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CHAPTER 1  ̶ INTRODUCTION 

1.1 Objective 

For successful construction and the long-term durability of pavement constructions, it is 

essential that the moisture content of earthwork is measured for accurately and promptly during 

the compacting of foundation layers. The goal of this research was to show a prototype/breadboard 

of a device that can continually measure moisture throughout the construction of a pavement 

foundation and evaluate existing devices that can read moisture in a laboratory environment. 

The developed device is based on characterizing moisture content by measuring a 

geomaterials’ complex resistivity (CR) as a function of frequency, field strength, and measurement 

geometry. In complex resistivity measurements, the distortion (phase shift) between the voltage 

and current is recorded in addition to the resistivity amplitude over a wide frequency range. The 

resistivity is given by the in-phase amplitude, while the dielectric constant is given by the 

amplitude with a 90° phase shift. 

Complex resistivity measurements can be caused by both the extrinsic properties of charge 

transfer between metal electrodes to pore water and the intrinsic properties of ionic conduction in 

the geomaterial. Ionic conduction across free pore water, polarization at the air-water interface, 

and polarization along adsorbed water at grain boundaries are the targets to be measured by 

complex resistivity. Void content, moisture content, and pore size distribution control the in-phase 

and out-of-phase currents. In most cases, dissolved solids or mineral surface charges have an ionic 

effect that suppresses water permittivity, which causes bias in materials with a high fines content. 

Water connection across the pore space and saturation levels dominate low-frequency resistivity 

measurements, with water volume coming in second. If sufficient observations are taken to 

differentiate between residual moisture on particles, saturation fluctuations, and void changes in 
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compaction, low-frequency resistivity may likely be employed with little calibration, which 

requires measuring: 

1) Material resistivity before watering 

2) The resistivity of the water added 

3) Pre-and Post-compaction resistivity 

With an improved polarization signal with partial saturation, CR at intermediate frequencies 

should identify saturated and unsaturated situations from charges restricted from movement at air-

water interfaces, reducing the requirement to evaluate soil resistivity before and after watering. 

1.2 Organization 

Chapter 2 will document the current state of knowledge concerning field moisture 

measurement during pavement foundation construction and case studies demonstrating cost 

savings resulting from more effective moisture measurements. Chapter 3 will provide the different 

laboratory procedures and an explanation of each laboratory measurement. Chapter 4 will present 

the different measuring devices with correlations to moisture content in the laboratory setting on 

compacted specimens. Chapter 5 will discuss the conclusion made from the study and 

recommendations.  
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CHAPTER 2  ̶ CURRENT MOISTURE MEASUREMENT METHODS 

A foundation layer for durable rigid pavements should have the following attributes (White et 

al., 2021): 

1) Provide uniform support 

2) Be balanced in terms of flexibility and stiffness 

3) Provide adequate drainage 

4) Not be affected by permanent plastic deformation 

5) Utilize sustainable practices and materials 

Moisture content is an essential property of geomaterials that must be monitored during and 

after the construction of unbound pavement layers. Improper quality control and quality assurance 

(QC/QA) of compacted geomaterials may result in from an inability to estimate the moisture 

content correctly and rapidly during construction. During the life of a pavement, excessive volume 

of water in the unbound layers of the pavement structure may contribute to the development of 

early distress and lead to the structural or functional collapse of the pavement. Water-related 

damage can result in one or more of the following types of deterioration: weakening of the 

subgrade, base, and subbase; differential swelling in expansive subgrade soils; frost heave; and 

weakening of the subgrade, base, and subbase during frost melt; and movement of fine particles 

into the base or subbase coarse materials, resulting in a decrease in hydraulic conductivity (Liang 

et al., 2016). During the 1980s, several scholars researched the problem of monitoring the water 

content of pavement constructions, which sparked an upsurge in interest in this field. The Strategic 

Highway Research Program (SHRP) examined how fluctuations in moisture content affected 

pavement structures (Svensson, 1997). Since then, several methods and procedures for measuring 

the soil moisture content have been presented. Traditional moisture measurement methods, such 

as physical sampling or installing sensors such as time domain reflectometry (TDR) probes, give 
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only spot measurements, making them impracticable for large-scale research. Professionals in the 

business are now developing a novel method for detecting soil water content in real-time across a 

continuous region. 

An ideal section of pavement should be laid on a consistent pavement base that extends beyond 

the driving lane. To achieve consistent pavement construction, it should be constructed upon a 

uniform embankment. The cross-section of an idealized pavement is seen in Figure 1. It must offer 

appropriate drainage and be sufficiently compact to withstand various vehicular loads. The 

subgrade should be properly compacted first. 

 

Figure 1: An Ideal Pavement Section 

A review of the literature on the various measuring apparatuses is provided next. 

2.1 Measuring Methods 

Several methods for soil moisture measurement have been developed throughout the years. 

Based on the technique and measurement principles used, the various methodologies may be 

divided into direct and indirect categories (Svensson, 1997). The direct approach (i.e., the 

gravimetric method) entails collecting a soil sample from the site under investigation. The soil 
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sample is weighed before and after drying at 105°C (220°F). This approach is regarded as the 

“gold standard” for determining the moisture content of substances. 

In indirect approaches, a radiation source or a probe put in or on the geomaterial is used to 

measure a parameter significantly related to the moisture content. Since the soil is only disturbed 

during installation, the primary benefits of these techniques are that they are more rapid and often 

nondestructive (Evett et al., 2008). 

None of these techniques directly measure the soil water content, but all measure a 

characteristic highly linked with the soil moisture content. Some of the equipment associated with 

this research that monitor moisture content only offer point readings, not spatially continuous 

observations. Examples of these approaches and their principles are presented in Table 1. 

ASTM D6938-17a outlines the standard test techniques for in-situ density and soil water 

content measurement with nuclear methods.  The nuclear density gauge (NDG, Figure 2) measures 

the density and estimates the water content of compacted geomaterials in various ways (Viyanant 

et al., 2004). The gauge is calibrated to measure soil or aggregate moisture mass per unit volume. 

The volumetric water content may be calculated by dividing the mass of water per unit volume 

then multiplying by 100. The nuclear gauge also employs direct transmission and backscatter to 

determine density and water content. 

Thermalizing or slowing fast neutrons that impact hydrogen atoms in the soil, the neutron 

moisture measurement calculates the water mass per volume. The neutron source and thermal 

neutron detector are surface-based and can record and convert the slow neutron count rate to 

estimate the volumetric water content. Thermal neutron capture may also affect the thermal 

neutron count rate, with iron (Fe) being the most prevalent modifier. Alternative methods are 

suggested for measuring the moisture content of base and subgrades. (Sebesta et al., 2013). 



6 

Table 1: Indirect Tests 

Method Measurement Principle Explanation 

Nuclear Density 

Gauge 

(NDG) 

Back-scattered or transmitted 

gamma-ray count-rate 

A source of high energy emits gamma rays (Co60) that interact with the geomaterial. A gamma detector counts the 

returning gamma rays with energies linked to Compton Scattering, which is directly connected to electron density and 

material density. 

Nuclear Moisture 

Gauge 
Thermalized neutron count-rate 

A neutron source emits high-energy neutrons, while a neutron detector measures neutrons whose energy has been 

thermalized by repeated collisions with hydrogen nuclei in water. Neutron capture by some elements affects count 

rates subsequently. 

Nuclear Magnetic 

Resonance (NMR) 

Detection of the weak magnetic 

moment 

After placing a combination of soil and water in the NMR analyzer and inducing a radio frequency, a voltage is 

supplied to the surrounding coil. This voltage is proportional to the amount of water in the sample and corresponds to 

the number of atoms that have absorbed energy (Svensson, 1997). When a radio frequency is induced, an atom absorbs 

a certain amount of energy to reposition itself inside the magnetic field. 

Capacitance meters 
Oscillating circuit to measure 

changes in frequency 

A capacitor consists of two insulated electrodes, with the soil contributing the most to the dielectric constant. 

Equipment and dirt compose the measurement circuit. The probe detects and measures the frequency change 

dominated by the water content of the soil. (Svensson, 1997). 

Ground Penetrating 

Radar (GPR) 

Short pulses of electromagnetic 

through the soil 

In addition to its other applications, GPR may be used to assess the soil’s water content. Changes in permittivity may 

also be connected to variations in transmission time and amplitude of the reflected pulse (dielectric constant). After 

getting the changes in permittivity, it is possible to compute the soil’s water content (Svensson, 1997). 

Thermal Sensors 
Heat conductivity or heat 

capacity of the soil 

A heat pulse is generated, and the subsequent increase or decrease in soil temperature is monitored over time. Since 

soil is a weak heat conductor compared to water, the heat or heat transfer quantity is proportional to the volumetric 

water content (Evett et al., 2008). 

Conductivity 

Sensors 

Electrical conductivity of a 

porous medium in contact with 

the soil 

Granular matrix sensors and gypsum blocks include conductivity sensors. Instead of assessing water content by 

volume, these sensors evaluate soil water tension (Evett et al., 2008). Current measures the conductivity and quantity 

of water between electrodes by injecting an alternating voltage between two electrodes in a porous medium, 

facilitating the exchange of soil moisture. 

Voltage measured at two 

electrodes from current injected 

at two other electrodes 

A low-frequency alternating current is injected between two electrodes, while a voltage is monitored between two 

electrodes with no current flow. The shape of the electrodes transforms the observed voltage/current ratio to apparent 

resistivity, while the distance between the electrodes regulates the measurement volume. 

Eddy currents, induced by an 

alternating magnetic field, 

increase with conductivity 

A magnetic field created by one coil over the ground is measured at a second coil. This secondary field reacts to 

geometry, magnetic susceptibility of the soil, and eddy currents created in a conductive soil, which are principally 

governed by soil moisture. The eddy current is related to the frequency and conductivity of the soil. 

Resistance 

measurements 

The resistance between two 

electrodes 

The electrical resistance of the soil, which fluctuates depending on its moisture content, is used to quantify its moisture 

content. As the moisture content of the soil rises, its electrical resistance lowers, and conductance rises. Resistance 

may range from several hundred k when wet to several hundred M when dry (Sad, 2007). 

Tensiometer 

measurements 

Measurement of a pressure 

differential in the soil 

A porous membrane forms the contact between the water-filled pressure sensor and the soil as the significant 

component of the tensiometer. The negative pressure inside the tube may be measured using a vacuum gauge to 

determine water tension (Evett, 2008). However, if the relationship between matric potential and soil water content is 

understood, the water content may be determined (Svensson, 1997). 
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Figure 2: Positioning of a Nuclear Gauge for Three Different Methods (UTEST, 2016) 

Time Domain Reflectometry (TDR, Figure 3) is widely used to determine water content and 

electrical conductivity (Jones et al., 2002). TDR transmits an electromagnetic pulse over a coaxial 

wire to the probe and detects its reflection. Time to reflection is proportional to cable length, early 

reflection amplitude is governed by permittivity (dielectric constant), and late reflection features 

are governed by electrical conductivity. The reflection amplitude is determined chiefly by the 

dielectric constant of the soil around the probe; the dielectric constant is 1 for air, 2-9 for ordinary 

dry soil particles, and about 81 for water. Since changes in the TDR-measured dielectric constant 

are strongly related to changes in the water content of soils, it is relatively easy to determine the 

soil moisture content for silicate soils (Yu and Yu, 2009). Soils with carbonates, gypsum, and clays 

have a higher dry permittivity and require local calibration for mineral variations. 

Sotelo (2012) evaluated five non-nuclear devices, including a Purdue Time Domain 

Reflectometer (TDR), Soil Density Gauge (SDG200), Decagon 10HS Moisture Content Sensor 

(10 HS), Speedy Moisture Tester (SMT), and a DOT600 Roadbed Water Content Meter, to 

determine their accuracy in measuring moisture content and dry density. Sotelo prepared several 

small-scale specimens within the laboratory to simulate the construction of five soils ranging from 

poorly graded gravel to clay (CH). The TDR and SMT were the most accurate devices in 

measuring moisture content. The other three devices were accurate, with only specific soil 
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samples. The most accurate device in measuring dry density was the TDR, except for a CH 

material; however, the SDG accurately measured the density of the CH soil but not the remaining 

soils. 

 

Figure 3: Typical TDR Device 

2.2 Evaluation of Technologies Determining Moisture Content over Time  

Bogena et al. (2007) examined an ECH2O probe (model EC-5, low-capacitance sensor by 

Decagon Devices Inc.) utilizing laboratory and field tests. Using TDR and EC-5 sensors, they also 

compared permittivity and soil water content data. They put four EC-5 sensors and two TDR 

probes permanently attached to a data recorder in the field. The TDR measurements were 

conducted using Campbell Scientific TDR100 cable tester equipment, and a sensor reading-

permittivity (SRP) model was utilized to determine the EC-5 sensor’s recorded permittivity. Using 

an equation given by Robinson et al., the researchers calculated the soil moisture content (2003). 

Figure 4 shows the TDR-measured soil water content and the mean values and standard deviations 
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of all EC-5 sensors throughout seven months. The findings indicated that the data from the EC-5 

sensor should be modified using the temperature and conductivity adjustment algorithms. 

 

Figure 4: Measured VWC (a) TDR and EC-5 Sensors (b) TDR and Corrected EC-5 Measurements 

Mittelbach et al. (2011) examined a distinct capacitance probe (10HS) for measuring 

volumetric water content (VWC) in the laboratory and the field. The 10HS VWC readings were 

compared to the matching gravimetric and TDR data (TRIME-EZ and TRIME-IT, IMKO GmbH, 

Germany). Using gravimetric sample measurements as a reference, the goal of the laboratory tests 

was to detect the difference in VWC between the 10HS and the TRIME sensors. Figure 5a displays 

the laboratory VWC measurements. Two calibration functions are presented for the 10HS sensor 

(Decagon Version 2.0 and best lab fit). According to the findings, TDR values were closer to the 

standard VWC. The calibration feature of Decagon Version 2.0 produced inaccurate results, 

particularly over 30-40% moisture content. The finest lab fit enhanced the reading, hence 

increasing its reliability. Figure 5b depicts the measurement accuracy of sensor reading, illustrating 

the variation within the 10HS sensor type (blue) and the DV/dVMC of the 10HS sensor (green). 

The sensor sensitivity for DV/dVWC (mV/Vol.%) decreased significantly as VWC increased. The 

b

) 

a

) 
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decrease in sensitivity may be linked to the concept of capacitance sensors, wherein the capacitor 

charges more slowly at high VWC. 

The 10HS sensors were evaluated for the field measurements at the Swiss locations of 

Oensigen (OEN) and Payerne (PAY). For 13 months, the soil moisture content was monitored at 

both sites using 10HS and TRIME IT/EZ. Figure 6 depicts precipitation, air temperature, and 

absolute soil moisture. Absolute soil moisture is the soil moisture integrated across the measured 

soil column in millimeters. Except for the past two months, using the best field fit considerably 

improved the calculated absolute soil moisture content, mirroring TDR readings. The researchers 

determined that the optimal configuration for accurate soil moisture networks comprised parallel 

capacitance and TDR measurements with the correct calibration of 10HS sensors. They concluded 

that the differences between the various 10HS sensors were minimal. In addition, they emphasized 

that the 10HS sensor requires site-specific calibration functions and is optimal for low VWC 

concentrations. 

 

Figure 5: (a) Laboratory Measurements Results with TRIME (TDR) and 10HS (capacitance) Sensors as a 

Function of VWC of the Gravimetric Samples (b) Accuracy of 10HS Sensors 

a b 
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Figure 6: Precipitation and Temperature Measurements of (a) OEN and (b) PAY. Absolute Soil Moisture of 

(c) OEN and (d) PAY 

Hansen and Nieber (2013) examined the accuracy of the DOT600 (moisture content), WP4C 

dewpoint potentiometer (matric suction), the Button Heat Pulse Sensor (BHPS) (temperature rise 

vs. moisture content), and an exudation pressure test device in predicting the moisture contents of 

three subgrade soils typically used in Minnesota roadway construction projects. 

In a study, Singh (2017) evaluated the field performance of eight electromagnetic (EM) sensors 

(TDR315, CS655, HydraProbe2, 5ET, EC5, CS616, Field Connect, and AquaCheck). Specific 

aims of the research included evaluating EM sensors for VWC and comparing factory calibration 

to bespoke calibration procedures for VWC. In addition to the factory default calibrations for the 

EM sensors, the Topp calibration equation (Topp et al., 1980) was evaluated for the TDR315, 

HydraProbe2, and EC5 sensors. Following Bell et al., the field-calibrated neutron moisture meter 

(NMM) was adopted as the standard for VWC (1987). 

The variance over time between sensor-reported and reference VWC found in this 

investigation is shown in Figure 7 for single-sensor probes and Figure 8 for multi-sensor probes. 

Using either the factory calibrations or the included alternative calibrations, these charts indicated 

that all tested sensors followed the overall trend. However, they all overestimated VWC in 

a 

d c 

b 
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comparison to the standard. Using Topp’s calibration equation instead of the factory calibration 

enhanced the performance of TDR315 but not HydraProbe2 or EC5. 

 

Figure 7: Measurements of VWC at Two Distinct Depths with Single-Sensor Probes as compared with the 

field-calibrated NMM 

 

Figure 8: Measurements of VWC at Three Distinct Depths using Multi-Sensor Probes as compared with 

Field-Calibrated NMM 

Shaikh et al. (2018) devised a simple laboratory setup to analyze all six profile probe (PP) 

sensors for a specific soil type and compaction condition concurrently. Based on TDR and the 

capacitance technique, PP measurements were conducted on six soils planned for use in a 

multilayer cover system (MLCS). Figure 9 depicts the experimental setup used to evaluate the 

performance of the PP. This assessment was accomplished by comparing the measured and 
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calculated (theoretical) VWC; recalibration was undertaken if the comparison was inadequate. The 

first findings revealed a discrepancy between the measured and calculated VWC for each of the 

six soil types. Consequently, various calibration constants were utilized to recalculate the recorded 

VWC from the known voltage values and the square root of the dielectric constant; the recalculated 

measurements yielded satisfactory findings, as shown in Figure 10. 

 

Figure 9: Laboratory Setup for Calibration of PP Sensors 
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Figure 10: Comparison between Measured (using PP) and Computed VWC (Shaikh et al., 2018) 

Figure 11 provides a more straightforward illustration of comparing sensor data before and 

after calibration for two soils, RS (medium plastic red soil) and RB, with the same compaction 

condition (mixed soil with bentonite). Without calibration functions, various sensors provided 

different VWCs for the same VWC at a particular compaction stage; however, after completing 

sensor- and soil-specific calibrations, the calculated and measured VWCs matched well, and all 

sensors reported comparable results. Before deploying the PP for field monitoring programs, they 
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urged using their suggested laboratory process for accurate VWC (from 6% to 1% using calibration 

functions). They determined that soil water content may be continually monitored using a GPR 

system with many channels. 

 

Figure 11: PP Measurements Before and After Calibration at Three Various Compaction States in RS and 

RB 
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2.3 Using GPR for Continuous Moisture Content Measurements Over Large Distances 

The GPR operates by emitting brief pulses of electromagnetic energy from an antenna into the 

road structure, which is then reflected to a receiving antenna (Figure 12). The transmission 

duration and amplitude of the reflected pulse may be correlated with the position and dielectric 

discontinuities of the material (Maser and Scullion, 1992; Svensson, 1997). As a result of their 

direct link, the moisture content may also be determined by monitoring the changes in permittivity 

(dielectric constant). Typically, the equipment is installed on a van for highway studies so that data 

collection may be conducted at speeds similar to traffic flow (Figure 13). Air-coupled or ground-

coupled operations are suited for GPR antennas. The antennas are positioned around 250 mm 

above the surface for air-coupled mode operating at highway speeds. For a stronger signal, ground-

coupled antennas lie on the ground’s surface. 

 

Figure 12: Transmission and Reflections from Interfaces in a Pavement Section 
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Figure 13: Illustrated Example of Van-mounted GPR System 

For many decades, the application of GPR for continuous measurements of soil moisture 

content on the various strata of a pavement system has been researched. Using a van-mounted horn 

antenna setup, Maser and Scullion (1992) could effectively derive a moisture profile from radar 

data. Emilsson et al. (2002) showed that multichannel GPR may be used to measure moisture 

content in roadbeds continually. As seen in Figure 14a, their study was based on a standard midway 

technique using an antenna configuration. The antenna spacing in the array ranged from 0.15 m to 

4 m for three separate antenna arrays operating at 250, 500, and 800 MHz. The findings in this 

paper were derived from 500 MHz data. Figure 14b shows an image of the 500 MHz antenna array. 

They gathered data at speeds between 20 and 40 kilometers per hour and determined the volumetric 

soil water content at the location. Figure 15 shows the outcomes. 
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Figure 14: (a) Antenna Setup for Velocity Determination, (b) 500MHz Antenna Array 

 

Figure 15: Calculated Soil Moisture Content  

a 

b 

a1=360 mm 

a2=176 cm 

a3=238 cm 
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Gerhards et al. (2008) proposed a novel method using a multichannel GPR that enabled 

simultaneous assessment of the depth of a reflector and the average volumetric water content above 

the reflector with significantly increased operating effort compared to conventional measurement. 

They used a Mal GeoScience, Sweden-manufactured GPR multichannel device MC4 with a 250-

MHz antenna setup. For a straightforward assessment, they employed two trip durations (t2 and 

t3) from differing antenna separations using a common midpoint (CMP) reflector (Figure 16). 

 

Figure 16: Antenna Setup for Multichannel Measurement 

Because four rays and three antenna separations are available for each measurement site, the 

two-point assessment uses only some available information. In order to determine the reflector 

depth and average water content, a multipoint assessment with varying numbers of channels was 

conducted (Figure 17). The gray dashed line represents the multipoint assessment of Channels 1 

and 2, whereas the black dashed line represents the multipoint evaluation of all channels. They 

found that the use of GPR exhibited in their work allowed for the simultaneous measurement of 

reflector depth and average water content and had a high potential for characterizing subsurface 

structure. 
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Figure 17: Calculated Reflector Depth and Average Water Content using Different Channels  

Wollschlager et al. (2010) used multichannel GPR at a permafrost location to deduce spatial 

differences in thaw depth and average volumetric water content of the active layer. Their 

measurements were conducted per a modified version of the method used by Gerhards et al. 

(2008). Their multichannel GPR system allowed them to collect data from nine “channels” of 

transmitter-receiver combinations. Using the CMP technique while moving along the radargram, 

they could accurately estimate relative dielectric permittivity, reflector depth, and average soil 

moisture content at each position. In addition, they created an inverse evaluation process to 

improve precision. 

The research (Wollschlager et al., 2010) indicated that the multichannel GPR approach covers 

the scales between standard point measurements and space-based remote sensing. Measurements 

were undertaken on an area of roughly 85 m by 60 m with surface and soil textural qualities ranging 

from medium- to coarse- to fine-textured soils, as well as the bed of a gravel road. Figure 18 depicts 

the topographically corrected reflected depth, relative dielectric permittivity, and average 

volumetric soil moisture content of the unfrozen active layer obtained from the multichannel 

analysis. Figure 19 depicts contour plots showing the thickness of the thawed layer, the average 

moisture content, and the total soil moisture content of the active layer. It is possible to compute 

the total soil moisture content of the active layer by multiplying the observed thaw depth by the 
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average soil moisture content. This is a crucial parameter for permafrost studies since it offers 

direct information on the amount of water held in the active layer.  

 

Figure 18: Surface Topography, Reflector Depth, Relative Dielectric Permittivity, and Average Volumetric 

Soil Moisture Content 

 

Figure 19: Thickness of Thawed Active Layer, Average Soil Moisture Content, and Total Soil Moisture for 

the Thawed Active Layer 

Red: Raw Data 

Dark Blue: Averaged Data 

Light Blue: Uncertainty 
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Muller (2017) showed an automated method using multi-offset ground penetrating radar (GPR) 

to forecast moisture content continually and layer depth for unbound granular pavements (UBG) 

at traffic speeds. The initial application of his techniques centered on the investigation of layer 

depth and moisture content at large project-level scales to assess layer depth as part of pavement 

rehabilitation investigations and determine the severity of suspected pavement damage caused by 

excessive moisture in the multilayer structure. Reeves (2010) used a second-generation 3D Noise-

Modulated (NM-GPR) instrument for moisture content measurements (Figure 20). This apparatus 

may gather a sequence of nearby partly overlapping multi-offset measurements with ground 

coupling. 

 

Figure 20: Second Generation NM-GPR System Incorporating a Traffic-Speed 3D Ground-Coupled Antenna 

Array 

In conjunction with the NM-GPR, a Traffic Speed Deflectometer (TSD) was used to establish 

the road surface’s deflection profile. The TSD is a transportable device that employs Doppler 

vibrometers and complementing sensors to detect the velocity of the deflecting surface at 

predetermined offsets in front of the load’s rear tire (Ferne et al., 2009; Baltzer et al., 2010; Kelley 

& Moffat, 2011). While moving down the road, the equipment was designed to collect four nearby 
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wide-angle reflections and refraction (WARR) collects in a quasi-continuous manner. To calibrate 

the petrophysical relations for UBG pavement materials and create field moisture forecasts, a 

modified free-space (MFS) permittivity characterization technique was devised. A ray-path 

modeling-semblance (RM-S1) approach was also used to optimally match all near-transmitter 

receivers over the breadth of the array. 

In June 2015, during the first Site Visit, NM-GPR readings were acquired. The next day, TDR 

and impulse GPR measurements were taken, and the site bitumen was sealed two days later. The 

May 2016 Site Visit 2 included the collection of NM-GPR, impulse GPR, and TDR data, as well 

as several physical samples throughout the length of the site. During Site Visit 2, eight samples 

(S1 to S8) were dug to estimate the pavement layers’ built depth and collect material to measure 

the location’s moisture content. S1 to S4 were taken at 100 mm intervals inside the pavement, and 

a subgrade sample was also obtained. The other four samples (S4 to S8) were collected from the 

second half of the site, and the subgrade and individual strata were sampled. 

Figure 21 compares the measured response on one of the 32 NM-GPR channels during the first 

and second site visits with the impulse measurement acquired during the second site visit. Also 

highlighted are the approximate locations of sample sites S1 through S8. 

Figure 22 is a screenshot of the RM-S1 analysis for the measured multi-offset response (Figure 

22a), the optimized ray-path model determined for the tested location (Figure 22b), and an image 

of the calculated layer depth, dipping angle, relative permittivity, and predicted volumetric 

moisture content (Figure 22c) (Figure 22c). Figure 22d depicts volumetric content projections for 

previously examined areas along the route. The RM-S method was designed to make processing 

multi-offset GPR data constantly gathered along a road using 3D GPR equipment more 

uncomplicated and efficient.  
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Figure 21: GPR Scans along the Test Site of (a) Site Visit 1 Using NM-GPR, (b) Site Visit 2 using NM-GPR 

and (c) Impulse GPR 

 

 

Figure 22: Multi-Offset Analysis using the RM-S1 Approach Showing (a) Measured WARR Response with 

Airwave and Optimized Ray-Path Travel Time Predictions Overlaid (black dots); (b) Calculated Ray-Path 

Geometries; (c) Calculated Layer Depth (d), Volumetric Moisture Content 

d 

a b c 

a 

c 

b 
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Figure 23 displays the relevant volumetric moisture contents computed using the previously 

estimated petrophysical relation. The researchers determined a strong connection between the 

volumetric moisture content predictions of the RM-S1 model and the actual sample findings. Other 

studies found that TDR and common-offset GPR had a similar tendency to RM-S, although with 

persistently lower permittivity values. It is crucial to note that using alternative sensor 

configurations (common midpoint, multiple arrays, standard offset) increases the capability to 

identify layer interfaces and estimate layer depths. The greater the precision of the depth forecasts, 

the greater the precision of the permittivity estimate. 

 

Figure 23: Volumetric Moisture Content Predictions from Permittivity Results during (a) Site Visit 1 and (b) 

Site Visit 2 (Muller, 2017) 

a 

b 
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Muller found from this investigation that the predictions of this method corresponded well with 

actual measurements of layer depth and moisture content of pavement layers. Compared to 

embedded TDR sensors and common-offset GPR measurements of subsurface reflectors, 

permittivity predictions followed similar temporal patterns with somewhat lower values. Even 

though data could be gathered at traffic speeds, layers had to be recognized and monitored, most 

likely based on spot assessments at intervals along the road, as one of the study’s limitations. In 

addition, it was emphasized that this method could only be used for the subgrade, which was 

usually the lowest coherent interface. Therefore, integrated TDR or other sensors would still be 

necessary for subgrade moisture monitoring. 

2.4 Further Moisture Measurements 

White (2019) researched to optimize pavement laying costs by utilizing material compaction 

energy and moisture content to enhance the quality by 

1. Achieving the minimal critical engineering parameter values throughout the site 

2. Limiting variability of critical engineering parameter values over the entire site 

3. Restricting spatial areas of non-compliance 

4. Control moisture contents to ensure post-placement volumetric stability 

The propriety “validated intelligent compaction” (VIC) technology was employed to help the 

construction process and quality evaluation. They highlighted the variation in QC/QA testing 

procedures for detecting the water content (Figure 24). Zero shows the optimum moisture content 

with -4% and +2% limits shown by the orange dashed lines. This demonstrated that 79% of all 

measurements did not adhere to the stated moisture control limits. Quality evaluation criteria were 

devised utilizing intelligent compaction to highlight regions of noncompliance (Figure 25a) 

(Figure 25a). Moisture was measured based on its connection to the density of the material, as 

illustrated in Figure 25b. Water was added or withdrawn until obtaining the appropriate density. 
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Figure 24: Moisture Content Measurement Variability 

 

 

Figure 25: (a) Quality Assessment Criteria, (b) Intelligent Compaction Map 

Genc et al. (2019) recommended estimating the frost depth and the number of freeze-thaw 

cycles under a specific highway using continuous meteorological and soil data. Their effort was to 

produce a method to prevent the occurrence of frost-induced heaving, depressions, fissures, 

potholes, and unpleasant travel. This work used soil moisture, matric suction, and temperature 

factors for computational modeling analysis. The chosen test area was instrumented with various 

soil moisture, matric potential, and temperature sensors implanted in five boreholes at depths 

ranging from 0 to 8 meters (Figure 26). Several alternatives were tested to determine the best 

practical sensor for measuring the soil’s moisture content. After an exhaustive study of 

commercially available devices, they opted to employ the GS1 sensor by Meter Environment. Due 
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to its calibration technique and precision, the Decagon Devices MPS-6 sensor was chosen to detect 

the soil’s matric potential. The selected test area had a weather station for measuring air 

temperatures. The sensors and weather stations used for this experiment are shown in Figure 27. 

After installation and data collection, a remote connection was established with the data logger, 

and the stored information was retrieved. Ultimately, continuous moisture content, matric 

potential, and temperature measurements were acquired. Figure 28 illustrates an example of the 

obtained data for continuous moisture measurements for sensors set at a depth of 1 foot in the five 

boreholes in this area. 

 

Figure 26: Cross-Sectional View of Roadway and One Borehole 
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Figure 27: (a) GS1 (b) MPS-6 (c) Weather Station 

 

Figure 28: Continuous Moisture Measurement 

Campbell (2019) described advances altering how soil moisture is assessed. This study’s 

primary purpose was to install a moisture and temperature system to provide the required data for 

a model to estimate road weight constraints. Three sensors positioned at distances of 6 inches, 18 

inches, and 30 inches were used to measure the relative humidity. In addition, a comprehensive 

weather station was installed at the site for temperature observations. Fourteen days of continuous 

moisture measurements at 6 inches were generated for various regions (Figure 29). 

a b c 
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Figure 29: Example of a Continuous Moisture Measurement 

Grabe and Mahutka (2005) established via modeling and field measurements that the regional 

variation of soil stiffness and pavement roughness displayed the same statistical properties. In 

addition to the number of vehicle passes and their load characteristics, they discovered that the 

geographical variation influenced the pavement’s uniformity in soil stiffness. They determined 

that the variation in the foundation layers’ stiffness affected the pavement’s durability. 

Brand et al. (2013) performed a historical review of research about the effects of nonuniform 

foundations on the performance of pavements, particularly rigid pavements. They determined that 

“certain nonuniform support of concrete slabs may cause much larger tensile stresses than uniform 

support, especially when varied loading locations and curling circumstances, soft support along 

the pavement edge, and preexisting fractures are considered.” Several case studies illustrating the 

effect of nonuniform pavement foundations were also presented. 

White et al. (2016) did a comprehensive analysis of the uniformity of earthwork in Iowa and 

the efficacy of their current requirements in delivering a consistent end product. One of their results 

was that the variable moisture content contributed significantly to the lack of homogeneity of the 

foundation layer of the pavement. They suggested the following three approaches to enhance 

uniformity: 



31 

1. Enhance the current moisture and moisture-density specifications 

2. Develop Alternative DCP/LWD-based (strength/stiffness-based) QC/QA specifications 

3. Incorporate intelligent compaction (IC) measurements into QC/QA specifications 

Quoting from a comprehensive study performed by White et al. (2021), the following key 

challenges in terms of uniformity of foundation in general and moisture content in particular: 

1. Substantial spatial variability (nonuniformity) exists in newly constructed pavement 

foundations for the range of materials tested 

The overlying aggregate base layer will be nonuniform if the subgrade layer is nonuniform 

2. Limited geotechnical testing (covering less than 1% of a given work area) is used to accept 

the engineering support values of pavement foundations, resulting in low reliability 

3. Limited technology is available to help earthwork and paving contractors improve the field 

control of pavement foundation layers during construction 

4. Most methods for quality inspection testing do not qualify as direct mechanistic 

measurements 
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CHAPTER 3  ̶ LABORATORY METHODOLOGY 

3.1 Testing Program 

The experimental plan consisted of laboratory testing and small-scale testing. The flowchart 

of testing and analysis of each geomaterial is shown in Figure 30. As soon as the geomaterial 

arrived in the laboratory, it was processed, dried, and subjected to index tests such as particle size 

distribution (sieve analysis, ASTM 6913), Atterberg limits (ASTM D4318), and specific gravity 

(ASTM C127/128). These index results were used to classify the geomaterial according to the 

Unified Soil Classification System (USCS, ASTM D2487).  

 

Figure 30: Testing Flowchart 
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The next step consisted of the Proctor tests to obtain the optimum moisture content (OMC) and 

the material’s maximum dry density (MDD). The specimens prepared for this step and the 

subsequent laboratory testing were prepared in different sizes and with different compaction 

efforts depending on the texture of the geomaterial. The fine-grained soils and sandy materials 

were compacted per the Standard Proctor test energy (ASTM D698). The coarse-grained materials 

were compacted as per the Modified Proctor test energy (ASTM D1557). The specimens were 

prepared at longer lengths than those prescribed in the standard while maintaining the compaction 

energy to ensure rigorous strength and modulus test results. The fine-grained specimens were 

compacted in molds of 4 in. diameter by 8 in. height, and the coarse-grained specimens were 

compacted in 6 in. in diameter and 8.5 in. length. 

3.2 Material Selection 

Six geomaterials were selected as a baseline for verification of the outcomes of this study, as 

shown in Table 2; two fine-grained soils, both classified as CL, two sandy materials classified as 

SM and SP, and two coarse-grained materials classified as GW, were used in this study. These 

geomaterials provide a reasonable basis for materials with different characteristics in terms of their 

interaction with moisture, levels of suction, levels of moduli, and their use as compacted 

geomaterials. 

Table 2: Geomaterials Used 

Soil Type Classification Source 

Fine-Grained 
CL-1 Texas 

CL-2 MnROAD 

Sandy 
SM Texas 

SP MnROAD 

Coarse-Grained 
GW-1 Texas 

GW-2 Texas 
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3.3 Laboratory Measurements 

As soon as the OMC and MDD were established, a series of five specimens were prepared at 

the following five nominal moisture contents: OMC, OMC±10%×OMC (or OMC±1% if the OMC 

is less than 10%), and OMC±20%×OMC (or OMC±2% if the OMC is less than 10%). These 

specimens were demolded and then subjected to a series of moisture content tests, namely 

Dielectric Constant using a Percometer (Tex-144-E, https://www.humboldtmfg.com 

/datasheets/Percometer.pdf), Traditional Resistivity using a Wenner probe (AASHTO T 

358, https://www.screeningeagle.com/en/sales-flyers/SF-resipod), Complex Resistivity using the 

prototype being developed in this study. 

Since all these tests are non-destructive and rapid, each specimen was subjected to the free-

free resonant column (FFRC, ASTM C215) test to obtain the seismic modulus and then the 

unconfined compressive strength test (ASTM D2166). 

A series of five specimens were prepared in a separate mold used in conjunction with the newly 

suggested method for estimating the target modulus of LWD to obtain the lab LWD modulus. 

3.3.1 Dielectric Constant (DC) 

A Percometer, shown in Figure 31, measured each specimen’s dielectric constant (DC). The 

percometer emits a frequency of 40-50 MHz into the soil and then records the capacitance change 

between the probe and soil from the change in water content and ion polarization on grain surfaces. 

Five measurements on top of the specimens and five on the bottom were conducted and averaged 

to obtain the representative DC of each specimen. Four measurements followed around the 

sample’s top and bottom surface areas, and the fifth was recorded in the middle of the surface. 

https://www.screeningeagle.com/en/sales-flyers/SF-resipod
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Figure 31: Percometer used for Measuring Dielectric Constant 

3.3.2 Traditional Resistivity (TR) 

A Wenner probe developed for measuring concrete resistivity, as shown in Figure 32a, was 

used to measure each specimen’s resistivity. The probe operates at a frequency of 40 Hz, a current 

of 10 µ-amps to 50 µ-amps, and computes the resistivity in kohm×cm. Current is injected into the 

soil from the two outer electrodes, where the two inner electrodes measure the passing current. 

Five measurements were taken at 60-degree intervals around the diameter of the specimen. The 

representative resistivity was the average of the five readings. The TR meter was saturated on low-

resistivity soils as the instrument used its highest current setting and had voltages below its 

measurement threshold. A customized device with the same frequency and currents but a larger 
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voltage measurement range was developed (Figure 32b). After proper calibration, the two devices 

provided almost identical readings.  

 

Figure 32: (a) Traditional Wenner Array (b) Laboratory-Created Array 

3.3.2.1 Correction Factors 

The Wenner array functions on the expectation that current is being injected into a homogenous 

half-space (a large plane such as the ground). The voltage through the half-space is expected to 

decrease with distance; however, with the dimensions of the laboratory specimens, using a fixed 

probe spacing impacts the resistivity measurements. By using a finite-difference model, Cartesian 

coordinates, and a 50-mm node spacing, the geometric adjustment factors were determined to be 

2.74 for the 4 in. diameter specimens and 1.82 for the 6 in. diameter specimens. The obtained 

resistivity values are divided by these correction factors. 

3.3.3 Seismic Modulus (SM) 

After the two moisture tests, the seismic modulus of the specimen was found using the free-

free resonant column testing (per ASTM C215), as shown in Figure 33. An impulse is imparted to 

the specimen with a small hammer equipped with a load cell. The vibration of the signal within 

the specimen is measured with an accelerometer. Those two signals are transformed into the 

frequency domain to measure the resonant frequency of the specimen. The resonant frequency of 

a b 
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the specimen is determined from those measurements that can be readily converted to a seismic 

modulus. Nine measurements on each surface (top/bottom) were averaged to obtain the 

representative seismic modulus. 

 

Figure 33: Free-Free Resonant Column Testing for Seismic Modulus 

3.3.4 Unconfined Compressive Strength (UCS) 

Figure 34 demonstrates a clay specimen being tested using a Sigma 1 Automated Load Test 

System at a strain rate of 1% per minute. After the UCS tests were determined, each specimen’s 

moisture content was obtained via oven drying. 

3.3.5 Lightweight Deflectometer Modulus (LWD) 

The lightweight deflectometer modulus of each soil was obtained by preparing another set of 

specimens in a 6-in. by 8.5-in. mold provided by the LWD manufacturer, as shown in Figure 35. 

The diameter of the LWD plate measured 6 in. (150 mm), and the load applied was nominally 800 

lbs. (3535 N). The average LWD deflections were obtained from three consecutive drops after 

three conditioning LWD drops. The average deflections were then converted to moduli. 
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Figure 34: Unconfined Compressive Strength Testing 

 

Figure 35: Lightweight Deflectometer Testing 
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3.4 Complex Resistivity (CR) 

Complex Resistivity (CR), is a measurement of electrical impedance as a complex number that 

uses the same four-electrode geometries as the TR measurement in Section 3.3.2. Two outer 

electrodes inject current, and the inner electrodes measure voltage difference. Resistivity is a 

complex number that can be calculated by dividing voltage and current. The CR measurement is 

more stringent than TR in the four main conditions. 

1. The CR equipment allows measurement at up to ten frequencies ranging from 60 Hz to 40 

kHz. 

2. The CR equipment injects current at up to ten amperage levels ranging from 1 μA to 1 A. 

These current levels are fixed, not auto-ranged, as in the TR equipment.  

3. The magnitude and phase of the injected current and the voltage are directly measured to 

monitor possible electrode/material interaction complications.  

4. The frequency dependence of electrode and saturation polarization becomes an 

approximation to a diffusion equation model1 rather than the simpler Poisson’s equation1. 

Figure 36 shows the two complex resistivity prototypes. Figure 36a was the first laboratory 

prototype (version 6 electronics), and Figure 36b (version 8 electronics) was used in the last 6 

months of testing. Both functioned similarly, measuring numerous frequencies and currents with 

square or sine waves. The Version 6 device operated at too high of a current range to function on 

the coarse/dry bases. Version 8 had an improved analog-to-digital (A/D) convertor, a better 

dynamic range at lower currents on the voltage channels for the dry/coarse bases, and improved 

ruggedness/reliability while making access and maintenance easier. 

                                                 
1 Diffusion equation (∇2 V=K δV/δt) where V is voltage, K represents a spatial function of resistivity and polarization 

and t is the time. 
2 Poisson’s equation (∇2 V=f) where V is voltage and f represents a spatial function of resistivity. 
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Figure 36: Complex Resistivity Prototypes and Arrays 

Two arrays were made to meet laboratory compaction standards. The cradle array was used to 

test Proctor specimens by allowing them to sit on four solder-coated brass electrodes, as shown in 

Figures 37a, and 37b. With a larger electrode contact area and uniform support across the specimen 

surface, the more delicate and wet specimens performed better compared to the earlier design of 

the four-probe electrode in Figure 37c. The larger distributed electrodes required a separate 

geometric correction factor calculated by finite difference modeling. The two Wenner arrays 

(Figure 37c-d) were used to test large-scale specimens. The three arrays function the same. The 

measurements are taken with a phase-sensitive detector that multiplies the voltage and current 

signals measured by an in-phase sine-wave and a 90° delay sine-wave. Hardware multiplication 

using the in-phase or 90° delay square waves produces a real-time Fourier transform of the 

measured signal (real and imaginary). The imaginary value measures polarization, while the real 

value measures resistivity. This measurement rejects nonlinear distortion and noise more strongly 

than the simpler TR circuitry, which combines them into one resistivity value. The data collection 

procedure is as follows: 

1. The specimen is set on top of the brass electrodes and power button is switched on 

2. Desired frequency is selected, (starting frequency was set to 3) 

a b 
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3. The record and square wave are turned on 

4. Run through all currents, 0-9, then finish with 0 (typically .5 to 1 sec. between change) 

5. Turn square wave off, then the record switch, 

6. Change frequency and repeat from step 3 

 

 

  

Figure 37: (a-b) Cradle Array and (c-d) Wenner Arrays 

  

a b 

c e 

d 
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3.5 Large-Scale Measurements 

The small-scale tests were carried out in the laboratory by preparing 18-in. diameter by 24-in. 

height specimens constructed within a 35-gallon barrel, as shown in Figure 38. Five specimens at 

the five target moisture contents (OMC, OMC±10%×OMC or OMC±1% if the OMC is less than 

10%, and OMC±20%×OMC or OMC±2% if the OMC is less than 10%) were compacted and 

measured.  

 

Figure 38: Schematic Diagram of Large-Scale Test Specimen Set-up 

A concrete mixer (Figure 39) was used to prepare the materials to the desired moisture content. 

An adequate amount of dry geomaterial necessary to achieve the desired density for volume of a 

2-in. lift was placed in the mixer, and a precise amount of water was added to the soil with a water 

sprayer to ensure accurate moisture content. The moist material was then transferred into the 

container and compacted to the desired density with a concrete stamper. This process was repeated 

until a height of 12 in. was achieved. At that height, the moisture content measurements (with the 
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Percometer, traditional resistivity probe, and the complex resistivity probe) and LWD 

measurements were obtained at three separate locations. Each specimen was then built up to its 

final height of 24 in. using 2-in. lifts and tested using the three moisture probes and LWD. Soil 

samples were extracted at every 4 in. height to obtain oven-dry moisture contents. 

 

 

Figure 39: (a) Mixer and (b) Concrete Stamper with Barrel Used to Prepare Large Scale Specimens 

The laboratory measurements were taken at the sixth layer (12-in height) and the 12th layer 

(24-in height). Five readings of the dielectric constant, pictured in Figure 40a, are recorded and 

averaged—one reading in the middle and four between the barrel’s center and perimeter. The 

traditional resistivity is measured next. Five readings are recorded in the middle of the barrel and 

averaged, as shown in Figure 40b. Using numerical analysis, a correction factor is not necessary 

for the barrels. Next, the complex resistivity is recorded in the middle of the barrel, with a Wenner 

a b 
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array pictured in Figure 40c. Lastly, the LWD modulus, Figure 40d, is recorded. The average of 

three different positions is taken and averaged to find the corresponding LWD modulus. 

 

 

Figure 40: Large Scale Measurements (a) DC (b) TR (c) CR (d) LWD 

3.6 Normalization of Data 

Using the degree of saturation instead of moisture content is desirable. Since the determination 

of the degree of saturation requires an accurate measurement of the specific gravity of the 

materials, it was deemed impractical for this study. Instead, an alternative normalization process 

proposed in the NCHRP 10-84 was pursued. The ordinate (y-axis) parameters were normalized by 

dividing the given parameter at a given moisture content by the corresponding value at OMC. The 

abscissa (x-axis) was normalized using Equation 1. 

Normalized Moisture Content=
Actual Moisture Content-OMC

OMC
 (1) 

b 

c d 

a 
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CHAPTER 4  ̶ RESULTS OF LABORATORY MEASUREMENTS 

This section discusses the results from three diverse geomaterials in detail. The raw data from 

all tests on the six geomaterials are represented in the Appendix. Presented in Table 3 is a summary 

of the soil parameters of the six materials tested, including their Atterberg limits and gradations. 

Table 3: Summary of Index Properties 

Soil 
Atterberg 

Limits 

Constituents, % 

(dry sieve) 

Compaction 

Parameters 
Properties at OMC1 

Type Classification LL PI Gravel Sand Fines 
OMC1 

(%) 

MDD2 

(pcf) 
DC3 

R4 

(Kohm-

cm) 

SM5 

(ksi) 

UCS6 

(psi) 

Fine-

Grained 

CL-1 33 13 0.0 27.6 72.4 14.1 109.2 26.5 0.7 8.7 9.8 

CL-2 27 8 3.0 38.6 58.4 14.4 118.9 13.5 1.2 7.0 11.9 

Sandy 
SM No PI 0.0 83.2 16.8 9.5 118.0 14.2 2.1 6.6 5.5 

SP 20 2 17.7 79.9 9.1 9.8 130.6 21.0 3.0 32.4 22.8 

Coarse-

Grained 

GW-1 16 2 60.1 39.9 0.0 4.7 148.3 16.5 3.2 16.7 3.0 

GW-2 18 3 52.9 43.1 4.0 5.3 149.6 13.1 10.6 16.5 3.3 

1Optimum Moisture Content, 2Maximum Dry Density, 3Dielectric Constant, 4Traditional Resistivity, 5Seismic 

modulus, 6Unconfined Compressive Strength 

 

Figure 41 demonstrates the moisture density curves of the CL-1, SM, and GW-1 geomaterials. 

The CL-1 and SM soils were tested at more moisture contents than the five target moisture contents 

to understand better the testing scheme and anticipated trends of the dielectric constant, traditional 

resistivity, and complex resistivity. The GW-1 was tested only at the five nominal moisture 

contents. 

4.1 Dielectric Constant 

Presented in Figure 42 are the variations of the dielectric constants of the three geomaterials 

with moisture content. The error bar for each data point corresponds to the ±1 standard deviation 

bound to demonstrate the consistency of the test method at different moisture contents. A 

conclusive pattern cannot be observed for the SM and CL-1 materials. The GW-1 material was the 

most susceptible to moisture increases as its dielectric constants increased with moisture. Due to 
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the high variability, the dielectric constant data for the large-scale specimens are presented in the 

appendix. 

 

Figure 41: Moisture-Density Curve of CL-1, SM, and GW-1 

 

Figure 42: Dielectric Constant Data of CL-1, SM, and GW-1 
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4.2 Traditional Resistivity 

4.2.1 TR of Proctor Specimens 

Figure 43 shows the variations of the resistivity measurements with moisture content for the 

three materials. A consistent pattern is observed among the three materials but over different 

ranges. The resistivity change with moisture content is large at lower saturation and becomes 

nearly insensitive as saturation increases above OMC. This variability is higher for the GW 

material. The moisture-resistivity curve shape and higher variability for the larger aggregate are 

consistent with the expected volumetric decrease in double-layer conduction as the surface area 

decreases with grain size increase. 

 

Figure 43: Traditional Resistivity Data of CL-1, SM, and GW-1 

Figure 44 shows the variations of the normalized traditional resistivity of the geomaterials with 

normalized moisture content. The vertical line passing through zero indicates the optimum 

moisture content. The specimens with negative normalized moisture contents are dry of OMC, and 

the positive ones are wet of OMC. The solid line indicates the trend that all soils follow with some 
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anticipated dispersion. For specimens prepared dry of OMC, a rather steep decrease in the 

normalized resistivity with an increase in the normalized moisture content is observed. However, 

for the specimens prepared wet of OMC, the normalized resistivity is less sensitive to the change 

in the moisture content. This trend makes sense since, at moisture contents wet of OMC, the 

electrical properties of the water dominate the response. The data dispersion among different soils 

indicates the need for thorough laboratory calibration of the resistivity-moisture content 

relationship before field implementation. 

 

Figure 44: Normalized Traditional Resistivity Data of all Geomaterials 

4.2.2 TR of Large-Scale Specimens 

The variations of the traditional resistivity with moisture content for the three geomaterials are 

summarized in Figure 45. The moisture measurements were repeated at five points to document 

the variability of the results. The measurements made at 12 in. and 24 in. heights yielded similar 

results. The measurements were also repeatable as judged by the lengths of the error bars 

representing ±1 standard deviation. 
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The normalized resistivity of the measurements conducted in the large-scale specimens with 

moisture content is presented in Figure 46. Due to the similarity of the results from the 12-in. and 

24-in. heights, the averages of the two measurements are shown in the figure. The solid black curve 

is the lab measurements’ trend (Figure 44). That trendline represents the lab data quite well, 

indicating that the lab and large-scale specimen results follow the same trends as long as an 

appropriate calibration process is implemented. 

 

Figure 45: Traditional Resistivity Data of CL-1, SM, and GW-1 in Large Scale Specimens 
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Figure 46: Normalized Traditional Resistivity of Soils in Large-Scale Specimens 

To emphasize the importance of proper calibration, the measured resistivity’s for the six 

materials are shown in Figure 47. A systematic difference between the mold and barrel 

measurements can be observed that can be attributed to the differences in compaction method and 

energy, among several other factors that were not considered in the adjustment factors. 

Nevertheless, the rate of change in resistivity with moisture content is the same between the 

laboratory and field data. 

4.2.3 Impact of Specimen Size on TR 

Comparing the different sizes of the specimens was critical in understanding the impact of 

moisture on the different measurements. Since for all materials (except the two GW materials), 4 

in.-diameter and 6 in.-diameter specimens were prepared, the results from these two tests are 

reported below. As shown in Figure 48, the resistivity measurements adjusted for the geometry for 

the 6 in.-diameter specimens are close to corresponding values from the 4 in.-diameter specimens. 
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Some dispersion is noticed that may be contributed to the inevitable variation in moisture contents 

among specimens. 

4.3 Repeatability  

Five replicate specimens were made at three different moisture contents per material using the 

CL-1, SM, and GW-1 geomaterials to assess the repeatability of the moisture tests. The three 

moisture contents comprised OMC, OMC±20%×OMC for the clay, and OMC±2% for the sand 

and gravel. Table 4 shows the variability of the dielectric and resistivity measurements. The 

dielectric constant measurements showed a coefficient of variation between 10% and 32%, with a 

typical variability of about 20%. The coefficients of variation of the measurements with the 

traditional resistivity were 8.5% or less for all the specimens tested. Given the level of variability 

of the dielectric measurements, further analysis was not carried out in this report. The results are, 

however, documented in Appendix A. The coefficients of variation of the complex resistivity and 

phase change are shown at the 600 Hz frequency. The typical variability of the complex resistivity 

was under 20% but could range to a maximum of 26%. The phase changes showed a slightly higher 

variability with a maximum coefficient of variation of 28%. 
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Figure 47: Comparison of TR of Lab and Large-Scale Specimens (a) Clays (b) Sands (c) Gravels 
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Figure 48: Comparison of Resistivity Measurements from Different Specimen Sizes 

Table 4: Coefficient of Variation of Replicate Specimens 

Measurement Soil 
Dry OMC Wet 

Average Max Average Max Average Max 

Dielectric Constant 

CL-1 19.7 21.6 20.7 32.3 13.7 18.2 

SM 9.8 11.7 14.1 27.0 10.6 18.0 

GW-1 13.4 22.0 26.0 32.1 20.4 28.0 

Traditional Resistivity 

CL-1 3.2 4.9 4.7 7.0 3.7 5.0 

SM 2.4 4.3 4.2 7.7 5.0 6.0 

GW-1 6.0 7.3 4.9 8.5 5.1 5.8 

Complex Resistivity 

CL-1 17.8 20.5 13.9 15.5 15.5 15.8 

SM 15.9 16.3 11.4 11.9 7.8 8.6 

GW-1 14.4 15.9 9.4 13.2 6.0 6.2 

Complex Phase Change 

CL-1 8.6 11.9 12.0 13.4 22.0 25.7 

SM 14.2 16.9 13.3 14.8 17.0 18.7 

GW-1 23.8 28.1 25.1 28.2 13.7 16.6 

 

4.4 Complex Resistivity 

The frequency and current operating parameters must be carefully chosen to distinguish 

saturation polarization from electrode-surface interactions when designing a measuring system for 

moisture management using CR. Figure 49 displays CR readings for CL-2 specimens in the cradle 
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at four different moisture contents, seven frequencies labeled on the abscissa, and ten current levels 

at each frequency. The error bars represent one standard deviation estimation based on at least ten 

measurements at each current and include an uncertainty when the measured current deviates from 

the design current. Lower frequencies and low currents show high variation and low precision 

where electrode interactions are significant. Resistance magnitudes and resistance phase values 

with measurements impacted by electrode effects removed are depicted in Figures 50a and 50b, 

respectively. The upgraded version 8 electronics were used for these measurements. 

About 20 current and voltage measurements per frequency and multiple currents are saved to 

a CSV file. The averages and standard deviations of these currents and voltages are then read, 

computed, and estimated in post-processing software. This step also calculates the ratio of the real 

and imaginary electrode voltages to the real and imaginary driving current. The software needs a 

calibration factor for resistivity magnitude and phase, followed by electrode geometry and sample 

shape calibration factors. The errors indicated for resistivity and phase are computed using 

randomized perturbations to observed voltages and currents due to the nonlinearity and 

dependencies in the computation. When fixed ideal resistors are connected to the cradle or array 

electrodes, this same measurement procedure provides calibration constants. The following four 

major features in the measurements shown in Figure 49 are apparent: 

1. Although electrode polarization dominates measurements at low frequencies (60, 120 Hz: 

TR measurement domain), they exhibit consistent moisture and current dependency 

patterns. As we switch to a Wenner array with a reduced contact area, this electrode 

polarization reduces (higher current density). 
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2. There was an improvement in the measurement errors from version 6 to version 8 of the 

CR device; however, there is still error in the first few currents of each of the higher 

frequencies. 

3. The fraction of ions polarizing at the air-water interface, which rises as moisture content 

drops, is measured by the phase change with moisture and frequency. At 600 Hz and above 

frequencies, resistivity and phase values exhibit consistent and substantial variations in 

moisture content. In general, the resistivity decreases with frequency as moisture content 

rises, reflecting that ions in the fluid move farther at lower frequencies while the potential 

water path increases. As the moisture content of the same sample varies, phase value should 

be able to distinguish saturation variations more accurately than resistivity. It needs to be 

clarified how resistivity/phase will alter when the texture changes during compaction. 

4. By not being the highest while displaying the higher phase value anticipated for the lowest 

saturation, the blue curve at the lowest moisture content (11.4%) deviates from the 

expected resistivity pattern. The phase shifts in this specimen response happen less 

frequently than anticipated from published data on controlled samples. More significant 

scale deviations from uniformity are expected and likely cause the low-frequency phase 

irregularities at low moisture levels. Textural and gradation homogeneity is crucial in 

addition to moisture content. 

A study in progress is the simplification of the CR data to infer moisture-sensitive parameters. 

Comparing the full spectrum CR tests for samples of the GW-2 and CL-2, with high uncertainty 

values eliminated, in Figure 50 demonstrates how difficult it is to simplify. First, a low-frequency 

CR estimate, an uncertainty, and the slopes of normalized CR with frequency and current were 

utilized to summarize each resistivity and phase curve’s characteristics. This comprehensive 
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technique may be helpful in the lab or while making static diagnoses in the field; however, a more 

straightforward measurement and analysis are needed for field measurement in a continuous mode. 

 

  

Figure 49: Sample Measurement of CL-2 of (a) CR and (b) Phase at Several Moisture Contents (MCs) 
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Figure 50:  Large Scale Full Spectrum Tests of GW-2 and CL-2 of CR and Phase at Several Moisture Contents (MCs)
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A composite plot of the CL-1, SM, and GW-1 measurements of resistivity and phase slope 

with frequency is shown in Figure 51 for comparison with the TR measurements in Section 4.2. 

Figure 52a shows the normalized complex resistivity, and Figure 52b shows the normalized phase 

values normalized to OMC. Both of the repeatability. There is more variation in the CR 

measurements, but the curve shapes are consistent with the moisture-resistivity relations 

previously discussed. There is more variability in the CR measurements; however, there is a 

correlation between resistivity and phase slope within each material type at a particular moisture 

level, which is consistent with the expectation that gradation changes in compaction are as crucial 

as moisture level changes to the CR measurements. 

4.5 Seismic Modulus 

The variations of the seismic modulus with moisture content for the fine-grained and sandy 

geomaterials are presented in Figure 53. There was difficulty obtaining the seismic moduli of the 

gravelly specimens due to the length-to-diameter ratios of the specimens. For all geomaterials 

demonstrated, the modulus decreases significantly with an increase in moisture content. The two 

CL soils exhibited significantly different moduli, despite demonstrating similar index properties 

and MDDs. This pattern demonstrates the importance of modulus measurements. 

4.6 Unconfined Compressive Strength 

The variations of the unconfined compressive strength with moisture content for each of the 

six geomaterials are demonstrated in Figure 54. Again, similar clays demonstrate different 

strengths, as was the case for the seismic modulus measurements. 
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Figure 51: CR Data of CL-1, SM, and GW-1 (a) Resistivity (b) Phase-Change 
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Figure 52: Normalized CR Data of CL-1, SM, and GW-1 (a) Resistivity (b) Phase-Change 
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Figure 53: Seismic Modulus Data of Geomaterials 

 

Figure 54: Unconfined Compressive Strengths of Geomaterials 
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4.7 Lightweight Deflectometer Moduli 

The variations of the LWD modulus with moisture content for the six geomaterials using the 

special setup recommended for determining the target modulus are shown in Figure 55. The moduli 

of the sands tended to decrease as moisture increased. The height at which the large-scale 

specimens were tested played a factor in the measured moduli. The LWD moduli of both clays and 

the SP geomaterial followed similar patterns between the laboratory and large-scale specimens. 

The modulus of the SM had high variability at different heights. The modulus of the barrels for 

the gravels minimally changed or increased slightly. 
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Figure 55: Laboratory-Measured Lightweight Deflectometer Moduli of Geomaterials 
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CHAPTER 5  ̶ CONCLUSIONS AND RECOMMENDATIONS 

In this study, six geomaterials were compacted to standard/modified proctor specifications and 

subjected to laboratory measurements to study the variations in their electromagnetic and electric 

properties with moisture content. The relationships between the seismic modulus, unconfined 

compressive strength, and moisture content for the same geomaterials were also established. 

Large-scale replicate specimens were also compacted and subjected to numerous measurements. 

The following lessons were learned from completing these measurements: 

1. The complex resistivity showed promise in supplementing the information obtained from 

the traditional resistivity; however, work is still required to improve the hardware and 

technician-friendly software. 

a. Aside from moisture content, grain size and specimen homogeneity play a more 

significant role in measuring resistivity than previously expected. Future work 

could look at how important each feature holds on resistivity. 

2. The dielectric constants measured with a Percometer were less sensitive and more 

uncertain about the moisture content variations than the resistivity values measured with a 

Wenner probe. 

3. Traditional resistivity measurements were repeatable and consistent among different types 

of soils used in this study. Also, a good correlation was observed between the laboratory 

compacted specimens and corresponding measurements in a large-scale specimen of the 

same soil. 

4. The resistivity changes are less pronounced for the materials at moisture contents wet of 

OMC. 

5. The seismic modulus values were the most sensitive parameter to the moisture content for 

all materials. 
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6. The unconfined compressive strengths also changed significantly with the moisture 

contents wet of OMC and generally plateaued when the moisture contents were dry of 

OMC. 

7. The lightweight deflectometer modulus showed little to no correlation to moisture content. 

a. For many of the specimens, after the initial 3 drops, there was significant 

deformation in the vertical height of the specimens. 

8. The normalization scheme helps collapse the variations of the parameters with moisture 

content into a narrow band for easier comparison independent of the material type. 

5.1 Recommendations  

As DOTs begin and continue to use reclaimed asphalt pavements (RAP) and recycled concrete 

aggregate (RCA) in base and subbase mixes, the high polarizing nature of binder and calcium 

carbonate, found in RAP and RCA, respectively, is something that must be studied if resistivity is 

to be used in monitoring moisture. 

The grain size of the large base materials exhibited similar complex and traditional resistivity 

measurements to the finer-grained soils; however, due to the calcium carbonate found in the tested 

bases, complex resistivity polarization occurred frequently and coated the different arrays. The 

calcium carbonate coating created numerous anomalies requiring frequent cleaning of the contact 

electrodes. Also, during the summer of 2022, a rolling array was tested on a subbase and base 

containing different RAP and RCA percentages. The hydrophobic nature of the RAP caused 

enormous resistivities and strange polarization not expected nor measured within the laboratory 

setting. 
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APPENDIX A- COMPREHENSIVE DATASETS 

 

Figure A- 1: MD Curves of 4 in. Specimens and 6 in. Gravel Specimens 

 

Figure A- 2: Dielectric Constant of 4 in. Specimens and 6 in. Gravel Specimens 
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Figure A- 3: Traditional Resistivity of 4 in. Specimens and 6 in. Gravel Specimens 

 

Figure A- 4: Seismic Modulus of 4 in. Specimens and 6 in. Gravel Specimens 
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Figure A- 5: Dielectric Constant Measurement in Large Scale Specimen at 12 in. Height 

 

Figure A- 6: Dielectric Constant Measurement in Large Scale Specimen at 24 in. Height 
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Table A- 1: Coefficients of Variation of Measurements of Lab Specimens 

Measurement Soil 
Dry OMC Wet 

Average Max Average Max Average Max 

Seismic Modulus 

CL-1 5.4 8.5 3.5 4.0 3.9 9.1 

SM 4.0 7.6 2.8 4.7 8.1 12.9 

GW-1 Not Tested 13.8 19.9 Not Tested 

Unconfined 

Compressive 

Strength 

CL-1 7.5 

N/A* 

8.5 

N/A* 

8.1 

N/A* 
SM 25.6 24.9 7.9 

GW-1 
 Not 

Tested 
21.0 

Not 

Tested  

Lightweight 

Deflectometer 

CL-1 1.6 3.3 0.4 0.7 2.2 6.0 

SM 1.1 1.7 3.0 5.5 3.8 7.3 

GW-1 3.0 5.6 1.4 2.3 1.9 4.3 

* Not applicable since only one test can be done per specimen 

Table A- 2: Coefficients of Variation for Measurements on Large Scale Specimens at 12 in. Height 

Measurement Soil 
Dry OMC Wet 

Average Max Average Max Average Max 

Lightweight Deflectometer 

CL-1 6.9 14.0 6.4 14.3 4.2 6.3 

SM 9.7 10.3 9.9 16.3 10.5 16.9 

GW-1 7.1 12.7 5.5 13.9 7.8 10.0 

Dielectric Constant 

CL-1 7.1 10.5 7.4 10.1 18.0 26.4 

SM 5.0 7.0 7.2 7.9 6.5 12.7 

GW-1 17.4 29.8 20.8 31.8 24.7 41.1 

Traditional Resistivity 

CL-1 3.5 4.5 5.3 7.4 6.6 10.2 

SM 1.0 2.1 2.3 4.3 3.1 4.0 

GW-1 4.8 5.7 6.7 10.0 7.2 9.1 

Table A- 3: Coefficients of Variation for Measurements on Large Scale Specimens at 24 in. Height 

Measurement Soil 
Dry OMC Wet 

Average Max Average Max Average Max 

Lightweight Deflectometer 

CL-1 8.6 18.8 5.1 9.2 3.4 5.5 

SM 7.3 15.9 13.7 18.6 8.2 15.0 

GW-1 4.4 8.3 6.8 14.0 7.4 14.6 

Dielectric Constant 

CL-1 4.6 8.9 11.1 14.1 4.9 10.0 

SM 7.5 7.6 6.3 8.5 4.7 6.7 

GW-1 7.0 10.1 17.1 19.6 29.8 43.9 

Traditional Resistivity 

CL-1 3.3 3.6 3.2 6.3 5.6 8.0 

SM 0.9 1.8 1.8 3.9 2.3 2.8 

GW-1 4.1 5.5 4.9 7.1 8.5 10.2 
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