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Abstract

This dissertation aims to assess the performance of Ornstein-Uhlenbeck models by examin-

ing the fractal characteristics of time series data from various sources, including finance, vol-

canic and earthquake events, US COVID-19 reported cases and deaths, and two simulated

time series with differing properties. The time series data is categorized as either a Gaussian

or a Lévy process (Lévy walk or Lévy flight) by using three scaling methods: Rescaled range

analysis, Detrended fluctuation analysis, and Diffusion entropy analysis. The outcomes of

this analysis indicate that the financial indices are classified as Lévy walks, while the vol-

canic, earthquake and COVID-19 data are classified as Lévy flights. The two simulated

Brownian motions are classified as Gaussian processes, as expected. The simulation results

of the time series using Ornstein-Uhlenbeck models emphasize the need for selecting an

appropriate background driving process, combining solutions of Ornstein-Uhlenbeck-type

SDEs, and considering the correlations between time series events to improve the perfor-

mance of the Ornstein-Uhlenbeck type models.
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2.6 Variance Scaling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Rescaled Range Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Detrended Fluctuation Analysis . . . . . . . . . . . . . . . . . . . . 19

2.6.3 Diffusion Entropy Analysis . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.4 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



3 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Stock Market Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Volcanic and Earthquake Time Series . . . . . . . . . . . . . . . . . . . . . 24

3.3 USA COVID-19 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Stationarity of the Time Series . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Augmented Dickey-Fuller . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Stock Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Earthquake and Volcanic time series . . . . . . . . . . . . . . . . . 27

3.5.4 US COVID-19 Data . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.5 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Scaling Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Stochastic Processes and The Ornstein-Uhlenbeck Model . . . . . . . . . . . . . 31

4.1 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Simple Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Standard Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Chapter 1

Introduction

Analyzing time series data is a crucial aspect of research, and the insights gained from

these data sets have significantly enhanced various products across various industries and

improved the quality of life. One of the key results that researchers aim to identify is

whether the time series shows persistence (long-term correlations), randomness, or anti-

persistence (short-term memory effect). Persistence, also referred to as long-term memory

effect or long-term dependence, refers to a gradual decline of the temporal or spatial cor-

relation function, which is defined as:

γxy(δ) = �X(t)Y (t+ δ)�. (1.1)

Long-range correlation can impact the statistical characteristics of a time series, such as

its power spectral density and autocorrelation function. Therefore, it is crucial to iden-

tify and measure the presence of long-range correlation in a time series to ensure proper

modeling and analysis. Time series data that exhibit long-range correlations suggest that

the evolution of the system is impacted by its previous state over extended periods ([6]-

[9],[25]). Verifying the existence of long-range correlation using the formula in equation

1.1 can be challenging due to sensitivity to noise and other factors, leading to the develop-

ment of various scaling methods ([6]-[9],[10]-[15],[16]-[19]). These methods are commonly

used to detect persistence or anti-persistence in financial and geophysical time series data.

Examples of scaling methods include rescaled range analysis (R/S), detrended fluctuation

analysis (DFA), relative dispersion analysis (RDA), and the newer diffusion entropy anal-

ysis (DEA) introduced by Scafetta ([10]-[12]). Scafetta utilized DEA to detect scaling
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behavior in DNA sequences. R/S, DFA, and RDA are examples of variance (dispersive)

scaling methods and have a scaling index known as the Hurst index, named after Hurst

who first studied it in the field of hydrology. DEA, on the other hand, is a PDF scaling

method.

Variance scaling methods, however, face challenges with time series data exhibiting un-

usual behavior. For instance, R/S analysis is generally ineffective for non-stationary time

series data, while DFA tends to overestimate the scale factor. As a result, these variance

scaling methods have two disadvantages: they can detect scale invariance, but determining

the exact value of the exponent is difficult, and they are not suitable for processes with

infinite variances, such as Lévy flight [10]. This is why DEA, as a PDF scaling method,

is crucial for determining the scaling exponent of time series data. DEA uses the proba-

bility density function of the diffusion process obtained from the time series data to find

the scaling parameter δ. The advantage of DEA over variance scaling methods is that it

can effectively identify the presence of scaling in time series data, whether stationary or

nonstationary, without changing the data through detrending and it can be used even for

processes with infinite variance [[10]-[12], [20]]. This resolves the shortcomings of variance-

based methods.

Research in the fractal analysis of time series, like research in time series modeling and

forecasting, has significantly impacted various fields, such as geophysics, health sciences,

financial markets, traffic analysis, and bioengineering. The results obtained in these stud-

ies have helped in improving the performance of time series models [[10]-[13], [30]]. It is

essential to understand the characterization of time series data, as it can prevent incorrect

assumptions from affecting the results. If the data follows a Gaussian distribution, some

traditional forecasting methods based on this assumption can yield accurate results. On

the other hand, if the data follows a Lévy distribution (Lévy walk or Lévy flight), these

traditional methods with Gaussian assumptions may provide incorrect forecasts. Further-
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more, if the time series follows a Lévy flight distribution, it has an infinite variance, which

contradicts the assumption of finite variance in some forecasting models. Thus, knowing

the characteristics of time series data can aid in selecting the appropriate forecasting model.

The Lévy process is named after the French mathematician Paul Lévy, who made signifi-

cant contributions to the study of stochastic processes. Lévy processes are widely used in

finance, physics, and other fields to model random fluctuations in various phenomena.

There are many prediction methods ranging from linear models to qualitative models.

However, some of these models fail to capture the stochastic nature of complex data sets

(i.e. data sets with unusual characteristics), which can lead to poor predictions. Hence,

many stochastic models have been developed to model these complex systems, includ-

ing the Monte Carlo simulations, Cox-Ingersoll-Ross (CIR) models, and the Black-Scholes

model. The Ornstein-Uhlenbeck stochastic model happens to be another important stochas-

tic model with applications in a variety of fields, from healthcare [[59],[60]], physics and

finance [[7],[38],[81]] to name a few. The Ornstein-Uhlenbeck model is a stochastic differ-

ential equation that describes the mean-reverting behavior of time series data. It assumes

that the underlying process has a drift term that pulls it back toward its mean and a

diffusion term that adds noise to the process. This makes the Ornstein-Uhlenbeck model

particularly useful for modeling time series data that exhibit mean-reverting behavior, such

as stock prices, interest rates, and exchange rates. The model can also be used to estimate

the parameters of the underlying process, such as the mean, volatility, and speed of mean

reversion.

The Ornstein-Uhlenbeck model, introduced in [47] has been used in many areas of appli-

cation, including but not limited to areas such as health [64], nanotechnology/ thermody-

namics [68], geophysics [7] and Finance [[14] [61] [81]]. Unlike its original formulation, which

used Brownian motion as a background driving process [[47] [80]], there have been many

extensions or modifications to capture the behavior of data sets that cannot be adequately
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modeled with Brownian motion [[44],[80]]. Experimental results have shown non-Brownian

behavior in many complex real-world systems [[1],[2], [14],[69]]. In fact, according to [69],

the statistic of type Lévy is a common phenomenon observed in many different fields includ-

ing physics, seismology, engineering, etc. Lévy motions constitute one of the fundamental

families of random motions with independent and stationary increments. This means that

the distribution of the increments is the same for any time interval and that the increments

are statistically independent of each other. In Economics, the Ornstein-Uhlenbeck Model

is known as the Vasiček model [46]. The Vasicek model is a mathematical model that de-

scribes changes in interest rates, by specifying that the instantaneous interest rate follows

the SDE

dxt = α(β − xt)dt+ γdλt

where λt is the Weiner process under the risk-neutral framework modeling the market risk

factor [46]. Overall, the Ornstein-Uhlenbeck model is a versatile and widely used tool for

modeling complex systems in a variety of fields.

The prediction of stock market trends is an ongoing area of research as it is of great

significance for individual investors and economic policymakers. Accurate forecasting of

earthquakes, rockslides, and volcanic eruptions is also crucial as these natural disasters

can result in massive loss of life and property if not forecasted correctly. For instance, the

1989-1990 eruption of Mount Redoubt in Alaska caused $240 million in damages and losses

[83]. Similarly, the 1964 rockslide in Mt Toc, Italy resulted in the loss of 2000 lives and

$200 million worth of property [75]. The 2011 Tohoku earthquake in Japan resulted in the

loss of 18,000 lives. This highlights the importance of research in forecasting such events

[1] [2] [72] [73] [74] [75] [76].

In January 2020, the first case of COVID-19 infection was reported in the United States

of America, since then the entire year of 2020 and parts of 2021 were devoted to battling

4



the spread of the COVID-19 virus. In the wake of this unprecedented pandemic, many

researchers around the world sought to model the spread of the COVID-19 virus to help

officials understand the severity of the situation as well as enact preventive measures to con-

trol the spread [[62] [65] [66] [67]]. In reading the literature on these models, it was observed

that most of these models were in the class of deterministic compartmental models. As

stated earlier, data from these events usually exhibit stochastic behaviors; hence to capture

such stochastic trends in the data, we implement a modification of the Ornstein-Uhlenbeck

stochastic model. Introducing stochasticity in predicting the spread of COVID-19 would

have the advantage of causing the disease to die out in scenarios where deterministic models

may predict disease persistence.

In reference to various types of literature, they show occurrences of this phenomenon

when the action of one event causes a specific action of another event. It is not surprising

that some dependencies appear in the stock market. When studying market trends, we

often find positive correlations in the movements of stock portfolios such as the Dow Jones,

Nasdaq, Russell, and S&P500. In [75], the authors presented a scenario where the volcanic

eruption preceded an earthquake from up to 120 miles away. Needless to say, stock markets

across the globe were hit hard by the COVID-19 pandemic.

In [[1] [2]], we showed that both traditional and emerging financial markets are Lévy

processes and can be explicitly characterized as Lévy walk processes. In [14], the au-

thors showed that the Ornstein-Uhlenbeck SDE modeled financial and geophysical data

better when using the gamma process as the background driving process (BDP) instead

of the standard Brownian motion. Also, in [6] the authors used a truncated Lévy model

to identify market crashes by analyzing the long-term impact of high-frequency financial

markets. Therefore, there is empirical evidence that real-world stochastic systems exhibit

non-Gaussian behavior in most cases through the above results and other studies. These

empirical results are testaments to the fact that extending the classic Ornstein-Uhlenbeck

5



process to Ornstein-Uhlenbeck processes with non-Gaussian BDP may be the best course

of action for most real-world data, as in [38], the author showed that the Gamma-driven

Ornstein-Uhlenbeck model could predict the time for a major earthquake by looking at

minor earthquakes up to a certain point in time. Again, in [14] the authors applied a

superposed Gamma Ornstein-Uhlenbeck model to both geophysical and financial data,

showing that it produced small error margins when compared to the real data, and finally

[44] and [80] presented further extensions of the Ornstein-Uhlenbeck model to non-Gaussian

processes. Following current research works in extending the Ornstein-Uhlenbeck model,

we propose a three-component superposed Inverse-Gaussian(a,b) and a three-component

superposed Γ(a, b) Ornstein-Uhlenbeck (OU) model in this study. We compare both models

with the ordinary OU models and the two-component superposed Inverse-Gaussian(a, b)

and Γ(a, b) OU models.

This work analyzes the long-term memory of time series data from finance, geophysics,

and health sciences using the rescaled range analysis (R/S), the detrended fluctuation

analysis (DFA), and the diffusion entropy analysis (DEA). We identify the features of time

series data (i.e. if they follow a Gaussian or Lévy distribution) by examining the cor-

relation between the scaling exponent of the DEA to that of the R/S and DFA. After

characterizing the various datasets, we model them using the classic Ornstein-Uhlenbeck

model, and the two- and three-component superposed Ornstein-Uhlenbeck models. Also, a

system of coupled Ornstein-Uhlenbeck stochastic differential equations (SDEs) is modeled

with the datasets to establish and validate intra-dependencies (i.e. dependencies in simi-

lar events, e.g. stock markets) or interdependencies (i.e. dependencies in different events,

e.g. stock markets and earthquakes) to investigate how the predictive performance of the

Ornstein-Uhlenbeck model is affected by such dependencies. For our model analysis, if a

dataset is characterized by the Lévy walk processes or the Lévy flight processes, we consider

the Γ(a, b) process or the IG(a,b) process as the background driving process (BDP). By

characterizing the data and modeling the overlaps and associated OU-SDEs with different
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BDPs, we can observe different scenarios where model performance is affected. For our

model performance, we compute the root mean squared errors (RMSE), the mean absolute

percentage errors (MAPE), the mean absolute errors (MAE), and the average relative per-

centage errors (ARPE).

The dissertation is organized into three parts following the conclusion: the first focuses

on characterizing data; the second introduces the Ornstein-Uhlenbeck model and its varia-

tions; and the final part examines the performance of the Ornstein-Uhlenbeck-type models

in various applications. In Chapter 2, the Lévy walk and Lévy flight, as well as the scaling

methods used to characterize the time series, are discussed. Chapter 3 uses the scaling

methods discussed in Chapter 2 to characterize time series data from different sources as

either Gaussian or Lévy processes. The classic Ornstein-Uhlenbeck model (OU model)

with modifications and the proposed parameter estimation method is presented in Chapter

4. Chapter 5 presents some applications, and finally, a conclusion is reached in Chapter

6. The results from this dissertation have been published in four peer-reviewed scientific

journals.
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Part I

Data Characterization
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Chapter 2

Methods for Analyzing

Long-Memory-Effects In Time Series

This chapter reviews some existing scaling methods and some relevant research areas in

which these methods have been applied. Also, some similarities and differences between

the Lévy walk and the Lévy flight in bounded domains will be discussed.

2.1 Lévy Processes

This section begins with a definition of the Lévy process, then the similarities and differ-

ences between the Lévy flight and the Lévy walk are outlined. As this chapter explores

the characterization of time series data using scaling methods, it is observed that the

self-similarity of both the variance scaling and probability density function (PDF) scaling

methods discussed in this work lead to the characterization of time series as either Gaussian

or Lévy processes.

Definition 1. A Lévy process is a stochastic process {Xt : t ≥ 0} on Rn if the following

conditions are satisfied.

1 For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn, the random variables Xt0,

Xt1 −Xt0, Xt2 −Xt1, ..., Xtn −Xtn−1 are independent. The process has independent

increments.

2 X0 = 0
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3 The distribution of Xs+t − Xs does not depend on s therefore the process has the

stationary increments.

4 It is stochastically continuous.

5 There is a Ω0 ∈ F(σ − algebra) with P[Ω0] = 1 such that for every ω ∈ Ω0, Xt(ω) is

right-continuous on t ≥ 0 and has left limits on t > 0

Lévy flights and Lévy walks are two examples of random walks; they share some com-

mon characteristics but also have significant distinctions [34]. They are two well known

stochastic models that exhibit anomalous diffusion. By analyzing two models of stochastic

motion in bounded domains, Bartlomiej et al., [34] showed that both Lévy flights and Lévy

walks assume a random walker performs long jumps distributed according to a heavy-tailed

power law density. However, Lévy walks have continuous paths and finite velocities, while

Lévy flights have discontinuous paths and infinite propagation velocities. Lévy flights can

serve as an approximation to Lévy walks with an improper prediction of the moments of

the jump length distribution.

2.2 Applications of Lévy Processes.

This section highlights recent research areas where Lévy walks and Lévy flights have been

utilized.

2.2.1 Volcanic Eruptions [9]

This study focuses on analyzing volcano-seismic data using Lévy flights and wavelet tech-

niques.

Overview

In this work, the authors estimate the scaling parameter α of the normalized truncated

Lévy walk, obtained from analyzing volcanic data collected from a seismic station. The
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scaling index α of the truncated Lévy walk gave insight into the long-memory effects of the

volcanic eruptions. For α < 2.0, the release of energy has a long-memory dependence in its

evolution.

Conclusion

The authors conclude that the α index for each volcanic eruption is less than 2.0, proving

that the evolution of the published data exhibits long-range-dependence. These findings

suggest that present information has a strong connection with past information at different

scales, enabling the forecasting of future volcanic activity in the area.

2.2.2 An Application in Transportation [7]

Overview

It is not surprising that there is ongoing research on transportation and how to improve

it, as it has become an integral part of society. Whether walking, taking public transit, or

driving a private car, you find the best way possible to arrive on time with less stress and

delays. Therefore, pavement upkeep is a concern that various government organizations

and consulting companies have to tackle.

This work focuses on the ability to maintain pavement structures in an acceptable condi-

tion from a structural and functional point of view involving many factors that are often

ambiguous and change over time [37]. In this work, the authors applied the normalized

truncated Lévy walk method (TLW) to flexible pavement performance to predict the evo-

lution of service levels provided by pavement structure and traffic conditions.

Results and Conclusion

Numerical results obtained by the authors in this work show that the TLW provides another

way to represent the trends of pavement usefulness. They concluded that the parameters of

the TLW function and the time gap could be adjusted to represent the stochastic character
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of the interplay of factors driving road surface deterioration, maintenance policies, and

regular maintenance programs [37]. Such information can describe the lifetime response of

pavement structures using larger datasets collected over long periods.

2.3 Methods for the Hurst Exponent

Past research has shown evidence of long-term-memory in many time series data collected

from various domains. The ability to detect these phenomena results from applying scaling

techniques to these time series. Hurst was a pioneer in this field of long memory character-

ization, so it is not surprising that Mandelbrot, another famous figure in the field, named

the scaling parameter after him.

This section covers the historical background of long-term-dependence, the development of

scaling methods, and fascinating applications utilizing time series data from multiple fields.

2.3.1 History of Long-Term-Dependence

After the Industrial Revolution in the 19th century, there was a need to build large reser-

voirs by damming river basins. The ideal solution to this issue was a dam that never

exceeded its capacity or ran dry. Rippl (1883) provided an effective solution to this prob-

lem, but was compromised by the requirement to know or assume the future variability of

river flow. Hazen (1914) found a breakthrough that led to the birth of stochastic hydrology

using the simplest model, which turned out to be a Gaussian process.

In 1965, Hurst presented techniques for investigating fractal characteristics in his book

“Long-Term Storage: An Experimental Study”. He developed this method while studying

reservoirs on the Nile, in an attempt to design reservoirs that would never overflow or empty,

given the observed water flow. In 1969, Mandelbrot and Wallis later popularized the term

“ideal dam” for such a reservoir. Hurst’s work generated a lot of interest and controversy.

After almost a decade of debate, Mandelbrot published his first stationary model, called
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Fractional Gaussian Noise (FNR), which could explain the Hurst phenomenon. Later, the

ARFIMA(p,d,q) model of Hoskin and Granger [35] incorporated long-range-dependence via

a fractional difference parameter “d” into the existing ARMA(p,q) model.

2.4 Applications of Scaling Methods

This section presents some applications of the scaling method in various fields. Recent and

early studies are presented, and findings and conclusions are briefly discussed.

2.4.1 Hydrology [21]

Overview

Hurst (1951) used a method similar to Rippl’s in this study. In his method, Hurst analyzed

a specific statistic about a river’s cumulative runoff over time in R, called its “adjusted

range.”

Conclusion

Hurst studied 690 different time series covering 75 different geophysical events across vary-

ing quantities, such as river levels, precipitation, temperature, atmospheric pressure, tree

rings, silt thickness and sunspots. In each case, Hurst found the statistic is R/S(n) ∝ nk.

He then evaluated the variable k and found that it was approximately normal with a

mean of 0.72 and a standard deviation of 0.006. However, his approach to estimating k was

based on inadequate analysis, namely the assumption of a known proportionality constant,

which is the asymptotic law R/S(n) = (n/2)k. This was later resolved when Mandelbrot

abandoned Hurst’s fixed-point assumption and performed a two-parameter logarithmic re-

gression to obtain the gradient parameter k [35].
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Hurst’s work showed that the exponent k = 0.5 under the Gaussian assumption of

independence, which suggested that current hydrological models did not agree with the

empirical data. The exponential value k obtained by Hurst was greater than 0.5, suggesting

a “long-range-dependence” of the time series, and caused controversy in the hydrological

community because of its importance for Hazen’s model assuming i.i.d. Gaussian process.

The discrepancies found in Hurst’s work regarding the theory available at the time and his

empirical results would later become known as the “Hurst phenomenon,” [35].

2.4.2 Stock Market [6]

Overview

Crashes in the stock market have been recorded in the past years where market behavior

was previously unpredictable, such as the infamous 2008 global financial downturn. This

volatility in the stock market has increased the interest in research aimed at predicting

potential crushes from current and past data.

Assuming normal market conditions, we expect all participating agents to have different

views. This means that the pricing process does not exhibit long-memory-effects. However,

in normal market conditions, when working with high-frequency data, the pricing process

is known to be far from the log-normal specification [36]

In this work, by Barany et al., scaling techniques were used to detect market crashes

by analyzing long-term-dependence using high-frequency data collected every minute for

several stock indices. They also considered the relationship between the Lévy parameter

α and the scaling parameter H characterizing self-similarity. Data used in this work were

stock market indices from different industries, including entertainment, technology, retail,

oil, and finance.
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Conclusion

The results of this work showed that most of the stock market data analyzed exhibited

long-memory-effects. Of particular interest is the fact that the data showed long-memory-

effects on normal trading days without major events. However, when the stock market

crashes, the parameter estimating long-term dependence seems to increase, approaching

random behavior during the crash. Further, the results show that after a crash, the process

exhibited long-memory-effects, thus, returning to normal behavior [6]. This was a very

interesting finding by the authors of this study, making it possible to predict the potential

for market crashes by examining the behavior of the crash parameters.

2.4.3 DNA Sequencing [10] [11]

Overview

Recent advances in experimental methods of molecular genomics have made vast amounts

of genomic data available [12]. In this work, Scafetta et al. wanted to solve the problem

of statistical analysis of time series generated by complex dynamics using the Diffusion

Entropy Analysis (DEA). DEA is a relatively recent scaling method introduced by Scafetta

that, unlike the existing scaling methods, uses the Shannon entropy of the diffusion process

derived from a time series to estimate the correct scaling factor.

In this work, Scafetta et al. studied time series data derived from DNA sequences, con-

sidering both coding and non-coding sequences. This is because the early articles focused

on the controversial question of whether the propert of long-range-dependence is common

in both coding and non-coding sequences. This discrepancy may be due to the inability to

determine the correct scaling of the time series, which exhibits anomalous behavior because

of the limitations of existing methods [12]. Therefore, the authors of this article specifically

wanted to show that DEA can detect correct time series scaling independent of anomalous

behavior, in contrast to traditional scaling methods.

15



Conclusion

Using DEA with traditional methods show that traditional methods are prone to erroneous

conclusions and that both coding and non-coding DNA sequences produce Lévy statistics

in the long term. The results obtained in this study proved to be groundbreaking, funda-

mentally clarifying the cause of the controversy over coding and non-coding DNA sequences

and providing a way to characterize time series. This is what drives one of the main goals

of this dissertation, aiming to determine whether, for those time series characterized by a

Lévy process, we can further classify the characterization as a Lévy flight or a Lévy walk.

As stated earlier, there is a fundamental difference between these two forms of random

walk.

2.5 Characterizing Time Series as Gaussian or Lévy

Processes

In the previous section, we have seen Lévy walks and Lévy flights and their usefulness in

some interesting applications of scaling methods to complex real-world-systems. It is clear

how important the Lévy process is in various studies on time series analysis of data and its

prediction.

Variance scaling methods are based on the Gaussian assumption and therefore have the

potential to lead to erroneous conclusions when used to derive scaling measures for a time

series characterized by a Lévy distribution. This is what led Scaffeta to introduce the

Diffusion Entropy Analysis (DEA).

In this section, we analyze the long-memory effects of time series and characterize them as

Gaussian or Lévy processes. In addition, for the time series that follow Lévy distributions,

we classify them further as Lévy walks or Lévy flights. Differentiating the Lévy process

will aid in selecting appropriate time series models, which will capture the characteristics

of the Lévy walk and the Lévy flight.
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2.6 Variance Scaling Methods

Let us now briefly introduce the Rescaled Range Analysis (R/S) [[15],[19],[89],[90]] and the

Detrended Fluctuation Analysis (DFA) [[5],[13],[24]]. These two methods are well-known

methods with many research papers about them. We refer the reader to the referenced

articles for further information on the R/S and the DFA. We will then discuss the Diffusion

Entropy Analysis in more detail, including our proposed methods using the self-similarity

of the DEA, the R/S, and the DFA to characterize time series as either Gaussian or Lévy

processes.

2.6.1 Rescaled Range Analysis

Hurst introduced the rescaled-range (R/S) analysis as part of his study of long-term water

level fluctuations in the Nile [21]. Since then, it has become popular and applied in vari-

ous fields, including transportation analysis, biotechnology, physics, geology, biology, and

geophysics.

Mandelbrot coined the name H for the parameter obtained using this method in honor

of Hurst and the Hölder. The H parameter (dependency index) represents the relative

trend of the time series and is always between 0 and 1, and equal to 1
2
for a random

process. In our work, the case where 0.5 < H < 1 is of particular interest since it is

an indicator of long-memory-effects. However, because of its sensitivity to outliers in the

series, the rescaled range analysis is not suitable for analyzing long-range auto-correlations

of non-stationary series.

Algorithm [[89] [90]]

Given a time series X = X1, X2, ..., Xn. The rescaled range is calculated as follows:
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i Calculate the mean:

m =
1

n

n�

i=1

Xi.

ii Create a mean adjusted series

Yt = Xt −m,

for t = 1, 2, 3, ..., n.

iii Calculate the cumulative derivative series Z as follows:

Zt =
t�

i=1

Yi,

for t = 1, 2, 3, ..., n.

iv Create a range series R as follows:

Rt = max(z1, z2, ..., zn)−min(z1, z2, ..., zn),

for t = 1, 2, 3, ..., n.

v Create a standard deviation series S as follows:

St =

����1

t

t�

i=1

(xi −m(t))2,

for t = 1, 2, 3, ..., n and where m(t) is the mean of the series of length t.

vi Calculate the rescaled range series (R
S
)t =

Rt

St
for t = 1, 2, 3, ..., n.

Hurst Exponent from Rescaled Range Analysis

Now to calculate the Hurst exponent from the rescaled range we follow the steps below:

i Average the rescaled range values for each range region
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ii Plot log(R
S
) and log(X), where X is the average size of each range of region.

iii The calculated slope of the plotted points gives the Hurst exponent.

For this work, the polyfit function in matlab is used to fit the data points to a linear

equation from which the slope can be extracted.

2.6.2 Detrended Fluctuation Analysis

Peng et al. proposed a non-trend variance analysis, named the detrended fluctuation anal-

ysis (DFA) while examining DNA nucleotides. His goal was to study the self-similarity and

long-term-dependence of time series obtained from DNA structures. Since its development,

DFA has become a popular method for determining fractal properties and detecting long-

range-correlations in non-stationary time series. It has been used, for example, in biology,

meteorology, geophysics, and economics [[22]-[29]].

An advantage of the DFA is its ability to distinguish internal time series auto-correlations

from those imposed by unusual external trends or non-stationary trends. In other words,

this method puts aside non-stationary trends and focuses on the internal structure of the

correlation between market fluctuations on different time scales.

Applying the DFA method, the scaling factor α is obtained from the estimate of the

slope of the function F (s), which measures the standard deviation from the best linear

approximation of the trend signal over the segment length s. The variable function versus

s works like a power law. Therefore, it is possible to calculate the value of the exponent α

from the slope of the function in a plot of F (s) versus s on a logarithmic scale plot (log-log

plot). The DFA exponent α and the Hurst parameter H are related as follows:

H =




α if 0 < α < 1

α− 1 if α � 1

(2.1)
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Algorithm

Suppose N is the length of time series (y1, y2, y3, ..., yN). To calculate the α exponent of

the DFA we proceed as follows.

i Generate a new time series M(t) of length N − 1 from the logarithmic ratio of the

time series using:

M(t) = log

�
yt+1

yt

�
, t = 1, 2, ..., N − 1

ii integrate the absolute value of M(t):

y(t) =
t�

i=1

| M(i) |

iii The integrated time series of length N is divided into m boxes of equal length n with

no intersection between them.

iv Repeat [i]− [iii] but beginning from the end of the series, thus obtaining 2N/n boxes.

This repetition is done in order to capture leftover values after the 1st 3 steps are

performed since the lenght of the series may not be divisible into m boxes without

leftover values.

v Fit a least square line to each box, representing the trend in each box, thus obtaining

yn(t).

vi Compute the Root Mean Square Fluctuation (RMSF) as follows:

F (n) =

���� 1

2N

2N�

t=1

[y(t)− yn(t)]
2

After repeating the above steps over all box sizes, we obtain a relation between the box
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size n and F (n) as F (n) ∝ nα, where α, the slope of the line relating to the log-log plot of

F (n) and n is the Hurst exponent.

2.6.3 Diffusion Entropy Analysis

The DEA, based on Shannon’s direct estimate of entropy [[10]-[12],[17],[18]], is a PDF

scaling method that perceives numbers in time series as the trajectory of the diffusion

process [16].

The scaling property of a stationary time series takes the form:

p(x, t) =
1

tδ
F (

x

tδ
). (2.2)

where x denotes the diffusion variable, p(x, t) is its probability density function (PDF) at

time t, and 0 < δ < 1 is the scaling exponent.

The scaling property for the non-stationary time series takes the form

p(x, t) =
1

tδ(t)
F (

x

tδ(t)
). (2.3)

As derived in ([10]-[11]), a diffusion process generated by Lévy walk is characterized by the

following relation:

δ =
1

3− 2(H,α)
(2.4)

In the equation (2.4), (H,α) refers to the scaling factor derived from the two variance

scaling methods used in this work. If δ = (H,α) = 1
2
, the time series can be characterized

by Fractional Brownian Motion (FBM), since the variance methods are based subtly on

the Gaussian assumption [[21] [25]]. However, if the equation (2.4) holds for (H,α) �= 1
2
,

the time series can be characterized by a Lévy statistic, specifically a Lévy walk. Now, if

δ �= (H,α) �= 1
2
and the equation (2.4) do not hold, the noise can be characterized as Lévy

flight.
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2.6.4 Estimation Procedure

This subsection describes techniques for estimating the δ scaling factor. First, let us present

a summary of Shannon’s entropy used to estimate δ.

The Shannon Entropy

A few years after Rudolph Clausius formulated the laws of thermodynamics, he introduced

the term entropy. Later in 1872, Ludwig Boltzmann developed an expression for the entropy

of the system in a particular state as proportional to the logarithm of the probability of

that state. Entropy is an indicator of the lack of information about the scale of an event

occurring with probability p [30].

Other types of entropy are Kolmogorov-Sinai entropy, Rényi entropy, and Tsallis entropy

[[10] - [12], [30]]. Shannon’s entropy measures information about a probability distribution

as:

S(t) = −
N�

1

pi log pi (2.5)

For continuous probability distributions, the sum is replaced by the integral. The above

equation is used to derive the logarithmic equation used to determine the DEA δ scaling.

Below is the process for estimating δ.

• The time series data is first transformed into a diffusion process.

• Shannon’s entropy of the diffusion process is calculated. A log-linear equation or

log-quadratic equation is derived from the Shannon entropy by substituting equation

2.2 and 2.3 respectively. Simplifying the result from the substitutions, we have the

following relation for stationary time series:

S(t) = A+ δln(t) (2.6)

22



For the non-stationary series, the relation is as follows:

S(t) = A+ δ(t)τ (2.7)

where δ(t) = δ0 + η log(t) and τ = log(t) with η log(t) < 1− δ0. After some simplifi-

cations, equation 2.7 becomes

S(t) = A+ (δ0 −K) log(t) + (1− δ0)(log(t))
2 (2.8)

where δ0 ≡ δ from equation 2.7. Therefore, the scaling exponent δ (or δ0) can be

determined by fitting a log-quadratic model to a non-stationary series and a log-linear

model to a stationary series. For t = 1 in both equations 2.6 and 2.7, the constant A

is the expression C(1).

So δ (or δ0) can be estimated by the slope of the linear-logarithmic equation or derived

by the coefficients of the quadratic-logarithmic equation. For more information on

the algorithm used to transform a series into a diffusion process, see [10].
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Chapter 3

Time Series Data

This chapter focuses on the characterization process of the time series datasets used in

Chapter 5 for our model application. The data presented are from three main areas: stock

market datasets, geophysical datasets, and health datasets.

3.1 Stock Market Data

For the stock market data, we obtained five stock indices. We got the Dow Jones, Standard

and Poor 500, NASDAQ, and Russel from the US stock market, and from the Japanese

stock market, we got the Nikkei225. We obtained the stock market data from Yahoo

Finance. For our analysis, we used the reported daily closing values. For our datasets,

we considered the period from February 19, 2020, to April 16, 2021. Additionally, for

NASDAQ and Nikkei225, we collected data from January 1, 2011, to January 1, 2012.

Before using the data, we performed an exploratory data analysis using the R software to

remove missing values (NAs) due to market closures on holidays and weekends.

3.2 Volcanic and Earthquake Time Series

Seismic stations that are part of the Seismic Network of the Bezymyanny Volcano Campaign

PIRE recorded the volcanic data. For the volcanic dataset, we requested data from ten days

before and five days after each eruption. We obtained the volcanic datasets from seismic

stations BEZB and BELO. Eruptions one and two originate from BEZB, and eruptions

three-eight originate from BELO. For our analysis, we used eruptions two, four, and eight.
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Earthquake data used is from the 2011 earthquake in Japan. The data collected captures

the seismic intensity before and after the magnitude nine earthquake, termed EQ1 and

EQ2, respectively.

3.3 USA COVID-19 Data

We downloaded US COVID-19 data from the New York Times COVID-19 data website

[85]. This data comprises cumulative daily reports of cases and deaths in the United States,

individual states, and counties. For this work, we only use data covering the entire United

States. Because the data is cumulative, we transform it into daily reports of new cases and

deaths by subtracting current values from previous values. The period of interest used for

analysis is from 19 February 2020 to 16 April 2021.

3.4 Gaussian Processes

Here we are simulating a Wiener process and a fractional Brownian motion (FBM) using

R software. To do this, we generate a Gaussian process by injecting the Wiener kernel into

the function. We then model a fractional Brownian motion using the R software, with the

value of the Hurst exponent set to 0.5. For our simulated fractional Brownian Motion, we

use the fbm function from the somebm package in R. We thus model two different Gaussian

processes using two different approaches, with the first approach injecting a Wiener kernel

into the R function and the second setting the Hurst exponent at 0.5. As noted in Chapter 2,

a Hurst exponent of 0.5 means the time series is a random process and can be characterized

by a fractional Brownian motion provided the DEA exponent δ = 0.5. Also, we use the

self-similar relation between the scaling methods developed in Chapter 2 and apply the two

simulated datasets as controls in the fractal analysis of the time series data. With the self-

similar relation between the different scaling methods, we characterize the distribution of

the time series data as Gaussian or Lévy. We will subsequently use the selected distribution
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of the time series to investigate the performance of our Lévy-driven Ornstein-Uhlenbeck-

type models.

3.5 Stationarity of the Time Series

In this section, the Augmented Dickey-Fuller Test (ADF) is used to determine the sta-

tionarity of the time series data. For comparison, we implemented the method in R and

Python.

3.5.1 Augmented Dickey-Fuller

The ADF test is a type of statistical test called unit root test. The test’s null hypothesis is

that a time series is not stationary (with some time-dependent structure) if we can express

it as a unit root. The alternative (rejecting the null hypothesis) is that the time series is

stationary.

3.5.2 Stock Indices

After implementing the ADF test to the stock market data, we obtained the following

p-values at α = 0.05.

Table 3.1: Results from the Stationarity Test on Stock Indices: p-values [1]

Market p-value
S&P 500 0.4729
Russel 0.9378

Dow Jones 0.2575
Nasdaq 0.9453

Nikkei225 0.6252
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3.5.3 Earthquake and Volcanic time series

After implementing the ADF test to the Volcanic and Earthquake time series, we obtain

the following results for p-values at α = 0.05.

Table 3.2: Results from the Stationarity Test on the Geophysical Data: p-values [1]

Data p-value
V2 0.6747
V4 0.095
V8 0.4059
EQ1 0.01
EQ2 0.01

3.5.4 US COVID-19 Data

Table 3.3: ADF test applied to the US COVID-19 data

US COVID-19 Deaths 0.7055
US COVID-19 Cases 0.9633

3.5.5 Gaussian Processes

Table 3.4: ADF test applied to the simulated Gaussian processes

Wiener 0.4753
FBM 0.925

3.5.6 Remarks

After running the ADF-test on the datasets at an α level of 0.05, the stock market data, the

Covid-19 data, the simulated Gaussian processes, and the volcanic data are all observed to

be non-stationary with p−values > 0.05. However, the two earthquake data are stationary
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with p − values < 0.05. We will use the stationarity of the time series in obtaining the δ

exponent of the diffusion entropy analysis (DEA), as stated in Chapter 2.

3.6 Scaling Exponents

In this section, the variance scaling methods (Rescaled Range Analysis and Detrended

Fluctuation Analysis), and the pdf scaling method (Diffusion Entropy Analysis), are used

to compute the scaling exponents of the time series datasets discussed above. Each data

set is then characterized as either Gaussian or Lévy (Lévy walk or Lévy flight) processes,

using the method described in Chapter 2. δLevy(R/S) = 1
3−2H

and δLevy(DFA) = 1
3−2α

.

Table 3.5: Scaling exponents for Financial time series

Market R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
S&P500 0.63 0.65 0.58 0.57 0.59
Russel 0.65 0.7 0.60 0.59 0.63

Dow Jones 0.64 0.70 0.60 0.58 0.63
NASDAQ 0.6 0.6 0.56 0.56 0.56
Nikkei 0.66 0.70 0.62 0.60 0.63

Table 3.6: Scaling exponents of Volcanic and Earthquake Data [1]

Data R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
V2 0.51 0.92 0.934 0.5093 0.8682
V4 0.39 0.66 0.934 0.4509 0.5957
V8 0.504 0.75 0.934 0.5018 0.6684
EQ1 0.4221 0.066 0.15422 0.4638 0.3487
EQ2 0.3149 0.6518 0.77046 0.4219 0.5895

Table 3.7: Scaling exponents of the US COVID-19 data

Data R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
USA Cases 0.8209 0.4950 0.3526 0.7363 0.4975
USA Deaths 0.7068 0.2354 0.3627 0.4396 0.3954
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Table 3.8: Scaling exponents for Gaussian Processes

Data R/S(H) DFA (α) DEA(δ) δLevy (R/S) δLevy (DFA)
Weiner 0.5055 0.498 0.5015 0.5 0.5
FBM 0.4928 0.4992 0.4986 0.5 0.5

3.6.1 Discussion

In Table 3.5, we observe that the scaling exponents suggest a long-term memory effect

for the stock indices under consideration. To characterize the stock indices, using the

expression δ = 1
3−2(H,α)

, we compare the value of the DEA scaling exponent to that of both

the δLevy(R/S) and the δLevy(DFA) and conclude that the relation δ = 1
3−2(H,α)

holds. Hence

the stock indices can be characterized by a Lévy process, particularly a Lévy walk process.

The volcanic data in Table 3.6 exhibits long-memory effects when we observe the scaling of

the DEA and DFA. However, due to the non-stationarity of the volcanic time series, the R/S

method fails to detect the memory behavior correctly since it concludes that V2 and V8 are

random while V4 is anti-persistent. The magnitudes measured before the magnitude nine

event in Japan in 2011 (EQ1) show evidence of short-memory behavior. This significant

observation shows that the earthquake activity in the region before the magnitude nine

earthquake event was abnormal. On the other hand, the magnitudes recorded after the

magnitude nine event depict long memory, which indicates a return to normal activity. In

terms of characterization, the scaling exponents derived for the three volcanic eruptions

and two earthquake datasets do not satisfy the relation δ = 1
3−2(H,α)

or δ = (H,α) = 0.5, so

they are both classified as Lévy processes, specifically Lévy flight processes. In Table 3.7,

both the COVID-19 cases and COVID-19 deaths exhibit short-memory behavior, indicating

the possibility of them dying out. In terms of characterization, the COVID-19 cases and

COVID-19 deaths do not satisfy the relation δ = 1
3−2(H,α)

or δ = (H,α) = 0.5, hence, both

are classified as Lévy processes, specifically Lévy flight. Finally, the simulated FBM in

Table 3.8 satisfies the relation δ = (H,α) = 0.5, confirming that both simulated datasets

are Gaussian processes.
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Part II

The Ornstein-Uhlenbeck Model and its Variations.
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Chapter 4

Stochastic Processes and The

Ornstein-Uhlenbeck Model

This chapter introduces stochastic processes, the Ornstein-Uhlenbeck model, the two-

component and three-component superposed Ornstein-Uhlenbeck models, and the coupled

Ornstein-Uhlenbeck model used for analysis in this dissertation. In addition, the Gamma

and Inverse-Gaussian processes are also briefly discussed.

4.1 Stochastic Process

When we talk of stochastic processes, we refer in simple terms to systems that change over

time, i.e., any process describing the evolution in time of a random phenomenon. As evi-

denced by the literature, stochastic processes occur in a wide range of natural and physical

systems, including health sciences, geophysics, finance, and social sciences [[91], [92], [93],

[94], [95], [96]]. Common examples of stochastic processes are the simple random walk and

the martingale. Let’s define a stochastic process below with some relevant terminologies.

Definition 2. (Stochastic Process) A stochastic, or random, process is a mathematical

object usually defined as a family of random variables.

4.1.1 Simple Random Walk

One common stochastic process is the simple random walk. This will be touched on briefly

in this section.
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Definition 3. (Random Walk) Let Z be the set of integers. We define a random walk

on the integers Z with step function Λ and initial state x ∈ Z as a sequence of random

variables

Xn = x+
n�

i=1

�i

where �is are i.i.d. random variables with common distribution Λ.

Definition 4. (Rademacher distribution) The Rademacher distribution is a discrete prob-

ability distribution where a random variate X has a 50% chance of being +1 and a 50%

chance of being -1.

Definition 5. (Random Walk) A simple random walk is a stochastic process with Rademacher-

1
2
increments, i.e.,

P (�i = 1) = P (�i) = −1 =
1

2

So a simple random walk is defined as a series of fair coin flips. One well-known discrete

random process modeled by a simple random walk is the evolution of player wealth, an

example of which is the player ruin problem.

Theorem 1. A simple random walk visits every state i ∈ Z infinitely often with probability

1.

4.1.2 Martingale

This section briefly discusses the martingale, mathematical probability theory, and stochas-

tic processes. The definition of a martingale takes inspiration from a basic concept of

gambling. However, its diverse applications have made it a more advanced tool in modern

abstract mathematics and have influenced and contributed to other social and scientific

fields. To formally define a martingale, we first define two basic concepts: continuous or

discrete filtering and an adaptive process [97]].
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Definition 6. (Continuous Filtration) A continuous filtration of a set Ω is a collection Ft

of σ-algebra subsets of Ω such that Fs ⊂ Ft for all s < t. For n ∈ N, a discrete filtration

Fn is similarly defined on a random variable {Xn}

Definition 7. (Ft-measurable) An Ft-measurable random variable is a random variable

whose value is known at time t.

Definition 8. (Adaptive process) A sequence {Xt} of random variables is an adaptive

process relative to {Ft}, if the random variable {Xt} is {Ft}-measurable for each t.

We now define a martingale using a discrete-time-adaptive process and a continuous-

time-adaptive process.

Definition 9. (Martingale) A discrete-time-adapted process {Xn} of integrable random

variables is a martingale relative to {Fn} if E(Xn|Fn) = Xn almost surely for all n ∈ N

Definition 10. (Martingale) A continuous-time-adapted process {Xt} of integrable random

variables is a martingale relative to {Ft} if E(Xt|Fs) = Xs almost surely for all s < t

4.1.3 Standard Brownian Motion

The standard Brownian motion is an example of a continuous-time stochastic process. In

1828, botanist Robert Brown observed the erratic motion of pollen suspended in water,

later called Brownian motion. As pointed out by [100], standard Brownian motion is a

subclass of the continuous martingale, Markov process, Gaussian process, and Itô diffusion

process. Below, we define Brownian motion, represented by [99], and show the situation in

which this is standard Brownian motion.

Definition 11. (Brownian Motion) Let {B(t) ≥ 0} be a continuous time stochastic process,

and let B(0) be the initial distribution, µ the drift vector, and Σ the diffusion matrix. Then

the Brownian motion with drift µ and diffusion matrix Σ satisfies the conditions below:

i For all times 0 ≤ t1 ≤ ... ≤ tn the random variables B(tn) − B(tn−1), B(tn−1) −
B(tn−2), ..., B(t2)− B(t1) are independent.
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ii The distribution of the increment B(t+ h)− B(t) does not depend on t

iii The process {B(t) : t ≥ 0} has almost surely continuous paths.

iv For every t ≥ 0 and h ≥ 0 the increment B(t + h) − B(t) is multivariate normally

distributed with mean hµ and covariance hΣΣT

If the drift vector is µ = 0 and the diffusion matrix Σ is the identity matrix then we

simply have the Brownian motion. If in addition, B(0) = 0 then we have a standard

Brownian motion.

Figure 4.1: The figure of a Brownian motion from [101] using the Python Jupyter Notebook.
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4.2 Stochastic Differential Equations

4.2.1 SDEs

The theory of Differential equations is the origin of classical calculus and motivated the

creation of calculus and integral calculus. A differential equation is an equation that relates

an unknown function and its derivative. In general, differential equations are functional

relations.

f(t, x(t), x�(t), x��(t), . . . ) = 0, 0 ≤ t ≤ T (4.1)

involving the time t, an unknown function x(t) and its derivative. The solution of the DE

is to find a function x(t) which satisfies Equation (4.1).

Now consider the deterministic differential equation:

dx(t) = a(t, x(t))dt, x(0) = x0. (4.2)

The easiest way to introduce randomness into this equation is to randomize the initial

conditions. The solution x(t) then devolves into a random process (Xt, t ∈ [0, T ]) defined

as:

dXt = a(t, Xt)dt, X0(ω) = Y (ω). (4.3)

The equation (4.3) is called a random differential equation. Random differential equa-

tions are deterministic equations with perturbed initial conditions. Equation (4.3) is not a

complete stochastic differential equation.

Definition 12. (Stochastic Differential Equation) A stochastic differential equation (SDE)

is defined as a deterministic differential equation that is perturbed by random noise.
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In general, an SDE is formulated as:

dX(t,ω) = f(t, X(t,ω))dt+ g(t, X(t,ω))dW (t,ω) (4.4)

where ω denotes that X = X(t,ω) is a random variable and possesses the initial condition

X(0,ω) = X0 with probability one.

As an example we have

dY (t,ω) = µ(t)dt+ σ(t)dW (t,ω),

The white noise process is denoted by dW (t,ω). White noise can be viewed as a derivative

of Brownian motion. This means that white noise, defined as the derivative of dW (t,ω)/dt

of W (t), does not exist in the conventional sense. Recall that the Brownian motion is a

continuous stationary random process W (t) with independent increments and a Gaussian

random variable with mean 0 and variance t for each t and W (t).

4.2.2 Itô Calculus

To solve the Ornstein-Uhlenbeck equation, we compute the integral of the stochastic pro-

cess. That is, the solution of the SDE involves the integrand and integrator, which are

stochastic processes. Therefore, classical methods of calculus cannot be used to solve SDEs.

The Japanese mathematician Kiyoshi Itô advanced a solution to SDE by developing Itô’s

theory of calculus, which extended calculus methods to random processes. In this section,

the Itô integral is presented, and the existence and uniqueness of theorems for SDE are

studied. Before explaining the properties of the Itô integral, we first define some relevant

terms.

Definition 13. (Probability Space): A probability space is a triplet (Ω,F , P ) where Ω is a

sample space, F is a σ-algebra on Ω and P is a probability measure P : F → [0, 1].
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Itô Integrals

To proceed with the theory of the Itô integral, let’s first find a mathematical interpretation

of the “noise” term in the SDE. Consider the SDE below:

dN

dt
= (b(t) + “noise” )N(t) (4.5)

dX

dt
= b(t, Xt) + σ(t, Xt) · “noise” (4.6)

where b(t, Xt) and σ(t, Xt) are some given deterministic functions. Considering a 1-

dimensional case of the “noise” term leads to a description of the “noise” term by some

stochastic process Wt, thus

dX

dt
= b(t, Xt) + σ(t, Xt) ·Wt (4.7)

Below are the properties of the stochastic process Wt :

(i) For t1 �= t2, the stochastic processes Wt1 and Wt2 are independent.

(ii) The stochastic process {Wt} is stationary, i.e. the joint distribution of {Wt1+t, . . . ,Wtk+t}
does not depend on t.

(iii) E[Wt] = 0 for all t.

It turns out that no suitable stochastic process exists that meets properties (i) and (ii),

implying that such a Wt cannot have continuous paths. However, we can represent Wt as

a generalized stochastic process called the white noise process. Here, generalized means

that the process can be constructed as a probability measure on the space of tempered

distributions on [0,∞), and not as a probability measure on the much smaller space R[0,∞).

If we let 0 = t0 < t1 < . . . < tm = t we can discretize (4.7) as follows:

Xk+1 −Xk = b(tk, Xk)Δtk + σ(tk, Xk)WkΔtk (4.8)
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where Xj = X(tj), Wk = Wtk and Δtk = tk+1 − tk

Replacing WkΔtk by ΔVk = Vtk+1 − Vtk in (4.8) where {Vt}t≥0 is a suitable stochastic

process. The properties (i), (ii), and (iii) on Wt suggest that Vt should be stationary. The

only process with continuous paths is the Brownian motion Bt. Therefore we substitute Vt

with Bt in (4.8) to obtain:

Xk = X0 +
k−1�

j=0

b(tj, Xj)δtj +
k−1�

j=0

σ(tj, Xj)ΔBj (4.9)

Assuming that the limit of the right hand side of (4.9) exist when Δtj → 0, then

applying the usual integration notation we obtain:

Xt = X0 +

�
b(s,Xs)ds+

�
σ(s,Xs)dBs (4.10)

where the first integral on the right-hand side is a Riemann integral, and the second

one is an Itô stochastic integral. We would adopt as a convention that (4.9) really means

that Xt = Xt(ω) is a stochastic process satisfying (4.10):

We will proceed to prove the existence of

� t

0

f(s,ω)dBs(ω), (4.11)

where Bt(ω) is a 1- dimensional Brownian motion starting at the origin, for a wide class of

functions f : [0,∞]× Ω → R.

Definition 14. (Itô Integral) Let f ∈ V (S, T ). Then the Itô integral of f is defined by

� T

s

f(t,ω)dBt(ω) = lim
x→∞

� T

s

φn(t,ω)dBt(ω), (4.12)

where φn is a sequence of elementary functions such that

E
�� T

s

(f(t,ω)− φn(t,ω))
2dt

�
→ 0 as n → ∞. (4.13)
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From Definition 14, we get the following,

Corollary 1 (The Itô Isometry).

E

��� T

s

f(t,ω)dBt

�2
�
= E

��� T

s

f 2(t,ω)dt

��
∀ f ∈ V (S, T ). (4.14)

Corollary 2 (The Itô Isometry). If f(t,ω) ∈ V (S, T ) and fn(t,ω) ∈ V (S, T ) for n =

1, 2, . . . and E
�� T

s
fn(t,ω)− f(t,ω)dt

�
→ 0 as n → ∞, then

� T

s

fn(t,ω)dBt(w) →
� T

s

f(t,ω)dBt(w) in L2(P ) as n → ∞. (4.15)

Theorem 2 (Integration by parts). Suppose f(s,ω) = f(s) only depends on s and that f

is continuous and of bounded variation in [0, t]. Then

� t

0

f(s)dBs = f(t)Bt −
� t

0

Bsdfs. (4.16)

Properties of the Itô integral

Theorem 3. Let f, g ∈ V (S, T ) and let 0 ≤ S < U < T. Then

1.
� T

S
fdBt =

� U

S
fdBt +

� T

U
fdBt.

2.
� T

S
(cf + g)dBt = ċ

� T

S
fdBt +

� T

S
gdBt, for c ∈ R.

3. E
��� T

S
fdBt

��
= 0.

4.
� T

S
fdBt is FT− measurable.

Another essential fact of the Itô integral is that it is a martingale.

4.2.3 Existence and Uniqueness Theorems for SDEs

The existence and uniqueness theorems are important results in the theory of stochastic

differential equations (SDEs). The theorems provide conditions under which an SDE has a
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unique solution, and they are essential for studying the properties of stochastic processes.

Given the general form of an SDE below:

dXt = f(Xt, t)dt+ g(Xt, t)dWt

where Xt is the stochastic process, Wt is a Wiener process, f and g are deterministic

functions, and dt and dWt are the infinitesimal increments of time and Brownian motion,

respectively. We state the existence and uniqueness theorems for SDEs as follows:

Theorem 4. (Existence Theorem): If f and g are Lipschitz continuous and satisfy certain

growth conditions, then there exists a solution to the SDE.

Theorem 5. (Uniqueness Theorem): If f and g are globally Lipschitz continuous, then

there exists a unique solution to the SDE.

Below, we list some examples of SDEs satisfying the existence and uniqueness theorems:

(i) Geometric Brownian Motion: dSt = µStdt + σStdWt, where St is the stock price, µ

is the drift (the expected rate of return), σ is the volatility (the standard deviation

of the rate of return), and Wt is the Wiener process.

(ii) Ornstein-Uhlenbeck Process: dXt = θ(µ−Xt)dt+σdWt, where Xt is the process, θ is

the speed of mean reversion, µ is the mean, σ is the volatility, and Wt is the Wiener

process.

(iii) Heston Model: dSt = µStdt +
√
vtStdW

1
t , dvt = κ(θ − vt)dt + σ

√
vtdW

2
t , where St

is the stock price, µ is the drift, vt is the variance, κ is the rate of mean reversion,

θ is the long-term variance, σ is the volatility of volatility, and W 1
t and W 2

t are two

correlated Wiener processes.

4.2.4 Proof of Existence and Uniqueness Theorems

To prove the existence and uniqueness theorems of SDEs, we first define Lipschitz continuity

Gronwall’s inequality, and Gronwall-Bellman’s inequality.

40



Lipschitz continuity

Lipschitz continuity is a type of mathematical continuity that characterizes functions that

do not vary too much over small distances. It is a useful concept in many areas of math-

ematics, including analysis, differential equations, and optimization. It provides a way to

quantify the smoothness of a function and to establish bounds on the behavior of solutions

to equations involving the function.

Definition 15. (Lipschitz continuity): A function f(x) is said to be Lipschitz continuous

if there exists a constant K ≥ 0 such that for any two points x1 and x2 in the domain of f :

|f(x1)− f(x2)| ≤ K|x1 − x2| (4.17)

In other words, the absolute difference between the values of f at any two points in its

domain is no larger than K times the distance between the points. This means that as the

distance between two points in the domain of f gets smaller, the difference between their

function values also gets smaller at a rate that is at most proportional to the distance. The

constant K is called the Lipschitz constant of f . In the case of global Lipschitz continuity,

the above holds for all points in the domain of f . The constant K in this case is called the

global Lipschitz constant of f .

Gronwall’s inequality

Gronwall’s inequality is a mathematical inequality that provides a bound on the growth of

a nonnegative function based on its initial value and the integral of another function. The

inequality is named after the Swedish mathematician T.H. Gronwall. Gronwall’s inequality

has many applications in mathematics and physics, including the analysis of differential

equations, the study of growth and decay processes, and the derivation of various estimates

and bounds. It is often used in conjunction with other mathematical techniques, such as

the method of successive approximations and the Picard-Lindelöf theorem, to establish the

existence and uniqueness of solutions to various types of equations.
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Definition 16. (Gronwall’s inequality): The simplest form of Gronwall’s inequality states

that if y(t) is a nonnegative function that satisfies the inequality:

y(t) ≤ a+

� t

0

b(s)y(s)ds (4.18)

for some nonnegative constants a and b(t), then:

y(t) ≤ ae
� t
0 b(s)ds (4.19)

In other words, the function y(t) is bounded above by an exponential function of the

integral of b(t) up to time t.

Gronwall-Bellman’s Inequality

The Gronwall-Bellman inequality is a generalization of Gronwall’s inequality that provides a

bound on the growth of a function that depends on another function and a set of inequalities.

It is named after the mathematicians T.H. Gronwall and Richard E. Bellman.

Definition 17. (Gronwall-Bellman’s Inequality): The inequality can be stated as follows:

Let y(t) and z(t) be non-negative functions that satisfy the inequalities:

y(t) ≤ a+

� t

0

b(s)y(s)ds+

� t

0

c(s)z(s)ds

and

z(t) ≤ d+

� t

0

e(s)z(s)ds

for some non-negative constants a, b(t), c(t), d, and e(t). Then, for any t ≥ 0, we have:

y(t) ≤ A(t)

�
a+

� t

0

c(s)dA(s)ds

�

where A(t) = exp
�� t

0
b(s) + e(s)dA(s)ds

�
.
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In other words, the function y(t) is bounded above by an exponential function of the

integrals of b(t) and e(t) up to time t, multiplied by a constant that depends on a and the

integral of c(t) times the exponential function of the integral of e(t) up to time t.

Proving the existence and uniqueness theorems for stochastic differential equations

(SDEs) requires some technical mathematical machinery, hence we present below the main

ideas of the proof.

Proof. (Existence Theorem): Suppose that f(x, t) and g(x, t) are Lipschitz continuous in

x with a constant K and satisfy certain growth conditions. We want to show that there

exists a solution to the SDE:

dXt = f(Xt, t)dt+ g(Xt, t)dWt

First, we consider the truncated SDE:

dXk
t = f(Xk

t , t)dt+ g(Xk
t , t)dWt

where Xk
t satisfies |Xk

t | ≤ k. By the Lipschitz continuity of f and g, we can show that

there exists a solution to this SDE on a finite time interval [0, T ] with probability 1. Next,

we use the Gronwall-Bellman inequality to show that the solution is globally bounded with

probability 1. Finally, we take the limit as k → ∞ to show that there exists a solution to

the original SDE.

Proof. (Uniqueness Theorem): Suppose that f(x, t) and g(x, t) are globally Lipschitz con-

tinuous in x with a constant K. We want to show that there exists a unique solution to

the SDE:

dXt = f(Xt, t)dt+ g(Xt, t)dWt
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To prove uniqueness, we use the Itô’s formula to derive an expression for the difference

between two solutions X
(1)
t and X

(2)
t :

d(X
(1)
t −X

(2)
t ) = [f(X

(1)
t , t)− f(X

(2)
t , t)]dt+ [g(X

(1)
t , t)− g(X

(2)
t , t)]dWt

Using the Lipschitz continuity of f and g, we can show that there exists a constant

C > 0 such that:

d|X(1)
t −X

(2)
t |2 ≤ 2C|X(1)

t −X
(2)
t |2dt

By applying Gronwall’s inequality, we obtain:

|X(1)
t −X

(2)
t |2 ≤ e2Ct|X(1)

0 −X
(2)
0 |

which shows that the difference between the solutions is exponentially bounded by the

initial difference. Therefore, if X
(1)
0 = X

(2)
0 , then X

(1)
t = X

(2)
t for all t. This proves the

uniqueness of the solution.

In summary, the existence and uniqueness theorems for SDEs provide important results

for studying the properties of stochastic processes. The theorems require certain regularity

conditions on the coefficients of the SDE, and the proofs rely on mathematical tools such

as Gronwall’s inequality and Itô’s formula.

4.3 Ornstein-Uhlenbeck Model (OU)

With the information we have, we are now at a good point to introduce the main model

for this dissertation, namely the Ornstein-Uhlenbeck model. Since the Ornstein-Uhlenbeck

model was proposed in 1930, various researchers in different fields have utilized it, be it in

finance, geophysics, survival models, etc. [[7] [14] [32] [38] [46] [47] [49] [71]]. According to
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[49] the Ornstein-Uhlenbeck process is a natural model to consider in a biological context

since it stabilizes around some equilibrium point. When the OU model was proposed by

Ornstein and Uhlenbeck, it was an alternative to the Brownian Motion, and thus in its

original presentation, the background driving process (BDP) was a standard Brownian

Motion.

The Gaussian OU process can be defined as the solution to the stochastic differential

equation:

dXt = λ(m−Xt)dt+ αdBt, t > 0, (4.20)

where λ, m and α are real constants and Bt is a standard Brownian Motion on R. The

initial value X0 is a random variable independent of (Bt)t≥0. It has been shown that the

stochastic integral:

Xt = m(1− e−λt) + αe−λt

� t

0

eλsdBs +X0e
−λt, t ≥ 0, (4.21)

satisfies 4.20 for any λ, m, α and choice of X0. The solution X as defined in equation

4.21 is the unique, strong Markov solution to 4.20 [44].

As stated earlier, empirical results have shown that many stock indices deviate from

normalcy and hence modeling with the ordinary Gaussian OU may result in poor forecasts

a.s. Thus, a modification of the Gaussian OU model through replacing the Weiner process

in 4.20 with a Lévy process has been developed and applied in various literature. To define

the Lévy OU process let (�, η) be a bivariate Lévy process and define:

Xt = m(1− e−�t) + e−�t

� t

0

e�s−dηs +X0e
−�t , t ≥ 0, (4.22)

where X0 is independent of (�t, ηt)t≥0 and assumed F0-measurable. Equation 4.22 is the

generalized OU model (GOU) and seems to have been first considered by Carmona, Pe-

tit, and Yor (1997) as well as being implicit in Haan and Karandukar (1989) [[44], [50], [51]].
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Now setting m = 0, α = 1 and replacing Bt with a Lévy process Zλt we get the SDE:

dXt = −λXtdt+ dZλt, X0 > 0, λ ∈ R+. (4.23)

The solution for equation 4.23 is given by the OU process:

Xt = e−λtX0 +

� t

0

e−λ(t−s)dZλs, . (4.24)

4.3.1 Superposed Ornstein-Uhlenbeck Model

Using the idea of superposition of solutions to ODEs, the OU process in 4.24 is redefined

as a sum of m independent Ornstein-Uhlenbeck processes [58] as :

Xt = Σm
i=1wie

−λitX0 +

� t

0

Σm
i=1wie

−λi(t−s)dZλis, (4.25)

where a Σm
i=1wi = 1.

For this work, we consider a two-component and a three-component model of 4.25 which

results in

Xt = w1Xt1 + w2Xt2 ,

and

Xt = w1Xt1 + w2Xt2 + w3Xt3 ,

with
�

i wi ≈ 1.

4.4 Parameter Estimation

This section presents methods for estimating the λ parameters and weights for both the

two-component and three-component OU models. This is achieved through the application
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of an iterative approach that uses the data to estimate λ values for various lags of the

auto-correlation function. The auto-correlation function is then used together with the

estimated λ values to derive a matrix system, which is used to estimate the weights (wi).

The Ljung-Box test statistic and the ARIMA model will also be discussed briefly in this

section.

4.4.1 Ljung-Box Statistic

The Ljung-Box test is commonly used in time series analysis to check the adequacy of a

model and to determine the appropriate order of an autoregressive integrated moving av-

erage (ARIMA) model, as well as in the diagnosis of the residuals of the model. We state

the null and alternate hypothesis below:

H0 : The residuals are independently distributed.

HA : The residuals are not independently distributed; they exhibit serial correlation.

The independence of residuals means that the error terms of the dependent variable

at different time points are not related to each other. This assumption is usually checked

by examining the autocorrelation function (ACF) of the residuals. If the residuals are

independent, the ACF will be close to zero for all lags. If the ACF shows significant

values at one or more lags, it indicates that the residuals are not independent, and some

kind of correlation exists. Thus, if the p-value is less than a specified significance level

(e.g., 0.05), then the null hypothesis of independently distributed residuals is rejected, and

it is concluded that there is evidence of residual autocorrelation. In this case, further

diagnostic checks may be needed to improve the model fit. If the p-value is greater than

the significance level, then the null hypothesis is not rejected, and it is concluded that

the residuals are independently distributed. This is a desirable property for a time series

model, as it indicates that the model has captured all of the relevant information in the

data and is not leaving any systematic patterns unexplained.
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4.4.2 Autoregressive Integrated Moving Average (ARIMA)

To ensure that the matrix A is invertible, there is the need to choose appropriate lags for

each λi. Thus, we fit an ARIMA model to the data and perform a Ljung-box statistic of

the fitted ARIMA model to select the most significant lag based on the p-value at a 5%

significant level. The ARIMA model assesses the significance of one dependent variable to

other changing variables. We iterate the ARIMA model over some lags and perform the

Ljung-Box on each fit to examine the null hypothesis of independence in our time series.

We then select the lags that give a p-value > 0.05 as significant lags. The three lags chosen

are then used in computing the λis. This process is performed with R-software. See [103]

and [104] for more information on the ARIMA model and Ljung-Box statistic.

4.4.3 Two-Component OU Model

To solve for the parameters λ1, λ2, w1 and w2 we proceed as follows.

Consider the autocorrelation function at lags k and k + h :

ρ(k) =w1e
−λ1|k| + w2e

−λ2|k|

ρ(k + h) =w1e
−λ1|k+h| + w2e

−λ2|k+h|
(4.26)

Assume λ1 = λ2, then from the first expression in equation 4.26

ρ(k) =(w1 + w2)e
−λ1|k|

λ1 = − log(ρ(k))

|k|
(4.27)

and from the second expression in equation 4.26,

ρ(k + h) =(w1 + w2)e
−λ2|k+h| (4.28)

λ2 = − log(ρ(k + h))

|k + h| (4.29)
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To solve for the weights, we derive a matrix equation from equation 4.26 as follows :

A =


e−λ2|k| e−λ2|k|

e−λ2|k| e−λ2|k+h|


 (4.30)

b =


 ρ(k)

ρ(k + h)


 (4.31)

W =


w1

w2


 (4.32)

From equation 4.30, 4.31 and 4.32, we can solve for the weights as : W = A−1b, with
�

W ≈ 1.

Where h is a shift from lag k. We fit an ARIMA model to the data, then we perform a

Ljung-box statistic of the fitted ARIMA model to choose the most significant lag based on

the p-value at a 5% significant level.

4.4.4 Three-Component OU Model

For the three-component case we need to estimate λ1, λ2, λ3, w1, w2 and w3. We proceed

as follows:

Consider the auto-correlation function at lags k, k + h1 and k + h2 :

ρ(k) =w1e
−λ1|k| + w2e

−λ2|k| + w3e
−λ3|k|

ρ(k + h1) =w1e
−λ1|k+h1| + w2e

−λ2|k+h1| + w3e
−λ3|k+h1|

ρ(k + h2) =w1e
−λ1|k+h1| + w2e

−λ2|k+h1| + w3e
−λ3|k+h2|

(4.33)

Assume λ1 = λ2 = λ3 then from the first expression in equation 4.33
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ρ(k) =(w1 + w2 + w3)e
−λ1|k| (4.34)

λ1 = − log(ρ(k))

|k| (4.35)

from the second expression in equation 4.33

ρ(k + h1) =(w1 + w2 + w3)e
−λ2|k+h1| (4.36)

λ2 = − log(ρ(k + h1))

|k + h1|
(4.37)

and from the third expression in equation 4.33

ρ(k + h2) =(w1 + w2 + w3)e
−λ3|k+h2| (4.38)

λ3 = − log(ρ(k + h2))

|k + h2|
(4.39)

whereas in the case of the two-component model, h1 and h2 are shifts from lag k. To solve

for the weights, we derive a matrix equation from 4.33 as follows :

A =




e−λ1|k| e−λ2|k| e−λ3|k|

e−λ1|k+h1| e−λ2|k+h1| e−λ3|k+h1|

e−λ1|k+h2| e−λ2|k+h2| e−λ3|k+h2|


 (4.40)

b =




ρ(k)

ρ(k + h1)

ρ(k + h2)


 (4.41)
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W =




w1

w2

w3


 (4.42)

From equation 4.40, 4.41 and 4.42, we can solve for the weights as : W = A−1b with
�

W ≈ 1.

4.4.5 SDE Approximation: Euler-Maruyama and Euler-Milstein

Methods

The Euler-Maruyama and Euler-Milstein methods are two widely used numerical techniques

for solving stochastic differential equations (SDEs), which are differential equations that

involve random noise.

The Euler-Maruyama method is named after Leonhard Euler, a Swiss mathemati-

cian, and Gisiro Maruyama, a Japanese mathematician, who independently developed the

method in the 1950s. The method is an extension of the classical Euler method for ordi-

nary differential equations and is based on approximating the solution of the SDE at each

time step using a Taylor expansion. The Euler-Maruyama method is relatively simple and

computationally efficient but can suffer from numerical instability and produce inaccurate

results for certain types of SDEs.

The Euler-Milstein method is named after the Russian mathematician Grigori Mil-

stein, who developed the method in the 1970s. The method is a modified version of the

Euler-Maruyama method that includes an additional correction term to account for the

second-order effects of the random noise. The method is more accurate than the Euler-

Maruyama method for certain types of SDEs, particularly those with strong non-linearities

or high volatility. However, it is also more computationally expensive, since it requires the

evaluation of additional partial derivatives.
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Since their development, the Euler-Maruyama and Euler-Milstein methods have become

two of the most widely used numerical techniques for solving SDEs, and have found appli-

cations in a wide range of fields, including finance, physics, chemistry, and biology. The

methods are also the basis for many more advanced numerical techniques for solving SDEs,

such as the stochastic Runge-Kutta methods and the multi-level Monte Carlo methods.

4.4.6 Euler-Maruyama

The Euler-Maruyama method is a numerical technique used to approximate solutions to

stochastic differential equations. It is an extension of the classical Euler method for ordinary

differential equations. The Euler-Maruyama method is given by the following formula:

Yn+1 = Yn + f(Xn, Yn)Δt+ g(Xn, Yn)ΔWn +
1

2
g(Xn, Yn)f

�(Xn, Yn)(ΔWn)
2 (4.43)

where Yn is the numerical approximation to the solution of the stochastic differential

equation at time tn, f(Xn, Yn) and g(Xn, Yn) are the drift and diffusion coefficients of the

stochastic differential equation, respectively, Δt is the time step size, ΔWn is a random

variable with mean 0 and variance Δt, and f �(Xn, Yn) is the partial derivative of f with

respect to Y evaluated at (Xn, Yn).

The term ΔWn represents the increment of a Wiener process, which is a continuous-

time stochastic process with independent and normally distributed increments. The term

1
2
g(Xn, Yn)f

�(Xn, Yn)(ΔWn)
2 is a correction term that accounts for the fact that the Wiener

process has non-zero quadratic variation.

The Euler-Maruyama method is a simple and computationally efficient method for

approximating solutions to stochastic differential equations. However, it can suffer from

numerical instability and can produce inaccurate results for certain types of stochastic

differential equations.
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Algorithm

Consider the SDE in equation 4.43 with initial condition Y0 = y0 and all parameters as

previously described. Suppose that we wish to solve this SDE at some interval of time

[0, T ]. The steps below describe the Euler-Maruyama algorithm:

(i) Set the initial condition Y0.

(ii) Set the time step size Δt and the number of time steps N .

(iii) For n = 0, 1, 2, ..., N−1: Generate a random variable ΔWn with mean 0 and variance

Δt. Compute Yn+1 = Yn+f(Xn, Yn)Δt+g(Xn, Yn)ΔWn+
1
2
g(Xn, Yn)f

�(Xn, Yn)(ΔWn)
2.

(iv) Return the sequence of approximations Y0, Y1, Y2, ..., YN .

4.4.7 Euler-Milstein

The idea in the Euler-Milestein scheme is to consider expansions on the coefficients b and

σ of the SDE. This method is applied when the coefficients of the process are functions of

only the main process i.e. do not depend on time. The Milstein scheme is more accurate

than the Euler-Maruyama method for certain types of stochastic differential equations,

particularly those with strong non-linearities or high volatility.

The general form of a one-dimensional SDE is:

dYt = f(Yt, t)dt+ g(Yt, t)dWt (4.44)

where Yt is the unknown stochastic process, f(Yt, t) is the drift coefficient, g(Yt, t) is

the diffusion coefficient, dWt is the increment of a Wiener process (a standard Brownian

motion), and t is time. The problem is to find the solution Yt of the SDE for t ∈ [0, T ],

given some initial condition Y0.
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Algorithm

The Euler-Milstein method approximates the solution of the SDE at each time step tn =

nΔt, where Δt is the time step size and n is an integer. The method involves the following

steps:

(i) Set the initial condition Y0 = y0.

(ii) For n = 0, 1, 2, ..., N − 1, do the following:

(iii) Compute Yn+1 = Yn + f(Yn, tn)Δt + g(Yn, tn)ΔWn + 1
2
g(Yn, tn)f

�(Yn, tn)(ΔWn)
2 +

1
2
g(Yn, tn)

2(f ��(Yn, tn)(ΔWn)
2 − f �(Yn, tn)Δt)

(iv) Where ΔWn = Wtn+1 − Wtn is a random variable with mean 0 and variance Δt,

f �(Yn, tn) =
∂f
∂Y

(Yn, tn), and f ��(Yn, tn) =
∂2f
∂Y 2 (Yn, tn) are the first and second partial

derivatives of the drift coefficient with respect to Y , evaluated at (Yn, tn).

(v) Return the sequence of approximations Y0, Y1, Y2, ..., YN .

In each step of the method, the solution Yn+1 is obtained by adding to Yn the de-

terministic term f(Yn, tn)Δt, the random term g(Yn, tn)ΔWn, and two correction terms

that account for the second-order effects of the random noise. The first correction term is

proportional to (ΔWn)
2, while the second correction term is proportional to (ΔWn)

2−Δt.

The first correction term is a modified version of the correction term used in the Euler-

Maruyama method and accounts for the curvature of the drift coefficient. The second

correction term accounts for the fact that the diffusion coefficient is not constant, but

depends on the value of Yt and t. This term is typically small for small values of Δt but

can be significant for large values of Δt or SDEs with high volatility.

4.5 Coupled Ornstein-Uhlenbeck Model

Assume that Z1(λt) and Z2λ2 are two stochastic processes relative to two different time

series data collected within a specified period. And suppose the data sets have some
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correlation, i.e., their correlation coefficient is non-zero. We further assume the stochastic

processes to be Lévy driven and simulate the model using either a Γ(a, b) process or an

IG(a,b) process for comparison purposes. Then we can model a coupled system of Ornstein-

Uhlenbeck SDE, as shown below in equations 4.45 and 4.46

dX(t) = −λX(t)dt+ σ11dZ1(λ1t)t≥0 + σ12dZ2(λ2t)t≥0 (4.45)

dY (t) = −λY (t)dt+ σ21dZ1(λ1t)t≥0 + σ22dZ2(λ2t)t≥0. (4.46)

Where λ1 and λ2 are the intensity parameters, σ11 and σ22 determine volatility, and

σ12 and σ21 describes the correlation between the data sets. Now we observe that when

σ12 = σ21 = 0 we end up with a decoupled system and thus conclude that the two occur-

rences do not have any correlation and when σ12 = σ21 = σ22 = σ11 = 0 we end up with

a decoupled deterministic system and each equation can be solved independently. Z1 and

Z2 are the background driving processes. For the system, we assume both Z1 and Z2 are

either Γ(a, b) processes or IG(a,b) processes.

In matrix form, the coupled system of Ornstein-Uhlenbeck equations can be written as:

dX(t) = AX(t)dt+
2�

i=1

Bi(t)dZ(λt)

Where

X =


X1

X2




A =


λ2 0

0 −λ2



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B1 =


σ11 0

0 σ21


 (4.47)

B2 =


σ21 0

0 σ22




and

Z(λt) =


Z1(λt)

Z2(λt)




The solution to this system has been obtained in [14] with a clear step-by-step proof,

hence the proof is omitted in this work. The solution is given as:

X(t) = eAtX(0) +

� t

0

eA(t−s)B1dZ(λs) +

� t

0

eA(t−s)B2dZ(λs) (4.48)

4.6 Background Driving Lévy Process

4.6.1 Gamma Process

Definition 18. The Gamma process is a stochastic process X = Xt, t ≥ 0 with parameters

a and b which satisfies the following conditions:

• X0 = 0.

• The process has independent increments.

• For s < t the random variable Xt −Xs has a Γ(a(t− s), b) distribution.

A random variable X has a gamma distribution Γ(a, b) with rate and shape parameters,

a > 0 and b > 0 respectively if its density function is given by:
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fx(x; a, b) =
ba

Γ(a)
xa−1e−bx, ∀x > 0 (4.49)

4.6.2 Inverse Gaussian Process

Definition 19. The IG process Y (t); t ≥ 0 is defined as the stochastic process satisfying

the following properties:

• Y (t) has independent increments

• Y (t)− Y (s) follow an inverse gaussian distribution IG (Λ(t)− Λ(s), η[Λ(t)− Λ(s)]2)

for all t > s ≥ 0,

where Λ(t) is a monotone increasing function and IG(a,b), a, b > 0, denotes the IG

distribution with probability density function,

fIG(y; a, b) =

�
b

2πy3
eẋp

�
−b(y − a)2

2a2y

�
, y > 0 (4.50)

The inverse Gaussian distribution is infinitely divisible, thus we redefine IG(a,b) as

a stochastic process X with parameters a,b to be the process that starts at zero and has

independent and stationary increments such that

E = φ(z; at, b) (4.51)

= exp(−at(
√
−2iz + b2 − b)).
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Part III

Performance Analysis of Ornstein-Uhlenbeck Type

Models.
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Chapter 5

Applications

In this chapter, we present some applications which will help us analyze the performance

of the classic and modified Ornstein-Uhlenbeck-type models. Before the applications are

presented, we discuss below the error analysis methods used in ascertaining the performance

of our models.

5.1 Error Analysis

In this section, we briefly discuss the errors generated from the model results. Four different

error calculations are made to ascertain the accuracy of predictions using the OU system

to model multiple data sets. We calculate the root mean squared errors (RMSE), the mean

absolute percentage errors (MAPE), the mean absolute errors (MAE), and the average rel-

ative percentage errors (ARPE). These four error metrics are commonly used in evaluating

the performance of forecasting models. The RMSE measures the average magnitude of the

error by taking the square root of the mean of the squared errors. The MAPE gives an

estimate of the average percentage error, which is useful in cases where the relative error

is more important than the absolute error. The MAE provides a simple measure of the

average magnitude of the errors, and the ARPE measures the average relative error as a

percentage of the actual values. By using these four metrics, we can get a comprehensive

understanding of the performance of our models and determine which ones provide the

best predictions. Formulas used in computing the respective error estimates are explained

below.
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5.1.1 Error Formulas

Suppose y is the true value, p is the predicted value, and n is the number of data points,

then:

Root Mean Squared Error:

����
n�

i=1

yi − pi
n

(5.1)

Mean Absolute Percentage Error:

1

n

n�

i=1

����
(yi − pi)

2

n

���� (5.2)

Mean Absolute Error:

n�

i=1

����
yi − pi

n

���� (5.3)

Average Relative Percentage Error:

1

n

n�

i=1

|yi − pi|
n

(5.4)

5.2 Analyzing the performance of Ornstein-Uhlenbeck-

Type models via superposition of solutions

5.2.1 Introduction

In this application, the performance of the classic Ornstein-Uhlenbeck model is compared

with a two- and three-component superposed Ornstein-Uhlenbeck model. As mentioned

earlier, the Ornstein-Uhlenbeck stochastic model is one of the important stochastic mod-
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els with applications across multiple fields ranging from health [[59],[60]], geophysics and

finance [[7],[38], [81]] to mention a few.

As the experimental results have shown, extending the classical Ornstein-Uhlenbeck

model to the Ornstein-Uhlenbeck model with a non-Gaussian background driving process

may yield the best solution for most real-world data. As in [38], the author has shown

that the gamma-driven Ornstein-Uhlenbeck model can be used to predict the duration of

a large earthquake by considering small earthquakes at a single instant in time. Again, in

[14], the authors applied the gamma-driven Ornstein-Uhlenbeck model to geophysical and

stock market data, showing that it produces small deviations from the actual data.

In [1] the authors show that both established and emerging stock indices are Lévy pro-

cesses, specifically characterized as Lévy walk processes. In [14] the authors show that

the Ornstein-Uhlenbeck SDE better models stock market and geophysical data by using

the Gamma process as the background driving process (BDP) instead of the Weiner pro-

cess. Furthermore, citing Barany et al. in [6], the authors used a truncated Lévy model

to detect market downturns by examining the long-term impact of high-frequency stock

markets. Thus, there is empirical evidence that many stock markets exhibit non-Gaussian

behavior, with the above results and results from several other types of studies.

Anticipation of possible volatility in stock markets has made it more useful to predict

stocks as accurately as possible. For the reasons above, there are many forecasting methods,

from linear models to qualitative models. However, some of these models cannot capture

the stochastic nature of these stock market indices and may give incorrect predictions.

Because of this problem, many probabilistic models have been developed to predict stock

markets. Some of these models are the Monte Carlo simulation, the Cox-Ingersoll-Ross

(CIR) model, and the Black-Scholes model.
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According to recent literature on Ornstein-Uhlenbeck model modification, a full numer-

ical estimate of the rate parameter (λ) and weight (W) is developed, with the logarithm of

the sum of the estimated weights equal to 0. In addition, by proposing a superposition of

the Ornstein-Uhlenbeck model, driven by either an inverse-Gaussian (a,b) or a Γ(a, b) pro-

cess, a comparison is drawn on the accuracy and prediction of the models through various

simulations. The model simulation uses four stock indices characterized as Lévy processes

according to the characterization method discussed in Chapter 3 [1].

5.2.2 Data and Results

The data sets used in this application are closing prices of BVSP, MERV, MXX, and

NASDAQ. All four closing prices are obtained through Yahoo Finance. Below, we show

the time series graph of the datasets.

Figure 5.1: A time series plot showing daily closing values of BVSP

5.2.3 Results: Model Assessment

This subsection presents the model results in tabular form. This includes the root-mean-

square error (RMSE) and estimated parameters. It also shows that the sum of the weights

estimated from the superposed OU model is approximately 1. Each dataset had over 1000
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Figure 5.2: A time series plot showing daily closing values of MERV

Figure 5.3: A time series plot showing daily closing values of MXX

entries, and we used approximately two-thirds of the entries in each dataset to estimate

the parameters. The remaining entries are predicted using the estimated parameters to

determine the prediction accuracy.

5.2.4 Ordinary OU model

Tables 5.1 and 5.2 show results from the Ordinary OU model with the Gamma and Inverse-

Gaussian processes as background driving processes, respectively.
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Figure 5.4: A time series plot showing daily closing values of NASDAQ

Table 5.1: Table for Ordinary Γ(a,b)

Data k λ RMSE
MXX 11 0.01358 0.90640
BVSP 11 0.006258 0.9466

NASDAQ 11 0.00452 0.7051
MERV 11 0.00488 0.8290

Table 5.2: Table for Ordinary IG(a,b)

Data k λ RMSE
MXX 11 0.01358 0.04342
BVSP 11 0.006258 0.1032

NASDAQ 11 0.00452 0.1006
MERV 11 0.00488 0.2410

5.2.5 Two-Component OU model

Tables 5.3 and 5.4 show results from the two-component OU model with the Gamma and

Inverse-Gaussian processes as background driving processes, respectively.

5.2.6 Three-Component OU model

Tables 5.5 and 5.6 show results from the three-component OU model with the Gamma and

Inverse-Gaussian processes as background driving processes, respectively.
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Table 5.3: Table for two-component superposed Γ(a, b)

Data w1 + w2 λ1 λ2 RMSE
MXX 1.0105 0.01358 0.013655 0.367
BVSP 1.0069 0.00626 0.00631 0.52017

NASDAQ 1.0004 0.00452 0.00453 0.254
MERV 1.0001 0.00488 0.004882 0.3543

Table 5.4: Table for two-component IG(a,b)

Data w1 + w2 λ1 λ2 RMSE
MXX 1.0105 0.01358 0.013655 0.00545
BVSP 1.0069 0.00626 0.00631 0.0203

NASDAQ 1.0004 0.00452 0.00453 0.02033
MERV 1.0001 0.00488 0.004882 0.0354

Table 5.5: Table for three-component superposed Γ(a,b)

Data w1 + w2+w3 λ1 λ2 λ3 RMSE
MXX 1.00006 0.01358 0.013655 0.01697 0.1056
BVSP 1.005 0.006258 0.00631 0.00717 0.38034

NASDAQ 0.99989 0.00452 0.004526 0.00465 0.253
MERV 0.9974 0.00488 0.004882 0.00495 0.3468

Table 5.6: Table for three-component superposed IG(a,b)

Data w1 + w2+w3 λ1 λ2 λ3 RMSE
MXX 1.00006 0.01358 0.013655 0.01697 0.00534
BVSP 1.005 0.006258 0.00631 0.00717 0.0203

NASDAQ 0.99989 0.00452 0.004526 0.00465 0.02033
MERV 0.9974 0.00488 0.004882 0.00495 0.0354

5.2.7 Results: Model Testing

In this subsection, the estimated parameters are used to predict the remaining closing prices

for each dataset. For each data, we forecast over 400 closing prices, which represents over

one year of data predicted.
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Ordinary OU model

Tables 5.7 and 5.8 show results after forecasting with the Ordinary OU model using the

Gamma process and the Inverse-Gaussian process as background driving processes, respec-

tively.

Table 5.7: Forecast results for Ordinary Γ(a,b)

Data k λ RMSE
MXX 11 0.01358 0.902
BVSP 11 0.006258 0.9578

NASDAQ 11 0.00452 0.7227
MERV 11 0.00488 0.8613

Table 5.8: Forecast results for Ordinary IG(a,b)

Data k λ RMSE
MXX 11 0.01358 0.07062
BVSP 11 0.006258 0.2366

NASDAQ 11 0.00452 0.1150
MERV 11 0.00488 0.3038

5.2.8 Two-Component OU model

Tables 5.9 and 5.10 show results after forecasting with the two-component OU model using

the Gamma process and the Inverse-Gaussian process as background driving processes,

respectively.

Table 5.9: Forecast results for two-component superposed Γ(a, b)

Data w1 + w2 λ1 λ2 RMSE
MXX 1.0105 0.01358 0.013655 0.4664
BVSP 1.0069 0.00626 0.00631 0.6175

NASDAQ 1.0004 0.00452 0.00453 0.2673
MERV 1.0001 0.00488 0.004882 0.4152

66



Table 5.10: Table for two-component IG(a,b)

Data w1 + w2 λ1 λ2 RMSE
MXX 1.0105 0.01358 0.013655 0.009164
BVSP 1.0069 0.00626 0.00631 0.02374

NASDAQ 1.0004 0.00452 0.00453 0.0286
MERV 1.0001 0.00488 0.004882 0.0404

5.2.9 Three-Component OU model

Tables 5.11 and 5.12 show results after forecasting with the three-component OU model us-

ing the Gamma process and the Inverse-Gaussian process as background driving processes,

respectively.

Table 5.11: Table for three-component superposed Γ(a,b)

Data w1 + w2+w3 λ1 λ2 λ3 RMSE
MXX 1.00006 0.01358 0.013655 0.01697 0.1506
BVSP 1.005 0.006258 0.00631 0.00717 0.5170

NASDAQ 0.99989 0.00452 0.004526 0.00465 0.2577
MERV 0.9974 0.00488 0.004882 0.00495 0.4109

Table 5.12: Table for three-component superposed IG(a,b)

Data w1 + w2+w3 λ1 λ2 λ3 RMSE
MXX 1.00006 0.01358 0.013655 0.01697 0.00906
BVSP 1.005 0.006258 0.00631 0.00717 0.02037

NASDAQ 0.99989 0.00452 0.004526 0.00465 0.0286
MERV 0.9974 0.00488 0.004882 0.00495 0.0403

5.2.10 Stock Market Analysis

From the above table, we can see that by superposing the Ornstein-Uhlenbeck model so-

lution, we can significantly improve the predictive performance of the model by comparing

the results of the ordinary OU model (Tables 5.1 and 5.2) to both the two-component

(Tables 5.3 and 5.4) and three-component (Tables 5.5 and 5.6) OU models. The Γ(a, b)
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OU model show significant improvement from the ordinary OU model to the superposed

two-component and three-component models. Also, the IG(a,b) OU model performs better

overall compared to the Γ(a, b) OU model.

Again, we see a significant improvement from the ordinary IG(a,b) model (Table 5.2) to

the two-component IG(a,b) OU model (Table 5.4). However, as can be seen from the RM-

SEs, the three-component IG(a,b) OU model (Table 5.6) shows only a small improvement

when compared to the two-component IG(a,b) OU model. This is seen with the NASDAQ

index in tables 5.4 and 5.6. Observing the predicted values in tables 5.7 to 5.12 shows simi-

lar trends in the performance of our OU models as described earlier. The RMSEs observed

in table 5.12 show the three-component IG(a,b) OU model performs better in comparison

to the other models.

Sample Paths

In this subsection, we have generated some sample paths with their respective means for

each stock index using the log returns. The means computed for each sample path are also

presented in table 5.13.

Table 5.13: Sample Path Means for each index

Color MXX BVSP NASDAQ MERV
Blue 11.270 11.089 9.122 10.410
Red 11.126 11.407 8.787 9.612

Yellow 11.223 11.279 9.323 9.996

Figures 5.5 to 5.8 show 3 sample paths (trajectories) for the stock indices considered

in this work. Each sample path is a possible solution for the SDE model and signifies the

stochastic behavior of the stock market datasets. Thus, any one of the 3 sample paths drawn

for each data set could be a possible forecast of the price action of the index, confirming the

stochasticity of these stock market datasets and the difficulty in forecasting them. From

the values of the means in each of the sample paths shown in table 5.13, we observe that
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Figure 5.5: Three sample paths generated for the daily closing values of BVSP

the means are close. Therefore, we do not expect a drastic deviation of our model solution

from the other possible solutions that are randomly generated.

5.2.11 Conclusion

This application shows that the superposition of Ornstein-Uhlenbeck models can signif-

icantly improve predictive performance. There are also trade-offs when increasing the

number of components. That said, there is a point where additional components may re-

sult in decreased performance rather than increased performance. Hence, there is no gain

in increasing the components beyond some limits.

69



Figure 5.6: Three sample paths generated for the daily closing values of MXX

5.3 Analyzing time series events with dependencies.

5.3.1 Introduction

Naturally, some dependencies arise between some time series events. For example, when

looking at market trends, we see several cases where the movements of various stock port-

folios are positively correlated. In a study (referenced in [75]), the author found instances

where volcanic eruptions occurred before earthquakes up to 120 miles away. In this ap-

plication, we use a coupled system of stochastic Ornstein-Uhlenbeck differential equations

(SDEs) driven by Lévy processes to model three different application domains. Appli-

cations featured include applications for stock market data, volcanic eruption data, and

COVID-19 data. For the stock indices, we use the Dow Jones, Nasdaq, S&P500, and Rus-

sell. Volcanic eruption data comes from the Bezymianny seismic station, and COVID-19

data comes from the New York Times database. These datasets were described in Chapter
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Figure 5.7: Three sample paths generated for the daily closing values of MERV

3.

The data sets being analyzed all have a significant impact on people and their assets.

Stock market crashes, volcanic eruptions, and disease outbreaks can damage economies and

negatively impact the quality of life. In a study (referenced in [41]), the authors showed

the importance of complexity science in modeling these events, which can help save lives

and property. Using these three data sets, this application model four different coupled

OU systems. The first three are called “intra-dependent field applications,” meaning they

involve modeling two data sets from the same field. The last application, referred to as an

“interdependent field application,” involves combining data from two fields (in this case,

stock market data with COVID-19 data).

Many studies have shown that events in one field can trigger specific responses in an-
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Figure 5.8: Three sample paths generated for the daily closing values of NASDAQ

other. The COVID-19 pandemic had a significant impact on the stock market. The coupled

OU system calculates the correlation between time series events, allowing us to model dif-

ferent data sets. Two Lévy processes, the Γ(a, b) process and the IG(a,b) process, are used

as the background driving process to compare the performance of the models and determine

the best option.

5.3.2 Derivation of Parameters

Matlab and R software are used to find the parameters σ11 and σ22 (volatility parameters)

and σ12 and σ21 (correlation parameters) from the model presented in Chapter 4 (equa-

tions 4.45,4.46). Matlab software is used to compute the correlations between the data

sets. The R software (using the astsa and stochvol packages) estimates the volatility at

a 95% confidence interval. The estimation results are presented in the tables below, with

corresponding graphs showing the estimated volatilities at 5%, 50%, and 95% posterior
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quantiles.

Correlation Matrix Results for the Data Sets

Table 5.14: Correlation Matrix for Volcanic Eruptions

Eruption 2 Eruption 4 Eruption 8
Eruption 2 1 0.0626 -0.0754
Eruption 4 0.0626 1 0.0127
Eruption 8 -0.0754 0.0127 1

Table 5.15: Correlation Matrix for Stock Markets

Stock Markets Dow Jones S&P500 NASDAQ Russell
Dow Jones 1 0.9942 0.9618 0.9590
S&P500 0.9942 1 0.9840 0.9596
NASDAQ 0.9618 0.9840 1 0.9258
Russell 0.9590 0.9596 0.9258 1

Table 5.16: Correlation Matrix USA COVID-19 Cases and Deaths

USA COVID-19 Cases USA COVID-19 Deaths
USA COVID-19 Cases 1 0.6755
USA COVID-19 Deaths 0.6755 1

Table 5.17: Correlation Matrix for Stock Markets and USA COVID-19 Cases and Deaths

Stock Markets USA COVID-19 Cases USA COVID-19 Deaths
Dow Jones 0.5576 0.3829
S&P500 0.5861 0.4202
NASDAQ 0.6219 0.4539
Russell 0.5741 0.4858

Volatility Parameter

This section presents the results obtained for the volatility parameters using the stockvol

package in R (referenced in [42]). The figures show the estimated volatilities with 5%, 50%,
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and 95% posterior quantiles, and the values used in the study were chosen from the 95%

posterior quantile.

Table 5.18: Volatility Values Estimated Using R stochvol package

Data Volatility (σii)
Dow Jones -5.123718
S&P500 -5.255099
NASDAQ -5.444095
Russell -5.120774

Eruption 2 -7.906
Eruption 4 -7.967
Eruption 8 -7.84

USA COVID-19 Cases 0.006128
USA COVID-19 Deaths -1.116847

Figure 5.9: Graph showing Estimated Volatility For Eruption 2

5.3.3 Model Applications

In this section, the four different applications of the coupled OU system will be discussed.

In addition, the error estimates for predictions made using the model on data related to
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Figure 5.10: Graph showing Estimated Volatility For Eruption 4

Figure 5.11: Graph showing Estimated Volatility for The Russell.

volcanic eruptions, stock market data, US COVID-19 data, and a combination of the stock

market and COVID-19 data are shown.
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Figure 5.12: Graph showing Estimated Volatility for The Dow Jones

Figure 5.13: Graph showing Estimated Volatility for the NASDAQ.

5.3.4 Application to Volcanic Data

This section presents the results of applying the model to data on volcanic eruptions. The

data was modeled using both the IG(a,b) and Γ(a, b) coupled Ornstein-Uhlenbeck (OU)

systems. The analysis was performed on three of the eight eruptions, specifically Eruption

2, Eruption 4, and Eruption 8. The results are presented in Table 5.19 and Table 5.20 for
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Figure 5.14: Graph showing Estimated Volatility for The S&P500

Figure 5.15: Graph showing Estimated Volatility for US COVID-19 Cases.

both Lévy processes.

Remark: The errors in the IG(a,b) OU model, shown in Table 5.20, are smaller com-

pared to those of the Γ(a, b) OU model in Table 5.19. This suggests that for the volcanic

data, the coupled OU system with the IG(a,b) BDP performs better than the coupled OU

system with the Γ(a, b) BDP.
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Figure 5.16: Graph Showing Estimated Volatility For US COVID-19 Deaths

Table 5.19: Results from System of Gamma(a,b) OU model. The results reported are the
best results from modeling a combination of Eruptions 2, Eruptions 4, and Eruptions 8

Eruptions RMSE MAPE MAE ARPE
Eruption 2 0.7654 0.0049 34685.5 1.3275
Eruption 4 1.3218 6.5506 156.69 13.33
Eruption 8 0.8088 0.8212 2419.4 4.6206

Table 5.20: Results from System of IG(a,b) OU model. The results reported are the best
results from modeling a combination of Eruptions 2, Eruptions 4, and Eruptions 8

Eruptions RMSE MAPE MAE ARPE
Eruption 2 0.3927 0.0013 8518.93 0.3411
Eruption 4 1.8168 4.547 18.597 0.926
Eruption 8 0.5839 0.0646 216.49 0.3633

5.3.5 Application to US Stock Markets

This section presents the results of the model applied to stock indices from the US stock

market, such as the Dow Jones, NASDAQ, S&P500, and Russell. As seen in the parameter

estimation section, these data sets were highly correlated with correlation coefficients close

to 1. The analysis was based on the daily closing values from 02/19/2020 to 04/16/2021,

which exclude weekends as the stock market is closed during weekends. The results in
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Table 5.21 and Table 5.22 display the error estimates from the predictions made using the

model with either the IG(a,b) or Γ(a, b) process as the BDP.

Table 5.21: Results from System of Γ(a, b) OU model. The results reported are the best
results from modeling a combination of the Dow Jones, the S&P500, the NASDAQ, and
the Russell

Stock Markets RMSE MAPE MAE ARPE
Dow Jones 0.1798 0.0014 3950.69 0.1385
S&P500 0.1574 0.0111 446.16 0.1318
NASDAQ 0.2428 0.0046 2009.52 0.1838
Russell 0.2219 0.0338 320.85 0.1992

Table 5.22: Results from System of IG(a,b) OU model. The results reported are the best
results from modeling a combination of the Dow Jones, the S&P500, the NASDAQ, and
the Russell

Stock Markets RMSE MAPE MAE ARPE
Dow Jones 0.1259 0.001 2773.07 0.1027
S&P500 0.1360 0.0095 365.58 0.1125
NASDAQ 0.1762 0.0038 1547.44 0.1495
Russell 0.2235 0.0334 319.25 0.1967

Remark: This result indicates that the coupled OU system with the IG(a,b) as the

BDP performs better in modeling the stock market data than the coupled OU system with

Γ(a, b) as the BDP.

5.3.6 Application to US COVID-19 Data

This section applies the model to the US COVID-19 data obtained from the New York

Times between the dates 02/19/2020 and 04/16/2021. The model is used to predict both

daily reported cases and daily reported deaths. Results in Table 5.23 and Table 5.24 show

the error estimates obtained when the BDP in the model was either a Γ(a, b) process or an

IG(a,b) process.

Remark: The errors from the system of IG(a,b) OU model shown in table 5.24 are

smaller compared to that of the system of Gamma(a, b) OU model in table 5.23. Thus,
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Table 5.23: Results from System of Γ(a, b) OU model.

US COVID-19 Data RMSE MAPE MAE ARPE
Daily Cases 1.648 0.3874 51573.23 106.74
Daily Deaths 3.1713 7.5384 28204.32 40.40

Table 5.24: Results from System of IG(a,b) OU model.

US COVID-19 Data RMSE MAPE MAE ARPE
Daily Cases 1.648 0.3874 51573.23 106.74
Daily Deaths 1.4193 3.1076 828.20 16.65

the model performs better when the BDP is the Inverse Gaussian process.

5.3.7 Applications to Coupled US COVID-19 and Stock Markets

Data

This section models a combination of stock portfolios and the US COVID-19 data. At

the height of the pandemic, as infections and deaths soared, investor panic, fearing an

imminent market crash, drove stocks down. Section 3 Table 5.16 and Table 5.17 show a

non-zero correlation between the stock market datasets and the daily reported cases and

deaths. Each stock market data is modeled with the daily reported US COVID-19 cases

and the daily reported US COVID-19 deaths. Here both the Γ(a, b) and IG(a,b) are used

as BDPs to compare the model performance based on the Lévy process used. Results from

the error estimates are shown below in Table 5.25, Table 5.26, Table 5.27, and Table 5.28.

Table 5.25: Results from System of Γ(a, b) OU model. The results reported are the best
results from modeling a combination of USA COVID-19 Cases with the Stock Market Data

Data RMSE MAPE MAE ARPE
Daily Cases 1.6481 0.3874 51525.03 106.74
Dow Jones 0.2684 0.0027 6071.4 0.2052
S&P500 0.5678 0.0631 2516.53 0.7486
NASDAQ 0.182 0.0041 1551.14 0.1598
Russell 0.5211 0.1057 1133.73 0.6226
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Table 5.26: Results from System of IG(a,b) OU model. The results reported are the best
results from modeling a combination of USA COVID-19 Cases with the Stock Market Data

Data RMSE MAPE MAE ARPE
Daily Cases 1.6481 0.3874 51530.41 106.74
Dow Jones 0.1259 0.0015 2773.07 0.1027
S&P500 0.136 0.0095 365.56 0.1125
NASDAQ 0.1762 0.0038 1547.44 0.1495
Russell 0.2235 0.0334 319.25 0.1967

Remark: The errors from the system of IG(a,b) OU model shown in Table 5.26 are

smaller compared to that of the system of Gamma(a, b) OU model in Table 5.25. Thus, the

model performs better when the BDP of the coupled OU system is the Inverse Gaussian

process.

Table 5.27: Results from System of Γ(a, b) OU model. The results reported are the best
results from modeling a combination of USA COVID-19 Deaths with the Stock Market
Data

Data RMSE MAPE MAE ARPE
Daily Deaths 1.4192 3.1049 823.32 16.64
Dow Jones 0.1820 0.0014 4002.92 0.14
S&P500 0.1612 0.0011 456.29 0.1347
NASDAQ 0.267 0.0058 2535.05 0.2263
Russell 0.389 0.0537 537.49 0.3092

Table 5.28: Results from System of IG(a,b) OU model. The results reported are the best
results from modeling a combination of USA COVID-19 Deaths with the Stock Market
Data

Data RMSE MAPE MAE ARPE
Daily Deaths 1.4192 3.1076 828.20 16.65
Dow Jones 0.1259 0.0010 2773.07 0.103
S&P500 0.136 0.0095 365.58 0.1125
NASDAQ 0.1762 0.0038 1547.44 0.1495
Russell 0.2235 0.0334 319.25 0.1967

Remark: The errors from the system of IG(a,b) OU model shown in Table 5.28 are

smaller compared to that of the system of Gamma(a, b) OU model in Table 5.27. Thus, the
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model performs better when the BDP of the coupled OU system is the Inverse Gaussian

process.

Figure 5.17: Graph showing three sample paths and time series plot for Eruption 2. We
observe from the sample paths that sample-path 3 closely predicts the time series and see
by comparison of the means, that sample-path 3 is closer in value to the mean of the time
series data

5.3.8 Discussion

Running the model simulations on the four different applications and observing the values

obtained from the error estimates shows that the model predictions fit the datasets well.

Tables 5.19 and 5.20 show improvements in the MAPE, MAE, and ARPE error estimates

for all three eruptions when the BDP is an IG(a,b) process. However, the RMSE of Erup-

tion 4 shows better results using the Γ(a, b) process. For the application to stock market

data, in Tables 5.21 and 5.22 the coupled OU model with IG(a,b) as BDP gives better

results than the Γ(a, b) OU model.
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Figure 5.18: Graph showing three sample paths and time series plot for Eruption 8. We
notice that Eruption 8 has 2 extreme values which may affect the model’s performance.
For this time series, we again see that sample-path 3 closely predicts it and by comparison
of the means, sample path 3 is closer in value to the mean of the time series data

The results also highlight that the IG(a,b) as the BDP performs better than the Γ(a, b)

as the BDP for modeling daily reported deaths with the US COVID-19 data, and that both

background driving Lévy processes give good error estimates when the stock market data

is modeled with the US COVID-19 cases. The sample paths drawn in the figures suggest

that the disease could potentially die out at some point after it has peaked. Comparing the

sample paths to the original time series, the solution path that best models the data with

a mean comparatively closer to that of the time series data are observed. Additionally, the

error estimates in Tables 5.23 and 5.24 further support the validity of our model’s predic-

tions. However, it is important to note that these results are dependent on the assumptions

and parameters used in the model and may not accurately reflect the actual future trend
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Figure 5.19: Graph showing three sample paths and time series plot for the Russel index.
For this time series, we see that sample-path 2 closely predicts it and by comparison of the
means, sample path 2 is closer in value to the mean of the time series data

of the disease.

5.4 Analyzing the Background Driving Process of the

Ornstein-Uhlenbeck Model.

5.4.1 Introduction

One of the major challenges when using the Ornstein-Uhlenbeck model is the ability to

select an appropriate background driving process (BDP) for the random process under

consideration [102]. As shown by [14], [38], and [102] the choice of BDP may significantly

impact model performance. This application aims to investigate the performance of the
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Figure 5.20: Graph showing three sample paths and time series plot for the NASDAQ
index. For this time series, we see that sample-path 2 closely predicts it and by comparison
of the means, sample path 2 is closer in value to the mean of the time series data

Ornstein-Uhlenbeck model by simulating three background driving processes: Gaussian,

Gamma (Γ), and inverse-Gaussian processes. Since the data set has already been charac-

terized, this application tests the effect of knowledge about time series characteristics on

the performance of the Ornstein-Uhlenbeck model.

Thus, this application involves comparing the three different BDPs, the standard Brow-

nian motion, the Gamma(a,b) process, and the Inverse-Gaussian(a,b) process, in modeling

time series data. The choice of BDP has a significant impact on the performance of the

OU model, as seen in the results of our simulation. The appropriate BDP depends on the

characterization of the data as Gaussian, Lévy walk, or Lévy flight. From the results of our

simulations, we observe that in cases where the data is Gaussian, the standard Brownian

motion is a better choice as the BDP, while in cases where the data is a Lévy walk or a

Lévy flight, a Lévy process such as the Gamma(a,b) or Inverse-Gaussian(a,b) would be a
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Figure 5.21: Graph showing three sample paths and time series plot for the US COVID-19
cases. For this time series, we see that sample-path 1 closely predicts it and by comparison
of the means, sample-path 1 is closer in value to the mean of the time series data

better choice as the BDP.

5.4.2 Data

For this application, simulation of the model will be performed using three different types

of data, which include: daily closing values of Nasdaq obtained from Yahoo Finance, 2011

earthquake data from Japan following the 9.0 magnitude event (referred to as AfterM9),

and a simulated fractional Brownian motion generated by the fbm function from the R

package somebm.

5.4.3 Results

In this section, the results of using the proposed BDP approach in modeling with a three-

component superposed Ornstein-Uhlenbeck equation are presented. Additionally, the re-
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Figure 5.22: Graph showing three sample paths and time series plot for the US COVID-19
deaths. For this time series, we see that sample-path 1 closely predicts it and by comparison
of the means, sample-path 1 is closer in value to the mean of the time series data

Figure 5.23: Time series plot of daily closing values of the Nasdaq index

87



Figure 5.24: Time series plot of recorded earthquake magnitudes after magnitude nine
event

Figure 5.25: Time series plot of simulated fractional Brownian motion

sults are compared with those obtained from modeling the data using the other two pro-

cesses discussed, to assess the influence of the BDP on the performance of the model.
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5.4.4 Model Simulation

This section presents the simulation of the three-component superposed Ornstein-Uhlenbeck

model, including the software used for the simulation. The simulation process employed in

this study is based on the solution of the proposed Ornstein-Uhlenbeck stochastic differen-

tial equation in equation 4.25. The model solutions of the Ornstein-Uhlenbeck stochastic

differential equation are simulated using a Brownian motion, an Inverse-Gaussian (a,b)

process, and a Gamma (a,b) process. The performance of the model is then evaluated by

computing the root mean squared errors. A table is generated to summarize the numerical

results obtained from simulating each dataset. We use R and MATLAB software for the

simulation of the model.

Table 5.29: RMSE’s from model simulation with the three different background driving
processes

Data Inverse-Gaussian(a,b) Gamma(a,b) Brownian Motion
Nasdaq 0.0286 0.25774 1.5939
AfterM9 0.0488 0.8037 1.3796
FBM 1.0525 1.4037 0.478

5.4.5 Discussion

As seen from Table 5.29, for both stock market and earthquake data, using the standard

Brownian motion as the BDP results in a comparatively lower performance of the three-

component superposed Ornstein-Uhlenbeck model. On the other hand, using a Lévy-driven

BDP for a time series characterized as a Lévy process, the three-component superposed

Ornstein-Uhlenbeck model performs better. Similarly, if the time series data has Gaussian

characteristics, the table shows that using the standard Brownian motion as the BDP leads

to better model performance compared to using a Lévy-driven BDP (Inverse-Gaussian (a,b)

or Gamma (a,b)). In the case of Lévy-driven BDP, the Inverse-Gaussian (a,b) performs

better than the Gamma (a,b). Therefore, further examination of the time series data is
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necessary to determine the best performance when modeling with a Lévy-driven three-

component superposed Ornstein-Uhlenbeck equation.
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Chapter 6

Conclusion

This dissertation aims to classify the performance of Ornstein-Uhlenbeck-type models using

the fractal properties of specific time series data. Time series data from the stock market,

volcano-seismic events, earthquake events, and disease spread events have been utilized.

In addition, two Brownian motions are simulated to act as controls in the performance

analysis of the models. By analyzing the scaling and dynamic behavior of the time series

under observation, each has been characterized as either a Gaussian or a Lévy process (Lévy

walk or Lévy flight). The first part of this work aims to characterize the time series data

used in our Ornstein-Uhlenbeck-type models. We use the three scaling methods discussed

in Chapter 2, namely the rescaled range analysis, the detrended fluctuation analysis, and

the diffusion entropy analysis, in addition to the characterization relation:

δ =
1

3− 2(H,α)
. (6.1)

where δ is the PDF scaling factor of the diffusion entropy analysis and H and α are the

Hurst exponents of the rescaled range analysis and the detrended fluctuation analysis,

respectively. Through the relation in equation 6.1, we can conclude that the distribution

of each time series is characterized by either a Gaussian or Lévy process.

The distribution of the time series is characterized as a Gaussian process if δ = (H,α) =

0.5, as a Lévy walk if δ = 1
3−2(H,α)

, and as a Lévy flight if neither δ = 1
3−2(H,α)

nor

δ = (H,α) = 0.5 holds. The technique used in part one of the work also helps determine

the long- and short-memory effects of the time series. To obtain a good fit for the data,

the stationary behavior of each time series is analyzed using unit root tests. Investigating
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the stationarity of the time series in Tables 3.1 - 3.4 shows that the stock market data,

the COVID-19 data, the simulated Gaussian processes, and the volcanic data are all non-

stationary since their p-values are greater than α = 0.05. However, the two earthquake

datasets are stationary, with a p-value of 0.01 < α = 0.5.

Besides using the scaling exponents presented in Chapter 2 to characterize the time

series, they also provide information on the time series’ long- and short-term memory

effects. A time series with long memory indicates that the system’s evolution is influenced

by the system’s previous state over long periods. For the long memory effects of the time

series using the scaling methods described in Chapter 2, we observe that for the three

scaling methods used, the stock indices have scaling exponents greater than 0.5, as shown

in 3.5, suggesting long-term memory. In Table 3.6, the volcanic data exhibits long-memory

effects with the DEA and DFA, though the R/S method fails to detect the correct memory

behavior. On the other hand, the magnitudes measured before the magnitude nine event

in Japan in 2011 (EQ1) show evidence of short-memory behavior, while the magnitudes

recorded after the magnitude nine event depict long memory, indicating that the seismic

activity before the magnitude nine event was abnormal while the seismic activity after the

magnitude nine event was normal. In Table 3.7, both the COVID-19 cases and COVID-19

deaths exhibit short-memory behavior, indicating the possibility of them dying out; this is

one advantage of a stochastic disease model over a deterministic one.

In terms of characterization, the stock indices are characterized by a Lévy process, par-

ticularly a Lévy walk. Since the scaling exponents derived for the three volcanic eruptions

and two earthquake datasets do not satisfy the relation δ = 1
3−2(H,α)

or δ = (H,α) = 0.5,

both are characterized as Lévy processes, specifically Lévy flight processes. Additionally,

neither the COVID-19 cases nor COVID-19 deaths satisfy either the relation δ = 1
3−2(H,α)

or δ = (H,α) = 0.5; hence, both are characterized as Lévy processes, specifically Lévy

flight. Finally, in Table 3.8, the scaling exponents of the R/S, DFA, and the DEA satisfy

the relation δ = H = α ≈ 0.5, which confirms that both simulated Brownian motions are

characterized by Gaussian processes based on our methodology. This confirms the correct-
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ness of our characterization approach since the two simulated Brownian motions were used

as controls and known beforehand to be Gaussian processes.

Thus, with a combination of the DEA, the DFA, and the R/S, the time series data

in Chapter 3 have been characterized as either Gaussian or Lévy processes. The Lévy

process helps detect stock market crashes, risky seismic events, or the increase in the spread

or death cases during a pandemic. Since the high-frequency data follow an almost log-

normal distribution, for any finite-variance Lévy process, randomizing time is equivalent to

randomizing variance. Thus, the time-varying Lévy process generates stochastic volatility

(SV) by randomizing time, which may improve the forecasting performance. The reason is

that the SV model considers a stochastic component of the data volatility and estimates

the time-varying parameters using filtering techniques to predict future volatility [33].

After characterizing the time series in Chapter 3, Chapter 4 presents the Ornstein-

Uhlenbeck-type models used in this dissertation. Three modifications have been made to

the classic Ornstein-Uhlenbeck model and used to analyze the time series data to determine

the performance of the Ornstein-Uhlenbeck model against the modified models. A two-

component and three-component Lévy-driven Ornstein-Uhlenbeck model is presented in the

first two modifications. A parameter estimation procedure is developed for each superposed

model to estimate the unknown parameters λi and wi, with
�

wi ≈ 1 due to rounding

errors. The third modification introduced is the Lévy-driven coupled Ornstein-Uhlenbeck

model, used in applications to model events with dependencies. For our Lévy processes,

the Γ(a, b) and the IG(a, b) have been used.

Chapter 5 presents three applications of the Ornstein-Uhlenbeck type models. In the

first application, the performance of the Ornstein-Uhlenbeck model is investigated based

on the superposition of solutions. To do this, the classic Ornstein-Uhlenbeck model is

compared with the two- and three-component Lévy-driven Ornstein-Uhlenbeck models, re-

spectively. For this application, the datasets used are the Dow Jones, Standard and Poor

500, NASDAQ, and Russell. After the model simulation is completed, it is observed that

the superposition of the Ornstein-Uhlenbeck model improves its overall accuracy, as seen
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from the two- and three-component OU models in comparison to the ordinary OU model.

However, increasing the superposed components may not always lead to improvements, as

shown in the two- and three-component IG(a,b) Ornstein-Uhlenbeck models. This could

result from increased rounding errors introduced due to estimating more unknown param-

eters. As seen in this application, the performance of the Ornstein-Uhlenbeck model can

be significantly improved by the superposition of solutions.

The second application analyzes the dependencies between time series events from sim-

ilar or different fields. In this investigation, a coupled Lévy-driven Ornstein-Uhlenbeck

model is used. The results of the second application show that the coupled Ornstein-

Uhlenbeck model produces good predictions when the dependencies between the datasets

are considered. The results also show that some events trigger other events, as seen with the

stock market crash during the COVID-19 pandemic. Also, by modeling the US COVID-19

data using a stochastic SDE, we observe from the three sample paths drawn in Figures

5.21 and 5.22 that either the disease would potentially die out or the reported cases or

deaths would be very few (almost no new related cases or deaths) at some point after it

has peaked once or multiple times, thus showing there exist scenarios where the disease

dies out.

Finally, in the third application, the Ornstein-Uhlenbeck model is applied to datasets

from three different fields using three different background-driving processes to compare

the model’s predictive performance. The background driving processes used are either

Gaussian or Lévy background driving processes. One simulated Gaussian process is used

as a control in this application. From the results obtained, it is observed that for a time

series characterized by a Lévy process, a Lévy-driven Ornstein-Uhlenbeck model performs

better, while for a time series characterized by a Gaussian process, the standard Brownian

motion as a background-driving process performs better.

Putting the three applications together, we arrive at three factors that could be consid-

ered when aiming to improve the performance of Ornstein-Uhlenbeck-type models. These

are listed below.
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1 The selection of an appropriate background driving process, based on the character-

ization of the time series improves the overall model performance.

2 Extending the Ornstein-Uhlenbeck SDEs solution to a superposition of two or three

solutions improves the performance of the model.

3 For events that follow different events, modeling them with a coupled Ornstein-

Uhlenbeck system that considers their dependencies, improves the model perfor-

mance.

6.1 Future Work

1 An extension of this study could involve exploring other entropy measures apart from

the Shannon entropy in the DEA methodology to enhance the accuracy of the δ

scaling. Some examples of alternative entropies are the Kolmogorov entropy and the

Rényi entropy.

2 This dissertation utilized a coupled system to analyze time series data assuming that

both time series had the same distribution. An extension of this research could in-

volve using a system of superposed Ornstein-Uhlenbeck models to model two distinct

complex systems, where each time series is characterized by a different distribution.

6.1.1 Different Entropy Measures for DEA

In developing the DEA, Scafetta et al. [11] used the Shannon entropy to compute the

probability of finding a given data point in a given cell. The scaling exponent derived from

the DEA was shown to reflect the true scaling for the time series compared to the variance

scaling methods. For the first proposed work, we can apply a different entropy measure in

place of the Shannon entropy to explore how the accuracy of the scaling exponent would

be affected. Below, we briefly discuss the Kolmogorov and Rényi entropy.
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Kolmogorov Entropy

The Kolmogorov entropy is defined as the rate of change of the entropy due to finer

partitioning given by each iteration or time step. Suppose we partition our diffusion process

into non-overlapping boxes βi and suppose after each iteration all we know is in which box

the point xi lies, Let M
−1(βi) be the pre-image of each βi. The measurement that each x0

lies in box i0 and x1 lies in box i1 tells us that x0 in fact lies in the region βi0∩M−1(βi1) this

intersection gives a finer partition β1 which can be expressed as β1 = βi ∩M−1(βj) with

which we get the entropy of that partition as S(β1) = −Σpij log pij where pij is the integral

of the measure over the box βi ∩M−1(βj). The Kolmogorov entropy is thus measured as

K = lim
m→∞

1

m
S(βm).

As the definition shows, the Kolmogorov entropy measures the probability of iteratively

refining each partition at each iteration.

Rényi Entropy

The Rényi entropy generalizes entropies like the Hartley entropy, the Collision entropy,

and the Shannon entropy, which has been used by Scafetta et al. in the derivation of the

scaling exponent of the diffusion entropy analysis (DEA). Since the Rényi entropy is a

generalization of the Shannon entropy, we would like to explore how the derivation of the

entropies for our diffusion process derived from the time series can be improved by using

this generalized entropy method.

The Rényi entropy of order α, where α ≥ 0 and α �= 1 is defined as

Hα(X) =
1

1− α
logΣpαi

where X is a discrete random variable and pi = P (X = i), i = 1, 2, 3, ...n are the corre-

sponding probabilities.
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To achieve our goal, we propose an algorithm similar to the one described for DEA in

Chapter 3, but with the Shannon entropy replaced with either the Kolmogorov or Rényi

entropy. We will then compare the exponent derived from both entropy measures with the

scaling exponent derived from the R/S and the DFA and see how well both methods will

perform in the characterization of the time series data.

6.1.2 System of Superposed Ornstein-Uhlenbeck Model involv-

ing Different Background-Driving Processes

Assume two stochastic processes recorded in the same region occur within a specified period.

And suppose each process is characterized by a different background driving process, in

particular, X1 could be characterized by a gamma process while X2 is described by a

Gaussian process. We propose the coupled system of stochastic differential equations below

with background processes Z1 and Z2 such that:

dX1(t) = −λX1(t)dt+ σ11dZ1(λ1t)t≥0 + σ12dZ2(λ2t)t≥0 (6.2)

dX2(t) = −λX2(t)dt+ σ21dZ1(λ1t)t≥0 + σ22dZ2(λ2t)t≥0. (6.3)

Where λ1 and λ2 are the intensity parameters, σ11 and σ22 determine volatility , σ12

and σ21 describes the correlation of the system. The solution of X1 and X2 will take the

form of the equation

X(t) = Σm
i=1wiXie

−λit +

� t

0

Σm
i=1e

−λi(t−s)dZ(λis). (6.4)

As before, when σ12 = σ21 = 0 we end up with a decoupled system and thus conclude

that the two occurrences do not have any correlation, and when σ12 = σ21 = σ22 =

σ11 = 0 we end up with a decoupled deterministic system and each equation can be solved

independently. We first characterize the data as Gaussian or Lévy using our proposed
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characterization method. We then choose the appropriate background-driving process for

the stochastic process being modeled.
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