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Abstract

Multivariate and high-dimensional datasets typically contain subgroups that may not be

immediately apparent. To reveal these groups, cluster analysis is performed. Cluster analysis

is an unsupervised machine learning technique commonly employed to partition a dataset into

distinct categories referred to as clusters. The k-means algorithm is a prominent distance-

based clustering method. Despite overwhelming popularity, the algorithm is not invariant

under non-singular affine transformations and is not robust, i.e., can be unduly influenced

by outliers. To address these deficiencies, we propose an alternative model-based clustering

procedure by minimizing a “trimmed” variant of the negative log-likelihood function. We de-

velop a “concentration step”, vaguely reminiscent of the classical Lloyd’s algorithm, that can

iteratively reduce the objective function converging to local minimum in a finite number of

steps. Being a local optimization technique, our algorithm depends on the choice of “warm-

start.” We develop a new sampling procedure to select appropriate warmstarts. For high-

dimensional or sparse datasets, cluster covariances become ill-conditioned. Consequently,

we equipped our proposed method with high-dimensional capabilities by using a regulariza-

tion technique that replaces ill-conditioned covariances with well-conditioned counterparts.

For n > p, a formal proof reveals that the objective function possesses the affine-invariant

property under non-singular affine transformations rendering the procedure affine invariant.

Extensive simulations for synthetic and real-world datasets are conducted to assess the per-

formance of our algorithm with respect to multiple cluster quality metrics. Compared to

such state-of-the-art competitors as k-means (or trimmed k-means) and tclust, empirical

studies indicate competitiveness and oftentimes superiority of our algorithm.
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Chapter 1

Introduction

Grouping similar objects is a task that we commonly encounter in our daily lives. Objects

within a particular group are more alike to each other than they are to those in other groups.

This concept forms the basis of many clustering algorithms and techniques that have been

developed over the years. Clustering is a technique in unsupervised learning that aims to

group similar data points together. Clustering can be abstractly defined as the process of

identifying groups within a data set using a dissimilarity criterion (Khanmohammadi et al.,

2017) or plainly defined as redistributing observational units in a data set into groups called

clusters based on some similarity measure. The goal of clustering is to partition a given

data set into meaningful subgroups (Ankerst et al., 2008), where each subgroup, or cluster,

consists of similar data points. Clustering is performed to identify patterns in a dataset that

may not be immediately apparent.

Clustering has a wide range of applications in various fields such as, image and speech

recognition (Jain, 2010), market segmentation (Kaufman and Rousseeuw, 1990), anomaly

detection (Chandola et al., 2009), medicine and healthcare (Kalyani, 2012; Xu and Wunsch,

2010; Andreopoulos et al., 2009), wireless sensor networks (Abbasi and Younis, 2007), bioin-

formatics (Masood and Khan, 2015), computer science, business and marketing, engineering,

cybersecurity and many others. It is a powerful tool for exploring and understanding com-

plex data sets and can provide insights that are not immediately apparent through other

techniques. In healthcare, clustering is used in several ways to improve patient outcomes

and inform medical research. One way clustering is used in healthcare is to identify pa-

tient subgroups with similar characteristics or outcomes. For example, clustering is used to

group patients with similar symptoms, medical history, or treatment responses, which can
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inform personalized treatment plans and improve patient outcomes. Clustering is also used

to support medical research by identifying patient subgroups that may be underrepresented

in clinical trials, and these subgroups are targeted for further research. Overall, clustering

can help healthcare professionals improve patient outcomes by providing more personalized

care, and it can support medical research by identifying new insights and opportunities for

further study. In business and marketing, clustering have been used to inform targeted

marketing campaigns, product development, customer recommendations and other business

decisions. For example, a company may use clustering to group customers based on demo-

graphics, purchase history, or other relevant data, and then develop marketing strategies or

products tailored to each group. Clustering can also be used to identify patterns or trends

in customer behavior, which can help companies make predictions about future market con-

ditions or identify new opportunities. Overall, clustering can help companies make more

informed business decisions and improve their marketing efforts by better understanding

their customers and target markets.

Clustering algorithms that exist can be grouped into four categories: partitional cluster-

ing, density-based clustering, hierarchical clustering and model-based clustering. Density-

based clustering methods group densely populated data points from sparsely located data

points. A density-based cluster is a set of data objects spread in the data space over a

contiguous region of high density of objects, separated from other density-based clusters by

contiguous regions of low density of objects (Kriegel et al., 2011). This method is particu-

larly useful for identifying clusters of arbitrary shape in a dataset. DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) (Ester et al., 1996) is a widely known density-

based clustering technique, which uses two parameters: a distance threshold (eps) and a

minimum number of points (minPts) to define clusters. DBSCAN starts by identifying a

dense area of points, which is a region that contains at least minPts within a distance of

eps. These points are considered as core points. Then the algorithm expands the cluster by

adding all points that are within a distance of eps to the core points. Points that are not

reachable from any core point are considered as noise or outliers. However, it can be sensitive

2



to the choice of parameters (eps, minPts) and it may not work well with high-dimensional

data.

Hierarchical clustering methods involve building a binary merge tree and cluster observa-

tional units in a sample data into a tree-like structure called a dendrogram. The procedure

begins from data elements stored at the leafs which proceeds by merging the two closest sub-

sets until we reach the root of the tree containing all the elements of the dataset (Nielsen,

2016). Hierarchical clustering can be done in two major ways, i.e., agglomerative hierar-

chical clustering and the divisive hierarchical clustering. For agglomerative clustering, each

observational unit in the data is assumed to be a cluster and, based on a similarity measure,

pairs of points are merged into a cluster. The divisive hierarchical clustering, on the other

hand, first considers all the data points as one cluster, and then considers all possible ways

to divide the cluster into two clusters. The best division is selected and the splitting is done

recursively until all clusters are formed. Single linkage, average linkage, and complete link-

age are examples of distance measures used in hierarchical clustering. Single linkage creates

clusters by connecting data points that are closest to each other, while complete linkage

creates clusters by connecting data points that are most distant from each other. Average

linkage creates clusters by connecting data points that have the smallest average distance

between them (Landau et al., 2011). One of the main benefits of hierarchical clustering is

that it can handle non-spherical clusters. However, it can be computationally expensive for

large datasets and the choice of linkage method, which determines how clusters are merged

or split, can greatly affect the final clustering results. Hierarchical clustering has also been

used as initial clusters or partition for some clustering methods such as Mclust (Scrucca

et al., 2016; Banfield and Raftery, 1993; Fraley and Raftery, 1998).

Partitional clustering involves splitting of the data set into non-overlapping groups by

hyperplanes such that an objective function is minimized. The k-means and k-medoids al-

gorithms are examples of partitioning algorithms. The k-medoids algorithm minimizes the

sum of distances between data points and the medoid of their respective clusters (Kaufman

and Rousseeuw, 1990). Partitional clustering is widely used in various fields such as image
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processing, data mining, and market segmentation. The main advantage of partitional clus-

tering is that it is computationally efficient for large datasets, and it can be used to identify

clusters with distinct characteristics. However, it may not be suitable for datasets for which

the number of clusters is not known in advance, and datasets with outliers.

The k-means algorithm aims to determine a set of centers, say k, in general, which

divides the data into k groups so that the sum of squared distances from each point in

the group to the center of the group is minimized (Kanungo et al., 2002). The algorithm

starts by choosing k initial cluster centers at random and redistribute each observational

unit to the cluster with closest center, and then updates the cluster centers based on the

new assignments. This process is repeated until the assignments and cluster centers no

longer change. One major problem of the k-means algorithm together with most traditional

clustering techniques is its sensitivity of the clusters to units of measurement (Kumar and

Orlin (2008)). Different units of measurement for same variables can cause the cluster

structure to completely change. For this reason, k-means fails to obtain the right clusters if

an affine transformation is applied to the data set. When a linear transformation is applied to

the data, the data points are linearly arranged in the space and the k-means algorithm may

produce unsatisfactory clusters. One approach that has been used to tackle this problem is

by converting (normalizing) all variables (with units) into unitless variables (with the range

[0, 1]) before applying a clustering technique. Knorr et al. (2001) argued that this way of

solving the problem at hand is not a satisfactory solution because just one extreme value

can cause other values to be contained in a small sub-range which can lead to “improvised”

clusters. Outliers pose several problems to many measures that are estimated. The sample

mean is one example of an estimator that is heavily affected by outliers. The sample mean

a has breakdown point of zero implying that just one extreme positive or negative value

is enough to “ruin” its estimating power. The k-means clustering method computes its

cluster centroids using the sample mean which is non-robust thereby rendering the method

susceptible to outliers. Thus, applying k-means to cluster a data set with outliers can lead

to undesirable outcomes.
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To address these challenges, several robust clustering methods and affine-invariant clus-

tering methods are proposed in the literature like those by Garćıa-Escudero et al. (2008,

2010); Kumar and Orlin (2008), and more recently by Huang and Yang (2020) and refer-

ences therein. We consider a clustering procedure which involves minimizing the “trimmed”

negative log-likelihood of a Gaussian mixture model contaminated by up to 100 ·α% outliers.

The resulting log-likelihood function has the affine-invariance property. Thus, the objective

function, i.e., the log-likelihood function, is changed by a constant under any general non-

singular linear transformations. A detailed proof of the affine-invariant property is given in

Chapter 2. For given sample data X = (xi|i = 1, . . . , n), where each xi ∈ Rp, we search

for a weight matrix w∗
n×K where each wik ∈ {0, 1}, with

∑K
k=1wik = 1 for each i, such that∑K

k=1 n
(w)
k ≥ n(1 − α) for 0 ≤ α < 1 where

∑n
i=1wik = n

(w)
k for each k, which minimizes a

type of negative log-likelihood function. Cluster memberships for each xi are then obtained

from the weight matrix w∗. The parameter α is known as a nominal “breakdown” point

parameter that controls the percentage of points that remain unassigned. The procedure

reduces to the non-robust case when α = 0. In this case all data points will be assigned to

appropriate clusters. When α ̸= 0, but some constant within its defined range, the robust

procedure is used and n · α% data points are left unassigned.

We develop a concentration step, vaguely reminiscent of the classical Lloyd’s algorithm,

that can iteratively be used to minimize the trimmed log-likelihood objective. Following

the ideas of Pokojovy and Jobe (2022), we unveil the equivalence between our proposed

method and the well-known Frank-Wolfe gradient descent method, which, in turn, implies our

algorithm converges at a local minimum of the objective function. The Frank-Wolfe gradient

descent method requires solving a linear minimization problem over a convex domain. We

discuss solution to this linear programming problem in Chapter 3. Being a local optimization

technique, our algorithm depends on the choice of initial cluster partition or “warmstart.”

As a by-product, we develop a new affine-invariant sampling procedure to select appropriate

warmstarts. This algorithm is also presented in Chapter 3. We extended our proposed

method to situations where cluster covariance may be assumed equal with small cluster
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sizes, and also to high-dimensional setting (p > n).

Multiple real-world and synthetic datasets with different configurations, including various

cluster shapes and sizes, number of clusters and types of linear transformations, are analyzed

to assess the performance of our proposed algorithm and compare it to k-means and tclust.

Empirical results strongly indicate that our proposed cluster algorithm has the potential

to serve as a robust affine-invariant, but still computationally attractive, alternative to the

conventional k-means method.
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Chapter 2

Model-Based Clustering

In this Chapter, we discuss the idea of model-based clustering and propose a way of cluster-

ing observations in a dataset into groups by minimizing a negative trimmed log-likelihood

function of a Gaussian mixture model.

2.1 Problem Formulation

Model-based clustering is a type of clustering algorithm that uses a statistical model to

identify the clusters in the data. The model is used to generate the cluster structure and

to estimate the parameters of the clusters. Model-based clustering can give a probabilistic

interpretation of the clustering results. This means that the model can assign a probability

to each data point, indicating how likely it is to belong to a particular cluster. This allows

for a more natural interpretation of the results, as well as providing a way to quantify the

uncertainty in the clustering results. There are several popular models for model-based

clustering. We will focus on Gaussian Mixture Models. The Gaussian Mixture Models is a

convex combination of Gaussian densities and also a probabilistic model that assumes the

observational units in the sample data set form K groups, where each group originates from

a Gaussian distribution with individual mean and covariance. Given a sample dataset X

of n observations {x1,x2, . . . ,xn} from a p-variate distribution modeled as a mixture of K

Gaussian distributions, we want to determine for each observational unit xi in the sample

data set a K-dimensional binary random variable y which will represent the i-th cluster

label. In the 1-of-K representation of the random variable y, one particular element, yk, is

assigned a value of 1, while all others are assigned a value of 0. If the i-th observational unit
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xi belongs to the k-th cluster, xi is assigned label yik = 1. The observational units in the

sample data set are redistributed into K homogeneous subgroups once all xi’s are labeled.

LetX = (x1, . . . ,xn) be a sample of n observations from a p-variate distribution modeled

as a mixture ofK Gaussian distributions given as a convex combination of Gaussian densities

below

p(x) =
K∑
k=1

πkφk

(
x|µk,Σk

)
, (2.1)

where πk ∈ [0, 1] is a mixing coefficient or mixture proportion such that the sum of all

πk’s equal to 1, φk

(
x|µk,Σk

)
represent the k-th Gaussian density with mean vector µk and

covariance matrices Σk. The mean vector and covariance matrix determine the shape of the

Gaussian distribution, while the mixture coefficient determines the proportion of the data

that is assigned to each Gaussian distribution or cluster. The log-likelihood of the Gaussian

mixture for a set of observational units {x1,x2, . . . ,xn} is given as

log p(X|θ) =
n∑

n=1

log

(
K∑
k=1

πkφ
(
xn|µk,Σk

))
(2.2)

with parameter θ =
(
(πk,µk,Σk)k=1,...,K

)
. For model-based clustering, we are concerned

with redistributing or partitioning the observational units into clusters or estimating the

parameter θ such that the log-likelihood function in Equation (2.2) is maximized. One

parameter estimation method that quickly comes to mind to maximize the log-likelihood

function is the maximum likelihood framework. Maximum likelihood estimation can become

problematic when applied to Gaussian Mixture Models when the data contains singularities.

Since there are several components of the mixture, the presence of singularities can cause the

log-likelihood to diverge to infinity. This is as a result of the tendency of some components

shrinking onto specific data points and thereby increasing or decreasing the log-likelihood

value. This phenomenon leads to severe over-fitting or poor generalization performance.

Also, the maximum likelihood framework for Equation (2.2) has no closed-form analytical

solution due to the summation over k in the logarithm. As a result, iterative methods are

preferred in this setting over the maximum likelihood approach. Also, a popular method
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that can be used to maximize the log-likelihood function in Equation (2.2) is known as

the expectation–maximization (EM) framework of Dempster et al. (1977). See McLachlan

and Krishnan (1997) and references therein. A robust regularized approach was proposed

by Garćıa-Escudero et al. (2008, 2010). Alternative approaches include Kumar and Orlin

(2008), Huang and Yang (2020), etc.

Suppose that we have in addition to the sample dataset X, a K-dimensional binary ran-

dom latent variable y in which an i-th observational unit originating from the k-th Gaussian

is labeled yik = 1 and all others are assigned 0. Let Y then represent all of these 1-of-K

representations. Then, Y has dimension n × K. Consider the problem of maximizing the

likelihood for the complete dataset {X,Y }. The likelihood function has the form

p(X,Y |θ) =
n∏

n=1

K∏
k=1

πynk

k φ
(
xn|µk,Σk

)ynk ,

where ynk is the k-th component of yn. The log-likelihood is then given as

log p(X,Y |θ) =
n∑

n=1

K∑
k=1

ynk log
(
πkφ

(
xn|µk,Σk

))
=

n∑
n=1

K∑
k=1

log
(
πkφ

(
xn|µk,Σk

))
.

(2.3)

The log-likelihood in Equation (2.3) now has the summation over k on the logarithm of the

Gaussian components. This form of the log-likelihood is easier to maximize.

Our aim is to develop a clustering method that is robust and invariant under non-singular

affine transformation that puts p-variate data into K clusters with the assumption that

each observation in the sample may originate from any one of the K possible multivariate

normal distributions with means µ1, . . . ,µk and covariance matrices Σ1, . . . ,Σk. When all

observations in the dataset are assigned to a cluster, we represent all the cluster labels yi,

where i = 1, . . . n, with the matrix w of dimension n×p. We will call w the weight matrix of

the sample dataset. We formulate the clustering problem as follows. Let X = {x1, . . . ,xn}

be a sample of n observations from a p-variate distribution modeled as a mixture of K

Gaussian distributions with a weight matrixw. Consider the negative log-likelihood function

9



given as:

H(w) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi|x̄(w)

k ,S
(w)
k )

)
. (2.4)

Notice that the objective function now has minus in front of the summation implying that

we will be minimizing the negative log-likelihood function rather than maximizing the log-

likelihood. The objective function given in Equation (2.4) is a “trimmed” negative log-

likelihood function as given in (Garćıa-Escudero et al., 2010, 2008). In Equation (2.4),

k represents the index of the k-th cluster and i the index of the i-th observation, |C| =

| ∪K
k=1 Ck| = ⌈n(1−α)⌉ where Ck is the k-th cluster, w ∈ Rn×K is a weight matrix. The k-th

mixing proportion is represented by π
(w)
k and the sum of all these mixing proportions equal

to 1, i.e.,
∑K

k=1 π
(w)
k = 1. Also,

f(xi|µ,Σ) = (2π)−p/2 |Σ|−1/2 exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
is the probability density function (pdf) of the multivariate Gaussian distribution. Further,

x̄
(w)
k is the mean of the k-th cluster defined as:

x̄
(w)
k =

1

n
(w)
k

n∑
i=1

wikxi, (2.5)

and S
(w)
k is the covariance matrix associated with the k-th cluster defined as:

S
(w)
k =

1

n
(w)
k − 1

n∑
i=1

wik(xi − x̄
(w)
k )(xi − x̄

(w)
k )′

=
1

n
(w)
k − 1

n∑
i=1

wikxix
′
i −

n
(w)
k

n
(w)
k − 1

x̄kx̄
′
k.

(2.6)

Beginning with hard clustering, we search for an optimal weight matrix w∗ ∈ {0, 1}n×K with

0 ≤
K∑
k=1

wik ≤ 1 for all i,
n∑

i=1

K∑
k=1

wik ≥ n(1− α) and
n∑

i=1

wik ≥ nk. (2.7)

An optimal weight matrix is the weight matrix for the dataset that minimizes the negative

log-likelihood function. For hard clustering, an observational unit is assigned probabilities,
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strictly 0 or 1, of originating from any of the K clusters. The most probable cluster for the

observational unit is assigned a probability of 1 and therefore, the weightswik are confined to

0 and 1. Relaxing the hard clustering condition allows assigning probabilities of originating

from one of the K clusters, other than only 0 and 1, to an observational unit. Hence, the

weights wik ∈ [0, 1]. From hard clustering, we move to soft clustering by searching for an

optimal weight matrix w∗ ∈ [0, 1]n×K where
∑K

k=1 wik = 1 and
∑n

i=1

∑K
k=1wik ≥ n(1 − α)

which minimizes the the objective function H(w) such that:

Ck ∩ Cl = ∅, |Ck| ≥ p+ 1,
K∑
k=1

|Ck| ≥ n(1− α). (2.8)

The first condition in Equation (2.8) ensures the clusters are pairwise disjoint. The second

condition makes certain that there are at least p+1 points in each cluster guaranteeing that

all determinants are non-zero provided the dataset is in general position. The last condition

mandates that no more than αn points remain unassigned, allowing for up to 100 · α%

outliers. The parameter α ∈ [0, 1) is known as a nominal “breakdown” point parameter

which controls what percentage of points that will not be assigned clusters. All data points

are assigned and the procedure is non-robust, when α = 0. When α ̸= 0, the procedure is

expected to be robust since αn observational units end up not assigned.

A new procedure for obtaining an optimal weight matrix w∗ is proposed and presented

in Algorithm 4. The new procedure is an iterative procedure we refer to as k-dets. The

iterative step of k-dets is based on the idea of concentration step or C-step. Based on recent

discovery of Pokojovy and Jobe (2022), our C-step uses Frank-Wolfe gradient method with

largest step size (γ = 1) to iteratively reduce the objective function. Since our proposed

method is an iterative procedure, it depends on initial data partition or “warmstart” (initial

clusters). Thus, our proposed method begins by randomly selecting several initial partitions.

For each of these initial partitions, the method iterates until a minima is reached leading to

a candidate partition. The method the chooses the partition with the minimum objective

value over all partitions. “Surprisingly”, the algorithm always converges to a hard cluster

membership matrix w ∈ {0, 1}n×K . In addition to k-dets, we developed an affine-invariant
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initial sampling method that produces an initial cluster partition for a given sample dataset.

The procedure is given in Algorithm 3.

2.1.1 Affine-Invariance Property

One of the major strengths of our clustering algorithm is the affine-invariant property which

comes from the objective function H(w). The affine-invariant property ensures that when

we find an optimal weight matrix for the sample data, then the same weight matrix is an

optimal weight matrix for a general non-linear transformation of the sample dataset and vice

versa. This is so because the objective function is changed only by a constant. A proof of

this property is given below.

Theorem 1. For any non-singular A ∈ Rp×p and b ∈ Rp, define yi = Axi + b, where

xi ∈ Rp, if w is a minimizer of the objective function H(w|x1, . . . ,xn) then w is a minimizer

of H(w|y1, . . . ,yn).

Proof. Let ȳ
(w)
k be the mean vector of the k-th cluster defined as:

ȳ
(w)
k =

1

n
(w)
k

n∑
i=1

wikyi. (2.9)

Substituting yi into Equation (2.9) and expanding we have

ȳ
(w)
k =

1

n
(w)
k

n∑
i=1

wik(Axi + b)

=
1

n
(w)
k

n∑
i=1

(wikAxi + wikb)

=
1

n
(w)
k

n∑
i=1

wikAxi +
1

n
(w)
k

n∑
i=1

wikb

= A
1

n
(w)
k

n∑
i=1

wikxi + b
1

n
(w)
k

n∑
i=1

wik

= Ax̄
(w)
k + b

1

n
(w)
k

n
(w)
k
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= Ax̄
(w)
k + b.

The mean vector of the k-th cluster of the transformed data is defined in terms of the mean

vector of the k-th cluster of the sample data. Let S
(w)
x,k and S

(w)
y,k be the covariance matrices

of the k-th cluster of the sample data X and the transformed data Y respectively. Define

S
(w)
y,k as:

S
(w)
y,k =

1

n
(w)
k − 1

n∑
i=1

wik(yi − ȳ
(w)
k )(yi − ȳ

(w)
k )′. (2.10)

Substituting yi and ȳ
(w)
k into Equation (2.10) and expanding, we have

S
(w)
y,k =

1

n
(w)
k − 1

n∑
i=1

wik((Axi + b)− (Ax̄
(w)
k + b))

(
(Axi + b)− (Ax̄

(w)
k + b)

)′
=

1

n
(w)
k − 1

n∑
i=1

wik(Axi + b−Ax̄
(w)
k − b)

(
Axi + b−Ax̄

(w)
k − b

)′
=

1

n
(w)
k − 1

n∑
i=1

wik(Axi −Ax̄
(w)
k )

(
Axi −Ax̄

(w)
k

)′
=

1

n
(w)
k − 1

n∑
i=1

wikA(xi − x̄
(w)
k )

(
A(xi − x̄

(w)
k )

)′
=

1

n
(w)
k − 1

n∑
i=1

wikA(xi − x̄
(w)
k )(xi − x̄

(w)
k )′A′

=
1

n
(w)
k − 1

A
n∑

i=1

wik(xi − x̄
(w)
k )(xi − x̄

(w)
k )′A′

= AS
(w)
x,kA

′.

The covariance of the k-th cluster of the transformed data is now defined in terms of the

covariance of the k-th cluster of the sample data set. Consider the probability density

function of the multivariate Gaussian distribution defined below:

f(yi|ȳ
(w)
k ,S

(w)
y,k ) = (2π)−p/2

∣∣∣S(w)
y,k

∣∣∣−1/2

exp

(
−1

2
(yi − ȳ

(w)
k )′(S

(w)
y,k )

−1(yi − ȳ
(w)
k )

)
. (2.11)

Substituting yi, ȳ
(w)
k and S

(w)
y,k into Equation (2.11) and expanding gives

f(yi|ȳ
(w)
k ,S

(w)
y,k ) = (2π)−p/2

∣∣∣AS
(w)
x,kA

′
∣∣∣−1/2

×
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× exp

(
−1

2
(Axi −Ax̄

(w)
k )′(AS

(w)
x,kA

′)−1(Axi −Ax̄
(w)
k )

)
= (2π)−p/2

∣∣∣AS
(w)
x,kA

′
∣∣∣−1/2

×

× exp

(
−1

2
((xi − x̄

(w)
k )′A′)(A′)−1(S

(w)
x,k )

−1A−1(A(xi − x̄
(w)
k ))

)
= (2π)−p/2

∣∣∣AS
(w)
x,kA

′
∣∣∣−1/2

exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,k )

−1(xi − x̄
(w)
k )

)
= (2π)−p/2 |A|−1/2

∣∣∣S(w)
x,k

∣∣∣−1/2

|A′|−1/2×

× exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,k )

−1(xi − x̄
(w)
k )

)
= (2π)−p/2 |A|−1

∣∣∣S(w)
x,k

∣∣∣−1/2

exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,k )

−1(xi − x̄
(w)
k )

)
= |A|−1 f(xi|x̄(w)

k ,S
(w)
x,k ).

The Gaussian density of the transformed data is now defined in terms of the Gaussian density

of the sample data. The log-likelihood or the objective function H(w|y) is given as

H(w|y) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(yi|ȳ

(w)
k ,S

(w)
y,k )

)
. (2.12)

Substituting f(yi|ȳ
(w)
k ,S

(w)
y,k ) into Equation (2.12) and expanding yields

H(w|y) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k |A|−1f(xi; x̄

(w)
k ,S

(w)
k )

)
= −

K∑
k=1

∑
i∈Ck

log
(
|A|−1

)
−

K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi; x̄

(w)
k ,S

(w)
k )

)
= K⌈n(1− α)⌉ log(|A|) +H(w|x).

The objective functionH(w|y) is defined in terms of the objective functionH(w|x) and some

constant. Thus, a weight matrix w that minimizes the objective function H(w|x1, . . . ,xn)

also minimizes the objective function H(w|y1, . . . ,yn).
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2.2 The Gradient of the Log-Likelihood Function

The C-step is an important step in reducing the objective value at each iteration. The C-step

of our proposed algorithm requires solving a linear minimization problem which utilizes the

gradient of the objective function. In this section, we first simplify the objective function

and then obtain the gradient by applying differentiation techniques. The objective function

H(w) given in Equation (2.4) can be expressed more explicitly as follows:

H(w) = −
K∑
k=1

log
∏
i∈Ck

π
(w)
k f(xi; x̄

(w)
k ,S

(w)
k )

= −
K∑
k=1

log π
|Ck|
k

∏
i∈Ck

f(xi; x̄
(w)
k ,S

(w)
k ).

By applying properties of logarithm and taking term by term summation we have:

H(w) = −
K∑
k=1

(|Ck| log π(w)
k + log

∏
i∈Ck

f(xi; x̄
(w)
k ,S

(w)
k ))

= −
( K∑

k=1

|Ck| log π(w)
k +

K∑
k=1

log
∏
i∈Ck

f(xi; x̄
(w)
k ,S

(w)
k )

)
.

(2.13)

An explicit representation of the first term of Equation (2.13) is given below:

K∑
k=1

|Ck| log π(w)
k =

K∑
k=1

n
(w)
k log

(
n
(w)
k

n

)

=
K∑
k=1

n
(w)
k log

(
n
(w)
k

)
−

K∑
k=1

n
(w)
k log(n)

=
K∑
k=1

n
(w)
k log

(
n
(w)
k

)
− ⌈n(1− α)⌉ log(⌈n(1− α)⌉).

The last term of Equation (2.13) is expressed as:

K∑
k=1

log
∏
i∈Ck

f(xi|x̄(w)
k ,S

(w)
k ) =

K∑
k=1

log
∏
i∈Ck

(2π)−p/2
∣∣∣S(w)

k

∣∣∣−1/2

× (2.14)
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× exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
k )−1(xi − x̄

(w)
k )

)
=

K∑
k=1

∑
i∈Ck

log

(
(2π)−p/2

∣∣∣S(w)
k

∣∣∣−1/2
)
− 1

2

K∑
k=1

∑
i∈Ck

(xi − x̄
(w)
k )′×

× (S
(w)
k )−1(xi − x̄

(w)
k ).

The first component of Equation (2.14) can be expressed more explicitly as:

K∑
k=1

∑
i∈Ck

log

(
(2π)−p/2

∣∣∣S(w)
k

∣∣∣−1/2
)

=
K∑
k=1

∑
i∈Ck

log
(
(2π)−p/2

)
+

K∑
k=1

∑
i∈Ck

log

(∣∣∣S(w)
k

∣∣∣−1/2
)

=
K∑
k=1

n
(w)
k log

(
(2π)−p/2

)
+

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣−1/2
)

= ⌈n(1− α)⌉ log
(
(2π)−p/2

)
+

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣−1/2
)

= ⌈n(1− α)⌉ log
(
(2π)−p/2

)
− 1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣).
The second component of Equation (2.14) can be expressed further as:

−1

2

K∑
k=1

∑
i∈Ck

(xi − x̄
(w)
k )′(S

(w)
k )−1(xi − x̄

(w)
k )

= −1

2

K∑
k=1

∑
i∈Ck

tr[(xi − x̄
(w)
k )′(S

(w)
k )−1(xi − x̄

(w)
k )]

= −1

2

K∑
k=1

∑
i∈Ck

tr[(S
(w)
k )−1(xi − x̄

(w)
k )(xi − x̄

(w)
k )′]

= −1

2

K∑
k=1

tr[(S
(w)
k )−1

∑
i∈Ck

(xi − x̄
(w)
k )(xi − x̄

(w)
k )′]

= −1

2

K∑
k=1

tr((S
(w)
k )−1S

(w)
k (n

(w)
k − 1))

= −1

2

K∑
k=1

(n
(w)
k − 1)tr(I)

= −1

2

(
K∑
k=1

n
(w)
k tr(I)−

K∑
k=1

tr(I)

)
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= −1

2
(⌈n(1− α)⌉p−Kp).

Substituting these expressions back into H(w) and simplifying, we have

H(w) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi; x̄

(w)
k ,S

(w)
k )

)
= −

K∑
k=1

n
(w)
k log

(
n
(w)
k

)
+ ⌈n(1− α)⌉ log(⌈n(1− α)⌉)

− ⌈n(1− α)⌉ log
(
(2π)−p/2

)
+

1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣)
+

1

2
(⌈n(1− α)⌉p−Kp)

= −
K∑
k=1

n
(w)
k log

(
n
(w)
k

)
+

1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣)
+

1

2
(⌈n(1− α)⌉p−Kp) + ⌈n(1− α)⌉ log(⌈n(1− α)⌉)

− ⌈n(1− α)⌉ log
(
(2π)−p/2

)
= −(If + C(n, p,K)),

(2.15)

where

If =
K∑
k=1

n
(w)
k log

(
n
(w)
k

)
− 1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
k

∣∣∣)
=

K∑
k=1

n
(w)
k log

(
n
(w)
k

∣∣∣S(w)
k

∣∣∣− 1
2

)
,

and

C(n, p,K) = −1

2
(⌈n(1− α)⌉p−Kp)− ⌈n(1− α)⌉ log(⌈n(1− α)⌉)

+ ⌈n(1− α)⌉ log
(
(2π)−p/2

)
.

The objective function H(w) is now expressed in a simpler form for term by term differenti-

ation to obtain the gradient. Differentiating the second term of Equation (2.15) with respect
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to wik yields a value of zero since none of the components depend on wik as given below:

∂ (C(n, p,K))

∂wik

= −1

2

∂ (⌈n(1− α)⌉p−Kp)

∂wik

− ∂ (⌈n(1− α)⌉ log(⌈n(1− α)⌉))
∂wik

+

+
∂
(
⌈n(1− α)⌉ log

(
(2π)−p/2

))
∂wik

= 0.

The derivative of Equations (2.5) and (2.6) with respect to wik, the mean vector of the k-th

cluster and the covariance of the k-th cluster, can be obtained by applying chain and product

rules:

∂
(
x̄
(w)
k

)
∂wik

=
1

n
(w)
k

xi −
1

(n
(w)
k )2

n∑
i=1

wikxi

∂
(
S

(w)
k

)
∂wik

=
1

n
(w)
k − 1

(xi − x̄
(w)
k )(xi − x̄

(w)
k )′ − S

(w)
k

n
(w)
k − 1

.

The derivative of the first component of Equation (2.15) is given as:

∂ (If )

∂wik

=

∂

(∑K
k=1 n

(w)
k log

(
n
(w)
k

∣∣∣S(w)
k

∣∣∣− 1
2

))
∂wik

=
∂
(∑K

k=1 n
(w)
k log

(
n
(w)
k

))
∂wik

− 1

2

∂
(∑K

k=1 n
(w)
k log

(∣∣∣S(w)
k

∣∣∣))
∂wik


=

∂ (I2)

∂wik

+
∂ (I1)

∂wik

,

where

∂ (I2)

∂wik

=
∂
(∑K

k=1 n
(w)
k log

(
n
(w)
k

))
∂wik

=
∂
(
n
(w)
k

)
∂wik

log
(
n
(w)
k

)
+ n

(w)
k

∂
(
log
(
n
(w)
k

))
∂wik

=

(
log
(
n
(w)
k

)
+ n

(w)
k

1

n
(w)
k

)
= 1 + log

(
n
(w)
k

)
,
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and

∂ (I1)

∂wik

= −1

2

∂
(∑K

k=1 n
(w)
k log

(∣∣∣S(w)
k

∣∣∣))
∂wik


= −1

2

∂
(
n
(w)
k

)
∂wik

log
(∣∣∣S(w)

k

∣∣∣)+ n
(w)
k

∂
(
log
(∣∣∣S(w)

k

∣∣∣))
∂wik


= −1

2

log
(∣∣∣S(w)

k

∣∣∣)+ n
(w)
k

∂ log
(∣∣∣S(w)

k

∣∣∣)
∂wik

 .

(2.16)

The second term in Equation (2.16) can be expressed as

∂ log (|Sk|)
∂wik

= tr

(S
(w)
k )−1

∂
(
S

(w)
k

)
∂wik


= tr

(
(S

(w)
k )−1

(
1

n
(w)
k − 1

(xi − x̄
(w)
k )(xi − x̄

(w)
k )′ − S

(w)
k

n
(w)
k − 1

))
=

1

n
(w)
k − 1

tr((S
(w)
k )−1(xi − x̄

(w)
k )(xi − x̄

(w)
k )′)− 1

n
(w)
k − 1

tr((S
(w)
k )−1S

(w)
k )

=
1

n
(w)
k − 1

(xi − x̄
(w)
k )′(S

(w)
k )−1(xi − x̄

(w)
k )− 1

n
(w)
k − 1

tr(I)

=
1

n
(w)
k − 1

D2(xi; x̄
(w)
k ,S

(w)
k )− p

n
(w)
k − 1

,

where D2(xi; µ̂, Σ̂) := (xi−µ̂)′Σ̂
−1
(xi−µ̂) for x ∈ Rp, is the squared Mahalanobis distance.

Hence, we have

∂ (I1)

∂wik

= −1

2
log
(∣∣∣S(w)

k

∣∣∣)− 1

2

n
(w)
k

n
(w)
k − 1

D2(xi; x̄
(w)
k ,S

(w)
k ) +

1

2

n
(w)
k p

n
(w)
k − 1

.

Thus, the gradient of H(w) is given by

∂ (H(w))

∂wik

= −∂ (If )

∂wik

+
∂ (C(n, p, k))

∂wik

= −
(
1 + log

(
n
(w)
k

)
− 1

2
log
(∣∣∣S(w)

k

∣∣∣)− 1

2

n
(w)
k

n
(w)
k − 1

D2(xi; x̄
(w)
k ,S

(w)
k ) +

1

2

n
(w)
k p

n
(w)
k − 1

)
.

(2.17)
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Chapter 3

Connection with Frank-Wolfe

Algorithm

In this Chapter, we discuss the C-step, and empirically demonstrate that by taking the

maximum step size at each iteration, the C-step reduces the objective value. We also show

how to solve the linear programming problem in our C-step. As a by-product of k-dets,

we put forth the algorithm for randomly generating the initial cluster partition. We finally

present our proposed algorithm, k-dets.

3.1 Frank-Wolfe Gradient Method

A first-order optimization algorithm for constrained convex optimization, known as the con-

ditional gradient method or the Frank-Wolfe algorithm, was introduced by Frank and Wolfe

(1956). Consider the optimization problem given below:

f(s) → min over s ∈ M (3.1)

where f : Rd → R is twice continuously differentiable over the compact and convex domain

M ⊂ Rd. Algorithm 1 is the general Frank-Wolfe gradient descent method (Lacoste-Julien,

2016) for solving Equation (3.1). Lacoste-Julien (2016) showed that for Algorithm 1, the

minimum Frank-Wolfe gap encountered after t iterations shows an O(1/
√
t) convergence. A

detailed proof of the convergence for γt ∈ arg min
γ∈[0,1]

f(x(t) + γtdt) or γt := min{gt
C
, 1} is given

in Theorem 1 of Lacoste-Julien (2016).
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Algorithm 1: General Frank-Wolfe gradient method

1 Select x(0) ∈ M and tolerance threshold ϵ > 0.

2 for t = 0 . . . T do

3 Compute s(t) := arg min
s∈M

〈
s,∇f(x(t))

〉
, dt := s(t) − x(t), and

gt :=
〈
dt,−∇f(x(t))

〉
4 if gt ≤ ϵ then

5 return x(t)

6 end

7 Compute γt := argminγ∈[0,1] f(x
(t) + γtdt)

8 Update x(t+1) := x(t) + γtdt

9 end

10 return x(T )

Putting problem (2.4) — (2.7) into the context of Equation (3.1), consider the optimiza-

tion problem

H(w) → min over w ∈ Mα (3.2)

where H : Rn×K → R is a continuously differentiable function defined on a compact domain

Mα =

{
w ∈ [0, 1]n×K

∣∣∣∣ K∑
k=1

wik = 1,
K∑
k=1

n
(w)
k ≥ n(1− α) and

n∑
i=1

wik ≥ nk

}
. (3.3)

It has been demonstrated by Pokojovy and Jobe (2022) that the Frank-Wolfe gradient

method is equivalent in certain situations to the concentration step or the C-step iteration.

Consequently, we apply Frank-Wolfe gradient method as our C-step to iteratively reduce

the objective function. A concrete algorithm of the Frank-Wolfe gradient method to solve

problem (3.2) is given in Algorithm 2.

Given a dataset, the Frank-Wolfe method repeatedly updates an initial weight matrix

until there is no further change in the weight matrix. At this stage, the resulting weight

matrix is considered a locally optimal weight matrix. The Frank-Wolfe gradient method

also requires a solution to a linear minimization problem at each step of the iteration, which
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involves the gradient of the objective function. Later in this chapter, we will discuss solution

to the linear programming problem and present a lemma pertaining to this solution. Given

this solution, the descent direction at each step of the iteration can be calculated by finding

the difference between the solution to the linear minimization problem and the weight matrix.

Subsequently, the Frank-Wolfe gap (gt), which is defined as the Frobenius product of the

descent direction and the anti-gradient of the objective function, is computed at every step.

The affine-invariance property of the Frank-Wolfe gap (Jaggi, 2013) makes our C-step, the

Frank-Wolfe gradient method affine-invaraint. We employ the Frank-Wolfe gap, which does

not have any norm constraints, to decide when the algorithm terminates. Specifically, the

algorithm will end if the gap gt falls below a small positive value ϵ. On the other hand, given

that gt is still greater than ϵ, the weight matrix will be updated by taking the maximum step

size, and the process will be repeated until a local minimum is reached. Figure 3.1 presents

a plot of the objective function against step size, γt ∈ [0, 1], which shows that the objective

function H(w) is minimized at the maximum step γ = 1.

Algorithm 2: Frank-Wolfe gradient method

1 Let w(0) ∈ Mα and tolerance threshold ϵ > 0.

2 for t = 0 . . . T do

3 Compute s(t) := arg min
s∈Mα

〈
s,∇H(w(t))

〉
F where H(w(t)) is as given in

Equation (2.17).

4 Let dt := s(t) −w(t)

5 Compute gt :=
〈
dt,−∇H(w(t))

〉
F

6 if gt ≤ ϵ then

7 return w(t)

8 end

9 Take maximum step, γt = 1

10 Update w(t+1) := w(t) + γtdt

11 end

12 return w(T )
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Figure 3.1: Objective function against step size γ

Theorem 2. The minimum Frank-Wolfe gap gt encountered at the t-th iteration of the

Frank-Wolfe algorithm with maximum step size γt = 1 in Equation (3.2) is

g̃t ≤
C√
t+ 1

for t ≥ 0 (3.4)

where C = CH,Mα > 0.

3.1.1 Solution to the Linear Programming Problem

To implement the Frank-Wolfe algorithm, it is necessary to solve a linear programming

problem defined over the compact domain Mα. The approach to finding a solution to this

linear minimization problem is explained below. In the context of Algorithm 2, consider the

linear minimization problem stated on line 3. This problem seeks to find the solution matrix

s(t) that minimizes the expression
〈
s,∇H(w(t))

〉
F , subject to the constraint that s belongs

to the compact domain Mα. Let s(t) ∈ [0, 1]n×K be a solution to the linear programming
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problem. At some w(t), the dimension of the gradient of the objective function, denoted by

∇H(w(t)), is n×K, which is the same dimension of s(t). We aim to obtain a solution matrix

s(t) that minimizes the Frobenius product between the gradient matrix and the solution

matrix at the t-th iteration. The matrix s(t) with components s
(t)
ik = 1 for all indices (i, k)’s

of the gradient matrix with the minimum component on each row and 0 otherwise, is the

solution matrix that minimizes the linear objective. See Equation (3.5) for the solution

matrix to the linear programming problem.

Lemma 3. For a given gradient ∇H(w) ∈ Rn×K, the solution to the linear programming

problem on line 3 of Algorithm 2 is the matrix s∗ with components s∗ik ≡ 1 for all (i, k)’s

corresponding to the row-column indices of the gradient matrix with minimum component

and 0, otherwise.

Proof. To show that the domain Mα is non-empty, take w = (1, . . . , 1)/n(1 − α) ∈ Mα.

Therefore, Mα is non-empty. The inclusion Mα ⊂ [0, 1]n×K implies that Mα is bounded.

Let x be a limit point of Mα. By definition, there exists a sequence (xn)n with xn ∈ Mα

such that xn → ∞. But xn ≥ 0 for all n which implies that x ≥ 0. Similarly, x ≤ 1

so x ∈ Mα. Thus Mα is closed since x was chosen arbitrary. Also,
∑K

k=1wik = 1 and∑K
k=1 n

(w)
k ≥ n(1 − α) in the limit. Since the objective function is a linear function it is

continuous implying that there exists a minimum. Let s∗ ∈ Mα be the minimizer of the

linear programming problem.

For convenience, let G be the gradient where G ∈ Rn×K be fixed and the domain

Mα =

{
w ∈ [0, 1]n×K

∣∣∣∣ K∑
k=1

wik = 1,
K∑
k=1

n
(w)
k ≥ n(1− α) and

n∑
i=1

wik ≥ nk

}
.

Let the linear programming problem be defined as

L(s) =
〈
G, s

〉
,

where
〈
·, ·
〉
is the Frobenius inner product of G and s. Let k∗

i = arg min
k=1,...,K

Gik where ties are

broken arbitrary. Let h = n(1− α) and G∗
i∗1
≤ . . . ≤ G∗

i∗h
≤ . . . G∗

i∗n
where I = {i∗i , . . . , i∗n} is

24



the permutation of the index set {1, . . . , n} and G∗
i∗j
= G∗

(j). Let the optimal s be s∗ and be

defined below as

s∗ik =



0 if i /∈ {i∗i , . . . , i∗h}

0 if i ∈ {i∗i , . . . , i∗h}

but k ̸= k∗
i

1 if i ∈ {i∗i , . . . , i∗h}

and k = k∗
i .

(3.5)

Observing that
〈
G, s∗

〉
≤
〈
G, s

〉
for all s ∈ Mα holds true, proves the assertion. A detailed

proof is given in Anum (2021).

3.2 Initial Clustering Algorithm

Iterative methods, as the name suggests, depend on the quality of solution at a previous step

to obtain a quality solution at a current time step. As a result, many iterative methods suffer

from initial starting condition effects. “Bad” initial starting choices (initial choices that are

not sufficiently close to the true solution) or “warmstarts” can cause iterative methods to

either converge to a suboptimal solution or fail to converge at all. In other situations, the

number of iterations required to reach convergence (either an optimal or suboptimal) can be

severely impacted.

Clustering methods are typically iterative methods that require the choice of initial data

partition as an input. Many techniques used for initial partition of a data are documented in

the literature (See MacQueen (1967); Forgy (1965); Kaufman and Rousseeuw (1990); Pena

et al. (1999), etc.) Most of these procedures (for splitting data into groups) have the same

underlying problem of being dependent on units of measurements. Consequently, there is

no guarantee that the use of these initial partitioning techniques will not compromise the

affine-invariance property of the final clusters. To have some layer of protection, we propose

an initial data splitting technique called kdetsInit, given in Algorithm 3, for our k-dets
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algorithm. At the start of the algorithm, all observational units in the dataset are considered

to belong to a single cluster. The algorithm determines the size of each cluster after splitting

(via the hypergeometric distribution). During the splitting step, an existing cluster Ci is

selected at random and divided into two parts (not necessarily equal). Thus, to obtain K

clusters, the algorithm performs (K − 1) division steps. The algorithm randomly selects an

observational unit x∗ from Ci without replacement and iterate the following steps. Another

observational unit xj is selected from Ci without replacement. The directional vector dj is

computed as the difference between xj and x∗. We find the orthonormal vector uj to the

directional vetor dj using the Gram-Schmidt orthonormalization process. The cluster Ci is

projected onto uj to obtain a vector zj. We compute the robust scale of the projection zj

using the univariate MCD and we keep track of the minimum and maximum variance. The

algorithm iterates until the ratio of the minimum and maximum variance is smaller than

some small positive ϵ. The algorithm then partitions Ci into two subsets such that one subset

Sñ1 has cluster size ñ1 and the other subset Sñ2 has cluster size ñ2 such that ñ1 + ñ2 = n. If

we are searching for more than two clusters, the algorithm then randomly selects any of the

subsets Sñi
and repeats the process until the data are split in K clusters.

3.3 The k-dets Algorithm

We now formally present our proposed k-dets clustering algorithm given in Algorithm 4.

The algorithm is an iterative procedure like many other clustering algorithms. It begins by

invoking Algorithm 3 to split the data into an initial partition. An initial weight matrix is

obtained for the initial partition of the dataset. The weight matrix has dimension n × K

where each row sum is equal to one and each column sum equals the number of observa-

tions, nk, in cluster Ck. The algorithm then iterates the concentration step or the C-step

as follows. The gradient of the objective function at w(m) is computed. When there are no

outliers and α = 0 can be assumed, the non-robust version of the procedure (including all

obsevational units in the dataset) is used by updating the weight matrix with Algorithm 2,
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Algorithm 3: kdetsInit(x1, . . . , xn;K)

1 NumClust = 1, C1 = {x1, . . . ,xn} ⊂ Rp.

2 From multinomial distribution Mult(1, K, (p1, . . . , pk)), draw cluster sizes n1, . . . , nK

to achieve after splitting such that
∑K

i=1 ni = n.

3 while NumClust < K do

4 Select a cluster Ci randomly, 1 ≤ i ≤ NumClust, for splitting

5 Draw x∗ from Ci randomly without replacement

6 for j = 1, . . . , |Ci| do

7 Draw xj from Ci without replacement and compute the directional vector

dj = xj − x∗

8 Find the vector uj that is orthonormal to d1, . . . ,dj using Gram-Schmidt

orthonormalization process:

9 (i) uj = dj −
∑j−1

m=1 Πum(dj), where the projection operator

Πum(dj) :=
(
u′d
u′u

)
u,

10 (ii) uj =
uj

∥uj∥ , for ∥uj∥ ≠ 0.

11 Project Ci on uj via zj = Πuj
(Ci) and compute σ̂2

j = σ̂2
MCD(zj)

(cf. Rousseeuw and Driessen (1999))

12 Let σ̂2
min = min{σ̂2

1, . . . , σ̂
2
j} and σ̂2

max = max{σ̂2
1, . . . , σ̂

2
j}

13 if
σ̂2
min

σ̂2
max

< ϵ then

14 z∗ = zj−1 (with z0 = z1 for j = 1)

15 break

16 end

17 end

18 Partition Ci = Sñ1 ∪ Sñ2 and Sñ1 ∩ Sñ2 = ∅ such that {xi ∈ Sñ1|z∗i ≤ h} and

{xi ∈ Sñ2|z∗i > h} where |Sñ1|+ |Sñ2| = |Ci|

19 Assign Ci = Sñ1

20 NumClust = NumClust+ 1

21 CNumClust = Sñ2

22 end

27



and ensure that each cluster has at least (p + 1) observational units. A new partition is

formed from the updated weight matrix and the objective value is computed. If there are

outliers in the dataset, α > 0, the robust procedure is used by ordering the minimum gradi-

ent in every i-th row in increasing order, and selecting the top ⌈n(1−α)⌉ observations. The

weight matrix is updated leaving nα points unassigned. A new cluster membership is formed

and the objective value is computed. This process is repeated nrep times and the member-

ship with the minimum objective value is selected as our optimal partition. Figure 3.2 shows

that the objective function reduces at each iteration and converges in a finite number of steps.

Algorithm 4: k-dets(x1, . . . ,xn;K,α)

1 Generate, say, nrep = 100 random warmstarts, i.e.,

C0 = (C0
1 , . . . , C0

K), . . . , Cnrep = (Cnrep

1 , . . . , Cnrep

K ), using Algorithm 3 and obtain the

initial weight matrix w ∈ [0, 1]n×K from the initial partition.

2 For m = 0, 1, . . . , iterate the concentration step:

2.1 Compute the gradient d
(m)
ik at w(m).

2.2 Update the weight matrix w(m+1) using Algorithm 2 ensuring that there are at

least (p+ 1) points in each cluster.

2.3 Form a new partition C(m+1) = (C(m+1)
1 , . . . , C(m+1)

K ) from w(m+1) and compute

objective value H(C(m+1)).

2.4 Stop as soon as H(C(m)) = H(C(m+1)) or C(m) = C(m+1).

3 Starting Step 2 from each warmstart, select final partition with the smallest value of

objective H(C).
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Figure 3.2: Objective function against iteration

Lemma 4. Let C0 = (C0
1 , . . . , C

0
K) be an arbitrary (admissible) initial clustering. Apply the

concentration step in Algorithm 4 to obtain C1 = (C1
1 , . . . , C

1
K). Then H(C1) ≤ H(C0).

Conjecture 5. Arguing similar to Theorem 1 of Rousseeuw and Driessen (1999), the C-step

(Step 2) of Algorithm 4 is expected to reduce H(C) leading to (monotonic) convergence in a

finite number of steps.
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Chapter 4

Simulation Study

In this chapter, we discuss some popular cluster performance measures and perform several

simulation studies using uncontaminated and contaminated datasets with different config-

urations to assess the performance of our proposed method. We compare the results from

applying our proposed method to k-means when there are no outliers in the dataset and to

tk-means when there is some contamination of the dataset, and tclust from the tclust

package in R (Fritz et al., 2012). The methods are applied nrep = 100 replications on the

datasets and the average of the results are taken.

4.1 Performance Measures

The fundamental idea of clustering is to identify patterns in a sample dataset that may not be

immediately apparent to businesses or researchers learning about a dataset. Consequently,

a wide variety of clustering techniques have been developed in literature. These clustering

techniques, when applied, produces cluster labels to the observational units of the sample

data. Nevertheless, having just the cluster labels to the observational units does not tell the

cluster quality or cluster “accuracy”. To evaluate the quality of clustering results, several

clustering performance measures have been developed. We will discuss some of the commonly

used clustering performance measures in this section. The selected clustering metrics require

reference partitions or ground truth labels and have values ranging from 0 to 1.
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4.1.1 Cluster Accuracy (CA)

A very basic cluster performance measure is the so called cluster “accuracy.” We obtain the

cluster “accuracy” by first taking all possible permutations of the resulting clusters from the

clustering methods and compare each of these possible permutations with the ground truth

clusters by computing the confusion matrix and then the accuracy given below:

CA =
TP + TN

TP + TN+ FP + FN
.

The highest accuracy from these matches is selected. Positive in this scenario means one

cluster label, and negative is considered as the other cluster label for binary clusters or the

remaining cluster labels for multi-class (more than two cluster labels). A positive prediction

occurs when an observations’ label in the ground truths is the same in the resulting cluster

labels. True positive (TP) is the number of correct positive predictions, false positive (FP)

is the number of incorrect positive predictions, false negative (FN) is the number of incorrect

negative predictions and true negative (TN) is the number of correct negative predictions.

For datasets with two clusters, TP, FP, FN and TN are directly obtained from the confusion

matrix and the accuracy is obtained using the formula above. For datasets with multi-class,

the confusion matrix is given as a combination of all classes. In such situation, obtaining TP,

FP, FN and TN are not as direct as in the binary class. In this case, we find TP, FP, FN and

TN for individual classes and compute the corresponding accuracy. The overall accuracy is

the average of all accuracies.

4.1.2 Rand Index (RI)

The Rand Index measures the similarity between the clustering results or cluster labels from

a clustering algorithm and the true class labels of the observational units. The calculation of

Rand Index involves obtaining the number of pairs of data points that are either in the same

cluster in both the clustering result and the true class labels or in different clusters in both

the clustering result and the true class labels. The Rand Index also takes into consideration

the number of pairs of points that are misrepresented. It is calculated as the ratio of the
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number of pairs of points that are correctly clustered and the sum of the number of pairs

of points that are correctly and incorrectly clustered which provides a more comprehensive

measure of similarity. The formula is given as:

RI =
TP + TN

TP + TN+ FP + FN
,

where true positives (TP) is the number of pairs of data points that are in the same cluster

in both the true and predicted clustering, true negative (TN) is the number of pairs of data

points that are in different clusters in both the true and predicted clustering, false negative

(FN) is the number of pairs of data points that are in the same cluster in the true clustering

but in different clusters in the predicted clustering, and false positive (FP) is the number

of pairs of data points that are in different clusters in the true clustering but in the same

cluster in the predicted clustering. The Rand Index value ranges from 0 to 1, with a value

of 1 indicating a perfect match between the clustering result and the true class labels. A

Rand Index value of 0 indicates that the clustering result and the ground truth labels do not

agree. The Rand Index performance measure was introduced by Rand (1971).

4.1.3 Purity

Purity (Manning, 2008) is a clustering performance measure that assesses how well the

clustering result matches the true class labels. Purity measures the frequency of the most

common class label in each cluster and takes the average over all clusters. The formula for

computing purity is given as follows:

purity(C,G) = 1

N

∑
k=1,...,K

max
j=1,...,K

|Ck ∩Gj|,

where C = {C1, C2, . . . , Ck} is the set of clusters obtained from the clustering technique and

G = {G1, G2, . . . , Gj} is the ground truth cluster set. The elements Ck and Gj in sets C

and G represent all the observational units in the k-th cluster from the clustering technique

applied and the j-th cluster ground truth. Here, | · | is the number of observations in the

intersection. The value of purity ranges from 0 to 1, with a value of 1 indicating a perfect

clustering result.
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4.1.4 Normalized Mutual Information (NMI)

Another popular performance measure is based on the idea of mutual information hence

called the normalized mutual information (NMI). This metric measures the degree of agree-

ment between the ground truth labels and the resulting cluster assignments. Computing this

metric is two-fold: first compute the mutual information between the ground truth labels

and then the resulting cluster assignments. This information is then normalized via the

entropy. The NMI formula is given below:

NMI(C,G) = 2I(C,G)
H(C) +H(G)

,

where C is the cluster assignments from the clustering technique and G is the ground truth

labels, I(C,G) is the mutual information between the two assignments, H(C) is the entropy

of the ground truth labels. The mutual information is mathematical expressed as:

I(C,G) =
K∑
k=1

K∑
j=1

P (Ck ∩Gj) log
P (Ck ∩Gj)

P (Ck)P (Gj)

=
K∑
k=1

K∑
j=1

|Ck ∩Gj|
N

log
N |Ck ∩Gj|
|Ck||Gk|

,

where P (Ck), P (Gj), and P (Ck ∩Gj) represent the probabilities that an observational unit

is assigned to cluster Ck, Gj, and their intersection. The entropy is given as:

H(C) = −
K∑
k=1

P (Ck) logP (Ck)

= −
K∑
k=1

|Ck|
N

log
|Ck|
N

.

The NMI score also ranges from 0 to 1. The NMI was first introduced by Strehl and Ghosh

(2002).
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4.2 Uncontaminated Datasets

4.2.1 Clusters on the Vertices of a Unit Square

• Description of dataset X.

Huang and Yang (2020) (cf. Chapter 5) provides some simulated datasets for testing the

performance of their proposed method. We will adopt three of their simulated datasets.

We generated the initial synthetic dataset to consist of four distinct clusters, each

with its center at one of the four vertices of a unit square, resulting in well-separated

clusters. A total of 80 bivariate observations were generated from N (µk, (1/16)I2) for

k = 1, 2, 3, 4 where µk is the mean vector of the k-th cluster and I2 is the 2×2 identity

matrix, with 20 observations located at each vertex µk. To generate this data set, the

rmvnorm function from the mvtnorm package in R was used. We set a seed of 800 for

reproducibility of this dataset. The left panel of Figure 4.1 shows the plot of X.

• Description of dataset Y .

The second dataset is a transformed version of the initial population X. The linear

transformation of X is given as Y = X ×

 3 0

0 1/3

. The first feature or column of

X is multiplied or stretched by a factor of three whiles the second column is shrinked

by a factor of three. A visualization of the transformed dataset show four clusters

that may not be immediately distinguishable, as two clusters on the left appear to

be almost merged into a single cluster, and the same is true for the two clusters on

the right. A plot of dataset Y is shown in the middle panel of Figure 4.1. Since the

original population has four clusters, we will search for four clusters when we apply

various clustering techniques in our analysis.

• Description of dataset Z.

For dataset Z, another transformation of the initial population X was taken by multi-
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plying X by a non-singular matrix

 4.1 2.1

1.9 1.1

 . Unlike previous transformation, the

off-diagonal elements of this non-singular matrix are non-zero. The features of Z are

a linear combinations of the features of the initial population. The plot of Z depicted

in the right panel of Figure 4.1 indicates that the transformed features follow a linear

trend, while the four clusters appear to be poorly separated, rendering the structure

more challenging to cluster.

• Analysis of datasets X,Y and Z.

With the datasets now generated (see Figure 4.1), our next step involves analyzing

them via applying our proposed k-dets clustering algorithm, the widely used k-means

technique and tclust. For all these synthetic datasets, we will search for four clusters

as in the initial population (see left panel of Figure 4.1). It is worth mentioning that

since there are no outliers in these datasets, every observational unit will be allocated

or assigned a cluster. Following the application of all the clustering techniques (men-

tioned above) on the datasets, we will evaluate the quality of the clustering results

using the performance measures detailed in Section 4.1. To ensure a more accurate

comparison of the quality of the clustering results, we will apply the clustering methods

several times on the datasets, nrep = 100 replications, and compute the average of the

outcomes.

Given that the clusters are distinctly separated in X (see left panel of Figure 4.1),

it comes as no surprise that all the clustering methods applied are able to correctly

identify all four subgroups in this dataset. All three methods had perfect clustering

performances. Figure 4.2 shows the projected cluster results from all the methods.

Applying k-means clustering to the dataset Y (which is an affine transformation of

X) to identify four clusters yields low accuracy, as shown in Table 4.1. This is be-

cause clusters 1 (colored green) and 4 (colored black), as well as clusters 2 (colored
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red) and 3 (colored blue), appear to be joined together. Consequently, k-means fails

to distinguish between cluster 1 and cluster 4, as well as between cluster 2 and cluster

3, resulting in a high rate of misclassification. The tclust method had a better clus-

tering performance than k-means. In contrast, k-dets successfully identified all four

true clusters. Figure 4.3 shows best cluster results from the methods in comparison to

the ground truth clusters. Also, for dataset Z, k-dets successfully identified all four

clusters. Both k-means and tclust had a better clustering performance when applied

to dataset Z than when applied to dataset Y . Figure 4.4 shows best projected cluster

results from the methods in comparison to the ground truth clusters. Because of the

affine-invariance property of k-dets, the clustering results for dataset X, Y and Z

when k-det was applied are the same. Since the Y and Z are transformations of X, or

have different units of measurements in comparison to X, both k-means and tclust

view them as different datasets and thereby the difference in their clustering results.

Table 4.1 reports the average cluster accuracy (ACA), average Rand index (ARI), aver-

age purity (AP) and average normalized mutual information (ANMI) values computed

based on nrep = 100 replications.

Table 4.1: ACA, ARI, AP and ANMI comparisons for synthetic data.

X Y Z

Methods ACA ARI AP ANMI ACA ARI AP ANMI ACA ARI AP ANMI

k-means 1.000 1.000 1.000 1.000 0.575 0.753 0.575 0.516 0.938 0.941 0.938 0.850

tclust 1.000 1.000 1.000 1.000 0.810 0.886 0.810 0.803 0.940 0.944 0.940 0.855

k-dets 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 4.1: Scatterplots of the synthetic datasets. The plot in the left panel represents

X, displaying the four clusters positioned at the vertices of the unit square; the middle

panel plot is a plot of Y which is a transformation of X; similarly, the right panel plot is a

transformation of X with the features now following a linear trend.
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Figure 4.2: Plots of dataset X and projected resulting clusters. The top left panel displays

X with four distinguishable clusters, while the top right and bottom left panels display best

clusters obtained using the k-means and tclust methods, respectively. Finally, the bottom

right panel displays the best k-dets clusters.
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Figure 4.3: Plots of dataset Y and resulting clusters. The top left panel displays the

transformed dataset Y with ground truth clusters. The top right panel shows the best

clusters obtained using the k-means algorithm, while the bottom left panel illustrates the

best clusters obtained by tclust clustering method. Finally, the bottom right panel depicts

the best cluster partition from k-dets.
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Figure 4.4: Plots of dataset Z and resulting clusters. The top left panel is a plot of the

transformed dataset Z with ground truth clusters. The top right panel shows the best

clustering assignments obtained using the k-means, while the bottom left panel displays the

best clustering assignments obtained from tclust. Finally, the bottom right panel depicts

the k-dets.
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4.2.2 Miscellaneous Simulated Data

To further demonstrate the performance of our proposed k-dets clustering algorithm, we

simulate the selected series of datasets adopted from Kumar and Orlin (2008). One of these

datasets has three clusters, while the remaining six datasets have two clusters each. Each

cluster consists of 100 observational units with two or three features. These datasets are

generated from the Gaussian distribution using different configurations, including various

cluster shapes (e.g., spherical and elliptical) and sizes, number of clusters. The datasets

are generated using the rmvnorm function from the mvtnorm package in R, with different

parameters of the normal distribution as described below.

M.1 Two spherical clusters of equal sizes :

Cluster 1 has mean vector µ1 = (0, 0)′ and covariance matrix Σ1 =

 1 0

0 1

. Cluster

2 has mean vector µ2 = (3, 0)′ and covariance matrix Σ2 =

 1 0

0 1

.

The dataset M.1 contains 200 bivariate observations from a Gaussian distribution,

which are divided into two spherical clusters with 100 observations each. A visual-

ization of M.1 is displayed in the top left panel of Figure 4.5. We set a seed of 10

for reproducibility of the data. The plot shows that the clusters are not immediately

apparent due to overlapping observations. The resulting clusters obtained through the

k-means, tclust and k-dets methods are displayed in the top right panel, bottom

left panel, and bottom right panel of Figure 4.5, respectively. It is worth mention-

ing that since the clustering methods are applied several times, Figure 4.5 plots the

best partition from each of the methods. Table 4.2 reports the average cluster accu-

racy (ACA), average Rand index (ARI), average purity (AP) and average normalized

mutual information (ANMI) values computed based on 100 replications.

M.2 Two spherical clusters of different sizes :
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Figure 4.5: The top left panel shows dataset M.1, which consists of two spherical clusters of

equal size. The resulting clusters (projected) obtained using k-means are displayed in the

top right panel. The bottom left panel illustrates the resulting clusters (projected) obtained

from tclust, while the bottom right panel depicts clustering results (projected) from k-dets.

Cluster 1 has mean vector µ1 = (0, 0)′ and covariance matrix Σ1 =

 1 0

0 1

. Cluster

2 has mean vector µ2 = (20, 0)′ and covariance matrix Σ2 =

 50 0

0 50

.

The dataset M.2 consists of 200 observations drawn from a Gaussian distribution.

Each observational unit is bivariate. The observations are well separated into two

spherical clusters, each containing 100 observations. The clusters are centered around

µ1 = (0, 0)′ and µ2 = (20, 0)′, and differ in sphere size. The cluster centered around

µ2 is more spread out. A plot of this dataset can be found in the top left panel
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of Figure 4.6, which shows the two well separated clusters. The top right panel of

Figure 4.6 shows the resulting clusters obtained using k-means, the bottom left panel

of Figure 4.6 shows the resulting clusters from tclust, whiles the bottom right panel

shows resulting clusters from k-dets. The best partition out of all replications from the

three methods are plotted in Figure 4.6. Table 4.2 provides numerical summary of the

quality of the clustering results of the three clustering methods. A seed of 10 was set

for reproducibility of the dataset.
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Figure 4.6: The top left panel displays data M.2 with the ground truth clusters. The top

right panel illustrates the resulting clusters (projected) obtained using k-means. The bottom

left panel shows the resulting clusters (projected) obtained from tclust, and the bottom

right panel depicts resulting clusters (projected) obtained from k-dets.

M.3 One spherical and one elliptical cluster :
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Cluster 1 has mean vector µ1 = (0, 0)′ and covariance matrix Σ1 =

 1 0

0 1

. Cluster

2 has mean vector µ2 = (5, 0)′ and covariance matrix Σ2 =

 5 6

6 9

.

M.3 also consists of 200 bivariate observations forming two well separated clusters:

one elliptical and one spherical. The clusters have centres around µ1 = (0, 0)′ and

µ2 = (5, 0)′. The cluster centered at µ2 = (5, 0)′ has an elliptical shape. The top left

panel of Figure 4.7 shows a plot of M.3 with the ground truth clusters. The resulting

projected cluster assignments from k-means, tclust and k-dets are shown in the top

right panel, bottom left panel and bottom right panel of Figure 4.7. The average of

the performance measures over nrep=100 replications are reported in Table 4.2. A seed,

10, was set for reproducibility of the dataset.

M.4 Two elliptical clusters of equal shapes and sizes :

The mean vector for cluster 1 is µ1 = (0, 0)′, and the corresponding covariance matrix

is Σ1 =

 5 6

6 9

. Cluster 2 has mean vector µ2 = (5, 0)′ and covariance matrix

Σ2 =

 5 6

6 9

 .

Dataset M.4 was also generated from a Gaussian distribution. M.4 also has 200 obser-

vations, each with two features. There are two elliptical clusters of equal shapes and

sizes in this data, each of which contains 100 observations. The clusters have centers

around µ1 = (0, 0)′ and µ2 = (5, 0)′. A pictorial representation of the well separated

clusters of dataset M.4 is given in the top left panel of Figure 4.8. Top right panel

and bottom left panel of Figure 4.8 are graphs of best resulting projected clusters from

k-means and tclust clustering methods. The bottom right panel shows the best par-

tition (projected) of M.4 when k-dets was applied. The average of the performance

measures are given in Table 4.2. A seed, 10, was set for the reproducibility of the
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Figure 4.7: In the top left panel, we see data M.3, consisting of one spherical cluster and

one elliptical cluster. The top right panel displays the best resulting clusters (projected)

obtained using k-means technique. The bottom left panel illustrates the best resulting

clusters (projected) obtained from tclust. Finally, the bottom right panel shows the best

results (projected) from k-dets.

results.

M.5 Two elliptical clusters of different shapes and sizes :

Cluster 1 has mean vector µ1 = (0, 0)′ and covariance matrix Σ1 =

 6 −7

−7 9

. The

mean vector for cluster 2 is µ2 = (5, 0)′ and the corresponding covariance matrix is

Σ2 =

 10 7

7 5

 . Dataset M.5 comprises 200 bivariate observations that are sampled

from a Gaussian distribution, where two elliptical clusters exist in the dataset, each

containing 100 observations. These elliptical clusters present in M.5 differ in size and
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Figure 4.8: Dataset M.4 is plotted in the top left panel with ground truth clusters. The

plot shows two elliptical clusters of equal shapes. The top right plot is the best clustering

results (projected) from k-means and the bottom left plot is the best clustering results from

tclust. The bottom right plot the best partition (projected) from k-dets.

shape. The centers of the clusters are located at µ1 = (0, 0)′ and µ2 = (5, 0)′. As

shown in the top left panel of Figure 4.9, the two elliptical clusters overlap. The best

resulting clusters (projected) obtained using the k-means and tclust methods are

presented in the top right and bottom left panels of Figure 4.9. The bottom right

panel plots the best resulting clusters (projected) from k-dets. Table 4.2 reports the

average of the performance metrics for the three clustering methods. A seed, 10, was

set for reproducibility.

M.6 Three elliptical clusters of different shapes and sizes :
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These two components explain 100 % of the point variability.

Figure 4.9: A plot of M.5 (top left panel) with ground truth clusters, best resulting clusters

from k-means (top right panel), tclust (bottom left panel) and k-dets (bottom right panel).

Cluster 1 has mean vector µ1 = (0, 0)′ and covariance matrix Σ1 =

 6 −6

−6 9

.

Cluster 2 has mean vector µ2 = (10, 0)′ and covariance matrix Σ2 =

 12 7

7 5

.

Cluster 3 has mean vector µ3 = (0, 5)′ and covariance matrix Σ3 =

 13 −7

−7 5

.

Dataset M.6 is distinct from other synthetic datasets in that it consists of three clusters,

each with 100 bivariate observations. These clusters are elliptical in shape, with varying

sizes and shapes, and are centered around µ1 = (0, 0)′, µ2 = (10, 0)′, and µ3 = (0, 5)′.

Figure 4.10 presents a plot of this data, revealing that the clusters overlap. The best
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resulting clusters (projected) from applying k-means, tclust and k-dets are displayed

in the top right, bottom left and bottom right panels of Figure 4.10, and Table 4.2

presents the quality of the clustering methods. A seed, 10, was set for reproducibility.
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These two components explain 100 % of the point variability.

Figure 4.10: A plot of M.6 (top left panel) with ground truth clusters, best resulting clusters

from k-means (top right panel), tclust (bottom left panel) and k-dets (bottom right panel).

M.7 Two elliptical cluster of different shapes and sizes :

The mean vector for cluster 1 is µ1 = (0, 0, 0)′ and the corresponding covariance matrix

is Σ1 =


6 3 4

3 8 2

4 2 5

. Cluster 2 has mean vector µ2 = (0, 0, 5)′ and covariance matrix
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Σ2 =


10 2 4

2 6 2

4 2 2

.

The dataset labeled M.7 comprises 200 trivariate observations that have been randomly

generated from a Gaussian distribution. This dataset contains two elliptical clusters,

each containing 100 observations. These clusters differ in size and shape and are

centered around µ1 = (0, 0, 0)′ and µ2 = (0, 0, 5)′. A 2D plot of the dataset is shown

in the top left panel of Figure 4.11, which demonstrates that the two elliptical clusters

overlap and the clusters are not immediately apparent. However, this may not be

the case when the dataset is plotted in 3D. The top right and bottom left panels of

Figure 4.11 illustrate the best clusters resulting (projected) from the application of

the k-means and tclust methods. The bottom right panel shows the best clusters

resulting (projected) from applying k-dets on M.7. Table 4.2 displays the average of

the performance metrics. A seed, 10, is set for reproducibility of the dataset.

Table 4.2: ACA, ARI, AP and ANMI comparisons for series of synthetic datasets.

ACA API AP ANMI

Datasets k-means tclust k-dets k-means tclust k-dets k-means tclust k-dets k-means tclust k-dets

M.1 0.960 0.980 0.980 0.923 0.961 0.961 0.960 0.980 0.980 0.796 0.878 0.878

M.2 0.960 0.995 0.999 0.923 0.990 0.998 0.960 0.995 0.999 0.796 0.960 0.992

M.3 0.850 1.000 1.000 0.744 1.000 1.000 0.850 1.000 1.000 0.511 1.000 1.000

M.4 0.735 1.000 1.000 0.608 1.000 1.000 0.735 1.000 1.000 0.168 1.000 1.000

M.5 0.825 0.950 0.970 0.710 0.905 0.942 0.825 0.950 0.970 0.464 0.761 0.808

M.6 0.680 0.923 0.926 0.701 0.905 0.908 0.680 0.923 0.926 0.387 0.745 0.750

M.7 0.790 0.985 1.000 0.667 0.970 1.000 0.790 0.985 1.000 0.265 0.902 1.000
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These two components explain 86.04 % of the point variability.

Figure 4.11: A plot of M.7 (top left panel) with ground truth clusters, best resulting clusters

from k-means (top right panel), tclust (bottom left panel) and k-dets (bottom right panel).
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4.3 Contaminated Data

4.3.1 M5data: Three Groups with Different Scales

The preceding section demonstrated the comparison between k-dets, tclust and the most

popular clustering technique using various synthetic datasets that were free from any form of

contamination. In this section, we will showcase another advantage of the k-dets algorithm,

which was one of the primary motivations for its proposal. We will demonstrate how the

proposed algorithm performs when data contamination is present and compare it to trimmed

k-means (tk-means), which is considered a robust version of k-means algorithm, and tclust.

For this analysis, we utilized the M5data from the R package tclust (viz., Fritz et al. (2012)

and Garćıa-Escudero et al. (2008)). The dataset comprises 1800 bivariate normal data, which

contains three distinct clusters, with an additional 200 observations of background noise

surrounding the Gaussian components. The “clean” observations are unevenly distributed

among the three clusters, with a distribution ratio of 1:2:2. The three clusters have centers

at µ1 = (0, 8)′,µ2 = (8, 0)′ and µ3 = (−8,−8)′ with corresponding covariance matrices

Σ1 =

 1 0

0 1

 ,Σ2 =

 45 0

0 30

 , and Σ3 =

 15 −10

−10 15

 . The background noise,

on the other hand, was generated from a uniform distribution, where the qualifying points

were those with squared Mahalanobis distances greater than χ2
2,0.975. In Figure 4.12 (top-left

panel), the M5data plot shows that two of the clusters are joined together or have significant

overlap, with outliers enclosing the three clusters. We aim to identify the three true clusters

while not assigning 10% of the observations in the dataset (the background noise). tk-means,

tclust and our proposed algorithm k-dets were applied to this dataset by taking several

replications, each time computing the performance metrics discussed in Section 4.1. Table 4.3

reports the average results.
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These two components explain 100 % of the point variability.

Figure 4.12: A plot of M5data (top left panel) with ground truth clusters, best resulting

clusters (projected) from tk-means (top right panel), tclust (bottom left panel), and k-dets

clusters (bottom right panel).

Table 4.3: ACA, ARI, AP and ANMI comparison for M5data

Methods ACA ARI AP ANMI

tk-means 0.853 0.865 0.853 0.678

tclust 0.933 0.932 0.933 0.802

k-dets 0.958 0.957 0.958 0.853

4.3.2 M.6 with Background Noise

In Subsection 4.2.2, a thorough description of dataset M.6 is given. We contaminate this

dataset by randomly replacing 15% (45 points) of the observational units with background

51



noise to demonstrate the strength of k-dets, in terms of robustness. The background noise or

outliers are randomly sampled from a uniform distribution over
[
⌊min(X)⌋−0.5×(max(X)−

min(X)), ⌈max(X)⌉ + 0.5 × (max(X) −min(X))
]
, where X is the dataset, to enclose the

clusters. Observations whose squared mahalanobis distances greater than χ2
2,0.95 are con-

sidered as background noise. At α = 0.15, all methods were applied several times to this

dataset and we assess their performance by reporting the average of the results for each of

the performance metric. See Table 4.4 for these statistics. Figure 4.13 is a plot of the data

and the best resulting clusters (projected) from the three methods.

Table 4.4: ACA, ARI, AP and ANMI comparison for M.6 with background noise

Methods ACA ARI AP ANMI

tk-means 0.693 0.771 0.693 0.520

tclust 0.933 0.930 0.933 0.804

k-dets 0.938 0.935 0.938 0.814
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These two components explain 100 % of the point variability.

Figure 4.13: A plot of M.6 dataset with background noise with ground truth clusters (top left

panel), best resulting clusters (projected) from tk-means (top right panel), tclust (bottom

left panel) and k-dets (bottom right panel).
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Chapter 5

Real Data Exploration

In this chapter, we conduct an analysis of a real-world dataset that is free from contamination,

the Iris dataset. Additionally, we analyze one contaminated data set, which is the Iris

data set with some level of contamination. The performance of our proposed algorithm,

k-dets, is assessed and compared to k-means (for uncontaminated data) and tk-means (for

contaminated data) and tclust.

5.1 Uncontaminated Data

5.1.1 Iris Data

The Iris dataset was initially presented by Fisher (1936) and has since been widely utilized for

testing and benchmarking new algorithms, including those for clustering and classification.

We will also adopt the Iris dataset to assess the performance of our proposed cluster method,

k-dets, in comparison to k-means and tclust. This dataset consists of 150 plants, divided

into three subgroups of Iris species: Setosa, Versicolor, and Virginica, with each group

containing 50 plants. The dataset is multivariate, and it records four measurements on

each Iris plant sampled: petal length, petal width, sepal length, and sepal width. A graph

of the dataset (see Figure 5.1) shows that the Setosa group are well separated from the

remaining two groups. The Vesicolor and Virginica groups overlap making the two groups

not immediately apparent. We expect all the methods to be able to reveal the Setosa group

without any challenges. The real challenge would be to separate the overlapping groups.

As in other examples, we will apply the methods several times and take the average of
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the results. See Table 5.1 for summary of results. The best resulting clusters (projected)

obtained from the methods, as well as the ground truth, are presented in Figure 5.2.
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Figure 5.1: Scatter plot matrix of Iris data (Setosa, Versicolor, Virginica )

Table 5.1: ACA, ARI, AP and ANMI comparison for k-means, tclust and k-dets on Iris

dataset

Methods ACA ARI AP ANMI

k-means 0.893 0.880 0.893 0.758

tclust 0.979 0.973 0.979 0.928

k-dets 0.971 0.963 0.971 0.904

55



−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Plot with ground truth clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Plot with tk−means clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Plot with tclust clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Plot with k−dets clusters

Component 1

C
om

po
ne

nt
 2

These two components explain 95.81 % of the point variability.

Figure 5.2: Resulting clusters for Iris data. Top left panel is the ground truth plot; top right

panel represents the best resulting clusters (projected) from tk-means, bottom left panel is

the best clustering (projected) from tclust; bottom right is the best clustering (projected)

from k-dets.

5.2 Contaminated Data

5.2.1 Iris Data with Contamination

In Subsection 5.1.1, we introduced the Iris dataset. In this Subsection, we will now randomly

contaminate the Iris dataset with background noise sampled from a uniform distribution over[
⌊min(X)⌋−0.5×(max(X)−min(X)), ⌈max(X)⌉+0.5×(max(X)−min(X))

]
. We consider

data points with squared mahalanobis distances to the cluster centers greater than χ2
4,0.95 as

background noise, and for this dataset, such points account for 20% of the observation units.

Accordingly, we applied the three methods to search for three true clusters at α = 0.20. We
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repeat this for a total of 100 times and measure the quality of the clusters from the all the

methods. Table 5.2 reports the average of the cluster quality for the methods. Figure 5.4 is

a plot of the data and the best resulting clusters (projected) from the methods applied.
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Figure 5.3: Contaminated (20%) Iris dataset.

Table 5.2: ACA, ARI, AP and ANMI comparison for tk-means, tclust and k-dets on

contaminated Iris data

Methods ACA ARI AP ANMI

tk-means 0.913 0.922 0.913 0.842

tclust 0.905 0.916 0.905 0.860

k-dets 0.949 0.956 0.949 0.914
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These two components explain 72.19 % of the point variability.

Figure 5.4: Top left panel is the ground truth clusters of the contaminated Iris data; top right

panel represents the best resulting clusters (projected) from tk-means, bottom left panel is

the best clustering (projected) from tclust; bottom right is the best clustering (projected)

from k-dets.
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Chapter 6

Equal Covariance Assumption

The framework in Chapter 2 assumes that the cluster covariances are different, i.e., Sk ̸= Sk′

for k ̸= k′. When we have enough reason(s) to suspect that the clusters are structured in a

way that the covariance matrices are similar and n is small, we use an estimate of the covari-

ance called the pooled covariance, Spooled, which involves the individual cluster covariances.

The objective function in Equation (2.4), which is an approximation of a trimmed negative

log-likelihood function is then defined in terms of the pooled covariance given below

H(w) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi; x̄

(w)
k ,S

(w)
pooled)

)
(6.1)

with constraints as before. Each cluster mean vector and covariance are define as before, see

Equations (2.5) and (2.6). The pooled covariance is defined as the weighted average of the

individual covariances

S
(w)
pooled =

∑K
k=1(nk − 1)S

(w)
k∑K

k=1(nk − 1)
(6.2)

where nk and S
(w)
k are respectively, the number of observations and the covariance associated

to the k-th cluster. Following Theorem 1, a similar proof can be shown that the affine-

invariance property of the objective function in Equation 6.1 is not destroyed.

Let S
(w)
x,k be the covariance of the k-th cluster of the sample data X and S

(w)
y,k be the

covariance of the k-th cluster of the transformed data Y , S
(w)
x,pooled be the pooled covariance

for the sample data, S
(w)
x,pooled be the pooled covariance of Y defined as:

S
(w)
y,pooled =

∑K
k=1(nk − 1)S

(w)
y,k∑K

k=1(nk − 1)
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=
(nk − 1)S

(w)
y,1∑K

k=1(nk − 1)
+

(nk − 1)S
(w)
y,2∑K

k=1(nk − 1)
+ . . .+

(nk − 1)S
(w)
y,K∑K

k=1(nk − 1)

=
(nk − 1)AS

(w)
x,1A

′∑K
k=1(nk − 1)

+
(nk − 1)AS

(w)
x,2A

′∑K
k=1(nk − 1)

+ . . .+
(nk − 1)AS

(w)
x,KA

′∑K
k=1(nk − 1)

= A

∑K
k=1(nk − 1)S

(w)
x,k∑K

k=1(nk − 1)
A′

= AS
(w)
x,pooledA

′.

The pdf of the multivariate normal distribution of the transformed data with the pooled

covariance can be expressed as:

f(yi|ȳ
(w)
k ,S

(w)
y,pooled) = (2π)−p/2

∣∣∣S(w)
y,pooled

∣∣∣−1/2

exp

(
−1

2
(yi − ȳ

(w)
k )′(S

(w)
y,pooled)

−1(yi − ȳ
(w)
k )

)
= (2π)−p/2

∣∣∣AS
(w)
x,pooledA

′
∣∣∣−1/2

×

× exp

(
−1

2
(Axi −Ax̄

(w)
k )′(AS

(w)
x,pooledA

′)−1(Axi −Ax̄
(w)
k )

)
= (2π)−p/2

∣∣∣AS
(w)
x,pooledA

′
∣∣∣−1/2

×

× exp

(
−1

2
((xi − x̄

(w)
k )′A′)(A′)−1(S

(w)
x,pooled)

−1A−1(A(xi − x̄
(w)
k ))

)
= (2π)−p/2

∣∣∣AS
(w)
x,pooledA

′
∣∣∣−1/2

exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,pooled)

−1(xi − x̄
(w)
k )

)
= (2π)−p/2 |A|−1/2

∣∣∣S(w)
x,pooled

∣∣∣−1/2

|A′|−1/2×

× exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,pooled)

−1(xi − x̄
(w)
k )

)
= (2π)−p/2 |A|−1

∣∣∣S(w)
x,pooled

∣∣∣−1/2

exp

(
−1

2
(xi − x̄

(w)
k )′(S

(w)
x,pooled)

−1(xi − x̄
(w)
k )

)
= |A|−1 f(xi|x̄(w)

k ,S
(w)
x,pooled).

The pdf of the multivariate normal of the transformed data Y is now expressed as a product

of a constant and the pdf of the multivariate normal of the original data X. This new

expression can be used to rewrite the objective function H(w|y) as a constant term plus

60



H(w|x). The objective function H(w|y) can then be expressed as

H(w|y) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(yi|ȳ

(w)
k ,S

(w)
y,pooled)

)
= −

K∑
k=1

∑
i∈Ck

log
(
π
(w)
k |A|−1f(xi; x̄

(w)
k ,S

(w)
x,pooled)

)
= −

K∑
k=1

∑
i∈Ck

log
(
|A|−1

)
−

K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi; x̄

(w)
k ,S

(w)
x,pooled)

)
= K⌈n(1− α)⌉ log(|A|) +H(w|x).

Since the objective function H(w|y) is expressed in terms of H(w|x) and is changed by a

constant, the affine-invariant property of the objective function is preserved when the pooled

covariance is used. Therefore, if w is a minimizer of the objective function H(w|x1, . . . ,xn)

with the pooled covariance Sx,pooled, then w is a minimizer of H(w|y1, . . . ,yn) with the

pooled covariance Sy,pooled.

6.1 Derivative of the Objective Function

The objective function in Equation 6.1 can be expressed similar to what we had before (see

Equation (2.15)), except that this is in terms of the pooled covariance.

H(w) = −
K∑
k=1

∑
i∈Ck

log
(
π
(w)
k f(xi; x̄

(w)
k ,S

(w)
pooled)

)
= −

K∑
k=1

n
(w)
k log

(
n
(w)
k

)
+

1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
pooled

∣∣∣)+
+

1

2
(⌈n(1− α)⌉p−Kp) + ⌈n(1− α)⌉ log(⌈n(1− α)⌉)− ⌈n(1− α)⌉ log

(
(2π)−p/2

)
= −(If + C(n, p,K)),
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where

If =
K∑
k=1

n
(w)
k log

(
n
(w)
k

)
− 1

2

K∑
k=1

n
(w)
k log

(∣∣∣S(w)
pooled

∣∣∣)
=

K∑
k=1

n
(w)
k log

(
n
(w)
k

∣∣∣S(w)
pooled

∣∣∣− 1
2

)
,

and

C(n, p,K) = −1

2
(⌈n(1− α)⌉p−Kp)− ⌈n(1− α)⌉ log(⌈n(1− α)⌉)

− ⌈n(1− α)⌉p
2

log(2π).

The gradient of the objective function is obtained by differentiating the objective func-

tion with respect to wik. Again, since C(n, p,K) is a constant its derivative is zero, i.e.,

∂(C(n,p,K))
∂wik

= 0. Next, we need to get the derivative of the remaining term If . By following

the differentiating of If in Chapter 2,

∂ (If )

∂wik

= 1 + log
(
n
(w)
k

)
− 1

2
log
(∣∣∣S(w)

pooled

∣∣∣)− 1

2

n
(w)
k∑K

k=1(n
(w)
k − 1)

D2(xi; x̄
(w)
k ,S

(w)
pooled)+

+
1

2

n
(w)
k p∑K

k=1(n
(w)
k − 1)

.

Therefore,

∂ (H(w))

∂wik

= −∂ (If )

∂wik

+
∂ (C(n, p, k))

∂wik

= −
(
1 + log

(
n
(w)
k

)
− 1

2
log
(∣∣∣S(w)

pooled

∣∣∣)− 1

2

n
(w)
k∑K

k=1(n
(w)
k − 1)

D2(xi; x̄
(w)
k ,S

(w)
pooled)+

+
1

2

n
(w)
k p∑K

k=1(n
(w)
k − 1)

)
.

6.2 Example

In the examples below, we generated several datasets from Gaussian distribution with differ-

ent configurations, i.e., location and scale parameters, and number of clusters. The dataset

generation models are given below in Subsection 6.2.1. We then created other versions of
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the generated datasets via a random affine transformation, and random contamination. We

apply all methods (tk-means, tclust and k-dets) on these datasets for a total of 100 replica-

tions and the average results are reported. In Subsection 6.2.2, we analyzed the glass vessels

datasets to benchmark the equal variance assumption.

6.2.1 Simulated Data

N1 We simulated a dataset with two clusters, each of size 10. The dataset is bivariate. We

applied the clustering methods on this dataset and also on an affine transformation

of this dataset. A plot of the data and its transformation is given in Figure 6.1. The

average results are presented in Tables 6.1 and 6.2. After applying all the methods

on this dataset, k-means had the least performance results for all metrics used and

tclust had the least performance results for the transformed dataset. Once again, the

affine-invariance property of our proposed method is evident as our clustering results

is unchanged for both datasets.
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Figure 6.1: Simulated clusters with equal covariance (right panel is a random transforma-

tion).

N2 Two elliptical clusters of same shapes and sizes :
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Table 6.1: ACA, ARI, AP and ANMI comparison for k-means, tclust and k-dets on simu-

lated data

Methods ACA ARI AP ANMI

k-means 0.750 0.605 0.750 0.192

tclust 0.810 0.689 0.810 0.424

k-dets 0.880 0.779 0.880 0.576

Table 6.2: ACA, ARI, AP and ANMI comparison for k-means, tclust and k-dets on trans-

formed simulated data

Methods ACA ARI AP ANMI

k-means 0.800 0.663 0.800 0.300

tclust 0.715 0.592 0.715 0.216

k-dets 0.880 0.779 0.880 0.576

The mean vectors for the two clusters are µ1 = (0, 0)′ and µ2 = (0, 5)′. Both clusters

have the same covariance Σ1 = Σ2 =

 13 −7

−7 5

. The dataset N2 comprises

300 observations where each cluster contains half of the observations. We created

two versions of this dataset by introducing 5% and 10% background noise into N2.

We take random affine transformations of these three datasets and the transformed

datasets are labeled N2.T, N2.T05 (dataset with 5% contamination) and N2.T10. We

apply all three methods on these datasets and report the average results in Table 6.3.

N3 Two spherical clusters of same shapes and sizes :

The mean vector for cluster 1 is µ1 = (0, 0, 0, 0, 0)T and the mean vector for cluster

2 is µ1 = (−5, 5,−5, 5,−5)T . The two clusters have the same covariance Σ1 = Σ2 =

50I5×5. Each cluster has 200 observations. As in the case of dataset N2, two versions

of N3 are created by introducing 5% and 10% background noise. We then take random
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Table 6.3: ARI, AP and ANMI comparison for synthetic data.

N2.T N2.T05 N2.T10

Methods ARI AP ANMI ARI AP ANMI ARI AP ANMI

tk-means 0.584 0.707 0.127 0.607 0.695 0.201 0.630 0.693 0.244

tclust 0.620 0.746 0.185 0.649 0.748 0.316 0.678 0.754 0.391

k-dets 0.967 0.983 0.878 0.953 0.974 0.853 0.956 0.973 0.863

affine transformations of these three datasets and label these datasets N3.T, N3.T05

(dataset with 5% contamination) and N3.T10. We apply all three methods on these

datasets and report the average results in Table 6.4.

Table 6.4: ARI, AP and ANMI comparison for synthetic data.

N3.T N3.T05 N3.T10

Methods ARI AP ANMI ARI AP ANMI ARI AP ANMI

tk-means 0.499 0.512 0.000 0.546 0.546 0.204 0.589 0.566 0.297

tclust 0.985 0.992 0.937 0.985 0.992 0.944 0.987 0.992 0.953

k-dets 0.990 0.995 0.955 0.949 0.968 0.866 0.947 0.962 0.871

6.2.2 Real Data

• Glass Vessels Dataset :

The glass vessels dataset (Janssens et al., 1998; Varmuza and Filzmoser, 2016) is a

built-in dataset available in the chemometrics package in R. The dataset is made up

of 13 different measurements on 180 archaeological glass vessels. There are four classes

in this dataset of sizes 145, 15, 10 and 10. We considered this dataset because three

of the clusters have small counts. The average results are reported in Table 6.5.
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Table 6.5: ACA, ARI, AP and ANMI comparison for k-means, tclust and k-dets on glass

vessels dataset

Methods ACA ARI AP ANMI

k-means 0.540 0.662 0.540 0.661

tclust 0.555 0.663 0.555 0.661

k-dets 0.666 0.720 0.666 0.645
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Chapter 7

High-Dimensional Data

Recent datasets emerging from several fields including, but not limited to, medicine and

healthcare are high-dimensional which need thorough analysis to obtain very useful infor-

mation. A dataset containing numerous variables on which observations are measured is

termed high-dimensional. What number of variables makes a data high dimensional? There

is no specific threshold on the amount of variables. Usually this large number can be care-

fully selected by the researcher and also varies depending on the field of research. Ideally a

high-dimensional dataset is one that presents several computational challenges. As a result,

the “curse of dimensionality” has been an open research problem and algorithms should take

into consideration the problems associated with high dimensional datasets.

Visualization of datasets is very important in any statistical analysis we perform. Many

hidden patterns and information can be unlocked through data visualization. However, many

dependable statistical tools that are available can visualize data to at most 3D making it

impossible to visualize high-dimensional datasets. The question of whether more variables

measured on an observation helps improve analysis of the data is still an open question.

However, it is likely that more noise may be added to the dataset with an increase in the

number of variables. Also, increasing the number of variables increases the dimensionality

and it is possible that the dataset may become sparse. It would be easier to redistribute data

points into clusters if all variables in the datasets contribute to identifying observations that

are similar to each other and dissimilar from other observations. However, it is even not the

case for datasets that are not high-dimensional. Some of the variables in high-dimensinoal

datasets may not contribute at all to identifying similar objects. It is also likely that most

of the variables may be correlated which may cause “improvised” clusters.
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7.1 Regularized Covariances

We equipped our proposed clustering method with high-dimensional capabilities by using a

regularization technique reminiscent of that proposed by Boudt et al. (2020). Following the

proposal in this sequel, we will replace the covariance S
(w)
k for each cluster by a regularized

covariance estimate S
(w)
reg,k which is defined in terms of cluster covariance S

(w)
k , a target matrix

T k and a regularization parameter ρk:

S
(w)
reg,k = ρkT k + (1− ρk)S

(w)
k . (7.1)

The regularized covariance is a convex combination of S
(w)
k and T k, a predetermined sym-

metric positive definite target matrix. Note that these two matrices have the same dimension.

The regularization parameter is allowed to belong in the interval [0, 1]. When ρk = 0, S
(w)
reg,k

is simply S
(w)
k , the covariance matrix of each cluster and when ρk = 1, S

(w)
reg,k reduces to the

target matrix T k. Spectral decomposition permits us to decompose the target matrix into

matrices containing its eigenvalues and corresponding eigenvectors:

T k = QΛQ′

Λ : a diagonal matrix containing eigenvalues of T k,

Q : an orthogonal matrix containing corresponding eigenvectors of T k.

To guide our choice of target matrix T k, a symmetric positive definite matrix that is well-

conditioned can be used. A few choices are given. For a diagonal matrix, an identity matrix

can be used, also a diagonal matrix whose diagonal elements are robust scale estimates can

be used. For a non-diagonal matrix, a rank correlation matrix of the data can be used (Boudt

et al., 2020). Based on the decomposition of the target matrix, the regularized covariance

can be expressed as

S
(w)
reg,k = QΛ1/2[ρkI + (1− ρk)S

(w)
U ,k]Λ

1/2Q′ (7.2)

where S
(w)
U ,k = Λ−1/2Q′S

(w)
k QΛ−1/2. The precision matrix of the regularized covariance

matrix is then

(S
(w)
reg,k)

−1 = QΛ−1/2[ρkI + (1− ρk)S
(w)
U ,k]

−1Λ−1/2Q′. (7.3)
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The gradient of the objective function involves a term that computes the squared Maha-

lanobis distances. This distance metric requires the inverse of the covariance matrix in its

computation. Equation (7.3) is necessary for computing the gradient of the objective func-

tion. However, for high dimensional data especially when p ≫ n, taking the inverse of S
(w)
reg,k

implies taking the inverse of a p × p matrix which is computationally expensive. On the

strength of the Sherman-Morrison-Woodbury identity (Sherman and Morrison, 1950; Wood-

bury, 1950; Bartlett, 1951), a more computationally efficient way to invert S
(w)
reg,k is put forth

in Equation (7.4) for any nk < p. Let

B = ρkI + (1− ρk)S
(w)
U ,k

= ρkI + (1− ρk)Λ
−1/2Q′S

(w)
k QΛ−1/2

= ρkI + (1− ρk)Λ
−1/2Q′ Z ′Z

n
(w)
k − 1

QΛ−1/2

= ρkI + (1− ρk)UV ,

where U = Λ−1/2Q′ Z′

n
(w)
k −1

, V = ZQΛ−1/2 and Z = (Xk − x̄
(w)
k ) with Xk containing

the observations of the k-th cluster. Then by applying the Sherman-Morrison-Woodbury

identity, we have,

B−1 =

[
1

ρk
Ip −

1

ρk
Ip

(1− ρk)

n
(w)
k − 1

Λ−1/2QZ ′

(
Ink

+ZQΛ−1/2 1

ρk
Ip

(1− ρk)

n
(w)
k − 1

Λ−1/2Q′Z ′

)−1

×

×ZQΛ−1/2 1

ρk
Ip

]

=

 1

ρk
Ip −

1

ρ2k

(1− ρk)

n
(w)
k − 1

Λ−1/2QZ ′

(
Ink

+
1

ρk

(1− ρk)

n
(w)
k − 1

ZQΛ−1Q′Z ′

)−1

ZQΛ−1/2

 .

Thus, the precision matrix of the regularized covariance of the k-th cluster is given as

(S
(w)
reg,k)

−1 = QΛ−1/2B−1Λ−1/2Q′. (7.4)

Equation (7.4) is computationally efficient as compared to Equation (7.3) owing to the fact

that a p×p matrix is not inverted but rather an nk×nk matrix which is of a lower dimension.
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For any non-singular A ∈ Rp×p, and any q-norm, the condition number of A is defined

as the product of the q-th norm of A and the q-th norm of A−1 as in Equation (7.5). If A

is high-dimensional, computing its inverse can be computationally prohibitive. Oftentimes,

A−1 may not even exist. Consequently, we express the condition number of A in terms of

its eigenvalues by the definition of matrix norms and eigenvalue equation:

κ(A) = ∥A∥
∥∥A−1

∥∥
= max

x̸=0

∥Ax∥
∥x∥

×max
x̸=0

∥∥A−1x
∥∥

∥x∥

= max
x̸=0

∥λx∥
∥x∥

×max
x̸=0

∥∥λ−1x
∥∥

∥x∥

= max
x̸=0

|λ|∥x∥
∥x∥

×max
x̸=0

∣∣λ−1
∣∣∥x∥

∥x∥

= max {|λ|} ×max
{∣∣λ−1

∣∣}
=

max {|λ|}
min {|λ|}

.

(7.5)

Note here that the absolute value of the eigenvalues are taken before the maximum and

minimum eigenvalues are selected because A is not assumed positive definite.

A bound on the condition number of the regularized covariance matrix is necessary to

ensure the matrix is well-conditioned (Won et al., 2013), i.e., the condition number is not

bigger than some threshold κc. Since T k, Q and Λ are all fixed, the eigenvalues of S
(w)
reg,k

equalling ρk + (1 − ρk)λi, i = 1, . . . , p, where λ = (λ1, . . . , λp) holds the eigenvalues of

S
(w)
U ,k suffices. Accordingly, following Equation (7.5), the condition number for each cluster

regularized covariance is

κ(S
(w)
reg,k) =

ρk + (1− ρk)max {λ}
ρk + (1− ρk)min {λ}

. (7.6)

Following the proposal or recommendation of Boudt et al. (2020), for each regularized co-

variance matrix, find a minimum value of ρk which is non-negative for which κ(S
(w)
reg,k) ≤ κc,

where κc is chosen to be 50. We propose an algorithm named RegCov for the regularized

covariance similar to Boudt et al. (2020). The underlying difference between our proposed
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and that of Boudt et al. (2020) is that we do not standardize the p variables as standardiza-

tion may destroy the cluster structures. If a cluster covariance S
(w)
k is not well-conditioned,

RegCov (Algorithm 5) will be used to obtain a regularized cluster covariance. On the other

hand, if a cluster covariance S
(w)
k is well-conditioned, ρk is set to null and no regularization

of the covariance is needed.

Algorithm 5: RegCov(S
(w)
k )

1 Choose a target matrix T k and decompose as T k = QΛQ′

2 Compute S
(w)
U ,k = Λ−1/2Q′S

(w)
k QΛ−1/2

3 Find the smallest value of ρk ∈ (0, 1] for which κ(S
(w)
reg,k) ≤ κc

4 Compute the regularized covariance S
(w)
reg,k

Algorithm 6: k-dets(x1, . . . ,xn;K,α)

1 Generate, say, nrep = 100 random warmstarts, i.e.,

C0 = (C0
1 , . . . , C0

K), . . . , Cnrep = (Cnrep

1 , . . . , Cnrep

K ), using Algorithm 3 and obtain the

initial weight matrix w ∈ [0, 1]n×K from the initial partition.

2 For m = 0, 1, . . . , iterate the concentration step:

2.1 If any S
(C(m))
k is not well-conditioned, compute S

(C(m))
reg,k using Algorithm 5.

2.2 Compute the gradient at w(m) using S
(w)
reg,k.

2.3 Update the weight matrix w(m+1) using Algorithm 2 leaving nα points

unassigned.

2.4 Form a new partition C(m+1) = (C(m+1)
1 , . . . , C(m+1)

K ) from w(m+1) and compute

objective value H(C(m)).

2.5 Stop as soon as H(C(m)) = H(C(m+1)) or C(m) = C(m+1).

3 Starting Step 2 from each warmstart, select final partition with the smallest value of

objective H(C).
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7.2 Example

7.2.1 Synthetic Data

• We simulated a data with 60 observational units and 300 features. This dataset con-

tains three groups each with 20 observations. The tclust method was not considered

in this comparison due to some unexpected errors in results. The best clustering for

each of the methods is presented in Figure 7.1 and the average results are given in

Table 7.1.
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Figure 7.1: Simulated clusters with equal covariances.

Table 7.1: ACA, ARI, AP and ANMI comparison for k-means and k-dets

Methods ACA ARI AP ANMI

k-means 0.483 0.637 0.483 0.488

k-dets 0.850 0.824 0.850 0.626

7.2.2 Real Datasets

• Phenyl Dataset

The Phenyl dataset accompanies the chemometrics package in R. The dataset is made

up of mass spectra obtained from 600 chemical compounds. The mass spectra have
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been transformed into 658 variables representing various spectra features. Among these

600 compounds, one-half of them contain a phenyl substructure and one-half do not

have this substructure. Therefore, there are two subgroups present in this dataset.

Again, tclust was not considered in this comparison since the method returns all the

observations as one cluster. The average results are reported in Table 7.2.

Table 7.2: ACA, ARI, AP and ANMI comparison for k-means and k-dets on phenyl dataset

Methods ACA ARI AP ANMI

k-means 0.822 0.707 0.823 0.334

k-dets 0.822 0.707 0.823 0.334
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Chapter 8

Conclusions

We proposed a clustering algorithm based on minimizing the “trimmed” negative log-likelihood

function. This algorithm addresses clustering challenges faced by k-means, a popular cluster-

ing algorithm. Our proposed algorithm is robust and tends to be affine-invariant in situations

where the dataset is non-sparse. We developed a concentration step, vaguely reminiscent of

the classical Lloyd’s algorithm, that can iteratively be used to minimize the log-likelihood ob-

jective function. Following the ideas of Pokojovy and Jobe (2022), we discovered equivalence

between our proposed method and the well-known Frank-Wolfe gradient method, which, in

turn, implies our algorithm converges to a local minimum of the objective function. Be-

ing a local optimization technique, our algorithm depends on the choice of initial cluster or

“warmstart.” As a by-product, we developed a new affine-invariant sampling procedure to

draw initial partitions or warmstarts. We considered the case where the subgroups or clus-

ters of a dataset have same covariance structure. In such situation, the pooled covariance is

used instead of the individual covariance matrices. Our proposed clustering method was also

extended to be applicable for high-dimensional datasets which will serve fields or disciplines

that usually analyze high-dimensional datasets. Multiple real and synthetic data with differ-

ent configurations, including various cluster shapes and sizes, number of clusters and types

of linear transformations, are analyzed to assess the performance of our proposed algorithm

in comparison to our reference clustering method, k-means, and tclust. Empirical results

strongly indicate that our proposed cluster algorithm is oftentimes better or head-to-head

to the reference methods and is computationally attractive alternative to the conventional

k-means method.
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Chapter 9

Future Research

• Regularization for low-dimensional setting.

So far, we performed regularization to obtain well-conditioned covariance matrices for

high-dimensional or sparse datasets. For multivariate (non-sparse and specifically for

n > p), it is still possible for cluster covariance matrices to become ill-conditioned. To

this end, we will extend the idea of regularization to all kinds of datasets.

• Equal covariance assumption for high-dimensional setting.

So far, we assume equal covariance for multivariate datasets (n > p) with small n. For

high-dimensional or sparse datasets with small n, we will also assume equal covariances.

• Choosing optimal k .

The choice of number of clusters, k, is an important decision to make in cluster analysis.

For datasets with cluster labels, k is known apriori. However, most dataset do not have

cluster labels which makes clustering an unsupervised learning. Thus, we will develop

a method to help us decide on what k to choose for our analysis.

• Functional data clustering.

Functional datasets are encountered in several fields of study, such as engineering,

medicine and healthcare, and economics. Each data point of the various synthetic

and real datasets we have used in our simulation studies is an observation with some

recorded features. Functional data points, on the other hand, are functions representing

curves or surfaces belonging to an infinite-dimensional space. Infinite dimensionality is

a major source of difficulties in analyzing functional datasets. Possible approaches to
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solving this problem include approximating the curves or surfaces in a finite-dimension

space and then applying cluster algorithms to finite-dimensional approximations.

• Extend to co-clustering

Co-clustering, also referred to as bi-clustering, serves as a data analysis technique with

the objective of clustering both the rows and columns of a given sample data matrix.

Unlike conventional clustering methods, co-clustering identifies subsets of rows and

columns that demonstrate comparable patterns or relationships. By simultaneously

clustering both dimensions, co-clustering has the ability to uncover cohesive subgroups

or co-occurring patterns that are unique to specific subsets of rows and columns. Co-

clustering proves particularly beneficial when the data exhibit a block-like structure,

signifying the presence of subsets of rows and columns with similar characteristics.

This situation may arise, for instance, in gene expression analysis, where genes might

exhibit co-regulation under specific conditions, or in text mining, where documents

could be associated with specific topics.
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Garćıa-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. (2010). A review of

robust clustering methods. Advances in Data Analysis and Classification, 4(2-3):89–109.

Huang, H.-H. and Yang, J. (2020). Affine-transformation invariant clustering models. Journal

of Statistical Distributions and Applications, 7(1):1–24.

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In

International Conference on Machine Learning, pages 427–435. PMLR.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters,

31(8):651–666.

78



Janssens, K. H., Deraedt, I., Schalm, O., and Veeckman, J. (1998). Composition of 15–17th

century archaeological glass vessels excavated in Antwerp, Belgium. Mikrochimica Acta

15 (Suppl.), pages 253–267.

Kalyani, P. (2012). Approaches to partition medical data using clustering algorithms. In-

ternational Journal of Computer Applications, 49(23).

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y.

(2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data. An Introduction to

Cluster Analysis. Wiley, Canada.

Khanmohammadi, S., Adibeig, N., and Shanehbandy, S. (2017). An improved overlapping

k-means clustering method for medical applications. Expert Systems with Applications,

67:12–18.

Knorr, E. M., Ng, R. T., and Zamar, R. H. (2001). Robust space transformations for

distance-based operations. In Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 126–135.
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Appendix A

R Code

A.1 Objective Function

###OBJECTIVE FUNCTION

Obj .Hw <− function ( x . data , w.matrix ){

n <− nrow( x . data )

d <− ncol ( x . data )

K <− ncol (w.matrix )

C<− −0.5∗ (n∗d − K∗d) − n∗ log (n) − 0 .5∗d∗n∗ log (2∗pi )

n . k <− colSums (w.matrix )

l o gd e t s <− matrix ( rep (0 , K) , nrow = 1 , ncol = K)

I . 1 <− n . k ∗ log (n . k )

for (m in 1 :K) {

l o gd e t s [m] <− unlist ( determinant ( n1ccov (x . data ,

w.matrix [ ,m] , method = ”unbiased ” )$cov ,

l ogar i thm = TRUE)$modulus ) [ 1 ]

}

I . 2 <− n . k ∗ l o gd e t s

Hw <− −(sum( I . 1 ) − 0 .5∗sum( I . 2 ) + C)

return (Hw)

}
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A.2 Weight Matrix Code

###WEIGHT MATRIX

weight .matrix <− function ( x . data , Cid . vec ){

u . Cid <− unique (Cid . vec )

w.mat <−matrix (c ( rep (0 , NROW( x . data )∗length (u . Cid ) ) ) ,

nrow =NROW( x . data ) , ncol = length (u . Cid ) )

for ( j in 1 : ncol (w.mat) ) {

a i <− which(Cid . vec == j )

w.mat [ a i , j ] <− 1

}

return (w.mat)

}

A.3 Cluster Membership

###CLUSTER MEMBERSHIP

c l u s t .memb <− function (w.matrix ){

n .wm<−NROW(w.matrix )

memb <− rep (0 , n .wm)

for ( g in 1 : n .wm){

memb[ g ] <− which .max(w.matrix [ g , ] )

}

return (memb)

}

A.4 Solution of the Linear Programming Problem
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###SOLUTION MATRIX TO THE LINEAR MINIMIZATION PROBLEM

SM <− function ( grad .matrix ){

ww.new <− matrix ( rep (0 , NROW( grad .matrix )∗NCOL( grad .matrix ) ) ,

nrow =NROW( grad .matrix ) , ncol = NCOL( grad .matrix ) )

i f (anyNA( grad .matrix ) == TRUE){

ww.new <− matrix (NA, nrow =NROW( grad .matrix ) ,

ncol = NCOL( grad .matrix ) )

warning ( ” g rad i en t matrix has NA’ s ” )

} else {

for ( l in 1 :nrow( grad .matrix ) ){

ww.new [ l , which .min( grad .matrix [ l , ] ) ] <− 1

}

}

return (ww.new)

}

A.5 Performance Assessment

###PERFORMANCE ASSESSMENT

assessment . p e r f <− function ( groundtruth , c l u s t e r . r e s u l t ){

c l u s t .num <− unique ( c l u s t e r . r e s u l t )

nc . perm <− permutat ions ( length ( c l u s t .num) )

max. accuracy <− .Machine$double . xmin

for ( j in 1 :nrow( nc . perm ) ) {

c l u s t e r . r e s u l t . perm <− rep (0 , length ( c l u s t e r . r e s u l t ) )

for ( i in 1 : ncol ( nc . perm ) ) {

c l u s t e r . r e s u l t . perm [which( c l u s t e r . r e s u l t == i ) ] <−
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nc . perm [ j , i ]

}

acc <− confus ionMatr ix ( as . factor ( groundtruth ) ,

as . factor ( c l u s t e r . r e s u l t . perm ) )

cm. accuracy <− as .numeric ( unlist ( acc$ o v e r a l l ) [ 1 ] )

#ge t the accuracy

i f (cm. accuracy >= max. accuracy ){

max. accuracy <− cm. accuracy

f i n . c l u s t e r <− c l u s t e r . r e s u l t . perm

conf .mat . i n f <− acc

}

}

return ( l i s t ( max. accuracy = max. accuracy , f i n . c l u s t e r =

f i n . c l u s t e r , conf .mat . i n f = conf .mat . i n f ) )

}

A.6 Weighted Covariance

n1ccov <− function (x , wt . k , c en t e r = TRUE, method =

c ( ” unbiased ” , ”ML” )){

i f ( i s . data . frame ( x ) )

x <− as .matrix ( x )

else i f ( ! i s .matrix ( x ) )

stop ( ” ’x ’ must be a matrix or a data frame” )

i f ( ! a l l ( i s . f i n i t e ( x ) ) )

stop ( ” ’x ’ must conta in f i n i t e va lue s only ” )

n <− nrow( x )
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i f ( with .wt . k <− !missing (wt . k ) ) {

i f ( length (wt . k ) != n)

stop ( ” l ength o f ’wt ’ must equal the number o f

rows in ’x ’ ” )

i f (any(wt . k < 0) | | ( s <− sum(wt . k ) ) == 0)

wt . k <− rep (NA, length (wt . k ) )

}

i f ( i s . log ica l ( c en te r ) ){

c en te r <− i f ( c en te r )

colSums (wt . k ∗ x )/sum(wt . k )

else 0

} else {

i f ( length ( c en te r ) != ncol ( x ) )

stop ( ” l ength o f ’ center ’ must equal the number o f

columns in ’x ’ ” )

}

x <− sqrt (wt . k ) ∗ sweep(x , 2 , center , check .margin = FALSE)

cov <− switch (match . arg (method ) , unbiased = crossprod ( x )

/ (sum(wt . k ) − 1) , ML = crossprod ( x )/sum(wt . k ˆ2) )

y <− l i s t (cov = cov , c en t e r = center , n . obs = n)

i f ( with .wt . k )

y$wt . k <− wt . k

return ( y )

}

A.7 Weighted Mean
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ncmean <− function ( x . data , w.matrix , K. k ){

nk = colSums (w.matrix )

nk = nk [K. k ]

xbar . k <− colSums (w.matrix [ ,K. k ] ∗x . data )/nk

return ( l i s t ( xbar . k = xbar . k , nk = nk ) )

}

A.8 Gradient of the Objective Function

##GRADIENT FUNCTION BASED ON WEIGHT MATRIX

dH dw <− function ( x . data , w.matrix , numerica l f l a g = FALSE){

d <− NCOL( x . data )

n <−NROW( x . data )

K <− NCOL(w.matrix )

n . k <− colSums (w.matrix )

dH.mat <− matrix (0 , nrow = n , ncol = K)

means <− matrix ( rep (0 , K∗d ) , nrow = K, ncol = d)

covs <− array ( 0 . 0 , dim = c (d , d , K) )

invcovs <− array ( 0 . 0 , dim = c (d , d , K) )

i f ( numerica l f l a g ){

h <− 1E−6

dH. mat2 <− Obj .Hw(x . data , w.matrix )

for ( j in 1 :K){

for ( i in 1 : n){

w. matrixph <− w.matrix

w. matrixph [ i , j ] <− w. matrixph [ i , j ] + h

dH. mat1 <− Obj .Hw(x . data , w. matrixph )
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dH.mat [ i , j ] <− (dH. mat1 − dH. mat2 )/ (h)

}

}

} else {

for (q in 1 :K ){

means [q , ] <− ncmean (x . data , w.matrix , q)$xbar . k

covs [ , ,q ] <− n1ccov (x . data , w.matrix [ ,q ] ) $cov

i f (anyNA( covs [ , ,q ] ) == TRUE){

return ( (dH.mat [ , q ] <− NaN) )

break

}

i f ( rcond ( covs [ , ,q ] , norm = ” I ” ) <=

.Machine$double . eps ˆ0 .5 ){

invcovs [ , ,q ] <− solve ( matrix (0 .00001∗diag (d ) ,

nrow = d , byrow= T) )

} else {

invcovs [ , ,q ] <− solve ( covs [ , ,q ] )

}

}

for ( j in 1 :K){

d1 . j <− mahalanobis ( x . data , means [ j , ] , invcovs [ , , j ] ,

i nve r t ed = TRUE)

d2 . j <− d

dH.mat [ , j ] <− −(1 + log (n . k [ j ] )

− 0 .5∗ ( unlist ( determinant ( covs [ , , j ] ,

l ogar i thm = TRUE)$modulus ) [ 1 ] )

−0.5∗ (n . k [ j ] / (n . k [ j ] − 1 ) )∗ ( d1 . j − d2 . j ) )

}

88



}

return (dH.mat)

}
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