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Abstract

Due to advanced technology and wide source of data collection, high-dimensional data

is available in several fields, including healthcare, bioinformatics, medicine, epidemiology,

economics, finance, sociology, and climatology. In those datasets, outliers are generally en-

countered due to technical errors, heterogeneous sources, or the effect of some confounding

variables. As outliers are often difficult to detect in high-dimensional data, the standard

approaches may fail to model such data and produce misleading information. In this thesis,

we studied Huber and Tukey’s M-estimators for linear regression that automatically down-

weight outliers and provide a good fit. We also investigated two variable selection methods

– LASSO and LAD-LASSO. In addition, we performed a simulation study to compare dif-

ferent estimators in pure and contaminated data. Finally, we analyzed cardiovascular data

to model systolic and diastolic blood pressure. The results show that Huber and Tukey’s

M-estimators perform better for this dataset.

Keywords: Regression models; variable selection; robust estimator.
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Chapter 1

Introduction

In the linear regression model, we estimate the relationship between a dependent variable

with one or more independent variables. In practice, the dataset may contain unexpected

data points or outliers. The outliers are often difficult to detect during data cleaning, espe-

cially in high-dimensional data. Moreover, if we delete some good data points by mistake,

we may lose important information. On the other hand, if we keep outliers, the classical

estimate for the linear regression model is unlikely to provide the actual result. Thus, we

need some other robust methods that automatically down-weight outlying observations.

For this purpose, we use different robust estimators, including Huber M-estimation, Tukey

MM-estimator, and Least Absolute Deviation (LAD) estimation, to better understand the

dataset.

Another critical issue with regression analysis is variable selection for high-dimensional

datasets. In order to mitigate potential modeling biases, a significant number of regressors

are typically introduced at the beginning of the regression model. However, adding extra

predictors can reduce the effectiveness of the resulting estimation process and produce less

accurate predictions. On the other hand, leaving out a crucial explanatory variable could

lead to inaccurate parameter values and incorrect predictions. To choose a model and

perform model estimation in regression models, Tibshirani (1996) proposed the least ab-

solute shrinkage and selection operator (LASSO). The parameter estimation and variable

(model) selection is done concurrently using the LASSO method. In a single minimization

problem based on a penalized technique, these two methods have been combined. The

LASSO, however, is affected by heavy-tailed errors or outliers in the data since it is a

special case of penalized least squares regression. The LAD-LASSO is a robust version of

1



the LASSO technique, making it resistant to outliers and heavy-tailed error distributions

(Hesterberg et al. 2008). Combining the LAD and LASSO methods, the LAD-LASSO re-

gression recently became popular for performing simultaneous robust parameter estimation

and variable selection.
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Chapter 2

Ordinary Least-Squares (OLS)

estimator

Assume there are n observations {xi, yi}n
i=1 in a dataset. A scalar response yi and col-

umn vector xi with p regressors are included in each observation i. It can expressed as

xi = [xi1, · · · , xip]T . The target (response) variable yi, in a model of linear regression is a

linear function of the regressors (dependent variables): yi = β1xi1, · · · , βpxip + ui, in vector

notation it can be expressed as follows:

yi = xT
i β + ui

where β is p × 1 vector of unknown parameters, xi are the explanatory variables of the

column vector of i-th observation. This model can alternatively be expressed in matrix

notation as

Y = Xβ + u

where y and u are the n × 1 vectors of the dependent (response) variable and the noise

of the n observations respectively, and n × p be the dimension of the design matrix X.

A systematic component (Xβ) and a stochastic component (u) make up the model. Our

objective is to estimate the population parameters included in the vector.

The primary goal of Least Square method is to reduce the sum of the squares of noise

3



components of the estimated parameter β, i.e.

β̂ = arg min
β

n∑
i=1

|Yi −
p∑

j=1
Xijβj|2 = arg min

β
∥Y − Xβ∥2

The vector of residuals is represented by

u = Y − Xβ̂

It should be clear that the total of squared residuals can be expressed as:

u′u = (Y − Xβ̂)′(Y − Xβ̂)

=⇒ u′u = Y ′Y − β̂′X ′Y − Y ′Xβ̂ + β̂′X ′Xβ̂

=⇒ u′u = Y ′Y − 2β̂′X ′Y + β̂′X ′Xβ̂

Take the derivative of the above equation with respect to β̂ to obtain the β̂ that mini-

mizes the sum of squared residuals. This gives,

δu′u

δβ̂
= −2X ′Y + 2X ′Xβ̂ = 0

To check the minimum of the above equation, we went for the second derivative, the result

gave us 2X ′X. Thus it is easy to take a decision that X has a full rank and positive definite

matrix. Therefore, the Ordinary Least Squares (OLS) estimate is given by

(X ′X)β̂ = X ′Y =⇒ β̂ = (X ′X)−1X ′Y

Assumptions of the multiple linear model:

a. The population mean of the error term is zero.

b. The error terms are not correlated with any independent variables.

c. There is no correlation between the observations of the error term.

4



d. There is no heteroscedasticity in the error term; it has a constant variance.

e. The noise term is normally distributed.

2.1 Asymptotic Distribution of OLS

We know from the above discussion β̂LS = (X ′X)−1X ′Y . We now assume that random

errors term (ui) are i.i.d with E(ui) = 0 and var(ui) = σ2. If X is fixed, then E(β̂LS) = β

and var(β̂LS) = σ2(X ′X)−1. Thus if the X is full rank and ui are normal, then β̂LS is a

multivariate normal. That is,

β̂LS ∼ Np(β, σ2(X ′X)−1).

5



Chapter 3

M-Estimation

Let x1, · · · xn be a random sample from a distribution f(xi, µ), where µ is the parameter of

interest. The maximum likelihood estimate (MLE) of µ is defined as:

µ̂ = arg max
µ

(
n∏

i=1
f(xi, µ)

)
, or µ̂ = arg min

µ
(− log f(xi, µ)). (3.0.1)

Under some regularity conditions, the MLE is the most efficient estimator. However, it is

well known that the MLE breaks down in the presence of outliers. In 1964, Peter J. Huber

proposed generalizing maximum likelihood estimation to the minimization of

n∑
i=1

ρ(xi, µ), (3.0.2)

where the ρ function can be chosen in such a way to provide the estimator desirable prop-

erties in terms of bias and efficiency. The minimizer of the above equation is called an

M-estimator. The aim of an M-estimator is to down-weight the effect of outliers and make

the estimator robust. In case of the multiple linear regression model, an M-estimator is

obtained as follows:

β̂M = min
n∑

i=1
ρ

(
(yi −∑k

j=0 x′
ijβj)

σ̂MAD

)
, (3.0.3)

where

σ̂MAD = median|ui − median(ui)|
0.6745 . (3.0.4)

Here, median absolute deviation (σ̂MAD) is an estimate of scale frequently created by com-

bining the residuals in a linear fashion. The constant 0.6745 helps sample standard devia-

tion S to become an unbiased estimate of population standard deviation σ.

6



If we take first partial derivative to find out β̂M , then

n∑
i=1

xijΨ
(

yi −∑k
j=0 xijβ

σ̂

)
= 0, j = 0, · · · , k, (3.0.5)

where first derivative of ρ is Ψ, that is Ψ = ρ′, xij is i-th observation on the j-th independent

variable.

Let us define the weight function as

wi =
Ψ
(

yi−
∑k

j=0 x′
ijβj

σ̂MAD

)
(

yi−
∑k

j=0 x′
ijβj

)
σ̂MAD

. (3.0.6)

Then, the M-estimator is derived from

β̂M = (XT WX)−1(XT WY ), (3.0.7)

where W is the diagonal matrix with the diagonal element as wi, i = 1, 2, · · · , n. We cannot

to directly calculate the weight function in equation (3.0.6), as the weights depend on the

unknown parameter β and σ. However, the weighted-means representation of M-estimators

yields a straightforward iterative approach for computing the M-estimator.

(i) We take median as the initial estimate of β and then calculate sample standard

deviation s,

(ii) Compute new estimate for β using equation (3.0.7),

(iii) Until the algorithm converges, repeat step (i) & (ii).

7



3.1 Huber M Estimation

The ρ function for Huber M-estimator is

ρ(u) =


1
2u2 if |u| < c,

c|u| − 1
2c2 if |u| ≥ c,

(3.1.1)

where u = yi − ŷi. The Least-squares (LS) and the least absolute deviation (LAD) loss

functions are combined to create Huber’s loss, which uses the LS-loss function for generally

minor mistakes and the LAD loss function for generally big errors. This has a double

exponential distribution at the tails and a Gaussian distribution in the centre. Moreover,

if c → ∞, Huber loss function reduces to least square loss (LS Loss) ρc(u) = u2

2 . The

derivative of Huber loss function, which is convex and differentiable, produces the following

weight function:

w(u) =


1 if |u| ≤ c,

c/|u| if |u| > c,

(3.1.2)

where w(u) = Ψ(u)/u.

For the Huber M-estimator weighted function we take c = 1.345, where c is a cutoff point

configured by users that affects the level of robustness. To achieve a user defined asymptotic

relative efficiency with respect to least square estimate under normal (Gaussian) errors, the

cutoff point c is often selected to minimise the regression problem (σ being fixed). The

cutoff point are chosen c0.95 = 1.345 and c0.85 = 0.7317 correspondingly for 95% and 85%

asymptotic relative efficiency.
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3.2 Tukey MM Estimation

Tukey MM method is a combination of high breakdown point estimation and efficient

estimation. The ρ function for Tukey Bisquare Estimator is given below

ρ(ui) =


u2

i

6 {1 − [1 − (ui

c
)2]3} if |ui| ≤ c,

u2
i

6 if |ui| > c.

(3.2.1)

The weight function is given by

wi =


[1 − (ui

c
)2]2} if |ui| ≤ c,

0 if |ui| > c.

(3.2.2)

The popular choice of c = 4.685 for the Tukey’s bisquare weighted function.

3.3 The Distribution of M-estimates

Let us consider a general linear model

Y = Xβ + u,

where X are the vectors with dimension n × p, and u is the identically independently dis-

tributed random variables of a distribution F with components (u1, · · · , un). Y is consists

of the (y1, · · · , yn) observations. Assume that

E(ui) = 0 and E(u2
i ) < ∞. (3.3.1)

An M-estimator of β is defined in equation (3.0.3) or equivalently, the solution of the

estimating equation given in equation (3.0.5). Then, the following results from Yohai &

Maronna (1979) give the consistency and asymptotic distribution of the M-estimator.

9



Assumptions: Let us assume

(A1) Ψ is nondecreasing

(A2) there exist positive numbers b, c and d such that

D(u, z) ≥ d if |u| ≤ c and |z| ≤ b, (3.3.2)

where

D(u, z) = ϕ(u + z) − ϕ(u)
z

, (3.3.3)

and c satisfies

q = F (c) − F (−c) > 0.

(A3) EF (Ψ2(u)) = v < ∞

(A4) EF (Ψ(u)) = 0

(A5) For all n > n0, X ′X is a nonsingular matrix.

Consistency: Under assumptions (A1)–(A5), the M-estimator β̂ is a consistent esti-

mator of β if λ1(X ′X) → ∞, where λ1(X ′X) is the smallest eigen value of X ′X.

Let us define

β∗ = Mβ, β̂∗ = Mβ̂, zi = (M ′)−1xi, (3.3.4)

where M is a p × p matrix so that M ′M = X ′X. Therefore, we have

n∑
i=1

ziz
′
i = I and

n∑
i=1

|z2
i | = p

and β̂∗ is a solution of
n∑

i=1
Ψ(yi − z′

iβ̂
∗)zi = 0.

Then, the following theorem gives the asymptotic distribution of β̂∗.

10



Asymptotic Normality: Let us assume that Ψ and F satisfy (A1)–(A5) and the

following conditions

∫ ∞

−∞
[Ψ(x + h) − Ψ(x − h)]2 dF (x) = 0 as h → 0

and

sup|q|≤ε,|h|≤ε{|h|−1
∫ ∞

−∞
[Ψ(x + q + h) − Ψ(x + q)] dF (x) } < ∞ for some ε > 0

There exists A(Ψ, F ) such as

∫ ∞

−∞
[Ψ(x + h) − Ψ(x − h)] dF (x) = hA(Ψ, F ) + o(h)

Also consider

lim
n→∞

max
i≤n

|zi|2 = 0

Then, the distribution of (β̂∗−β∗) follows a multivariate normal with mean 0 and covariance

τ 2I, where

τ 2 = EF Ψ2/A(Ψ, F )2.

11



Chapter 4

Variable Selection

4.1 Least Absolute Shrinkage and Selection Operator

(LASSO)

Consider the multiple linear regression setup, where we have data (xi, yi), i = 1, 2, · · · , n,

where xi = (xi1, · · · , xip)T and yi is the regressor and response for the i-th observation. The

residual squared error is minimized to get the ordinary least squares (OLS) estimations.

In high-dimensional data, the analyst is frequently unsatisfied with the OLS estimates for

two reasons. The first is the success rate of predictions: OLS estimates frequently have

low bias but high variance; sometimes reducing or lowering some coefficients to 0 might

increase prediction accuracy. In exchange for reducing the variance of the prdicted values,

we make a little bias sacrifice, which may increase the prediction accuracy as a whole.

Interpretation is the secondary factor. We frequently want to identify the smaller selection

of predictors that has the largest influence when there are many predictors. Subset selection

and ridge regression, the two commonly used methods for enhancing the OLS estimates,

both have shortcomings. Because subset selection is a discrete process in which regressors

are either kept in the model or removed, it can produce highly variable models that are

still interpretable. Its prediction accuracy may decrease as a result of significantly diverse

models being chosen in response to small changes in the data. Ridge regression produces

a more stable model since it continuously reduces coefficients; but, because no coefficients

are set to 0, it does not produce a model that is simple to understand. We provide a novel

method for least absolute shrinkage and selection operator called the LASSO. It attempts

12



to keep the beneficial aspects of both subset selection and Ridge regression by reducing

some coefficients and setting others to 0.

4.2 Background

Let’s say we have data (xi, yi), i = 1, 2, · · · , n, where xi = (xi1, · · · , xip)T are the predicting

factors and yi is the responses. We may assume that the observations are independent, as

is the case in the standard regression setup, or that the yis are if certain conditions are met

given the xijs. We assume that xij are standardized so that ∑i xij/n = 0, ∑i x2
ij/n = 1.

Letting β̂ = (β̂1, · · · , β̂p)T , the LASSO estimate (α̂, β̂) is defined by,

(α̂, β̂) = arg min


n∑

i=1
(yi − α −

∑
j

βjxij)2

 , (4.2.1)

subject to | βj | ≤ t. Here t ≥ 0 is a tuning parameter. Now for all t the solution for α is

α̂ = ȳ. We can assume without sacrificing generality that ȳ = 0 and hence omit α.

The parameter t ≥ 0 regulates how much shrinkage is applied to the estimates. Let β̂0
j

be the full least squares estimates and let t0 = ∑ | β0
j |. Values of t < t0 will result in

the solutions shrinking towards 0, and some coefficients might be exactly 0. For example,

if t = t0/2 the effect will be basically equivalent to determining the best size subset p/2.

Also, keep in mind that the design matrix does not have to be full rank.

The idea for the LASSO was inspired by an intriguing proposition of Breiman (1993).

Breiman’s non-negative garotte minimizes

n∑
i=1

(yi − α −
∑

j

cjβ̂j

o
xij)2, (4.2.2)

subject to cj ≥ 0,
∑

cj ≤ t. Starting with the OLS estimates, the garotte reduces them by

non-negative components whose sum is restricted. Breiman shown in extensive simulation

experiments that, with the exception of situations when the correct model has numer-

13



ous small non-zero coefficients, Garotte typically outperforms subset selection in terms of

prediction error and competes favorably with ridge regression.

The garotte has the issue that the direction and size of the OLS estimations affect

its solution. The garotte may suffer when the OLS estimates behave unfavorably due to

overfitting or excessive correlation. When compared to the LASSO, OLS estimates are not

explicitly used. Tibshirani (1996) proposed the following LASSO criterion:

Q(β) =
n∑

i=1
(yi − x′

iβ)2 + nλ
p∑

j=1
| βj |,

where λ > 0 is the tuning parameter. The generated estimators may have a significant bias

because LASSO utilizes the same tuning settings for all regression coefficients.

4.3 Orthonormal Design

The shrinkage’s nature is shown by the orthonormal design scenario. Let X be the n × p

design matrix with ijth entry xij, and suppose that XT X = I, the identity matrix.

It is simple to demonstrate that the solution of equation (4.2) is given by

β̂j = sign(β̂0
j )(| β̂0

j | −γ)+, (4.3.1)

where γ is decided by the condition ∑ | β̂0
j |= t. This follows the soft shrinkage suggestions

exactly in terms of structure is interestingly same Donoho & Johnstone (1994) and Donoho

& Johnstone (1995) made in reference to the function estimate of wavelet coefficients. In

the context of signal or picture recovery, Donoho et al. (1992) have seen a connection

between soft shrinkage and a low L1 norm penalty for non-negative parameters.

In the orthonormal design scenario, selecting the optimal subset of size k reduces to

selecting the k coefficients with the biggest absolute values and setting the other coefficients

to 0. For some choice of λ this is equivalent to setting β̂j = β̂0
j if | β̂0

j |> λ and to 0 otherwise.
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On the other hand, the ridge regression minimizes

n∑
i=1

(yi −
∑

j

βjxij)2 + λ
∑

j

β2
j (4.3.2)

or equivalently, minimizes

n∑
i=1

(yi −
∑

j

βjxij)2 subject to
∑

β2
j ≤ t. (4.3.3)

The solutions at the ridge include
1

1 + γ
β̂0

j , (4.3.4)

where γ depends on λ or t. The garotte estimate is

(1 − γ

β̂o2
j

)+β̂o
j . (4.3.5)

The garotte function is similar to the LASSO in that it shrinks less with increasing coeffi-

cient size.

4.4 Geometry of LASSO

For the case p = 2, the criterion ∑n
i=1(yi −∑

j βjxij)2 equals the quadratic function

(β − β̂o)T XT X(β − β̂o).

The constraint region is the rotated square, and the elliptical outlines of this function are

centered at the OLS estimates. There are no corners for the contours to contact, therefore

zero solutions will seldom occur. The LASSO solution is the first place the contours touch

the square, and this will occasionally happen at a corner, resulting to a zero coefficient.

The parameters have been standardized, when p = 2 the main axis that make up the

outlines are at ±45o to the co-ordinate axes, and We can demonstrate that the contours
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must come into contact with the square in the same quadrant as the one containing β̂o.

However, when p > 2 and the data show at least a considerable degree of correlation,

while this need not be the case. However, the garotte keeps the mark of each β̂o
j , LASSO

is capable of changing signs.The existence of the OLS estimates in the garotte can cause

it to behave differently even when the LASSO estimate and the garotte have the same

sign vector. The model ∑ cjβ̂oxij with constraint ∑ cj ≤ t can be written as ∑ βjxij with

constraint ∑ βj

β̂o ≤ t. If for example p = 2 and β̂o
1 > β̂o

2 > 0 then the outcome would be

a horizontal stretching of the square. The garotte will therefore prefer bigger values of β̂1

and smaller values of β2.

Without loss of generality, let’s assume that p = 2, and assume without loss of generality

that both of the least squares estimates β̂o
j are positive. Next, we can demonstrate that

the LASSO estimates are

β̂ = (β̂o
j − γ)+, (4.4.1)

where γ is chosen so that β̂1 + β̂2 = t. This formula holds for t ≤ β̂o
1 + β̂o

2 is accurate despite

the predictors’ correlation. Solving for γ produces

β̂1 =
 t

2 + β̂o
1 + β̂o

2
2

+

, β̂2 =
 t

2 − β̂o
1 − β̂o

2
2

+

. (4.4.2)

All values of ρ are covered by the LASSO estimations along the entire curve. The esti-

mations of the ridges that are broken depend on ρ. When ρ = 0, the slope of the ridge

regression shrinks correspondingly. However, because the bound is compressed for larger

values of ρ, the ridge estimates are reduced differently and may even increase slightly. As

Jerome Friedman pointed out, this is a consequence of ridge regression’s propensity to try

to equilibrate the coefficients in order to lessen their squared norm.
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4.5 Standard Errors

Since the LASSO estimate is a non-linear and non-differentiable function of the response

values, it is difficult to calculate the standard error of the estimate even for a fixed value

of t. The bootstrap method is one technique; for each bootstrap sample, t can either be

fixed or optimized over. In order to fix t, it is similar to selecting the best subset and then

using its least squares standard error.

One can derive an approximate closed form approximation by writing the penalty ∑ |

βj | as ∑ β2
j

|βj | . Hence, at the LASSO estimate β̂, we may the solution by a ridge regression of

the norm β∗ = (XT X +λW −)−1XT y where W is a diagonal matrix with diagonal elements

| β̃j|, W − denotes the generalized inverse of W and λ is chosen so that ∑ | β∗
j |= t. The

covariance matrix of the estimates can be roughly calculated using

(XT X + λW −)−1XT X(XT X + λX−)−1σ̂2, (4.5.1)

where σ̂2 is an estimate of the error variance. This formula has the drawback of providing

an estimated variance of 0 for predictors with β̂j = 0.

4.6 LAD-LASSO

Consider a linear regression model

yi = x′
iβ + ϵi, i = 1, · · · , n, (4.6.1)

where xi = (xi1, · · · , xip)′ is the p dimensional regression covariate, β = (β1, · · · , βp)′ are the

associated regression coeffficients, and ϵi are iid random errors with median 0. Moreover,

assume that βj ̸= 0 for j ≤ p0 and βj = 0 for j > p0 for some p0 ≥ 0. Thus the correct

p0 significant and (p − p0) not significant regression variables. Typically, the OLS criterion

can be minimized in order to estimate the model’s unknown parameters, ∑n
i=1(yi − x′

iβ)2.
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To reduce extraneous coefficients as well to 0 (Fan & Li 2001). Consequently, we also take

into account the following modified LASSO criterion:

LASSO∗ =
n∑

i=1
(yi − x′

iβ)2 + n
p∑

j=1
λj|βj|,

which enables the use of various tuning parameters for various coefficients. As a result,

LASSO∗ is better than LASSO at producing sparse solutions. The OLS criterion employed

in LASSO∗ is well known to be extremely sensitive to outliers, though. We further change

the LASSO∗ objective function into the following LAD-LASSO criterion to produce a

robust LASSO-type estimator:

Q(β) =
n∑

i=1
| yi − x′

iβ | +n
p∑

j=1
λj|βj|.

As is obvious, the LAD-LASSO criteria combines the LAD criterion and the LASSO

penalty; as a result, the resulting estimator is expected to be robust to outliers and to enjoy

a sparse representation.
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Chapter 5

Simulation Results

We also carried out a simulation study of the relative effectiveness of the Root Mean Pre-

diction Error (RMPE). The simulation results are shown in tables (5.1)–(5.9). Simulation

findings based on the characteristics of several robust estimating techniques for sample

size (n) (training data), contamination proportion (p), trimming proportion for RMPE,

size of test data, number of replication (R), sigma: error standard deviation, location of

outliers. We considered the errors are normally distributed. The detailed information of

the simulation setup is given in R code in the Appendix.

Table 5.1: Root mean prediction errors over 50 samples for 0% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

0.8660351 0.8738636 0.8766966 0.8862412 1.2236169 1.4025990
In 0 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
0.8660351 0.8738636 0.8766966 0.8862412 1.2236169 1.4025990

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

1.101808 1.109186 1.111754 1.113878 1.299827 1.666857

We observed that for the case of 5% outliers and for the test data, as the sample size

increases mean prediction error decreases for Tukey and Huber, and for the 10% outliers we

experienced the same pattern for the Tukey and Huber. Other methods provided RMPE

which are larger than the Tukey and Huber. Although Tukey MM and Huber M-estimators

RMPE value is very close, specifically, Tukey MM-estimator provided us the lower RMPE
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Table 5.2: Root mean prediction errors over 50 samples for 5% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

3.607753 4.027983 4.124016 3.800170 4.089226 4.189711
In 5 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
1.8094452 0.8336395 0.8143050 1.7366329 1.1579878 1.4257752

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

2.390870 1.129554 1.115302 2.235038 1.344893 1.842929

Table 5.3: Root mean prediction errors over 50 samples for 10% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

5.448293 6.174247 6.385792 5.918860 6.204027 6.300127
In 10 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
3.0012419 0.9519808 0.8741759 2.9544069 1.3369843 1.7078085

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

3.729105 1.211684 1.106938 3.388778 1.496747 2.122962

than Huber M-estimator. However, when we considered 0% outliers then OLS provided us

the better result, although the results of Huber and Tukey are very close to OLS.
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Table 5.4: Root mean prediction errors over 100 samples for 0% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

0.9492279 0.9527806 0.9532036 0.9585786 1.2191313 1.4114292
In 0 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
0.9492279 0.9527806 0.9532036 0.9585786 1.2191313 1.4114292

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

1.104925 1.109122 1.109058 1.117279 1.426157 1.636696

Table 5.5: Root mean prediction errors over 100 samples for 5% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

4.223040 4.503123 4.564310 4.290617 4.540071 4.601477
In 5 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
1.8484025 0.9395949 0.9265473 1.8226538 1.2106157 1.5203182

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

2.014507 1.106811 1.103090 1.950204 1.434388 1.791936

Table 5.6: Root mean prediction errors over 100 samples for 10% outliers

In full training data
5.756346 6.255145 6.382624 5.907336 6.278497 6.325418

In 10 % trimmed training data
OLS Huber Tukey LASSO LAD LAD-LASSO

2.7037218 0.9706079 0.9268265 2.7174216 1.2495160 1.7293914
In test data

OLS Huber Tukey LASSO LAD LAD-LASSO
2.893549 1.130862 1.102836 2.777624 1.440567 1.984243

21



Table 5.7: Root mean prediction errors over 150 samples for 0% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

0.9617213 0.9639335 0.9640969 0.9677256 1.2271929 1.4772331
In 0 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
0.9617213 0.9639335 0.9640969 0.9677256 1.2271929 1.4772331

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

0.9850437 0.9878325 0.9885020 0.9888645 1.2466415 1.5521162

Table 5.8: Root mean prediction errors over 150 samples for 5% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

4.455625 4.677796 4.726180 4.506301 4.717703 4.801181
In 5 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
1.7781387 0.9701431 0.9590385 1.7574830 1.2565367 1.6325668

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

1.8854363 1.0002758 0.9869823 1.8944440 1.2867973 1.7429515
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Table 5.9: Root mean prediction errors over 150 samples for 10% outliers

In full training data
OLS Huber Tukey LASSO LAD LAD-LASSO

5.870861 6.295382 6.401048 5.943603 6.299566 6.347056
In 10 % trimmed training data

OLS Huber Tukey LASSO LAD LAD-LASSO
2.5922784 1.0017509 0.9656727 2.5559324 1.2871031 1.7747781

In test data
OLS Huber Tukey LASSO LAD LAD-LASSO

2.7836584 1.0426653 0.9968226 2.7803825 1.3515616 1.9378616
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Chapter 6

Real Data Analysis

A real dataset is used to assess how well the robust model strategy performs. We studied a

set of collected data at the moment of medical examination for the patients to be healthy

or suffering from cardiovascular disease (Source: https://www.kaggle.com/datasets/

sulianova/cardiovascular-disease-dataset). This dataset comprises 70,000 patient

records with information on 12 characteristics, including age, gender, systolic and diastolic

blood pressure, among others.

Description of the dataset: (i) Age: integer (in days) (ii) Height: integer (in cm) (iii)

Weight: (in kilogram) (iv) Sex: 1 = Male; 2 = Female (v) Blood pressure level: Systolic:

integer. (vi) Blood pressure level: Diastolic: integer (vii) Cholesterol level: 1: normal, 2:

above normal, 3: well above normal (viii) Glucose level: 1: normal, 2: above normal, 3: well

above normal (ix) Smoking status: binary: 1: smoker, 0: nonsmoker. (x) Alcohol intake:

1: alcoholic 0: nonalcoholic (xi) Physical activity: 1: active 0: inactive (xii) Presence or

absence of cardiovascular disease: 1: present, 0: absent.

At the time of the physical examination, all dataset values were gathered. After cleaning

the dataset, we took 68,986 observations with 12 important features. Compared to more

conventional, smaller datasets like the Cleveland Dataset and the Hungarian Heart Disease

Dataset (200–1000 variables), the used dataset is considerably larger (68,986 values). This

aids in the development of more accurate and effective models. All variables were contin-

uous, binary, or categorical, and there were no missing values in it. In the case of systolic

blood pressure, we experienced anomalies as well as diastolic blood pressure too. These

implausible data points were down-weighted by the robust models so that we produce more

realistic predictions. We considered the response variable as a continuous variable, which
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Figure 6.1: OLS residuals plot of the cardiovascular disease dataset: response vari-
able is systolic BP.

is systolic blood pressure; in another case, we considered diastolic blood pressure.

6.1 Data Summary

From the residual plots (Fig. 6.1), density plot (Fig. 6.4), boxplot (Fig. 6.7), and QQ

plot (Fig. 6.6), we have seen, in case of systolic blood pressure, there are many values

lies above the third quartile and below the first quartile. The data is positively skewed

(0.1414235). The distribution curve’s outliers are more extreme to the right. Kurtosis of

systolic blood pressure is 8.261528, which means the data is leptokurtic and produces more

outliers compared to normal distribution. The maximum value and minimum value are

recorded as 401 and 7, respectively, though the systolic blood pressure range is generally

(100 - 130) (source: https://www.cdc.gov/bloodpressure/about.htm). The average

systolic blood pressure is 126.5. Similarly, we observed that diastolic blood pressure also

has many extreme values, for the diastolic blood pressure outliers lie above the third quartile
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Figure 6.2: OLS residuals plot of the cardiovascular disease dataset: response vari-
able is diastolic BP.

and below the first quartile. The average diastolic blood pressure is 81.35. Diastolic Blood

pressure data points also fluctuate as the systolic data points. The highest and lowest

value recorded as 190 and 01, respectively. From the figure (6.2, 6.3, 6.5 & 6.7), we

have an idea that diastolic blood pressure data also has some disturbing values. Diastolic

blood pressure data were positively skewed (0.4960359) and leptokurtic (8.130113). Here

we consider systolic blood pressure as our target variable, and we took diastolic blood

pressure as a response variable again. However, we have taken robust methods for the down-

weighted outliers and compared those robust methods based on their RMPE. We are also

cautious about the dataset so that these extreme values do not hinder the result. From the

descriptive statistics, we observed that male patients’ cardiac risk is much more than female

patients before the average age (<53). Due to systolic blood pressure above the normal

range (greater than 130), males are affected by around 52.47%, and females are affected by

approximately 30.95%. Diastolic blood pressure is responsible for around 19.48% and 8.92%

for male and female patients, respectively. Cholesterol level (well above normal) having an
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Figure 6.3: The Density Plot of Diastolic Blood Pressure in the cardiovascular dis-
ease dataset.

Figure 6.4: The Density Plot of Systolic Blood Pressure in the cardiovascular dis-
ease dataset.

obligation of about 35.35% & 23.25% proportionately for men and women. Glucose level

(well above normal) control over around 43.30% and 18.50% for male and female patients,

respectively. Surprisingly, we have got two different characteristics, one is smoking, and

another one is alcohol intake, where males are less sufferer than females. For these two

attributes, males clearly detected more cardiac disease symptoms than females, physically

active and not active. According to the CDC (https://www.cdc.gov/healthyweight/

assessing/bmi/adult_bmi/index.html), Body Mass Index (BMI) is interpreted into four

categories. These are: below 18.5, 18.5 – 24.9, 25.0 – 29.9, 30.0, and Above defines as
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Figure 6.5: The QQ Plot of Diastolic Blood Pressure

Figure 6.6: The QQ Plot of Systolic Blood Pressure

Table 6.1: Percentage of males and females having Cardiovascular Disease (CVD)
for different features.

Features Male Female
Age < 53 (average age) 23.79% 4.07%

Systolic Blood Pressure (>130) 52.47% 30.95%
Diastolic Blood Pressure (<80) 19.48% 8.92%
Cholesterol (well above normal) 35.35% 23.25%

Glucose (well above normal) 43.30% 18.50%
Smoker 6.10% 40.66%

Alcohol intake 15.21% 32.56%
Physical activity 31.49% 17.07%

Physically not active 8.41% 4.63%
BMI (18.5 < BMI < 24.9) 11.93% 7.3%

BMI (>25) 36.68% 18.93%
BMI (<18.5) 17.88% 9.6%
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Figure 6.7: The Box Plot of Systolic and Diastolic Blood Pressure in the cardio-
vascular disease dataset.

Underweight, Healthy Weight, Overweight, and Obesity, respectively. The data shows a

much more heart disease risk with a BMI greater than 25. Here, we have seen that systolic

blood pressure is a critical factor in causing cardiovascular disease. Indeed, it is a growing

concern for medical science.

6.2 Variable Selection

Table 6.2: Coefficients estimates of Cardiovascular Disease dataset using different
methods ( “0” indicates that the corresponding variable is not selected.)
Response variable is Systolic Blood Pressure.

Variable OLS Huber Tukey LAD LASSO LAD-LASSO
Age 0.0005 0.0433 0.0324 0.0006 0.0001 0

Gender 0.0002 0.0141 0.0093 0.0001 0 0
Height -0.0003 -0.0238 -0.0194 -0.0027 0 0
Weight 0.0082 0.0613 0.0505 0.0008 0 0

Diastolic 0.0553 0.6347 0.6649 0.0552 0.0642 0.0545
Cholesterol 0.0038 0.0294 0.0289 0.0036 0.0059 0

Glucose -0.0001 0.0012 0.0008 0 0 0
Smoke 0.0012 0.0088 0.0076 0.0011 0.0001 0

Alcohol Intake -0.0016 0.0033 0.0034 0 0 0
Activity 0.009 0.0072 0.0069 0.0007 0 0
Cardio 0.0181 0.1373 0.1081 0.1802 0.1474 0.0282
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Table 6.3: Coefficients estimates of Cardiovascular Disease dataset using different
methods ( “0” indicates that the corresponding variable is not selected.)
Response variable is Diastolic Blood Pressure.

Variable OLS Huber Tukey LAD LASSO LAD-LASSO
Age 0.0011 0.0039 0.0027 0.0011 0 0

Gender 0.0022 0.0143 0.0123 0.0018 0 0
Height -0.0005 0.0064 0.0098 -0.0002 0 0
Weight 0.0076 0.0.0430 0.0304 0.0075 0 0
Systolic 0.0593 0.07351 0.7949 0.0592 0.0724 0.0606

Cholesterol 0.0017 0.0062 0.0003 0.0017 0 0
Glucose 0 -0.0038 -0.0037 0 0 0
Smoke -0.0008 -0.0076 -0.0075 -0.0006 0 0

Alcohol Intake 0.0019 0.0070 0.0047 0.0017 0 0
Activity 0.0002 0.0004 -0.0010 0 0 0
Cardio 0.0072 0.0251 0.0118 0.0072 0 0

From the coefficients estimation table, we have considered the full data set. For these,

we carried out our study considering systolic blood pressure, and then we considered di-

astolic blood pressure as a response variable. Among the test procedure, systolic blood

pressure is the most common one that was selected by all methods; the second most se-

lected characteristic was diastolic blood pressure. In the coefficients estimation tables, we

saw, LAD-LASSO criteria do not select most variables but systolic and diastolic variables.

However, Huber and Tukey’s method takes all the variables, though the weight differed for

all variables. Hence, the importance of variable selection criteria converged with our de-

scriptive statistics. In the descriptive statistics, we have seen that systolic blood pressure is

mostly responsible for cardiac risk. All methods chose the systolic blood pressure variable

in our variable selection criteria. For further evaluation, we checked the RMPE of these

methods. We predict that systolic and diastolic blood pressure are the two most significant

variables in our study.
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6.3 Prediction

We tried to determine which model provided us with less RMPE compared to our models’

findings. In addition, we thought carefully about mean dimension reduction typically before

making a decision. In our study, we have seen that the LAD-LASSO method reduced the

data dimension for systolic BP more than the LASSO method. A similar criterion we have

seen for diastolic BP. From the RMPE table, we saw Huber and Tukey’s methods provided

very close results and less RMPE value than other models. A similar study has been done

by Qin et al. (2017), Song & Liang (2015). From the β coefficients results, we have also

seen that evaluating of β coefficient of this data, systolic blood pressure, and diastolic blood

pressure were the top selection category of all the models.

Table 6.4: The RMPE of different methods when all observations are used for
training as well as test data.

RMPE
Response Variable OLS Huber Tukey LAD LASSO LAD-LASSO

Systolic BP 0.524 0.461 0.469 0.471 0.491 0.495
Diastolic BP 0.525 0.502 0.501 0.525 0.524 0.525

Dimension Reduction
Response variable LASSO LAD-LASSO

Systolic BP 9.09 80.01
Diastolic BP 9.1 90

Table 6.5: The RMPE of different methods when 80% of observations are used for
training, and remaining 20% are test data.

RMPE
Response Variable OLS Huber Tukey LAD LASSO LAD-LASSO

Systolic BP 1.191 0.461 0.469 1.249 1.643 1.554
Diastolic BP 1.525 0.402 0.401 1.575 1.554 1.763

We further split the dataset into two categories. We randomly chose 80% of observations
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as training and the remaining 20% as test data. The RMPE of the test data set showed that

Huber and Tukey provided a lower RMPE than the other methods. For the systolic BP,

Huber provided the lowest value; for the diastolic BP, Tukey provided the lowest RMPE.
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Conclusion

We compared different robust methods in linear regression, including Huber and Tukey’s M-

estimators. We also studied the two variable selection methods – LASSO and LAD-LASSO.

We reviewed their theoretical properties and performed a simulation study. Finally, we

evaluated how well robust models can forecast systolic and diastolic blood pressure based

on different features. To begin with, we explore the data patterns and the critical features

of the cardiovascular disease dataset. Root Mean Prediction Error (RMPE) determines how

closely predictions or estimates match actual values. To choose the best estimator from the

OLS, Huber, Tukey, LAD, LASSO, and LAD-LASSO, we observed that Huber M-estimator

and Tukey MM-estimator provided better results. These two estimators give low RMPE

in full data and when data is divided into training and test sets. We also observed that

the OLS estimate provided a large RMPE for this dataset due to the anomalies or more

extreme values.
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Appendix

R CODE

Simulation_LM = func t i on (n=150 , p=0.1 , tr im=p , n_test =100 , R=100 ,

sigma=1, mu_outlier = 20){

# n : sample s i z e ( t r a i n i n g data )

# p : contaminat ion propor t ion

# trim : trimming propor t ion f o r RMPE

# n_test : s i z e o f t e s t data

# R: number o f r e p l i c a t i o n

# sigma : e r r o r sd

# mu_outlier : l o c a t i o n o f o u t l i e r s

l i b r a r y ( glmnet ) #f o r l a s s o

l i b r a r y ( "MTE" ) #f o r LADlasso

l i b r a r y ( gamsel )

l i b r a r y (MASS)

s e t . seed (123)

# f o r gamsel

n . b a s i s=5

k = 10

# X f o r Train ing Data

# x1 <− r u n i f (n)

# x2 <− r u n i f (n)

# x3 <− r u n i f (n)
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# X <− cbind ( x1 , x2 , x3 )

# reg <− 5∗x1 − 3∗x2

X = matrix ( r u n i f (n∗k ) , nrow = n)

reg = 5 ∗ X[ , 1 ] − 3 ∗ X[ , 2 ] + 2 ∗ X[ , 3 ] − 4 ∗ X[ , 4 ] + 10 ∗ X[ , 5 ]

# Test data

# x1 <− r u n i f ( n_test )

# x2 <− r u n i f ( n_test )

# x3 <− r u n i f ( n_test )

# X_test <− cbind ( x1 , x2 , x3 )

# reg_test <− 5∗x1 − 3∗x2

X_test = matrix ( r u n i f ( n_test ∗k ) , nrow = n_test )

reg_test = 5 ∗ X_test [ , 1 ] − 3 ∗ X_test [ , 2 ] + 2 ∗ X_test [ , 3 ] −

4 ∗ X_test [ , 4 ] + 10 ∗ X_test [ , 5 ]

eps <− rnorm ( n_test , 0 , sd=sigma )

Y_test = reg_test + eps

# p r e d i c t i o n e r r o r s

RMPE_train_full = RMPE_test = RMPE_train_trim = matrix (NA, R, 8)

colnames ( RMPE_train_full ) = colnames (RMPE_train_trim) =

colnames (RMPE_test) = c ( "OLS" , " Huber " , " Tukey " , "LASSO" , "LAD" ,

"LAD LASSO" , "GAM" , "GAMSEL" )

f o r ( i in 1 :R) {

i f ( ( i ==1) | ! ( i %%10)) cat ( s p r i n t f ( " Step %d/%d\n " , i , R) )

eps <− rnorm (n , 0 , sd=sigma )

out l i e r_ index = sample ( 1 : n , round (n∗p ) )

eps [ ou t l i e r_ index ] = rnorm ( length ( out l i e r_ index ) , mean = mu_outlier , sd=sigma )
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Y <− reg + eps

##==== OLS====##

lm_fit = lm(Y ~ X)

beta_lm = l m _ f i t $ c o e f f i c i e n t s #es t imator o f beta

RMPE_train_full [ i , " OLS " ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_lm − Y)^2) )

RMPE_train_trim [ i , " OLS " ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_lm − Y)^2 , tr im=trim ) )

RMPE_test [ i , " OLS " ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_lm − Y_test )^2) )

##==== Huber ====##

Huber_fit = rlm (Y ~ X, maxit = 100)

beta_Huber = H u b e r _ f i t $ c o e f f i c i e n t s #es t imator o f beta

RMPE_train_full [ i , " Huber " ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_Huber − Y)^2) )

RMPE_train_trim [ i , " Huber " ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_Huber − Y)^2 , tr im=trim ) )

RMPE_test [ i , " Huber " ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_Huber − Y_test )^2) )

##===== Tukey ====##

Tukey_fit = rlm (Y ~ X, method = "MM" , maxit = 100)

beta_Tukey = T u k e y _ f i t $ c o e f f i c i e n t s #es t imator o f beta

RMPE_train_full [ i , " Tukey " ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_Tukey − Y)^2) )

RMPE_train_trim [ i , " Tukey " ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_Tukey − Y)^2 , tr im = trim ) )

RMPE_test [ i , " Tukey " ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_Tukey − Y_test )^2) )

##==== LASSO ====##

lasso_cv = cv . glmnet ( x = X, y=Y, alpha = 1 , nlambda = 100)

lambda_opt_lasso = lasso_cv$lambda . min #minimum MSE

l a s s o _ f i t = glmnet ( x = X, y = Y, lambda = lambda_opt_lasso )

#es t imato r s
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beta_lasso = as . numeric ( c o e f ( l a s s o _ f i t ) )

RMPE_train_full [ i , "LASSO" ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_lasso − Y)^2) )

RMPE_train_trim [ i , "LASSO" ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_lasso − Y)^2 ,

tr im=trim ) )

RMPE_test [ i , "LASSO" ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_lasso − Y_test )^2) )

# __________________________________________________________________

# LAD

# __________________________________________________________________

beta_LAD = LAD( y=Y, X = X, i n t e r c e p t = TRUE)

RMPE_train_full [ i , "LAD" ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_LAD − Y)^2) )

RMPE_train_trim [ i , "LAD" ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_LAD − Y)^2 , tr im = trim ) )

RMPE_test [ i , "LAD" ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_LAD − Y_test )^2) )

# __________________________________________________________________

# LAD LASSO

# __________________________________________________________________

# LADlasso_fit = LADlasso ( y=Y, X = X, beta . i n i = beta_LAD , i n t e r c e p t = TRUE)

LADlasso_fit = LADlasso ( y=(Y − mean(Y) ) , X = X, beta . i n i = beta_LAD[ −1])

beta_LADlasso = c (mean(Y) , LADlasso_fit$beta )

RMPE_train_full [ i , "LAD LASSO" ] = sq r t (mean ( ( cbind (1 , X) %∗% beta_LADlasso − Y)^2) )

RMPE_train_trim [ i , "LAD LASSO" ] = sq r t ( upper . tr im . mean ( ( cbind (1 , X) %∗% beta_LADlasso − Y)^2 , tr im = trim ) )

RMPE_test [ i , "LAD LASSO" ] = sq r t (mean ( ( cbind (1 , X_test ) %∗% beta_LADlasso − Y_test )^2) )

# MPE_LADlasso [ i ] = upper . tr im . mean ( ( X_test %∗% beta_LADlasso + mean(Y) − Y_test )^2 , tr im=trim )

# __________________________________________________________________

##==== GAM and GAMSEL ====##

n . basis_gamsel = rep (n . bas i s , nco l (X) )
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n . x_unique = apply (X, 2 , f unc t i on ( t ) l ength ( unique ( t ) ) )

low_degree_index = (n . x_unique <= n . b a s i s )

n . basis_gamsel [ low_degree_index ] = n . x_unique [ low_degree_index ] − 1

bases = pseudo . bases (X, degree=n . basis_gamsel , d f =4)

gamsel_cv = cv . gamsel ( x = X, y = Y, fami ly ="gauss ian " , bases=bases )

lambda_opt_gamsel = gamsel_cv$lambda . min

# gamsel needs at l e a s t two va lue s o f lambda

temp_lambda_gamsel = c ( gamsel_cv$lambda . min , 0)

gamse l_f i t = gamsel ( x = X, y = Y, lambda = temp_lambda_gamsel ,

bases=bases , f ami ly =" gauss ian " )

###==== GAMSEL ====##

# f o r t r a i n i n g data

Y_hat_gamsel = p r e d i c t ( ob j e c t=gamsel_f it , X) [ , 1 ]

RMPE_train_full [ i , "GAMSEL" ] = sq r t (mean ( ( Y_hat_gamsel − Y)^2) )

RMPE_train_trim [ i , "GAMSEL" ] = sq r t ( upper . tr im . mean ( ( Y_hat_gamsel − Y)^2 , tr im=trim ) )

#f o r t e s t data

Y_hat_gamsel = p r e d i c t ( ob j e c t=gamsel_f it , X_test ) [ , 1 ]

RMPE_test [ i , "GAMSEL" ] = sq r t (mean ( ( Y_hat_gamsel − Y_test )^2) )

##==== MPE f o r ord inary GAM ====##

# f o r t r a i n i n g data

Y_hat_gam = p r e d i c t ( ob j e c t=gamsel_f it , X) [ , 2 ]

RMPE_train_full [ i , "GAM" ] = sq r t (mean ( (Y_hat_gam − Y)^2) )

RMPE_train_trim [ i , "GAM" ] = sq r t ( upper . tr im . mean ( (Y_hat_gam − Y)^2 , tr im=trim ) )

#f o r t e s t data
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Y_hat_gam = p r e d i c t ( ob j e c t=gamsel_f it , X_test ) [ , 2 ]

RMPE_test [ i , "GAM" ] = sq r t (mean ( (Y_hat_gam − Y_test )^2) )

}

average_RMPE_train_full = colMeans ( RMPE_train_full )

average_RMPE_train_trim = colMeans (RMPE_train_trim)

average_RMPE_test = colMeans (RMPE_test)

# Print root mean p r e d i c t i o n e r r o r s over

cat ( s p r i n t f ( " Root mean p r e d i c t i o n e r r o r s over %d samples f o r %g o u t l i e r s : \ n " , n , p ) )

cat ( s p r i n t f ( " In f u l l t r a i n i n g data : \ n " ) )

p r i n t ( average_RMPE_train_full )

cat ( s p r i n t f ( " In %g%% trimmed t r a i n i n g data : \ n " , 100∗ trim ) )

p r i n t ( average_RMPE_train_trim )

cat ( s p r i n t f ( " In t e s t data : \ n " ) )

p r i n t ( average_RMPE_test )

browser ( )

}

# ______________________________________________________________________

# Upper trimmed mean

# ______________________________________________________________________

upper . tr im . mean = func t i on (x , tr im =0.05) {

#trim : the f r a c t i o n o f ob s e rva t i on s to be trimmed from the top

i f ( tr im==0) return (mean( x ) )

x <− s o r t ( x )

mean( x [ 1 : f l o o r ( l ength ( x)∗(1− trim ) ) ] )

}
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# ______________________________________________________________________

Simulation_LM ( )
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