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ABSTRACT 

The emergence and rise in popularity of low-cost sensors for atmospheric observation are 

setting a new precedent in identifying emission hotspots and providing high-resolution 

spatial and temporal data. Furthermore, low-cost sensors are becoming popular among 

institutions and the public, allowing community scientists to become more involved in air 

quality monitoring. However, concerns about the accuracy and precision of low-cost sensors 

have been questioned. Most recent research has focused on the utility of real-time monitoring 

and calibration requirements for these sensors. A low-cost monitoring project has deployed 

sensors in the El Paso del Norte region in low and high annual average daily traffic (AADT), 

school, and industrial zones. A calibration equation was created for each sensor during a two-

week deployment next to a federal monitoring station; the low-cost sensors showed a high 

coefficient of determination (R2) of >0.9 for PM2.5 between low-cost sensors and 

monitoring stations. During the two months that the sensors were in the field, PM2.5 values 

had a higher concentration in the high AADT zone and higher concentrations in the low 

AADT zones in Cd. Juarez. The PM values recorded at each site were utilized in the land use 

regression model to find variables that significantly affected PM concentration. While traffic 

variables showed an adverse effect on PM, PM concentration would increase per mile 

decrease to a traffic source; geographic data showed an increase in PM per unit increase in 

population at a given 500 m buffer zone.  
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CHAPTER 1: INTRODUCTION 

1.1. INTRODUCTION 

Particulate matter comes from many sources and poses a significant health risk.  For 

example, wind erosion is a notable environmental factor from natural environments that causes an 

increase in dust emissions and produces severe particulate air pollution [1], [2].  Wind erosion is 

significant in highly arid climates such as The El Paso Del Norte Region (PdN), which 

encompasses the cities of El Paso, Texas, and Cd. Juarez, Chihuahua [3].  These communities also 

face air quality issues from burgeoning growth and industrialization, which further pressure local 

governments to protect their residents’ respiratory health.  This multifaceted rapid decrease in air 

quality is due to an increase in aeolian processes over the last decades, which are a direct response 

to environmental dust stresses, global climate change, and other anthropogenic changes [4].  In 

addition, an increase in urban sprawl has worsened road conditions (paved or unpaved) and caused 

elevated traffic levels, influencing fine and coarse PM levels [5].  

 El Paso’s complex topography plays a pivotal role in air pollution.  For example, El Paso 

shares an air basin encapsulated by El Paso’s Franklin Mountains, Sierra de Juarez, and Dona Ana 

County.  Environmental factors such as the Rio Grande River and the expansive mountain ranges 

are defining features of the air basin, which greatly influence wind patterns across the sister cities 

of El Paso and Cd. Juarez.  Since the mid-1990, the US and Mexico have cooperated in assessing 

many of the air quality problems in the region [6].  The PdN has been a large area of interest due 

to the shared air shed between El Paso and Cd. Juarez.  The border cities have primarily been of 

interest due to their unique environment, increased vehicular crossing, and rapid expansion.  

The rapid urbanization of both El Paso and Cd. Juarez has created many environmental 

issues, and public infrastructure is unable to keep-up, causing an increase in comorbidities for 

residents.  Mass migration and inequality issues have hindered efforts to address these concerns.  

Thus, although rapid urbanization has created a global manufacturing hub, it has also led to a rapid 

deterioration in the air quality within the PdN air basin. Current federal monitoring stations are not 
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enough to capture every change and hotspot within a city, as their range is limited to their fixed 

location, sparking global interest in equipment lower in cost and readily available.  

Low-cost sensors have the potential to dictate when and where air pollution monitoring can 

be conducted. Recent technological advancements have allowed the emergence of low-cost 

monitoring sensors (≤ $500), which provide a large spatial and temporal resolution due to their 

compact size and availability to the public. As a result, low-cost sensors have gained traction over 

the past few years from the academic and public sectors to involve citizens in air monitoring and 

access areas that could benefit from having a reference station.  

This thesis assesses the viability of a low-cost monitoring network and how it can help 

supplement data from reference stations. Currently, reference stations have limited spatial and 

temporal variability. As a result, they may not be able to capture region-specific pollutant events; 

as such, a low-cost network could help provide a greater degree of variability and be used to access 

areas that do not have access to reference stations. Furthermore, regulatory monitoring stations are 

costly to introduce and maintain, whereas a low-cost sensor is quick to deploy, and maintenance 

cost is minimal. While several environmental issues stem from rapid, unsustainable 

industrialization, this thesis will solely concentrate on its effects on air pollution monitoring.  Air 

pollution will be assessed through the low-cost sensor network and evaluated with a Texas 

Commission on Environmental Quality (TCEQ) monitoring station.  

 

1.2.  PROBLEM STATEMENT 

Atmospheric contamination, especially particulate matter (PM), is a well-established 

environmental health risk factor[7], [8].  For instance, long- and short-term exposure to PM has 

been shown to increase the risks of cardiovascular and respiratory diseases, further aggravating 

comorbidities and causing mortality rates to rise [9]–[12].   

Exposure assessment of PM2.5 (particles with an aerodynamic diameter of 2.5 µm) has 

relied mainly on regulatory monitoring stations, which state and local agencies maintain.  For 
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example, the Texas Commission on Environmental Equality (TCEQ) maintains monitoring 

stations in the El Paso del Norte Region.  The operations of these continuous ambient monitoring 

stations (CAMS) have utilized high-quality air monitoring instruments and followed a 

standardized data quality assurance procedure that provides PM2.5 data of a “gold-standard” 

quality.  However, CAMs stations are sparse within a city primarily due to their high operating 

costs and strict quality measures.  Therefore, the sparsity of these monitoring stations limits a city’s 

ability to accurately reflect PM concentrations due to the high temporal variation of PM.  The 

monitoring scarcity also prevents models and exposure estimates from accurately reflecting air 

pollution within a given area [13].  Therefore, low-cost sensors can provide a more detailed 

overview of a city instead of a small section.  

This research attempts to fill in the gaps of the CAMs station by creating a network of 

community monitors that could complement regulatory monitors.  Through community 

monitoring, exposure models can further supplement monitoring stations and encompass a larger 

spatiotemporal region.  In addition, these low-cost sensors could be used with federal monitoring 

sites, allowing for more cohesive exposure analysis.  

 

1.3. OBJECTIVES 

This research attempts to create a land-use regression model (LUR) based on PM patterns 

observed by a set of low-cost PM sensors in the El Paso del Norte Region.  Environmental 

characteristics influencing PM concentrations are used to find the pollutant’s dispersion and 

intensity over a given area.  The land use regression model uses a network of monitors to develop 

a stochastic model using predictor variables such as roads, green spaces, and population [14]. 

 

The tasks of this research include:  

1.) Comparing low-cost sensors with Federal Reference Method/ Federal Equivalent 

Methods (FRM/FEM) monitors at a given CAMs station. 
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2.) Deploying low-cost sensors at predetermined locations to create a community network. 

3.) Gathering Land Use Regression Variables 

4.) Correcting and evaluating data for the use of LUR modeling.  

 

1.4. SIGNIFICANCE OF THE WORK 

The deployment of low-cost sensors around the community will more accurately track 

exposure concentrations to PM and improve models that previously only utilized federal 

monitoring stations.  The LUR model will also use a large volume of data gathered from the low-

cost sensor and open data sources to give a better exposure assessment of a given community.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 AIR POLLUTION IN EL PASO DEL NORTE REGION 

Exposure to airborne pollutants is a severe cause of worldwide concern for the health of 

the communities that reside within and surrounding major urban centers.  Epidemiological studies 

have shown a relationship between airborne pollutants and respiratory and cardiovascular disease 

increase in sensitive populations like the elderly and children with pre-existing respiratory disease 

[15], [16].  Air pollution poses an increased risk to several populations, thus sparking a growing 

interest in air quality monitoring and assessment.  Evidence has indicated that the border regions 

tends to experience higher levels of airborne particulate matter, mainly PM10 and PM2.5 [3], [17], 

[18]. 

The El Paso Del Norte Region (the Pass of the North) encompasses Texas – New Mexico 

– Chihuahua region; more importantly, it is the location of two border cities, Cd. Juarez on the 

south of the Rio Grande and El Paso, Texas, on the opposite side of the river [19].  These sister 

cities are monitored by different entities, including the City of El Paso, TCEQ, the New Mexico 

Environment Department (NMED), and the Cd. Juarez Ecology and Civil Protection Department 

(DGEPC).  These departments are responsible for managing several monitoring systems located 

throughout the region.  The criteria air pollutants (as set by the NAAQS; ground-level ozone, lead, 

carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter) that are mainly 

monitored are particulate matter (PM), including particles of less than 2.5 µm in aerodynamic 

diameter (PM2.5), and 10 µm for PM10, which have been seen to pose the highest public health risk.  

Critically, El Paso has also been designated as nonattainment for PM10 according to  the U.S. 

National Ambient Air Quality Standards (NAAQS). 

The US-Mexico border is vital for cross-border commerce, immigration, and travel.  US 

goods and services trade with Mexico has totaled an estimated 677.3 billion dollars in exports and 

imports, leading to an increase in air contaminants due to vehicular fleets coming and going from 

the border [20], [21].  
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The economic growth in these sister cities has led to higher populations and has a direct 

impact on an increase in vehicular emissions, with nearly 1,200,000 passenger vehicles crossing 

through the Bridge of the America’s port of entry every month [22], [23].  As a result, 

transportation, including private and commercial vehicles, became the primary source of local 

urban pollution, producing oxides, hydrocarbons, carbon monoxide, and other critical 

contaminants [24].  This issue is aggravated by differing policies between the two countries, 

allowing older and ill-maintained vehicles to traverse the cities [18]. 

The North American Free Trade Agreement (NAFTA) allowed trucking to become a 

significant industry and source of commerce in El Paso and Cd. Juarez, with nearly 50,000 truck 

crossings every month at the Ysleta port of entry [23].  It has caused an increase in transportation 

crossing the border, creating more significant queuing times and worsening air quality as large 

diesel trucks frequently idle for extended periods.  In the US, the transportation industry accounts 

for 27% of greenhouse gases [25].  Railyards and Railroads also play a significant role in 

commerce within the PdN, moving 32 % of goods within the US; however, they only account for 

6% of freight-related greenhouse gas emissions [25].  

Besides vehicular emissions from the border, El Paso and Cd. Juarez is home to large-scale 

polluting facilities such as Vinton Steel LLC, Western Refining Company LCC, the US Dept of 

the Army, and Boeing Company, to name a few of the point sources in El Paso [26].  Factories, 

including power plants and other production factories, make up 58% of air pollution annually [27].  

Due to the high level of industrial activities, El Paso has been ranked 4th out of 15th mid-size metros 

and 19th out of more than 300 cities with poor air quality [28].  

Global aviation (domestic and international; passenger and freight) account for 1.9% of all 

greenhouse emissions [29].  Aircraft operations from the El Paso International Airport and Ft. Bliss 

accounted for 8,110 activities for a given month in 2021, with 52 daily departures, 174,023 

enplaning, and 160,438 people deplaning monthly [30].  Passenger growth has continued, with an 

increase in flight activities, up to a 99.2% of aircraft activities as reported before the COVID-19 

pandemic [30].   
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Fort Bliss is one of the largest military bases in the US, accounting for 1,500 square miles 

of restricted air space used for military aircraft operations, missile testing, and artillery training. 

PM emissions generated on base come from many different sources, such as short-term dust from 

mother vehicle disturbance of the desert floor and military operations such as burn pits, engine 

idling, aircraft taxing, and munition waste, to name a few [31]. As a result, the US military is a 

significant contributor to climate change, with 1212 million metric tons of greenhouse gases 

emitted from 2001-2017 [32]. 

El Paso is also subjected to high aeolian activities, which decrease air quality over the air 

shed due to the region’s high aridity.  The continuous disturbance of anthropogenic land can have 

dire consequences, such as increased dust deflation and dust emission from vulnerable 

environments, e.g., arid and semi-arid environments [33], [34].  Furthermore, human activity has 

disrupted and increased dust emissions from natural sources such as ephemeral lakes, floodplains, 

and playas [35]. The increase in land use for residential and commercial expansion severely 

degrades environments, causing an increase in the aeolian process and directly worsening air 

quality conditions in many parts of the region.  

During the winter, atmospheric stagnation is marked by stable air masses and low wind 

speeds throughout the PdN [3].  In the late fall through winter, the heating and burning of different 

biomasses, especially in the outskirt regions in El Paso and Cd. Juarez, have been high contributors 

to overall PM concentrations in the PdN.  The overall buildup of pollutants is often a result of the 

calm conditions, which further worsen during evenings and early mornings due to the formation 

of radiation inversions [3].  

Even though the US-Mexico border creates a physical separation between the two 

countries, it also highlights significant disparities in living standards between the two cities.  These 

disparities are evident in the different levels of regulation and control of air pollutants for the sister 

cities.  While it is clear that Mexico federal and state agencies are committed to preserving and 

maintaining air quality within its regions, they lag behind US environmental and regulatory 

agencies.  As a result, the El Paso and Cd. Juarez airshed is impacted by trans-border pollutant 
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flux[3], [6].  Figure 1 shows The University of Texas at El Paso (UTEP) and Cd. Juarez “Las 

Colonias” is affected by trans-border air pollutant flux.  

 

Figure 1: Pollutant over El Paso and Cd. Juarez 

 

The rapid growth of El Paso and Cd. Juarez has spurred a need for air quality exposure and 

monitoring.  Due to the differing spatial-temporal trends of pollutants, centralized monitoring 

stations are insufficient to provide a thorough exposure assessment [36], [37].  The current TCEQ 

nonattainment status for criteria pollutants has put El Paso in the spotlight, highlighting the need 

to fill the gaps in monitoring air pollutants. 

 

2.1.1 PARTICULATE MATTER 

Exposure to air pollution is estimated to cause millions of deaths yearly; it is now thought 

that air pollution is on par with deaths caused by other health risks such as an unhealthy diet and 

smoking [38], [39].  In addition, particulate matter has been the cause of over 800,000 premature 

deaths globally and is ranked as the 13th leading cause of mortality worldwide [39]–[41] 

Particulate matter or particle pollution refers to either solid or liquid droplets suspended in 

the air [42], [43].  Some particle pollution includes dust, dirt, soot, smoke, and water droplets; 
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some particles are large enough to be seen with the naked eye, such as smoke in the air, and some 

are so minuscule it is impossible to see [39], [44].  These particulates comprise acids, organic 

chemicals, metals, and soils [41], [43].  The most notable PM includes PM10 and PM2.5.  

Particulate matter is clearly defined by its aerodynamic equivalent diameter (AED) [42], 

[45].  PM10 are considered inhalable particles with an aerodynamic diameter of 10 µm and smaller, 

and PM2.5  are considered fine inhalable particles with an aerodynamic diameter of 2.5 µm.  Figure 

2 shows the size distribution for PM10 and PM2.5, and it shows the AED in relation to human hair 

and a grain of sand where PM2.5 is substantially smaller than a strand of hair.  

 

 
Figure 2: Size Distribution of PM2.5 and PM10  

 

Due to its size and proportionality, there are many health concerns regarding the particulate 

matter. For example, the larger PM10 can cause eye, nose, and throat irritation because of its 

increased size. On the other hand, PM2.5 is more dangerous due to its smaller size, as these 

particulates can deposit into deeper regions of the lungs and diffuse into the bloodstream [46].  
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Current research has shown increased morbidity and mortality related to PM exposure [7], [47]–

[52].  

Respiratory deposition is a significant concern for PM, as the hazard is determined based 

on the chemical composition and site where the particle deposits in the respiratory tract [42].  

Respiratory deposition goes through three stages, as explained by [42].  First, deposition happens 

in the nasopharyngeal region, where the air is inhaled, warmed, and enters the body.  Second, the 

process occurs in the tracheobronchial area, where the particulates continue their path to the 

bronchioles.  Finally, it is diffused into the pulmonary and alveolar regions.  Deposited particulates 

have severe adverse health effects, such as premature death in people with pre-existing lung or 

heart disease, nonfatal heart attacks, arrhythmia, aggravated asthma, coughing, or difficulty 

breathing [44].  Apart from health, PM causes several environmental effects, such as visibility 

impairment, acidification of waterways, nutrient depletion, and habitat destruction.  

To control or mitigate the harmful effects of PM, the US EPA has been setting and 

reviewing standards for PM pollution.  The enactment of the Clean Air Act in 1970 required the 

EPA to set NAAQS for six criteria pollutants where the clean air act has defined primary and 

secondary standards.  Primary standards provide health protection to sensitive populations such as 

asthmatics, children, and the elderly; the secondary standard protects the public’s welfare [53].  

Table 1 shows the primary and secondary standards for PM2.5 and PM10.  
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Table 1: NAAQS Table for PM2.5 and PM10 

Particulate 

Pollution 

(PM) 

PM2.5 

Primary 1 year 12 µg/m3 
The annual mean 

averaged over 3 years 

Secondary 1 year 15 µg/m3 
The annual mean 

averaged over 3 years 

Primary & 

Secondary 
24 hours 35 µg/m3 

98th percentile averaged 

over 3 years 

PM10 

Primary & 

Secondary 
24 hours 150 µg/m3 

Not to be exceeded 

more than once per year 

on average over 3 years 

 

The EPA enforces these standards through state implantation plan (SIP) requirements.  

States are required to control air pollution from emission sources, and each state is required to 

handle air pollution within its region.  The EPA will work with the conditions and designate an 

area based on the air quality data from monitors and designate an area based on whether it meets 

the standard.  The PdN has not met this criterion for PM10 as of 2022 but has been within limits 

for PM2.5.  The attainment status for PM2.5 and PM10 for the El Paso area can be seen in Table 2.  

 

Table 2: El Paso Area: Attainment Status for PM2.5 and PM10 

PM10 150 µg/m3 24-hour Moderate Nonattainment 

PM2.5 

12 µg/m3  

(2012 standard) 
Annual Unclassifiable/Attainment 

15 µg/m3 

(1997 Standard) 
Annual Unclassifiable/Attainment 

35 µg/m3 24-hour Unclassifiable/Attainment 



12 

2.2 NEAR-ROAD COMMUNITY EXPOSURES 

More than 45 million Americans are living, working, or attending school within 300 feet 

of a major road, airport, or railroad [54], which is known to cause harsh consequences, such as 

higher rates of asthma, cardiovascular disease, impaired lung development, and premature death 

in children [38], [41], [54].  In addition, previous literature found a high prevalence of 10-year-old 

children who live near roads and develop asthma or wheezing [41].  These health risks are a 

significant concern for Americans living near heavily transited roads.  

The Environmental Protection Agency (EPA) has worked tirelessly to reduce vehicular 

emissions near roadways over the past decades.  The EPA has established and implemented 

stringent emission standards and fuel requirements, reducing emissions from newer cars.  The EPA 

also started the Near-Road (monitoring) network as part of the 2010 NAAQS review [55], leading 

to more near-road NO2, CO, and PM data being readily available.  

Lal [55] assessed the near-road monitoring network and non-near-road monitoring in the 

continental US using observational data from 2017 and 2018.  It was found that PM2.5 

concentrations between near-road and non-near-road had a difference of 0.50 µg/m3.  Furthermore, 

61% (44 out of 72 sites) of the near-road sites had a higher 2-year average of PM2.5 concentration 

than non-near-road sites.  However, Lal attributed PM2.5 variations, regardless of its distance to 

roads.   

It was seen that the near-road sites had a higher PM2.5 average than the primary standard 

of 12 µg/m3.  It was also found that the annual average daily traffic (AADT) and the Fleet-

Equivalent AADT (FE-AADT) had a positive and statistically significant correlation (α= 0.05) for 

NO2 and CO, but this was observed as a weaker and not statistically considerable parameter for 

PM2.5.  

Traffic-related air pollution (TRAP) can vary spatially and temporally, especially in the 

PdN.  For example, the rapid urbanization and industrialization in El Paso and Cd. Juarez led to a 

rapid deterioration of air quality.  However, due to cost and maintenance, the city does not have 
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enough federal regulatory monitors, causing inconsistent and incomplete exposure analysis 

throughout the region.  Furthermore, the insufficient emission inventory data from Cd. Juarez limit 

analysis and exposure assessments; this is especially important due to pollutant flux over the 

border, affecting both cities 

  Finally, due to differences in international policy and overall funding, it is challenging to 

accomplish and enforce air pollution regulations between Mexico and the United States.  Creating 

a demand for affordable monitoring would fill the gaps in conventional tracking by providing a 

larger spatial-temporal view of a region.  This approach would also help develop quicker 

assessments of criteria pollutants and assist in decision-making when establishing monitoring 

stations in higher-risk areas.   

 

2.3 LOW-COST SENSORS 

Technological advancements have led to the emergence of relatively new technology, low-

cost air quality sensors that measure specific air pollutants and other gaseous pollutants.  These 

sensors aim to be user-friendly, compact, and, more importantly, affordable than other regulatory 

equipment.  In addition, these low-cost sensors can provide observations at a high spatial resolution 

in real-time, offer the opportunity to expand on the limitations of regulatory monitoring stations, 

and help involve the community with community air monitoring.  However, there is concern about 

the quality of the instrument and reliability of the data being generated.  

Air quality in the United States has been measured using strict measures set by the US 

Environmental Protection Agency through equipment that implements and follows the federal 

reference methods (FRM) or federal equivalent method (FEM) [56]–[58].  An instrument 

designated as FRM indicates that it has been developed to a clear and defined standard for a 

specific pollutant.  Furthermore, an instrument commissioned by FRM or FEM has completed 

rigorous testing and analysis and can be used to monitor for criteria pollutants in compliance with 

NAAQS standards.   



14 

The EPA has continued to evolve in its approach to monitoring ambient air pollution, 

transitioning from the philosophy of defining methods and reference methods to adding equivalent 

methods, allowing flexibility in monitoring and the ability to upgrade.  Low-cost sensors, in their 

current state, cannot operate as stand-alone regulatory monitoring stations; however, they can play 

a vital supporting role when integrated with other monitors.  These sensors also offer additional 

avenues to redefine spatiotemporal characterization at different levels [57].  

There is a worldwide upward trend in adopting low-cost sensors, leading to an increase in 

air quality data collection beyond what is currently provided by federal reference stations.  

However, low-cost sensors do not operate or obtain the same level of accuracy as other methods, 

often putting the quality and validity of the sensor’s data in question.  On the other hand, Snyder 

et al.[59] described how it is not vital for the sensors to obtain the same level of accuracy as other 

FRM/FEM monitoring systems.  Low-cost sensors should not serve as individual stations alone; 

instead, they should be used to provide a preliminary analysis of a given area and evaluate current 

trends within their deployment zone.  

Low-cost sensors supplement routine ambient monitoring networks, further enhancing 

regulatory monitoring and benefiting different sectors.  For example, these sensors can help 

improve source compliance monitoring; sensors can be utilized at the source location or facility, 

assisting industries in monitoring emissions and improving quality of life [59]. In addition, urban 

air pollution exposes the public to dangerous toxins, decreasing the quality of life. Therefore, these 

low-cost sensors provide an avenue for community monitoring, where the public can monitor their 

exposure.  

In conclusion, federal, state, and local agencies must create guidelines for using sensors 

and interpreting data to prevent data quality and interpretation challenges [59].  Currently, the EPA 

has created resources and is working to facilitate the use of low-cost sensors.  
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2.3.1 LOW-COST SENSOR OPERATING CONCERNS 

There is no doubt that low-cost sensors enable higher spatial-temporal and spatially dense 

measurements for PM compared to traditional reference monitoring stations, which have limited 

spatial and temporal resolution.  Low-cost sensors have allowed for more excellent monitoring 

due to their affordable price compared to a regulatory monitoring station’s startup and upkeep 

costs.  They have been widely used in low-middle-income countries and regions with few 

regulatory monitoring stations.  However, the biggest challenge for low-cost sensors is their data’s 

reliability, accuracy, and quality.  Users may be alarmed when their low-cost units show higher 

peaks than regulatory stations.  Alternatively, low-cost units can cause a false sense of security 

with lower values than regulatory stations, driving users to believe that their air quality is of better 

quality when it is not.  

Most commercially available low-cost PM sensors use light-scattering as their principal 

mechanism [60].  Light scattering in these sensors functions primarily off the Rayleigh, Mie, or 

geometric scattering [60]–[63].  Where the Rayleigh scattering technique refers to the scattering 

of light off of air molecules, the Mie scattering is the scattering of electromagnetic waves by a 

spherical medium [42], [45], [62], [64].  Like other low-cost sensors, PurpleAir sensors use light 

scattering and do not measure individual particle scattering, but the overall scattering of the 

particles at a given volume [60].  

Low-cost sensors are calibrated before being delivered by the manufacturer.  Sensor 

calibration is relatively easy.  The US EPA recommends collocation for low-cost units.  

Collocation is where the low-cost sensor is deployed next to a regulatory monitor (FRM/FEM), 

and they are operated over a specific set of time.  Thus, the regulatory monitor and low-cost sensor 

are exposed to the same environmental conditions.  This period of collocation is essential to 

determine the accuracy and validity of the low-cost sensor.  

Many environmental factors can affect the accuracy of these sensors.  The US EPA 

recommends considering the seasonal trends of the pollutant that will be measured.  Extreme 
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temperatures and relative humidity can also affect sensor readings [65]–[67].  Once the data has 

been collected, it is reviewed for outliers, expected patterns, interferences, and drift or shift.  At 

this point, the information is then compared to the regulatory station.  The US EPA suggests 

comparing the data by plotting a correlation graph and looking at the R2 value to determine the 

agreement between the low-cost sensor and regulatory monitor.  

The particle size distribution and chemical composition are well-known for low-cost 

sensors, especially in PA-II devices [68]. However, the most recent research on the PA-II sensor 

and low-cost sensors using light scattering as their primary operating system shows that relative 

humidity can alter the hygroscopicity of aerosols, affecting light scattering and creating a bias 

within the sensor [66], [68].  As such, the low-cost sensors are highly subjective to environmental 

factors and can cause discrepancies in data. In addition, further concerns arise over the long-term 

use and life of the device.   

 

2.3.2 LOW-COST SENSOR PERFORMANCE  

Low-cost sensors have become widely popular and have caused a paradigm shift away 

from traditional air pollutant monitoring stations.  As a result, many review articles have addressed 

low-cost sensors for use in traditional air quality monitoring, focusing on an emerging technology 

or providing an overview of low-cost sensors’ applications.  In response, many studies have 

questioned the validity of the data quality provided by these sensors; however, a universal solution 

for sensor data quality has not been provided due to the variability in sensors and use.  

It is vital to understand the main goals of the field sensor’s data validation to understand 

its overall performance and the effect on data quality.  The data validation goals are to compare 

inter-sensor differences, validate the consistency of high exposure readings, compare 

concentrations from the low-cost sensor to other higher-grade instruments, and estimate particle 

mass conversion coefficients to be various indoor and outdoor indoor microenvironments [69].  
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Furthermore, understanding the operating ranges and abilities of the sensor gives an overview of 

the sensor’s performance over time.  

Moreover, low-cost sensors are also susceptible to environmental conditions, where 

different environmental settings and pollutant attributes could affect the R2 between low-cost 

sensors and reference stations [70].  Wang [71] studied the effect of environmental factors on low-

cost sensors by using an environmental chamber to examine the environmental factors that have 

the most effect on the sensors.  Temperature was found to have a minimal impact on the sensor’s 

performance as opposed to relative humidity (RH) because, theoretically, light scattering and 

absorption are independent of temperature [64], [71].  While RH and the particle composition had 

a high impact on the sensors, this was likely due to RH affecting particle size, as demonstrated 

when levels of RH were increased from 20% to 90%.  Other studies have found that different 

particles, such as saline spray or cigarette smoke, significantly affect light scattering.  However, 

there is not enough information to conclude how different particles from arid environments, coal 

dust, or road emissions affect a sensor’s viability and performance [72]–[75]. 

Field conditions can pose discrepancies and produce varying results, leading to 

unpredictability in the sensor’s data and the inability to recreate specific scenarios for data quality 

assurance [76].  In a study by Tryner [76] evaluated the low-cost sensor developed by PurpleAir 

in a laboratory setting.  PM2.5 mass concentrations from the low-cost sensor were compared with 

those of a tapered element oscillating microbalance (TEOM) in an aerosol chamber.  This 

comparison created a calibration equation that could be utilized when the sensors were deployed 

in an environmental setting. Tryner [76] used the National Institute of Standards and Technology 

(NIST) urban PM concentration to compare the values recorded by the TEOM and PA-II-SD. It 

was found that the channels “PM2.5 CF =1” and “PM2.5 ATM” at concentrations below 30 µg/m3 

values were equal to the TEOM. 

In contrast, concentrations higher than 30 µg/m3 where “PM2.5 CF =1” did not increase 

linearly with the concentrations recorded by the TEOM.  The PurpleAir sensors tended to 

underestimate the concentrations reported by the TEOM.  The results of the study suggested that 
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the aerosol used to calibrate the PurpleAir devices is like that of the NIST Urban PM; however, 

this can cause discrepancies in real-world applications, where PM may not be of the same 

geometric mean (0.0042 µg), and a geometric standard (2.05).  

In contrast, many other studies have shown how PurpleAir sensors tend to overestimate 

concentrations compared to other federal monitoring sites [77]–[80].  A year and 4 months of data 

were collected in an in-depth sensor evaluation conducted by Magi et al. (2020) in the humid city 

of Charlotte, North Carolina.  This evaluation had sensors located next to the outlet of a Beta 

Attenuation Mass 1022 (BAM-1022) monitor, which was maintained and regulated by the 

Mecklenburg County Air Quality (MCAQ).  Magi utilized a multiple regression model to increase 

the accuracy of the low-cost sensor compared to the reference monitor.  The sensors were directly 

affected by RH due to the hygroscopicity of the aerosol and refractive index on PM2.5.  RH affected 

the sensor more than any other parameter, causing an increase of 27-57% in data accuracy. When 

the multiple linear regression model (MLR) was applied to the raw data, it is essential to note that 

the higher percentage of improvements was for moderate to high RH.  

Different environments will expose the sensors to different meteorological conditions, and 

such differences in operation and accuracy are expected.  For example, as shown above, RH will 

play a significant role in the instrument's accuracy in high-humidity climates and should be 

considered for climates with moderate to high RH. Furthermore, since RH and, at times, 

temperature (T) plays a role in the accuracy of the data, RH will define the instrument’s accuracy 

while deployed. 

Low-cost sensors have been shown to perform relatively similarly to each other; however, 

as noted before, climatic changes will affect the sensor’s accuracy [59], [81]–[83]. A study [72] 

evaluated the performance of a low-cost sensor network in the Los Angeles area.  Los Angeles has 

an entirely different climate from North Carolina.  Los Angeles's dry Mediterranean climate is 

primarily mild to hot year-round [84].  The assessment was conducted over two weeks for 46 

different sites, one in the summer of 2019 and one in the winter of 2020.  The raw sensor 

performance for the two study periods underestimated the Los Angeles County average by 9.4 
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µg/m3 and 12.7 µg/m3, respectively.  It is important to note that Liu et al. did minimal data 

correction, only using hourly data provided by PurpleAir and filtering out data that was out of the 

manufacturer’s parameters.  

Furthermore, another study [83] showed that relative humidity adversely affected sensor 

performance compared to a reference station. If the sensor was exposed to high RH (RH>75%), 

the sensor tended to overestimate PM values; however, if the sensor was exposed to low levels of 

RH (RH < 50%), the sensor tended to underestimate PM concentrations. During low ambient 

humidity, the sensor also deviated considerably from the PM2.5 reference value. It is also important 

to note that the study underestimated sensors exposed to high humidity, which could be caused by 

an obstruction with the sensor's enclosure. The study also showed differing levels of R2 when 

sensors were compared to reference stations for hourly averages, with them being 0.47-0.86 for 

continuous monitoring of PM2.5 and 0.24-0.56 for continuous monitoring of PM10.  

Most studies have concluded that the low-cost sensor cannot perform to the level of other 

monitors but can still be a viable tool integrated with other regulatory monitoring [85]–[87]. The 

sensor's performance seems to be affected by RH due to the device's light-scattering sensors, which 

has been seen in many other studies [76], [88]–[90]. However, research varies regarding the 

accuracy of the data, where sensors tend to underestimate or overestimate when compared to 

regulatory monitors.  In addition, most sensors had a form of calibration or correction to align the 

data better.  Additional studies that show the type of sensor and correction can be seen in Table 3, 

which shows previous research done on low-cost sensors and their functionality 
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Table 3: Research on Low-Cost Sensors 

Sensor 

(Make/ 

Model) 

Topics Study Major Findings 

Calib. 
FRM/

FEM 
MC OPE Aerosol 

Sensor 

Properties 

Correction 

Methods 
  

IF IL  Temp RH  Conc 

Size, 

Density, 

Comp 

Dist IC IS    

               

PA-II- SD 

PurpleAir 

Sensor 

x  x  x x   x   

Geographically 

Weighted 

Regression 

(GWR) 

[91] 

The GWR reduced 

the sensor bias and 

residual errors by 

36%. Sensor bias 

was caused by high 

temp, humidity, and 

operating time. 

DC 1700 

Dylos 

Corp 

  x x    x    

Linear 

Regression and 

Residual 

Kriging 

[92] 

Kriging improved 

the R2 from 0.05 to 

0.31, 0.57 to 0.62, 

and 0.77 to 0.92 at 

Westmorland, 

Seeley, and 

Holtville, 

respectively. 

PA-II- SD 

PurpleAir 

Sensor 

   x x x  x x   None: Raw 

Data was used 
[93] 

PM2.5 values were 

low 5 and moderate 

25; the sensor had a 

bias of 35% for 24hr 

mean PM value 
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KOALA 

Monitor 

(Plantowe

r Sensor) 

  x x x  x x x x x 
Linear 

Regression 
[12] 

R2 was good at three 

sites being >0.83, 

while one site was 

0.44 after 

adjustment. 

SDS0111 

v1.3 
x x x x x x    x x 

Correlation 

Analysis and 

normalized 

root-mean-

squared-error 

[83] 

Correlation analysis 

showed that sensors 

overestimated PM in 

high RH (>75%) 

and underestimated 

when RH <50%. R2 

with reference 

station was 0.63-

0.87 for continuous 

monitoring and 

0.69-0.93 for lab 

testing. 

AirBeam x  x x x       

Linear 

Regression 

(LR), Random 

Forest (RF), 

and Stacked 

Ensemble (SE) 

[94] 

The applied LR, RF, 

and SE resulted in 

R2 values of 

0.63,0.73, and 0.80, 

respectively. 

Plantower 

PMS1003 
x x  x x x x x    No correction 

methods 
[95] 

Sensors are affected 

by humidity at 

levels <50 % 

humidity, and at this 

point, it was 

impossible to create 

an appropriate 

correction factor. 
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PA-II- SD 

PurpleAir 

Sensor 

x  x x x x  x  x x 

Multiple 

Variable 

Regression, 

Deployment 

Records, and 

Fifth 

Percentiles 

[96] 

High R2 between 

sensors inter-

channel and inter-

sensor, when 

compared to an 

FRM site, was 

reported to have an 

R = 0.76, MAE = 

2.9 µg/m3, and a 

bias of -0.5 µg/m3. 

Canary-S 

models 

(Plantowe

r Sensor) 

x  x x x  x  x   
Random Forest 

Regression 

(RF) 

[88] 

Raw data against 

FRM R2 = 0.73 after 

correction R2 = 0.81. 

Bare 

Sensors 

and 

Integrated 

Devices 

 x  x x x  x    Linear 

Regression 
[13] 

RH accounted for 

11% of the 

variability and plays 

a significant role in 

sensor performance, 

while temperature 

has no significant 

effect on sensor 

performance. 

LILI-1 

Platform 
x  x x        

Alphasense 

Correction 

(AAN 803-01) 

[97] 

Sensors showed 

high relative errors 

if there was a high 

RH; the field 

calibration yielded 

an R2 value of 0.8 

for PM10 and PM2.5. 
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SPS30 

(Sensirion

) sensor 

x  x x x x      

Machine 

Learning: 

Geographical 

Random Forest 

(GRF) and Air 

Variational 

Graph 

Autoencoder 

(AVGAE) 

model 

[98] 

Model prediction for 

PM2.5 had an R2 of 

0.68-0.75; the GRF 

produced better 

accuracy than the 

AVGAE model. 

PA-II- SD 

PurpleAir 

Sensor 

  x x x x x x x x x 
Linear 

Regression 
[99] 

Sensors were highly 

spatially correlated 

r>0.86, and indoor 

sensors performed 

more reliably than 

outdoor sensors. 

OPC N2 

and PM 

Nova 

Sensor 

x x  x x   x    Linear 

Regression 
[100] 

The OPC N2 and 

Nova can record PM 

with good accuracy 

with linear 

regression with 

GRIMM (OPC N2, 

R2 = 0.954-0.987 

and PM NOVA, R2= 

0.872-0.981). There 

was a better 

performance for 

PM1-2.5 than PM10. 
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Legend:  

Calib: Calibration 

IF: In-field  

IL: In-laboratory 

MC: Meteorological Conditions 

OPE: Optical Property Effects 

Conc: Concentration 

Comp: Composition 

Dist: Distribution 

IC: Interchannel 

IS: Intersensor  
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2.3.3  LOW-COST SENSOR CALIBRATION TECHNIQUES  

Low-cost sensors can fill in monitoring gaps and improve spatial and temporal data.  

However, low-cost sensor data is unreliable and lacking in accuracy compared to federal 

monitoring stations.  Furthermore, the sensors are susceptible to environmental conditions such as 

temperature and humidity, further comprising the quality and accuracy of the data.  As a result, 

many research institutions and government agencies have sought calibration equations or general 

calibration techniques to bring the low-cost sensors closer to monitoring stations. 

For example, the US EPA recommends that users make a “side-by-side” comparison of the 

low-cost sensor and a regulatory monitoring station.  In the comparison process, the low-cost 

sensor is collocated next to a regulatory station for 7-14 days, where both the low-cost sensor and 

the monitors are in “real-world” conditions [101].  The data is then compared to the regulatory 

monitor to create the calibration formulas; however, many researchers have taken different 

approaches to this process with varying levels of success.  

The PA-II-SD sensor utilizes a Plantower PMS (models 1003 through 7003), a dual laser 

dust sensor that uses light scattering to measure the value of suspended particles in the air.  These 

Plantower sensors report the size distribution of particles from 0.3-10 µm in 6 bins and the size 

distribution in the unit number of concentration and the mass concentrations of PM1, PM2.5, and 

PM10[102].  In addition, PurpleAir follows a correction factor for reporting PM data to its servers. 

The correction factor (cf) for the PurpleAir PM2.5 sensor has been developed with the help 

of the US EPA.  The developed correction factor utilized a US-wide dataset where state, local, and 

tribal agencies received data from PurpleAir sensors across the country.  PurpleAir provides users 

with two corrections: "cf = atm” and “cf = 1.”  The PurpleAir correction for “cf = 1” has different 

selection criteria where R2 = 0.65 and R2 = 0.64 for “cf = 1” and “cf = atm,” respectively.  "cf  = 

atm" is used for sensors located outdoors, and "cf = 1" is used for indoors.  

The US EPA looked at many variables for the PurpleAir correction equation.  The 

development of the equation looked at many variables such as PM2.5, binned counts (B>0.3', B>0.5', 
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B>1.0', B>2.5', B>5.0', B>10.0'), temperature, RH, and dewpoint (D).  The original iteration of this study 

can be seen in Equation 1, where b represents the slope of the PurpleAir PM2.5 and Federal Methods 

(FM) PM2.5, and s represents the sensor being used [103].   

 

𝑃𝐴𝑐𝑓1
= s1(𝑃𝑀2.5) + 𝑏     (1) 

 

This formula was applied to create a better linear fit between an FRM/FEM station and the sensor 

leading to an R2 of 0.78.  It was found that RH was the environmental parameter that most 

influenced the correlation between the stations, raising the R2 from 0.78 to 0.831.  The formula 

was then changed to include RH and “i,” which represents a constant value; Equation 2 is as 

follows.  

 

𝑃𝐴𝑐𝑓1
= 𝑠1(𝑃𝑀2.5) + 𝑠2(𝑅𝐻) + 𝑖    (2) 

 

However, RH and temperature were found to improve the R2 from 0.831 to 0.832, which is a higher 

increase than just using RH alone; the equation is as follows.  

 

𝑃𝐴 = 𝑠1(𝑃𝑀2.5) + 𝑠2(𝑅𝐻) + 𝑠3(𝑇) + (𝑖)   (3) 

 

The temperature, relative humidity, and PM2.5 are significantly correlated; thus, a new approach 

was used to multiply these factors rather than adding the parameters.  As before, the R2 

significantly changed when using RH and T, then just using RH.  The new variation changed the 

R2 from 0.832 to 0.836 and 0.838 using only RH and RH and T, respectively. The new Equations 

4-5 are shown below.  

 

𝑃𝐴 = 𝑠1(𝑃𝑀2.5) + 𝑠2(𝑅𝐻) + 𝑠3(𝑅𝐻)(𝑃𝑀2.5) + 𝑖         (4) 
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𝑃𝐴 = 𝑠1(𝑃𝑀2.5) + 𝑠2(𝑅𝐻) + 𝑠3(𝑇) + 𝑠4(𝑃𝑀2.5)(𝑅𝐻) + 𝑠5(𝑃𝑀2.5)(𝑇) +

             𝑠6(𝑅𝐻)(𝑇) + 𝑠7(𝑃𝑀2.5)(𝑅𝐻)(𝑇) + 𝑖       (5) 

 

In the development of the US-wide correction, mean bias error (MBE) and mean absolute 

error (MAE) were considered.  The US-wide correction model was selected because it was less 

complex and less likely to overfit the data; it primarily relies on root-mean-square-deviation 

(RMSE) and spearman correlation because they have similar trends to that of MBE and RMSE.  

The US-wide correction can be seen below in Equation 6; AB represents the hourly mean between 

the channel a and b two-minute data.  

 

𝑃𝑀2.5𝑐
= 0.52 [𝑃𝐴𝑐𝑓1 

(�̅�(𝐴𝐵)] − 0.085(𝑅𝐻) + 5.71  (6) 

 

This correction equation was developed to improve sensor performance across the US; the 

correction factors’ limited complexity helps broaden the conditions and allow for broader 

adaptation from other US-based sensors.  However, this calibration equation is unable to address 

other issues that are present in PurpleAir devices, such as failures caused by channels A and B 

(channel noise, significant jump in channel data, error in RH or T), sensor drift due to age, and 

sensor lifespan in ambient conditions.  Nevertheless, it is essential to note that the data has become 

more accurate through the nationwide cf, even during harsh conditions such as wildfires.  

Linear regression is used for FRM and FEM quality assurance in much of the literature 

regarding PurpleAir devices, where linear regression calculates a slope, intercept, and correlation 

[104].  In a study by Barkjohn [104], they applied the US-wide correction for PM2.5 in 16 states 

across the United States.  It was found that under typical ambient conditions, the raw data produced 

by PurpleAir sensors overestimated PM2.5 concentrations by 40%.  Barkjohn utilized a simple 

linear regression and found that it reduced much of the bias produced by the raw sensor and 

improved the RMSE and MBE in all regions except for Alaska.  After applying the RH term to the 

regression, it was found that the bias was further improved, except in the southeast, where the bias 
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increased by <10%.  It is important to note that Alaska’s harsh temperatures could be attributed to 

the sensor’s increase in bias. The Alaskan temperatures are out of operating conditions for 

Plantower sensors; however, this was not seen in other sensors that also experienced sub-freezing 

temperatures (about 6% of the US dataset), suggesting unique particle properties for PM in Alaska.  

The multiple regression conducted by Badura’s study showed notable differences in data 

quality.  The multiple regression with the addition of the RH and T to the equation had a more 

significant impact, showing an improvement in the goodness of fit.  The R2 value increased by 

0.02, from 0.87 to 0.89, and the RMSE error decreased to 4.2 µg/m3 from 4.5 µg/m3. 

 Similar effects were also seen in a study by Romero et al. (2020), which looked at 

developing a multiple regression model to calibrate low-cost sensors using reference monitors.  

The study utilized a PurpleAir sensor located next to the “Campo de Marte Air Quality Station  

(AQSMarte)” over three weeks [105].  The model used a multivariate regression utilizing the PM 

and meteorological data; the multivariate regression equation can be seen below.  

 

𝑌𝑖 = 𝛽1(𝑋𝑖) + 𝛽2(𝑇) + 𝛽3(𝑅𝐻) + 𝛽0   (7) 

 

Yi corresponds to the reference station PM, and Xi represents the PM sensor’s measurement.  The 

model’s beta coefficient values can be seen in Table 4 PM2.5 had a value <1.00, RH had a value of 

1.027, and the temperature had a value of 0.119.  This model showed a highly positive correlation 

with the reference monitor for PM2.5, with an R2  of 0.8 [105].  

 

Table 4: Multiple Regression PurpleAir Sensors Model Values of Betas 

Multiple Regression PM2.5 β1 β2 β3 β0 

PM2.5 0.704 1.027 0.119 -21.517 

 

The model showed temperature as the most influential meteorological parameter when, 

typically, RH has shown to be an integral part of particle size distribution.  The study also 
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demonstrates that the measurement for PM2.5 and PM10 have decent performance but have lower 

performance and accuracy for temperature and RH.  

 Many studies have been conducted to bring low-cost sensors more in line with regulatory 

monitors.  The EPA has funded and increased research efforts in developing sensor calibration.  

It has been found that a univariate or multivariate regression can reduce RMSE and BME and 

reduce sensor bias, leading to a higher level of accuracy when compared to FRM/FEM monitors.  

More research efforts are being led to use neural networks and artificial intelligence to create 

better models and calibrations for low-cost sensors [65], [89], [94], [106], [107]. 
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CHAPTER 3 STUDY DESIGN 

3.1.  SCIENTIFIC APPROACH 

Recent upcoming low-cost sensor technology has made them readily accessible and 

affordable for the general public; as such, there has been a growing interest in the performance and 

quality of the devices. Furthermore, low-cost sensors can assess air quality in underserved regions 

and be deployed in mass, providing more spatially rich data than reference stations.  However, the 

quality of data generated by these low-cost sensors has been highly debated, sparking an interest 

in the research community to evaluate the efficacy of the sensors. This thesis looks to assess the 

quality of the data generated by the low-cost sensors and look at further applications of the data 

generated by the instruments once it has been cleaned and corrected.  

Quantitative data was gathered from the low-cost sensors and TCEQ CAMS, and the data 

collected from CAMS was utilized to find a correction factor for the low-cost sensor data. The 

low-cost sensor data was also utilized to create a land-use regression model to identify the 

variability of PM when close to different variables. It is essential to note the limitations of this 

study; data gathered from this study happened during two different seasons, which could cause 

differences in collocated deployment, where correction factors gathered during the cold months 

might not be as accurate as the data gathered during the hotter months. Furthermore, the amount 

of data collected and the time when the data was collected might not be enough to summarize the 

air quality in the shared air basin.  

The sensors were deployed in sites with differing annual average daily traffic (AADT) in 

El Paso and Cd. Juarez, where Cd. Juarez had a stronger focus on deploying sensors in industrial 

sectors, and El Paso deployed sensors within the community at several public schools within the 

El Paso Independent District (EPISD). Data was gathered periodically during the two-month study 

period; this data was corrected using previous data collected from two weeks when the sensors 

were collocated next to a CAMS station during the cold months. In addition, sensors were regularly 

assessed, and faulty sensors were replaced with spare units, which were also corrected using data 
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from their two-week deployment with the CAMS station. Once the data was corrected and 

assessed, it was used to develop a land-use regression model, using the different PM concentrations 

from the sites and comparing them with different environmental and human markers within the 

region. In conclusion, this project is a case study on the air quality data generated by low-cost 

sensors and how this data can be corrected and used in modeling to forecast hotspots in the region.  

 

3.2. SELECTION OF THE SITE LOCATION  

Vehicles significantly contribute to air pollutant emissions, posing a risk for individuals 

living, working, or going to school near busy roadways [108]—This project utilized low-cost 

sensors to evaluate air pollution at different sites in El Paso and Cd. Juarez and areas surrounding 

Dona Ana County, site locations varied between El Paso and Cd. Juarez. El Paso sites were 

selected based on the community exposure to traffic-related vehicular emissions, where exposure 

varies from sites with high and low vehicular traffic (within a 500 m zone). Furthermore, El Paso 

sites were selected to be placed in elementary schools due to their varying levels of AADT (low 

and high), and schools were the best platform to integrate the community. Sites in Cd. Juarez was 

selected to be placed in various industrial sectors due to the sheer number of factories (>300) in 

Cd. Juarez and their effects on air quality [109], [110]. In addition, Cd. Juarez sites were also 

selected considering their high and low-traffic zones within the industrial districts.  

 

3.2.1 LOW-COST NETWORK EXPERIMENTAL DESIGN IN EL PASO DEL NORTE    

Low-Cost sensors were deployed and installed at 32 critical El Paso and Cd locations. 

Juarez due to their AADT and conditions.  There are 12 locations with dual sensors.  PM2.5 was 

monitored at 17 elementary schools with high and low AADT, 12 schools are in El Paso, and the 

remaining 5 are in Cd. Juarez.  Cd. Juarez hosted 14 sites in industrial regions where the sampling 

took place over two months, from March through April 2021.  The sensor’s placement through El 

Paso and Cd. Juarez can be seen in Figure 3, where most sensors are located next to a primary 
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road.  Figure 4 shows the road layout in the PdN; El Paso has a well-defined infrastructure and Cd. 

Juarez has a menagerie of primary, secondary, and tertiary roads.  Table 5 displays information 

about each location, including the number of sensors on the site, their AADT classification, and 

the site’s classification (Elementary site, industrial site, or calibration site).   

 
Figure 3: Low-Cost Sensors Location in El Paso del Norte 

 
Figure 4: Roads in El Paso del Norte 
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Table 5: PurpleAir Name of Site and Sensor 
Name on PurpleAir Website Latitude Longitude AADT Type of Site 

Zavala 
31.7718 -106.4470 High Elementary School 

Zavala 2 

Hawkins 31.7774 -106.4185 High Elementary School 

Bonham 31.7866 -106.3922 High Elementary School 

Douglass 31.7663 -106.4657 High Elementary School 

Coldwell 31.7951 -106.4424 High Elementary School 

Aoy 
31.7508 -106.4815 High Elementary School 

Aoy 2 

Mesita 31.7839 -106.5037 High Elementary School 

Cielo Vista 31.7840 -106.3676 Low Elementary School 

Park 
31.8567 -106.4507 Low Elementary School 

Park 2 

Whitaker 31.8509 -106.4254 Low Elementary School 

Western Hills 31.8415 -106.5225 Low Elementary School 

Zach White 31.8208 -106.5713 Low Elementary School 

UACJ-PAC07 31.7383 -106.4311 High Elementary School 

UACJ-PAC12 31.7210 -106.5218 Low Elementary School 

UACJ-PAC13 31.7033 -106.4273 High Elementary School 

UACJ-PAC16 31.6846 -106.4516 High Elementary School 

UACJ-PAC11 31.6577 -106.4524 High Elementary School 

UTEP 1 

31.7687 -106.5012 High Calibration Site UTEP 2 

UTEP 3 

UACJ-PAC08 31.7271 -106.3830 High Industrial Sector 

UACJ-PAC09 31.7182 -106.4204 Low Industrial Sector 

UACJ-PAC01 
31.6162 -106.4103 Low Industrial Sector 

UACJ-PAC10 

UACJ-PAC22  

31.7154 

 

-106.3979 
High Industrial Sector 

UACJ-PAC21 

UACJ-PAC20 
31.7363 -106.4238 High Industrial Sector 

UACJ-PAC19 

UACJ-PAC15 31.6576 -106.3995 Low Industrial Sector 

UACJ-PAC04 31.6748 -106.3866 High Industrial Sector 

UACJ-PAC23 
31.6067 -106.3994 High Industrial Sector 

UACJ-PAC24 

UACJ-PAC14 31.6878 -106.4015 Low Industrial Sector 

UACJ-PAC02 
31.6285 -106.3770 Low Industrial Sector 

UACJ-PAC03 

UACJ-PAC17 
31.7355 -106.4616 Low Industrial Sector 

UACJ-PAC18 

UACJ-PAC05 
31.7716 -106.5573 Low Industrial Sector 

UACJ-PAC06 

UACJ-PAC26 
31.6662 -106.3912 High Industrial Sector 

UACJ-PAC25 

UACJ01 31.7433 -106.4315 High Industrial Sector 
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3.3.  SELECTION OF LOW-COST SENSORS 

PurpleAir Inc makes the low-cost sensor selected in this study.  The sensors model is a 

PurpleAir (PA)- II outdoor air quality monitor equipped with dual laser particle counters (PMS-

5003), as well as pressure, temperature, and humidity sensors (BME280 or BME688), ESP8266, 

and an Arduino board.  The sensor’s components and exterior can be seen in Figure 5.  

 
Figure 5: PA-II-SD internal components and external view 

 

The PMS5003 is the 5th generation sensor of the PMSx003 series, developed and 

manufactured by Plantower.  This sensor uses a laser scattering principle to obtain the curve of 

scattering light change with time.  The sensor produces particles binned in different diameters, 

leaving a unit per volume.  The sensor processing was developed using the Mie scattering theory 

[111], a mathematical-physical theory of particles being scattered over an electromagnetic wave 

by spherical particles [112], [113].  The sensor data output is returned for each particle having a 

different size per unit volume of 0.1L and the mass concentration µg/m3.   
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The BME280 is a temperature, humidity, and pressure sensor developed for various mobile 

applications by BOSCH.  PurpleAir also utilizes the BME688, a gas sensor with Artificial 

Intelligence (AI) used to collect temperature, humidity, and pressure developed by BOSCH.  Both 

the BME280 and BME688 have the same features, but the BME688 has a gas scanner, detecting 

volatile organic compounds (VOCs) and other gases such as carbon monoxide and hydrogen.  

The Arduino UNO and the NodeMCU are microcontrollers used by PurpleAir for their 

microprocessors.  These microcontrollers control the functions of the other sensor components by 

interpreting the results produced by the PA-II components and uploading the data to PurpleAir 

servers in real-time.  

The sensor was selected using the South Coast Air Quality Sensor Performance Evaluation 

Center (AQMD’s) air quality specification (AQ-SPEC), a program that aims to test low-cost 

sensors and establish performance standards for each sensor being evaluated.  The sensors are 

evaluated by collocating them next to a monitoring station using FRM, FEM, or the best available 

technology (BAT).  The field operations are conducted during a specific 30 to 60-day period.  At 

the same time, laboratory testing is conducted in the AQ-SPEC’s laboratories [114].  

The PurpleAir low-cost sensor was selected for its high linearity with federal monitoring 

stations and in-lab testing.  As shown in Table 6, the sensor had a high coefficient of determination 

(R2) for in-field testing, having a high of 0.98 and 0.97 for PM1.0 and PM2.5, respectively; however, 

the sensor had a mid-range R2 for PM10.  The sensors in lab testing showed high linearity, with 

most R2 being between 0.95 and 0.99 for PM1.0, PM2.5, and PM10. 
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Table 6: Purple Air Sensor Evaluation By AQ-SPEC’s Laboratories 

Sensor Cost Model Pollutant Field R2 Lab R2 

Purple Air $ 259 PA-II 

PM1.0 0.96-0.98 0.99 

PM2.5 0.93-0.97 0.99 

PM10 0.66-0.70 0.95 

 

Furthermore, the sensor’s capabilities and ease of use allow for better community 

integration.  PurpleAir’s website, as seen in Figure 1, has easy user interference and allows for a 

preliminary view of the data.  The sensor data is uploaded to various PurpleAir servers in real-

time.  The data can be uploaded via their website or recalled through their JavaScript Object 

Notation (JSON) application programming interface (API).  

 

3.4.  LOW-COST SENSORS DATA COLLECTION   

Data was collected from a low-cost monitoring network of 48 PurpleAir PA-II-SD sensors 

located at 32 El Paso and Cd. Juarez sites.  The PurpleAir sensors alternate each laser counter with 

5-second readings that average over 120 seconds [115].  The data is then transmitted to the 

PurpleAir website servers, and the data is also stored locally in the device’s internal memory or 

secure digital (SD) card.  The sensor also provides real-time data to a JSON and is available using 

their integrated API.  

The data uploaded to the servers includes PM2.5 concentrations, PM10 concentrations, 

temperature, humidity, and relative pressure.  The JSON format is essential as it allows for a 

streamlined download and retrieval of data, and the JSON allows data to be transferred from the 

server directly to the client.  In addition, PurpleAir data is stored in the “ThingSpeak” servers, 

which allow for retrieval using API and computer languages.  

The data is called using an R script which can streamline data calling from multiple sensors 

by downloading all 48 sensors simultaneously.    Furthermore, the downloaded data was retrieved 

in its original 120 seconds with no other data adulteration.  The data was downloaded directly from 
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the PurpleAir JSON, where the script would format and transmit the data into a readable form in 

a comma-separated value file (CSV).  The data was adjusted to match the region’s time zone, going 

from UTC to MST.  

The collected data underwent a preliminary enhancement to help it be processed and 

compared to a central monitoring station.  In addition, the data was enhanced with geospatial 

markers, which gives the data points a location in time.  The markers allow for comparison to 

nearby monitoring stations.  Even though an approximation of the contaminants’ concentrations 

in real-time is sought after, these sensors cannot be used as federally referenced instruments.  In 

addition, the PurpleAir website provides unaveraged and averaged data; however, it is essential to 

note that this data does not undergo any quality control and represent the average of that hour 

regardless of the number of data points within that hour, due to this it is assumed that the PurpleAir 

data from the website may contain errors.  

 

3.5.  LOW-COST SENSOR DATA VALIDATION  

PurpleAir Inc provides users with a comprehensive list of specific operating parameters for 

the PA-II-SD sensor, as seen in Table 7; this includes the four criteria parameters that PurpleAir’s 

low-cost sensors monitor for (PM2.5, temperature, and humidity.)  

 

Table 7: Operating Range PurpleAir-II 

Parameter Operation Range 

Effective Range (PM2.5 standard) 0 to 500 µg/m3 

Maximum Range (PM2.5 standard) ≥1,000 µg/m3 

Temperature Range -40 °F to 185 °F (-40°C to 85°C) 

Humidity 

Response time (τ63%): 1 s 

Accuracy tolerance: ±3% RH. 

Hysteresis: ≤ 2% RH 

 

 The data download via the JSON and PurpleAir website undergo a preliminary cleaning to 

ensure that these operating guidelines are followed.  First, the collected data is cleaned, and values 

outside the specification are disregarded from the dataset.  For example, the data point will be 
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invalidated if a PM2.5 value is negative or above >1000.  After being “cleaned” to ensure the data 

is within the instrument’s capacity, the remaining data undergo a more stringent procedure.  

 This data validation procedure is more stringent than what is conducted by PurpleAir, as 

PurpleAir produces an hourly average regardless of the quality and quantity of data available for 

the given hour.  A PM2.5 column is created by averaging the A and B channel base means.  Then, 

data is validated using these criteria:  

 

• The minimum count is < 20 data points per hour  

• Data is invalidated if the A/B hourly difference is >5 

• Data is invalidated if the A/B hourly percent difference is >70%  

• Data is invalidated if the A/B hourly data recovery is <90%. 

 

The low-cost sensors were deployed across El Paso and Cd. Juarez over two months, from 

March 1st until April 30th, 2021. During this time, the sensors were exposed to real-world 

conditions, where conditions varied depending on the site. As seen in Table 8, most sensors had a 

percentage of data invalidation between 6-15 %; however, some sensors experienced higher levels 

of degradation while deployed and had over 50% of their data invalidated.   
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Table 8: Low-Cost Sensor Number of online and invalidated hours during the study period 
Sensor Online Hours Invalidated Hours Invalidated Hours % 

UTEP1 822 56 6.8 

UTEP 3 1327 379 28.6 

UTEP 2 1327 104 7.8 

Cielo Vista 1436 96 6.7 

Douglass 1439 122 8.5 

Mesita 1435 104 7.2 

Park 2 851 55 6.5 

Park 1439 211 14.7 

Bonham 1426 390 27.3 

WesternHills 1312 357 27.2 

Whitetaker 1257 370 29.4 

ZachWhite 1439 95 6.6 

Zavala 1439 106 13.6 

Zavala 2 1439 227 15.8 

Aoy 2 1364 116 8.5 

Aoy 1120 346 30.9 

Hawkins 1394 343 24.6 

UACJ_PAC01 1418 216 15.2 

UACJ_PAC02 1437 98 6.8 

UACJ_PAC03 1437 464 32.3 

UACJ_PAC04 1429 208 14.6 

UACJ_PAC05 1429 78 5.5 

UACJ_PAC06 1429 89 6.2 

UACJ_PAC08 1438 75 5.2 

UACJ_PAC09 1430 110 7.7 

UACJ_PAC10 1439 212 14.7 

UACJ_PAC11 1433 73 5.1 

UACJ_PAC12 1439 75 5.2 

UACJ_PAC13 1439 61 4.2 

UACJ_PAC14 1365 798 58.5 

UACJ_PAC15 1439 1072 74.5 

UACJ_PAC16 1437 115 8.0 

UACJ_PAC17 1437 67 4.7 

UACJ_PAC18 1437 55 3.8 

UACJ_PAC19 1162 74 6.4 

UACJ_PAC20 1162 72 6.2 

UACJ_PAC21 550 36 6.5 

UACJ_PAC22 549 34 6.2 

UACJ_PAC23 1044 68 6.5 

UACJ_PAC24 1044 72 6.9 

UACJ_PAC25 883 55 6.2 

UACJ_PAC26 883 56 6.3 

UACJ_PAC27 930 332 35.7 

UACJ_PAC28 829 37 4.5 
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3.6. COLLOCATED SENSORS PRE-DEPLOYMENT 

As the US EPA and other studies recommended, the sensors must be calibrated before 

deployment at their sites.  This pre-deployment period required 48 sensors to be deployed at a 

federal monitoring station. Instead, the sensors were collocated next to TCEQ’s CAMS 12, near 

The University of Texas at El Paso.   

The sensors remained at CAMS 12 for 14 days from December 2020 through January 2021. 

The sensor's data was stored in PurpleAir’s cloud-based server and retrieved for the given time. 

The data set was then cleaned for outliers and processed to be used for the multiple variable 

regression model.  

 

 

3.7.  REGRESSION MODELS FOR SENSOR CORRECTION FACTOR 

As stated previously, low-cost sensors lack the accuracy of regulatory monitors; as such, 

different regression techniques were utilized to bring the sensors more in line with FRM/FEM 

monitors.  A multiple regression model analyzes the relationship between two or more variables 

to predict a value for the dependent variables.  This regression aims to find the pollutant’s 

dependency on more than one independent variable.  

A multiple regression analysis was developed to correct the slope and intercept values of 

the low-cost sensors.  The calibration involved the low-cost sensors and the reference stations, 

where the low-cost sensors were the independent variable (x), and the reference station was the 

dependent variable (y).  The multiple regression is shown in Equation 8.  

 

𝑅𝑒𝑓 =  𝛽0 + 𝛽1(𝑆𝑒𝑛𝑠𝑜𝑟) + 𝛽2(RH) + 𝛽3(𝑇𝑒𝑚𝑝) + ℇ   (8) 
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3.8.  LAND-USE REGRESSION MODELING   

Due to the spatial variability of air pollution in the basin, a land use regression model was 

utilized to explain and predict spatial contrasts in the PdN. LUR is a regression model used for 

analyzing pollution in dense areas;  it has engineering applications and is used in many 

epidemiological studies to estimate concentrations at different locations [116]. 

LUR relies on a densely populated monitoring network; in this case, the network was based 

on the 48 deployed sensors in the PdN and a few regulatory monitors in El Paso. In addition, each 

site has specific “predictor values” gathered from ArcGIS and OpenStreetMap.   
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3.8.1 OPENSTREETMAP  

This thesis uses data provided by OpenStreetMap.  “OpenStreetMap contributors and 

available from https://www.openstreetmap.org copyright map data.”  OpenStreetMap is open 

source, providing users with map data.  OpenStreetMap is primarily built by the community; it is 

a community-driven project to create a comprehensive GIS map.   
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CHAPTER 4: STATISTICAL METHODS  

4.1 LINEAR REGRESSION ANALYSIS 

 As mentioned in Chapter 2.3.3, calibration techniques are used to create calibration models 

to better fit the low-cost sensors with regulatory monitors.  Simple linear regression models the 

relationship between two variables by fitting a linear equation over the data sets [117]. Two 

variables will be analyzed to determine the correlation between the two variables [118], and a 

linear relationship is expected between the FRM/FEM and low-cost sensors.  

 

𝑦 =  𝛼 + 𝛽𝑥 + 𝜖     (9) 

Equation 9 shows a simple linear regression where x is the independent variable and y is 

the dependent variable, α & β are the model parameters, and ε is the unpredictable random 

disturbance term or the error in predicting the value of y; it is important to note that this value is 

not displayed in most regression equations; instead, it will be similar to Equation 9   [117].  

Equation 11 shows the general equation of a straight line, where m is the gradient of the line and 

c is the y-intercept, x is the independent variable, and y is the dependent variable [119] 

The regression equation's functionality is assessed through the coefficient of determination 

(R2), standard error of the estimated value of β, and an F test. The R2 was primarily used in this 

thesis to determine how well the model fits the data. Most commonly, the R2 will vary from 0 

through 1, where at 0, none of the variances between variables can be explained, and 1, where all 

variations in y can be explained by independent variables [117]. 

 

4.2 MULTIPLE REGRESSION MODEL  

Like the simple linear regression model, the multiple regression model establishes the 

relationship between two or more variables where there is more than one independent variable in 
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this regression. The objective of the multiple regression model is to utilize the independent 

variables to predict the value of a singular dependent variable [120].  

 

𝑦 =  𝛽0 + 𝛽1𝑥𝑖1
+ 𝛽2𝑥𝑖2

+ ⋯ + 𝛽𝑝𝑥𝑖𝑝
+ 𝜖      (10) 

 

In Equation 10, Y is denoted as the dependent variable, and X1,…, Xn is the dependent 

variable. The importance of each variable is pivotal to ensuring the maximal prediction of the 

dependent variable [120]. Equation 10 also shows the formula of multiple linear regressions, where 

y is the dependent variable, xi is the explanatory variable, β0 is the y-intercept, βp is the slope 

coefficient, and ϵ is the model's error or residual.  
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CHAPTER 5: LOW-COST SENSOR CALIBRATION AND QUALITY CONTROL  

5.1.  SIDE-BY-SIDE COMPARISON LOW-COST SENSOR AND TCEQ CAMS STATION 

The low-cost sensors were collocated next to a federal monitoring station (CAMS-12) for 

a 2-week calibration process. Calibration was necessary to develop a correction equation applied 

to the sensors once deployed across the PdN. This collocation period was conducted at a UTEP 

facility less than 10 feet away from CAMS 12’s samplers for 48 low-cost sensors, as seen in Figure 

6.  

 

The data was then collected for the 48 low-cost sensors and processed according to the 

specifications discussed in subchapter 3.5. Data outside the specific parameters were flagged and 

not processed, as it was removed from the raw two-minute data set. The “cleaned” two-minute 

data were then averaged into hourly intervals for the following parameters: PM2.5, temperature, 

and relative humidity.   

Figure 6: PA-II-SD deployed next to TCEQ CAMS 12 Station 
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In addition, temperature and relative humidity were found to affect PM2.5 significantly; this 

is especially true for relative humidity, which had a more significant effect on the optical capability 

of the sensor [121]–[123]. Due to this, PM2.5, temperature, and relative humidity were used as 

predictor variables (x-variables) to better predict or fit the data with the reference station. A linear 

regression model was then used to produce the coefficients for each parameter. It is important to 

note that the linear regression model showed an overall summary statistic for the regression model; 

however, this output does not provide the beta coefficients. Therefore, the coefficients in the output 

need to be standardized utilizing the standard deviations of each of the variables.  

The standardized or beta coefficients were utilized to create a correction factor for the data 

sets. However, it is important to note that each sensor had its individual correction factor, as each 

standardized coefficient varied by the sensor.  The correction factor was applied to the sensor's 

hourly averaged data and was then compared to the FRM/FEM site to estimate the model's 

efficacy.  

All sensors showed a high affinity with CAMS-12 before the correction equation. 

However, when the correction was applied to all 48 sensors, the sensors showed an increase in 

correlation when compared to CAMS-12, with most of the sensors showing an R2 of 0.90-0.92, 

with the lowest R2 being for the sensors: Aoy, UACJ-PAC22, and C12 with an R2 between 0.88-

0.89. Table 9 provides the R2 for each of the 48 sensors used throughout the study. The beta 

coefficients were used continuously throughout the study to correct each sensor’s data.  
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Table 9: Correlation between Low-Vost Sensors and CAMS12 
Site R2 corrected 

 
Site R2 corrected 

Hawkins 0.92 
 

UACJ-PAC01 0.90 

Zavala 0.92 
 

UACJ-PAC22 0.89 

Mesita 0.92 
 

UACJ-PAC21 0.92 

Aoy 2 0.92 
 

UACJ-PAC20 0.92 

CAMS12 0.89 
 

UACJ-PAC19 0.90 

CAMS12 0.90 
 

UACJ-PAC23 0.92 

CAMS 7 0.91 
 

UACJ-PAC24 0.92 

Whitaker 0.92 
 

UACJ-PAC17 0.91 

Douglass 0.92 
 

UACJ-PAC18 0.91 

Aoy 0.88 
 

UACJ-PAC25 0.92 

Park 0.92 
 

UACJ-PAC26 0.92 

Coldwell 0.90 
 

SPARE 0.92 

Cielo Vista 0.92 
 

UACJ-PAC15 0.92 

Zach White 0.91 
 

UACJ-PAC05 0.92 

Western Hills 0.92 
 

UACJ-PAC06 0.92 

UACJ-PAC07 0.91 
 

UACJ-PAC08 0.92 

UACJ-PAC11 0.90 
 

UACJ-PAC28 0.91 

UACJ-PAC27 0.91 
 

UACJ-PAC02 0.92 

UACJ-PAC12 0.84 
 

UACJ-PAC03 0.92 

UACJ-PAC13 0.90 
 

UACJ-PAC09 0.90 

UACJ-PAC16 0.91 
 

UACJ-PAC10 0.91 

Park 2 0.94 
 

SPARE 0.91 

Zavala 2 0.91 
 

UACJ-PAC14 0.92 

Bonham 0.92 
 

UACJ-PAC04 0.91 

 

 

5.2 INTERCHANNEL COMPARISON FOR LOW-COST SENSORS 

The PA-II-SD low-cost sensor is equipped with dual Plantower PMS5003 light scattering 

sensors; Purple Air will refer to each sensor as channel A or channel B. Both channels collect and 

report data every two minutes. As such, the data generated per sensor will have two data sets for 

PM2.5 and a particular data set for RH and temperature. Previous literature has shown that sensors 

show a high correlation between each inner sensor or inter-channel [80], [124]. 

The confidence interval (CI) between the channels, as shown on the PurpleAir website, can 

be used as a preliminary snapshot of the sensor's conditions. However, this study looked at the 

inter-channel correlation for each of the 48 sensors. The lower correlation between channel A and 

channel B was used to identify sensors that were malfunctioning or that were beginning to 

malfunction. While the inner mechanics of each sensor could malfunction, it is essential to note 

that real-world conditions could also cause degradation within the sensor. For example, sensors 
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are exposed to myriad shapes, in which the sensor channels can be affected by debris or insects 

nesting within the sensor.  

Channel-to-channel comparisons were plotted to find the congruency between their inner 

channels. As seen in Table 10, sensors located in El Paso had high linearity internal within their 

sensors, with most sensors having an R2 of 0.98-0.99, except for the sensor located in the Whittaker 

site having an R2 of 0.87. As can be seen, the sensors undergo a slight variation in R2, but this was 

a common factor, as most sensors would become downgraded during meteorological events or due 

to insects crawling within the sensor. Similarly, sensors located in Cd. Juarez had high linearity 

between each of the sensor's channels; as can be seen, most of the sensors had a high R2 of 0.99 

except for the sensor located at the UACJ-PAC14 and UACJ-PAC27 site, which had an R2 of 0.86 

and 0.87.  
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Table 10: Inter-Channel R2 for Low-Cost Sensor 

Sensor R2 Sensor  R2 

UTEP 1  0.99 UACJ-PAC01 0.99 

UTEP 2  0.96 UACJ-PAC02 0.99 

UTEP 3 0.88 UACJ-PAC03 0.93 

Bonham ES 0.99 UACJ-PAC04 0.98 

Park 2 0.99 UACJ-PAC05 0.99 

Park 0.95 UACJ-PAC06 0.98 

Whitetaker 0.87 UACJ-PAC21 0.97 

WesternHills 0.97 UACJ-PAC10 0.98 

Mesita 0.99 UACJ-PAC09 0.99 

Douglass 0.98 UACJ-PAC08 0.99 

Cielo Vista 0.96 UACJ-PAC11 0.99 

Aoy 0.91 UACJ-PAC12 0.99 

Aoy 2 0.99 UACJ-PAC13 0.99 

ZachWhite 0.98 UACJ-PAC14 0.86 

Zavala 2 0.99 UACJ-PAC15 0.92 

Zavala 0.99 UACJ-PAC16 0.99 

 

UACJ-PAC17 0.99 

UACJ-PAC18 0.99 

UACJ-PAC20 0.99 

UACJ-PAC19 0.99 

UACJ-PAC22 0.99 

UACJ-PAC23 0.99 

UACJ-PAC24 0.99 

UACJ-PAC25 0.99 

UACJ-PAC26 0.99 

UACJ-PAC27 0.87 

UACJ-PAC28 0.99 

UACJ-PAC07 0.99 

It is important to note that the degradation of the sensor could also be caused by the sensor's 

operational time, meaning that the longer the sensor is in use, the higher the probability of the 

sensor malfunctioning, as shown in recent literature [125]–[127]. Although however, this is not to 

say that a newer sensor will be more precise and have higher accuracy; as seen in the table above, 

the sensors deployed in El Paso still had a high congruity between each other even though they 

were not recently acquired units.  
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5.3 SENSOR TO SENSOR COMPARISON   

As mentioned previously, the inter-sensor correlation is an essential factor in determining 

the efficacy of the instrument. However, it is also vital to ensure that the sensor's channels are 

operating optimally; for this, the sensor was compared with each other to ensure that the sensor 

was working. A high correlation between sensor one and sensor two can be used to determine if a 

unit is becoming degraded or has ceased to work.  

This study used 12 monitoring sites containing duplicated sensors, representing roughly 

38% of the entire monitoring network in the Paso del Norte region. These sensors were used as 

another form of quality assurance. To avoid bias, the sites with duplicated sensors were selected 

randomly, except for the sensors located within the calibration site. Table 11 shows the 12 sites 

and how they correlated with each other. The sensors located in El Paso had a high correlation 

with each other (R2 > 0.94), and the sensors located in Cd. Juarez had a high correlation as well 

(R2 > 0.96). This high correlation between them showed that the instruments were working well. 

However, it is essential to note that the instruments correlated well with other PA-II-SD.  

  



52 

Table 11: Low-Cost Sensors Duplicated Sensors Inter-Channel R2 

Name on PurpleAir Website R2 

Zavala 2 
0.9850 

Zavala 

Aoy 2 
0.9555 

Aoy 

Park 2 
0.9779 

Park 

UTEP 3 
0.9849 

UTEP 1 

UTEP 2 
0.9961 

UTEP 1 

UTEP 2 
0.9414 

UTEP 3 

UACJ-PAC22 
0.9928 

UACJ-PAC21 

UACJ-PAC20 
0.9676 

UACJ-PAC19 

UACJ-PAC23 
0.9777 

UACJ-PAC24 

UACJ-PAC26 
0.9878 

UACJ-PAC25 

UACJ-PAC09 
0.9798 

UACJ-PAC10 

UACJ-PAC02 
0.9752 

UACJ-PAC03 

UACJ-PAC17 
0.9949 

UACJ-PAC18 

UACJ-PAC05 
0.9699 

UACJ-PAC06 
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CHAPTER 6: LAND USE REGRESSION MODELING  

6.1.  LAND USE REGRESION MODELING CONSIDERATIONS  

Previous linear regression models have been primarily based on ground-level federal 

monitoring stations to predict and assess pollution concentrations [128], [129]. However, the 

emerging technology of low-cost sensors has made it more feasible to create LUR models with 

higher levels of detail due to the size of some networking communities. As well as community 

mapping has made it easier to obtain detailed information on cities with little geographical and 

community data. The 48 sensors were used to develop a LUR model for PM2.5 and PM10 

concentrations in the PdN.  

Data was gathered from a 500 m buffer zone developed at each sensor location to retrieve 

various physical features such as transportation, facilities, roads, developed land, undeveloped 

land, natural, railways, and shops. Roads comprised the overall street length, primary roads, 

secondary roads, and local roads within the 500 m buffer. Primary roads are considered highways 

within the buffer zone, secondary roads consist of ample avenues, and local roads are streets 

connected to a residence. The distance from the sensors to various locations was also utilized in 

the model; the variables included were distance to the nearest heliport, airport, railyard, and port 

of entry (POE). Census data was utilized to gather the number of homes and the population within 

that buffer zone. Land cover was also considered in the primary modeling stages and comprised 

the total % of developed and undeveloped land within the buffer zone. The data was gathered from 

various sources; OpenStreet Map was used for more community-specific data, and this data was 

gathered via surveys and from community knowledge. The rest of the data was gathered from 

government data banks, such as the National Oceanic and Atmospheric Administration, 

Topologically Integrated Geographic Encoding and Referencing System from the census bureau, 

and the US government.  
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6.2.  VARIABLES SELECTED FOR LUR MODELING  

A univariate analysis was employed before the LUR model was created to find the 

predictors with a high affinity with certain PM conditions. The predictors were used with different 

PM2.5 and PM10 conditions during the study, such as the period average, the 24-hour max, and the 

one-hour max. Where a p-value less than 0.05 showed a statistical significance with the pollutant 

condition and the predictor, these were the predictors selected for the LUR model.  

In Table 12, the LUR predictors were used in conjunction with PM2.5 variables; the 

predictors used were street length, primary roads, secondary roads, local roads, distance to 

railyards, Texas Department of Transportation annual average daily traffic (TXDOT AADT), 

distance to POE, distance to a major arterial road (MAJART), total vehicle miles traveled (VMT), 

population, total housing units, % of developed/undeveloped land, distance to the refinery (REF), 

distance to the heliport, and the distance to the nearest airport. The p-value and R2 are meaningful, 

with the p-value indicating if there is a significant relationship, and the R2 measures the degree to 

which the data can be explained. As shown in Table 12, the p-values highlighted in red were 

statistically significant. In addition, distance to the nearest railyard, the total population, and total 

housing units had statistical significance for PM2.5.  
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Table 12: Land Use Regression Variables Univariate Analysis against PM2.5 Variables 

Univariate Analysis 

PM2.5 Period Average 24 Hour Max 1 Hour Max  
p-Value R2 p-Value R2 p-Value R2 

Street Length (mi) 0.43 0.09 0.22 0.18 0.28 0.16 

Primary Roads (mi) 0.70 0.02 0.56 0.04 0.73 0.02 

Secondary Roads(mi) 0.16 0.26 0.12 0.27 0.36 0.12 

Local Roads (mi) 0.62 0.04 0.52 0.05 0.07 0.39 

Distance to Railyard (mi) 0.01 0.82 0.02 0.50 0.10 0.33 

TXDOT AADT (mi) 0.82 0.01 0.60 0.04 0.88 0.00 

Distance To POE (mi) 0.14 0.28 0.66 0.03 0.29 0.16 

Distance TO MAJART(mi) 0.30 0.15 0.08 0.34 0.21 0.21 

TOT VMT (mi) 0.85 0.01 0.64 0.02 0.64 0.03 

Population  0.01 0.60 0.03 0.48 0.08 0.37 

Total Housing Units 0.01 0.60 0.06 0.38 0.04 0.48 

% Developed Land 0.52 0.06 0.80 0.01 0.47 0.08 

% Undeveloped 0.20 0.22 0.90 0.00 0.19 0.23 

Distance to REF (mi) 0.69 0.02 0.64 0.02 0.16 0.27 

Distance to Heliport (mi) 0.67 0.03 0.89 0.00 0.28 0.16 

Distance to Airport (mi) 0.85 0.01 0.93 0.00 0.25 0.18 

 The PM10 variable also utilized the LUR predictors mentioned in the previous paragraph 

Table 13. There was a different variety in PM2.5 and PM10 predictors, such as for local roads, 

distance to the nearest MAJART, and total VMT.  The only shared predictor was the distance to 

the nearest railyard, with a 0.01 p-value for both PM2.5 and PM10.  
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Table 13: Land Use Regression Variables Univariate Analysis against PM10 Variables 

Univariate Analysis 

PM10 Period Average 24 Hour Max 1 Hour Max  
p-Value R2 p-Value R2 p-Value R2 

Street Length (mi) 0.25 0.18 0.34 0.11 0.37 0.17 

Primary Roads (mi) 0.16 0.23 0.33 0.12 0.11 0.28 

Secondary Roads (mi) 0.08 0.33 0.27 0.15 0.20 0.19 

Local Roads (mi) 0.04 0.43 0.78 0.01 0.84 0.01 

Railroads (mi) 0.63 0.02 0.18 0.22 0.52 0.05 

Distance to Railyard (mi) 0.01 0.59 0.34 0.11 0.04 0.42 

Distance To POE (mi) 0.15 0.24 0.51 0.05 0.28 0.15 

Distance TO MAJART (mi) 0.02 0.52 0.74 0.01 0.40 0.09 

TOT VMT (mi) 0.01 0.58 0.42 0.08 0.11 0.29 

Population 0.38 0.09 0.46 0.07 0.88 0.00 

Total Housing Units 0.39 0.09 0.78 0.02 0.81 0.01 

% Developed Land 0.07 0.35 0.53 0.05 0.23 0.18 

% Undeveloped 0.71 0.02 0.49 0.06 0.56 0.04 

Distance to REF (mi) 0.15 0.24 0.98 0.00 0.39 0.09 

Distance to Heliport (mi) 0.09 0.32 0.92 0.00 0.37 0.10 

Distance to Airport (mi) 0.32 0.12 0.47 0.07 0.69 0.02 

 

Following this univariate analysis, the following predictors were selected in the model 

based on their statistical significance and pollution condition: Street length, primary roads, 

distance to the nearest railyard, distance to the nearest POE, population, and houses were selected. 

Finally, a bivariate scatter plot was created with scatter plots below the diagonal, histograms on 

the diagonal, and a Pearson correlation above the diagonal, as seen in Figure 7, where there was a 

high correlation between distance to the POE and distance to the nearest railyard of 0.609 and a 

high correlation for houses and distance to the nearest POE of 0.744.  
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Figure 7: Scatter Plot Matrix of Selected LUR Variables 
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CHAPTER 7: RESULTS AND DISCUSSIONS 

7.1.  LOW-COST SENSOR PERFORMANCE IN THE EL PASO DEL NORTE REGION   

The deployed sensors operated and recorded data that was to the specification of the 

PMS5003 sensor. As well as duplicated sensors, those being sites with two PA-II-SD sensors, 

reported data with high accuracy when compared with each other. Furthermore, these sensors had 

a high correlation with sites such as Aoy or Zavala having a high R2 (>90%). As well as the sensor's 

inter-channel correlation had a high affinity with each other, this being channel A and channel B 

(R2 <90%). These correlations showed that the sensors operated ideally for low-cost-to-low-cost 

performance.  

A few sensors required further maintenance in the field, with two sensors in Cd. Juarez 

requiring extensive maintenance. These sensors were recording and reporting data that was out of 

the norm for the low-cost sensors, which degradation could have occurred with one of the PM 

sensors. As a result, the sensors were decommissioned and replaced; as their data continued to be 

out of the norm, even after being cleared of debris, it could be assumed that the sensor had a 

mechanical malfunction, degrading the PM sensors and rendering the data invalid.  

 

7.1.1 PM2.5 IN THE EL PASO DEL NORTE REGION   

During the two-month deployment, the sensors provided real-time data to the community. 

Table 11 shows the summary statistics of the sensors and how the levels of concentration at the 

given sites. It was found that PM2.5 fluctuated from 7.6-12.6 µg/m3 in the PdN; this fluctuation is 

based on the 48 deployed sensors. The minimum PM2.5 reported in the PdN was from one of the 

sensors located in Zach White in El Paso, with the minimum PM2.5 recorded being 1.4 µg/m3. A 

site in Mexico (UACJ-PAC11) had the highest maximum average in the PdN (81.9 µg/m3). In-

depth summary statistics for PM2.5 can be seen in Table 14 for the other 32 sites. Information on 

PM10 summary statistics can be found in the Appendix under Table add number.  
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Table 14: Summary Statistics of PM2.5 in El Paso and Cd. Juarez 
PM2.5 Summary Statistics 

Sensor Average 
Standard 

Deviation 
Minimum Maximum 

Zavala 9.1 3.0 3.8 31.1 
ZavalaEs 8.7 3.1 2.3 31.5 
Hawkins 8.4 2.8 2.6 32.9 
Bonham 9.4 3.1 2.3 33.7 
Douglass 9.2 3.3 2.6 30.3 
Coldwell 8.9 2.8 3.1 27.9 

Aoy 10.1 3.8 3.7 36.2 
AoyES 10.2 4.7 2.3 36.5 
Mesita 8.7 2.7 3.4 28.6 

Cielo Vista 8.7 2.7 2.8 31.1 
Park2 8.8 2.6 2.7 26.9 

ParkES 8.7 2.8 2.7 31.6 
Whitaker 7.6 2.9 3.7 33.7 

Western Hills 8.8 2.9 3.2 29.5 
Zach White 9.3 3.5 1.4 29.0 

UTEP 3 9.6 3.3 3.6 31.3 
UTEP 2 8.8 2.9 2.9 27.7 
UTEP 1 9.7 2.6 6.2 24.9 

UACJ-PAC07 - - - - 

UACJ-PAC13 11.0 4.7 3.2 50.4 
UACJ-PAC16 11.3 5.6 2.6 57.9 
UACJ-PAC11 12.7 7.5 3.2 82.0 
UACJ-PAC08 9.6 3.5 3.6 40.4 
UACJ-PAC22 8.9 2.9 4.0 34.1 
UACJ-PAC21 8.9 3.3 3.2 39.5 
UACJ-PAC20 9.0 3.0 4.2 32.2 
UACJ-PAC19 10.4 3.1 4.5 30.5 
UACJ-PAC04 9.8 4.4 3.5 53.1 
UACJ-PAC23 10.0 2.8 4.3 24.7 
UACJ-PAC24 10.5 3.0 4.6 25.9 
UACJ-PAC26 9.0 3.0 5.5 29.3 
UACJ-PAC25 9.0 3.0 5.5 29.3 

UACJ01 9.4 2.8 3.7 25.6 
UACJ-PAC12 - - - - 

UACJ-PAC09 9.2 4.1 2.4 47.7 
UACJ-PAC10 8.9 3.9 2.8 42.7 
UACJ-PAC01 11.7 5.2 2.7 54.7 

UACJ-PAC15** 12.3 7.1 3.4 43.7 
UACJ-PAC28 9.6 3.1 5.3 25.7 

UACJ-PAC14** 10.6 5.2 3.3 39.6 
UACJ-PAC27 8.5 3.3 4.0 31.2 
UACJ-PAC02 10.3 3.7 2.9 30.7 
UACJ-PAC03 10.9 4.6 3.1 45.3 
UACJ-PAC17 9.4 4.1 4.5 47.6 
UACJ-PAC18 10.0 4.5 2.9 50.6 
UACJ-PAC05 9.9 4.9 2.6 60.1 
UACJ-PAC06 9.6 5.2 3.7 61.0 
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7.1.2 DIURNAL PM2.5 VARIATION 

Air pollutants vary diurnally, monthly, and seasonally depending on the climates and 

weather present [130], [131]. Local weather conditions, anthropogenic activities, and geographical 

variations, primarily influence emission variation. For example, PM2.5 has different cycles 

throughout the day, with a peak occurring during the morning hours of 7:00 and 10:00 local solar 

time (LST) and having a peak early at night during 21:00 and 23:00 LST and a minimum being 

often seen between 15:00 and 17:00 LST [132].  

PM2.5 at the 32 sites followed a similar trend, with peaks in the afternoons or early evenings. 

PM2.5 peaked between the hours of 4:00 through 9:00 Mountain Standard Time (MST), with low 

PM2.5 concentrations occurring before high vehicular traffic flow at 6:00 MST. The diurnal 

patterns for the two sensors can be seen in Figure 8 for the sensors located in UTEP and UACJ; 

more sensor data can be seen in the appendix.  

 
Figure 8: Daily PM2.5 Boxplots 
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 The data gathered over the two months was also analyzed for weekly patterns, with some 

weekdays having higher concentrations than others. It was seen that the highest levels of 

concentration were during the weekends, on Saturday and Sunday, with 14 sites reporting the 

highest during Saturday and 13 sites reporting Sunday as the highest weekday. On the other hand, 

the lowest weekday during the two months was during Thursday for most of the sensors in the 

PdN. The weekday peaks can be seen below in Table 1Table 15.  
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Table 15: PM2.5 Daily Highest Concentration throughout the week 
Name on PurpleAir 

Website 
Type of Site Highest Weekday  Lowest Weekday 

Zavala 
Elementary School Saturday Thursday 

ZavalaEs 

Hawkins Elementary School Saturday Wednesday 

Bonham Elementary School Saturday Thursday 

Douglass Elementary School Sunday Thursday 

Coldwell Elementary School - - 

Aoy 
Elementary School Sunday Thursday 

AoyES 

Mesita Elementary School Sunday Thursday 

Cielo Vista Elementary School Saturday Thursday 

Park2 
Elementary School Sunday Thursday 

ParkES 

Whitaker Elementary School Sunday Wednesday 

Western Hills Elementary School Sunday Thursday 

Zach White Elementary School Saturday Thursday 

UTEP 3 

Calibration Site Sunday Thursday UTEP 2 

UTEP 1 

UACJ-PAC07 Elementary School   

UACJ-PAC13 Elementary School Saturday Thursday 

UACJ-PAC16 Elementary School Sunday Thursday 

UACJ-PAC11 Elementary School Sunday Thursday 

UACJ-PAC08 Industrial Sector Saturday Thursday 

UACJ-PAC22 
Industrial Sector Sunday Wednesday 

UACJ-PAC21 

UACJ-PAC20 
Industrial Sector Saturday Wednesday 

UACJ-PAC19 

UACJ-PAC04 Industrial Sector Sunday Friday 

UACJ-PAC23 
Industrial Sector Saturday Thursday 

UACJ-PAC24 

UACJ-PAC26 
Industrial Sector Saturday Thursday 

UACJ-PAC25 

UACJ01 Industrial Sector Saturday Wednesday 

UACJ-PAC12 Elementary School Sunday Thursday 

UACJ-PAC09 
Industrial Sector Sunday Thursday 

UACJ-PAC10 

UACJ-PAC01 Industrial Sector Saturday Thursday 

UACJ-PAC15 
Industrial Sector NA NA 

UACJ-PAC28 

UACJ-PAC14 
Industrial Sector NA NA 

UACJ-PAC27 

UACJ-PAC02 
Industrial Sector Saturday Thursday 

UACJ-PAC03 

UACJ-PAC17 
Industrial Sector Sunday Thursday 

UACJ-PAC18 

UACJ-PAC05 
Industrial Sector Saturday Thursday 

UACJ-PAC06 
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7.1.3 METEOROLOGICAL DATA IN THE EL PASO DEL NORTE REGION  

The temperature statistics can be seen in Table 16. The sensors' averages range from 66.9 

ºF to 73.7 ºF, and maximums are reported of 116.5 ºF and a minimum of 33.5 ºF. It is important to 

note that these temperatures were never meant to reflect the environmental readings, as many 

variables can affect a sensor's temperature readings. For example, the PA-II-SD sensor could have 

higher readings than the environment due to heat being generated internally from the sensor’s 

component and the level of sun exposure.  
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Table 16.:Temperature Summary Statistics in El Paso and Cd. Juarez 
Temperature 

Name on PurpleAir Website Average 
Standard 

deviation 
Minimum Maximum 

Zavala 2 68.5 12.4 39.3 99.6 
ZavalaEs 69.8 13.8 39.8 111.2 
Hawkins 70.9 13.0 40.3 102.2 
Bonham 68.7 13.2 38.3 103.8 
Douglass 70.5 11.7 42.9 98.7 
Coldwell 69.0 13.4 41.6 101.2 

Aoy 2 73.0 13.0 42.0 104.9 
AoyES 67.0 12.0 39.7 98.1 
Mesita 71.6 13.3 41.3 103.7 

Cielo Vista 70.5 14.2 37.0 105.0 
Park 2 68.9 11.6 38.0 92.6 
ParkES 68.5 12.1 38.7 97.5 

Whitaker 70.2 12.2 42.9 99.7 
Western Hills 69.4 13.9 36.3 104.7 
Zach White 69.6 14.0 39.2 108.2 

UTEP 3 67.8 12.7 38.7 100.4 
UTEP 2 68.2 12.4 39.5 100.2 
UTEP 1 72.0 11.9 47.0 101.6 

UACJ-PAC07 - - - - 

UACJ-PAC13 69.9 14.5 35.6 110.6 
UACJ-PAC16 68.2 13.1 35.5 99.4 
UACJ-PAC11 71.4 13.4 40.2 105.0 
UACJ-PAC08 69.3 14.1 36.3 104.4 
UACJ-PAC22 68.1 12.2 40.6 97.1 
UACJ-PAC21 66.9 11.7 40.2 95.0 
UACJ-PAC20 70.0 12.6 39.7 98.7 
UACJ-PAC19 69.1 12.5 39.3 98.3 
UACJ-PAC04 68.8 13.4 36.3 101.8 
UACJ-PAC23 70.8 12.4 42.6 98.9 
UACJ-PAC24 69.7 12.6 40.5 98.5 
UACJ-PAC26 73.7 13.6 44.9 104.5 
UACJ-PAC25 73.7 13.6 44.9 104.5 

UACJ01 69.8 14.7 38.7 116.5 
UACJ-PAC12 69.6 12.7 38.2 99.9 
UACJ-PAC09 69.0 13.1 38.3 102.1 
UACJ-PAC10 68.8 13.4 37.8 102.4 
UACJ-PAC01 70.1 14.1 37.2 104.4 

UACJ-PAC15** 69.2 13.2 36.6 101.1 
UACJ-PAC28 73.1 12.0 48.0 99.5 

UACJ-PAC14** 70.5 14.2 38.6 105.3 
UACJ-PAC27 67.8 12.7 38.7 100.4 
UACJ-PAC02 68.4 13.7 36.0 102.7 
UACJ-PAC03 68.4 13.5 35.9 100.7 
UACJ-PAC17 68.5 13.2 37.2 100.9 
UACJ-PAC18 68.7 13.1 37.6 101.1 
UACJ-PAC05 66.9 12.9 35.5 98.3 
UACJ-PAC06 67.2 13.2 37.1 99.9 
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 The PA-II-SD sensor also reports relative humidity; these values can be seen in Table 17, 

which are for the two-month study period. The average value recorded in the study is between 14.6 

and 19.2%, having a minimum value of 0% and a maximum value of 70.6%. Most sensors had a 

minimum of <3 % and a maximum value of >50%.  
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Table 17: Summary Statistics Relative Humidity 
Relative Humidity 

Sensors Name Average Standard deviation Minimum Maximum 

Zavala 17.0 11.5 0.0 66.1 
ZavalaEs 17.3 12.2 0.0 66.0 
Hawkins 16.0 11.3 0.1 64.3 
Bonham 16.2 12.2 0.0 65.9 
Douglass 17.7 10.5 2.0 63.2 
Coldwell 17.4 12.1 0.0 62.4 

Aoy 15.7 11.0 0.0 59.4 
AoyES 17.9 11.4 0.0 63.2 
Mesita 16.3 11.0 0.1 57.6 

Cielo Vista 16.8 11.8 0.0 63.5 
Park2 18.3 12.7 1.0 69.1 

ParkES 17.0 11.4 0.8 59.4 
Whitaker 16.8 11.4 1.0 64.3 

Western Hills 17.7 12.1 0.0 64.2 
Zach White 19.2 11.2 1.2 58.1 

UTEP 3 18.9 12.3 1.0 70.2 
UTEP 2 18.1 12.1 1.0 69.0 
UTEP 1 19.0 11.2 3.0 65.7 

UACJ-PAC07 -  -  -  --  
UACJ-PAC13 16.5 12.4 0.0 64.1 
UACJ-PAC16 16.3 12.1 0.0 66.0 
UACJ-PAC11 15.3 11.2 0.0 62.7 
UACJ-PAC08 17.3 12.5 0.0 68.2 
UACJ-PAC22 18.1 12.6 0.1 64.7 
UACJ-PAC21 17.8 12.2 0.1 63.0 
UACJ-PAC20 16.1 12.4 0.0 70.4 
UACJ-PAC19 16.7 12.1 0.0 65.5 
UACJ-PAC04 16.9 11.8 0.0 66.7 
UACJ-PAC23 16.8 12.4 0.2 69.6 
UACJ-PAC24 16.5 12.9 0.0 69.0 
UACJ-PAC26 16.4 12.3 0.0 60.1 
UACJ-PAC25 16.4 12.3 0.0 60.1 

UACJ01 16.9 11.9 0.0 62.7 
UACJ-PAC12 16.7 11.1 0.3 65.4 
UACJ-PAC09 17.3 12.5 0.0 70.6 
UACJ-PAC10 17.4 12.4 0.0 69.3 
UACJ-PAC01 15.8 11.8 0.0 67.8 

UACJ-PAC15** 17.0 11.8 0.0 63.6 
UACJ-PAC28 14.6 11.6 0.0 62.9 

UACJ-PAC14** 17.2 12.3 0.0 66.4 
UACJ-PAC27 18.9 12.3 1.0 70.2 
UACJ-PAC02 17.3 12.3 0.0 65.7 
UACJ-PAC03 17.3 12.6 0.0 66.6 
UACJ-PAC17 16.4 12.4 0.0 68.3 
UACJ-PAC18 16.8 12.4 0.0 68.1 
UACJ-PAC05 17.4 12.0 0.1 66.9 
UACJ-PAC06 18.3 12.7 0.0 65.8 
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 As mentioned previously, different meteorological conditions can have a dire effect 

on diurnal patterns for PM2.5. Therefore, with wind direction and speed having a substantial effect 

on the dispersion of this pollutant, wind roses were created to explore further the met conditions 

in the El Paso and Cd. Juarez basins. Although this study showed that most of the wind arrived 

primarily from the west, this trend was seen through the two months. The wind roses are shown in 

Figure 9.  

 

 
Figure 9: Wind Roses in the El Paso Del Norte 
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7.2. LAND USE REGRESSION MODELING OUTPUT 

The generalized linear model that has not been optimized for the most significant variations 

can be seen in Table 18, where there are no variables showing a p-value less than 0.05. Showing 

that the model needs to be optimized further, to find the variables that could have a statistically 

significant value. 
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Table 18: Generalized Linear Model for PM2.5 using selected LUR Variables 

Y Variable X Variable (in mi) Estimate Std. Error t value Pr(>|t) R2 Adj. R2 

PM2.5 Period 

Average 
(Intercept) 5.30 0.36 14.93 0.00 0.31 0.06 

 Sum Street Length 

(mi)  
-0.01 0.02 -0.53 0.60   

 Primary Roads 

(mi) 
0.29 0.43 0.67 0.51   

 Dis to Railyard 

(mi) 
0.03 0.20 0.18 0.86   

 Dis to POE (mi) -0.16 0.28 -0.57 0.57   

 Dis to MAJART 

(mi) 
0.49 0.30 1.63 0.12   

 Population (one 

housing unit) 
-0.0001 0.00016 -0.61 0.55   

 Houses  0.00046 0.00041 1.17 0.26   

PM2.5 24-Hour 

Max 
(Intercept) 16.70 1.23 13.53 0.00 0.25 -0.02 

 Sum Street Length 

(mi) 
-0.07 0.07 -0.96 0.35   

 Primary Roads 

(mi) 
0.61 1.51 0.40 0.69   

 Dis to Railyard 

(mi) 
-0.41 0.69 -0.59 0.56   

 Dis to POE (mi) -0.65 0.99 -0.66 0.52   

 Dis to MAJART 

(mi) 
1.86 1.04 1.78 0.09   

 Population(1000 

people) 
-0.00033 0.00056 -0.57 0.58   

 Houses(one 

housing unit) 
-0.00025 0.001436 -0.16 0.88   

PM2.5 1 Hour 

Max 
(Intercept) 58.78 4.89 12.01 0.00 0.24 -0.04 

 Sum Street Length 

(mi) 
-0.09 0.27 -0.33 0.75   

 Primary Roads 

(mi) 
-2.58 5.99 -0.43 0.67   

 Dis to Railyard 

(mi) 
-3.48 2.75 -1.27 0.22   

 Dis to POE (mi) 1.10 3.92 0.28 0.78   

 Dis to 

MAJART(mi) 
8.14 4.14 1.97 0.06   

 Population(1000 

people) 
-0.001 0.00022 -0.45 0.65   

 Houses(one 

housing unit) 
-0.0046 0.0057 -0.82 0.42   
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The generalized linear model in Table 19 has not yet been optimized for the variable with 

a stronger relationship with the PM10 variable. However, the population strongly correlated with 

varying PM10 variables. For example, the model shows that for every increase in the population 

the PM10 period average value  would increase by 0.00020 µg/m3.  
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Table 19: Generalized Linear Model for PM10 with LUR variables 

Y Variable X Variable Estimate Std. Error t value Pr(>|t|) R2 Adj. R2 

PM10_P_ Avg (Intercept) 5.30 0.21 25.30 0.00 0.54 0.36 

 Sum Street Length 

(mi)  
0.01 0.01 0.47 0.64   

 Primary Roads 

(mi) 
0.50 0.25 2.03 0.06   

 Dis to Railyard 

(mi) 
-0.19 0.12 -1.65 0.12   

 Dis to POE (mi) 0.09 0.16 0.55 0.59   

 Dis to MAJART 

(mi) 
0.04 0.17 0.24 0.81   

 Population(1000 

people) 
0.00020 -0.000089 2.26 0.04   

 Houses(one 

housing unit)  
-0.00074 0.00023 -3.22 0.00   

PM10_24hr_Max (Intercept) 16.47 0.48 34.65 0.00 0.20 -0.11 

 Sum Street Length 

(mi) 
-0.01 0.03 -0.16 0.87   

 Primary Roads 

(mi) 
0.11 0.56 0.20 0.84   

 Dis to Railyard 

(mi) 
0.40 0.26 1.52 0.15   

 Dis to POE (mi) -0.03 0.37 -0.09 0.93   

 Dis to MAJART 

(mi) 
-0.60 0.40 -1.51 0.15   

 Population(1000 

people) 
0.00022 0.00020 1.09 0.29   

 Houses(one 

housing unit)   
0.00047 0.00052 0.91 0.38   

PM10_1hr_ 

Max 
(Intercept) 1.41 0.20 7.19 0.00 0.26 -0.03 

 Sum Street Length 

(mi) 
-0.01 0.01 -0.83 0.42   

 Primary Roads 

(mi) 
-0.03 0.23 -0.13 0.90   

 Dis to Railyard 

(mi) 
-0.03 0.11 -0.29 0.78   

 Dis to POE (mi) -0.06 0.15 -0.39 0.70   

 Dis to MAJART 

(mi) 
0.18 0.16 1.08 0.30   

 Population(1000 

people) 

-

0.000084 
-0.000083 -1.01 0.32   

 Houses(one 

housing unit) 
0.00034 0.00021 1.61 0.13   
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It was found that PM2.5 had a statistically significant relationship with “Dis_to_MAJART,” 

and “PM2.5 period average.” It was found that per each mile increase in the “Dis_to_MAJART,” 

the PM2.5 would increase by 0.43 µg/m3 , this can further be seen in Error! Reference source not 

found.. Furthermore, there is a borderline statistically significant value, between the “PM2.5 24-

Hour Max” and the “Dis_to_MAJART,” where per each mile increase to the “Dis_to_MAJART” 

there will be an increase in PM2.5 of 1.16 µg/m3.  

 

Table 20: Generalized Linear Model II for PM2.5 using LUR variables that have a higher affinity 

with PM2.5 

Yvar Xvar Estimate Std. Error t value Pr(>|t|) R2 Adj. R2 

PM2.5 Period 

Average 
(Intercept) 5.29 0.33 16.16 0.00 0.22 0.19 

 Dis_to_MAJART 

(mi) 
0.43 0.16 2.67 0.01   

PM2.5 24-Hour 

Max 
(Intercept) 16.60 1.14 14.50 0.00 0.15 0.11 

 Dis_to_MAJART 

(mi) 
1.16 0.56 2.06 0.05   

PM2.5 1 Hour 

Max 
(Intercept) 58.25 4.50 12.95 0.00 0.14 0.11 

 
Dis_to_MAJART 

(mi) 
4.45 2.30 1.93 0.06   

 

It was found that PM10 had a strong linear relationship with “Primary_Roads,” 

“Dis_to_Railyard,” “Population,” and “Houses” for “PM10 period average,” “PM10 24 Hour Max,” 

and “PM10 1 Hour Max.” For example, for each one-mile increase in primary roads, PM10 can 

increase by 0.51 µg/m3 for PM10, and an increase in population could cause an increase of  0.0002 

µg/m3 in PM10, and an increase in houses could cause a 0.00071 µg/m3 in PM10 for the Y variable, 

“PM10 period average. Finally, houses affected the hourly maximum PM10, in which an increase 

in houses could lead to an increase of 0.00037 µg/m3
. This can further be seen in Table 21. 
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Table 21: Generalized Linear Model II for PM10 using selected LUR variables 

Yvar Xvar Estimate Std. Error t value Pr(>|t|) R2 Adj.R2 

PM10 Period 

Average 
(Intercept) 5.31 0.19 27.65 0.00 0.52 0.43 

 Primary_Roads(mi) 0.51 0.22 2.35 0.03   

 Dis_to_Railyard(mi) -0.14 0.08 -1.82 0.08   

 Population(1000 

people) 
0.0002 -0.000057 3.54 0.00   

 Houses 0.00071 0.00021 -3.43 0.00   

PM10 24-Hour 

Max 
(Intercept) 16.47 0.43 38.29 0.00 0.16 0.05 

 Dis_to_Railyard(mi) 0.31 0.18 1.72 0.10   

 Dis_to_MAJART(mi) -0.53 0.35 -1.53 0.14   

 Population(1000 

people) 
0.00025 0.00017 1.47 0.16   

PM10 1 Hour 

Max 
(Intercept) 1.38 0.17 7.92 0.00 0.17 0.14 

 Houses(one housing 

unit) 
0.00037 0.00017 2.22 0.04   
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

8.1  LOW-COST SENSOR PERFORMANCE  

Over the years, the use of low-cost air quality sensors has steadily increased, offering a 

cheap and easy solution for cheap air monitoring; as such, they have grown in popularity with the 

public and have garnered interest from institutions. Consequently, low-cost sensors have been 

widely applied to respond to high pollution areas and to ease the general public's worries. 

Nevertheless, there have been doubts regarding the accuracy and reliability of these units, 

especially when compared to the results reported from regulatory monitoring stations.  

A PM2.5 monitoring campaign was conducted for two months in March and April 2021, 

where the sensors were deployed across 32 sites, 12 in El Paso and 20 in Cd. Juarez, to establish a 

set of PM2.5 data. The selection criteria for the sites were made according to the AADT, sites with 

low or high AADT. During the study period, the sensors worked to their specifications; this was 

shown in their inter-channel and inter-sensor correlations. However, it was found that the sensors 

were highly subjected to different environmental conditions that could degrade the internal 

components of the units. For example, an intense dust event during the study period affected six 

of the deployed sensors, where maintenance had to be conducted, and only three out of the six 

could be salvaged.  

The low-cost sensors produced consistent data, showing a similar PM2.5 mean trend among 

the sensors. As for the sensors located in El Paso, they showed that high AADT sites had slightly 

larger PM2.5 concentrations (9.26±0.59) µg/m3 than what was found in low AADT sites 

(8.63±0.54) µg/m3. Cd. Juarez had two types of site locations: industrial and school zones. The 

school zones located in high AADT in Cd. Juarez showed values of 11.66±0.87 µg/m3; 

unfortunately, the site located in the low AADT zone, was reporting values outside of the 

specifications of the manufacturer, and those data points were not included in this study. On the 

other hand, the industrial sites showed different levels; sites in high AADT zones were lower 

(9.48±0.61) µg/m3 than what was seen in low AADT sites (10.06±1.07) µg/m3, the cause of this 
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lower concentration was due to street work currently taking place in the city, which caused atypical 

vehicular flow. In general, it was found that PM2.5 concentrations were lower in El Paso than in 

Cd. Juarez.  

 

8.2.  LAND-USE REGRESSION MODELING   

The LUR modeling was conducted for two different pollutants, PM10  and PM2.5, using 10 

different variables, with 3 variables for traffic conditions and 7 variables for the sum of street 

length, primary roads, distance to railyards, distance to the POE, distance to the MAJART, the 

population, and the number of homes.  The predictor values were developed within a zone of 

influence of 500m in the radius for each of the 32 sites. It was found that the distance to the 

MAJART would increase the concentration of PM2.5 by 0.43 µg/m3 and 1.16 µg/m3 for “PM2.5 

period average” and “PM2.5 24-hour max”, respectively. In addition, for each mile increase in 

primary roads, PM10 was seen to increase by 0.51 µg/m3, and an increase in PM10 by 0.14 µg/m3 

for the “PM10 period average” variable for each mile decrease to the nearest railyard.  

 

8.3.  FURTHER RESEARCH  

The rapid demand for low-cost sensors has prompted manufacturers to develop and 

produce different low-cost sensors yearly. While technology advances, the sensor's accuracy, and 

precision, compared to a reference station, are still challenged while technology advances. 

Therefore, a correction factor must be developed and maintained throughout a project. Maintaining 

an extensive network of sensors can become cumbersome and create complications in sensor 

retrieval for re-calibration. As such, a general correction factor could be created from a singular 

sensor that remains at the reference station; this would allow the correction to be updated and 

adapted for different meteorological conditions.  

The LUR model requires further research to identify different variables that can play a 

significant role in creating the model. In addition, as this model was done bi-nationally, it was not 
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easy to have the same level of detail in geographic and transportation data. Therefore, the model 

is limited to what is available for both countries. Also, the traffic variables are based on long-term 

measurements, which creates inconsistencies with the study periods.  
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APPENDIX 

Table 22: PM10 Summary Statistics 
Sensor Average Standard Deviation Minimum Maximum 

Zavala 3.74 4.67 0.01 53.69 

ZavalaEs 13.15 15.6 0.14 164.2 

Hawkins 4.82 6.18 0.23 139.6 

Bonham 5.27 7.19 0.58 158.43 

Douglass 5.1 5.72 0.17 79.07 

Coldwell 4.06 5.35 0.02 97.08 

Aoy 14.5 18.1 0.26 185.4 

AoyES 6.48 8.98 0.22 157.07 

Mesita 4.07 5.36 0.04 92.7 

Cielo Vista 6.77 8.36 0.35 180.83 

Park2 4.52 4.84 0.05 57.73 

ParkES 3.68 5.32 0 97.67 

Whitaker 4.31 5.55 0.03 111.82 

Western Hills 3.51 4.4 0 59.15 

Zach White 4.77 5.84 0.05 79.38 

UTEP 3 4.14 4.46 0.07 48.3 

UTEP 2 5.15 6.63 0.05 100.55 

UTEP 1 5.55 5.33 0.29 57.23 

UACJ-PAC07 - - - - 

UACJ-PAC13 9.47 13.19 0.3 212.93 

UACJ-PAC16 8.04 12.72 0.11 220.54 

UACJ-PAC11 5.08 5.38 0.27 52.3 

UACJ-PAC08 5.84 7.84 0.08 116.62 

UACJ-PAC22 4.51 7.71 0.06 125.88 

UACJ-PAC21 4.64 7.76 0.02 113.7 

UACJ-PAC20 4.48 6.14 0.03 108.07 

UACJ-PAC19 7.57 8.69 0.26 166.93 

UACJ-PAC04 6.89 10.54 0.14 143.7 

UACJ-PAC23 7.52 10.36 0.14 123.19 

UACJ-PAC24 9.65 7.95 0.61 69.66 

UACJ-PAC26 7.62 6.38 1.12 61.17 

UACJ-PAC25 7 6.46 0.12 54.65 

UACJ01 5.97 6.6 0.23 100.77 

UACJ-PAC12 - - - - 

UACJ-PAC09 6.22 9.08 0.11 143.58 

UACJ-PAC10 6.13 8.37 0.05 116 

UACJ-PAC01 11.62 14.88 0.5 281.95 

UACJ-PAC15** 6.43 6.1 0.13 55.15 

UACJ-PAC28 7.48 9.85 0.07 112.7 

UACJ-PAC14** 8.5 6.95 1.19 66.36 

UACJ-PAC27 8.22 12.58 0.09 202.02 

UACJ-PAC02 120.3 748.7 0.42 5554.3 

UACJ-PAC03 7.38 6.79 0.73 64.68 

UACJ-PAC17 4.7 7.8 0.02 114 

UACJ-PAC18 - - - - 

UACJ-PAC05 7.71 10.03 0.37 158.51 

UACJ-PAC06 5.31 9.75 0.04 163.63 
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Figure 10: Diurnal Variation Box Plots For El Paso Texas 
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Figure 11: Diurnal Variation Box Plots for Cd. Juarez Mexico 
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