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Abstract

Estimation of treatment effect is an important problem which is well studied in the litera-

ture. While the regression models are one of the most commonly used techniques for the

estimation of treatment effect, they are prone to model misspecification. To minimize the

model misspecification bias, flexible nonparametric models are introduced for the estima-

tion. Continuing this line of research, we propose two flexible nonparametric models that

allow the treatment effect to vary across different levels of covariates. We provide estima-

tion algorithms for both these models. Using simulations and data analysis, we illustrate

the usefulness of the proposed methods.

Keywords: Additive Model, Single Index Model, Propensity Score, Model-based Recur-

sive partitioning
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Chapter 1

Introduction

A “treatment effect” is the average direct impact of a binary (0-1) variable on a scientif-

ically or politically relevant result variable (Greenewald et al. 2021). The genesis of the

word “treatment effect” can be traced to the medical literature that examines the primary

impacts of binary, yes-or-no “treatments,” such as an experimental medication or a novel

treatment option. But the phrase is now much more widely used (Robertson et al. 2021).

For example, we may compare the salaries of people who did and did not participate in the

program using a data collected that describes the trainees’ and the control group’s labour

market conditions. Such straightforward comparisons would usually serve as the starting

point for any empirical assessment of treatment effects. Regression techniques or matching

may also be used to account for ethnic or historical factors. In reality, straightforward

comparisons or even comparisons that account for regression might yield false estimates of

causal effects. For instance, even after accounting for observable differences, participants in

subsidised training programs are frequently found to earn less than seemingly comparable

controls. Please see, for example, Ashenfelter (1978) and Heckman & Robb Jr (1985). This

could be a result of an omitted variables bias, which is a result of unexplained variation

in the two groups’ earning potential. Generally speaking, the most important econometric

issue that occurs in the estimation of treatment effects is omitted variables bias, sometimes

referred to as selection bias. The potential-outcomes paradigm provides the best visual

representation of the relationship between omitted variable bias, causation, and treatment

effects.

Consider a situation where the treatment variable is binary: Z = 0, 1. The goal is to

determine how Z affects the outcome variable Y . Potential outcome framework, which
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is also called the Rubin-Causal-Model, is one popular approach to estimate the treatment

effect. It requires the joint distribution of (Z, Y ) augments with (Y (1), Y (0))− the probable

outcome pair of Y when Z is, respectively, 1 and 0 (Deng et al. 2023). Since Y is the observed

outcome and by definition we have

Y =

 Y (1) if Z = 1,

Y (0) if Z = 0
(1.1)

When Z = 1, Y (0) is the counterfactual and not the observed, and Z = 0, Y (1) is the

counterfactual. Then

τ = Y (1)− Y (0), (1.2)

be the treatment effect of switching X from the control to the treatment, or just the

treatment effect of Z.

It should be noted that the treatment effect τ and prospective result pair are both

random variables. For a particular subject or unit Y often indicates a specific measurement.

The (population) average treatment effect (ATE) to be

E∗(τ) = E∗ (Y (1)− Y (0)) , (1.3)

where the expectation is considered under the joint distribution. If a sample of N units

(Yi(1), Yi(0)), i = 1, . . . , N , is provided, then the sample average treatment effect (SATE)

is defined as ∑
i

(Yi(1)− Yi(0)) /N. (1.4)

When the population is fixed to be the supplied sample, SATE is the population average

treatment effect (PATE). SATE is still a widely used causal estimand in literature, and it

was developed in the complete randomised trial scenario by pioneers in statistics like Fisher

and Neyman. In this chapter, the population average treatment effect (PATE) is almost

solely calculated using ATE. Also we could talk about the naive estimation for an unbiased
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estimator of the average treatment which could be defined as

τ̂naive := YT − YC (1.5)

where Y T stands for the average for treatment and Y C is the average for control. As a

result, we can claim that naive estimator is an unbiased estimator of

E(Y |Z = 1)− E(Y |Z = 0). (1.6)

The associated impact of Z on Y is represented by the equation above. The observed joint

distribution can be used to characterise the association of naive estimation, in contrast to

the causal effect. It is to be noted that other than the cause of interest Z, there are many

other confounders that can influence the association. The following causal graphical model

describe a causal relationship between Z and Y with a confounding factor called U that

can affect both Z and Y at the same time.

Figure 1.1: Confounder
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Confounders are the main challenge of causal inference, which is why it is challenging

to draw conclusions without randomised studies. The notion that smoking can cause lung

cancer is now widely accepted. Numerous observational studies had long suggested a con-

nection between smoking and lung cancer. However, none of them are as conclusive as

a randomised experiment because it is simply not possible to randomly assign people to

smoke or not smoke, so this method is not an option. Fisher, who popularised randomised

experiments in statistics and was aware that a correlation does not necessarily suggest a

cause, publicly criticised a 1950 study that linked tobacco use to lung cancer Fisher (1958).

One of his points is the possibility of a hereditary predisposition to smoking, which is likely

also connected to lung cancer. In other words, a gene or confounder may be present that

increases a person’s propensity for smoking as well as their risk of acquiring lung cancer.

Unconfoundedness: The unconfoundedness has the following assumption

Yi(0), Yi(1) ⊥ Zi|Xi,

which is the same as Pr(Zi|Yi(0), Yi(1), Xi) = Pr(Zi|Xi). Below are some implications.

• It implies that treatment allocation is random within distinct populations defined by

the outcomes of variables that can be observed.

• Excludes unknown confounding factors, often known as the “no unknown confounders”

premise.

• Unconfoundedness is attained by random assignment.

• Exists in most observational studies although there is no formal mechanism to test.

Strategies for Estimating Confoundedness and Unconfoundedness: Consider estima-

tion strategies for Average Treatment Effect such that

• Regression or (outcome) modelling (Levine & Rubin 1979):

τ̂reg = N−1
∑N

i=1 µ̂1(Xi)− µ̂0(Xi)
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• Inverse Probability weighting(IPW ) (Rosenbaum 1987):

τ̂ipw =
∑N

i=1 ZiYi/ei∑N
i=1 Zi/ei

−
∑N

i=1(1−Zi)Yi/(1−ei)∑N
i=1(1−Zi)/(1−ei)

,

where ei = P (Zi = 1|X).

Since the regression based estimators are sensitive to model misspecification, in this

thesis, we propose two nonparametric models that are flexible and robust for the estimation

of treatment effect. The proposed approaches are based on single index model (Ichimura

1987) and model-based recursive partitioning (Zeileis et al. 2008a). In the following chapter,

we provide a brief introduction to both of these approaches.
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Chapter 2

Background

This section discusses briefly about the single index model and the model-based recursive

partitioning tree approach.

2.1 Single Index Model

The single index model (Ichimura 1987) is denoted as

yi = h(xTi θ0) + ϵi, i = 1, ..., n, (2.1)

where:

• yi ∈ R is response and xi ∈ Rk is a covariate vector, and ϵi ∈ R is an unobserved

disturbance, and θ0 ∈ Rk is an unknown true parameter which needs to be estimated,

• The distribution of ϵi depend on xi only through the index h(xTi θ0),

• E(ϵi|xi) = 0 for i = 1, . . . , n,

• The function of h : R −→ R is known up to a parameter θ0, and

For identifiability, we assume that ∥θ0∥2 = 1. The unknown link function h(.) can be ap-

proximated by any smoothing method, however, we will concentrate on cubic B-splines. In

particular, h(µ) ≈ ηTZ(µ), for some parameters ηt ∈ Rd and Z(µ) = [B1(µ), . . . , Bd(µ)
T ] ∈

Rd is a collection of d normalised cubic B-spline basis functions. The model now becomes

Yi = ηTZ(xTi θ0) + ϵi, i = 1, . . . , n. (2.2)

6



Suppose we have a n× n projection matrix of single index Sθ = Zθ(Z
⊤
θ Zθ)

−1Z⊤
θ . Then the

profile loglikelihood, up to a constant, is defined as

Q(θ) = ∥Y − SθY ∥22 (2.3)

The estimator for the indexing parameter is obtained as follows:

θ̂ = argmin
θ∈Θ

Q(θ) (2.4)

2.2 Model Based Recurive Partitioning Tree

Let’s say we have a parameter model with a K-dimensional vector of parameters θ ∈ Θ.

Suppose we have n observations Yi, i = 1, ..., n, then the model can be fitted by minimizing

some objective function Ω(Y, θ) yielding the parameter estimate θ̂ (Zeileis et al. 2008b)

θ̂ = argmin
θ∈Θ

n∑
i

Ω(Yi, θ). (2.5)

This category of estimators includes a number of well-known estimating methods, with

maximum likelihood (ML) and ordinary least squares (OLS) being the most common.

When using OLS, Ω typically represents the error sum of squares, whereas when using ML,

it represents the negative log-likelihood. If the variable Y may be divided into dependent

and explanatory variables, as in the case where Y = (y, x)T , it may be the entire likelihood

or the conditional likelihood. For instance, GLM, or generalised linear model. The model

equation is given by g(E(y)) = xT θ, where y has a known distribution belonging to the

exponential family, g(.) is a known link function, and θ is the regression coefficient.

In general it is not reasonable to assume that a single global model perfectly fits all

data. However, it might be possible to divide the observations according to some covariates

in such a way that a locally a better model can be found in each part of the division. In

this case, we can adaptively find a good approximation of this partition using a recursive
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partitioning strategy based on partitioning variables Zj ∈ Zj, j = 1, . . . , l. Following the

notation from Zeileis et al. (2008a), we let the the partition of {Bb}b=1,...,B of the space

Z = Z1 × · · · × Zl in such a way that in each Bb a local model is fitted. For example,

classification and regression trees have numerous partitioning variables Zj but with only a

very simple model.

By computing the locally optimal parameter estimates θ̂b in each segment of the correct

partition Bb, it is straightforward to estimate the parameters that minimise the global

objective function. However, if {Bb} is unknown, the minimization of the overall objective

function
B∑
b=1

∑
i∈Ib

Ω(Yi, θb) −→ min, (2.6)

over all partitions {Bb} is complicated even if the number of segments B is fixed. The

complexity of over all potential partitions Bb(with corresponding indexes Ib, b = 1, . . . , B,

is higher: The number of alternative partitions quickly exceeds the capacity of an exhaustive

search if there is more than one partitioning variable (l > 1). Additionally, in this situation,

precautions should be taken to prevent over-fitting with increasing B. In conclusion, even

for fixed B, finding the best partition (with regard to Ω) is challenging. However, if there is

just one partitioning variable (l = 1), it is simple to identify the best split(s): The literature

on change point and structural change analysis in both statistics and econometrics discusses

several algorithms for segmenting models over a single variable, often time. Zeileis et al.

(2008a) propose a greedy forward search where the objective function ω can at least be

locally optimised in each step to take use of this methodology for discovering a partition

close to the optimal one in l > 1 dimensions. The next section contains a comprehensive

description of this algorithm.
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2.2.1 MOB Algorithm

Each node is associated to a single model. At each node, parameter instability fluctuation

test is carried out to determine whether dividing the node is required. If any of the par-

titioning variables Zj exhibits notable instability, divide the node into B locally optimum

parts and repeat the process on each part. The recursion terminates if no other major

instabilities can be discovered, returning a tree where each terminal node (or leaf) is linked

to a model of type M(Y, θ). Specifically, the steps of algorithm are described as follows:

• Estimate θ̂ by minimising the objective function Ω to fit the model once to all data

in the current node.

• Examine the stability of the parameter estimations with regard to ordering of each of

Z1, ..., Zl. Choose the variable Zj linked to the highest parameter instability if there

is any overall instability; otherwise, stop.

• For a fixed or adaptive number of splits, determine the split point(s) that locally

optimise Ω.

• Repeat the process by dividing the node into daughter nodes.

For more algorithmic details, please see Zeileis et al. (2008a).

2.2.2 Estimation

This is a standard practice. We note that, under mild regularity requirements (see, for

example, (Anderson et al. 1994)), the solutions to above can be obtained by solving the

first order condition
n∑

i=1

Ω(Yi, θ̂) = 0, (2.7)

where

ψ(Y, θ) = ∂Ω(Y,θ)
∂θ

,
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is the estimating or score function that corresponds to Ω(Y, θ). In many models of inter-

est, well-established fitting algorithms are available for computing θ̂ (e.g., OLS estimation

via QR decomposition for linear regression or ML via iterative weighted least squares for

GLMs). Analytical closed form solutions for θ̂ are only available in a few special cases. The

score function is next examined for systematic departures from its mean 0 at the estimated

parameters ψ̂ = ψ(Yi, θ̂).

2.2.3 Parameter Testing Stability

The goal of this algorithmic step is to determine whether the fitted model’s parameters

are stable over each specific ordering implied by the partitioning variables Zj or whether

slicing the sample in half with respect to one of the Zj might be able to detect parameter

instabilities and thus improve the fit. It makes sense to determine if the scores ψ̂ show

systematic deviations from 0 over Zj or whether they fluctuate randomly around their

mean 0 in order to evaluate parameter instability. The empirical fluctuation process can

capture these variations.

Wj = Ĵ−1/2n−1/2

⌊nt⌋∑
i=1

ψ̂σ(Zij), (2.8)

where the ordering permutation producing the antirank of the observation σ(Zij) in the

vector σ Zj = (Zj, ..., Znj)
T . Therefore, Wj(t) is simply the partial sum process of the

scores ordered by the variable Zj, scaled by the number of observations n and a suitable es-

timate J of the covariance matrix cov(ψ(Y, θ̂)), for example, Ĵ = n−1
∑n

i=1 ψ(Yi, θ̂)ψ(Yi, θ̂)
T ,

however, other reliable estimators are also relevant, such as the HC (heteroscedasticity con-

sistent) and HAC (heteroscedasticity and autocorrelation consistent) estimators. According

to a functional central limit theorem (Zeileis & Hornik 2007), If the parameters are stable,

this experimental variation process merges to a Brownian bridge W 0. The use of a scalar

operational facilitates the creation of a test statistic λ(.). The limiting distribution that

corresponds to the fluctuation process λ(Wj(.)) and in the empirical process, the restricting
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process is just subject to the same functional (or its maximum counterpart), λ(W 0(.)).

Zeileis & Hornik (2007) developed the generalised M-fluctuation test, a fairly broad frame-

work for evaluating parameter stability. It has been demonstrated to include many struc-

tural change tests proposed in the economics and statistics literature, including OLS-based

CUSUM and MOSUM tests (Chu et al. 1995), score-based tests (Merkle & Zeileis 2013),

and statistics based on Lagrange multiplier statistics(Andrews & Ploberger 1994).

An overview of these tests was provided by Zeileis (2005). However, two distinct test statis-

tics appear to be particularly appealing for evaluating numerical and categorical

partitioning variables Zj, respectively. Any test from this framework could theoretically be

used in the recursive partitioning algorithm.

Model Splitting: The fitted model must be divided, with respect to the variable Z∗
j , in

this algorithmic step into a segmented model with B segments, where B may be fixed or

determined adaptively. Two competitor categorizations can be easily evaluated for a fixed

number of splits by comparing the segmented objective function
∑B

b=1

∑
i∈Ib ω(Yi, θb). The

best partition can be found by performing an exhaustive search over all feasible partitions

with B segments, but this can be time-consuming. Therefore, many search techniques for

numerical and classifying partitioning variables are presented briefly.

Numerical Variable Splitting : It is possible to search thoroughly for splitting into

B = 2 sections in O(n) operations. A dynamic programming method of order O(n2) can

be used to find the ideal partition for B > 2, whereas an exhaustive search would be of

order O(nB − l); for B > 2. This is a Bellman’s principle application that has been covered

in several places in the literature on change point and structural change analysis (Zeileis

et al. 2010). As an alternative, iterative algorithms that are known to lead to the most

favourable result can be utilised (Muggeo 2003).A number of techniques are available if B is

not fixed but rather needs to be selected adaptively (o’Brien et al. 2004). If the parameters

are estimated by M , criteria for information can be utilised in particular.

Categorical Variable Splitting: When partitioning categorical variables, the number of

segments cannot exceed the number of categories B ≤ C. Either always splitting into all

11



levels of B = C, or alternately, always splitting into the fewest possible B = 2 segments,

are two straightforward strategies. The search for the most suitable division in this last

situation is of order O(2C−l).

12



Chapter 3

Methodology

In this chapter, we present the contributions which includes single index and tree-based

models.

3.1 Single Index Treatment Model

Suppose we have a sample of n units (Yi, Zi, X
T
i ,W

T
i ), i = 1, . . . , n, where Xi ∈ Rp and

Wi ∈ Rq are covariate vectors. We consider the following single index model:

Yi = g(XT
i β)Zi + f(Wi) + ϵi, i = 1, . . . , n,

where g(·) and f(·) are unknown functions. For simplicity, take q=1. The proposed esti-

mation approach includes the following steps:

• Set initial values for β with the first component is equal to 1

• Normalize β such that ∥β∥2 = 1

• Use optimization function by choosing the AIC or gcv.ubre from the following model

gam(y ∼ s(XTβ, by = Z) + s(W ))

as target

• Obtain the parametric estimator β̂

• Refit the above gam model with β̂

13



3.2 Tree-based Treatment Model

We now consider the following model

Yi = g(Xi)Zi + f(Wi) + ϵi, i = 1, . . . , n,

where g(·) and f(·) are unknown functions. To avoid the curse of dimensionality, we

estimate g(·) using a tree-based method and f(·) using an additive structure. We use the

following algorithm for estimating the tree-based model:

• Fit an additive model with only Y and W

• Compute the residuals from the previous model R̂

• Fit the following tree (Zeileis et al. 2008a) using the mob function from partykit

package

mob(R̂ ∼ Z|X)

• Compute the fitted values from the mob R̃ and using it compute the residuals

Ỹ = Y − R̃

• Refit the gam model in step 1 using Ỹ as the response variable

14



Chapter 4

Numerical Study

4.1 Simulation Results

The data is generated as follows:

f(x) = 0.2x11(10(1− x))6 + 10(10x)3(1− x)10

m = 3

X ∼ U(0, 1)3

W ∼ N(0, 1)

β = (1,−1, 0.5)

Z ∼ Binom(p)

ϵ ∼ N(0, 1)

Y = f((XTβ + 0.41)/4)Z + sin(W ) + ϵ.

For simulations, we consider different sample sizes (100, 250, 500) and different probabil-

ities (0.2, 0.5, 0.8) for the treatment effect. For each combination, we generated 50 datasets.

For each dataset, we computed the mean squared error for the treatment effect and the

pearson correlation between the estimated and true treatment. The results are provided in

Table 4.1. The numbers in parenthesis indicate standard errors. The results indicate that

the proposed estimation algorithm works well in estimating the treatment effect. The true

treatment function for different probabilities (p) is shown in 4.1.
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Table 4.1: Simulated Results

No of observation Probability MSE(sd) Correlation(sd)
100 0.2 0.1389(0.1473) 0.9909(0.00936)

0.5 0.1037(0.0624) 0.9970(0.0021)
0.8 0.1325(0.0704) 0.9967(0.0018)

250 0.2 0.0708(0.1672) 0.9947(0.0138)
0.5 0.0362(0.0159) 0.9988(0.0006)
0.8 0.0473(0.0318) 0.9987(0.0007)

500 0.2 0.0153(0.0077) 0.9991(0.0005)
0.5 0.0206 (0.0092) 0.9993(0.0003)
0.8 0.0320(0.0167) 0.9992(0.0003)

Figure 4.1: Plot for 500 samples size with Probability (0.2,0.5,0.8) respectively
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4.2 House Price Data Analysis

Data Source and Description

Housing market is a key indicator for the general health of the economy. We consider a

house price data from the Kaggle website. The data includes information on 546 homes

across the city of Windsor, Canada. It has 12 different variables such as price, lot size, bed-

rooms, bathrooms, number of stories, presence of a driveway, recreation room, basement,

gas heating, air conditioning, presence of a garage, and age of the home. The response

variable is the price and treatment variable is the preferred area. Other predictors include

bathrooms, stories, basement, gas heating, garage, driveway, recreation and age. Except

price and lotsize which are continuous, the remaining variables are categorical in nature.

4.2.1 Matching

Propensity score analysis (PSA) balances the pretreatment covariates to produce an accu-

rate inference for the causal effect from observational data. Due to missing randomness

in the observational data, without balancing the estimated treatment effect may not be

unbiased. The propensity score approach addresses this problem by matching the base-

line characteristics between the treatment and control groups to make them as if they

are observed from a random experiment. In this approach, the treatment variable is first

regressed against the pretreatment characteristics using a logistic regression model. The

propensity score, also known as the likelihood of assigning the course of treatment, can

be determined using the fitted model. The next step is to deduce a causal effect using a

propensity score. We note that the propensity score is still regarded as nonparametric even

if it was obtained using a parametric regression model (Zhang 2013). The following are

the specifications used for the matching procedure. The matchit function from R package

is considered for matching Ho et al. (2018). It requires a formula as an input that speci-

fies which pretreatment variables affect the treatment assignment. All the covariates are

considered for the pretreatment variables. The matching is based on the propensity score

17
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estimated with logistic regression. We use the nearest neighbor method with 1:1 matching

and without replacement for matching. From the original 546 observations, the matched

data is reduced to 256 observations. The histograms for the propensity scores before and

matching are provided in Figures 4.2 and 4.3.

Figure 4.2: Matching Plot
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Figure 4.3: Matching Distribution

4.2.2 Comparison of Baseline and Single Index Models

For comparison, we fit a baseline model with all the categorical variables as parametric

effects and the variable lotsize as a nonparametric effect. The coefficient significance results

for the parametric part are shown in Table 4.2. Except bedrooms, recreation, and garage all

the remaining variables are significant. From Table 4.4, we notice that the nonparametric

effect for the lotsize is significant. It exhibits a positive and linear association with the

price as shown in Figure 4.4.

The coefficient significance results from the proposed single index model are presented

in Tables 4.3 and 4.5. The partial plots for the nonparametric terms are presented in

Figures 4.4 and 4.5.
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Table 4.2: Baseline Model: Parametric coefficients

Variables Estimate Std. Error t value Pr(> |t|)
(Intercept) 10.2045 0.1185 86.145 < 2e− 16***
preferyes 0.1513 0.0271 5.589 6.09e-08 ***
bedrooms 0.0287 0.0234 1.225 0.2219
stories 0.0859 0.0180 4.776 3.09e-06 ***

drivewayyes 0.2621 0.1002 2.615 9.40e-10 ***
bathrooms 0.1865 0.0292 6.369 9.40e-10 ***

recreationyes 0.0348 0.0333 1.045 0.29727
fullbaseyes 0.1064 0.0321 3.313 0.00106 **
gasheatyes 0.1588 0.0782 2.031 0.04331 *
airconyes 0.1484 0.0289 5.128 5.97e-07 ***
garage 0.0305 0.0163 1.876 0.06192.

Table 4.3: Single Index Model: Parametric coefficients

Variables Estimate Std. Error t value
Stories 1.1192 0.0776 14.4237

drivewayyes 5.7191 0.1123 50.9256
bathrooms 2.1614 0.1319 16.3870

recreationyes -0.2476 0.1061 2.3342
fullbaseyes 1.2865 0.1174 10.9624
gasheatyes 1.2848 0.2823 4.5503
airconyes 1.3908 0.1074 12.9463
garage 0.2514 0.0531 4.7331

Table 4.4: Baseline: Nonparametric term

Variables Edf Ref.df F p-value
s(lotsize) 1 1 82.56 < 2e− 16 ***

20



Table 4.5: Single Index Model: Nonparametric term

Variables Edf Ref.df F p-value
s(a):A 2 2 47.68 < 2e− 16 ***
s(z) 1 1 121.25 < 2e− 16 ***

Figure 4.4: Single Index Model: Nonparametric term for the treatment

Figure 4.5: Single Index Model: Nonparametric term for the lotsize
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4.2.3 MOB Tree-based Model

We now estimate the treatment using the MOB tree-based model. We still consider the

modeling the variable lotsize as a fixed nonparametric function. At each terminal node of

the MOB tree, a simple linear regression of preference on price is fitted to estimate the

treatment effect. The fitted tree is shown in Figure 4.6. We notice that the magnitudes of

the treatment effects in the terminal nodes are different. This model gives the flexibility of

providing treatment effect for varying levels of covariates like single index model. Finally,

Table 4.6 present the AIC values for all the models considered. While the AIC itself may

not be good indicator for the model with causal effect, we presented these results for the

sake of completeness.

Figure 4.6: Model Based Recursive Partitioning Tree (MOB)

22



Figure 4.7: GAM Plot

Table 4.6: Comparison of AIC, R-sq(adj) for Baseline, MOB and Single Index Model

Model AIC R-sq.(adj)
Baseline -48.0311 0.634

Single Index non-parametric fit 13.9465 0.519
MOB 99.2536 0.1417

In summary, the proposed methods provide a flexible way of estimating the treatment

effects that varies across different levels of the covariates.
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Appendix

R CODE

l i b r a r y (MatchIt )

source (” s i n g l e−index .R”)

# read data

House Pr ices <− read . t ab l e ( f i l e = ”HousePrices . csv ” , sep = ” ,” ,

header = TRUE, na . s t r i n g s = c (”NA” , ”” , ” ”) , s t r i ng sAsFac to r s = TRUE)

# Transform p r i c e and l o t s i z e v a r i a b l e s by tak ing t h e i r l ogar i thms

House Pr i c e s$pr i c e <− l og ( House Pr i c e s$pr i c e )

Hou s e P r i c e s$ l o t s i z e <− l og ( Hou s e P r i c e s$ l o t s i z e )

# Propens i ty s co r e matching

matchmodel<−matchit ( p r e f e r ˜ l o t s i z e + s t o r i e s +driveway+ bathrooms+

r e c r e a t i o n+ f u l l b a s e + gasheat + a i r con + garage , method=”nea r e s t ”

, d i s t ance=”glm” , data = House Pr ices )

matchmodel

p l o t (matchmodel , type=”h i s t ”)

p l o t (matchmodel , type=” j i t t e r ”)

match house dt <− match . data (matchmodel )

basemodel <− gam( p r i c e ˜ s ( l o t s i z e )+p r e f e r+ bedrooms + s t o r i e s +driveway+
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bathrooms+ r e c r e a t i o n+ f u l l b a s e + gasheat +

a i r con + garage , data = match house dt )

# Base l i n e model

summary( basemodel )

AIC( basemodel )

p l o t ( basemodel )

l i b r a r y ( pa r tyk i t )

l i b r a r y ( party )

c t r l 1 <− mob control ( alpha = 0 .05 , bon f e r r on i = TRUE, min sp l i t =20,

tr im = 0 . 1 , b r e ak t i e s =TRUE, parm = NULL, verbose = FALSE)

mobmodel <− mob( p r i c e ˜ p r e f e r |+ bedrooms + s t o r i e s +driveway+

bathrooms+ r e c r e a t i o n+ f u l l b a s e + gasheat +

a i r con + garage , model=l inearModel , c on t r o l=c t r l 1 , data = match house dt )

# Base l i n e model

summary(mobmodel )

AIC(mobmodel )

p l o t (mobmodel )

##

# l i s t c r e a t i on f o r data

y <− basemodel$y

x f u l l <− model . matrix ( basemodel )

x <− x f u l l [ , 3 : 1 1 ]

A <− x f u l l [ , 2 ]

z <− match hous e d t$ l o t s i z e

#

d l i s t <− l i s t ( y=y , x=x , z=z ,A=A)

#

## f i t t i n g s i n g l e index model

28



h o u s e s i f i t <− s i . f i t ( d l i s t )

### r e s u l t s

# summary o f nonparametric f i t + Treatment

summary( h o u s e s i f i t $ f i t )

p l o t ( h o u s e s i f i t $ f i t , s c a l e = FALSE)

AIC( h o u s e s i f i t $ f i t )

# summary o f parametr ic part + se

parcoe f <− h o u s e s i f i t $p c o e f

names ( parcoe f ) <− colnames (x ) [ 2 : 9 ]

pa r coe f

#

parse <− h o u s e s i f i t $ s e [ 2 : 9 ]

names ( parse ) <− colnames (x ) [ 2 : 9 ]

#

tva l <− parcoe f / parse [−1]

names ( t va l ) <− colnames (x ) [ 2 : 9 ]

t va l
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