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Abstract

In olivine chalcogenide Mn2SiX 4 (X = S, Se) compounds, the Mn lattice produces a sawtooth,

which is of critical significance in magnetism due to the potential for manifesting at bands in the

magnon spectrum, a crucial component in magnonics. The compounds Mn2SiS4 and Mn2SiSe4

in Mn2SiX 4 family undergo antiferromagnetic phase transitions at T ≈ 85 K and ≈ 66 K, re-

spectively, as determined from the specific heat, Cp(T). The average and local crystal structures

are determined using synchrotron X-ray, neutron diffraction, and X-ray total scattering data fol-

lowed by Rietveld and pair distribution function (PDF) analysis. It is found from PDF that the

Mn triangle that constitutes the sawtooth is isosceles in Mn2SiS4 whereas it is nearly equilateral

in Mn2SiSe4. The magnetic phase transitions in Mn2SiX 4 seen in bulk measurements are con-

firmed using neutron diffraction in this work, and the magnetic structures accurately estimated.

We find that the Mn spins adopt a ferromagnetic alignment on the sawtooths in both Mn2SiS4

and Mn2SiSe4 but along different crystallographic directions. By following the thermal evolution

of the refined magnetic moment at the Mn site, obtained from refining the neutron diffraction

data, the transition temperatures are accurately determined as TN(S) = 83(2) K and TN(Se)

= 70.0(5) K. The magnetic space groups are determined as Pnma and Pnm′a′ for Mn2SiS4

and Mn2SiSe4, respectively. The magnetic excitations studied using inelastic neutron scattering

reveal a magnon excitation with an energy corresponding to 4.5 meV in both the compounds.

Melaku S. Tafere
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Chapter 1

Olivines

The chemical formula for olivine is B2AX4 (orthorhombic space group Pnma), and its X an-

ions have almost regular hexagonal close-packed (hcp) dispositions, while the A cations are in

tetrahedral coordination and the B cations are in distorted octahedral coordinations[1]. There

are four magnetic ions per cell on 4a sites with inversion symmetry and four magnetic ions per

cell on 4c sites with mirror symmetry in the case of the magnetic olivines (B = Mn, Fe, Co).

The 4a positions coordinates are as follows: (0, 0, 0); (0, 1
2 , 0); (1

2 , 0, 1
2); (1

2 , 1
2 , 1

2), and the

coordinates for the 4c atoms inside the cell are: (x, 1
4 , z); (-x, 3

4 , -z); (1
2 -x, 3

4 , 1
2+z); (1

2 + x, 1
4 , 1

2

- z), where for each type of olivine, x and z must be determined by neutron or X-ray diffraction.

The olivine structure is the hcp counterpart of the spinel structure and is exemplified by the

minerals forsterite (Mg2SiO4) and triphylite (LiFePO4)[2]. Within a hcp array of O atoms, Si or

P occupy one-eighth of the tetrahedral sites, Mg or Li occupy half of the octahedral sites, and

Fe occupy half of the octahedral sites. Li and Fe in LiFePO4 occupy two crystallographically

different octahedral positions in olivine, which are occupied in an orderly fashion. Figure 1.0.1

shows the crystal structure, while Table 1.1 lists various olivines. Olivines are mostly made up

of oxides, but they can also contain sulfides, selenides, and fluorides. In oxides, the three cations

have a net charge of 8+ due to various cation charge combinations[2]. The major mineralogical

constituents of the Earth’s upper mantle are assumed to be olivines (mostly forsterite, Mg2SiO4)

and fayalite, Fe2SiO4. Many olivines transform to spinel structure at high pressures, and spinels

are most likely the major element of the Earth’s lower mantle. The creation of mountain ranges

and undersea ridges may have been influenced by the volume variations related with the olivine

to spinel phase changeover throughout the Earth’s evolution. Due to the drop in pressure, spinel

material from the lower mantle was forced upwards to the Earth’s surface and converted into

1



olivine.

Figure 1.0.1: Olivine structure of LiFePO4. The black sphere is Li, the cyan color is P and the
red is O. Image taken from [2].

Table 1.1: Some compounds that crystallize in the olivine structure. The octahedral and tetra-
hedral sites are related to valency of cations (positively charged) and anions (negatively charged)
and coordination number.

General formula

Octahedral site Tetrahedral site hcp anion Examples

II IV O4 Mg2SiO4 (forsterite)
Fe2SiO4 (fayalite)
Ca,Mg SiO4 (monticellite)
γ -Ca2SiO4

A2GeO4: A = Mg, Ca, Sr, Ba, Mn
III II O4 Al2BeO4 (chrysoberyl)

Cr2BeO4

II, III III O4 MgAlBeO4

I, II V O4 LiFePO4 (triphylite)
LiMnPO4 (lithiophylite)

I, III IV O4 LiRESiO4: RE = Ho, . . . , Lu
NaREGeO4: RE = Sm, . . . , Lu
LiREGeO4: RE = Dy, . . . , Lu

II IV S4 Mn2SiS4

Mg2SnS4

Ca2GeS4

I II F4 γ-Na2BeF4

2



1.1 Physical properties of olivines

Despite the phase transition temperatures (TN) noted in the magnetic susceptibility and the no-

table variation in the magnitude of magnetic susceptibility seen for the two sets of compositions

in Figure 1.1.1 panels (a) and (b). In the instance of Mn2SiS4, the magnetic phase transition

manifests as a sharp anomalous peak at TN = 83.7 K. The peak at the phase transition weak-

ens when S is gradually replaced by Se, and eventually, for Mn2SiSe4, a very broad feature is

observed below ≈ 65 K[3].

A similar compound iron chalcogenides, particularly iron pyrite was investigated[4], which has

promising future to be a useful material for cost effective thin film photovoltaics. Fe2M S4 (M

= Ge, Si), a different class of iron chalcogenides that has been suggested as a potential replace-

ment for pyrite, has only been studied for its remarkable magnetic properties. The compounds

have the potential to be used in solar cells because they are p-type and easily create photo

current[4]. Another motivation for the study of olivine chalcogenides is their high thermopower.

Similar compounds Fe2GeS4 and Fe2GeSe4 were investigated for the thermoelectric properties

and showed a high thermopower above 300 µV K−1[5]. The report found that Fe2GeTe4 exhibits

a bipolar thermoelectric nature as a result of its narrow band gap. Comparing the olivine type

Fe2GeCh4 (Ch = S, Se and Te) structure to the marcasite and pyrite structures, it is discovered

to have a greater estimated thermopower. Fe2GeS4 and Fe2GeSe4 among the studied systems

have excellent thermoelectric characteristics, particularly along the b and c axes. Because of

the band structure features in Mn2SiS4 and Mn2SiSe4) these materials could be useful for ther-

moelectric applications[3]. The study indicates both compounds exhibit thermal conductivity

resembling that of semiconducting materials, where phonons predominate the heat transport.

At low temperatures, the thermal conductivity rapidly rises with temperature, forming a no-

ticeable maximum below 50 K, before dropping to room temperature. The maximum occurs at

low temperatures because thermal scattering is lower there
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Figure 1.1.1: The magnetic susceptibility of Mn2SiS4 xSex (x = 0-4) obtained in 500 Oe field
cooled condition presented for the x = 0, 1, 4 in panel(a) and x = 2, 3 in panel(b). The inset of
panel(a)shows the TN ’s as a function of Se-content(x). The insets (1) and (2) in panel(b) shows
the 1/χfc

dc(T ) curves of Mn2SiS4 and Mn2SiSe4 respectively along with Curie-Weiss fit(red solid
line).(c-g)The derivative, dM/dT versus temperature showing the multiple anomalies present in
each composition[3].

Fe2GeSe4 exhibits a similar trend for the indirect band gap1 along the Γ of the valence band

maximum (VBM) and at the e conduction band minimum (CBM). Nevertheless, it is discovered

that Fe2GeTe4 is a direct band gap semiconductor2, with both the VBM and CBM occurring at

1Indirect band gap semiconductor, the maximum energy of the valence band occurs at a different value of
momentum to the minimum in the conduction band energy.

2Direct band gap semiconductor, the top of the valence band and the bottom of the conduction band occur at
the same value of momentum.

4



Γ point. The hybridization3 between Fe-Ch states is provided by the octahedra that are created

when Fe and Ch combine. The Fe-3d orbitals are separated into three filled represented by t2g

and empty doublet represented by eg states by the octahedral crystal field splitting. Figure 1.1.2

presents a schematic illustration of the crystal field splitting of Fe-3d. The full triplet states of

t2g, together with a negligibly small amount from Fe-3deg and S-3p, contribute to the VBM as

non-bonding states. The chalcogen-p states and the empty doublet states of Fe-3deg combine to

generate the bonding states below the VBM. The anti-bonding states that make up the CBM

are formed by the higher energy states of chalcogen-p and Fe-3deg. In suitably ordered systems,

Figure 1.1.2: Schematic representation of octahedral crystal field splitting of Fe-d states in
Fe2GeCh4 [5].

certain magnetic structural motifs, such as corner-sharing triangles of isotropic transition-metal

ions, can lead to geometric frustration if the interaction between spins is antiferromagnetic.

The Mn lattice’s sawtooth-like triangular arrangement is the key structural characteristic of

Mn2SiX 4 compounds from the perspective of magnetism [6]. Magnetic compounds with a saw-

tooth arrangement of transition metal spins have special interest in the context of zero-energy

flat-band modes, similar to those observed in kagome lattices[7]. The presence of such modes

imply that, in favourable circumstances, the sawtooth lattice can develop complex magnetic

3Hybridization is a process in which two similar magnets are combine to form a new magnet/magnetic field.
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ground states rather than conventional ordered ones. The flat-band systems offer promises for

dissipation-less propagation of different types of waves[8]. The main interest in the sawtooth

lattice originated as a theoretical aspect, in studying the excitation in a ∆ chain of S = 1/2

spins[9]. Given the importance of sawtooth-based lattices in magnonics, an important emerging

field, it is motivating to engage in the search for new sawtooths or detailed re-investigation of

less-studied ones. Olivine chalcogenides is a family of compounds which is interesting due to the

above-mentioned aspects of sawtooth magnetism and flat electronic and magnonic bands.The

ground state of the ∆ chain is two-fold degenerate with the spin pairs at the triangular vertices

forming a spin-singlet. The spin excitation in the chain is given by a kink-antikink pair which

has a dispersionless energy gap[9, 10].

Previous studies indicated a weak ferri or ferromagnetic component exists in a narrow temper-

ature window between 83 K and 86 K, while displaying uniaxial anisotropy with the b direction

as the easy axis[1]. The origin of weak ferromagnetism and the unusual temperature dependence

of the spin-flop critical field is unclear in olivines despite evidences from neutron scattering ex-

periments. At 4.2 K a collinear ferromagnetic arrangement of the Mn spins at the two distinct

crystallographic positions of 4a (a site with inversion symmetry) and 4c (mirror symmetry), was

observed along the b axis. As the temperature increases to 83 K, the orientation of the 4a spins

turns in the ab plane. At 83 K, both the 4a and the 4c spins reorient along the a axis but with

some canting in the ac plane. It is in the very small temperature range of 83-86 K that spins

at two different crystallographic positions display weak ferromagnetism. The paramagnetic to

antiferromagnetic transition was identified as belonging to the Heisenberg universality class and

the weak ferromagnetic transition as first order with a latent heat approximately 0.01 J/mol[11].

It is also reported that a very low value of magnetic entropy, about 5% of Rln(2S+ 1), is found

to be released at the antiferromagnetic transition, indicating that the spin entropy is not com-

pletely removed at the TN . In addition, purely magnetic intensity was observed in neutron

diffraction data measured up to 140 K[1].

6



In this thesis we first present synchrotron X-ray based analysis of long and short-range structure

of the two compounds. The local structure is characterized through pair-distribution function

analysis. Further, we present the nuclear and magnetic structures of both the compounds, de-

termined through time-of-flight neutron diffraction experiments. The magnon dispersion of the

two olivines are presented for the first time through inelastic neutron scattering experiments.

We then present the results from bulk measurements of magnetic susceptibility, and specific

heat, Cp(T ), of Mn2SiS4 and Mn2SiSe4 through which we identify the magnetic phase transition

temperatures.
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Chapter 2

Experimental methods

This chapter discusses solid-state synthesis, the physics behind X-ray diffraction, synchrotron

X-ray diffraction techniques, neutron powder diffraction, magnetic susceptibility, and specific

heat of solids.

2.1 Solid-state synthesis

Solid-state synthesis, often known as the ceramic method, is a chemical reaction that results

in the formation of a new solid with a well-defined structure from solid starting elements[2].

Polycrystalline materials, single crystals, glasses, and thin-film materials are examples of end

products that are widely used in energy and electronic applications[2]. The ceramic method,

which involves grinding powders of oxides, carbonates, oxalates, or other compounds containing

the relevant metals and heating the mixture at a specified temperature after pelletizing the ma-

terial, is the most popular way of creating metal oxides and other solid materials. This process

has been used to make a variety of oxides, sulfides, phosphides, and other chemicals. Even when

the reaction is nearly complete, it might be challenging to generate compositionally uniform

products using the ceramic approach. Despite these constraints, ceramic techniques have been

utilized to successfully synthesize a wide range of solid materials.

Mn2SiS4 xSex (x= 0-4) was formed by reacting the elements Mn, Si, S, and Se (99.99%, Aldrich).

Prior to pelleting and loading into a 10 mm diameter quartz ampule in a N2-filled glove box,

stoichiometric amounts of these elements were carefully measured, mixed, and weighed using a

mortar and pestle. A dynamic vacuum with a pressure less than 10−3 mTorr was used to flame-
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seal the quartz tubes. The reaction mixtures were heated at a temperature of 1000◦C for 24

hours before being cooled at a rate of 100◦C/h to room temperature. Samples were re-ground,

pelleted, and annealed under the same conditions as required to enhance the phase purity and

crystallinity. The removal of oxygen from silica is thought to be aided by iron particles. In a

reducing atmosphere, the iron oxide generated in such a reaction would easily be reduced back

to metal particles.

The sol–gel method is another technique for making solid materials out of tiny molecules. Metal

oxides, particularly those of silicon (Si) and titanium (Ti), are made using this approach (Ti).

The method entails converting monomers into a colloidal solution (sol), which serves as a precur-

sor for forming an integrated network (or gel) of discrete particles or network polymers. Metal

alkoxides are common precursors.

The sol–gel process leads to the creation of a gel-like network with both a liquid and solid

phase. Metal alkoxides and metal chlorides are common precursors, which are converted to

colloid through hydrolysis and polycondensation processes. From tiny colloidal particles to con-

tinuous chain-like polymer networks, the solid phase’s basic structure or morphology can vary

greatly[12].

2.2 Crystal structures

Solid state chemistry is primarily concerned with the synthesis, structures, characteristics, and

applications of crystalline inorganic materials[2]. Crystal structures and crystal chemistry are

ideal places to start. Data on unit cells, their size, and the locations or atomic coordinates

of atoms within the unit cell contain all relevant crystal structure information. This basic

structural information is combined with knowledge about the elements, their primary oxidation

states, ionic radii, coordination requirements, and preferences for ionic/covalent/metallic bond-

ing in crystal chemistry. A working knowledge of the periodic table and element properties is,

of course, necessary to appreciate crystal chemistry, but knowledge of crystal structures, par-

ticularly crystal chemistry, is a highly useful method to obtain a better understanding of the

elements and their compounds.
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2.2.1 Crystal systems

We can construct unit cells of various shapes by dividing space by three sets of planes, depending

on how the planes are arranged[13]. The unit cell is cubic, for example, if the planes in the three

sets are all equally spaced and mutually perpendicular. The vectors a, b, and c1 in this case are

all equal and at right angles to each other, or a = b = c and α = β = γ = 90°2. Because the

points of the lattice are positioned at the cell corners, we can build unit cells of various forms

and hence various types of point lattices by giving special values to the axial lengths and angles.

It turns out that all of the potential point lattices can be represented by only seven different

types of cells. These correspond to the seven crystal systems that can be used to categorize all

crystals. Table 2.1 contains a list of these systems.

Seven different point lattices can be obtained simply by putting points at the corners of the

unit cells of the seven crystal systems. Bravais, a French crystallographer, focused on this sub-

ject and established in 1848 that there are only fourteen possible point lattices and no more; we

refer to this crucial result as Bravais lattice and point lattice as synonymous [13]. For instance,

if a point is placed at the center of each cell of a cubic point lattice, the new array of points also

forms a point lattice. A cubic unit cell with lattice points at each corner and in the center of

each face can also be used to create another point lattice. Table 2.1 and Figure 2.2.1 show the

fourteen Bravais lattices, with the symbols P, F, I, and so forth.

To begin, we must distinguish between simple (or primitive) cells (symbol P) and nonprimitive

cells (any other symbol): primitive cells have just one lattice point per cell, whereas nonprimitive

cells have multiple. A lattice point in a cell’s interior ”belongs” to that cell, whereas one on the

cell face is shared by two cells and one at the corner is shared by eight. As a result, the number

1a, b and c are lattice parameters (the length of the lattice).
2α, β and γ are inter-axial angles, lattice parameters between a, b and c.
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of lattice points per cell is given by

N = Ni +
Ni

2
+
Nc

8
(2.1)

where Ni denotes the number of inner points, Nf denotes the number of points on the face, and

Nc denotes the number of points on the corner. Any cell with only lattice points on the corners

is considered primitive, but one with additional points in the interior or on faces is considered

nonprimitive.

Table 2.1: Crystal systems and Bravais lattices

System Axial lengths and angles Bravais Lattice
lattice symbol

Primitive P
Cubic Three equal axes at right angles Body-centered I

a = b = c, α = β = γ = 90° Face-centered F

Tetragonal Three axes at right angles, two equal Primitive P
a = b 6= c, α = β = γ = 90° Body-centered I

Primitive P
Orthorhombic Three unequal axes at right angles Body-centered I

a 6= b 6= c, α = β = γ = 90° Base-centered C
Face-centered F

Rhombohedral/Trigonal Three equal axes,equally inclined Primitive P
a = b = c, α = β = γ 6= 90°

Two equal coplanar axes at 120°,
third axis at right angles Primitive P

Hexagonal a = b 6= c, α = β = 90°, γ = 120°

Three unequal axes one pair not at right angles Primitive P
Monoclinic a 6= b 6= c, α = γ = 90° 6= β Base-centered C

Three unequal axes,unequllay inclined
and none at right angles Primitive P

Triclinic a 6= b 6= c, α 6= β 6= γ 6= 90°
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2.2.2 Symmetry

Both Bravais lattices and the real crystals formed on top of them have different types of sym-

metry. A body or structure is considered to be symmetrical when its constituent elements are

structured in such a way that specific operations could be done on it to bring it into alignment

with itself. These are termed symmetry operations. For example, if a body is symmetrical in

relation to a plane that passes through it, then reflection of either half of the body in the plane,

as in a mirror, will produce a body that is identical to the other half.

2.3 X-ray diffraction

2.3.1 Scattering by an electron

The scattering phenomenon begins with electron in the atom[13]. The X-ray tube, which emits

X-rays due to the fast deceleration of electrons reaching the target, is a good illustration of this

phenomena. Similarly, during its journey, an electron set into oscillation by an X-ray beam accel-

erates and decelerates continually, emitting an electromagnetic wave. A beam of X-rays that an

electron scatters is just the beam that the electron emitted while being hit by the incident beam.

X-rays collide with an electron in the atom and are scattered isotropically. This was studied by

the discoverer of electron J.J Thomson[14]. And his equation is given by:

Ip = Io
K

r2

(1 + cos2 2θ)

2
(2.2)

where Ip is intensity of scattered beam at P , Io is the intensity of incident beam at O, K is

constant, r is distance of P from O and 2θ scattered angle between transmitted and scattered

beam, refer Figure 2.3.1. From Figure 2.3.1 intensity of the diffracted beam from an electron

varies as a function of 2θ. The factor ( (1+cos2 2θ)
2 ) which depends on the angle θ, because

the scattered radiation becomes partially polarized, which creates a certain anisotropy in the

vibrational directions of the electron, as well as a reduction in the scattered intensity (depending
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Figure 2.2.1: The fourteen Bravais lattices. Image taken from [13].

of the direction).

2.3.2 Scattering by an atom

When an X-ray beam collides with an atom, each electron scatters coherently a part of the

energy, according to the Thomson equation[14]. Because the nucleus has a charge and should be

13



Figure 2.3.1: Scattering of X-rays by a single electron. Image taken from [13]

capable of oscillating under the influence of the incident beam, one may expect it to contribute

in coherent scattering as well. However, because the nucleus has a large mass in comparison to

the electron, it cannot be made to oscillate to any great extent; in fact, the intensity of coherent

scattering is inversely related to the square of the scattering particle’s mass, as shown by the

Thomson equation. The ultimate result is that an atom’s coherent scattering is attributed only

to its electrons. An atom with the atomic number Z, scatters a wave with Z times the amplitude

of the wave scattered by a single electron. This is because if the scattering is in the forward

direction (2θ = 0), all of the atom’s electrons’ waves will be in phase, and the amplitudes of all

the scattered waves can be summed. The efficiency of scattering of a particular atom in a given

direction is described by a quantity f , the atomic scattering factor. It’s a ratio of amplitudes:

f =
amplitude of the wave scattered by an atom

amplitude of the wave scattered by one electron
(2.3)

As θ increases, the waves scattered by individual electrons become increasingly out of phase,

and f drops. f is also affected by the wavelength of the incident beam: if θ is constant, f will

be smaller as the wavelength of the incident beam becomes shorter.

The study of X-rays has a close connection with the study of crystal structure. When Ger-
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man physicist von Laue took up the subject in 1912, he was the first to tackle it. He reasoned

that if crystals were made up of regularly spaced atoms that could act as X-ray scattering

centers, and if X-rays were electromagnetic waves with wavelengths roughly equivalent to the

interatomic spacing in crystals, then diffracting X-rays using crystals should be possible. Exper-

iments were carried out under his direction to test this hypothesis: a copper sulfate crystal was

placed in the path of a narrow beam of X-rays, and a photographic plate was set up to record

the presence of diffracted beams, if any [13]. The first experiment was a success, proving that

X-rays were diffracted off of the original beam by the crystal, forming a pattern of spots on the

photographic plate. These experiments demonstrated both the wave nature of X-rays and the

periodicity of atoms within a crystal at the same time.

The diffraction of X-rays by crystals is similar to reflection of visible light by mirrors. The

planes of atoms appear to be small mirrors that reflect the X-rays. However, diffraction and

reflection are fundamentally different in at least three ways:

(1) Each crystal atom along the direction of the incident beam scatters a certain number of rays,

which combine to form the diffracted beam from a crystal. Only a small portion of the surface

reflects visible light. (2) Only incidence angles that follow the Bragg law enable monochromatic

X-rays to diffract (discussed below). Any angle of incidence can allow visible light to reflect.

(3) Nearly all of the light that can be seen is reflected by a good mirror. A diffracted X-ray

beam’s intensity is minimal in comparison to the incident X-ray beam. Figure 2.3.2 shows that

there wouldn’t be a diffraction if only a small amount of X-ray absorption and transmission were

occurring in the crystal. In the absence of diffraction, only transmission beams or a central spot

should have been seen. Diffraction, in general, is a scattering phenomenon that happens when

a large number of atoms interact with one another. The periodic arrangement of the atoms on

the lattice gives rise to definite phase relations between the rays that are scattered by them;

these phase relations are such that destructive interference occurs in the most of of scattering

directions, whereas constructive interference occurs in a small number of directions, leading to

diffracted beams.
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Figure 2.3.2: In a diffractometer, a beam of X-rays strikes a crystalline material (left image),
producing an X-ray diffraction pattern that can be analyzed to determine the crystal structure
(right image). Image taken from [15].

X-rays are very energetic electromagnetic rays with an energy ranging from 200 eV to 1 MeV.

X-rays are produced in an X-ray tube when accelerating electrons hit a target anode it starts to

decelerating and loosing energy results a release of an electromagnetic radiation which identified

as an X-ray. X-ray powder diffraction is an effective technique which gives information about a

crystal structure and the arrangement of atoms in a crystalline sample. When a monochromatic

X-ray arrive on a sample, the intensity of a diffracted X-rays are measured as a function of a

scattered angle.

Bragg’s law, describes the reflection of X-rays on the surface of imaginary mirrors generated by

atomic planes in the crystal lattice (shown in Figure 2.3.3 as horizontal lines containing scatter-

ing centers, that is, atoms shown as black circles in the image). Because of the crystal’s repeated

nature, these planes would be separated by a constant distance d. Mathematically Bragg’s law

is given by[16];

2d sin θ = nλ (2.4)
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where λ is the wavelength of the X-ray, d is the spacing of the crystal layers (path difference),

θ is the incident angle (the angle between incident ray and the scatter plane), and n is the

diffraction order (an integer). Figure 2.3.4 shows the detector rotates around the sample in a

Figure 2.3.3: Bragg’s Law: X-rays incident on the crystal at an angle θ produce coherent
diffraction (in phase) when the difference in the distance travelled is equal to an integral number
of the wavelength (nλ). Figure adapted from[16].

.

circle. The angle (2θ) of the detector position is recorded. The detector keeps track of how

many X-ray photons are seen at each angle 2θ. The intensity of X-rays is commonly measured

in counts or counts per second. The incident angle ω changes alongside with 2θ to keep the

X-ray beam properly focused. Rotating the sample or the X-ray tube is one way to accomplish

this.
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Figure 2.3.4: The detector moves in a circle around the sample and records the number of X-ray
photons observed at each angle 2θ (top panel). A plot showing the intensity of X-rays scattered
at different angles by a sample which is known to be an X-ray powder diffraction pattern (bottom
panel). Image adopted from https://rb.gy/a0m9ea.

2.4 Powder diffractometer

Powder diffraction, when used appropriately, may provide a wealth of structural information

about the material being studied. Diffraction of monochromatic X-rays by a powder specimen

is the basic principle behind this approach. The strong Kα characteristic component of α radi-

ation from an X-ray tube operating above the K excitation potential of the target materials is

commonly referred to as monochromatic in this situation. A crystal monochromator is usually

used in diffractometry to exclude all wavelengths except the Kα wavelength. The disadvantage

of filters is that transmitted radiation is still not entirely monochromatic and background radi-

ation is still quite high. In reality, single crystals are mosaics made up of many small crystal

blocks that are generally aligned in a certain direction. The so-called mosaic spread of the crys-
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tal is determined by the distribution of block alignment. Pyrolytic graphite and silicon are two

materials that are commonly employed to make broad band and narrow band monochromators.

The basic X-ray diffractometer/spectrometer is actually two instruments, depending on how

they are used: an instrument for measuring X-ray spectra with a known structural crystal and

for studying crystalline (and noncrystalline) materials by measuring how they diffract (scatter)

X-rays of known wavelength.

The intensity of a diffracted beam is measured by a diffraction camera by the amount of blacken-

ing it creates on photographic film, which requires a microphotometer measurement of the film

to convert amount of blackening into X-ray intensity. An electronic X-ray detector measures the

intensity of a diffracted beam directly from the diffractometer. X-ray detectors come in a vari-

ety of shapes and sizes, but they always convert incoming X-rays into electric current surges or

pulses that are supplied into various electronic components, including computers, for processing.

The electronics count the number of current pulses per unit of time, which is proportional to the

X-ray beam’s intensity when it enters the detector. A diffractometer is similar to a Hull/Debye

Scherrer camera, except that instead of a strip of film, a moveable detector is used. The X-ray

detector or film is mounted on the circumference of a circle centered on the powder specimen in

both instruments, which uses practically monochromatic radiation.

2.5 Powder diffraction at Advanced Photon Source (APS)

Powder diffractometers are dedicated devices that are optimized for collecting diffraction pat-

terns. The term ”optimized” refers to the ability to capture the pattern as quickly as feasible,

or with the highest possible Q-resolution [17]. Synchrotron X-ray diffraction is one of the tech-

niques used to aquire detailed structural data about a particular material[18]. This method is

based on Bragg’s law, which implies that interference that is in phase produces constructive

interference and interference that is out of phase produces destructive interference.

An engineering model of the 11-BM diffractometer at APS is shown in Figure 2.4.1. The
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Figure 2.4.1: Schematic diagram of X-ray diffractometer. A three-dimensional model of the high-
resolution diffractometer with 12 analyzer detector system: (1) 12-analyzer detector system, (2)
two-circle goniometer, (3) supporting table, (4) sample stages, (5) sample mounting robot, (6)
stages for cryostream. Image taken from https://rb.gy/iaet9n.

12-analyzer detection system (1) is installed on the main circle of a high-resolution two-circle

diffractometer (2) made up of customized Huber GmbH 480 and 420 goniometers. The diffrac-

tometer measures 2600 mm (h)×2100 mm (l)×1700 mm(w) and comes with a three-dimensional

adjustable supporting table (3), with all 12 analyzers fitting within the space limited by the

radius of the main goniometer, the 12-analyzer detector system achieves a 2 degree separation

between surrounding analyzers. The 12 analyzers and detectors are divided into two types of

subassemblies to address this technical challenge: six left-side units and six right-side units.

The interleaved analyzer crystal assemblies that arise are positioned on both sides of the verti-

cal plane defined by the sample center and the incoming X-ray beam direction.
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Many experimental factors can limit the amount of information collected from a powder pattern.

Signal-to-noise, which is determined by the source intensity and ability to separate diffraction

signal from air scatter and fluorescence; measurement range, which is limited by the source

wavelength; and poor instrumental resolution, which reduces the number of observable inten-

sity measurements due to the overlap of separate reflections, are some of these effects[19]. By

providing a very intense and almost parallel beam of high-energy X-rays, the utilization of a

synchrotron source allows all of these constraints to be minimized. Three-crystal diffraction

optics (two-crystal monochromation combined with a perfect-crystal analyzer) can be used with

this powerful beam to detect diffraction peaks with extremely high resolution. The use of such

a crystal analyzer design further improves signal versus background since fluorescence and acci-

dental scatter are rejected.

Debye-Sherrer transmission geometry (with a revolving capillary sample) is commonly used

in synchrotron powder diffraction measurements, which helps to avoid problems with sample

orientation preference. The triple-crystal optic, on the other hand, is inefficient, and even with

a synchrotron source of enormous intensity, a typical scan could take up to a day. As a re-

sult, new synchrotron powder diffractometers now have anywhere from 10 to 40 sets of analyser

crystals and detectors, allowing for substantially faster data gathering durations of about an

hour. The 11-BM is situated at Argonne National Laboratory, APS where the beamlines of

synchrotron X-rays are from a bending magnet source[20]. The use of synchrotron source pro-

vides a high signal-to-noise ratio and high resolution measurement[19]. The synchrotron X-ray

is more preferable since it gives a high sensitivity and helps to observe the weak peaks above

the background. It also provides a detailed information of the sample with a wider Q range, the

momentum transfer during scattering.

11-BM has the following instrument specifications;

X The beam line covers an energy range of 15 keV - 35 keV.
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X Beam size of 1.5 mm (horizontal)∗0.5 mm (vertical) focus at the sample.

X Angular coverage of 2θ range from 0.5◦-130◦.

X Resolution of ∆Q
Q ≈ 1.4 ∗ 10−4.

Upon loading the sample on to instrument the robotic system will take care of the data collection

coded by python. MySQL and EPICS are tools to access the metadata from the database[21].

The strong magnetic fields required to produce synchrotron radiation are generated by a variety

of devices. The electrons or positrons are deflected and forced to circulate within the storage ring

by bending magnets placed at periodic intervals around the ring. Another source of radiation

is insertion devices, which consist of a very closely spaced array of magnets positioned between

the bending magnets. Table 2.2 shows list of countries around the world with synchrotron

facility[22].

2.6 Pair distribution function analysis

The pair distribution function of a material is derived experimentally by Fourier transformation

of a scattering pattern, which reveals direct-space insights into any long-range ordered structure

from Bragg scattering (i.e., diffraction) and short-range structural correlations from diffuse scat-

tering intensity. When the samples have defects, disorder, and/or discrete material structures,

the atomic pair distribution function (PDF) analysis of diffraction data can fill the gap[23]. A

simple 1D function that incorporates information about structural correlations in a material is

the atomic pair distribution function, G(r). What is the purpose of this function? To begin

with, it is simple to measure experimentally. Second, calculating from a known structure is

straightforward. Third, it provides an intuitive local picture of the structure, as if you were

sitting on an atom looking out at your surroundings. It is derived simply from the auto correla-

tion function of the atomic density, but it intuitively yields the probability of detecting pairs of

atoms separated by r. Within the measurement time and sample volume, the structural signal

measured is an average of all local states. G(r) is related to the probability of finding an atom

at a distance r from a reference atom. It is the Fourier transform of the total structure factor,
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Table 2.2

Country Name Website

Armenia Center for the Advancement of
Natural Discoveries using Light Emission http://www.candle.am/index.html

Australia Australian Synchrotron http://www.synchrotron.org.au
Brazil Laboratorio Nacional de Luz Sincrotron http://www.lnls.br/
Canada Canadian Light Source http://www.lightsource.ca
China Beijing Synchrotron Radiation Facility http://bsrf.ihep.cas.cn/

National Synchrotron Radiation Laboratory http://www.nsrl.ustc.edu.cn/
SSRF - Shanghai Synchrotron Radiation Facility http://ssrf.sinap.ac.cn/english/

Denmark Institute for Storage Ring Facilities http://www.isa.au.dk/
France European Synchrotron Radiation Facility http://www.esrf.eu

SOLEIL http://www.synchrotron-soleil.fr/
Germany Angstromquelle Karlsruhe - ANKA http://anka.kit.edu

BESSY II - Helmholtz-Zentrum Berlin http://www.helmholtz-berlin.de/
Dortmund Electron Storage Ring Facility http://www.delta.tu-dortmund.de/
ELSA - Electron Stretcher Accelerator http://www-elsa.physik.uni-bonn.de/elsa-facility en.html
Metrology Light Source http://www.ptb.de/mls/
PETRA III at DESY http://photon-science.desy.de

India Centre for Advanced Technology http://www.cat.ernet.in/technology/accel/indus/index.html
Iran Iranian Light Source Facility http://ilsf.ipm.ac.ir/
Italy DAFNE http://web.infn.it/Dafne Light/

Elettra Synchrotron Light Laboratory http://www.elettra.eu
Japan Aichi Synchrotron Radiation Center http://www.astf-kha.jp/synchrotron/en/

Hiroshima Synchrotron Radiation Center http://www.hsrc.hiroshima-u.ac.jp/index.html
Photon Factory http://www.kek.jp/
Ritsumeikan University SR Center http://www.ritsumei.ac.jp/acd/re/src/index.htm
Saga Light Source http://www.saga-ls.jp/?page=206
SPring-8 http://www.spring8.or.jp/en/
Ultraviolet Synchrotron Orbital Radiation Facility http://www.uvsor.ims.ac.jp/defaultE.html

Jordan Synchrotron-light for Experimental Science and
Applications in the Middle East http://www.sesame.org.jo/sesame/

Korea Pohang Light Source http://paleng.postech.ac.kr
Russia Dubna Electron Synchrotron http://wwwinfo.jinr.ru/delsy/

Kurchatov Synchrotron Radiation Source http://www.nrcki.ru/e/engl.html
Siberian Synchrotron Research Centre http://ssrc.inp.nsk.su/
TNK http://www.niifp.ru/page/sinhrotron

Singapore Singapore Synchrotron Light Source http://ssls.nus.edu.sg/index.html
Spain ALBA http://www.cells.es/
Sweden MAX IV Laboratory https://www.maxiv.se
Switzerland Swiss Light Source http://www.psi.ch/sls/
Taiwan National Synchrotron Radiation Research Center http://www.nsrrc.org.tw/
Thailand Synchrotron Light Research Institute http://www.slri.or.th
United Diamond Light Source http://www.diamond.ac.uk/
Kingdom
France Centre Laser Infrarouge d’Orsay http://clio.lcp.u-psud.fr/clio eng/clio eng.htm
Germany European XFEL http://www.xfel.eu/

FLASH at DESY http://photon-science.desy.de
Free Electron Laser at ELBE http://www.fzd.de/db/Cms?pNid=471

Italy FERMI http://www.elettra.eu/lightsources/fermi.html
Japan IR FEL Research Center http://www.rs.noda.tus.ac.jp/fel-tus/

SPring-8 Angstrom Compact Free Electron Laser http://xfel.riken.jp/eng/index.html
Switzerland Swiss Free Electron Laser http://www.psi.ch/swissfel/swissfel
Netherland Free Electron Laser for Infrared eXperiments http://www.ru.nl/felix/
Turkey TARLA Infrared FEL and Bremsstrahlung Facility http://www.tarla.org.tr
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Table 2.2: Continued...synchrotron-based research facilities around the world, source[22].

USA Institute for Terahertz Science and Technology http://www.itst.ucsb.edu/
Jefferson Lab FEL https://www.jlab.org/free-electron-laser
Linac Coherent Light Source http://lcls.slac.stanford.edu
Advanced Light Source http://www-als.lbl.gov/
Advanced Photon Source http://www.aps.anl.gov
Center for Advanced Microstructures and Devices http://www.camd.lsu.edu/
Cornell High Energy Synchrotron Source http://www.chess.cornell.edu/
National Synchrotron Light Source II http://www.bnl.gov/ps/
Stanford Synchrotron Radiation Lightsource http://www-ssrl.slac.stanford.edu
Synchrotron Ultraviolet Radiation Facility http://physics.nist.gov/majresfac/surf/index.html

S(Q). The structure function, S(Q) is related to coherent part of the diffraction intensity and

adjusts for the scattering power of atoms and g(r)is the pair distribution function, refer Equation

2.6. Figure 2.6.1 shows atypical PDF. The peak area indicates the number of pairs weighted by

scattering power, i.e. coordination number/concentration and the peak width refers to the range

of inter atomic distances due to static and dynamic disorder. For more detailed explanation on

PDF see Section 3.

G(r) =4πrρ0[g(r)− 1] (2.5)

=

(
2

π

∫
Q[S(Q)− 1] sin(Qr)dQ

)
(2.6)

2.7 Neutron scattering

In 1945, Ernest O. Wollan used the Graphite Reactor at Oak Ridge to conduct the first neutron

diffraction studies[25]. Clifford Shull joined him shortly after (June 1946) [26], and together

they established the basic concepts of neutron scattering and successfully applied it to a variety

of materials, addressing issues such as the structure of ice and the microscopic arrangements of

magnetic moments in materials. Shull received half of the Nobel Prize in Physics in 1994 for

this achievement[27]. The neutron has a number of properties that make it an excellent probe

for studying atomic structure and motion. They are listed here in no particular sequence. The

neutron only has very weak interactions with materials since it has no electric charge. In other
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Figure 2.6.1: Schematic diagram commonly used for pair distribution functions G(r). G(r) is
related to the probability of finding an atom at a distance r from a reference atom. Image taken
from [24].

words, a neutron has a higher probability of passing through a substance than it does of not.

This is advantageous since it means that neutrons illuminate materials extremely uniformly;

neutrons can scatter from anywhere in the sample, rather than only from the surface as in typ-

ical light scattering. As a result, neutrons are known as a bulk probe [17]. The use of neutron

scattering to determine a material’s atomic and/or magnetic structure is referred to as neutron

diffraction or elastic neutron scattering.

The Spalliation Neutron Source (SNS) is an Oak Ridge National Laboratory (ORNL) facil-

ity that is comprised of a 1-GeV linear accelerator ion source and a proton accumulator ring

that delivers a 1.4-MW beam to a liquid mercury target. Three main types of accelerators are

used in the linear accelerator to accelerate hydrogen beams from 2.5 to 1000 MeV, or 1 GeV.

A drift tube and a linked cavity linear accelerator, both made of copper and operating at room
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temperature, are also used before the superconducting linear accelerator. A short, sharp pulse of

electrons is required for optimal neutron scattering research, and this is achieved by compressing

the H-beam from the linear accelerator by more than 1000 times.

A sample is immersed in a beam of hot (thermal neutron)3 or cold neutrons4 to produce

Figure 2.7.1: An image of the POWGEN detector taken from the ORNL website[28].

a diffraction pattern that reveals the material’s structure. Although similar to X-ray diffraction,

neutrons and X-rays provide complimentary information because to their differing scattering

properties: X-rays are best for surface analysis, while synchrotron-produced strong X-rays are

best for shallow depths or thin specimens, and neutrons with a deep penetration depth are best

for bulk materials[29].

Diffraction of neutrons is an extremely expensive technology. A nuclear reactor is required to

obtain a sufficiently intense neutron source. Few laboratories have their own neutron facility,

thus experiments are conducted at central laboratories that provide a user service (e.g. at the

ILL, Grenoble, France, the Rutherford-Appleton Laboratory, UK, and the Argonne Laboratory,

USA)[2]. Because neutron beams are typically low in intensity, the sample size required for

3Thermal neutron is a free neutron with a kinetic energy of about 0.025 eV.
4 Cold neutrons are very low energy (5×10−5 eV to 0.025 eV) neutrons in a reactor, used for research into solid-

state physics because it has a wavelength of the order of crystal lattice spacings and can therefore be diffracted
by crystals.
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diffraction investigations is relatively big, at least 1 mm3. Because large crystals are rarely

available, crystallographic studies are usually performed on polycrystalline samples.

Unlike X-rays, neutrons are scattered predominantly by atomic nuclei. Neutrons are also scat-

tered by the interaction of the neutron magnetic moment with the magnetic moment(s) of the

atoms in the case of magnetic materials. In both X-ray and magnetic neutron scattering, the

scattering object (i.e. the electron dispersion) is comparable in size to the wavelength of the

X-rays or neutrons.

2.8 Scattering cross-section

The ability of the target atoms to deflect incident neutrons is referred to as the neutron scatter-

ing cross-section. The ratio of neutrons scattered by the target atoms per second to neutrons

incident per unit area per second can be used to characterize it (incident neutrons flux). Fig-

ure 2.9.1 shows the scattering geometry. The sample (target) scatters an incident neutron of

wavevector k, and the scattered wave is recorded by a neutron detector at a location determined

by the polar angles θ, φ and subtending a solid angle dΩ = sin θdθdφ. The scattered neutron

flux measured by the detector for an incident neutron flux of N (neutrons per second per unit

area) is given by; N
(
dσ
dΩ

)
dΩ. The differential scattering cross section dσ

dΩ is defined by this

formula. At this point, we’ve assumed that the scattering nucleus is locked in place and that

no energy is transferred between the nucleus and the neutron, implying that the scattering is

totally elastic. The scattered wave can be represented by the spherical wave ψ = −( br )eikr if the

incident neutrons have a plane wave ψ = eikr. Where r is the distance between the scattering

nucleus and the detector, and k = 2π
λ is the wave number. In neutron diffraction, the constant

b, also known as the scattering length, is a very important variable. It is the neutron equivalent

of the X-ray scattering factor or form factor (f), and it has the dimensions of length. The total

scattering cross section can be found by integrating the differential cross section with respect to

solid angle(dΩ);
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σ = flux of scattered neutrons/incident flux

= 4πr2v
| − ( br )eikr|2

|veikr|2

= 4πb2

(2.7)

v is the velocity of neutrons. The imaginary part of the scattering length b is responsible for

neutron absorption. Fortunately, most elements and isotopes have a low absorption coefficient,

therefore b can be considered a true constant. Neutron-shielding materials such as Cd, Gd, and

B are notable exceptions. The real and imaginary components can be treated independently as

the scattering cross section (σs) and the absorption cross section (σa) in diffracted intensities.

Figure 2.8.1: Geometry of a neutron scattering experiment[30]
.
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2.8.1 Coherent and incoherent scattering

Coherent scattering occurs when all atoms scatter in the same way. We call it incoherent

scattering when we can only see what individual atoms are doing. Thus, while coherent scattering

provides information about atom relative positions and collective motions such as sound waves,

incoherent scattering provides information about individual atom motions such as diffusion

through a liquid. Coherent scattering is always present in X-ray scattering. This is because

photons are scattered by electrons around nuclei, and each electron has the same scattering

strength as every other electron. Thus, X-ray scattering will not reveal an isotope effect (because

all isotopes have the same number of electrons) or a nucleus effect (since the nucleus is not what

scatters the photons). There will obviously be variations in the scattering potential around some

mean value in any atom arrangement. These can occur as a result of human action (alloying

or doping), by chance (impurity atoms), or as an unavoidable feature of the system (isotopic

mixture and distribution of nuclear spins). The differential scattering cross section is given by

the following expression based on the scattering from a system with a random distribution of

scattering nuclei[30]. The differential scattering cross section can be expressed as follows:

dσ

dΩ
= |b̄|2

∣∣∣∣∑ exp(ik.rn)

∣∣∣∣2 +N |b− b̄|2

=

(
dσ

dΩ

)
coherent

+

(
dσ

dΩ

)
incoherent

(2.8)

where |b̄|2
∣∣∣∣∑ exp(ik.rn)

∣∣∣∣2 is

(
dσ
dΩ

)
coherent

and N |b− b̄|2 is

(
dσ
dΩ

)
incoherent

, also b̄ is the mean

scattering length for all atoms in the system, k is the scattering vector (difference in wave vector

of scattered and incident neutrons, rn is the position vector of the nth atom in the system, and

N is the number of atoms in the system.

To investigate the magnetic structures of sawtooth olivines Mn2SiX 4 (X = S, Se) using neutron

powder diffraction, measurements were carried out in the temperature range 1.8 K to 300 K

at POWGEN instrument[28] located at Oak Ridge National Laboratory. Data from this dif-
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fractometer is weel-suited for Rietveld analysis[31] because it is a significantly high resolution

measurement. Some of this resolution can be traded for intensity, allowing for shorter mea-

surements with high resolution. With the help of FULLPROF software[32], we examine the

magnetic structure based on this measurements. We conducted diffraction experiments using

central wavelengths 1.5 Å and 2.66 Å.

2.9 Magnetic scattering

Until now, we’ve solely dealt with nuclear scattering. The neutron’s magnetic moment also

permits it to interact with atoms’ orbital and spin magnetic moments in a solid. Although only

a small fraction of elements carry such magnetic moments, the vector nature of these magnetic

moments ensures a vast array of possible magnetic structures and causes magnetic scattering to

be a vector process, rendering a simple scalar scattering length insufficient.

Unpaired electron spins are what cause magnetic scattering from a single atom (or ion). Inter-

ference effects occur because the scattering object, the electron distribution, is similar in size

to the wavelength of thermal neutrons, resulting in a magnetic form factor[30]. For an ordered

magnetic structure, we can write the differential magnetic neutron scattering cross section per

atom as follows:

(
dσ

dΩ

)
mag

= q2S2

(
e2γ2

mec2

)2

f2 (2.9)

where, q is the magnetic interaction vector, S is spin quantum number of target atom, e and

m are the charge and mass of the electron respectively. Also, c is speed of the light, γ is the

magnetic moment of the neutron and f represents magnetic form factor. Magnetic scattering is

coherent and produces strong diffraction effects when the atomic magnetic moments are closely

correlated, as in ordered magnetic structures. Similarly to how we defined a coherent scattering

length bcoh in the topic of coherent nuclear scattering, we define the magnetic scattering length
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as follows:

p =

(
e2γ2

2mec2

)
gJf (2.10)

Here g is Lande splitting factor and J is total angular momentum.

The interaction of magnetic scattering with nuclear scattering is an important factor to consider.

Because magnetic scattering is vector, it is highly dependent on the polarization of the incident

neutron beam. There are five terms that make up the overall cross section:

σtot = σcoh + σincoh + σNM + σM + σpol (2.11)

where σcoh and σincoh are the previously defined coherent and incoherent nuclear scattering cross

sections, σNM is the nuclear–magnetic interference term, σM is the magnetic scattering cross

section (eqn 2.9), and σpol is the polarization-dependent term, and σNM is the nuclear–magnetic

interference term. If incoherent scattering is ignored and only simple magnetic structures with

co-linear moments are considered, the differential cross section becomes:

dσ

dΩ
= b2 + 2bpP̂.q + p2q2 (2.12)

where P̂ is a unit vector specifying the incident neutron beam’s polarization direction. The pure

polarization terms σpol are zero in this very simple structure, leaving only the nuclear, magnetic,

and nuclear–magnetic interaction terms. The interaction term averages to zero if the incident

neutron beam is unpolarized (i.e. P̂ can take any orientation), thus we have left;

dσ

dΩ
= b2 + p2q2 (2.13)
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2.9.1 The intensity of diffracted beams from an ideal polycrystalline material

We considered the crystal as though it were made up of ideal surfaces with uniform scattering

density when analyzing diffraction from it. It isn’t necessarily the case. First, the scattering

density is concentrated among atoms (or nuclei in the case of nuclear neutron diffraction) with

different scattering lengths, and second, there are relatively few flat planes of atoms in any but

the simplest structures. The phase difference between pairs of light atoms is 2π or = 0 at the

Figure 2.9.1: Diffraction from a simple two-dimensional structure, two atoms (open and filled
circle). a is unit cell parameter and χ, the coordinate of the dark atom [30].

Bragg angle for diffraction from the planes of atoms illustrated. The phase difference between

the two dark atom pairs is also 2π or = 0, refer to Figure 2.9.1. However, because the phase

difference between subsequent rows of dark and light atoms is 2πhx(x = χ/a), leading to some

cancellation and reduced intensity of the scattered wave and x is the path difference. In general,

the phase of a wave scattered by a dark atom (shaded circle) in three dimensions compared to

a wave scattered by a light atom (open circle) at the origin is

φ = 2π(hx+ ky + lz) (2.14)

where (x, y, z) is co-ordinate of the atom with dimensions a, b, c and h, k, and l are the Miller

indices. Consider the bright and dark atoms shown in Figure 2.9.1. The wave scattered by a
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certain atom can thus be written as;

Aeiφ = be2πi(hx+ky+lz) (2.15)

where, A is the amplitude of the scattered wave and the structure factor (F ) is given by;

Fhkl =
∑
n

bne
2πi(hxn+kyn+lzn) (2.16)

By writing the position vector of the nth atom as rn and we have

Fhkl =
∑
n

bne
2πi(Hhklrn) (2.17)

Equations 2.16 and 2.17 are the Fourier transforms of the crystal structure sampled at the

reciprocal lattice points. Hhkl is a reciprocal space vector and always perpendicular to the real

space plane defined by the Miller indices, (hkl).

2.10 Magnetic susceptibility

Any substance’s atoms have an electronic structure that involves electrons circulating in orbits

around a central nucleus. Because electrons have an electrical charge, their movement creates

an electrical current, which causes each electron to produce a magnetic moment. Furthermore,

due to their spin, all electrons have magnetic moments.

Because the orbital and spin components cancel out, many elements’ atoms have zero mag-

netic moments. When such atoms are placed in a magnetic field, the spin and orbital motions

of their electrons are rearranged, resulting in a net magnetic moment in the opposite direction

of the field. Diamagnetism is the term for this type of behavior.

The magnetic susceptibility (Latin: susceptibilis, ”receptive”; indicated in electromagnetism)

is a measure of how much a substance will get magnetized in the presence of a magnetic field.
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The magnetic moment per unit volume, or magnetization, is measured as a ratio to the applied

magnetic field intensity, or H.

χ =
M

H
(2.18)

This simplifies the classification of most materials’ responses to a magnetic field into two cat-

egories: alignment with the magnetic field χ > 0, which is known as paramagnetism, and

alignment against the field χ < 0, which is known as diamagnetism.

A material’s magnetic susceptibility determines whether it is attracted to or repelled from a

magnetic field. Paramagnetic materials align themselves with the applied field and are drawn

to areas with a higher magnetic field. Anti-aligned diamagnetic materials are driven away from

lower magnetic field locations. The material’s magnetization adds its own magnetic field on

top of the applied field, causing field lines to concentrate in paramagnetism or be excluded in

diamagnetism.

2.10.1 Measuring magnetic susceptibility

To properly define a material’s bulk magnetic characteristics, magnetic susceptibility is com-

monly assessed using a variety of applied magnetic field strengths and over a range of temper-

atures. A vibrating sample magnetometer (VSM) equipped with a superconducting quantum

interference device pick-up coil (SQUID) is used to detect magnetic susceptibility[33]. Magnetic

measurements, high conductivity materials, and magnetic field measurements are only a few of

the uses for the VSM. Magnetic susceptibility is measured as a function of temperature while

the sample is heated in zero field cooled (ZFC) where the sample was cooled without any applied

magnetic field, it is a reversible process. Field cooled (FC) measurements are done when the

sample is cooled under the same magnetic field, this process is not a reversible.
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2.10.2 Curie and Curie–Weiss laws

Above a temperature known as the Curie temperature, TC (ferromagnets), or the Neel point, TN

(antiferromagnets), ordered magnetic structures lose their ordered structures, and the materials

become paramagnetic. There is a balance at these transition temperatures between thermal en-

ergy, which seeks to randomize the orientation of the magnetic moments, and internal exchange

interactions, which try to keep the actively aligned structures[2]. As the structures transition

from an ordered to a disordered paramagnetic structure at TC and TN , an order–disorder tran-

sition occurs. Many, but not all, paramagnetic compounds experience an ordering transition

upon cooling, and the temperature dependence of magnetic susceptibility, χ provides evidence

for whether or not this is likely to occur. Magnetic susceptibility is inversely proportional to

temperature in paramagnetic material, according to the simple Curie law[2]:

χ =
C

T
(2.19)

where T is absolute temperature and C is a material-specific Curie constant (C = NAµ
2

3k ), where

NA is Avogadro’s number, µ is magnetic moment and k is Boltzmann constant. When there is no

spontaneous interaction between nearby unpaired electrons, a Curie response occurs. They do

tend to align in a magnetic field, but this alignment becomes more difficult as temperature rises,

and χ drops, see equation 2.19. When there is some spontaneous interaction between nearby

spins, which may turn into an ordered magnetic structure at low temperatures, the Curie–Weiss

law frequently provides a better fit to the high-temperature behavior in the paramagnetic region.

Curie–Weiss law is given as[2]:

χ =
C

T − θ
(2.20)

where θ is the Weiss constant. Figure 2.10.1 depicts these two types of behavior by plotting

χ−1 against T . The plot extrapolates to 0 K for paramagnetic compounds with no tendency to

magnetic order. There is already some local alignment of spins in paramagnetic substances that

exhibit a tendency to ferromagnetic order, and is higher than in the simple paramagnetic case.
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Also, with a positive value of θ, χ becomes infinite (as χ−1goes to zero), which roughly corre-

sponds to the ferromagnetic Curie temperature, TC , below which the sample is ferromagnetic.

The χ values in antiferromagnetic paramagnetic materials may be lower than in simple para-

magnetic materials. The Curie–Weiss plot is displaced to lower temperatures as a result, and

the extrapolated θ value is below 0 K. Antiferromagnetism develops below TN and Curie–Weiss

behavior is broken when such temperatures are attained. Figure 2.10.1 depicts the behavior of

paramagnetic substances or ferro and antiferro-magnetic substances in the paramagnetic state

above TC and TN ; it is idealized, and deviations from ideality do occur in practice. Curie–Weiss

behavior is absent below TC and TN . At low temperatures, ferromagnetic compounds have

extremely high susceptibilities, which rapidly drop as the temperature approaches TC . For an-

tiferromagnetic materials, χ is very small in well-ordered structures at low temperatures, but

increases with increasing temperature (unlike ferromagnets) as some thermally induced disorder

is introduced into the antiferromagnetic state; χ passes through a maximum at TN and then

decreases at higher temperatures, following Curie–Weiss behavior.

Figure 2.10.1: Reciprocal of susceptibility versus temperature for substances that are para-
magnetic but may show magnetic ordering at low temperatures. Slope = C−1. Image taken
from[2].
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2.11 Diamagnetism

All materials exhibit some diamagnetism, or a weak, negative magnetic susceptibility. A mag-

netic field induces a magnetic moment in a diamagnetic substance that opposes the applied

magnetic field that created it. This effect is usually described from a classical perspective: the

influence of a magnetic field on an electron’s orbital motion results in a back electromagnetic

field (back emf), which according to Lenz’s law opposes the magnetic field that generated it.

The Bohr–Van Leeuwen theorem5[34], however, should cause us to be cautious of such frame-

work is intended to illustrate how the application of a magnetic field to a classical system might

produce a magnetic moment. Diamagnetism is a completely quantum mechanical phenomenon

and should be treated as such.

2.12 Paramagnetism

The term paramagnetism refers to a positive susceptibility in which a magnetic field is used

to induce a magnetization that aligns with the magnetic field that induced it. In the previous

section we looked at materials that had no unpaired electrons and hence had no magnetic moment

until a field was applied. We will focus on atoms having non-zero magnetic moments due to

unpaired electrons. Because the magnetic moments on neighbouring atoms interact only very

weakly with one another and can be presumed to be independent without an external magnetic

field, these magnetic moments point in random directions. The degree of lining up (and thus

the induced magnetization) depends on the strength of the applied magnetic field.

The total angular momentum J of an atom, which is the sum of the orbital angular momentum

L and the spin angular momentum S, is associated with its magnetic moment[35].

5Bohr–Van Leeuwen theorem states that when statistical mechanics and classical mechanics are applied con-
sistently, the thermal average of the magnetization is always zero.
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2.13 Exchange interactions

The phenomena of long-range magnetic order is based on exchange interactions. When all you’re

dealing with is a bar magnet and a pile of iron filings, the exchange effect is weak and a little

mysterious, because it seems unusual that you have to deal about exchange operators and iden-

tical particles[35]. But, as is often the case with magnetism, this is an example of how quantum

mechanics is at the heart of a wide range of everyday phenomena. Charges of the same sign cost

energy when they are close together and save energy when they are separated, hence exchange

interactions are nothing more than electrostatic interactions.

For instance, for paramagnets the thermal energy of the interacting electrons is greater than the

direct exchange interaction between electron spins. This means that after the external magnetic

field is removed, the magnetization diminishes because the electron spins do not remain aligned.

And for ferromagnets the magnetization is maintained even after switching off the external

magnetic field because the exchange interaction is substantially bigger than the thermal energy.

Only heating over the Curie temperature or more intense impacts cause the magnetization to

disappear.

2.13.1 Direct exchange

Direct exchange occurs when electrons on neighboring magnetic atoms interact via an exchange

interaction. This is due to the fact that the exchange interaction takes place without the use

of an intermediary. Though this appears to be the most obvious path for the exchange interac-

tion, in fact, physical situations are rarely so simple[35]. Because there is limited direct overlap

between neighboring magnetic orbitals, direct exchange is usually inefficient in controlling mag-

netic characteristics. Rare earths, for example, have strongly localized 4f electrons that are very

near to the nucleus, with low probability density extending beyond a tenth of the interatomic

gap. This means that in rare earths, the direct exchange interaction is unlikely to be highly

effective. Even in transition metals like Fe, Co, and Ni, where the 3d orbitals stretch further

from the nucleus, it is hard to see how direct exchange could lead to the magnetic properties we
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observe. Because these are metals, the role of the conduction electrons should not be ignored,

and a proper description must account for both the localized and band character of the electrons.

As a result, indirect exchange interactions must be considered in many magnetic materials.

2.13.2 Indirect exchange in ionic solids: superexchange

Magnetic ground states exist in a variety of ionic materials, including certain oxides and fluorides.

MnO and MnF2, for example, are both antiferromagnets, despite the fact that the electrons on

Mn2+ ions in each combination have no direct overlap. Because the exchange interaction is

generally fairly short-ranged, the longer-ranged interaction at work in this situation must be

’super’. The exchange mechanism at work here is known as superexchange. It is characterized

as an indirect exchange connection between non-neighboring magnetic ions that is mediated by

a non-magnetic ion that sits between them[35].

2.14 Ferromagnetism

Even in the absence of an applied field, a ferromagnet possesses a spontaneous magnetization.

The magnetic moments all point in the same direction6. The appropriate Hamiltonian to solve

for a ferromagnet in an applied magnetic field B is:

Ĥ = −
∑
ij

JijSi.Sj + gµB
∑
j

Si.B (2.21)

To ensure ferromagnetic alignment, the exchange constants for nearest neighbors will be positive

in this scenario. The term Heisenberg exchange energy is the first term on the right [35]. The

Zeeman energy is the second phrase on the right. To keep things easy, let’s assume we’re working

with a system with no orbital angular momentum, thus L = 0 and J = S. Even without any

applied field, the internal molecular field can align the moments at low temperatures. It is worth

noting that the alignment of these magnetic moments generates the internal molecular field that

6In many ferromagnetic samples this is not true throughout the sample because of domains. In each domain
there is a uniform magnetization, but the magnetization of each domain points in a different direction from its
neighbours.
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causes the alignment in the first place. Magnetic order is self-sustaining at low temperatures.

Thermal fluctuations weaken the magnetization as the temperature rises, and at a critical tem-

perature, the order disappears. This model is known as the Weiss model of ferromagnetism (see

Section 2.10.2).

2.15 Antiferromagnetism

If the exchange interaction is negative, the molecular field is orientated so that nearest neigh-

bour magnetic moments are antiparallel to one another. This phenomenon is known as antifer-

romagnetism. This occurs frequently in systems that can be thought of as two interpenetrating

sublattices, one with magnetic moments pointing up and the other with magnetic moments

pointing down. Each magnetic moment’s closest neighbors will then be totally on the opposite

sublattice. Assuming the molecular field on one sublattice is proportional to the magnetization

on the other, also suppose that no magnetic field is applied. Applying a magnetic field to an an-

tiferromagnet below TN (see Section 2.10 and 2.10.2) is more complex than applying a magnetic

field to a ferromagnet below TC (see Section 2.10 and 2.10.2) because the direction in which the

magnetic field is applied is significant. Because any energy savings on one sublattice is cancelled

by the energy cost on the other sublattice if the magnetization on the two sublattices is equal

and opposite, there is no longer an energetic advantages for the moments to line up along the

field.

2.16 Rietveld Refinement

The Rietveld refining method (named after the Dutch physicist Hugo Rietveld) has shown to be

particularly useful in confirming structural features in powdered samples. Rietveld refinement[31]

is a whole-pattern refinement in which the experimental powder XRD profile is compared to a

computed profile, with refinement parameters adjusted [2]. Peak intensities are governed by

lattice parameters as well as atomic coordinates. The peak shapes of the powder pattern are

affected by various of factors, including sample size and shape, incident beam characteristics,
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and the diffraction equipment utilized. It is a least squares technique, in which parameters are

changed to minimize the weighted sum of squared residuals. The R-factors used to measure the

quality of the experimental fit are listed below;

Weighted profile R-factor, Rwp =

[∑
i
wi(yi(obs)− yi(calc))2∑

i
wi(yi(obs))2

] 1
2

(2.22)

Weighted sum of squared residuals, S̄ =
∑
i

wi(yi(obs)− yi(calc))2 (2.23)

Profile factor, Rp =

∑
|yi(obs)− yi(calc)|∑

yi(obs)
(2.24)

Expected profile R-factor, Rexp =

[
N− P + C∑

i
wi(yi(obs))2

] 1
2

(2.25)

where wi = 1
yi(obs) is the weight experimental observations, N is the number of experimental

observations, P is the number of fitting parameters, C number of constraints[30].

Goodness of fit: is how well the refined computed pattern manifests the collected data. The

goodness of fit (GoF) is given by the ratio of the residuals (which compares the weighted profile

residual Rwp and the expected error Rexp). As the value of χ2 gets smaller the fit gets better.

Goodness of fit, GoF or χ2 =
Rwp

Rexp
(2.26)

Bragg R-factor: is based on the combined intensity of reflections, and consequently sensi-

tive to fits at the reflections. The R-factor is the closest approximation in single crystal studies.

Bragg R-factor,RB =

∑
|Ik(obs)− Ik(calc)|∑

Ik(obs)
(2.27)
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where Ik(obs) and Ik(calc) are observed and calculated integrated intensities.

2.17 Specific heat of solids

A material’s heat capacity, C, is the proportionality constant between the heat it absorbs or

loses and the temperature change that results. Despite the word ”constant,” however, this

amount can change with temperature and pressure, particularly near phase transitions where

entropy changes significantly. The lattice, electronic, and magnetic characteristics of a material

can all be determined using heat capacity. Heat capacity (or specific heat) can be defined in

two ways. Understanding the magnetic structure of a material and its behavior as temperature

and magnetic field change is dependent on this information. The first is to keep a constant

volume, Cv, and the second is to maintain a constant pressure, Cp; where Cp is usually larger

than Cv[36]. Mathematically the specific heat capacity at a constant volume is given by;

Cv =

(
∂E

∂T

)
v

(2.28)

where E is energy and T is temperature. In 1819 Dulong and Petit measured the same value

of Cv as 6 cal/mol/deg for the many solids[37]. This observation made them to conclude that

specific heat for all solids and gases was about 6 cal/mol/deg. This stayed true until the Cv

of diamond was measured. After measuring the Cv of diamond the result was different from

the previous findings. Later Boltzman came up with a classical explanation for why this could

happen for Cv vs T . First he was able to explain the high temperature behaviour using classical

theory (classical equipartition theorem). Taking the partial derivative of the total energy (3RT )

where R is universal gas constant and this gives the Cv of 3R (also called the Dulong and

Petit limit), refer to 2.17.1. The second question is why the specific heat actually drops to

small values and approaching zero as temperature decreases, this was explained by Einstein.

He applied quantum theory of radiation to solids for the first time (the energy of the oscillator

quantized). He made the assumption that a 3-D solid containing one mole of atoms (NA) can

be represented by 3NA identical uncoupled oscillators vibrating at the same angular frequency,
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ωE (called Einstein frequency). Thus the specific heat is given by[38];

Cv = 3R

(
~ωE
KT

)2 e
~ωE
KT(

e
~ωE
KT − 1

)2 (2.29)

here ~ is Planck’s constant, h
2π and ωE is angular frequency. Although this is not complete since

it doesn’t include the zero point motion expression, it was a significant finding.

What affects the heat capacity on the material level? The largest contribution to heat ca-

Figure 2.17.1: The temperature dependence of the heat capacity at constant volume, Cv. The
magnitude of Cv rises sharply with a temperature near 0 K and above the Debye temperature
(θD) levels off at a value of approximately 3 R. Image taken from[36].

pacity is lattice vibration. As we keep heating up the material the lattice can contribute more

and more in different direction. At very low temperature since there is not enough energy to
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excite the vibrations so the heat capacity goes to zero. At high temperature the vibration of all

substances would be excited that is when it reaches a temperature called Debye7 temperature.

This is a temperature at which the heat capacity of all materials is constant.

2.17.1 Measuring specific heat of solids

The Quantum Design heat capacity option in the Physical Property Measurement System

was used to measure specific heat capacity on the samples utilized in this study (PPMS). A

weighed sample is cooled in vacuum to the lowest probing temperature required for heat capacity

measurement[39]. The Quantum Design Heat Capacity option employs a relaxation technique

that combines the highest measurement accuracy with reliable analysis methods. Relaxation

approaches need precise time resolution of the sample platform’s temperature response during

the measurement cycle, as well as a precise correlation between the heater output and the tem-

perature response[39]. The best signal-to-noise ratio requires quick, accurate thermometry. The

data collecting element of a system is put to a lot of work because of these relaxation calorimetry

requirements. Because relaxation times are generally short below 100 K, relaxation techniques

have typically been applied at lower temperatures.

7The result shown in Figure 2.17.1 were created by Peter Joseph Wilhelm Debye (1884-1966), a Dutch-American
physical chemist, as a modification of Einstein’s theory of specific heats, including the then-newly developed
quantum theory and the material’s elastic constants. Debye made several contributions to physics and chemistry,
including groundbreaking work on powdered material X-ray diffraction.
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Chapter 3

Synchrotron X-ray and pair

distribution function

The olivine structure allows for the formation of a sawtooth lattice by the atoms at 4a and 4c,

and in the case of both Mn2SiS4 and Mn2SiSe4 by Mn. The central Mn—Mn bonds in the saw-

tooth are formed by the Mn at the 4a site (dark blue) and the Mn at the 4c site (light blue) near

the tip of the triangles, as shown in Figure 3.0.1. The average bond distances and the angles of

Mn2SiS4 and Mn2SiSe4 determined by Rietveld refinement of 11 BM data shown in Table 3.1.

From the Mn-Mn distances, the sawtooth arrangement can be visualized as an isosceles triangle.

This structural feature, with non-equivalent bond distances among the nearest-neighbors in the

Mn-lattice, supports geometric frustration.

We investigated the crystal structures of Mn2SiS4 and Mn2SiSe4 at T = 100 K using high-

resolution synchrotron X-rays collected at 11 BM. The X-ray diffraction patterns of both the

compounds along with the refinements using Rietveld method are presented in Figure 3.0.2 (a)

and (b), respectively. The olivine chalcogenides are prone to the development of impurity phases

during the synthesis. As shown in Figure 3.0.2 only a low weight percentage of 4% MnS was

detected in Mn2SiSe4. The refined lattice and atomic parameters of both Mn2SiS4 and Mn2SiSe4

at 100 K are collected in Table 3.1. The bond valence sum, BVS method[40] is used in this study

to calculate the oxidation states of metal atoms.

Vi =
∑

e
R0−rij

b (3.1)
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where Vi is the oxidation state of atom i, rij is the length of the bond between atoms i and

j obtained experimentally, R0 an empirical value of a determined cation-anion pair, and b is a

universal parameter set to be equal to 0.37[41]. R0 was obtained from the VESTA (Visualization

for Electronic Structural Analysis) software package’s bvparm2016.cif file[42].

(a)

(b)

Figure 3.0.1: Sawtooth structure of (a) Mn2SiSe4 and (b) Mn2SiS4 synchrotron X-ray data ob-
tained from 11 BM instrument.The Mn in this structure occupies two distinct Wyckoff positions,
4a (dark blue) and 4c (light blue). The Mn-Mn triangles form isosceles triangles.
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Figure 3.0.2: Synchrotron X-ray diffraction patterns along with Rietveld refinement fits for
(a) Mn2SiS4 and (b) Mn2SiSe4, at T = 100 K. The data was collected at 11 BM, APS. The
measured data points (green) and the coinciding solid line is the calculated pattern (black) using
Pnma space group model. The horizontal(blue) curve at the bottom is the difference between
the measured and the calculated patterns. Vertical bars mark the positions of nuclear Bragg
reflections.
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Table 3.1: The atomic parameters, bond distances and angles of Mn2SiS4 and Mn2SiSe4 at T
= 100 K determined from Rietveld refinement of the synchrotron X-ray diffraction data from
beamline 11 BM, APS. The refined lattice parameters of Mn2SiS4 are a (Å) = 12.6687(2), b (Å)
= 7.4216(1), c (Å) = 5.9308(1); and a (Å) = 13.2779(1), b (Å) = 7.7607(1), c (Å) = 6.2353(1) for
Mn2SiSe4 in Pnma space group. Biso are the thermal parameters, ”Occ.” are the occupancies,
and ”Mult” are the multiplicities of the Wyckoff position. The best fit parameters are as follows:
Rw = 9.20%, χ2 = 2.1 for Mn2SiS4 and Rw = 11.13%, χ2 = 1.3 for Mn2SiSe4.

Mn2SiS4 x/a y/b z/c Biso Occ. Mult

Mn1 (4a) 0.00000 0.00000 0.00000 0.0053(10) 0.500 4
Mn2 (4c) 0.22948 0.25000 0.51061 0.0054(11) 0.500 4
Si1 (4c) 0.41040 0.25000 0.09276 0.0032(16) 0.500 4
S1 (4c) 0.40639 0.25000 0.73822 0.0039(16) 0.500 4
S2 (4c) 0.56472 0.25000 0.23560 0.0045(18) 0.500 4
S3 (8d) 0.33300 0.02432 0.24609 0.0050(12) 1.000 8

Mn2SiSe4 x/a y/b z/c Biso Occ. Mult

Mn1 (4a) 0.00000 0.00000 0.00000 0.0023(2) 0.500 4
Mn2 (4c) 0.23104 0.25000 0.50931 0.0027(2) 0.500 4
Si (4c) 0.41093 0.25000 0.09450 0.0010(3) 0.500 4
Se1 (4c) 0.40717 0.25000 0.73532 0.0011(1) 0.500 4
Se2 (4c) 0.56860 0.25000 0.24182 0.0012(1) 0.500 4
Se3 (8d) 0.33167 0.02048 0.25101 0.0016(1) 1.000 8

Mn2SiS4 dMn−S (Å) dSi−S (Å) dMn−Mn (Å) ∠Mn1-Mn2-Mn1 (◦) BVS

2.5955(2) 2.1199(3) 3.7108(1) 56.8 4.0 (Si)
2.6036(3) 3.8996(4) 61.6 2.2 (S)

2.1 (Mn)

Mn2SiSe4 dMn−Se (Å) dSi−Se (Å) dMn−Mn (Å) ∠Mn1-Mn2-Mn1 (◦) BVS

2.7109(1) 2.2698(1) 3.8803(3) 56.9 3.8 (Si)
2.7156(2) 4.0675(8) 61.5 2.1 (Se)

2.0 (Mn)
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3.1 Pair distribution function (PDF) analysis

Pair distribution function, PDF is the probability of finding an atom at a distance r from a given

atom. Data collected at 11-ID-B (at APS) at 295 K with an energy of 58.6 keV (λ = 0.2115 Å)

were subjected to atomic X-ray pair distribution function analysis. Fourier transform was used

to get the reduced pair distribution function G(r). As it is given in equation 3.3 G(r) is the

scattering vector, S(Q) is the total structure function, where Q is the scattering vector, r is the

interatomic distance in real space. The G(r) in the scaling Q-range between 19.8 ≤ Q ≤ 23.8 Å

was obtained using GSAS-II. The structural information was extracted from the reduced PDF

data using the PDFgui software program in the real-space range, 1.8 ≤ r ≤ 25 Å.

G(r) =4πrρ0[g(r)− 1] (3.2)

It measures the number of atoms in a unit-thickness spherical shell at r distance from a reference

atom. When r approaches zero, it becomes a straight line through zero with a slope proportionate

to the average number density, ρ0 [43].

G(r) =

(
2

π

∫ Qmax

0
Q[S(Q)− 1] sin(Qr) dQ

)
(3.3)

where Qmax is the maximum value of Q up to which the diffraction experiment can be provided

good data. The function Q[S(Q) − 1] = F (Q) indicates the importance of the data at higher

Q values. The data quality in the high Q region has a significant impact on the final result’s

quality. As we will deal with the total diffraction signals solely from the sample, we need to

collect a background pattern from the sample container without the sample.

3.1.1 Data reduction

The first step in PDF data reduction is calibration of an area detector. By importing the *.tiff

image from file menu item to read the data file into the opened GSAS-II project. The calibration

we perform here will find the correct placement for the beam location (which defaults to the
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image center) refer figure 3.1.1. The calibrant for 11- ID-B mail in program is cerium(IV) oxide,

CeO2 SRM674b as provided by National Institute of Standards and Technology, NIST. After

the calibration, select points for using the left mouse button to click on at least five locations on

the innermost ring. As each point is defined, a red ”+” is added to the plot and hit right click

to tell it is done.

Figure 3.1.1: The 2D image before any calibration and data reduction is applied. In the inner
ring in blue cross is where GSAS assumes the center of the detector.

3.1.2 Image controls

The calibration values needed to convert pixel locations to two-theta and azimuth are displayed

in this window. Controls that determine how integration is done are also shown. This window’s

menu commands are used for calibration and integration (fitting the calibration values from a

diffraction pattern image captured with a calibrant). After calibration, the integration of the

area detector is set up. Change Bin style from 2θ to Q. Adjust the inner and outer 2θ values

using the inner 2θ and outer 2θ controls. While adjusting the 2θ range, it’s helpful to see the 2θ
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Figure 3.1.2: An outline of the flow of the data reduction with the different key steps required
for successful X-ray powder data output. GSAS-II software was used for reduction.
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boundaries on the plot visually, this is done using the ”show integration limits” checkbox. By

default, the inner limit is shown as a green ellipse at 2 degrees, while the outside limit is shown

as a red ellipse at 5 degrees. These limitations can also be dragged to the required settings; the

value is displayed in a small popup window. The values in the window can be saved to a file,

read from a file, or copied to other pictures using other menu command, refer figure 3.1.2.

3.1.3 Masking

Image masks are used to mark parts of an image that should not be integrated, such as de-

tector irregularities, beamstop shadows, single-crystal peaks from a mounting, and so on. A

menu command or keyboard/mouse shortcuts can be used to create masks, refer figure 3.1.2.

Although there are many different types of masks, these are the ones that are employed during

data reduction.

Ring mask: obstructs a particular Bragg reflection (a ring placed relative to the image center).

The location and thickness of the ring are specified in degrees 2-theta. Refer to image 3.1.3.

Polygon mask: occludes an arbitrary region formed by line segments connecting a sequence

of points supplied in image coordinates (mm). The pixels inside the polygon mask are not used

in the integration process. Refer to image 3.1.3.

Frame mask: obstructs an arbitary area formed by line segments connecting a series of points

supplied in image coordinates (mm). A point is usually put near each corner of the image. For

integration, only pixels inside the frame mask are used. There can only be one frame mask

defined at a time. Refer to image 3.1.3. The raw data from 11-ID-B is not ready to use, it needs

some correction such as background and masking the beam shadow.

3.1.4 PDF calculation

Next step in the PDF refinement process is to calculate the PDF. This is accomplished by first

presenting a PDF calculation using GSAS-II, selecting a kapton background, and then selecting

compounds with the appropriate ratio. Once we have a PDF, all we have to do now is optimize
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Figure 3.1.3: The image of the data taken before calibration (top panel). The first inner ring
in blue is the center of the detector and the red ring the second from inside of top the image
is the default where GSAS-II assumes the center detector to be. Masking of beam shadow (red
rectangular bar) and frame mask (the outside green rectangle) for other artifacts (bottom panel).
The big circle in green is the limit of integration. The red rectangular bar is the mask for the
beam shadow.
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Figure 3.1.4: Schematic of the process for obtaining atomic pair distribution functions. (a) The
powder diffraction data after the reduction from one dimensional image, (b) corrected X-ray
intensity, I(Q), (c) total scattering function S(Q) and, (d) F (Q).
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it. By observing the progress, this can be repeated several times. The goal is to get the high Q

region’s deviation from zero for F(Q) and one for S(Q) to be as small as possible.

Figure 3.1.5: The PDF, G(r) as a function of r is obtained from F(Q) through a Fourier
transform relationship shown in Section 3.1. The black dash line at low r is proportional to the
average number density of the sample (should converge).

3.1.5 PDF peak fitting of Mn2SiX 4

The PDF refinements in Figure 3.1.6 (a, b) suggest that the local structure of Mn2SiS4 and

Mn2SiSe4 are in agreement with the average structure deduced from high resolution X-ray

diffraction. From the location of the initial peaks, the nearest-neighbor distances in the sawtooth

lattice are estimated at 3.71Å for Mn2SiS4, and 3.88Å for Mn2SiSe4. The geometry of the

peaks indicate that Mn triangles using pair distribution function analysis of the X-ray total

scattering data, we find that the Mn triangles are nearly isosceles in both the olivine compounds.

Thermal parameters of Mn2SiS4 and Mn2SiSe4 were determined from the analysis of G(r) shown

in Figure 3.1.6 (a, b). All non-magnetic atoms were constrained to have isotropic thermal

parameters while the magnetic atoms which constitute the sawtooth lattice (Mn1 and Mn2)

were treated as anisotropic. The off-diagonal anisotropic terms were constrained U12 = U13 =
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U23 ≡ 0.

Figure 3.1.6: X-ray PDF refinement of (a) Mn2SiS4 and (b) Mn2SiSe4. The black open circle
is the experimental data taken at 295 K, the solid cyan color the fit and the red is residual.
PDFGUI[44] was used for refinement.
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Table 3.2: The thermal parameters extracted from the X-ray pair distribution function analysis
of Mn2SiS4 and Mn2SiSe4 at 295 K. The lattice parameters are a = 12.7176(Å), b = 7.4467(Å),
c = 5.94771(Å) for Mn2SiS4 and a = 13.3286(Å), b = 7.78358(Å), c = 6.25402(Å) for Mn2SiSe4.

Mn2SiS4 U11 U22 U33

Mn1 0.0165(3) 0.0202(3) 0.0150(3)
Mn2 0.0122(3) 0.0197(3) 0.0134(2)
Si1 0.0113(1) 0.0113(1) 0.0113(1)
S1 0.0125(2) 0.0125(2) 0.0125(2)
S2 0.0148(2) 0.0148(2) 0.0148(2)
S3 0.0109(7) 0.0109(7) 0.0109(7)
S4 0.0159(8) 0.0159(8) 0.0159(8)

Mn2SiSe4 U11 U22 U33

Mn1 0.0247(1) 0.0472(2) 0.0140(1)
Mn2 0.0256(1) 0.0225(1) 0.0271(1)
Si1 0.0240(1) 0.0240(1) 0.0240(1)
Se1 0.0125(0) 0.0125(0) 0.0125(0)
Se2 0.0136(0) 0.0136(0) 0.0136(0)
Se3 0.0129(4) 0.0129(4) 0.0129(4)
Se4 0.0137(4) 0.0137(4) 0.0137(4)

We observed that the thermal parameters of Mn2SiS4 were such that, U22 > U11 ≈ U33 suggesting

that there is a preferred thermal mode along the b-axis for both Mn1 and Mn2 atomic positions

while the other two modes are maintained almost symmetrical. In contrast, Mn2SiSe4 displays

symmetrical thermal contributions in the Mn2 atomic site for U11 ≈ U22 ≈ U33 implying an

isotropic behavior along the edges of the sawtooth. The backbone of the sawtooth chain presents

a higher value along the b-axis with with no contribution loss along the a-axis but reduced motion

along the c-axis. This may be caused by a strain driven by the frustrated spin triangular system.

The best fit parameters found to be: χ2 = 4.1, Rw = 7.9% for Mn2SiS4 and χ2 = 1.8, Rw =

6.6% for Mn2SiSe4.
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Chapter 4

Neutron powder diffraction

Time-of-flight neutron powder diffraction was performed on Mn2SiS4 and Mn2SiSe4 in POWGEN[45]

at the Spalliation Neutron Source in Oak Ridge National Laboratory using two central wave-

lengths (1.5 Å and 2.66 Å). Diffraction experiments at 200 K, 100 K, 90 K, 80 K, 70 K, 60

K, 50 K, 30 K, 25 K, 15 K, 10 K, 8 K, 4 K, and 1.8 K were performed using a wavelength

of λ = 2.665 Å. At 200 K and 1.8 K diffraction patterns were also collected using λ = 1.5 Å.

The Rietveld refinements using FULLPROF suite program are shown in Figure 4.0.2 (a) and

(b) and in Figure 4.0.3 (a) and (b). All the diffraction peaks were satisfactorily indexed in an

orthorhombic unit cell (space group: Pnma) with lattice parameters: a = 13.28516(12)Å, b =

7.76595(7)Å, c = 6.23747(6)Å, a = 12.67925(12)Å, b = 7.42881(9)Å, c = 5.93395(7)Å and are

in agreement with the literature [46, 47]. At high temperature (200 K) shown in Figure 4.0.2

(a) and 4.0.3 (a) there is no magnetic Bragg peak contribution for both compounds (Mn2SiS4

and Mn2SiSe4), all the peaks are from nuclear structure. However at low temperature (2 K),

large increase in intensity of certain Bragg peaks at high d-spacing values is noticed.

The color map in figure on 4.0.1(a) and 4.0.1(b) denotes high-intensity areas where a nuclear

or magnetic Bragg peaks have been found. Long-range magnetic ordering is observed in both

Mn2SiS4 and Mn2SiSe4 with a d-spacing of ≈ 13 Å. This is clearly shown in Figure 4.0.1 (a)

which illustrates the emerging magnetic ordering below 70 K in Mn2SiSe4 and Figure 4.0.1(b)

below 90 K in Mn2SiS4. A small impurity of MnS was found in the Mn2SiS4 samples utilized for

the neutron diffraction measurements. As a result, MnS was used as a second phase in the refin-

ing of the 200 K data and was quantified at 3% by weight. The magnetic structure of MnS was

added to the refining as a third phase since MnS is magnetic at 200 K. The antiferromagnetic
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structure of MnS has a propagation vector of k (0.5 0.5 0.5)[48]. The magnetic propagation

vector of Mn2SiS4 at 2 K was determined using the k-search feature in FULLPROF suite as k (0

0 0)[49]. This yielded k (0 0 0) for both compounds below magnetic ordering temperatures. The

indices of a few strong magnetic reflections are indicated in Figure 4.0.1 (a-b). The observed

magnetic intensity indicate that the magnetic moments are normal to ab-plane in Mn2SiSe4

while the moments in Mn2SiS4 are nearly normal to ac-plane with possible component along

b-axis. In Shubnikov notation, the Mn magnetic moments in this compound have 8 irreducible

representations: Pnma, Pn′m′a, Pnm′a′, Pn′ma′, Pn′m′a′, Pnma′, Pn′ma, Pnm′a. P nm′a′,

P n′ma′, P n′m′a′, P nma′, P n′ma and P nm′aRietveld refinements were performed to com-

pare these space groups to the experimental diffraction data at 2 K. According to our findings,

Pnma has shown the best agreement. For Pnma with k (0 0 0), Mn at 4a Wyckoff position can

have magnetic moment components along all the three crystallographic directions whereas, the

moments of Mn at 4c are restricted along crystallographic b-axis. Rietveld refinements showed

that the moment components of Mn along a and c axes are negligibly small (smaller than the

error bars), so were constrained to be zero in the final refinements. The magnitudes of magnetic

moments of Mn at both 4a and 4c sites are found to be nearly the same but opposite in sign

and hence were constrained to be the same to obtain stable refinements. Up to the transition

temperature TN(S), the magnetic structure of Mn2SiS4 remains in Pnma. Figure 4.0.2 (c) shows

the arrangement of Mn spins in the unit cell, while Figure 4.0.2 (d) illustrates the temperature-

dependent change of the Mn magnetic moment. The data was subjected to a power-law fit,

which is seen in the figure as a red line. As a result, the TN was determined to be 83(2) K

and this is in agreement with Ref[11]. The magnetic moment, mMn(T= 0), was calculated as

4.77(4)µB using the power-law with exponent β = 0.28(2).

The high-temperature structure of Mn2SiSe4 at 200 K was refined using only a nuclear-phase

based on the Pnma space group. Magnetic structure of Mn2SiSe4 was refined using the Pnma

paramagnetic group in the same way as Mn2SiS4 with the propagation vector of k (0 0 0). As

a result, Mn2SiS4 can have up to 8 irreducible representations, as shown above. The Pnm′a′
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space group was found to be the best fit to the experimentally measured diffracted intensity.

Figure 4.0.3 (c) shows a schematic diagram of the magnetic moment arrangement in the lattice,

whereas Figure 4.0.3 (d) indicates the temperature-variation of the magnetic moment of Mn.

mMn (T=0)= 4.38(5)µB and TN(Se)=70.0(5) K are calculated from the refined magnetic mo-

ment values. We attempted to refine the magnetic moments of Mn(1) and Mn(2) independently

since the Mn atom occupies two different Wyckoff positions in the lattice. However, there were

no obvious differences.

(a) (b)

Figure 4.0.1: The powder diffraction data of Mn2Si(S/Se)4 plotted as color maps in the tem-
perature range 2-200 K displaying the emergence of magnetic Bragg peaks below 70 K for (a)
Mn2SiSe4 and 90 K for (b) Mn2SiS4.
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Figure 4.0.2: The Rietveld refined diffraction data of Mn2SiS4 at (a) 200 K > TN(S) and (b)
2 K < TN(S). The 2 K magnetic structure belongs to the magnetic space group Pnma. The
magnetic structure of (c) Mn2SiS4. The temperature dependence of the magnetic moment of
Mn (scatter), obtained from the refinement of neutron powder diffraction data for (d) Mn2SiS4.

Table 4.1: Refined atomic parameters of Mn2SiS4 at temperatures 200 K and 2 K.

T(K) a (Å) b (Å) c (Å) χ2 Rp Rwp Major-phase MnS

200 12.67925(16) 7.42881(9) 5.93395(7) 4.17 16.2 9.89 97.46(0.25) 2.54(0.03)
2 12.64918(19) 7.41355(12) 5.92708(8) 8.28 12.1 11.2 99.92(0.50) 0.08(0.0)

Table 4.2: Refined atomic parameters of Mn2SiSe4 at temperatures 200 K and 2 K.

T(K) a (Å) b (Å) c (Å) χ2 Rp Rwp Major-phase MnSe

200 13.28516(12) 7.76595 (7) 6.23747 (6) 5.79 11.1 7.42 98.35(0.23) 1.65(0.04)
2 13.25081(19) 7.74814(11) 6.22799(9) 48.9 13.9 14.6 100.00(0.38) 0.0

4.0.1 Inelastic neutron scattering of Mn2SiX 4

The magnetic excitations in Mn2SiS4 and Mn2SiSe4 were studied using inelastic neutron scat-

tering on the thermal triple-axis spectrometer (TRIAX) at the University of Missouri Research
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Figure 4.0.3: Similarly the refinement results of Mn2SiSe4 at 200 K are shown in (a) and
2 K in (b ). The magnetic structure in this case is Pnm′a′. The magnetic structures of (c)
Mn2SiSe4. The temperature dependence of the magnetic moment of Mn (scatter), obtained
from the refinement of neutron powder diffraction data for (d) Mn2SiSe4.

Reactor (MURR). The raw data counts of the inelastic neutron data were corrected for the Bose

thermal population factor. The resulting corrected intensity is plotted for T = 4.5 K well below

the ordering temperature as Q-E maps in Figure 4.0.4(a) and (b) for Mn2SiS4 and Mn2SiSe4,

respectively. Features consistent with extended spin-waves in a three-dimensional ordered anti-

ferromagnet emanate from the ordering wave vector position Q = 1Å−1. A band located at T

∼ 4.5 meV is observed to extend through the measured Q-range for both compounds. Figures

4.0.4(c) and (d) show the scattered inelastic intensity (thermal population corrected) well above

the ordering temperature (T = 125 K). Correlations near the ordering wave vector position are

seen to persist at these temperatures, particularly for Mn2SiS4. We attribute this signal to

fluctuating super-spins associated with magnetic clusters formed above TN . We note that this

is consistent with the diffuse scattering observed in the neutron diffraction profile at the same

temperature and with the observation of low heat capacity change across the magnetic ordering

transition. We note that the somewhat higher coherent neutron scattering cross section of Se

(σ = 7.98 barns) compared to that of S (σ = 1.02 barns) results in an increased contribution

from phonons that appears as broad signal in the high-Q, high-E region of the colormap.
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Figures 4.0.4 (e) and (f) draw out the main features observed in the inelastic spectra. Panel (e)

depicts the measured intensity at the ordering wave vector (Q = 1Å−1) for each of the two com-

pounds and at both measurement temperatures. A peak at the band energy of 4.5 meV stands

out prominently for Mn2SiS4, whereas more signal is shifted to lower energies for Mn2SiSe4

effectively washing out the weaker band feature. Taking a cut in the constant-E direction at

this E = 4.5 meV value, however, shows the peak feature for Mn2SiSe4 as well as Mn2SiS4. The

feature near Q = 1Å−1 , associated with short-range correlations, is evident in the line scan at

125 K, demonstrating the peak width of 0.7 Å−1, indicating a correlation length for the spins

of about 9 Å. This value agrees well with the interchain distance, which makes sense because

we know that the intrachain ordering is FM, whereas the short-range correlations are associated

with the AFM ordering wave vector suggesting that it originates from incipient coupling between

sawtooth chain segments.
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Figure 4.0.4: The Q-E map of Mn2SiS4 and Mn2SiSe4 obtained from inelastic neutron scattering
experiment at T = 4.5 K [(a) and (b), respectively] and T = 125 K [(c) and (d), respectively].
The intensities in each are corrected by the thermal population factor. The spectra at low
temperature are consistent with three-dimensional long-range order, while the above TN spectra
show the presence of short-range correlations centered at the same ordering wave vector and more
prominent for Mn2SiS4. The salient features of the four Q-E maps is illustrated by (e) constant-
E and (f) constant -Q plots. Solid symbols are at base temperature and open symbols at 125
K; black symbols are Mn2SiSe4, green symbols are Mn2SiS4. The persistence of the Q = 1Å−1

feature is evident in the constant-E plot.
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Chapter 5

Bulk properties of Mn2SiX 4

This chapter discusses the bulk properties of Mn2SiX 4(X = Si, Se), which is how the measure-

ment of magnetic susceptibility, and specific heat of solids was taken.

5.1 Magnetic susceptibility

Magnetization M is traditionally described as the sum of magnetic moments per sample vol-

ume, which is measured in (Am
2

m3 ) = A/m, the same units as magnetic field H[50]. The partial

derivative of M with respect to an applied field is described as magnetic susceptibility χ. For

realistic field strengths, M is frequently linear with H (as in antiferromagnets and paramagnets),

therefore susceptibility can be represented as χ = M
H . Thus, χ is a dimensionless quantity since

M and H have the same dimensions. A vibrating sample magnetometer (VSM) with a super-

conducting quantum interference device pick up coil (SQUID) is used to measure the magnetic

susceptibility[51]. According to Lenz’s law, the VSM vibrates the sample while maintaining a

constant magnetic field, causing an emf in the SQUID that is proportional to the magnetization

of the sample.

We have characterized the bulk properties and confirmed the phase transitions in the samples of

the present study using magnetic susceptibility and specific heat. The magnetic susceptibility

was measured in field cooled (FC) and zero field cooled (ZFC) protocols. Direct current magne-

tization measurements with an external field of 500 Oe were performed in a Magnetic Property

Measurement System (MPMS) SQUID in the temperature range 2-300 K. The phase transitions

in Mn2SiS4 and Mn2SiSe4 are first characterized using bulk measurements of magnetic suscep-
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tibility and specific heat. The FC and ZFC dc magnetic susceptibility, χdc(T), of Mn2SiS4 and

Mn2SiSe4 are shown in Figure 5.1.1.

In Mn2SiS4 a magnetic phase transition is seen in χdc(T) as a sharp peak at TN (S) ≈ 83

K, Figure 5.1.1 (a). The phase transition in Mn2SiSe4, on the other hand, is identified as the

point of bifurcation in χdc(T), at TN (Se) ≈ 65 K. Below TN(Se), the χdc(T) goes through a

broad feature that breaks reversibility between the FC and ZFC curves. The inverse magnetic

susceptibility was analyzed using Curie-Weiss law, χ(T ) = C
T−θcw and the Curie-Weiss tempera-

ture θcw and the TN were used to determine the frustration constant, f = |θcw|
TN

. This revealed

reasonably high frustration for Mn2SiSe4 with f(Se) = 5.2, compared to Mn2SiS4 with f(S) =

2.7. These results agree well with our previous findings[3] and a similar compound [52]. Previous

work on the magnetic structure of Mn2SiS4 showed that there was a narrow region of spontaneous

magnetization between 83 K and 86 K, and below 83 K canted antiferromagnetism progressed

towards collinear arrangement on the b-axis at 4.2 K[53]. The magnetic models that are pre-

dicted in the work by Ref[53], are Pnma (4.2 K), Pnma (80 K) and Pn′m′a (83 K). Our results

are in agreement with the space group model, however, proposes a ferromagnetic alignment of

Mn spins. . The inverse magnetic susceptibility as a function of temperature and the plotted

line using ideal Curie-Weiss law for Mn2SiS4 and Mn2SiSe4, are shown in the insets of Figure

5.1.1 (a) and (b). We do not see direct signatures of diffuse magnetism in our diffraction data.

But the diminished ferromagnetic moment is an indication. A negative Curie-Weiss temperature

is found in both the olivine compounds despite the ferromagnetic ground state below the respec-

tive TN s. This in turn is an indication of the strong short-range spin fluctuations that extend

up to 2TN , as also verified by previous work[46]. Short-range spin fluctuations responsive to

temperature and magnetic field are thus suspected to be present in both Mn2SiS4 and Mn2SiSe4.

Mn2SiSe4 reportedly orders antiferromagnetically below TN (Se) ≈ 66 K while Mn2SiS4, be-

low TN (S) ≈ 83 K[3]. Mn2SiSe4 possesses a magnetic easy axis along the crystallographic

c direction of the orthorhombic cell[46]. In this compound, the average magnetic structure
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remains ferrimagnetic. Mn2SiSe4 displays pronounced field and temperature cycling dependen-

cies in magnetic susceptibility[46] compared to the S-counterpart, and has a wider temperature

range by the maximum seen in the magnetic susceptibility curve (between 66 K and 17 K, which

is almost 50 K spread)[46, 54]. The broadness of the transition in magnetic susceptibility of

Mn2SiSe4 and the hysteresis-like effects suggest a frustrated magnetic ground state.

5.2 Specific heat

The total specific heat of Mn2SiS4 and Mn2SiSe4 was analyzed by fitting the experimental data

to a model consisting of lattice (CEinstein
p and CDebye

p ) and electronic (C linear
p ) contributions such

that, Ctotal
p (T ) = C linear

p +CEinstein
p +CDebye

p . The individual contributions mentioned above can

be expressed as follows:

C linear
p = γT,

CEinstein
p = 3rR

∑
i

ai
x2
i e
xi

(exi − 1)2
,

CDebye
p =

9rR

x3
D

∫ xD

0

x4
De

xD

(exD − 1)2
dxD.

In the equations above, xD = ~ωD/kBT , xi = ~ωE/kBTi, and r is the number of atoms, ai

are weight-factors of the different phonon modes, γ is the coefficient of linear-T contribution to

specific heat whcih comes from electronic degrees of freedom. Mn2SiS4 has a γ value of 0.19(2)

J/mol K2 based on a temperature fit in the range of 2-250 K. The fit yielded θD(S) = 242(1)K and

θE(S) = 626(3) K for Debye and Einstein temperatures, respectively. The Cp(T ) for Mn2SiSe4

was calculated using solely the lattice contribution, which included Einstein terms, and yielded

θE1(Se) = 744(3) K and θE2(Se) = 128(2) K. Smag =
∫ T1
T1

(
dCmag

T )dT , where T1 = 60 K and T2 =

110 K, was used to calculate the magnetic entropy of Mn2SiS4 displayed in the inset of Figure

5.2.1. At the phase transition temperature, TN (S), the magnetic entropy was equal to 2 J/mol

K. This is about 13.5% of total spin-only entropy (S = 5/2). Earlier studies, especially using

specific heat analysis, have pointed out the very low entropy released at the phase transition
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Figure 5.1.1: The dc magnetic susceptibility χdc(T ) of (a) Mn2SiS4 and (b) Mn2SiSe4. The
insets of (a) and (b) show the derivative of magnetic susceptibility.
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temperature of Mn2SiS4. For example, Ref [11] reports that only a release of 1.4% to 5% of

Rln(6) is observed in the specific heat of Mn2SiS4. This was attributed to the fact that intensity

of purely magnetic reflections were observed upto 140 K in neutron scattering experiments.

These claims can be put to test if single crystals of Mn2SiX 4 are synthesized. Alternatively,

diffuse scattering experiments using polarized neutrons could help in the case of powder samples.

Figure 5.2.1: The specific heat Cp(T) of Mn2SiS4 and Mn2SiSe4 corroborates the phase transi-
tions at TN = 66.3 K and TN = 85.3 K respectively. The solid lines overlapping on the data
points are the curve fits that model the lattice specific heat incorporating a T-linear term, Debye
and Einstein terms. The vertical dashed lines mark the location of the peak in specific heat.
The inset shows the magnetic entropy of Mn2SiS4 (right green curve) and Mn2SiSe4 (left curve).
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Chapter 6

Summary

In conclusion, we have presented the crystal and magnetic structures of the olivine chalcogenides,

Mn2SiX 4(X = S, Se), determined from X-ray and neutron diffraction data. The average and lo-

cal crystal structure of the two title compounds, Mn2SiS4 and Mn2SiSe4 are investigated in detail

using high-resolution X-ray synchrotron diffraction and the local structure through pair distri-

bution function analysis of the X-ray total scattering data. Both Mn2SiS44 and Mn2SiSe4’s

Mn-triangles, which make up the sawtooth, are found to be isosceles triangles. The average

magnetic structure determined through neutron diffraction reveals long-range antiferromagnetic

order for both the compounds. Below the magnetic transition temperature, the magnetic struc-

ture of Mn2SiS4 belongs to Pnma magnetic space group whereas that of Mn2SiSe4 is Pnm′a′.

Through a power-law analysis of the temperature variation of magnetic moment, we determine

the magnetic phase transition temperatures of Mn2SiS4 and Mn2SiSe4 as 83(2) K and 70.0(5)

K. The magnon excitation spectrum of these two olivine chalcogenides are reported for the

first time, thereby allowing to identify an excitation at approximately 4.5 meV at 4.5 K. Our

results will be useful in future studies focusing on the magnon bands and electronic structure

investigating magnonic or thermoelectric applications of this class of materials.
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