Gasoline 

PHEV  EV  E85 

Light-Duty Passenger Truck Fleet and Infrastructure

Financing$0 $0 $0 $0 $0 $0

Depreciation$13,949 $16,530 $17,400 $24,650 $14,500 $13,949

Fuel$1,618 $2,435 $1,877 $3,041 $793 $2,269

Diesel Exhaust Fluid$0 $35 $0 $0 $0 $0

Maintenance and Repair$1,084 $1,647 $991 $946 $683 $1,084

Insurance$2,631 $3,003 $3,128 $4,172 $2,711 $2,631

License and Registration$51 $51 $51 $51 $51 $51

Total Cost of Ownership$19,332 $23,699 $23,446 $32,859 $18,738 $19,984
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Table 5.3: Type of vehicles 

  
 

 

 

 

 

 

 

 

1 2012 - Gasoline 34 2017 - PHEV 67 2012 - Gasoline 100 2017 - PHEV

2 2012 - Diesel 35 2017 - EV 68 2012 - Diesel 101 2017 - EV

3 2012 - HEV 36 2017 - E85 69 2012 - HEV 102 2017 - E85

4 2012 - PHEV 37 2018 - Gasoline 70 2012 - PHEV 103 2018 - Gasoline

5 2012 - EV 38 2018 - Diesel 71 2012 - EV 104 2018 - Diesel

6 2012 - E85 39 2018 - HEV 72 2012 - E85 105 2018 - HEV

7 2013 - Gasoline 40 2018 - PHEV 73 2013 - Gasoline 106 2018 - PHEV

8 2013 - Diesel 41 2018 - EV 74 2013 - Diesel 107 2018 - EV

9 2013 - HEV 42 2018 - E85 75 2013 - HEV 108 2018 - E85

10 2013 - PHEV 43 2019 - Gasoline 76 2013 - PHEV 109 2019 - Gasoline

11 2013 - EV 44 2019 - Diesel 77 2013 - EV 110 2019 - Diesel

12 2013 - E85 45 2019 - HEV 78 2013 - E85 111 2019 - HEV

13 2014 - Gasoline 46 2019 - PHEV 79 2014 - Gasoline 112 2019 - PHEV

14 2014 - Diesel 47 2019 - EV 80 2014 - Diesel 113 2019 - EV

15 2014 - HEV 48 2019 - E85 81 2014 - HEV 114 2019 - E85

16 2014 - PHEV 49 2020 - Gasoline 82 2014 - PHEV 115 2020 - Gasoline

17 2014 - EV 50 2020 - Diesel 83 2014 - EV 116 2020 - Diesel

18 2014 - E85 51 2020 - HEV 84 2014 - E85 117 2020 - HEV

19 2015 - Gasoline 52 2020 - PHEV 85 2015 - Gasoline 118 2020 - PHEV

20 2015 - Diesel 53 2020 - EV 86 2015 - Diesel 119 2020 - EV

21 2015 - HEV 54 2020 - E85 87 2015 - HEV 120 2020 - E85

22 2015 - PHEV 55 2021 - Gasoline 88 2015 - PHEV 121 2021 - Gasoline

23 2015 - EV 56 2021 - Diesel 89 2015 - EV 122 2021 - Diesel

24 2015 - E85 57 2021 - HEV 90 2015 - E85 123 2021 - HEV

25 2016 - Gasoline 58 2021 - PHEV 91 2016 - Gasoline 124 2021 - PHEV

26 2016 - Diesel 59 2021 - EV 92 2016 - Diesel 125 2021 - EV

27 2016 - HEV 60 2021 - E85 93 2016 - HEV 126 2021 - E85

28 2016 - PHEV 61 2022 - Gasoline 94 2016 - PHEV 127 2022 - Gasoline

29 2016 - EV 62 2022 - Diesel 95 2016 - EV 128 2022 - Diesel

30 2016 - E85 63 2022 - HEV 96 2016 - E85 129 2022 - HEV

31 2017 - Gasoline 64 2022 - PHEV 97 2017 - Gasoline 130 2022 - PHEV

32 2017 - Diesel 65 2022 - EV 98 2017 - Diesel 131 2022 - EV

33 2017 - HEV 66 2022 - E85 99 2017 - HEV 132 2022 - E85

Vehicle Type - Passenger Cars Vehicle Type - Passenger Trucks
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Table 5.4: GHG output values 

 
 

 

 

 

 

No. Year and Fuel Tons No. Year and Fuel Tons

1 2012 - Gasoline 7.2685 34 2017 - PHEV 5.9034

2 2012 - Diesel 6.6532 35 2017 - EV 1.7751

3 2012 - HEV 4.4458 36 2017 - E85 4.2895

4 2012 - PHEV 4.9104 37 2018 - Gasoline 5.9630

5 2012 - EV 2.0427 38 2018 - Diesel 6.6532

6 2012 - E85 5.2618 39 2018 - HEV 3.5284

7 2013 - Gasoline 7.2685 40 2018 - PHEV 5.9034

8 2013 - Diesel 7.4351 41 2018 - EV 1.8806

9 2013 - HEV 4.4458 42 2018 - E85 4.5755

10 2013 - PHEV 5.3404 43 2019 - Gasoline 6.1512

11 2013 - EV 2.0427 44 2019 - Diesel 5.6655

12 2013 - E85 4.2438 45 2019 - HEV 4.7751

13 2014 - Gasoline 6.7628 46 2019 - PHEV 5.9034

14 2014 - Diesel 5.4872 47 2019 - EV 1.7751

15 2014 - HEV 4.4458 48 2019 - E85 4.8043

16 2014 - PHEV 5.3404 49 2020 - Gasoline 6.6569

17 2014 - EV 2.0427 50 2020 - Diesel 5.2814

18 2014 - E85 4.2438 51 2020 - HEV 4.2341

19 2015 - Gasoline 7.0568 52 2020 - PHEV 5.9034

20 2015 - Diesel 7.3391 53 2020 - EV 1.5584

21 2015 - HEV 4.4458 54 2020 - E85 4.8043

22 2015 - PHEV 5.3404 55 2021 - Gasoline 6.7628

23 2015 - EV 2.0427 56 2021 - Diesel 5.2814

24 2015 - E85 5.0331 57 2021 - HEV 4.7751

25 2016 - Gasoline 7.0568 58 2021 - PHEV 5.9034

26 2016 - Diesel 6.5571 59 2021 - EV 1.5037

27 2016 - HEV 4.4458 60 2021 - E85 4.8043

28 2016 - PHEV 5.3404 61 2022 - Gasoline 6.7628

29 2016 - EV 2.0427 62 2022 - Diesel 5.2814

30 2016 - E85 4.6899 63 2022 - HEV 5.4102

31 2017 - Gasoline 7.1626 64 2022 - PHEV 4.6922

32 2017 - Diesel 5.8713 65 2022 - EV 1.5037

33 2017 - HEV 3.5284 66 2022 - E85 4.8043

Vehicle Type - Passenger Cars
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Table 5.4: GHG output values (continuation). 

 
  

 

 

 

 

No. Year and Fuel Tons No. Year and Fuel Tons

67 2012 - Gasoline 8.6916 100 2017 - PHEV 8.7695

68 2012 - Diesel 11.8660 101 2017 - EV 1.6123

69 2012 - HEV 8.0565 102 2017 - E85 5.6050

70 2012 - PHEV 0.0000 103 2018 - Gasoline 8.1153

71 2012 - EV 2.3649 104 2018 - Diesel 7.4077

72 2012 - E85 5.9081 105 2018 - HEV 8.0565

73 2013 - Gasoline 8.8798 106 2018 - PHEV 13.1792

74 2013 - Diesel 11.7288 107 2018 - EV 1.6123

75 2013 - HEV 8.0565 108 2018 - E85 5.7766

76 2013 - PHEV 0.0000 109 2019 - Gasoline 8.6210

77 2013 - EV 2.3649 110 2019 - Diesel 7.2019

78 2013 - E85 5.6050 111 2019 - HEV 8.0565

79 2014 - Gasoline 8.5505 112 2019 - PHEV 13.1792

80 2014 - Diesel 7.8878 113 2019 - EV 1.8278

81 2014 - HEV 8.0565 114 2019 - E85 6.4057

82 2014 - PHEV 0.0000 115 2020 - Gasoline 7.9154

83 2014 - EV 2.3649 116 2020 - Diesel 6.5846

84 2014 - E85 5.6908 117 2020 - HEV 8.4093

85 2015 - Gasoline 8.7857 118 2020 - PHEV 13.2063

86 2015 - Diesel 7.4077 119 2020 - EV 2.6871

87 2015 - HEV 8.0565 120 2020 - E85 6.5201

88 2015 - PHEV 0.0000 121 2021 - Gasoline 8.2917

89 2015 - EV 2.3649 122 2021 - Diesel 8.0250

90 2015 - E85 5.9825 123 2021 - HEV 6.7039

91 2016 - Gasoline 8.1859 124 2021 - PHEV 13.2063

92 2016 - Diesel 7.4077 125 2021 - EV 2.8906

93 2016 - HEV 8.0565 126 2021 - E85 6.7489

94 2016 - PHEV 5.9101 127 2022 - Gasoline 8.1153

95 2016 - EV 2.3649 128 2022 - Diesel 8.5051

96 2016 - E85 5.6908 129 2022 - HEV 6.7039

97 2017 - Gasoline 8.6563 130 2022 - PHEV 11.7702

98 2017 - Diesel 7.4077 131 2022 - EV 2.5797

99 2017 - HEV 8.0565 132 2022 - E85 6.5201

Vehicle Type - Passenger Trucks
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Table 5.5: CO output values 

 
 

 

 

 

 

No. Year and Fuel lb. No. Year and Fuel lb.

1 2012 - Gasoline 82.7132 34 2017 - PHEV 0.0000

2 2012 - Diesel 95.5713 35 2017 - EV 0.0000

3 2012 - HEV 82.7132 36 2017 - E85 28.0741

4 2012 - PHEV 0.0000 37 2018 - Gasoline 26.4707

5 2012 - EV 0.0000 38 2018 - Diesel 28.9858

6 2012 - E85 82.7132 39 2018 - HEV 26.4707

7 2013 - Gasoline 70.3581 40 2018 - PHEV 0.0000

8 2013 - Diesel 81.8015 41 2018 - EV 0.0000

9 2013 - HEV 70.3581 42 2018 - E85 26.4707

10 2013 - PHEV 0.0000 43 2019 - Gasoline 25.8105

11 2013 - EV 0.0000 44 2019 - Diesel 27.2252

12 2013 - E85 70.3581 45 2019 - HEV 25.8105

13 2014 - Gasoline 70.4000 46 2019 - PHEV 0.0000

14 2014 - Diesel 81.8000 47 2019 - EV 0.0000

15 2014 - HEV 70.4000 48 2019 - E85 25.8105

16 2014 - PHEV 0.0000 49 2020 - Gasoline 24.1758

17 2014 - EV 0.0000 50 2020 - Diesel 25.4647

18 2014 - E85 70.4000 51 2020 - HEV 24.1758

19 2015 - Gasoline 58.9000 52 2020 - PHEV 0.0000

20 2015 - Diesel 67.0000 53 2020 - EV 0.0000

21 2015 - HEV 58.9000 54 2020 - E85 24.1758

22 2015 - PHEV 0.0000 55 2021 - Gasoline 22.6923

23 2015 - EV 0.0000 56 2021 - Diesel 23.7458

24 2015 - E85 58.9000 57 2021 - HEV 22.6923

25 2016 - Gasoline 58.9000 58 2021 - PHEV 0.0000

26 2016 - Diesel 67.0000 59 2021 - EV 0.0000

27 2016 - HEV 58.9000 60 2021 - E85 22.6923

28 2016 - PHEV 0.0000 61 2022 - Gasoline 21.2088

29 2016 - EV 0.0000 62 2022 - Diesel 22.0270

30 2016 - E85 58.9000 63 2022 - HEV 21.2088

31 2017 - Gasoline 28.0741 64 2022 - PHEV 0.0000

32 2017 - Diesel 30.7148 65 2022 - EV 0.0000

33 2017 - HEV 28.0741 66 2022 - E85 21.2088

Vehicle Type - Passenger Cars
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Table 5.5: CO output values (continuation). 

 
 

 

 

 

 

No. Year and Fuel lb. No. Year and Fuel lb.

67 2012 - Gasoline 90.9499 100 2017 - PHEV 0.0000

68 2012 - Diesel 34.4874 101 2017 - EV 0.0000

69 2012 - HEV 90.9499 102 2017 - E85 43.1328

70 2012 - PHEV 90.9499 103 2018 - Gasoline 31.3122

71 2012 - EV 0.0000 104 2018 - Diesel 23.6099

72 2012 - E85 90.9499 105 2018 - HEV 31.3122

73 2013 - Gasoline 79.0349 106 2018 - PHEV 0.0000

74 2013 - Diesel 34.0158 107 2018 - EV 0.0000

75 2013 - HEV 79.0349 108 2018 - E85 31.3122

76 2013 - PHEV 79.0349 109 2019 - Gasoline 30.3062

77 2013 - EV 0.0000 110 2019 - Diesel 22.6667

78 2013 - E85 79.0349 111 2019 - HEV 30.3062

79 2014 - Gasoline 79.0349 112 2019 - PHEV 0.0000

80 2014 - Diesel 48.1629 113 2019 - EV 0.0000

81 2014 - HEV 79.0349 114 2019 - E85 30.3062

82 2014 - PHEV 79.0349 115 2020 - Gasoline 28.0112

83 2014 - EV 0.0000 116 2020 - Diesel 21.7550

84 2014 - E85 79.0349 117 2020 - HEV 28.0112

85 2015 - Gasoline 66.9942 118 2020 - PHEV 0.0000

86 2015 - Diesel 42.2211 119 2020 - EV 0.0000

87 2015 - HEV 66.9942 120 2020 - E85 28.0112

88 2015 - PHEV 66.9942 121 2021 - Gasoline 26.0119

89 2015 - EV 0.0000 122 2021 - Diesel 20.8413

90 2015 - E85 66.9942 123 2021 - HEV 26.0119

91 2016 - Gasoline 66.9942 124 2021 - PHEV 0.0000

92 2016 - Diesel 42.2211 125 2021 - EV 0.0000

93 2016 - HEV 66.9942 126 2021 - E85 26.0119

94 2016 - PHEV 0.0000 127 2022 - Gasoline 24.0126

95 2016 - EV 0.0000 128 2022 - Diesel 19.9275

96 2016 - E85 66.9942 129 2022 - HEV 24.0126

97 2017 - Gasoline 43.1328 130 2022 - PHEV 0.0000

98 2017 - Diesel 28.6714 131 2022 - EV 0.0000

99 2017 - HEV 43.1328 132 2022 - E85 24.0126

Vehicle Type - Passenger Trucks
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Table 5.6: NOx output values 

 
 

 

 

 

 

No. Year and Fuel lb. No. Year and Fuel lb.

1 2012 - Gasoline 1.0689 34 2017 - PHEV 0.0000

2 2012 - Diesel 2.1378 35 2017 - EV 0.0000

3 2012 - HEV 0.8979 36 2017 - E85 0.6602

4 2012 - PHEV 0.0000 37 2018 - Gasoline 0.5973

5 2012 - EV 0.0000 38 2018 - Diesel 0.6288

6 2012 - E85 1.0689 39 2018 - HEV 0.5017

7 2013 - Gasoline 0.9746 40 2018 - PHEV 0.0000

8 2013 - Diesel 1.9806 41 2018 - EV 0.0000

9 2013 - HEV 0.8186 42 2018 - E85 0.5973

10 2013 - PHEV 0.0000 43 2019 - Gasoline 0.5344

11 2013 - EV 0.0000 44 2019 - Diesel 0.5344

12 2013 - E85 0.9746 45 2019 - HEV 0.4489

13 2014 - Gasoline 1.0000 46 2019 - PHEV 0.0000

14 2014 - Diesel 2.0000 47 2019 - EV 0.0000

15 2014 - HEV 0.8000 48 2019 - E85 0.5344

16 2014 - PHEV 0.0000 49 2020 - Gasoline 0.4716

17 2014 - EV 0.0000 50 2020 - Diesel 0.4716

18 2014 - E85 0.8000 51 2020 - HEV 0.3961

19 2015 - Gasoline 0.9000 52 2020 - PHEV 0.0000

20 2015 - Diesel 1.8000 53 2020 - EV 0.0000

21 2015 - HEV 0.8000 54 2020 - E85 0.4716

22 2015 - PHEV 0.0000 55 2021 - Gasoline 0.4272

23 2015 - EV 0.0000 56 2021 - Diesel 0.4157

24 2015 - E85 0.9000 57 2021 - HEV 0.3588

25 2016 - Gasoline 0.9000 58 2021 - PHEV 0.0000

26 2016 - Diesel 1.8000 59 2021 - EV 0.0000

27 2016 - HEV 0.8000 60 2021 - E85 0.4272

28 2016 - PHEV 0.0000 61 2022 - Gasoline 0.3828

29 2016 - EV 0.0000 62 2022 - Diesel 0.3598

30 2016 - E85 0.9000 63 2022 - HEV 0.3216

31 2017 - Gasoline 0.6602 64 2022 - PHEV 0.0000

32 2017 - Diesel 0.6916 65 2022 - EV 0.0000

33 2017 - HEV 0.5546 66 2022 - E85 0.3828

Vehicle Type - Passenger Cars
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Table 5.6: NOx output values (continuation). 

 
 

 

 

No. Year and Fuel lb. No. Year and Fuel lb.

67 2012 - Gasoline 1.4776 100 2017 - PHEV 0.0000

68 2012 - Diesel 29.8975 101 2017 - EV 0.0000

69 2012 - HEV 1.2412 102 2017 - E85 0.5973

70 2012 - PHEV 1.2412 103 2018 - Gasoline 0.5659

71 2012 - EV 0.0000 104 2018 - Diesel 4.9043

72 2012 - E85 1.4776 105 2018 - HEV 0.4753

73 2013 - Gasoline 1.2890 106 2018 - PHEV 0.0000

74 2013 - Diesel 38.7001 107 2018 - EV 0.0000

75 2013 - HEV 1.0827 108 2018 - E85 0.5659

76 2013 - PHEV 1.0827 109 2019 - Gasoline 0.5344

77 2013 - EV 0.0000 110 2019 - Diesel 4.3384

78 2013 - E85 1.2890 111 2019 - HEV 0.4489

79 2014 - Gasoline 1.2890 112 2019 - PHEV 0.0000

80 2014 - Diesel 14.7444 113 2019 - EV 0.0000

81 2014 - HEV 1.0827 114 2019 - E85 0.5344

82 2014 - PHEV 1.0827 115 2020 - Gasoline 0.4401

83 2014 - EV 0.0000 116 2020 - Diesel 3.7726

84 2014 - E85 1.2890 117 2020 - HEV 0.3697

85 2015 - Gasoline 1.0375 118 2020 - PHEV 0.0000

86 2015 - Diesel 11.3491 119 2020 - EV 0.0000

87 2015 - HEV 0.8715 120 2020 - E85 0.4401

88 2015 - PHEV 0.8715 121 2021 - Gasoline 0.3975

89 2015 - EV 0.0000 122 2021 - Diesel 3.6325

90 2015 - E85 1.0375 123 2021 - HEV 0.3339

91 2016 - Gasoline 1.0375 124 2021 - PHEV 0.0000

92 2016 - Diesel 11.3491 125 2021 - EV 0.0000

93 2016 - HEV 0.8715 126 2021 - E85 0.3975

94 2016 - PHEV 0.0000 127 2022 - Gasoline 0.3548

95 2016 - EV 0.0000 128 2022 - Diesel 3.4924

96 2016 - E85 1.0375 129 2022 - HEV 0.2980

97 2017 - Gasoline 0.5973 130 2022 - PHEV 0.0000

98 2017 - Diesel 7.1050 131 2022 - EV 0.0000

99 2017 - HEV 0.5017 132 2022 - E85 0.3548

Vehicle Type - Passenger Trucks
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Table 5.7: TCO output values 

 
 

 

 

No. Year and Fuel Average cost No. Year and Fuel Average cost

1 2012 - Gasoline 7,101.61$       34 2017 - PHEV 66,862.00$     

2 2012 - Diesel 8,635.18$       35 2017 - EV 62,600.00$     

3 2012 - HEV 5,673.44$       36 2017 - E85 77,603.00$     

4 2012 - PHEV 7,922.90$       37 2018 - Gasoline 66,641.00$     

5 2012 - EV 11,390.08$     38 2018 - Diesel 86,865.00$     

6 2012 - E85 8,641.35$       39 2018 - HEV 58,566.00$     

7 2013 - Gasoline 7,433.36$       40 2018 - PHEV 66,862.00$     

8 2013 - Diesel 9,442.36$       41 2018 - EV 62,600.00$     

9 2013 - HEV 6,101.86$       42 2018 - E85 79,615.00$     

10 2013 - PHEV 8,593.07$       43 2019 - Gasoline 65,584.00$     

11 2013 - EV 12,053.58$     44 2019 - Diesel 83,683.00$     

12 2013 - E85 8,079.77$       45 2019 - HEV 62,459.00$     

13 2014 - Gasoline 68,179.00$     46 2019 - PHEV 66,714.00$     

14 2014 - Diesel 83,054.00$     47 2019 - EV 62,600.00$     

15 2014 - HEV 61,420.00$     48 2019 - E85 81,066.00$     

16 2014 - PHEV 68,048.00$     49 2020 - Gasoline 65,954.00$     

17 2014 - EV 62,600.00$     50 2020 - Diesel 83,942.00$     

18 2014 - E85 77,320.00$     51 2020 - HEV 60,643.00$     

19 2015 - Gasoline 69,217.00$     52 2020 - PHEV 66,714.00$     

20 2015 - Diesel 89,038.00$     53 2020 - EV 62,600.00$     

21 2015 - HEV 61,420.00$     54 2020 - E85 81,066.00$     

22 2015 - PHEV 68,048.00$     55 2021 - Gasoline 68,355.00$     

23 2015 - EV 62,600.00$     56 2021 - Diesel 82,392.00$     

24 2015 - E85 82,783.00$     57 2021 - HEV 62,497.00$     

25 2016 - Gasoline 67,380.00$     58 2021 - PHEV 66,567.00$     

26 2016 - Diesel 86,519.00$     59 2021 - EV 62,600.00$     

27 2016 - HEV 60,901.00$     60 2021 - E85 81,066.00$     

28 2016 - PHEV 68,048.00$     61 2022 - Gasoline 65,315.00$     

29 2016 - EV 62,600.00$     62 2022 - Diesel 82,392.00$     

30 2016 - E85 80,485.00$     63 2022 - HEV 64,277.00$     

31 2017 - Gasoline 69,561.00$     64 2022 - PHEV 63,751.00$     

32 2017 - Diesel 84,314.00$     65 2022 - EV 62,600.00$     

33 2017 - HEV 58,566.00$     66 2022 - E85 81,066.00$     

Vehicle Type - Passenger Cars
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Table 5.7: TCO output values (continuation). 

 
 

 

 

No. Year and Fuel Average cost No. Year and Fuel Average cost

67 2012 - Gasoline 89,893.00$     100 2017 - PHEV 51,081.00$     

68 2012 - Diesel 126,560.00$   101 2017 - EV 105,066.00$   

69 2012 - HEV 54,055.00$     102 2017 - E85 107,708.00$   

70 2012 - PHEV 40,709.00$     103 2018 - Gasoline 87,489.00$     

71 2012 - EV 105,066.00$   104 2018 - Diesel 110,053.00$   

72 2012 - E85 110,395.00$   105 2018 - HEV 58,200.00$     

73 2013 - Gasoline 95,774.00$     106 2018 - PHEV 61,378.00$     

74 2013 - Diesel 126,124.00$   107 2018 - EV 105,066.00$   

75 2013 - HEV 54,055.00$     108 2018 - E85 107,359.00$   

76 2013 - PHEV 40,709.00$     109 2019 - Gasoline 94,940.00$     

77 2013 - EV 105,066.00$   110 2019 - Diesel 111,425.00$   

78 2013 - E85 107,789.00$   111 2019 - HEV 54,055.00$     

79 2014 - Gasoline 89,028.00$     112 2019 - PHEV 61,378.00$     

80 2014 - Diesel 113,737.00$   113 2019 - EV 105,066.00$   

81 2014 - HEV 54,055.00$     114 2019 - E85 113,690.00$   

82 2014 - PHEV 40,709.00$     115 2020 - Gasoline 86,802.00$     

83 2014 - EV 105,066.00$   116 2020 - Diesel 109,321.00$   

84 2014 - E85 108,396.00$   117 2020 - HEV 55,090.00$     

85 2015 - Gasoline 95,471.00$     118 2020 - PHEV 61,378.00$     

86 2015 - Diesel 112,051.00$   119 2020 - EV 105,066.00$   

87 2015 - HEV 54,055.00$     120 2020 - E85 114,272.00$   

88 2015 - PHEV 40,709.00$     121 2021 - Gasoline 93,599.00$     

89 2015 - EV 105,066.00$   122 2021 - Diesel 114,154.00$   

90 2015 - E85 110,488.00$   123 2021 - HEV 49,898.00$     

91 2016 - Gasoline 88,229.00$     124 2021 - PHEV 61,378.00$     

92 2016 - Diesel 111,315.00$   125 2021 - EV 105,066.00$   

93 2016 - HEV 54,055.00$     126 2021 - E85 99,016.00$     

94 2016 - PHEV 43,706.00$     127 2022 - Gasoline 86,163.00$     

95 2016 - EV 105,066.00$   128 2022 - Diesel 115,728.00$   

96 2016 - E85 108,396.00$   129 2022 - HEV 49,898.00$     

97 2017 - Gasoline 95,050.00$     130 2022 - PHEV 58,603.00$     

98 2017 - Diesel 110,053.00$   131 2022 - EV 105,066.00$   

99 2017 - HEV 54,055.00$     132 2022 - E85 99,016.00$     

Vehicle Type - Passenger Trucks
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Figure 5.8: Example of the result table. 

 

5.3 MOEA 

This study adjusts four different fitness functions to guarantee that multiple objectives are 

considered when searching for an optimal solution. The MOEA flowchart is presented in figure 

5.9.  

 
Figure 5.9: MOEA 
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The MOEA creates a random initial population where the individuals are evaluated to rank 

their environmental performance and life cost. Later, the individuals are assessed under the metric 

functions utilized in this algorithm. When creating new populations, the best-fitted individuals 

from the current population are selected. The process repeatedly runs until the optimal solution is 

found, given by Pareto optimality.  

 

5.3.1 Initialization 

At the beginning of the algorithm, a set of possible solutions called individuals is produced. 

These individuals are differentiated from others by the structure of their genes, better known as 

chromosome encoding. In this study, the number of vehicles is equal to the number of genes of an 

individual. The individuals represent possible scenarios and are produced by combining the 

outputs of CO, NOx, GHG, and TCO generated by the AFLEET tool presented in the result table. 

Maintaining a diverse population is essential to ensure the search space's efficiency. Figure 5.10 

shows a representation of the process of how an individual is created. For this study, the individuals 

are created by assigning a random number of each type of vehicle corresponding to the first row. 

However, the total number of vehicles could not be greater or less than the number of vehicles 

assigned for the simulation, corresponding to the number of vehicles registered in the region under 

study. One restriction to be considered is setting a percentage of the total number of vehicles to 

BEVs. 

 
Figure 5.10: Example of the initial individual. 
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After generating the first random row, the algorithm multiplies each random number of 

vehicles by the lbs. of GHG, CO, and NOx emissions caused by just one vehicle, as well as the 

TCO, as shown in figure 5.11. After the multiplication, a new 132x5 matrix is generated, 

corresponding to the new individual shown in figure 5.12. 

 

 
 

 
Figure 5.12: Generation of the new individual. 

 

The variable assigned to the initial population corresponding to a set of random individuals 

is given at the beginning of the algorithm. This variable constantly persists throughout the entire 

algorithm, helping the MOEA towards the Pareto optimal front by providing a base for succeeding 

populations. Figure 5.13 shows an example of an initial population of 10 individuals.  
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Figure 5.13: Example of the initial population 

5.3.2 Evaluation 

In this phase of the MOEA, four objective functions evaluate each individual in the current 

generation. It is essential to mention that the algorithm considers the concept of Pareto dominance; 

only the nondominated individuals survive, while the dominated individuals are removed. By 

applying the Pareto criterion, a count of the individuals dominated by a single solution is 

performed. 

5.3.3 Fitness assignment 

Diversity of population and proximity to the Pareto front are the two main objectives to be 

evaluated in this MOEA. The evaluation is performed according to the following fitness metrics: 

• First Fitness Metric: Distance-based 𝑓1(𝑖) 

The purpose of the distance-based metric is to maintain the variety of the solutions given 

by the Pareto optimal front by assigning higher fitness to individuals farther away from others. 

There are two steps to measure the individuals: normalization and distances. Normalization refers 

to removing unit inconsistencies. The equation to normalize every result of the objective is 

expressed as shown in equation 5.1. 

𝑓𝑖(𝑥) −  𝑓𝑖
𝑚𝑖𝑛

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
 

           (Eq. 5.1) 
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Were 𝑓𝑖(𝑥) corresponds to the value in the nondominated set, 𝑓𝑖
𝑚𝑖𝑛 belongs to the 

minimum value in the nondominated set, and 𝑓𝑖
𝑚𝑎𝑥 is the maximum value in the nondominated set 

(Cram, 2019). 

• Second Fitness Metric: Dominance count-based 𝑓2(𝑖) 

This fitness metric aims to approximate the Pareto front by choosing the more dominating 

individuals. The dominance count concept is the base of this metric (Cram, 2019). 

• Aggregated Fitness Metric 

This fitness metric aims to find the two most common desirable characteristics in the 

MOEA, which correspond to proximity and diversity. Equal weights for individuals in the two 

previous fitness metrics are aggregated (Cram, 2019). 

5.3.4 Selection 

Some of the most fitted individuals survive into the next generation during selection. This 

process is called elitism. Individuals with the greatest fittest value have the highest probability of 

reproducing, filling the remaining spots by reproduction. Secondly, tournament selection is 

applied, where two individuals are randomly selected. The fittest individual selected is chosen to 

be parent 1, and the tournament selection process is repeated to find parent 2. The new parents are 

intended to produce new individuals through a crossover process, which will be explained in the 

following subsection.  

5.3.5 Crossover 

In the MOEAs, there exist different types of ways to achieve the reproduction of parents 

through a crossover. Knowing the type of chromosome encoding of the problem will help to 

achieve effectiveness during the crossover method. For this research, the technique utilized was 

the random single-point crossover. However, the MOEA needs to fulfill the constraint assigned to 
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the individual, which consists of having a sum equal to the number of vehicles the user selects for 

a specific scenario. Figure 5.14 shows a graphic representation of the crossover technique. First, a 

random point through the 132 genes is chosen to divide the chromosomes into two segments. Once 

the chromosomes are divided, segment 1 of the first parent is joined with segment 2 of the second 

parent. Likewise, segment 2 of the first parent is joint with segment 1 of the second parent. This 

way, two new children will serve as new parents to populate the next generation.  

It is essential to mention that to satisfy the constraint, a MATLAB code evaluates the sum 

of all the types of vehicles in one individual, as shown in figure 5.15. If the sum of the child equals 

the total number of vehicles the user selects, it will satisfy the constraint. In contrast, if the child’s 

sum is less than the total number of vehicles assigned, the code will choose a random gene and 

sum the remaining vehicles’ number to that gene to achieve the desired sum. However, a possible 

scenario would be that the selected gene’s number of vehicles and the difference number surpass 

the desired sum. In that case, the code will re-evaluate the sum, select another random gene, and 

rest the surplus. This process will repeat itself until we achieve the desired number of vehicles. 

Nevertheless, the code will not choose any gene corresponding to the BEVs since another 

constraint is that 10% of the total vehicles will be destined for BEVs. Additionally, suppose the 

individual’s sum exceeds the total number of vehicles. In that case, the code will perform the same 

operation, select a random gene to rest the surplus, and re-evaluate the new sum until the 

constraints are satisfied. 
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Figure 5.14: Single-point crossover process. 

 

 
Figure 5.15: Evaluation of the crossover constraints. 

 

5.3.6 Mutation 

In the mutation step, the new individuals have a 0.01% chance of mutation, which will 

increase the variation of solutions to avoid falling into the local optimum (Cram, 2019). If new 

individuals mutate, genes will be swapped, as shown in figure 5.16. 
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Figure 5.16: Mutation process 

 

5.3.7 Termination 

Depending on the study's objectives, MOEAs have multiple ways to terminate the iterative 

process. For this research, reaching the predetermined number of generations and the 

predetermined number of generations assigned at the beginning of the MOEA will stop the 

iterative process.  The algorithm will re-evaluate the non-dominated solutions to find the solution 

closes to the objective vector [0 0 0]. The closest solution will be the most optimal solution. 
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Chapter 6: Case Studies 

This chapter presents four case studies utilizing the developed optimization model 

explained in chapter 5. Additionally, these case studies demonstrate that the percentage of BEVs 

can be modified to simulate different scenarios.  

6.1 CASE STUDIES 

The following subsections utilized MATLAB code to run a MOEA simulation. The four 

case studies are based on the data obtained from the Texas region. The total number of vehicles 

used to run the MOEA is 704,274, which is the number of vehicles registered in the City of El 

Paso, TX., in 2021, according to El Paso District Statistics (cite). The simulation parameters must 

be defined at the beginning of the algorithm shown in table 6.1. Each of these parameters is going 

to be explained in the following subsections. 

Table 6.1: MOEA Parameters 

 
 

 6.2 CASE STUDY 1 

According to the Edison Electric Institute, in 2030, the projected number of BEVs will 

make up nearly 10% of the 259 million light-duty vehicles (cars and light trucks) expected to be 

on U.S. roads (2022). Therefore, the percentage established in this case study for BEVs was 10%, 

equal to 70,425 EVs. The number of individuals utilized in this MOEA is 1000, along with 1000 

iterations. In each iteration, the most fitted 25% of individuals were selected for reproduction, with 

a 75% crossover and a 1% chance of mutation. The AFLEET tool calculations were performed in 

a Lenovo computer, with an 11th Gen Intel® Core™ i7-1165G7 processor operating at 2.80 GHz 

100

100

0.25

0.75

0.01
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Number of generations
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and 16 GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating 

at 2.30 GHz and 256 GB of RAM. 

The optimal solution given with the parameters selected is shown in table 6.2. The well-

to-wheel analysis of the fuel and vehicle production produced 4,506,356.86 tons of GHG 

emissions, while the air pollutants such as CO and NOx produced 22,576,079.51 lbs. and 

872,636.58 lbs., respectively, along with a TCO of $8,748,478,084.31 US dollars. In this MOEA, 

the number of non-dominated solutions found was 44, shown in figure 6.1. Non-dominated 

solutions are represented by blue dots, while the optimal solution found is represented by a red 

dot.  

Table 6.2: Solutions for Case Study 1. 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2942 891 11489 30055 3301 12079

COx 243342.13 85154.00 950291.54 117214.50 12873.90 999092.31

NOx 3144.67 1904.76 10315.59 69126.50 7592.30 12911.11

GHGs 23063.57 6450.60 51077.53 175991.81 9863.28 70433.28

TCO 20,892,936.62$        7,693,945.38$          65,182,152.16$        238,122,759.50$      37,598,654.08$        104,378,866.65$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1864 8984 4817 381 3464 5628

COx 131147.43 734904.35 338914.78 1485.90 13509.60 395975.17

NOx 1816.61 17793.61 3943.41 876.30 7967.20 5484.91

GHGs 14612.68 72066.54 21415.31 2394.84 10350.32 27087.58

TCO 13,855,783.04$        84,830,162.24$        29,392,659.62$        3,273,959.67$          41,753,601.12$        45,472,945.56$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 592 22284 273 5274 3880 8555

COx 41676.80 1822831.20 19219.20 20568.60 15132.00 602272.00

NOx 592.00 44568.00 218.40 12130.20 8924.00 6844.00

GHGs 4341.54 135346.68 1213.70 33150.64 11593.31 41175.24

TCO 4,743,459.20$          207,016,131.60$      1,928,455.62$          47,069,500.68$        49,342,270.40$        81,894,020.75$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 11131 4125 3030 4083 5134 2802

COx 655615.90 276375.00 178467.00 15923.70 20022.60 165037.80

NOx 10017.90 7425.00 2424.00 9390.90 11808.20 2521.80

GHGs 84904.10 32693.22 13470.71 25664.40 15340.23 15697.58

TCO 94,364,722.15$        43,964,745.00$        22,408,940.70$        37,794,575.31$        70,399,102.22$        31,214,392.08$      

2015 Passenger Cars

Type of fuel

2012 Passenger Cars

Type of fuel

2013 Passenger Cars

Type of fuel

2014 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 3730 2563 10143 3102 2146 4863

COx 219697.00 171721.00 597422.70 12097.80 8369.40 286430.70

NOx 3357.00 4613.40 8114.40 7134.60 4935.80 4376.70

GHGs 28451.38 18309.33 45093.52 19498.16 6412.18 25575.07

TCO 33,065,704.00$        28,648,675.77$        89,680,855.95$        29,742,968.64$        32,274,402.18$        53,979,737.67$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 5624 4416 869 27542 370 14001

COx 157888.52 135636.76 24396.36 107413.80 1443.00 393064.93

NOx 3712.94 3054.26 481.92 63346.60 851.00 9243.41

GHGs 43493.58 28517.72 3066.17 188625.74 1006.54 68027.46

TCO 52,082,907.92$        51,048,032.64$        8,509,048.13$          270,240,176.06$      5,932,794.60$          151,799,122.02$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 16804 7856 12693 1033 4382 1848

COx 444814.10 227712.14 335992.94 4028.70 17089.80 48917.90

NOx 10037.37 4939.53 6368.70 2375.90 10078.60 1103.85

GHGs 109795.87 56875.36 44785.91 7074.66 12383.14 9507.45

TCO 160,020,291.00$      104,325,166.08$      137,174,139.51$      10,478,421.44$        80,439,629.06$        21,441,826.56$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 6828 5505 63 5425 1018 6239

COx 176234.31 149874.93 1626.06 21157.50 3970.20 161031.90

NOx 3649.19 2942.12 28.28 12477.50 2341.40 3334.40

GHGs 45898.46 34417.53 300.83 37153.97 2769.35 33525.28

TCO 66,516,737.28$        164,762,448.00$      733,095.72$             56,829,207.75$        23,753,075.44$        74,648,823.93$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 12385 1139 11656 17489 4041 7264

COx 299416.78 29004.31 281792.65 68207.10 15759.90 175612.72

NOx 5840.38 537.12 4617.15 40224.70 9294.30 3425.48

GHGs 89516.68 6683.59 49352.36 119776.18 10117.38 39033.12

TCO 129,660,918.15$      14,291,989.76$        141,455,234.48$      183,204,795.27$      107,694,993.78$      81,611,185.28$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 13115 3249 2031 7130 5147 1502

COx 297609.57 77150.25 46088.07 27807.00 20073.30 34083.84

NOx 5602.54 1350.54 728.80 16399.00 11838.10 641.63

GHGs 96181.25 19064.96 9698.22 48830.93 12605.19 8071.00

TCO 147,872,018.45$      40,767,932.16$        27,507,864.00$        86,516,703.40$        145,708,121.51$      16,875,000.04$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 78 58 2121 9019 40 10593

COx 1654.29 1277.56 44983.97 35174.10 156.00 224665.34

NOx 29.86 20.87 682.02 20743.70 92.00 4055.03

GHGs 572.03 340.34 11475.05 50844.46 97.96 56921.51

TCO 995,016.36$             727,774.72$             34,528,522.56$        111,212,567.48$      1,397,773.20$          119,012,566.86$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1131 5145 1199 615 708 2732

COx 102864.34 177437.66 109048.93 55934.19 3256.80 248475.12

NOx 1671.15 153822.43 1488.16 763.32 1982.40 4036.75

GHGs 10611.83 64640.87 9659.74 0.00 2485.36 18025.34

TCO 9,119,875.05$          59,531,560.20$        10,662,766.95$        9,715,013.55$          5,750,312.28$          26,997,214.20$      

2021 Passenger Cars

Type of fuel

2022 Passenger Cars

Type of fuel

2012 Passenger Trucks

Type of fuel

2018 Passenger Cars

Type of fuel

2019 Passenger Cars

Type of fuel

2020 Passenger Cars

Type of fuel

2016 Passenger Cars

Type of fuel

2017 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 5646 592 3012 6048 4571 1365

COx 446231.20 20137.37 238053.20 478003.24 21026.60 107882.68

NOx 7277.44 22910.45 3261.16 6548.30 12798.80 1759.42

GHGs 54037.18 7356.57 24266.18 0.00 16046.01 8592.30

TCO 50,681,319.00$        7,023,044.00$          27,785,097.60$        95,538,864.96$        38,641,679.86$        13,690,922.70$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 4975 2718 4408 8044 9772 6181

COx 393198.76 130906.74 348385.96 635756.96 44951.20 488514.89

NOx 6412.55 40075.24 4772.64 8709.42 27361.60 7967.03

GHGs 45976.77 23335.77 35513.06 0.00 34303.56 39437.97

TCO 45,586,273.25$        31,466,748.06$        41,394,073.36$        127,069,217.88$      82,609,165.52$        67,252,494.12$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 863 2767 10367 2100 654 559

COx 57816.00 116825.85 694528.92 140687.83 3008.40 37449.76

NOx 895.32 31402.93 9034.42 1830.06 1831.20 579.94

GHGs 8178.47 22427.96 83521.75 0.00 2295.80 3729.76

TCO 8,792,149.07$          32,531,951.04$        99,072,753.85$        33,173,217.00$        5,702,265.24$          6,434,330.37$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2180 9981 596 3068 4955 4415

COx 146047.37 421409.05 39928.55 14112.80 22793.00 295779.41

NOx 2261.64 113275.25 519.39 8590.40 13874.00 4580.35

GHGs 19351.78 80901.14 4801.67 21646.48 17394.00 28169.98

TCO 21,940,065.00$        124,963,716.96$      5,893,426.80$          31,516,306.12$        45,175,527.80$        52,334,836.05$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 945 1005 10992 6301 5738 6742

COx 40760.52 28814.74 474116.00 28984.60 26394.80 290801.50

NOx 564.47 7140.49 5515.23 17642.80 16066.40 4027.13

GHGs 8833.31 8146.04 88557.06 62474.54 15824.11 42439.04

TCO 11,106,745.65$        13,695,949.05$        110,515,436.64$      119,558,891.59$      54,217,845.58$        86,734,481.60$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 759 13951 2669 8415 2569 15244

COx 23765.93 329381.39 83572.17 38709.00 11817.40 477322.67

NOx 429.50 68420.10 1268.69 23562.00 7193.20 8626.31

GHGs 6684.05 113080.03 21502.80 120542.23 7084.72 98572.39

TCO 8,989,550.46$          210,109,454.03$      29,162,401.46$        203,925,659.85$      27,683,312.79$        207,433,492.20$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1770 12105 3263 2074 2195 934

COx 53641.89 274380.88 98888.98 9540.40 10097.00 28305.95

NOx 945.97 52516.73 1464.87 5807.20 6146.00 499.17

GHGs 16482.47 95626.43 26288.36 29709.40 6526.50 6627.14

TCO 25,189,489.50$        191,834,471.70$      45,255,525.90$        52,324,614.16$        30,206,843.70$        14,839,999.10$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2730 145 11245 2575 788 8823

COx 76470.54 3154.48 314985.78 11845.00 3624.80 247142.69

NOx 1201.56 547.02 4157.39 7210.00 2206.40 3883.27

GHGs 23495.61 1055.95 94563.03 36955.94 3020.11 63612.31

TCO 42,579,837.30$        2,607,150.75$          194,316,636.15$      70,089,800.50$        11,889,864.08$        159,181,830.87$    

2019 Passenger Trucks

Type of fuel

2020 Passenger Trucks

Type of fuel

2016 Passenger Trucks

Type of fuel

2017 Passenger Trucks

Type of fuel

2018 Passenger Trucks

Type of fuel

2013 Passenger Trucks

Type of fuel

2014 Passenger Trucks

Type of fuel

2015 Passenger Trucks

Type of fuel
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Figure 6.1: Pareto Optimality for Case Study 1. 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1799 1470 7159 1844 3010 8236

COx 46795.40 30636.66 186219.15 8482.40 13846.00 214233.96

NOx 715.02 5339.73 2390.10 5163.20 8428.00 3273.41

GHGs 16160.08 12822.54 47993.58 26464.76 12148.76 61264.33

TCO 30,954,277.62$        31,216,140.90$        144,100,790.58$      57,533,426.96$        55,402,541.60$        141,540,272.16$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 5807 8044 1219 866 2544 12754

COx 139441.18 160296.77 29271.36 3983.60 11702.40 306256.72

NOx 2060.16 28092.82 363.27 2424.80 7123.20 4524.76

GHGs 51138.73 74028.48 8172.11 11184.96 9476.94 91954.14

TCO 112,263,595.22$      190,638,456.24$      28,580,820.28$        28,455,971.94$        47,669,243.04$        254,870,069.16$    

2022 Passenger Trucks

Type of fuel

2021 Passenger Trucks

Type of fuel
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The computational time used to run this MOEA to find the optimal solution shown in Case 

Study 1 was 2 hours 9 mins. 

6.3 CASE STUDY 2 

The percentage established in this case study for EVs was 8%, equal to 56,342 vehicles. 

The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each 

iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover 

and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo 

computer, with an 11th Gen Intel® Core™ i7-1165G7 processor operating at 2.80 GHz and 16 

GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 

GHz and 256 GB of RAM. 

The optimal solution given with the parameters selected is shown in table 6.2. The well-

to-wheel analysis of the fuel and vehicle production produced 4,479,447.05 tons of GHG 

emissions, while the air pollutants such as CO and NOx produced 22,164,602.89 lbs. and 

563,440.09 lbs., respectively, along with a TCO of $8,966,197,155.59 US dollars. In this MOEA, 

the number of non-dominated solutions found was 48, shown in figure 6.1. Non-dominated 

solutions are represented by blue dots, while the optimal solution found is represented by a red 

dot. 
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Table 6.3: Solutions for Case Study 2. 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1694 5989 3155 11913 409 14355

COx 140116.10 572376.35 260960.03 46460.70 1595.10 1187347.47

NOx 1810.70 12803.16 2832.77 27399.90 940.70 15343.90

GHGs 13279.98 43358.77 14026.43 69758.46 1222.08 83704.76

TCO 12,030,127.34$        51,716,093.02$        17,899,703.20$        94,385,507.70$        4,658,542.72$          124,046,579.25$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3072 7857 3197 26 1231 5613

COx 216139.97 642714.10 224934.72 101.40 4800.90 394919.80

NOx 2993.90 15561.49 2617.20 59.80 2831.30 5470.29

GHGs 24082.70 63026.14 14213.15 163.43 3678.19 27015.38

TCO 22,835,281.92$        74,188,622.52$        19,507,646.42$        223,419.82$             14,837,956.98$        45,351,749.01$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2163 11807 2203 85 4422 1268

COx 152275.20 965812.60 155091.20 331.50 17245.80 89267.20

NOx 2163.00 23614.00 1762.40 195.50 10170.60 1014.40

GHGs 15862.76 71712.36 9794.05 534.28 13212.79 6102.89

TCO 17,331,253.80$        109,685,849.30$      15,561,859.82$        758,609.70$             56,234,927.76$        12,138,120.20$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 6273 9125 11841 8601 4969 130

COx 369479.70 611375.00 697434.90 33543.90 19379.10 7657.00

NOx 5645.70 16425.00 9472.80 22362.60 12919.40 117.00

GHGs 47848.66 72321.37 52642.45 54063.07 14847.21 728.30

TCO 53,180,298.45$        97,255,345.00$        87,572,365.29$        79,615,758.57$        68,136,567.77$        1,448,205.20$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2160 305 1463 288 731 16786

COx 127224.00 20435.00 86170.70 1123.20 2850.90 988695.40

NOx 1944.00 549.00 1170.40 662.40 1681.30 15107.40

GHGs 16475.87 2178.83 6504.17 1810.27 2184.20 88279.49

TCO 19,147,968.00$        3,409,225.95$          12,935,333.95$        2,761,436.16$          10,993,750.23$        186,326,110.74$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 4718 10615 3955 22706 3967 18473

COx 132453.42 326038.10 111032.91 88553.40 15471.30 518612.13

NOx 3114.81 7341.70 2193.30 52223.80 9124.10 12195.81

GHGs 36486.97 68549.72 13954.80 155505.63 10791.77 89755.83

TCO 43,692,595.94$        122,707,170.85$      38,726,450.35$        222,789,682.58$      63,609,178.86$        200,284,635.46$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 20119 1396 3809 555 2184 15721

COx 532564.57 40464.12 100827.00 2164.50 8517.60 416146.31

NOx 12017.49 877.75 1911.16 1276.50 5023.20 9390.47

GHGs 131455.80 10106.67 13439.66 3801.01 6171.79 80880.25

TCO 191,588,207.25$      18,538,433.28$        41,164,129.63$        5,629,742.40$          40,091,316.72$        182,406,361.12$    

2018 Passenger Cars

Type of fuel

2015 Passenger Cars

Type of fuel

2016 Passenger Cars

Type of fuel

2017 Passenger Cars

Type of fuel

2012 Passenger Cars

Type of fuel

2013 Passenger Cars

Type of fuel

2014 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 4633 1062 20975 15942 829 2782

COx 119580.19 28913.20 541375.89 62173.80 3233.10 71804.90

NOx 2476.08 567.58 9416.38 36666.60 1906.70 1486.82

GHGs 31143.46 6639.68 100157.60 109181.31 2255.20 14949.08

TCO 45,133,574.08$        31,785,235.20$        244,074,329.00$      166,999,305.06$      19,343,123.32$        33,286,268.34$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1784 5284 6071 18597 3196 1505

COx 43129.55 134555.55 146771.04 72528.30 12464.40 36384.52

NOx 841.28 2491.77 2404.83 42773.10 7350.80 709.71

GHGs 12894.45 31006.24 25705.06 127364.49 8001.77 8087.12

TCO 18,677,034.96$        66,302,786.56$        73,676,623.93$        194,811,571.71$      85,175,253.68$        16,908,705.10$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 8475 24570 7845 748 345 1682

COx 192317.28 583435.43 178021.13 2917.20 1345.50 38168.46

NOx 3620.40 10213.24 2815.07 1720.40 793.50 718.53

GHGs 62152.96 144175.47 37460.61 5122.80 844.92 9038.23

TCO 95,555,879.25$        308,300,428.80$      106,252,680.00$      9,076,366.64$          9,766,718.85$          18,897,303.64$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 9798 362 3944 12817 3861 11812

COx 207804.31 7973.77 83647.70 49986.30 15057.90 250518.93

NOx 3750.70 130.24 1268.21 29479.10 8880.30 4521.67

GHGs 71855.42 2124.20 21337.85 72255.63 9455.73 63471.80

TCO 124,989,362.76$      4,542,318.08$          64,205,795.84$        158,045,401.64$      134,920,058.13$      132,708,056.24$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1773 148 6833 934 964 7251

COx 161254.17 5104.13 621460.66 84947.21 4434.40 659477.71

NOx 2619.75 4424.82 8480.91 1159.25 2699.20 10713.95

GHGs 16635.52 1859.45 55050.07 0.00 3384.02 47841.04

TCO 14,296,674.15$        1,712,472.48$          60,766,210.65$        14,754,183.18$        7,829,521.24$          71,653,294.35$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 37 621 6611 7639 830 1349

COx 2924.29 21123.83 522499.90 603747.81 3818.00 106618.12

NOx 47.69 24032.75 7157.87 8270.91 2324.00 1738.80

GHGs 354.12 7716.95 53261.53 0.00 2913.63 8491.59

TCO 332,130.50$             7,367,078.25$          60,985,152.80$        120,671,526.03$      7,016,537.80$          13,530,443.02$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 292 2559 460 2154 4680 308

COx 23078.20 123248.84 36356.07 170241.23 21528.00 24342.76

NOx 376.37 37730.88 498.05 2332.18 13104.00 397.00

GHGs 2698.54 21970.65 3705.99 0.00 16428.64 1965.20

TCO 2,675,616.44$          29,625,978.03$        4,319,708.20$          34,026,242.58$        39,563,128.80$        3,351,200.16$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 6703 86 858 7672 1950 4079

COx 449062.15 3631.02 57481.03 513979.54 8970.00 273269.36

NOx 6954.04 976.02 747.71 6685.83 5460.00 4231.76

GHGs 63522.91 697.07 6912.48 0.00 6845.27 27215.93

TCO 68,289,426.67$        1,011,112.32$          8,199,519.90$          121,192,819.44$      17,002,167.00$        46,951,043.97$      

2013 Passenger Trucks

Type of fuel

2014 Passenger Trucks

Type of fuel

2015 Passenger Trucks

Type of fuel

2021 Passenger Cars

Type of fuel

2022 Passenger Cars

Type of fuel

2012 Passenger Trucks

Type of fuel

2019 Passenger Cars

Type of fuel

2020 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 13260 623 3653 9399 7060 756

COx 888343.15 26303.76 244729.83 43235.40 32476.00 50647.62

NOx 13756.60 7070.48 3183.44 26317.20 19768.00 784.31

GHGs 117708.51 5049.74 29430.40 66315.28 24783.38 4823.67

TCO 133,451,955.00$      7,800,059.68$          36,121,959.90$        96,552,073.41$        64,367,149.60$        8,961,525.72$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 161 6552 3101 16460 126 391

COx 6944.38 187854.89 133754.89 75716.00 579.60 16864.93

NOx 96.17 46551.76 1555.92 46088.00 352.80 233.55

GHGs 1504.93 53107.33 24983.21 163201.23 347.48 2461.24

TCO 1,892,260.37$          89,289,411.12$        31,177,981.17$        312,321,751.40$      1,190,562.66$          5,030,136.80$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 786 8805 13131 2889 13233 1238

COx 24611.36 207884.97 411160.06 13549.41 62062.77 38764.46

NOx 444.78 43182.50 6241.71 8089.20 37052.40 700.56

GHGs 6921.83 71369.05 105789.92 41384.02 36493.63 8005.29

TCO 9,309,336.84$          132,607,966.65$      143,473,770.54$      70,010,841.51$        142,597,617.03$      16,846,146.90$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1707 2627 1365 3902 414 6409

COx 51732.60 59545.52 41367.90 17949.20 1904.40 194232.14

NOx 912.30 11397.06 612.79 10925.60 1159.20 3425.26

GHGs 15895.81 20752.63 10997.12 55894.92 1230.97 45474.67

TCO 24,292,914.45$        41,631,487.58$        18,931,594.50$        98,442,933.68$        5,697,327.24$          101,830,357.85$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2537 4839 2389 4989 748 35167

COx 71064.38 105272.64 66918.72 22949.40 3440.80 985069.36

NOx 1116.61 18255.37 883.24 13969.20 2094.40 15478.08

GHGs 21834.57 35239.74 20089.91 71601.23 2866.80 253548.00

TCO 39,569,614.37$        87,006,913.65$        41,282,565.03$        135,797,287.26$      11,286,317.68$        634,472,112.23$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 363 25 14958 66 10 234

COx 9442.32 521.03 389085.91 303.60 46.00 6086.78

NOx 144.27 90.81 4993.87 184.80 28.00 93.00

GHGs 3260.76 218.07 100277.68 947.22 40.36 1740.63

TCO 6,245,915.94$          530,886.75$             301,083,897.96$      2,059,222.44$          184,061.60$             4,021,421.04$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 14949 2296 6275 1885 183 7254

COx 358964.39 45753.53 150679.08 8671.00 841.80 174187.41

NOx 5303.49 8018.54 1870.00 5278.00 512.40 2573.52

GHGs 131646.77 21129.96 42067.28 24346.01 681.71 52300.09

TCO 289,000,944.54$      54,413,960.16$        147,124,403.00$      61,939,384.65$        3,429,037.53$          144,960,599.16$    

2022 Passenger Trucks

Type of fuel

2019 Passenger Trucks

Type of fuel

2020 Passenger Trucks

Type of fuel

2021 Passenger Trucks

Type of fuel

2016 Passenger Trucks

Type of fuel

2017 Passenger Trucks

Type of fuel

2018 Passenger Trucks

Type of fuel
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Figure 6.2: Pareto Optimality for Case Study 2. 

 

The computational time used to run this MOEA to find the optimal solution shown in Case 

Study 2 was 2 hours 18 mins. 

6.4 CASE STUDY 3 

The percentage established in this case study for EVs was 12%, equal to 84,513 vehicles. 

The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each 

iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover 

and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo 
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computer, with an 11th Gen Intel® Core™ i7-1165G7 processor operating at 2.80 GHz and 16 

GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 

GHz and 256 GB of RAM. 

The optimal solution given with the parameters selected is shown in table 6.2. The well-

to-wheel analysis of the fuel and vehicle production produced 4,182,367.31 tons of GHG 

emissions, while the air pollutants such as CO and NOx produced 25,202,901.06 lbs. and 

845,978.86 lbs., respectively, along with a TCO of $8,727,315,002.87 US dollars. In this MOEA, 

the number of non-dominated solutions found was 41, shown in figure 6.1. Non-dominated 

solutions are represented by blue dots, while the optimal solution found is represented by a red 

dot. 

Table 6.4: Solutions for Case Study 3. 

 
 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2519 8200 29798 3045 2562 15441

COx 208354.46 783684.43 2464686.85 11875.50 9991.80 1277173.96

NOx 2692.53 17529.78 26754.64 7003.50 5892.60 16504.72

GHGs 19747.50 59365.83 132475.27 17830.48 7655.17 90037.28

TCO 17,888,955.59$        70,808,476.00$        169,057,165.12$      24,125,230.50$        29,181,384.96$        133,431,085.35$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 4812 4521 2753 4766 2714 4498

COx 338562.99 369824.42 193695.74 18587.40 10584.60 316470.56

NOx 4689.66 8954.24 2253.73 10961.80 6242.20 4383.64

GHGs 37723.28 36265.90 12239.22 29957.51 8109.34 21648.88

TCO 35,769,328.32$        42,688,909.56$        16,798,420.58$        40,954,571.62$        32,713,416.12$        36,342,805.46$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 14492 2266 2008 1941 4244 2031

COx 1020236.80 185358.80 141363.20 7569.90 16551.60 142982.40

NOx 14492.00 4532.00 1606.40 4464.30 9761.20 1624.80

GHGs 106279.73 13763.04 8927.12 12200.49 12680.93 9775.21

TCO 116,118,599.20$      21,050,913.40$        14,184,391.52$        17,323,075.62$        53,971,287.52$        19,442,052.15$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 11861 1117 9107 18960 903 4132

COx 698612.90 74839.00 536402.30 73944.00 3521.70 243374.80

NOx 10674.90 2010.60 7285.60 43608.00 2076.90 3718.80

GHGs 90472.33 8852.93 40487.69 119176.35 2698.13 23148.61

TCO 100,553,406.65$      11,905,120.04$        67,352,548.83$        175,504,567.20$      12,382,233.99$        46,030,645.28$      

2015 Passenger Cars

Type of fuel

2012 Passenger Cars

Type of fuel

2013 Passenger Cars

Type of fuel

2014 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 732 101 8609 4874 14234 4879

COx 43114.80 6767.00 507070.10 19008.60 55512.60 287373.10

NOx 658.80 181.80 6887.20 11210.20 32738.20 4391.10

GHGs 5583.49 721.51 38273.70 30636.37 42530.73 25659.22

TCO 6,489,033.60$          1,128,956.79$          76,117,764.85$        46,733,471.68$        214,069,823.22$      54,157,339.11$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3377 4401 9798 2106 1266 23760

COx 94806.11 135176.04 275069.65 8213.40 4937.40 667039.70

NOx 2229.48 3043.88 5433.63 4843.80 2911.80 15686.26

GHGs 26116.26 28420.85 34571.21 14423.27 3444.01 115444.08

TCO 31,273,822.91$        50,874,635.79$        95,939,762.46$        20,663,924.58$        20,299,778.28$        257,606,395.20$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 711 6011 741 8409 1723 6427

COx 18820.69 174233.41 19614.81 32795.10 6719.70 170127.37

NOx 424.69 3779.47 371.80 19340.70 3962.90 3838.98

GHGs 4645.61 43518.05 2614.54 57590.37 4869.05 33065.16

TCO 6,770,675.25$          79,824,156.48$        8,008,038.87$          85,298,205.12$        31,628,818.09$        74,570,681.44$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3140 2384 3239 6780 3174 2079

COx 81045.07 64904.97 83600.31 26442.00 12378.60 53660.09

NOx 1678.16 1274.12 1454.10 15594.00 7300.20 1111.11

GHGs 21107.38 14904.88 15466.53 46433.90 8634.51 11171.51

TCO 30,589,126.40$        71,352,166.40$        37,690,429.16$        71,023,415.40$        74,059,195.92$        24,874,964.73$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 2638 259 9703 10326 3337 8272

COx 63775.65 6595.36 234577.39 40271.40 13014.30 199981.88

NOx 1244.00 122.14 3843.53 23749.80 7675.10 3900.82

GHGs 19067.02 1519.80 41083.22 70719.24 8354.79 44449.61

TCO 27,617,723.22$        3,249,890.56$          117,753,958.49$      108,169,290.18$      88,932,985.46$        92,936,085.44$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1636 16161 5995 14391 5954 3440

COx 37124.61 383756.61 136040.36 56124.90 23220.60 78061.53

NOx 698.88 6717.79 2151.22 33099.30 13694.20 1469.52

GHGs 11997.90 94831.90 28626.69 98559.04 14581.56 18484.85

TCO 18,445,949.08$        202,785,642.24$      81,196,280.00$        174,622,984.38$      168,553,750.82$      38,648,468.80$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1593 1871 8506 3624 2422 25473

COx 33785.70 41212.48 180402.47 14133.60 9445.80 540253.02

NOx 609.81 673.17 2735.14 8335.20 5570.60 9751.14

GHGs 11682.56 10978.93 46019.20 20430.24 5931.57 136879.21

TCO 20,321,295.66$        23,477,008.64$        138,472,236.16$      44,687,254.08$        84,635,167.26$        286,189,664.46$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3199 5112 3867 281 4549 4345

COx 290948.73 176299.57 351703.26 25556.92 20925.40 395177.31

NOx 4726.79 152835.82 4799.60 348.77 12737.20 6420.09

GHGs 30015.25 64226.27 31154.49 0.00 15968.78 28667.67

TCO 25,795,296.45$        59,149,725.12$        34,389,424.35$        4,438,892.37$          36,946,568.59$        42,936,638.25$      

2021 Passenger Cars

Type of fuel

2022 Passenger Cars

Type of fuel

2012 Passenger Trucks

Type of fuel

2018 Passenger Cars

Type of fuel

2019 Passenger Cars

Type of fuel

2020 Passenger Cars

Type of fuel

2016 Passenger Cars

Type of fuel

2017 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 3107 2594 1792 601 1458 2998

COx 245561.52 88237.06 141630.59 47499.99 6706.80 236946.71

NOx 4004.78 100388.00 1940.24 650.72 4082.40 3864.29

GHGs 29736.72 32234.72 14437.25 0.00 5118.15 18871.59

TCO 27,889,985.50$        30,773,270.50$        16,530,841.60$        9,493,858.77$          12,325,436.28$        30,069,880.04$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1576 6438 1911 8885 768 2885

COx 124559.05 310072.69 151035.75 702225.33 3532.80 228015.77

NOx 2031.39 94924.34 2069.08 9619.98 2150.40 3718.63

GHGs 14564.70 55274.35 15395.97 0.00 2695.98 18407.79

TCO 14,440,998.32$        74,533,820.46$        17,945,570.37$        140,354,301.45$      6,492,410.88$          31,390,300.20$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3669 6747 3639 40779 5527 174

COx 245801.74 284865.93 243791.91 2731956.67 25424.20 11656.99

NOx 3806.41 76572.30 3171.24 35537.23 15475.60 180.52

GHGs 34770.34 54687.91 29317.61 0.00 19401.94 1160.96

TCO 37,379,368.41$        79,325,288.64$        34,776,285.45$        644,176,483.83$      48,190,244.62$        2,002,814.82$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 18816 9 3164 8148 2037 2358

COx 1260562.95 379.99 211969.66 37480.80 9370.20 157972.33

NOx 19520.68 102.14 2757.30 22814.40 5703.60 2446.31

GHGs 167028.90 72.95 25490.77 57488.77 7150.67 15045.26

TCO 189,368,928.00$      112,681.44$             31,286,581.20$        83,701,063.32$        18,571,654.92$        27,951,425.46$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 13195 710 349 8702 1483 5461

COx 569137.62 20356.68 15053.36 40029.20 6821.80 235548.35

NOx 7881.64 5044.53 175.11 24365.60 4152.40 3261.97

GHGs 123339.13 5754.92 2811.72 86280.50 4089.78 34375.50

TCO 155,083,078.15$      9,675,745.10$          3,508,905.33$          165,116,882.18$      14,012,733.53$        70,254,672.80$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 19559 5219 161 5012 4339 775

COx 612434.67 123219.95 5041.26 23055.20 19959.40 24266.93

NOx 11068.10 25595.62 76.53 14033.60 12149.20 438.56

GHGs 172244.25 42302.68 1297.10 71795.32 11965.98 5011.39

TCO 231,655,622.46$      78,600,906.07$        1,759,140.74$          121,458,753.08$      46,756,673.49$        10,545,851.25$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 7749 1062 3255 382 14588 3304

COx 234842.38 24072.08 98646.53 1757.20 67104.80 100131.53

NOx 4141.41 4607.42 1461.28 1069.60 40846.40 1765.81

GHGs 72159.69 8389.53 26223.91 5472.03 43375.18 23443.33

TCO 110,278,731.15$      16,830,087.48$        45,144,571.50$        9,637,416.88$          200,755,096.08$      52,496,099.60$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1097 147 8200 893 363 5254

COx 30728.27 3197.99 229691.72 4107.80 1669.80 147170.77

NOx 482.82 554.56 3031.62 2500.40 1016.40 2312.45

GHGs 9441.28 1070.52 68956.59 12816.18 1391.24 37880.43

TCO 17,109,919.97$        2,643,111.45$          141,698,214.00$      24,306,870.62$        5,477,183.58$          94,791,039.26$      

2019 Passenger Trucks

Type of fuel

2020 Passenger Trucks

Type of fuel

2016 Passenger Trucks

Type of fuel

2017 Passenger Trucks

Type of fuel

2018 Passenger Trucks

Type of fuel

2013 Passenger Trucks

Type of fuel

2014 Passenger Trucks

Type of fuel

2015 Passenger Trucks

Type of fuel
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Figure 6.3: Pareto Optimality for Case Study 3. 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 97 669 434 2341 146 6770

COx 2523.15 13942.81 11289.16 10768.60 671.60 176100.52

NOx 38.55 2430.12 144.89 6554.80 408.80 2690.75

GHGs 871.33 5835.57 2909.51 33597.61 589.28 50359.34

TCO 1,669,018.86$          14,206,529.43$        8,735,821.08$          73,039,995.94$        2,687,299.36$          116,346,241.20$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1082 3988 2483 6172 6722 3431

COx 25981.64 79470.85 59623.29 28391.20 30921.20 82387.24

NOx 383.86 13927.67 739.96 17281.60 18821.60 1217.22

GHGs 9528.52 36701.34 16645.91 79715.44 25040.87 24736.92

TCO 20,917,721.72$        94,513,446.48$        58,216,715.96$        202,806,303.48$      125,956,231.02$      68,563,525.74$      

2022 Passenger Trucks

Type of fuel

2021 Passenger Trucks

Type of fuel
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The computational time used to run this MOEA to find the optimal solution shown in Case 

Study 3 was 2 hours 6 mins. 

6.5 CASE STUDY 4 

The percentage established in this case study for EVs was 15%, equal to 105,641 vehicles. 

The number of individuals utilized in this MOEA is 1000, along with 1000 iterations. In each 

iteration, the most fitted 25% of individuals were selected for reproduction, with a 75% crossover 

and a 1% chance of mutation. The AFLEET tool calculations were performed in a Lenovo 

computer, with an 11th Gen Intel® Core™ i7-1165G7 processor operating at 2.80 GHz and 16 

GB of RAM. The MOEA was run with an Intel® Xeon® W-2195 CPU processor operating at 2.30 

GHz and 256 GB of RAM. 

The optimal solution given with the parameters selected is shown in table 6.2. The well-

to-wheel analysis of the fuel and vehicle production produced 4,260,865.66 tons of GHG 

emissions, while the air pollutants such as CO and NOx produced 26,224,903 and 563,795.37 lbs., 

respectively, along with a TCO of $8,611,203,464.81. In this MOEA, the number of non-

dominated solutions found was 23, shown in figure 6.1. Non-dominated solutions are represented 

by blue dots, while the optimal solution found is represented by a red dot. 

Table 6.5: Solutions for Case Study 4. 

 
 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 5196 22936 2181 365 4649 3387

COx 429777.60 2192022.71 180397.41 1423.50 18131.10 280149.49

NOx 5553.95 49032.09 1958.25 839.50 10692.70 3620.33

GHGs 40733.62 166050.57 9696.24 2137.32 13891.06 19749.78

TCO 36,899,965.56$        198,056,488.48$      12,373,772.64$        2,891,858.50$          52,952,481.92$        29,268,252.45$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 4926 931 3078 1084 8142 8610

COx 346583.81 76157.16 216562.11 4227.60 31753.80 605782.91

NOx 4800.76 1843.93 2519.78 2493.20 18726.60 8391.09

GHGs 38616.98 7468.16 13684.10 6813.67 24328.03 41439.95

TCO 36,616,731.36$        8,790,837.16$          18,781,525.08$        9,314,887.88$          98,140,248.36$        69,566,819.70$      

2012 Passenger Cars

Type of fuel

2013 Passenger Cars

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 14486 713 2331 13109 1882 29843

COx 1019814.40 58323.40 164102.40 51125.10 7339.80 2100947.20

NOx 14486.00 1426.00 1864.80 30150.70 4328.60 23874.40

GHGs 106235.72 4330.56 10363.11 82398.88 5623.35 143634.43

TCO 116,070,523.60$      6,623,698.70$          16,466,044.14$        116,995,465.38$      23,933,544.56$        285,676,593.95$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 7973 1403 10165 30654 1161 3659

COx 469609.70 94001.00 598718.50 119550.60 4527.90 215515.10

NOx 7175.70 2525.40 8132.00 70504.20 2670.30 3293.10

GHGs 60815.77 11119.66 45191.33 192681.00 3469.03 20498.73

TCO 67,592,303.45$        14,953,342.36$        75,177,188.85$        283,750,896.78$      15,920,015.13$        40,761,406.36$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1572 2117 2610 2699 11529 16990

COx 92590.80 141839.00 153729.00 10526.10 44963.10 1000711.00

NOx 1414.80 3810.60 2088.00 6207.70 26516.70 15291.00

GHGs 11990.77 15123.23 11603.48 16965.03 34448.28 89352.35

TCO 13,935,465.60$        23,663,381.43$        23,076,706.50$        25,878,875.68$        173,388,435.57$      188,590,529.10$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3195 9924 1588 2584 1157 2911

COx 89696.63 304814.14 44581.61 10077.60 4512.30 81723.59

NOx 2109.33 6863.78 880.65 5943.20 2661.10 1921.83

GHGs 24708.75 64087.37 5603.09 17696.93 3147.49 14143.84

TCO 29,588,351.85$        114,719,355.96$      15,549,330.76$        25,354,027.12$        18,552,009.06$        31,561,120.22$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 10365 339 1310 10364 10250 26324

COx 274369.09 9826.17 34676.65 40419.60 39975.00 696815.43

NOx 6191.23 213.15 657.29 23837.20 23575.00 15723.86

GHGs 67724.01 2454.27 4622.20 70979.49 28965.59 135429.78

TCO 98,703,303.75$        4,501,811.52$          14,157,261.70$        105,129,099.52$      188,157,507.50$      305,430,001.28$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 3588 1533 3696 1519 5806 2458

COx 92608.19 41736.29 95395.72 5924.10 22643.40 63442.29

NOx 1917.59 819.30 1659.26 3493.70 13353.80 1313.66

GHGs 24118.87 9584.39 17648.75 10403.11 15794.56 13208.07

TCO 34,953,434.88$        45,882,076.80$        43,008,282.24$        15,912,178.17$        135,471,862.48$      29,409,650.46$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 8466 1651 16544 6793 1497 4362

COx 204671.98 42042.24 399963.76 26492.70 5838.30 105454.66

NOx 3992.30 778.56 6553.37 15623.90 3443.10 2056.98

GHGs 61190.81 9687.98 70048.51 46522.93 3748.01 23439.22

TCO 88,632,162.54$        20,716,483.84$        200,775,171.52$      71,159,595.99$        39,895,918.26$        49,007,157.24$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 16971 728 4768 7868 2807 9149

COx 385111.10 17286.98 108196.91 30685.20 10947.30 207611.89

NOx 7249.77 302.61 1710.93 18096.40 6456.10 3908.32

GHGs 124459.92 4271.87 22767.65 53885.24 6874.45 49162.17

TCO 191,348,534.13$      9,134,827.52$          64,577,792.00$        95,471,728.24$        79,464,289.31$        102,789,197.98$    

2021 Passenger Cars

Type of fuel

2018 Passenger Cars

Type of fuel

2019 Passenger Cars

Type of fuel

2020 Passenger Cars

Type of fuel

2015 Passenger Cars

Type of fuel

2016 Passenger Cars

Type of fuel

2017 Passenger Cars

Type of fuel

2014 Passenger Cars

Type of fuel



83 

 

Gasoline Diesel HEV PHEV EV E85

# of vehicles 550 2802 7096 4608 3049 8762

COx 11664.87 61719.59 150498.00 17971.20 11891.10 185831.94

NOx 210.54 1008.13 2281.75 10598.40 7012.70 3354.12

GHGs 4033.53 16441.99 38390.82 25977.52 7467.11 47082.62

TCO 7,016,141.00$          35,159,047.68$        115,518,338.56$      56,820,879.36$        106,545,262.17$      98,441,245.24$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 8926 1650 763 9365 2280 12512

COx 811818.79 56904.20 69394.77 851745.80 10488.00 1137965.13

NOx 13188.90 49330.81 947.01 11623.55 6384.00 18487.51

GHGs 83749.96 20730.31 6147.11 0.00 8003.70 82552.34

TCO 71,975,247.30$        19,091,754.00$        6,785,397.15$          147,936,751.05$      18,517,954.80$        123,641,707.20$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 500 77 4890 572 3067 7996

COx 39517.46 2619.22 386480.79 45207.98 14108.20 631963.28

NOx 644.48 2979.91 5294.51 619.32 8587.60 10306.48

GHGs 4785.44 956.85 39396.29 0.00 10766.38 50332.63

TCO 4,488,250.00$          913,470.25$             45,109,272.00$        9,035,752.44$          25,927,375.22$        80,199,720.08$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 5545 1936 48 3880 631 5060

COx 438248.67 93243.36 3793.68 306655.52 2902.60 399916.73

NOx 7147.25 28545.13 51.97 4200.96 1766.80 6522.11

GHGs 51244.46 16621.80 386.71 0.00 2215.06 32285.42

TCO 50,809,223.15$        22,413,401.12$        450,752.16$             61,291,467.60$        5,334,259.46$          55,055,431.20$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 14498 1532 1102 2065 460 11394

COx 971281.98 64682.76 73827.61 138343.03 2116.00 763331.97

NOx 15040.97 17386.80 960.35 1799.56 1288.00 11820.72

GHGs 137394.48 12417.65 8878.26 0.00 1614.78 76023.11

TCO 147,704,029.22$      18,011,907.84$        10,531,318.10$        32,620,330.05$        4,010,767.60$          131,149,839.42$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 17757 1536 13755 1928 7644 7070

COx 1189616.09 64851.65 921505.28 8868.80 35162.40 473649.03

NOx 18422.02 17432.20 11986.92 5398.40 21403.20 7334.78

GHGs 157628.20 12450.07 110817.17 13603.13 26833.45 45110.25

TCO 178,710,887.25$      19,230,965.76$        136,013,566.50$      19,805,553.52$        69,691,571.04$        83,806,860.90$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 773 2547 122 2669 2896 628

COx 33341.67 73026.01 5262.20 12277.40 13321.60 27087.41

NOx 461.73 18096.36 61.21 7473.20 8108.80 375.12

GHGs 7225.55 20644.75 982.89 26463.19 7986.51 3953.09

TCO 9,085,200.41$          34,710,032.07$        1,226,608.74$          50,643,180.71$        27,364,043.36$        8,079,094.40$        

Gasoline Diesel HEV PHEV EV E85

# of vehicles 992 1007 1616 890 257 3544

COx 31061.67 23775.15 50600.46 4094.00 1182.20 110970.32

NOx 561.36 4938.65 768.15 2492.00 719.60 2005.49

GHGs 8735.94 8162.25 13019.31 12748.97 708.75 22916.59

TCO 11,749,188.48$        15,165,953.71$        17,656,965.44$        21,567,895.10$        2,769,408.87$          48,225,157.20$      

2016 Passenger Trucks

Type of fuel

2017 Passenger Trucks

Type of fuel

2018 Passenger Trucks

Type of fuel

2013 Passenger Trucks

Type of fuel

2014 Passenger Trucks

Type of fuel

2015 Passenger Trucks

Type of fuel

2022 Passenger Cars

Type of fuel

2012 Passenger Trucks

Type of fuel
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Gasoline Diesel HEV PHEV EV E85

# of vehicles 340 576 1667 982 6907 1060

COx 10304.09 13056.04 50520.36 4517.20 31772.20 32124.52

NOx 181.71 2498.94 748.37 2749.60 19339.60 566.51

GHGs 3166.12 4550.25 13430.19 14066.84 20536.90 7521.17

TCO 4,838,659.00$          9,128,183.04$          23,120,123.10$        24,774,720.88$        95,051,785.62$        16,841,969.00$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 8043 1314 13029 1367 4092 17777

COx 225293.96 28586.12 364957.74 6288.20 18823.20 497954.84

NOx 3539.97 4957.13 4816.95 3827.60 11457.60 7824.21

GHGs 69221.68 9569.13 109565.30 19618.94 15683.09 128169.10

TCO 125,446,751.43$      23,626,179.90$        225,144,637.83$      37,208,837.78$        61,742,796.72$        320,727,123.13$    

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1378 91 8230 1315 8993 2571

COx 35844.39 1896.56 214077.89 6049.00 41367.80 66876.58

NOx 547.69 330.55 2747.66 3682.00 25180.40 1021.85

GHGs 12378.32 793.78 55173.51 18872.64 36296.95 19124.65

TCO 23,710,391.64$        1,932,427.77$          165,658,542.60$      41,028,447.10$        165,526,596.88$      44,184,074.76$      

Gasoline Diesel HEV PHEV EV E85

# of vehicles 1915 1380 2404 1491 16485 4724

COx 45984.13 27499.94 57726.30 6858.60 75831.00 113435.53

NOx 679.39 4819.50 716.41 4174.80 46158.00 1675.94

GHGs 16864.24 12700.06 16116.30 19257.25 61410.12 34059.22

TCO 37,021,660.90$        32,705,254.80$        56,364,472.48$        48,992,903.19$        308,894,446.35$      94,402,242.96$      

2022 Passenger Trucks

Type of fuel

2019 Passenger Trucks

Type of fuel

2020 Passenger Trucks

Type of fuel

2021 Passenger Trucks

Type of fuel
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Figure 6.4: Pareto Optimality for Case Study 4. 

 

The computational time used to run this MOEA to find the optimal solution shown in Case 

Study 4 was 1 hour 35 mins. 
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Chapter 7: Design of Experiments 

A Design of Experiments (DOE) was performed in Minitab® to identify the effect of the 

selected parameters over the optimal solutions. The parameters under the statistical analysis were 

the number of individuals, number of generations, percentage of elitism, percentage of crossover, 

and percentage of mutation. Thus, a factorial design of two levels was created with two responses 

of 32 runs and resolution V. Tables 7.1 shows the low and high parameters selected for this DOE. 

Table 7.2 presents the full factorial DOE with the parameters chosen previously. The first response 

corresponds to the normalized solution utilizing the formula provided in chapter 5 (eq. 5.1) for the 

optimal solutions of the four objectives in this research. The second response is the MATLAB 

code's computational time to find an optimal solution. 

Table 7.1: MOEA parameters for the Design of Experiments. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Low High

Number of Individuals 50 300

Number of generations 100 350

Elitism 0.10 0.30

Crossover 0.50 0.80

Mutation 0.001 0.05
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Table 7.2: Design of experiments full factorial. 

 

7.1 RESULTS 

After analyzing the full factorial design, according to the Analysis of Variance (ANOVA) 

presented in table 7.3, for the normalized solution and the computational time, a P-value of 0.005 
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and an F-value of 18.48 corresponding to the “number of individuals,” a P-value of 0.015 and an 

F-value of 11.45 corresponding to the “number of generations,” and a P-value of 0.041 and an F-

value of 6.69 corresponding to the 2 way interaction of the factors “number of individuals*number 

of generations,” with a significance level of 0.05, proves that the means are statistically significant 

to the responses.  

Table 7.3: Analysis of variance for Solution and computational time 

 
 

The normal plot of the standardized effects and the Pareto chart of the standardized effects 

are shown in figure 7.1 and figure 7.2, respectively. The two factors significant to the normalized 

solution and the computational time are the number of individuals utilized in the algorithm and the 

number of generations. The factors that are not significant to the responses include Elitism, 

crossover, and mutation rates. On the other hand, the only significant iteration for the responses is 

the number of individuals*number of generations. 

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Model 25 1388276 55531 2.03 0.192

  Linear 5 901293 180259 6.6 0.02

    Number of individuals 1 504845 504845 18.48 0.005

    Number of generations 1 312794 312794 11.45 0.015

    Elitism 1 14472 14472 0.53 0.494

    Crossover 1 1449 1449 0.05 0.826

    Mutation 1 67733 67733 2.48 0.166

  2-Way Interactions 10 343649 34365 1.26 0.405

    Number of individuals*Number of generations 1 182736 182736 6.69 0.041

    Number of individuals*Elitism 1 25791 25791 0.94 0.369

    Number of individuals*Crossover 1 5392 5392 0.2 0.672

    Number of individuals*Mutation 1 63210 63210 2.31 0.179

    Number of generations*Elitism 1 4872 4872 0.18 0.688

    Number of generations*Crossover 1 1721 1721 0.06 0.81

    Number of generations*Mutation 1 41974 41974 1.54 0.261

    Elitism*Crossover 1 17201 17201 0.63 0.458

    Elitism*Mutation 1 543 543 0.02 0.893

    Crossover*Mutation 1 210 210 0.01 0.933
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Figure 7.1: Normal plot of the effects for the normalized solution and computational time. 

 

 
Figure 7.2. Pareto chart of the standardized effects for the normalized solution and computational 

time. 

 

The ANOVA for the normalized solution response, presented in table 7.3, and a P-value of 

0.046 and an F-value of 4.68 corresponding to the 2-way interaction of the factors “number of 
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individuals*mutation,” with a significance level of 0.05, proves that the mean is statistically 

significant to the response.  

Table 7.3: Analysis of variance for a normalized solution. 

 
 

 

The normal plot of the standardized effects and the Pareto chart of the standardized effects 

are shown in figure 7.3 and figure 7.4, respectively. There is just one significant factor to the 

normalized solution, which is the 2-way interaction between the number of individuals*mutation 

rate. The factors that are not significant to the responses include Elitism rate, crossover rate, 

mutation rate, and the 2-way interactions: number of individuals*number of generations, number 

of individuals*elitism, number of individuals*crossover, number of generations*elitism, number 

of generations*crossover, number of generations*mutation, elitism*crossover, elitism*mutation, 

and crossover*mutation. 

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Model 15 1.39471 0.092981 1.24 0.338

  Linear 5 0.56031 0.112062 1.49 0.247

    Number of individuals 1 0.15567 0.155666 2.07 0.169

    Number of generations 1 0.00053 0.000528 0.01 0.934

    Elitism 1 0.01769 0.017695 0.24 0.634

    Crossover 1 0.16443 0.164426 2.19 0.158

    Mutation 1 0.222 0.221997 2.95 0.105

  2-Way Interactions 10 0.8344 0.08344 1.11 0.411

    Number of individuals*Number of generations 1 0.12529 0.125289 1.67 0.215

    Number of individuals*Elitism 1 0.00143 0.001427 0.02 0.892

    Number of individuals*Crossover 1 0.09691 0.096906 1.29 0.273

    Number of individuals*Mutation 1 0.35125 0.351253 4.68 0.046

    Number of generations*Elitism 1 0.01674 0.016739 0.22 0.643

    Number of generations*Crossover 1 0.00448 0.004481 0.06 0.81

    Number of generations*Mutation 1 0.01294 0.012944 0.17 0.684

    Elitism*Crossover 1 0.03485 0.034854 0.46 0.506

    Elitism*Mutation 1 0.01375 0.013749 0.18 0.675

    Crossover*Mutation 1 0.17676 0.17676 2.35 0.145
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Figure 7.3: Normal plot of the effects for the normalized solution. 

 

 
Figure 7.4: Pareto chart of the standardized effects for the normalized solution. 

 

The ANOVA conducted for the computational time response, presented in table 7.4, has a 

P-value of 0.000 and an F-value of 26.29 corresponding to the “number of individuals,” a P-value 

of 0.000 and an F-value of 16.29 corresponding to the “number of generations,” and a P-value of 
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0.007 and an F-value of 9.52 corresponding to the 2 way interaction of the factors “number of 

individuals*number of generations,” with a significance level of 0.05, proves that the means are 

statistically significant to the responses. 

Table 7.4: Analysis of variance for computational time. 

 
 

The normal plot of the standardized effects and the Pareto chart of the standardized effects 

are shown in figure 7.5 and figure 7.6, respectively. The two significant factors in computational 

time are the number of individuals utilized in the algorithm and the number of generations. The 

factors that are not significant to the responses include Elitism, crossover, and mutation rates. On 

the other hand, the only significant iteration for the responses is number of individuals*number of 

generations. 

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Model 15 1244942 82996 4.32 0.003

  Linear 5 901293 180259 9.39 0.000

    Number of individuals 1 504845 504845 26.29 0.000

    Number of generations 1 312794 312794 16.29 0.001

    Elitism 1 14472 14472 0.75 0.398

    Crossover 1 1449 1449 0.08 0.787

    Mutation 1 67733 67733 3.53 0.079

  2-Way Interactions 10 343649 34365 1.79 0.144

    Number of individuals*Number of generations 1 182736 182736 9.52 0.007

    Number of individuals*Elitism 1 25791 25791 1.34 0.263

    Number of individuals*Crossover 1 5392 5392 0.28 0.603

    Number of individuals*Mutation 1 63210 63210 3.29 0.088

    Number of generations*Elitism 1 4872 4872 0.25 0.621

    Number of generations*Crossover 1 1721 1721 0.09 0.769

    Number of generations*Mutation 1 41974 41974 2.19 0.159

    Elitism*Crossover 1 17201 17201 0.9 0.358

    Elitism*Mutation 1 543 543 0.03 0.869

    Crossover*Mutation 1 210 210 0.01 0.918
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Figure 7.5: Normal plot of the effects for computational time. 

 

 
Figure 7.6: Pareto chart of the standardized effects for computational time. 

 

 

 

 



94 

The Main Effects Plot for the response Solution is shown in figure 7.7. The best parameters 

to utilize in the MOEA to minimize the solution would be 300 individuals with 350 generations, 

using an elitism rate of 30% and a crossover rate of 50% combined with a 5% of mutation.  

 

 
Figure 7.7: The Main Effects Plot for the response Solution 

 

The response optimizer graph in figure 7.8 presents the optimal combination of parameters 

and the best possible solution to minimize the response. The number of individuals selected was 

300 and 350 for the number of generations. For elitism, crossover, and mutation, the values of 0.3, 

0.8, and 0.05 were selected. 
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Figure 7.8: Response Optimization  
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Chapter 8: Conclusions and Future Work 

8.1 CONCLUSION 

The transportation sector accounts for almost a third of the total CO2 U.S. emissions, with 

ICEVs being the primary source. Therefore, there has been a growing push towards transitioning 

to BEVs as a more sustainable way of transportation since BEVs produce fewer GHGs while 

operating. However, there are challenges related to infrastructure and production of BEVs. 

Effective policy and regulatory frameworks are needed to support this shift to a more sustainable 

future, considering the significant reduction in emissions, potential for substantial long-term cost 

savings, and improved air quality that BEVs offer. 

The rising urge to achieve a more sustainable way of transportation has pushed the need 

for more suitable tools to analyze alternative scenarios and their respective emissions, considering 

long-term cost savings. Coupling life cycle assessments and life cycle costs with heuristic multiple 

objective evolutionary algorithms is a feasible approach to recognizing the optimal scenario that 

can potentially decrease emissions and cost for the transportation system. 

This thesis proposed a coupled modeling framework to create optimal scenarios to 

minimize GHGs, air pollutants, and total cost of ownership. This framework Alternative Fuel Life-

Cycle Environmental and Economic Transportation (AFLEET) Tool with a Multi-Objective 

Optimization Algorithm to simulate and compare different BEV penetration scenarios by 

minimizing the objective functions. This algorithm takes into account GHGs, air pollutants such 

as CO and NOx, and TCO generated by different vehicle types depending on their fuel type and 

model year.  

This optimization approach can be applied to analyze and simulate different scenarios for 

decision-makers when exploring resources to reduce emissions and costs caused by transportation 

systems. Additionally, it was demonstrated the proposed methodology is flexible since it can be 

applied in other regions with similar data available. 
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8.2 FUTURE WORK 

For future research, considering weights in the objective functions is essential in 

prospective studies to ensure better decision-making. For this research, the objective functions are 

to minimize GHGs, air pollutants, and vehicle ownership costs. Each of these objectives is equally 

important for this research. Thus, assigning the same weight to all objective functions may not 

result in an optimal solution that satisfies, in totality, all objectives. However, giving weights 

according to the importance of the objective will help the decision-maker to emphasize the need 

to minimize objectives over others. This approach will help achieve informed decisions more 

aligned with the user’s goals. 

The proposed model considers six different fuel types (gasoline, diesel, HEV, PHEV, BEV, 

E85%) that can be used to analyze the current transportation system. However, the AFLEET tool 

can include Gasoline Extended Range Electric Vehicle (EREV), Gaseous Hydrogen (G.H2) Fuel 

Cell Vehicles (FCV), Diesel Hybrid Electric Vehicles (HEV), Diesel Hydraulic Hybrid Vehicles 

(HHV), Biodiesel (B20) and (B100), Renewable Diesel (RD20) and (RD100), Propane (LPG), 

Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG) and LNG / Diesel Pilot Ignition 

vehicles, to expand the analysis in the current framework.  

Moreover, this modeling approach can be utilized in other areas with similar data inputs. 

Since the AFLEET tool can be adapted to any region of the U.S. Applying the methodology to 

different areas can lead to sustainable transportation solutions.  
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