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Abstract

Conventional, manual inspection methods are the most commonly used inspection ap-

proaches to this day; that cause downtime and can be erroneous due to their repetitive

nature, heavy workload, and human error. The overarching goal of this work is to advance

structural inspection with intelligent and autonomous techniques across infrastructures. In

particular, this project will develop path-planning schemes for close navigation around the

structures and intelligent algorithms for crack and corrosion detection.

The introduced novel navigation method uses advanced manufacturing techniques to

generate aerial inspection trajectories in GPS-denied areas. The proposed method is val-

idated using the ‘Gazebo’ robotics simulator; the results confirm the usability for close-

quarter inspection of any structural components with complex geometry.

The intelligent inspection algorithms are developed by leveraging Artificial intelligence’s

(AI) Deep Neural Networks (DNNs). Custom data sets are acquired and appropriately

prepared for the specific model and anomaly classes, ‘crack’ and ‘corrosion.’ The models

are further optimized to a lighter, lower latency version for real-time deployment at the

edge. Developed custom models are tested for validation in industrial compounds, and

they competently identify and localize the defects at the scene.

Lastly, an integrated multi-spectral inspection capability with a user interface (UI) is

developed to advance and supplement the inspection method. It generates overlayed multi-

spectral scopes fusing color and infrared sensor feeds, read temperatures & displays thermal

profiles to the UI. Experimental studies are conducted to demonstrate the usability and

advantage of the system in infrastructural defect detection. The proposed approaches are

validated in laboratory and industrial setups.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Apart from safety-related issues, regular inspection and maintenance of infrastructures are

critical for a stable economy in any country. Structural components, from power plants and

industries to civil infrastructures such as buildings and bridges, suffer from environmental

effects, aging, and usage decay. The power plants (gas & coal) produce some 80% of

global electricity as of 2020, as per DNV GL’s Energy Transition Outlook [7]. Therefore,

these plants’ correct health and operational condition are extremely critical to the global

economy. Environmental and operational-related defects, e.g., crack and corrosion, are

stringent safety and financial concern all across the globe and can be significantly costly

through incidents, downtime, or irrevocable damage and loss if not timely detected. The

global estimated cost of only corrosion was US$276 billion, equivalent to 3.1% of the US

gross domestic product (GDP) in a study done by the US Federal Highway Administration

(FHWA) in 2002 alone [8]. Scheduled preventive maintenance is key to timely anomaly

detection, monitoring, and taking measures to resolve an issue, if necessary, to maintain

structural integrity. However, inspection and maintenance of these massive numbers of

ever-expanding and aging infrastructure require enormous national resources from federal

and state agencies.

Inspection of the structural component is a frequent and repetitive task. While in-

frastructure anomalies, e.g., cracks and corrosion, have caused many accidents taking pre-

cious lives, and businesses are losing millions in time and money, inspection methods have

changed little over time to identify them, relying heavily on human discernment. The con-
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ventional inspection method is still in place as human inspectors perform manual inspec-

tions, sometimes with handheld equipment. Although the manual inspection is effective, it

is limited to human capacity regarding reach and speed; and heavily relies on the experi-

ence and expertise of inspectors. Depending on the inspectors’ perception, it may also be

subjective, inconsistent, and inaccurate due to human error. It is also unrealistic to have

the same inspector inspect all plants owned by a single corporation. The inspection could

also be dangerous and challenging when performed in hazardous and hard-to-reach areas,

imposing heightened risks on personnel. Not to mention manual inspection can be costly

due to downtime.

Applying advanced technology to automate the inspection process and to attain consis-

tent results to assist human inspectors is a practical and suitable alternative motivated by

the limitations of the traditional approach. Technology adoption transforms the repetitive

maintenance task into an easier, more consistent, and significantly inexpensive one. With

the preventive maintenance philosophy, there have been major improvements in inspection

methods, and ongoing research will speed up the inspection process to reduce downtime

even further. Cost savings can be significant through proper maintenance and management

over the lifetime of an asset. A rapid rise of robotic technology incorporation for inspection

can be observed today.

1.1.1 Structural Defects

The defect of different infrastructures is a diverse topic, and it also depends on not only

the type of structure and its use but also the system dynamics and environment. One

of the main common faults that maintenance inspectors look for in any infrastructure

inspection is cracks. Crack detection is a critical and common structural maintenance check

since it directly reflects the structure’s safety, durability, and applicability. It significantly

influences the bearing capability and integrity of the structural component. There could

be multiple reasons for crack formation, starting from something internal, like material

shrinkage, to an external influence, such as extreme tensile stress. It could also be a warning
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sign, indicating undiscovered problems and potential failure. Environmental conditions

such as humidity and chemical interference also cause cracks and sometimes can lead to

corrosion of metallic reinforcement underneath, ultimately leading to failure. As such,

inspecting cracks is a vital maintenance task to ensure serviceability and prevention of

bigger problems.

Another common problem, especially in industries and civil infrastructures, is corrosion.

Like crack propagation, corrosion is a product of the environment. It is caused by the chem-

ical reaction of metal while interacting with its surrounding environment. Not always easy

to detect or visible to the naked eye, it has rapid propagation and causes accelerated decay.

It is a severe safety and financial concern. If left unchecked can cause catastrophic event

endangerment to precious lives. On the other hand, it causes major financial setbacks if not

addressed in time. In 2013, the estimated corrosion cost was US$2.5 trillion, equivalent to

3.4% of the global GDP. Worldwide estimated savings could be between US$375 and $875

billion annually using available corrosion control practices [9]. Accurate and timely detec-

tion of cracks and corrosion in infrastructures is crucial to economic efficiency by initiating

appropriately managed maintenance processes that will save lives.

1.1.2 Challenges

Preventive maintenance is pivotal for the safe operation of vital infrastructures. As dis-

cussed above, the major challenges considered are- time constraints, slower speed of manual

inspection, and issues related to difficult-to-reach structural components due to height, ac-

cessibility, or hazardous condition. Human inspection is also limited by human capacity.

There is only so much workload humans can handle. Using different inspectors results in

inconsistency in analysis, and sometimes, cracks and corrosion are difficult to detect with

human vision. The fundamental human difference makes it difficult to standardize the

results and decide on corrective or preventive measures.
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1.1.3 Available Technologies for Visual Inspection

Digital technologies have been assisting in maintenance planning, monitoring, and inspec-

tion for decades, including but not limited to the use of image processing techniques [10],

robotics [11], and computer vision [12]. Using robotics is one of the most popular visual

inspection capabilities for collecting data and remote monitoring. It addresses the safety

concern of human inspectors, particularly in hazardous conditions. The use of aerial ve-

hicles reaps additional benefits, as it gives access to hard-to-access areas [13]. With a

well-planned and trained team, it can significantly reduce inspection-related downtime.

Available aerial inspection systems usually are component-specific and heavily depend on

the operator for remote-controlled navigation or GPS. The navigation methods may cause

complications in areas with limited or no GPS signal or direct line of sight.

Vision-based methods are recently being extensively researched for surface defect de-

tection, including machine learning and convolutional neural networks (CNN) [14]. Deep

learning (DL), a popular branch of machine learning (ML) where deep neural networks

(DNN) with deep layers is used for relevant feature extractions by itself [15]. Numer-

ous DL-based studies have been proposed, which are categorized as (i) image classification

(IC), (ii) object detection (OD), and (iii) semantic segmentation (SS). Recently, DNNs have

proven to surpass human-level accuracy on the ImageNet classification [16]. The ground-

breaking success of these methods has inspired several recent studies to propose AI-based

algorithms for automated crack and corrosion detection.

At times, however, the defects can be hard to notice with the naked eye, depending

on the defect location, dimension, surface noise, e.g., color and texture, lighting condition,

and even the time of the day. In such conditions, using a thermal sensor gives an edge over

visual inspection using cameras. The radiometric information can be useful for locating

components with abnormal thermal profiles, and undetected anomalies can be analyzed

and resolved with early detection.
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1.2 Research Objectives

This research presents an improved and streamlined inspection method applicable to diverse

infrastructures. The goal is to provide an intelligent autonomous inspection system with

a real-time application by developing an inspection payload (IP). The research objectives

are as follows:

1. Provide a close-quarter trajectory generation method for aerial inspection in GPS-

denied areas.

2. Automatically detect & localize ‘crack’ and ‘corrosion’ using a custom DNN model.

3. Develop intelligent algorithms to deploy at the edge (embedded platform) for real-

time inspection.

4. Develop a multi-spectral capability and interface for thermal analysis of structural

components.

The research should include building structures such as vertical walls and industrial

structural elements, such as boilers and chimney stacks, to achieve the said objectives.

Different structures, materials, and surface conditions should also be considered, e.g., tex-

tures and background noise. The inspection environments, anomaly types, and locations of

defects vary from industry to industry. Therefore, data from different locations should be

collected considering these different conditions. The trajectory generation method should

be able to customize and modified according to the location. The developed crack and

corrosion detection solutions should be able to identify and localize defects at different

surface images and structures. The multi-spectral capability should provide a user-friendly

way to inspect industrial components’ temperature and heat profile at the required op-

erational condition of power plants. Through application studies and experimental work

in these three areas, crack, and corrosion detection methods for different infrastructure

components, practical suggestions, and recommendations using DNN-applied industrial in-

frastructure inspection should be provided.
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1.3 Methodology

Automatic real-time detection of structural defects is a much-required technology to enable

rapid, accurate, and on-site inspection. This study has developed an inspection payload

(IP) capable of deploying across diverse infrastructures for inspection. The IP is a complete

setup that can be mounted on platforms like aerial vehicles or used as a handheld setup to

inspect cracks and corrosion. It is equipped with necessary sensors for autonomous visual

and multispectral inspection.

Task 1. Current aerial robots, i.e., unmanned aerial vehicles (UAVs) (commonly termed

drones), mostly rely on human pilots to operate within a limited line of sight, and a reduced

perception, preventing close-quarter inspection in intricate, structurally complex and GPS-

denied environments. This work introduces a novel offline inspection trajectory generation

method based on advanced manufacturing techniques for close-quarter inspection in known,

static but GPS and/or communication-denied areas. The two approaches are based on

computer-aided manufacturing (CAM) and additive manufacturing (AM) techniques. The

drone would fly along the path generated using a toolpath of a CAM machining tool or

a 3D printer’s extruder, enabling it to fly close to the structure, especially in complex

geometry using the custom trajectory. These developed trajectories are validated in the

Gazebo robotics simulator and tested to fly in the complex geometry of an industrial

environment. The results demonstrate the proper performance of the method and confirm

that this approach can be used for close inspection of structural components.

Task 2 & 3. For automating defect detection, this work uses advanced Computer Vision

(CV) techniques of Artificial Intelligence (AI), leveraging Deep Neural Networks (DNN).

In this study, custom DNN algorithms were developed to obtain an intelligent inspection

system capable of detecting structural problems in power plant components, such as ‘cracks’

and ‘corrosion’ in offline and online modes, i.e., at the edge. The methodology consists of

creating a custom data set, training using transfer learning of the state-of-the-art model
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‘You Only Look Once’ (YOLOv4), testing and comparing models’ results, and using the

best model in a handheld device for detection at the edge.

Data sets were created by combining existing and newly collected own images for both

anomaly types since no suitable data set was available for this specific case. For automating

corrosion inspection, one major challenge is that it does not have consistent, salient features

needed by a DNN model. The diversity of corrosion and scarcity of target-specific data

makes things difficult to develop a well-performing model. Considering that, synthetically

generated data is added for corrosion data set development. Next, customized DNN models

for offline inspection modes are developed by conducting several trials and experimentation

with the data set, hyper-parameters, and different models. The custom offline model is

further optimized using quantization techniques to attain a lighter, lower latency model.

The lighter custom model is appropriately adapted to the embedded platform for edge

deployment. Doing so makes the models capable of deployment on board a single-board

computer (SBC) (i.e., NVIDIA’s Jetson Nano), all the while maintaining the model’s mean

average precision (mAP) during real-time inference.

Both offline & online (real-time) models’ performance is tested on the test set industrial

images never seen by the model taken by aerial and handheld setups. Cracks and corrosion

inference results show that the system can identify and localize it within the camera’s field

of view (FOV). The best model’s evaluation metric for crack detection, mAP, is 98.44% for

the crack detection algorithm. For corrosion detection, several studies show improvement

in model performance with improvement in quality and an increasing number of specific

corrosion images. The best mAP achieved is 44.54% on real data, while the model yielded

72% when trained on the increased number of images combining real and synthetic ones.

Model performance improves by 28% in mAP with increased data, specific data augmenta-

tion, and hyper-parameter adjustments. Real-time inference latency test on images of an

old power plant stack shows 2.5 FPS (frames per second) inference speed for crack and

corrosion detection.
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Task 4. This study adds a multispectral capability for the visual inspection of power

plants by combining RGB (color) and infrared images. A system is developed to capture

infrared images, display temperatures in the display scope, and generate overlayed multi-

spectral display of the powerplant using Python code and a custom user interface (UI). This

system helps inspectors identify or observe areas of concern, develop a structural health

monitoring (SHM) system, and collect multispectral images as operation and maintenance

records that can later be useful for detecting historical thermal-related anomaly detection.

1.4 Research Contributions

The research contributions are:

1. A novel trajectory generation method using advanced manufacturing techniques for

close-quarter aerial inspection of any infrastructure with complex geometry and in

GPS & communication-denied areas.

2. A ‘crack’ and ‘corrosion’ detection database is developed

3. Custom DL-based ‘crack’ and ‘corrosion’ detection algorithm is developed and tested

with adequate performance.

4. Custom models are optimized & adapted to embedded SBC (Single Board Computer)

platform for real-time detection at the edge.

5. Multispectral analysis UI (user interface) is developed for thermal and radiometric

inspection.

1.5 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, the IP is explained along with the

hardware specifications and system interfaces. Chapter 3 describes advanced manufacturing-

based techniques to generate UAV inspection trajectories for aerial inspection. Chapters
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4 and 5 present database development, custom DL-based anomaly detection algorithm

development, model optimization, evaluation, and online-offline deployment for inference

experimentation using a different platform for crack and corrosion, respectively. Chapter

6 describes the development of multispectral inspection and analysis capability and intro-

duces the UI for inspection data post-processing and other details. Each chapter describes

its literature review, method, experimental results, and discussions. Finally, the conclusions

and concluding remarks are presented in Chapter 7.
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Chapter 2

Inspection Payload Development

2.1 System Requirements

The system’s main objective is to advance structural inspection with autonomous tech-

niques to overcome the associated limitations of available manual inspection methods. The

system should be able to identify common structural defects with adequate precision and

accuracy.

An inspection payload (IP) needs to be developed with the necessary computational

power, hardware, software, and developing custom intelligent algorithms to detect and

localize ‘crack’ and ‘corrosion’ autonomously in structural components for the advanced

inspection system.

General Requirements

The requirements of the inspection system and IP were reviewed using the Requirements

Verification Matrix (RVM) and determined as follows.

SR-1. IP shall perform autonomous visual inspection of structural components.

SR-2. IP shall successfully identify defects common to infrastructures.

SR-3. IP shall aid inspectors by locating areas of interest.

SR-4. IP shall perform inspection faster to lower system downtime.
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Table 2.1: IP Functional Requirements RVM

No Requirements Source
Verification

Method
Status

Verification

Result

FR-1
The IP shall be able to detect

industrial defects autonomously.
SR-1 Demonstrating Complete Passed

FR-2
The IP shall be able to detect cracks

from 3 ft away from the surface.
SR-2 Testing Complete Passed

FR-3

The IP shall be able to detect

corrosion from 3 ft away from

the surface.

SR-2 Testing Complete Passed

FR-4

The IP shall be able to detect and

localize corrosion and cracks in an

illuminated or daylight environment.

SR-3
Demonstra-

ting
Complete Passed

FR-5

The IP shall be able to detect

corrosion and cracks when moving at

1 m/s or less.

SR-4 Testing Complete Passed

Table 2.2: Mechanical Design RVM

No Requirements Source
Verification

Method
Status

Verification

Result

MD-1

The IP shall not occupy more than

110 x85 x45(75 with sensor

mount) mm3 in volume.

Internal Inspect Complete Passed

MD-2
The IP shall not exceed 150g of

mass budget.
Internal Inspect Complete Passed
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Table 2.2: Mechanical Design RVM

No Requirements Source
Verification

Method
Status

Verification

Result

MD-3

IP sensors shall be able to set up

facing the inspection surface(s)

on any of the four/six faces of

the drones/inspection platform.

Internal Inspect Complete Passed

MD-4
IP shall be able to operate

within –5-45°C.
Internal Inspect Complete Passed

Table 2.3: Electrical RVM

No Requirements Source
Verification

Method
Status

Verification

Result

ER-1

RGB sensor/camera shall be

connected to IP board with Mobile

Industry Processor Interface (MIPI)

Camera Serial Interface Type 2

(CSI-2) connector for power &

data transfer.

Internal Inspect Complete Passed

ER-2

IR sensor shall be connected to SBC

(Single Board Computer) with USB

3.0 Type A connector for power and

data transfer.

Internal Inspect Complete Passed

ER-3
IP shall use a switching regulator to

regulate required input voltage.
Internal Inspect Complete Passed

ER-4
IP shall control cooling fan with

4-pin fan control header.
Internal Inspect Complete Passed
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Table 2.4: Power RVM

No Requirements Source
Verification

Method
Status

Verification

Result

PR-1

IP shall have the option to use

the power source of the inspection

platform or external source.

Internal Inspect Complete Passed

PR-2
IP total power shall not be more

than 20W at peak usage.
Internal Inspect Complete Passed

PR-3

IP shall have additional cooling

option with a cooling fan powered

from the common power source with

4-pin fan control header.

Internal Inspect Complete Passed

PR-4
RGB camera shall not demand more

than 200-250mA.
Internal Inspect Complete Passed

PR-5
IR sensor shall have between 5mW-

650mW power consumption.
Internal Inspect Complete Passed

Table 2.5: Data RVM

No Requirements Source
Verification

Method
Status

Verification

Result

DR-1

IP shall be able to store data locally

on microSD card (minimum of

64 GB physical storage on board).

Internal Testing Complete Passed

DR-2
IP shall use local Wi-Fi connection

to communicate with ground station.
Internal Testing Complete Passed

DR-3

Data collection & inspection of

detection shall be analyzed remotely

for usage at remote computer.

Internal Testing Complete Passed
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Table 2.5: Data RVM

No Requirements Source
Verification

Method
Status

Verification

Result

DR-4
RGB sensor should have at least

4 Gbps bandwidth data lane.
Internal Testing Complete Passed

DR-5
RGB sensor should support RGB

& user defined input data formats.
Internal Testing Complete Passed

DR-5

RGB sensor should have at least

8 Megapixels resolution and 3 mm

focal length.

Internal Testing Complete Passed

DR-6
IR sensor shall have between 5mW-

650mW power consumption.
Internal Testing Complete Passed

DR-7
RGB sensor should have

60◦C × 40◦C FOV.
Internal Testing Complete Passed

DR-8
RGB sensor should support 1080p,

720p and 640 × 480p video modes.
Internal Testing Complete Passed

DR-9

IR sensor should have at least -10°

to +400°C temperature reading

range (at room temperature).

Internal Testing Complete Passed

DR-10
IR sensor shall support YUV

& USB UVC data formats.
Internal Testing Complete Passed

DR-11
IR sensor shall have at least

160h x 120v pixels resolution.
Internal Testing Complete Passed

DR-12
IR sensor shall have at least

4 Hz frame rate.
Internal Testing Complete Passed
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Table 2.6: Algorithm & Software RVM

No Requirements Source
Verification

Method
Status

Verification

Result

ASR-1
The IP shall run on Linux-based

OS (Operating System).
Internal Testing Complete Passed

ASR-2

The IP shall include pre-loaded

firmware and software compatible

with the sensors.

Internal
Demonstrat-

ing
Complete Passed

ASR-3

IP shall use the pre-trained &

optimized, custom deep learning

(DL) model for damage detection.

Internal
Demonstrat-

ing
Complete Passed

ASR-4

Pre-loaded algorithm/model

shall leverage IP’s GPU to reduce

inference latency.

Internal Testing Complete Passed

ASR-5

The pre-trained DL model shall

be optimized on each IP

(quantization is platform specific).

Internal Testing Complete Passed

ASR-6
The IP shall be compatible with

ROS (Robotic Operating System).
Internal Testing Complete Passed

2.2 Architecture

As part of the inspection system, the IP is developed, comprising a Single Board Computer (SBC)

as the computational tool, sensors, required software, firmware & the custom intelligent inspection

algorithms developed for autonomous intelligent inspection installed in the SBC platform. The

IP product Breakdown Structure (PBS) is shown in Figure 2.1); it includes both physical (SBC &

hardware) and logical parts. The logical elements include but are not limited to required software,

firmware, libraries, custom codes & models developed for defect detection (seen in the PBS tree

in green fonts). The interface and architectural components are described in this section.
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Figure 2.1: Product Breakdown Structure of the Inspection Payload

2.2.1 Interface Requirements Document

The following sections outline the interfaces available on the IP and detail how the user interacts

with and controls the IP interface. Figure 2.2 demonstrates the IP’s interfaces and high-level

architecture.

The IP (in purple) includes Jetson Nano, the Single Board Computer (SBC), software, and

sensors. The SBC is pre-installed with the required firmware, custom models, and codes. The two

sensors are the RGB camera- Raspberry Pi 2.0, and the infrared (IR) sensor, Lepton 3.5, with

Purethermal Board 2.0. Together, the IP can be accessed via different interface combinations by

the user at the remote workstation (in gray).

Electrical Interface

1. IP shall be powered by 5V DC at 4A (or 20W max) using a 5.5mm x 2.5mm barrel connector.
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Figure 2.2: High-level Inspection Payload Architecture and Interfaces

2. IP shall be powered with the common inspection platform power source.

3. IP shall have the option to have a separate power source using a 5.5mm x 2.5mm barrel

connector depending on requirements.

4. IP shall have common ground with platform electronics.

5. The IP shall be powered with 14.8V Li-Poly battery, through a UBEC (10A peak) with a

XT60 to barrel connector for edge deployment.

Mechanical Interface

1. IP shall be bolted on inspection platform with 4×M3 screws.

2. IP shall include dampers to mitigate vibration.

3. Sensors of IP shall be mounted to custom 3D printed mounts specifically designed to be

placed closest to each other to ensure maximum field of view overlap using eight M2×8

screws & bolts.

Data Transfer

1. IP shall have M.2 Key E connector for wireless networking interface.
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2. IP shall use wireless Secure Shell Protocol (SSH) to communicate with & send data to

ground station computer over Wi-Fi.

3. IP shall have wired internet connection option using ethernet jack per IEEE 802.3af.

4. IP shall have data display option connected with HDMI port or USB 3.0 Type A.

5. IP shall use USB Bluetooth keyboard & mouse direct computer access.

Documents

This is the latest revision or most recent version of interface document. Documents referenced

are [17, 18, 19, 20, 21]

2.2.2 Hardware

2.2.2.1. NVIDIA Jetson Nano

Figure 2.3: SBC Jetson Nano (Top View)

A single board computers (SBC), Nvidia’s Jetson Nano is selected to use as the embedded

platform of the IP. It is a compact, low voltage System on Chip (SoC) designed to carry out

programmed instructions. It has 4GB of RAM, a quad-core ARM A57 processor with a 128-core

NVIDIA Maxwell™ architecture-based GPU 2.2.2. Some of the specifications are as follows:
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Table 2.7: Mechanical Design RVM

GPU 128 Core Maxwell

CPU Core ARM A57 @ 1.43 GHz

Memory 4GB 64 bit

Storage 16 GB, Expanded to 128 GB

Camera 12 (3x4 or 4x2) MIPI CSI-2

Display HDMI 2.0 or DP1.2

2.2.2.2. RGB Sensor

For Color images, RGB sensor Raspberry Pi Camera Module 2.0 (Sony IMX219 Sensor) is used

[19].

Table 2.8: RGB Camera Raspberry Pi 2.0 Specifications

Sensor Name Sony IMX219 Sensor

Sensor Resolution 3280 × 2464 pixels

Focal Length 3.04 mm

Field of View (FOV)
Horizontal: 62.2\textdegree

Vertical: 48.8\textdegreeDiagonal: 74.2\textdegree

Weight 3 g

Still resolution 8 Megapixels

Video Modes 1080p30, 720p60 and 640 × 480p60/90

Linux integration V4L2 Driver

2.2.2.3. Infrared (IR) Sensor

For Infrared images, GroupGets LLC’s IR sensor FLIR Lepton 3.5 with Purethermal 2.0 Board

is used for thermal & radiometric analysis [20, 22].
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Table 2.9: IR Hardware Specification

Sensor Name FLIR Lepton 3.5

Sensor Range 8 - 14 microns (nominal) Long Wave Infrared (LWIR)

Rediometric Dynamic Range -10° to +450°C (typical)

Thermal sensitivity < 50 mK (0.050°C)

Resolution 160h x 120v pixels

Radiometric Accuracy
High Gain Mode: Greater of +/- 5°C or 5% (typical)

Low Gain Mode: Greater of +/- 10°C or 10% (typical)

Frame Rate 8.7 Hz (effective)

Lens Type f/1.1

Field of View (FOV) Horizontal: 57°

Sensor Size (w x l x h) 10.50 x 12.70 x 7.14 mm

Sensor Weight 0.9 grams

Power Consumption
150 mW typical, 650 mW during shutter event &

5mW standby

Optimum Operating Temperature Range -10°to + 80°C

Sensor Board Name Purethermal 2.0 (Embedded)

Sensor Board Interface I2C, USB

Voltage Supply 5V USB

RoHS Status RoHS Compliant

2.2.3 Software, Firmware & DL APIs

For ‘Trajectory Generation,’ CAD software ‘Fusion 360’, Additive manufacturing slicer software

‘Ultimaker Cura 3.6.0’, and for trajectory optimization & Gcode extraction algorithm, ‘MATLAB’

is used.

For ‘Autonomous Intelligent Inspection,’ all the Deep Learning (DL) models were implemented

using Python 3.6 version and ‘TensorFlow 2.0’ DL API. The Darknet framework is selected as

the backbone for the base model ‘YOLOv4’ (You Only Look Once version 4) ‘Object Detection’

20



model.

For ‘Multi-Spectral Visual Inspection,’ IR sensor board Purethermal 2.0 needs the UVC

Purethermal firmware version 1.2.2 or greater. It is needed to communicate with the IR sen-

sor Lepton 3.5. It also needs Linux Kernel versions 4.0 or greater. For UI development, Python

3.6 is used.

A summary of some of the specifications of the software, libraries, and other tools used for

the development of autonomous DL-based & IR-based inspection & analysis methods are given

in Table 2.10.

Table 2.10: Software, DL APIs, Libraries & Other Tools

Operating System (OS) Linux Ubuntu 18.04 LTS

CUDA 10.0.326

CuDNN 7.6.3

Pycuda 2019.1.2

Protobuf 3.8.0+

GNU 7.5.0

Cmake 3.10

Python 3.6.9

OpenCV 4.5.1

TensorFlow 2.0

TensorRT 6.0.1

ONNX 1.4.1

NumPy 1.19.5

Matplotlib 3.3.3

ROS Melodic

Jetpack (Jetson Nano) 4.3

21



2.2.4 Computational Tools

Training and Offline Testing. The DL-model training needs higher computational power

to train the model faster. A paid cloud-based service, Google Colaboratory Pro+ consisting

of Tesla K80 graphics processing unit (GPU) card with Intel Xeon® (with two cores) central

processing unit (CPU) and 11 GB of graphics memory is used to train the custom model.

To test the performance of the trained models, a laptop with a 64-bit Ubuntu operating system

(OS), 32 GB RAM, Intel® Core™ i7-9750 CPU with a clock speed of 2.60 GHz and NVIDIA

GeForce GTX 1650 is used.

Model Optimization & Online Testing. Model optimization, and online testing using

live camera feed from the onboard camera (Raspberry Pi 2.0) is done using the SBC, Jetson Nano.

The model optimization using TensorRT quantization technique is hardware specific; Therefore,

it must be done in the platform itself, which will deploy the model at the edge. The major

specifications of Jetson Nano are mentioned in Table 2.7.

2.3 IP Platforms

2.3.1 Handheld Setup

Handheld Setup 1. The IP can be used in different ways, leveraging the interfaces needed by

the user. Figure 2.4 shows the basic ‘handheld setup 1’ of IP with the necessary sensors attached.

The RGB & IR sensors can be placed in different ways. A custom 3D-printed mount is designed

and fabricated for this study. This mount places both sensors as close as possible, giving the

highest overlap of the RGB and IR frames for multispectral display.

Handheld Setup 2. This setup is another way if using the IP. A 3D printed hand-held setup

with SBC and Raspberry Pi camera like shown in Figure 2.5) can also be used for real-time

inference experimentation at the edge.
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Figure 2.4: Handheld Setup 1 for Visual Inspection, Analysis & Online Inference Experi-

mentation at the Edge

Figure 2.5: Handheld Setup 2 Used for Visual Inspection and Experimentation
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Figure 2.6: UAV Equipped with Inspection Payload

2.3.2 UAV Setup

The IP can also be mounted on a UAV for aerial inspection. Figure 2.6 shows a quadcopter UAV

built with a DJI frame and Jetson Nano as its companion computer. Along with the other flight-

related components, the three major components of the IP, the SBC (Jetson Nano), Raspberry

Pi, and FLIR Lepton IR sensor, can be installed in appropriate locations. These two sensors

are vertically placed to the custom camera mount, similar to the Handheld setup 1, to get the

maximum frame overlap.

2.4 Test Facilities

1. Initial test runs shall be conducted at the remote testing site of the Aerospace Center’s

Fabens Airport.

2. Data collection shall be done at industrial compounds for relevant data sourcing in collab-

oration with local industries, e.g., Vinton Steel LLC & El Paso Electric).

3. IP system testing shall be done at industrial compounds for verification of method in col-

laboration with local industries (Vinton Steel LLC & El Paso Electric).
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Chapter 3

Advanced Manufacturing

Technology-based Trajectory

Generation

3.1 Related Work

Robotic Inspection Industrial inspection systems have been evolving per the development

of technologies that enable efficient, safe, and economical inspection. Robotic technologies have

been proven useful, especially as it addresses the safety and accessibility concerns of manual

industrial inspection by human inspectors. For example, robots have been used to remotely

surveil and inspect hazardous areas in different types of power plants [23, 24] and nuclear power

plant facilities [25]. However, these inspection systems can only be applied to a specific module

or component of the power plant.

Aerial Robotic Inspection With advanced research and the development of hardware sys-

tems, aerial robotics is more frequently used to inspect larger areas. However, most of these UAVs

(Unmanned Aerial Vehicles) are manually controlled by human pilots through remote control and

operated within their FOV (Field of View). Effective aerial inspection trajectory generation, sev-

eral works are being done to generate flight trajectories. In an experimental research work by

Burri et al., an aerial visual inspection system is developed using a MAV (micro aerial vehicle)

for thermal power plant boiler inspection. Their system uses a predictive model controller (MPC)

based efficient flight controller targeting confined spaces [26]. The proposed control strategy is

less susceptible to external disturbances or delays, but the MPC bias estimation is sometimes off,
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which results in position offset. In another approach by Shan et al., the UAV compares imagery

data to the Google Maps image database for navigation. However, possible inconsistencies in the

map database and a lack of information in the third dimension cause concerning limitation [27].

Trajectory Generation Otherwise, the UAV trajectory waypoints are either using GPS

(global location services) [28, 29] or using SLAM (Simultaneous Localization and Mapping) gen-

erated maps [30, 31]. GPS-generated flight paths need to maintain a safe distance from the

inspection surface for safety, due to their reduced accuracy, especially in industrial compounds

with metallic interference that hinder robust signal connectivity. Also, available GPS resolution

is low and unreliable, and spotty signals influence and affect finer flight trajectory controls. The

maps generated from SLAM, used by local planners, are also not as accurate, especially for in-

specting components or intricate structures with tiny details, surfaces without enough features,

and different lighting conditions. All these lead to poor mapping and prove difficult to con-

duct a close-quarter aerial inspection in complex and reduced structural environments; In these

conditions, the proposed method rises as a suitable option to be applied based on advanced man-

ufacturing techniques. This work proposes a method to closely inspect components of a structure

in a static and known environment, two common features in actual inspection campaigns. The

main contribution of this work lies in the unique waypoint generation method for path planning

in aerial inspection tasks. The introduced approach generates flight paths at a short separation

distance from the inspection surface, enabling close-range image acquisition and capturing more

details of possible defects. Moreover, the approach allows the generation of flight paths and

navigation in complex structural geometries and reduced spaces.

Generic Trajectory Generation As for the GPS and communication-denied environments,

the works mostly use generic flight paths, i.e., a linear or a spiral flight path. Zheng et al. describes

an image acquisition system combining two quadcopters [32]. One uses a generic spiral flight path

to inspect inside a chimney without GPS, and the other hovers on the chimney’s top center

for data reception and forwarding to the ground station (using GPS). This method works for a

uniform surface inspection, e.g., a circular area of a chimney. In this work, the trajectory enables

the UAV to go close to the surface of any shape to carry out inspection tasks, such as image
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acquisition. Bolourian et al., in another aerial inspection work, used a LiDAR-equipped UAV for

scanning cracks in bridge inspection [33]. They employ a Genetic Algorithm (GA) to generate

an obstacle-free 3D point cloud-based flight path to scan the targeted critical areas, minimizing

flight time and maximizing inspection visibility. A bridge reference model needs to be given to

BrIM/BIM (Bridge Information Modeling) as a reference. They vary the inspection overlap based

on VPI (viewpoint of interest) calculation, depending on the critical area, whereas in this work, a

uniform grid method with 30% overlap is used throughout. Several flight missions are considered

to divide the complete infrastructure into several areas for full coverage.

Manufacturing Technology-based Approaches Manufacturing technique-based work

has been proposed for path planning and other tasks like robots in the manufacturing industries

using CAD (Computer Aided Design) and CAM(Computer Aided Manufacturing). In earlier

work, an algorithm was developed using CMM (coordinate measuring machine) to automate

a collision-free probe path planning for CAD-based dimensional inspection [34]. CAM-based

robot trajectory planning is seeing popularity for different autonomous machining operations.

For example, Cerit et al. used a CAM-based approach for trajectory generation to create a

rapid prototyping tool path [35]. In another work, Zeng et al. used the coordinates information

extracted from the G-code of a grinding operation using a path generator of the KUKA robot

[36]. Using a similar approach, Chen et al. demonstrated an offline path generation technique for

an industrial robot based on the CL (cutter location) data for an automatic finishing operation

[37].

3.2 Proposed Method

This chapter introduces a novel CAM and AM-based methodology of trajectory generation for

UAVs to allow close-quarter aerial inspection in structurally complex and intricate environments.

At first, the model of the complex structure to be inspected is obtained/designed using Computer-

Aided Design (CAD) software. This 3D CAD model is then uploaded to CAM software to generate

a 3D printing or milling operations tool path. The G-code (numerical control programming lan-

guage) files consist of the coordinates/location. The machining operations and the necessary
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parameters are appropriately set in the CAM software environment while considering the UAV

and inspection payload constraints, so a uniform toolpath is generated. The XYZ Cartesian

coordinates of the toolpath are exported into excel CSV (Comma-separated values) format, rep-

resenting the waypoints the UAV must follow. For trajectory generation, time information is

needed that is later introduced in the MATLAB software via the time step. A simulation of the

UAV inspection trajectory around a CAD model is obtained in Gazebo open-source robotics sim-

ulator software for verification. Later, the trajectory generation method is used to fly in industrial

space as proof of concept.

Contributions of this work are as follows:

1. Proposal and subsequent verification of an aerial flight path generation method from a

CAD model of the structure to inspect. Both internal and external inspection trajectories can be

generated.

2. The approach uses the tool path generation technique from advanced manufacturing (CAM

and AM) to generate the UAV inspection trajectories.

3. This method can operate autonomously in reduced-space environments for close surface

visual inspection and does not rely on a GPS signal.

Figure 3.1: Methodology of the CAM/AM-based UAV Inspection in a GPS-denied Envi-

ronment
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3.3 Technical Approach

Autonomous UAV systems can potentially reduce the risk associated with human intervention in

inspection tasks and provide means to automate the system and enable the collection of precise

inspection data. However, there are several challenges, such as payload limitation, maneuvering

capabilities, and reduced flight time. One of the main difficulties is ensuring collision avoidance

while flying close to the structure. In this part of the study, offline trajectories are generated

for the UAV to follow during the inspection, which allows flying close to the surface in complex

environments for internal and external inspection of structural assets. The flight path is generated

from the tool path coordinates of two advanced manufacturing techniques, CAM & AM. Using

the machine toolpath coordinates from G-code to create a flying trajectory for UAV navigation

is a novel idea. The four-step methodology is as follows (Fig. 3.1):

1. System setup and modeling

2. Tool path generation methods

(a) Method 1: CAM

(b) Method 2: AM/3D printing

3. Post-processing/Tool path extraction

4. Trajectory generation

3.3.1 CAD Model

The first step is obtaining a CAD model of the component to inspect. An updated CAD model

is a crucial part of this research, as based on it, the UAV trajectory will be generated to inspect

the concerned areas effectively. If the CAD model of the plant is not available, one needs to

be generated using any available CAD software. Some of the latest CAD software provides

additional features like highly accurate dimensional analysis, design optimization, assembly of

parts, simulation, mechanical design automation, detailed documentation, project management

options, and integrated manufacturing environment, i.e., CAM and Additive Manufacturing (AM)
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Figure 3.2: 3D CAD Model of a Boiler and its Components

features. These directly connect the design environment to the manufacturing one, and from there,

manufacturing instructions can be sent to hardware such as 3D printers and CNC machines.

The fully integrated system helps to integrate and apply rapid design iterations without need-

ing manual modification each time a design gets updated. Fusion 360, open-source CAD software

with the incorporated manufacturing features stated above, has been used in this project. Figure

3.2 shows a Fusion 360 generated 3D CAD model used for this study. However, any CAD software

with needed features and file formats, e.g., STL and G-code, can also be used.

Model Scale. The CAD model to be inspected is appropriately scaled to fit the software

working environment. Model scale, SL is the ratio of the height of the infrastructure Lp to the

CAD model height, Lm.

SL =
Lp

Lm
(3.1)

Commonly, Boiler heights range between 12–30 m. For this work, a 17 m high boiler is

designed. Due to the tool (CAM tool) and extruder (3D printing tool) size limitations, the overall

power plant’s CAD model height is scaled to 170 mm. From equation 3.1, SL calculates to 100:1.
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Figure 3.3: UAV Equipped with Inspection Payload

Once path planning is done in the model phase, the coordinates, i.e., the UAV waypoints, are

converted to real-life scale using the 100:1 model scaling ratio. From the conversion, a 100 mm

model distance between coordinates converts to a 10 m distance for the real use case.

3.3.2 System Description:

The system shall perform a close-quarter inspection to catch any surface detected at a close range

of 1 ft in a GPS-denied environment. For trajectory generation, the aerial platform used here is a

quadrotor, as seen in Figure 3.3. All data and parameters are selected from the said UAV system

for the corresponding calculations. However, this study focuses on offline trajectory generation

and validation for proof of concept of the proposed approach.

The UAV carries an inspection payload (IP) with an RGB camera, Raspberry Pi 2.0. Relevant

specifications of the camera are given as Annex 2.2.2, collected from the sensor module documen-

tation [19]. For close-range inspection, the surface to UAV’s camera distance is selected at 500

mm ( 1.5 feet) as the IP, including the camera, is mounted at the body frame of the platform.

The camera takes images or video of the surface at the pre-defined offset as it flies around the

structure at a certain height, tracing its perimeter. Once it has covered the area, it moves to the

next layer by a specific height. To properly cover all surfaces, the UAV flight path will fly from
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the bottom to the top of the structure, going one layer at a time. During the flight, the inspection

sensors shall always face toward the inspection surface. The camera field of view, focal length,

frame grid, and frame rate are considered while planning the trajectory.

Camera FOV (field of view)

From the following relation, for an effective focal length f and the angular field of view α, corre-

lated dimension d can be calculated and vice versa.

α = 2 arctan

(
d

2f

)
(3.2)

Figure 3.4a shows the camera fields of view. It can be measured horizontally, vertically, and

diagonally. Relevant specifications, including the angular camera fields of view, can be found in

Annex 2.2.2. For inspection grid calculation, the horizontal αh, vertical αv and diagonal αd angles

are approximately taken as 60°, 45°, and 70°, respectively.

(a) Angular FOV (b) Inspection Grid

Figure 3.4: Inspection Camera’s Field of View (FOV)

For calculation, the camera angular FOV is taken. The sensor has a focal length of 3.04 mm.

In close-quarter inspection, for a minimum 500 mm inspection surface distance, with αh = 60

°, αv = 45°, and f = 5 mm, the inspection grid horizontal length, h and vertical length, v are

calculated as follows:

h = 2f tan
αh

2
⇒ h = 5.8 (3.3)
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v = 2f tan
αv

2
⇒ v = 4.1 (3.4)

A 30% overlap of adjacent image/frames is selected, considering the flight time internal and

external perturbation for a high-quality inspection profile. The inspection camera’s frame grid is

then calculated as,

h1 = 70%ofh = 4.06 ≈ 4 (3.5)

v1 = 70%ofv = 2.87 ≈ 2.5 (3.6)

Hence, the model scale FOV calculates to a (v1) at 2.5 mm, which correlates to the maximum

step down/feed for machining tool of CAM and the layer thickness for AM; and the number of

parallel tool-path or slices is 68. The real-life application FOV calculated is 400 mm x 250 mm

approximately, and the 17m boiler can be covered with 68 horizontal layer or flights with a jump

of 400 mm or 1.3 feet to the next layer (Fig. 3.4b)

Drone Velocity Range:

Average drones for photography have a velocity range between 30–50 mph, with a suitable FPS

(frames per second). For an average speed, vmax = 20 mph = 8.9408 m/s , the FPS for the drone

camera is the ratio of the camera grid horizontal length (h1), i.e. when the drone is travelling

8940.8 mm in a sec (8.94 m/s),

FPS =
8940.8

400

= 22.352

(3.7)

The proposed camera has 40-200 FPS for a size resolution of 640×480, which is well within the

calculated range. However, considering close-range flight in a constrained area, the performance

of the low-budget camera, power rationing for other additional inspection sensors (IR sensor),

and overall flight, one-fourth of the lowest FPS, is chosen for velocity calculation to be cautious.

The system can effectively perform photography and video inspection, flying at 0.5 m/s -4 m/s

with the IP.
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Figure 3.5: Drone Reference Frames

3.3.3 Inspection Kinematics

For analyzing the motion of the drone, an inertial frame {A} (or world frame) and a body coor-

dinate frame {B} are established. {A} acts as the global reference for the plant to be inspected.

Following the aerospace convention, {B} has its origin coincided with the center of gravity of the

quadrotor, the z-axis pointing downward, and the x-axis in the direction of the flight. Figure 3.5)

shows the frames on a drone as example. Besides, the vector r ∈ R3 gives the position of the

drone in inertial frame {A} as depicted in Fig. 3.6.

The inspection cameras are mounted on the UAV chassis so that the camera location can be

taken as the point of origin or zero point for it. The UAV propellers go beyond the origin by ad.

Again, from the endpoint of the propeller to the nearest inspection surface point can be assigned

as ds. Therefore, the total inspection offset from the camera at any time is,,

d = ds + ad (3.8)

For a safe flight path planning, a minimum drone offset distance ds is introduced. Also, due

to the design of the drone, the rotor blades expand a certain distance from the camera that also

needs to be considered along with the camera focal distance itself. Therefore, the offset distance

should be, d ≥ ds + ad and d > f at any time (Fig. 3.6). As such, the position vector for the

UAV camera is,
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Figure 3.6: Kinematic Diagram: Frames Definition and Inspection Distances in a Boiler

(Case Study)

r =
[
x+ d y z

]T
(3.9)

3.3.4 Toolpath Generation Methods

The proposed method introduces an approach to model the UAV flight path from the path of a

tool of advanced manufacturing machines, e.g., a CNC machine or 3D printer. The tool, cutter

(CAM), or extruder (3D printer) will commonly be addressed as a ‘tool.’ Two approaches are

introduced, one using CAM and the other using AM. For both methods, the tool path is set with

a predetermined offset for the UAV for collision avoidance, as carefully calculated in the previous

steps.

The tool path data is generated for a selected machining operation using the manufacturing

environment of the CAD/CAM software package. From each operation type, e.g., milling, the

nodal coordinates along the path of the tool, tool feed rate, and type of motion are obtained as
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G-code. The tool path followed in a CAM milling operation and AM process is essentially similar;

The former is a ‘subtractive’ process where the tool travels in the -Z axis (top to bottom), and

the latter is ‘additive’ where the tool advances towards the +Z axis (bottom to top). During

both operations, the tool moves by layer. These signs are adapted to the flight trajectory at the

post-process step by coding targeted programming. Aside from these, both approaches are well-

aligned. In both methods, the tool paths are predetermined. The tool can follow, for example,

a zigzag or a peripheral path. Some relevant and important pre-set global parameters are tool

radius, depth of cut, and step-over cut (layer-to-layer distance).

These paths are translated to the UAV flying path, encompassing a structure to be inspected

with an appropriate offset. CAM or AM methods can be used interchangeably to generate the

UAV trajectory successfully.

Method 1: Computer Aided Manufacturing (CAM) Based

A. Toolpath Generation with 2D Contour Operation: At first, the machining proper-

ties are set in the ”Manufacture” environment of Fusion 360, for example, choosing an appropriate

type of manufacturing operation, choosing an apt stock offset, defining the working coordinate

system, and post-processing setup.

A stock block is chosen relevant to the inspection study structure. The stock offset is the

surface to quadrotor inspection offset, ‘d’ (equation (3.8)). A 2D contour milling operation is

chosen as it can generate a uniformly distributed toolpath to obtain a given geometry through

machining. The machining parameters are aptly chosen, which gives a uniform toolpath well

wrapped around the powerplant model (Table 1) to make it acceptable as a proper UAV flight

trajectory (Fig. 3.7). A 2.5 mm diameter ball cutter is chosen; its endpoint machines out the

model from the stock. The toolpath is captured to extract coordinates.

Two important parameters are stock offset maximum step down. ‘Stock offset’ corresponds

to the linear distance from the inspection surface, which correlates to the camera to inspection

surface distance. ‘Maximum step down’ is the drop of the cutting tool as it travels to the next

layer. These parameters are determined, and their values can be amended or chosen depending

on the inspection path and profile as required. For example, the minimum safe offset distance has

been selected to be 500 mm. However, it can be increased or decreased depending on the type of
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Figure 3.7: Tool Path Generated Around the Boiler CAD Model for 2D Contour Operation

Table 3.1: CAM Contour (2D) Machining Parameters

Operation type 2D Contour Milling operation

Cutting Tool φ2.5 mm ball end mill

Maximum Step Down 2.5 mm

Tolerance 0.01 (low)

Stock Offset 5 mm

Cutting Feed Rate 1000 mm/min

Machining Distance 71.03 m

Feed/Revolution 0.0667 mm/rev

Surface Speed 39.27 m/min

Machining Time 1:10:14

inspection platform and the IP, especially the camera capabilities, to realize the desired outcome.

In Figure 3.7, the ‘blue’ toolpath (lines) describes the machining operation (cutting the stock),

whereas the ‘red’ and ‘yellow’ lines delineate tool ramping and retraction, respectively. Given tool
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Figure 3.8: Tool Paths Generated with Modified Tool Orientation and Operation for the

Component Gaps and Inward Slope of the Structure

orientation and the principle of CAM operation, the gaps, model overhang, and inward slopes are

avoided as expected. Considering the camera’s superior zoom capabilities, the parallel toolpath

around the inward slope of the exhaust is acceptable. However, tool orientation is changed to get

the best possible wrapped toolpath of the said areas.

B. Toolpath Generation with Modified Tool Orientation: For the inner gap of the

powerplant model, again 2D Contour milling operation is chosen, other parameters the same

(Table 3.1). The Z axis of the tool orientation along with Y axis are flipped 180°(Fig. 3.8(a)).

Z axis directs the tool entry to the workpiece. For this case, it is the same as assuming that the

workpiece has been flipped for operating from the bottom surface of the setup, whereas the X

axis is setup according to the manufacture operation coordinate principle. The inner gap between

the boiler and exhaust can also be addressed with “Slot” milling operation (Fig. 3.8(b)). This is

a step toolpath that requires a different set of parameters (Table 3.2).

Similar to the operation earlier, the flipped Z axis points downwards. Although the toolpath

can reach the shallow gap found on the upper chamber of the exhaust, it is not considered due

to the aerodynamic restriction of a UAV. The operation stops near the constraint area of the

”particulate recirculation” component of the plant.

For all the operations, ‘smooth transition’ and ‘plunge in’ options were selected to avoid
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Table 3.2: CAM Slot Machining Parameters

Operation type 2D Slot operation

Cutting Tool φ2.5 mm ball end mill

Maximum Step Down 5 mm

Tolerance 0.01 (low)

Stock Offset 1.52 mm

Cutting Feed Rate 10000 mm/min

Machining Distance 5 mm

Feed/Revolution 0.0667 mm/rev

Ramp Type Plunge

Surface Speed 78.5 m/min

Machining Time 1:00:50

sharp changes in the heading of the UAV during flight. Given the CNC tool safe retrievals/lead-

ins/lead-outs, additional noise is observed from the generated toolpath. Mentionable that the tool

time information, e.g., feed rate, revolution, and surface speed, are ignored in the final trajectory

generation. Only the tool’s end point coordinates are pulled as a point cloud. Afterward, a

UAV-appropriate time-step is set up.

Method 2: Additive Manufacturing (AM) Based Method

In order to obtain the external coordinates with a preset offset, a CAM based approach was

used previously. The CAM base method has some challenges that are inherent to the CAM

characteristics, for example:

1. Machining of certain features is difficult, e.g. inward slopes larger than 45°, or convex

surfaces.

2. Difficult to reach shallow gaps between design parts due to tool size limitation. The tool

tilt angle is also limited due to physical constraint and workpiece orientation etc.
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Figure 3.9: 3D Printing Layers Preview of the Model

To overcome these challenges, an “Additive Manufacture (AM)” based method is introduced with

significant advantages. Essentially, a path that is followed in a CAM milling operation and a 3D

printer (in AM) are very similar, one being subtractive, tool travelling in -Z axis (top to bottom)

and the other being additive i.e. tool travels in +Z axis (bottom to top) (Fig. 3.9). During the

operation of both manufacturing methods, the tool moves one layer at a time.

The second method uses the AM tool (extruder) path’s coordinates at a pre-set offset to

generate a UAV trajectory. The first CAM-based approach has some challenges due to inherent

CAM characteristics, for example:

1. Certain features, e.g., inward slopes larger than 45°, and convex surfaces can not be ma-

chined as the tool cannot reachable without breaking the surface integrity.

2. Shallow gaps between design parts are difficult to access due to tool size limitations. The

physical constraint and workpiece orientation limit the tool tilt angle.

The AM-based method can overcome these challenges introduced along with several other benefits.

The 3D printer (in AM) path is additive i.e. tool travels in +Z axis (bottom to top) (Fig. 3.9).

During the operation, the tool moves one layer at a time.

A commercially available AM ‘slicer’ software, ‘Ultimaker Cura 3.6.0’ is used to generate

a 3D shell of the model with the pre-selected offset of 5 mm (model scale), similar to CAM
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method (Table 3.3). The hatch distance (layer height) in an AM slice corresponds to the vertical

displacement of the UAV during the inspection flight. Structure support is ignored, and some

default parameters have been applied to get a general shape of the model. This operation generates

the toolpath coordinates of the shell at the selected offset. AM method covers all surface areas,

including slopes, overhangs, and shallow gaps. The G-code generates a layer-by-layer, bottom to

upward Z axis values, with associated XY coordinates (Fig. 3.9). This method is preferred between

the two, as it is much more straightforward and covers all surfaces without much modification for

generating the final trajectory

Table 3.3: Additive Manufacturing Parameters

Printer Ultimaker Original+

Material PLA

Profile Normal (0.15 mm)

Layer Height 2.5 mm

Wall Thickness 0.5 mm

Top Thickness 0.1 mm

Bottom Thickness 0 mm

Infill Density 1%

Print Speed 700 mm/s

Travel Speed 700 mm/s

3.3.5 Post-processing

The ‘post-processing’ step is all about exporting the tool path coordinates. The G-code is a file

containing all detailed machining instructions. It contains the required nodal coordinates (tool

endpoint), types of motions, and necessary instructions. It also contains information regarding

different cutting modes and tool information, e.g., tool speed, tool type, tool orientation, machin-

ing direction, operation specification, and other critical information specific to the manufacturing

machines. However, not all information is needed in this project for generating a UAV trajectory.
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In ‘Post Process,’ the XYZ coordinates are exported from the G-code file, clearing unnecessary

data. The 3-axis milling operation in the CAM-based method uses a software add-on to extract

the tool coordinates directly. For the other approaches, G-code-specific programming is used to

decode the coordinates. Once the coordinates are collected, they are modified using MATLAB

code to get an optimized trajectory.

Direct Data Extraction

In this first step of path planning, the Cartesian coordinates of the tool endpoints are exported

using a post-process add-on (Fig. 3.10). This method is only applicable to the 3-axis milling

operation. Due to the machining characteristics, the point cloud is very dense, as seen in said

figure. There are about 109,575 points for the ‘exhaust’ component alone. Here, all points are

organized and brought into one global coordinate system. In the second and third operations

under the CAM method, the tool axis (Z and Y axis) were flipped. In this step, those coordinates

are adjusted, and data is reset and re-arranged such that the Z values increment. Final values

are exported in a CSV file.

Targeted G-code Decoding with MATLAB

As mentioned, G-code files contain detailed machine instructions, including the required tool

path/nodal coordinates. G-codes are machine specific, i.e., it varies depending on the manufac-

turing machine it is programmed to run. This work uses custom MATLAB coding depending

on the type of G-Code (CAM/AM) to extract coordinates and discard other useless information.

The complete model attains a dense plot of 36525 × 3 double points, including all the tool path

coordinates (Fig. 3.11A).

Tool Path Optimization

The targeted programming successfully extracts all the coordinates. However, such a dense cloud

is unnecessary (Fig. 3.11A). Depending on the model’s geometry, e.g., flat vs. curved, the point

cloud density also varies. There are arbitrary jumps between layers that take the given trajectory

paths through the surface mesh itself. In AM method, there is minimal support generation at
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Figure 3.10: A Sample of the Initial Cartesian Coordinates (xyz) Exported in Excel

the bottom of the structure. Also, due to the safety feature of machining operations, there are

additional tool movements during retraction at the beginning and end of operations in the CAM

method. These noise and conflicts are removed, and the number of points is reduced in this

step using MATLAB code to attain a uniform external trajectory pattern (Fig. 3.12). The

significant reduction of the point cloud (about 1/100th) results in a uniform trajectory which is

also computationally less expensive when fed to the inspection platform (Fig. 3.13).

Trajectory is further modified, and an improved trajectory is achieved that has significantly

smaller number of points (373x3 double) as well as a conflict-free trajectory (Fig. 3.12). Also,

the significant reduction of point cloud (almost 1/100th) will result in better trajectory and

computationally less expensive when fed to the inspection UAV (Fig. 3.13).

43



Figure 3.11: Coordinates Obtained from a G-Code (AM Method) of the Structure Using

MATLAB.

Figure 3.12: Final Modified Trajectory the Structure (Case Study) Obtained Using MAT-

LAB Code

3.3.6 Aerial Inspection Trajectory Generation

After post-processing, both methods deliver a set of Cartesian coordinates of the tool path way

points in 3D space. Time steps are added to these coordinates and further processed to generate
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Figure 3.13: Significant Reduction in the Number of Points from the Original Slicer G-

code (’toolpath1’), a Modified Trajectory (’toolpath2’) to the Final Trajectory Generation

(’toolpath3’) Using MATLAB Code

Figure 3.14: Flight Path Generated in MATLAB for AM Method

an inspection trajectory or a flight path. In Figure 3.14, black corresponds to the surface, and the

blue lines portray the trajectory. The AM method’s projected trajectory is much more uniform,

smoother and effectively covers all surfaces irrespective of the geometry compared to the CAM

method. Hence, AM method is preferred over the other. Mentionable that if an original CAD

model of a structure is used, there may be some discrepancies with the real setup, e.g., loose

pipes, hanging wires, or moved parts due to the operation of the power plant over time. This

information will be absent in an old CAD, and even with an updated CAD, the stakeholders may
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not know about these unforeseen deviations at remote locations. To avoid collision caused by

such deviation, the UAV must have an anti-collision system utilizing other onboard sensors. The

final AM method-generated UAV trajectory around the power plant is validated in simulation.

3.4 Trajectory Verification

Flight paths are verified with simulation software Gazebo, a powerful robotics simulator with a

robust physics engine of a 3D environment. PX4, a professional autopilot software, is used to

implement different flight modes and safety features to control the UAV. This software is run

on simulation in a personal computer, and ‘QGroundControl,’ a graphical interface, is used to

interface with PX4 to set up the drone, i.e., update flight parameters, create and execute flying

missions, and visualize real-time telemetry data. A program-defined API, ‘DronecodeSDK,’ is

used to provide the functions for interacting with the virtual drone through PX4. Using Gazebo

and PX4, the experimental setup is virtually built with a general quadcopter model to show how a

real drone would act, given the AM-generated coordinates. The proposed simulation steps consist

of the following steps:

1. A C++ code is used to read and reformat the CSV file comprising the trajectory point

Figure 3.15: Gazebo Simulation at Run-time and QGroundControl Plotting the UAV tra-

jectory of the Test Mission in Real-time
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coordinates.

2. Using the DronecodeSDK libraries, a mission item is created based on the trajectory points.

3. Mission is uploaded and executed on the simulated quadcopter.

4. The mission is visualized in real-time using QGroundControl and RVIZ visualization en-

vironment of ROS (Robotic Operating System) framework while getting flight logs of the

UAV’s trajectory for offline analysis.

For verification, the AM-generated trajectory of the power plant CAD model is used to for-

mulate the drone flight mission. The flight mission is studied with real-time visualization (Fig.

3.15). As seen in the figure, the flight mission and the telemetry data can be visualized in Gazebo

and QGroundControl, respectively, and the logs are saved using ROS.

(a) (b)

Figure 3.16: Comparison of: a) The Z Position of the Tool Based on (i) the AM, and (ii)

the Altitude of the UAV During Flight, b) the Top View of Both (i) the AM Generated

Trajectory, and (ii) the UAV Inspection Path.

From the flight log, the real-time/actual drone trajectory is studied and compared with the
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AM one (Fig. 3.16a and Fig. 3.16b). The results show that the trajectory pattern closely

follows the given trajectory, with some variation. From the top view, the compared trajectory

shows the general shape of the power plant, with some smoothening in real trajectory at some

points due to the UAV cutting corners. The front and right side views show the simulated

trajectory following closer to the AM-generated trajectory, with some noise caused most likely

due to the flight controller corrections. Some shapes are lost, which indicates the importance of

post-processing the coordinates to preserve the relevant points of the mission.

Figure 3.17 (a) & (b) compare the 3D views of the trajectories side by side. The same is

visualized in Figure 3.17c using RVIZ, with and without the surface of the boiler model (red).

The simulated flight path overall follows the general shape of the model, even though it is a bit

wavy and smooth at some points. Mentionable that the number of layers in the simulation study

has been reduced from the original number for better visualization, and as a proof of concept

of the adaptability and validity of this method. This study validates the AM and CAM-based

methods for generating trajectories, demonstrating that these paths can generate an actual UAV

flight mission.

3.5 Discussions

The waviness, non-linearity, and offshoots from the given flight path are mainly caused by the

drone control parameters, e.g., attitude control, gain, and recovery, which can be adjusted in the

simulation software with the drone engine. The mission parameters and drone navigation can

be optimized further for this application, so it does not invalidate the proposed approach. The

implementation of collision avoidance algorithms should allow the trajectory paths to be even

more similar to the ideal AM-generated trajectory, which can be explored in future work. The

simulation outcome proves that the proposed advanced manufacturing technology-based aerial

inspection trajectory generation method can certainly be implemented using a real UAV controlled

by a professional flight stack.
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(a)

(b) (c)

Figure 3.17: Comparison of the (a) Ideal Inspection Trajectory Generated by AM and (b)

the Actual Flight Inspection Path Followed by the UAV and (c) Inspection Flight Path

Point Cloud Visualized with the RVIZ Environment With (Left) and Without (Right)

Inspection Surface (Boiler)
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3.6 Conclusion

A novel advanced manufacturing technique-based method is introduced to inspect structural com-

ponents of power plants and industrial infrastructure using aerial robotics technology. Two ap-

proaches proposed were based on the tool path of the Computer Aided Manufacturing (CAM)

and Additive Manufacturing (AM) machines. Among the two methods, AM offers a better and

more straightforward method as it can include all types of geometries, including overhangs and

shallow gaps in components. The proposed trajectory generator seeks to permit close-quarter

visual inspection to acquire more details in infrastructures with complex geometries with reduced

flying space, even without a GPS signal to perform a visual inspection. This approach needs

precise navigation to localize the vehicle, which would not be suitable for a GPS-based system

due to the precision it requires. Also, the GPS signal will be intermittent or non-existent in most

cases when inspecting the interior of an industrial compound. The proposed method would need

several flights to cover large areas due to the limited flight time of UAVs. Simulations conducted

in the open-source robotics simulator Gazebo and with flight controller PX4 demonstrated the

feasibility of the methods to construct UAV offline trajectories. Due to the offline definition, this

method would require an up-to-date CAD model of the infrastructure. The obstacle detection

and avoidance systems will complement the system to account for un-modeled and unforeseen

objects in the facility to inspect.
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Chapter 4

Intelligent Crack Detection Using

Deep Learning

4.1 Introduction

Automated inspection and preventive maintenance have been pushing the research community for

a while now. The available conventional infrastructure inspection methods for cracks suffer from

human error and accuracy issues, take time and cause downtime. It is also heavily reliant on the

experience and expertise of the inspector. The observation and analysis may differ from one to

another based on their perception. There have been occasional incidents when human inspectors

missed identifying cracks while inspecting large areas with inaccessible parts, e.g., underneath

a structure or components at a height. This work proposes, develops, and applies a DL-based

algorithm as part of an inspection payload (IP) to resolve these complications. IP takes images

of the infrastructure as input and performs intelligent inspection of cracks in offline (remote)

and online (real-time) modes at the edge. The intelligent and real-time capability speeds up the

inspection process and gives a consistent performance.

4.2 Related Work

There are significant advantages to automating the process compared to a manual one. However,

the automated process needs to be intelligent and perform the task satisfactorily. Adopting the

latest and relevant AI-driven solutions could be a promising approach that will pay dividends.
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4.2.1 CV-based Approaches

Structural Health Monitoring (SHM), a maintenance system, demands timely damage identi-

fication and its subsequent characterization to monitor structural integrity at the locations of

interest. There are four steps required in classical machine learning (ML) algorithms to develop

a structural health monitoring system, including (i) operational evaluation, (ii) data acquisition,

(iii) feature extraction, and (iv) statistical modeling [38]. Operational evaluation determines if it

is justified to develop the system economically and from a safety perspective, including deciding

on the scope of damage detection. The data acquisition step determines the means to acquire

data, especially considering the time required and financial aspects. Feature extraction is the

meaningful extraction of information and necessary values from raw data to facilitate training.

Finally, the statistical modeling includes training and evaluation of the ML algorithm. These

steps can be adopted for crack detection in light of the inherent difference between the modeling

of the classical ML to that of a DL algorithm.

Depending on the feature extraction technique, image-based crack detection can be broadly

divided into two categories, manual and automatic. The low-level traditional computer vision

(CV) based approach is the former kind, and the model performance depends entirely on pertinent

feature selection. Otherwise, it could lead to an inaccurate and unexpected results. Unlike

CV-based techniques, DL uses high-level feature extraction techniques similar to the neurons

of the human brain to identify & learn relevant information automatically [15]. From manual

handcrafted feature extraction to the usage of DL architecture for automatic feature extraction has

happened in different areas, e.g., video analysis [39], image reconstruction [40], medical imaging

[41], medical diagnosis [42], and also in crack detection [1, 43]. Due to the promising result in

other applications, the DL-based approach is opted for in this work.

DL provides a plethora of models as options. There were two conditions to consider, the

model should adequately identify and localize the model, and it should be deployable in real-time.

The requirement is drawn from the rising demand to make the inspection process time-sensitive,

i.e., reducing the system downtime by automating the process and deploying it at the edge of the

inspection. In this section, existing work related to crack detection in SHM is reviewed under three

sub-sections: (1) Image Classification, (2) Object Detection, and (3) Semantic Segmentation. The
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main difference between each type of DL technique is the level at which the detection is performed,

e.g., image, image patch, and pixel level, respectively. These are briefly discussed below.

4.2.2 DL-based Models

4.2.2.1. Image Classification Technique

The Image Classification (IC) technique is a binary approach that determines whether there is

a crack in the image. Another patch-based approach is the network detecting patch-level cracks

and only showing patches with positive crack identification. The overall IC architecture consists

of two parts, first is layer-by-layer meaningful feature extraction from raw images, performed

by successive convolutional and max-pooling layers. The second part is responsible for extracted

feature classification by the first part using fully connected layers [1]. One of the major conclusions

of work by Pauly et al. is the effect of the number of deep layers (depth) on the detection capability

of the network, which determined that deeper networks enable the architecture to learn more

information [44]. However, a well-known fact is that deep architectures require a large quantity

& quality of annotated data, making their application in different areas with limited available

data challenging. One proven and effective method is transfer learning, which uses pre-trained

networks trained on large-scale annotated image data sets, e.g., ImageNet [45]. Several work that

used application of transfer learning, used different pre-trained architectures such as VGG-16

[46, 47, 48], AlexNet [49], Resnet [50] etc. trained on ImageNet. Another interesting research in

the IC category would be using the sliding window technique using MatConvNet [51] to perform

crack detection [1]. In another work same technique is used for a crack detection method using

UAV with geo-localization [52]. Other architectures such as LeNet [53] and ANIVOS have also

been employed to detect crack [54].

However, from the problem point of effectiveness of crack detection, localization is also highly

important for defect identification and characterization. Although the IC setting provides the

crack images/image patches, the main limitation is that the overall outline obtained by stacking

the positive patches together of cracks in the images is coarse and does not provide detailed

localization of the cracks appropriately.
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Figure 4.1: Input (Left) and Typical Output (Right) of a Deep Learning-based Image

Classification (IC)

Figure 4.2: Input (Left) and Typical Output (Right) of a Deep Learning-based IC by

Stacking Positive Class Patches [1]

4.2.2.2. Object Detection Technique

In computer vision, the object detection (OD) technique detects an object of interest in an im-

age and localizes it by encapsulating the area in bounding boxes [55]. There are several families

of state-of-the-art OD architectures available, such as ‘Region-based Convolutional Neural Net-

works’ (R-CNN), ‘Single Shot Detectors’ (SSD), and ‘You Only Look Once’ (YOLO). In the crack

detection test, an OD-inferred image has the class label and a bounding box around the crack.

R-CNN: All three members of the R-CNN family, R-CNN, fast R-CNN, and faster R-CNN,

have been used for crack detection. The R-CNN architecture has only been applied once for crack

detection. One of the first works was to compare and conclude that using a faster R-CNN model

to perform crack detection improves their previous study for using an IC setting with the sliding

window technique. In another work, CrackDN used a pre-trained CNN to extract deep features

to increase feature detection sensitivity. In addition, they added a different, improved version of
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Figure 4.3: Input (Left) and Typical Output (Right) of a Deep Learning-based Object

Detection (OD) [1]

faster R-CNN for crack detection. This concatenation divided the feature extraction and detection

phase, resulting in a faster training procedure [56]. In another study, Faster R-CNN uses realistic

occlusion and interference in images to simulate real scenarios, e.g., surface markings, writings,

and other realistic scenes, to obtain a robust crack detection model [57].

SSD: Liu et al. first proposed SSD, which outperformed R-CNN in terms of speed on the Pascal

VOC2007 dataset in OD [58]. As the name suggests, it does all computation in a single network

without the additional step of finding a candidate region of interest, resulting in easy-to-train and

straightforward integration with other frameworks for detection. It was used by Maeda et al. to

perform crack detection on top of Inception V2 [59] and MobileNet [60] as the backbone feature

extractors [61].

YOLO: ‘YOLO’ or ‘You Only Look Once’ is one of the popular OD architecture families. It

performs OD tasks in one forward propagation, as its name suggests. The model was first intro-

duced in 2016 and garnered attention for its faster and more accurate computer vision algorithms.

There have been several models in the family, e.g., YOLO (2016), YOLO9000 (2016), YOLOv3

(2018), YOLOv4 (2020), YOLOv5 (2020), and YOLOX (2021). YOLO9000 was used by Mandal

et al. [62] to perform different types of defects, including ‘crack’ detection, using a diverse data

set. In recent work, Ghosh et al. using YOLOv3 [63] and Peraka et al. using pre-trained YOLOv4

[64] model with transfer learning developed a multi-distress detection system for pavement from

high-resolution 3D images and video images respectively. These models have specific areas of

application, e.g., pavements or bridges. Whereas this work concentrates on the ‘crack’ detection
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of diverse infrastructures.

4.2.2.3. Semantic Segmentation Technique

A pixel-level classification is known as Semantic Segmentation (SS) Technique in CV [65]. The

application of SS has the apparent benefit of precise pixel-level localization of the object in the

image than OD application, and IC settings for the same purpose [66]. In other words, SS

is a natural progression from coarser inference (such as patch-based, region-based, and object

detection) to finer inference. Like surface crack detection work, Mask R-CNN, an updated SS

version of the R-CNN family, has been used by Truong et al. to detect road distress using UAV

imagery [67]. A typical output is shown in Figure 4.4.

Figure 4.4: Input (Left) and Typical Output (Right) of a Deep Learning-based Semantic

Segmentation (SS) [2]

4.3 Model Selection

OD has been proven more accurate in detection and localization than the IC sliding window

technique mentioned previously. One known limitation of OD is the undesirable performance

and coarse localization, i.e., overlapping bounding boxes when it fails to capture the entire crack

as a single object is problematic. For a vision-based approach to identify areas of interest for

crack detection in industrial infrastructure, OD is fast, decently accurate, and has comparatively

easier data preparation steps than SS. Therefore, this work selects OD technique-based approach,

as accuracy is the leading goal. DLs are known to be computationally hungry with millions of
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parameters, making them unsuitable for edge applications. The model quantization technique is

used later in this work to resolve the issue.

4.3.1 Model Architecture & Configuration

The popular state-of-the-art, real-time object detection model ‘YOLO’ is used here. YOLOv4

(released in early 2020) is one of the popular versions in the YOLO family; in some studies, it was

found that its accuracy is higher than that of the newer YOLOv5 model [68]. It is a single-stage

DL algorithm that detects objects using a deep convolution neural network (CNN) called DNN

(Deep Neural Network). There are different DL algorithms, but they cannot detect an object

in a single run. YOLO can detect with a single forward propagation through a DNN, making it

suitable for real-time applications. It is an OD-type network, so it also localizes multiple instances

simultaneously. This single-run detection & localization capability of YOLO is why it is popular

among other DL algorithms. The generic network framework is shown in Figure 4.5.

Figure 4.5: YOLOv4 Network Architecture [3]

The fourth improved version of YOLO or ‘YOLOv4’ uses a new feature extractor backbone

called ‘CSPDarknet53’, which uses the ‘Cross Stage Partial Network’ (CSPNet) in the ‘Darknet’

framework. The ‘ResBlock body,’ the residual block of CSPDarknet53, extracts the target fea-
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tures of the image and reduces the computational bottleneck and memory cost. Its architecture

is based on modified ‘DenseNet’ and for GPU version, it outperforms the other backbones (Table

4.1) [69]. It carries one of the useful characteristics of ‘Densenet,’ that is, a copy of the feature map

is transferred from the base layer to the next layer through a dense block. Doing so resolves some

of the key issues of DNN, which include the infamous diminishing/vanishing gradient problems.

It also removes computational bottlenecks, boosts back-propagation, and, by extension, improves

learning. Certain backbones are more suitable for classification than for detection, e.g., CSPDark-

net53 exhibits better OD performance than CSPResNext50 [3]. The issue to be addressed is the

millions of model parameters and the BFLOPS (Billion Floating point Operations per Second)

count at the edge devices for inference latency.

Figure 4.6: Residual Block Module Structure [3]

Table 4.1: Parameters of Neural Networks for GPU Versions with Different Backbones

Backbone model Parameters BFLOPS (512x512

network resolution)

FPS (GPU RTX

2070)

CSPResNext50 20.6 M 31 62

CSPDarknet53 27.6 M 52 66

EfficientNet-B3 12.0 M 11 26
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Figure 4.7: SPP Observed in ‘yolov4.cfg’ (Visualization App: Netron)[4]

The ‘spatial pyramid pooling’ (SPP) layer and the ‘path aggregation network’ (PANet) com-

pose the ‘neck.’ They are used for feature aggregation to short out important features from the

backbone and improve the receptive field. Visualizing the SPP module in Figure 4.7, one can

observe that it performs ‘max pooling’ over the 13*13*512 feature maps with different kernel sizes

k = 5, 9, 13 and same ‘padding’ to preserve the spatial size. The four corresponding feature

maps are concatenated to form a 13*13*2048 volume, increasing the neck’s receptive field and

improving the model accuracy with a slight increase in inference time.

The ‘Head’ contains the YOLO layer. As the image input is given, the CSPDarknet53 extracts

the feature and then sends it to PANet for fusion. Lastly, the YOLO layer generates the results.

Figure 4.8 shows the three heads applied at different network scales for detecting different-sized

objects. For each detection, localization is generated as the four corners of the bounding box. As

such, there are four coordinate values for each detection instance in an image. In this study for
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Figure 4.8: YOLO Heads Applied at Different Scales of the Network

the single-class, single-object OD model, the number of channels can be calculated as,

No.ofChannels = (Classes+Objects+ Coordinates) ∗Anchors

= (1 + 1 + 4) ∗ 3

= 18

(4.1)

YOLOv4 introduces additional model features called ‘Bag of Freebies’ (BOF) and ‘Bag of

Specials’ (BOS) to improve the algorithm performance [70], [3]. BOF includes drop block regu-

larization, Complete IOU loss (CIOU), and different augmentation techniques. Bags of specials

includes mish activation function, Diou-NMS, and modified path aggregation networks [71]. Us-

ing the transfer learning technique, the weight of a pre-trained YOLOv4’s layer-137 begins the

training model on the custom data set.

4.3.2 Model Optimization

TensorRT is a DL platform that optimizes the trained neural network models and speeds up

performance by different optimization techniques [72, 73]. DL models are computationally heavy,

making it difficult to deploy at the edge as is without any optimization. In order to speed it up,

several lighter versions of different models have been proposed; one of the well-known limitations

of these lighter models is lower accuracy than the full-size (larger) models. Instead of a lighter

version, this study proposes using the full model and quantizing it for faster inference without
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much compromise in accuracy. Some of the quantization techniques used are:

• Utilization of GPU memory,

• Fusing nodes,

• Freezing the convolution layers of the model,

• Reusing memory for tensors efficiently, and

• Generating a TensorRT engine that enables faster model deployment.

Using these techniques of TensorRT, the custom model is optimized by maximizing throughput

with INT8 while preserving accuracy and reducing overall memory requirement.

4.3.3 Performance Metrics

The DL pipeline uses performance metrics to judge the model’s performance. This study uses ob-

jective evaluation metrics to measure the custom DL model’s performance quantitatively. Among

the different objective evaluation metrics, ‘precision,’ ‘recall,’ ‘intersection over union’ (IoU), and

‘mean average precision’ (mAP) are used to demonstrate detection performance. ‘Precision’ is

the proportion of positively predicted samples to all true positive samples, whereas ‘recall’ is the

proportion of samples that are positively predicted among all true positives (Equations 4.2 & 4.3).

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
=
TP

P
(4.3)

IOU is the ratio of the intersection and union between the bounding box predicted by the

model and the real bounding box, also known as the ‘Jaccard index.’ As shown in equation (4.4),

mAP is calculated, where Average precision (AP) is the average precision. The mean AP over all

classes and overall IoU thresholds is the measure of mAP. Like most popular literature, the IoU

threshold is set to 50 for the single class.
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AP is measured by the area under the precision-recall curve. It is averaged over all categories

and calculated for all the objects in the image. The 11-point method is used, which is done by

segmenting the recalls evenly to 11-points, e.g., 0, 0.1, 0.2,...0.9, 1. The definition of AP is shown

in equation (4.5).

mAP =
1

|QR|

q=1∑
QR

AP (q) (4.4)

AP =

∫ 1

0
p dr (4.5)

One of the major challenges of using a DL model at the edge is that it is computationally

expensive because of its deep layers. It is one of the complications this work looks to address.

Therefore, in addition to the mAP, the model size and computational complexity (FLOPs) are also

considered for model algorithm evaluation. The model’s size is closely related to its parameters,

which can be related and therefore used to measure the performance of the YOLOv4 model.

FLOPs reflect necessary algorithm calculation; their unit is BFLOPS (Billion Floating-Point

Operations per Second) or GMacs (Giga Multiply–Accumulation Operations per Second). It

represents the floating-point operations per second, which can reflect the algorithm’s calculation

performance. Furthermore, the final detection FPS (Frames Per Second) improvement from the

original trained model (custom YOLOv4) to that of the optimized model (custom TensorRT) is

another parameter that is considered a performance metric.

4.4 Technical Approach

The objective is to develop a DL algorithm for the intelligent inspection system to determine if

there is a ‘surface crack’ in the inspected area, and subsequently, it is marked (localized). The

objective is to develop a low-power, low-budget & compact IP using an SBC that can be used

effectively across different inspection platforms, including a UAV and a handheld setup. The IP

consists of the target edge device, NVIDIA’s Jetson Nano 2, but this model can also be deployed

from any computer given the required software, sensors & firmware match. Final models are

deployed and tested from both laptops & SBC mounted on the platforms mentioned. The true
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Figure 4.9: Deep Learning-based Crack Detection Pipeline

color camera, Raspberry Pi 2.0, is used for image acquisition and further analysis. The IP-related

specifications and other relevant information can be found in chapter 2. As mentioned in chapter

3, the inspection parameters are set by studying the camera FOV, and a 70% adjacent frame

overlap is considered to ensure a full inspection coverage [74, 75]. The images can also be used

for system or critical parts of infrastructure monitoring as necessary for an SHM system.

The intelligent crack detection methodology comprises three major steps: (i) data set devel-

opment, (ii) custom model development, and (iii) model deployment (Figure 4.9). The custom

OD model for crack detection is developed using Python & DL API TensorFlow 2.2.3. YOLOv4

base model with ‘CSPDarknet53’ backbone is used as the base model to develop the custom OD

algorithm. Finally, NVIDIA’s TensorRT is used to optimize the model for the embedded platform

at the edge. The process is explained as follows:

4.4.1 Data Set Development

4.4.1.1. Data Acquisition

It is essential to obtain a good quantity and quality dataset for a good-performing DL model. The

focus is to develop a model to inspect common defects across different infrastructures, and the

anomaly to detect here is a single class ‘surface crack.’ Hundreds of color images of surface cracks

63



are manually collected with handheld cameras or mobile devices at different locations. However,

more data is needed. Aside from manual data acquisition, other popular publicly available data

sets, e.g., ‘CFD’ and ‘Mendeley’ have been added [76], [77]. The JPG image file format is used,

but other popular extensions readable by Python will also work. Table 4.2 shows the data set

summary, including data split, number of bounding boxes, and average area at a glance.

4.4.1.2. Data Pre-processing

Augmentation. The images are sourced from different sources, so it needs preliminary anal-

ysis to check for the balance of different types of crack to remove any bias from the data. After

analyzing the acquired data set, the next step is to augment it to provide more variety.

As mentioned in section 4.4.1, augmentations are done to make the model more robust and

improve accuracy in general to avoid over-fitting. In the OD domain, augmentation may have an

unpredictable effect on the model; as such, it should be applied carefully. It is also dependent on

the attributes of the object to detect. First, image orientation does not matter much for corrosion,

so the ‘geometric transformation’ augmentations can be applied without negative ramifications.

As such, in the first batch, images are re-sized. However, since the feature and color are impor-

tant attributes, following ‘random color adjustments’ are applied with caution for the model to

learn to distinguish corrosion from misinterpretation. In the rest of the batch training, experi-

mentally augmentation techniques are added and analyzed as part of manual pre-processing. The

techniques used are as follows:

• Geometric transformation, such as random horizontal flip, vertical flip, and angular rotation.

• Random color adjustments, including brightness, hue, saturation, and contrast.

Annotation. OD model needs annotated datasets. For this purpose, 1110 images of cracks

under different lighting conditions were chosen as a training dataset and manually annotated using

the open-source software ‘LabelImg.’ Annotation is carried out manually and also checked if it

appropriately covers all the crack instances in the images. The annotation should cover the crack

instance with a tight box. The overlapping annotation must be avoided for multiple instances

as it reduces or affects the model precision. At the same time, no instances should be missed,
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Table 4.2: Database Summary

Data Split No of Images Bounding Boxes Average Area (Pixels) of BB

Training 835 919 23141.44

Validation 166 186 23103.61

Test 109 117 26177.28

which leads to incorrect training. Manually annotating thousands of images is time-consuming;

nevertheless, the annotation must be done as best as possible. During training, if certain batches

give problematic evaluation scores, the batch is re-analyzed, and annotation is corrected if any

issues are found. This step is revisited to make amends as needed. Figure 4.10 shows an annotated

image for training.

Figure 4.10: Example of an Annotated Image for ‘Crack’ Detection

Annotation is a crucial step, as the training and detection are highly dependent on the precision

of the labeling of the images. After basic pre-processing, the images are split into training,

validation, and test sets [table 4.2].

4.4.2 Custom Model Development

Training

The training was conducted over the cloud, as mentioned in the tools section. Table 4.3 shows the

YOLOv4 custom model training summary. YOLOv4 took around 6.5 hours for 6000 iterations for

the input size of 416. The ‘mish’ activation function used for training is a low-cost function. It has

useful properties like unbounded above and bounded below properties, improving its performance
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compared with other popular functions like ReLU (Rectified Linear Unit) and Swish functions.

Mish, a smooth, non-monotonic activation function that is defined as,

f(x) = x.tanh(ln(1 + ex) (4.6)

where, ln(1 + ex) is a ‘softmax’ activation function [78]. Among other BOF tools used for the

YOLOv4 model are the ‘mosaic’ augmentation technique and the use of saturation, exposure, and

hue. The learning rate was initially chosen to be 0.001 with 0.0005 decay and 0.949 momentum.

Table 4.3: Training Outline: Custom YOLOv4 Model

Training Hyper-parameter Value

Iterations 6000

Batch size 64

Momentum 0.949

Decay 0.0005

Saturation 1.5

Exposure 1.5

Hue 0.1

Learning rate 0.001

Bag of Freebies (BOF) mosaic

Activation Function mish

Training time 6.5 Hours

4.4.3 Model Deployment

Offline Model Deployment

The model is deployable right after training. It can be deployed over the cloud platform, where

it is trained to check how the model behaves. It can also be loaded on other machines with the

required software and DL APIs. This direct use, without any amendment to the model, is called
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offline deployment. The model was also tested on a laptop (section 2.2.4). The model can be

deployed and used from these machines with high enough computational power to run inference.

It was tested on the test data set. Results are presented and discussed in section 4.5.

Online Model Deployment

The best-trained model is checked in offline mode. The best model is selected for optimization to

adapt it to the embedded platform Jetson Nano. Using TensorRT, model is quantized as discussed

in section 4.3.2. After quantization, a TensorRT engine is generated, which is the lighter version

of the model, deployable at the edge. It is tested using the IP RGB sensor, Raspberry Pi, for

real-time inference. The results are also presented and discussed in the following section 4.5.

4.5 Result & Discussion

4.5.1 Model Evaluation

For validation, the generated algorithm is checked on the test data set (Table 4.2) (unknown to

model) and also on different image qualities. Some probable cases are- i) hairline crack, ii) images

with no surface cracks or defects, iii) low light images, and iv) distorted images of surface cracks.

In all these cases, the algorithm holds well, gives an acceptable result, and successfully flags the

anomalies (cracks) that need attention from an inspector.

The overall precision and recall is 97% and 96% respectively with a F1 score of 0.97 (Table

4.4). The 11-point AP measurement is used to calculate the mAP at IoU 50. In Figure 4.11,

the blue line shows the training loss or the error on the training data set (specifically ‘Complete

Intersection-Over-Union’ or CIoU loss for YOLOv4). The red line is the mAP at 50% IoU thresh-

old (mAP@0.5), which checks the model’s performance on a never-before-seen validation data set.

The mAP dips between 1200 & 2400 iterations are likely caused due to the particular mini-batch

of the dataset compared to other mini-batches. The overall best mAP@50 attained is 98.44%,

with an average loss of 0.7897%, as the model converged over the 6000 iterations.

The validation inference is analyzed against PascalVOC 2007 and MS COCO data sets (Figure

4.12) at 50% and 75% IoU thresholds. The mAP for the custom data set at the 50% threshold
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Figure 4.11: Training Chart Showing ‘mAP’ and Average Loss Over 6000 Iterations

is closely followed by the MS COCO dataset, with a drop in mAP for Pascal VOC. For IoU

threshold 75%, all three data sets are approximately the same, with our custom data set scoring

the highest mAP@75 of 0.764114 or 76.41%.

Images in Figure 4.13 were randomly selected from the database for testing, and these intu-

itively demonstrate the detection performance of the improved model.
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Table 4.4: Custom YOLOv4 Model Scores

Evaluation Parameter Value

Mean Average Precision, mAP@0.50 98.44%

True Positives (TP) 180

False Positives (FP) 5

False Negatives (FN) 7

precision 0.97

recall 0.96

F1-score 0.97

Average loss 0.7897

Best weight size 244.2 MB

BFLOPS (Billions Floating Points per Second) 59.563

Table 4.5: Training Outline: Custom YOLOv4 Model

Model Avg Training

/Conversion

Time

Frame

Per Sec-

ond

(FPS)

Mean

Average

Precision

(mAP)

Average

Loss

Custom

YOLOv4 (Dark-

net)

9 hrs 1 98.44 0.7897

Quantized Cus-

tom YOLOv4

(TensorRT)

1 hr 2.5 - -

YOLOv4-tiny 5 hrs 1.2 90.98 0.512
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Figure 4.12: Iteration vs. ‘mAP’ Score of Custom YOLOv4 Model

4.5.2 Experimental Result at the Edge

For further validation of the processing capability of the improved model in mobile devices, the

trained model is deployed to the Jetson Nano, an embedded platform. The processor is small in

size, low in power consumption, and strong in computing performance. The performances of the

custom YOLOv4 model, lighter model YOLOv4-tiny, and the quantized custom YOLOv4 model

are compared in terms of the objective evaluation indicators mAP and FPS, respectively, as shown

in Table 4.5. Between the trained full-size custom YOLOv4 and the lighter YOLOv4-tiny models,

the former has 8% higher accuracy, whereas the latter has slightly faster inference speed (FPS 1

& 1.2 respectively). The full-size YOLOv4 model is slower due to its complex structure, which

cannot meet the needs of mobile devices for real-time crack detection. The full model weight

is frozen and optimized to a lighter version using TensorRT, which increases the FPS from 1 to

2.5. The optimized model is tested with different setups and images to test its performance. The

quantized YOLOv4 model retains a higher accuracy and achieves a faster processing speed, which
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(a) Input Image (b) Detection Against Patterned Sur-

faces

(c) Input Image (d) Detection on Uneven Concrete Sur-

face

(e) Input Image Taken in Late After-

noon Sunlight

(f) Detection on Image (e)

(g) Input Image in Low Light Condi-

tion

(h) Detection on Image (g)

Figure 4.13: Detection Results of Surface Crack Under Different Lighting Conditions on

Videos
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meets the requirements of a real-time object detection system (Figure 4.14).

(a) Frame 1 (b) Frame 3 (c) Frame 5

(d) Frame 7 (e) Frame 9 (f) Frame 11

(g) Frame 13 (h) Frame 15 (i) Frame 17

(j) Frame 19 (k) Frame 21 (l) Frame 23

Figure 4.14: Surface Crack Detection at the Edge Using Hand-held Setup with FPS Shown

at the Top Left Corner of Each Frame
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4.6 Conclusion

Remote monitoring and inspection methods have been used since the 1960s, especially in industry

scenes such as pipeline inspection in the oil and gas industries. The challenge of automating the

interpretation of complex inspection measures to replace the trained inspectors is highly debatable

due to reliability concerns. This method uses custom DNN for inspection on images taken from an

edge device, identifies areas of interest, and flags it for further inspection by one such experienced

inspector without having to reach inspection areas physically. Therefore, it is an addition to the

visual inspection methods with a higher reach. Essentially, this method reduces the inspection

and analysis period and operational downtime, saving costs without compromising reliability.
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Chapter 5

Intelligent Corrosion Detection Using

Deep Learning

5.1 Introduction

‘Corrosion’ is a troubling infrastructural defect that is harder to detect and propagates fast due

to the environmental catalyst. Metal structural components are usually under some surface (e.g.,

concrete) or coating (e.g., painting), causing visual occlusion, which makes it difficult to uncover.

As different statistics presented in earlier chapters, corrosion can cause serious damage if not

detected in time. It has also been an expensive problem worldwide in the infrastructure inspection

scene, incurring billions of dollars in loss. The conventional approaches cause downtime and,

occasionally, accuracy issues due to human error. As part of Task 3 of the proposed methodology,

this chapter proposes, develops, and applies a DL-based algorithm for ‘corrosion’ detection as part

of an inspection payload (IP) to resolve manual inspection-related issues. The onboard camera

of the IP takes images of the infrastructure, which is used as inputs to the intelligent inspection

of corrosion in offline (remote) and online (real-time) modes at the edge. The intelligent and

real-time capability accelerates the inspection process and provides consistent analysis.

Challenges of Corrosion detection. Unlike ‘crack,’ corrosion presents different challenges,

making it a harder class to deal with for the DL technique. This work proposes and develops an

intelligent corrosion detection method leveraging the DL algorithm. The DNNs in the DL models

look for a consistent pattern or shape and perform identification based on the consistent category.

For example, a DL model detecting pedestrians in autonomous driving car navigation will have

a human body with a head, body, arms, and legs. This consistent pattern is necessary so the
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model can learn and perform well in detection. However, corrosion is diverse, and a spectrum of

different types of corrosion throws the model off, resulting in poor performance.

Although several existing works have shown accurate corrosion detection with CNNs, they

mostly have high computational requirements, and most of the work is geared toward civil engi-

neering inspection. Hence, two major challenges become apparent; the first challenge is that there

is not enough relevant data, specifically for the infrastructural corrosion scope and the other is

the high computational cost of adopting these methods onto a low-cost and low-power embedded

platform at the user end. This proposed DL-based corrosion detector shows improved perfor-

mance by developing a data set incorporating synthetic data and using compression techniques

to quantize the model to deploy it on the edge platforms.

5.2 Related Work

5.2.1 Low-level Feature-based Approach

CV-based studies have been proposed for fault defection in civil engineering for structural life-

cycle service and maintenance. Especially corrosion-prone structures that may directly cause

loss of life are the major area of concern. Visual corrosion detection studies using traditional

CV mainly focused on identifying the key corrosion characteristics, e.g., color information and

feature extraction from digital images. In earlier work, Wavelet analysis was used for feature

extraction in order to assess damage or fault in structures, e.g., in aging aircraft structures

[79], surface damage [80], and ship hulls [81]. In a project by the European project MINOAS

(Marine INspection rObotic Assistant System), Bonnin and Ortiz used Hue-Saturation-Value

(HSV) values of affected areas in the classifier algorithm for corrosion detection [82]. They used

a combination of 2 classifiers, a weak classifier color-based corrosion detector (WCCD) and an

AdaBoost-based corrosion detector (ABCD), to achieve better performance. Shape and size-

based pitting corrosion detection have been proposed in work by Pereira et al. [83]. Hoang and

Tran applied texture analysis to extract 78 features using the different color information and

used a support vector machine (SVM) for further classification and detecting corrosion [84]. All

these traditional approaches require extensive knowledge of corrosion and its optimal features.
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The performance or accuracy of corrosion detection depends heavily on how well the features

are defined in these preliminary and manual pre-processing steps [85, 86]. Determining optimal

corrosive features is still challenging [87].

5.2.2 DL-based Approach

The breakthroughs in DL refocused researchers’ interest in DL-based approaches for defect de-

tection, including corrosion detection. Several research works have found that CV, coupled with

DL, can identify corrosion in infrastructures, resulting in standardized results, speeding up the

process, and omitting human error. There has been a significant rise in research investigating ap-

proaches based on the two cornerstones, human error reduction and speeding up the process. The

DL-based approach uses convolutional neural networks (CNNs) that conduct automatic feature

extraction, giving it an edge over the former method. The DL-based approach not only learns

the important features automatically but out-performs state-of-the-art vision-based approaches,

attaining a higher level of accuracy [88, 89, 90, 91, 92]. The DL-based approach has the capacity

to be used as a solution to broader subject matters in just a single step. DL approaches for

corrosion detection in various industrial settings have also proved successful. Atha et al. used

CNN architectures with a sliding window of different sizes (i.e., 32 × 32, 64 × 64, and 128 ×

128) to detect corroded areas within an image. They use two shallow CNN networks similar to

ZF Net and VGG-net [88]. After determining CbCr to be the most robust color space for corro-

sion detection using wavelet decomposition, they use it in conjunction with the CNN algorithm

over different sliding windows in an image. Mentionable that they used cropped-out images with

clearly visible surfaces in their dataset, whereas in this work, images of complicated and hard-

to-reach industrial spaces taken with a unmanned aerial vehicle (UAV) are used. Forkan et al.

have developed a novel ensemble of deep learning CNNs base framework called CorrDetector for

corrosion detection [93]. They evaluate several models and display one performing best among

all in terms of segment-level and image-level predictions. Among the OD-based proposals, Cha

et al. used ‘Faster R-CNN’ to develop a multi-damage detection algorithm, including steel and

bolt corrosion. They used 6000 x 4000 high-resolution images as their data set [89]. Perhaps the

closest and most related recent work is done by Yu et al., where they trained a modified version
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of the lighter OD model YOLOv3-tiny to deploy on board an embedded platform of Micro Aerial

Vehicles (MAVs) [94]. Unlike this approach of model quantization, they use a modified backbone,

and their target corrosion types are bar, nubby, and fastener corrosion in oil wells. A thorough

search of the relevant literature yielded that this is the first DL-based quantized model trained

on real and synthetic data to test corrosion detection, deployable on board an SBC for real-time

infrastructure inspection.

5.2.3 Synthetic Data for Neural Network Training

Collecting raw data, annotation, and further verification analysis is expensive and time-consuming.

The principal success of DL models can be credited to the availability of large data sets to learn the

transformation functions. Many studies endeavor to provide the necessary diversity of information

for the model to learn a specific task. In the absence of required real-life data on the scope of

corrosion, the model is bound to exhibit sub-standard performance. The pandemic made it even

harder to collect data in such quantity and quality. Much research is focusing on overcoming

the data scarcity challenge. Synthetic data has presented itself as a promising alternative that

can generate data with acceptable quality and variance to develop a well-balanced data set for

neural networks. Most of the work on using synthetic data for object detection models focuses on

the autonomous driving domain to identify pedestrians and other obstacles [95, 96]. Nowruzi et

al. report the advantages of mixing real and synthetic data in the same domain for training and

fine-tuning that delivers better performance [97]. In recent literature, the useful and promising

results obtained using synthetic and real data encouraged its use in this work. This work uses a

mix of real & synthetic data to experiment with model training and post-process analysis. The

synthetic data used in this work was obtained using the process described in [98]; As such, the

synthetic generation process is beyond the scope of this work.

Scope. Most CNN and Deep CNN or Deep Neural Network (DNN) based DL approaches use

an ensemble technique for identification and localization. They also differ in the type of corrosion

to detect and their target inspection area. Model implementation time is a critical element

for an intelligent inspection system. Most of the work uses computationally heavier models for

edge deployment, or the detection algorithm for corrosion is specific to the component to inspect.
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Different studies differ in the type of corrosion they aim to detect as well as their target inspection

area, which most likely is civil structure-based. In this study, the training is done with a mix of

real and synthetic data, using transfer learning and quantizing the best model to a lighter version

to deploy from the SBC platform. The Scope of the defect is also scoped down to the three most

common types of corrosion across infrastructure, i.e., crevice, pitting, and concrete corrosion.

5.3 Model Selection

DL provides a variety of models as an option. The two conditions to consider are that the model

should adequately identify and localize corrosion and be deployable in real time. The requirement

is drawn from the rising demand to reduce system downtime by automating and deploying the

model at the edge for inspection. All three DL techniques- (i) image classification (IC), (ii) object

detection (OD), and (iii) semantic segmentation (SS) have been used for ‘corrosion’ detection. It

can be used and accepted as a standard practice as the results are based on the same data and are

easily standardized throughout the similar infrastructure of different facilities. This work aims to

identify and localize corrosion in images or videos gathered for inspection using DL- algorithm.

The ‘YOLOv4’ OD technique is selected as discussed in sections 4.3. It identifies the corrosion

instances in the image/camera frame and localizes them by drawing a box around it, which is

the desired outcome. Among popular OD methods, only a handful of research has been done on

corrosion detection compared to the other DL categories; however, none adapts the code on an

embedded platform.

5.4 Technical Approach

The main focus of this work is to develop an intelligent inspection payload mountable and usable

onboard embedded systems on different platforms, e.g., a handheld setup or with a UAV platform

as mentioned in section 2.3 cost-effectively. The final model deployment experimentation is done

on the inspection payload hardware, i.e., using Jetson Nano and a Raspberry Pi camera (section

2.2.2). Like the crack detection in chapter 4, the camera is considered for image acquisition

and further analysis as an inspection of the plant. The inspection parameters are set similarly,
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depending on the capability of the camera FOV (Field of View), considering a minimum of 70%

overlap of adjacent frames for better image quality and ensuring a full inspection coverage [99].

The idea is to obtain RGB images to cover the area of interest of the infrastructure layer by layer,

and each layer consists of grids of RGB images with overlap. The overlap ensures that all area is

covered, and later, it is convertible to videos or other post-processing necessary for the structural

health monitoring system.

The technical approach for the corrosion detection method can be summarized into three major

steps: (i) data set development, ii) custom model development, and (iii) model deployment, as seen

in Figure 5.1. Under data set development, the pre-processing consists of data set generation,

image augmentation, and finally, detecting and localizing corrosion instance(s) in the FOV of

the camera. The custom OD model to detect corrosion is developed using Python, DL API

TensorFlow, the YOLOv4 category of the YOLO OD family, and TensorRT for model optimization

and deployment at the edge 2.2.3. The process is explained as follows:

Figure 5.1: Deep Learning-based ‘Corrosion’ Detection Pipeline

5.4.1 Data Set Development

The DL model must be trained on an appropriate number and good quality data set to reflect

similar learning representation. The key to developing a good quality data set is understanding
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the problem, i.e., corrosion. Corrosion usually starts from coating loss, which differs in shape

and size. Identifying corrosion is challenging since it has no consistent feature, e.g., edge, shape,

or size, unlike other classes with specific features; for example, the ‘human’ class has consistent

features, e.g., head, two hands, and legs.

On the other hand, corrosion has many different types that are different, depending on the

structure, location, or point of interest. The diverse type of corrosion also makes things difficult

for DL to learn each of these well. There should be an enormous amount of data combined as each

type needs a substantial amount. Therefore, it is essential to scope it down to focus on specific

types of corrosion. In this work, corrosion is narrowed down to three major infrastructure-related

domains: i) Pitting corrosion, ii) Crevice corrosion, and iii) Concrete corrosion 5.2. The data set

for this specific scope reduces the heterogeneity of corrosion and, at the same time, gives enough

variety to each type to get enhanced performance.

(a) Pitting Corrosion (b) Crevice Corrosion (c) Concrete Corrosion

Figure 5.2: Defect Domain: Types of Corrosion.

One approach commonly used in industries is to detect corrosion on a particular component,

such as a concrete slab, metal structure, or valve, which has a definitive shape and size; however,

it will limit the algorithm to the specific component, which is not desirable. Another popular

approach of using corrosion color for identification can also be misleading, resulting in misiden-

tifying metallic or a similar colored surface as corrosion. Here, this complication is sorted out

by getting the DNNs to focus on the texture and consider the image as a whole by training it

on similar images. The advantage of this approach is that the model learns not to assume all

background regions or the same colored surfaces as corrosion. However, in real-life applications,
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this approach holds some risk of misinterpreting other faults, in this case, corrosion. Therefore,

the larger the data set with all possible defect representations of the focused type of corrosion,

the more robust will be the trained model, and the better and more accurate the outcome.

Data Acquisition

Hundreds of color images with handheld cameras or mobile devices were collected from different

infrastructures at different locations. However, more is needed for DNNs. Therefore, besides the

manual collection, one of the available data sets for ‘corrosion,’ ‘COCO-Bridge-2021’ with beams

and under-bridge corroded surface images was used [100]. Like many, this publicly available

data set is of civil engineering related structures such as bridges and roads. However, even after

selecting the specific scope of corrosion, more data is needed, as demonstrated in the training

section. So additional synthetically generated data were used to generate a mixed data set. The

different data batches were used for training and testing in several trials and were updated as

necessary.

Data pre-processing

Augmentation Once enough good-quality image data are obtained, the data is manually

augmented as a pre-processing step to make it more robust. The images are sourced from different

sources, so it is analyzed to check for balance across the corrosion data types. The file format

used here is JPG. However, Python-readable other image formats can also be used.

In an image classification problem, geometrical transformation is encouraged to randomly

vary spatial characteristics on an image, e.g., rotation, cropping, random flip, etc. These aug-

mentations are done to make the model more robust and improve accuracy in general to avoid

over-fitting. It is more sensitive in the object detection domain, so image pre-processing tech-

niques are cautiously applied depending on the object’s characteristics to detect. Considering

the nature or characteristics of corrosion, the orientation does not matter much. In the first

batch, images are re-sized. In the rest of the batch training, image augmentation techniques are

experimentally added and analyzed as part of manual pre-processing as follows:

• Geometric transformation, such as random horizontal flip and vertical flip, angular rotation,
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etc.

• Random color adjustments, including brightness, saturation, and contrast.

Annotation OD model needs annotated data specific to the type of model used. Annotation

refers to manually drawing bounding boxes around desired objects in the image. For this purpose,

868 images of corrosion under different lighting conditions were chosen and manually annotated

using open-source software ‘labelImg.’ Synthetic data had its annotation done using Unreal

Engine. The software-generated annotations are reviewed using a Python script; The decimal

coordinates are rounded off, and the class id is rechecked to match the real image annotations.

(a) Annotation of Corrosion on a Real Image (b) Annotation of Corrosion on a Synthetically

Generated Image

Figure 5.3: Example of Annotated Images for ‘Corrosion’ Detection.

Figure 5.3 shows annotated images on real and synthetic data for training. After each training,

the model evaluation scores are studied, and adjustments are made in the data set if needed to

improve the model evaluation, especially mAP.

DL models are data-hungry, so the first approach is always to enrich the available data set.

After the pilot run of batch 1, additional data were added for batch 2. The specific corrosion

data were not easily available, and due to the global pandemic, it took much work to gain access

to industrial compounds to collect more images. Open source data were added in batch 3 from

the [100]. However, it is targeted toward under-bridge inspection for civil infrastructure, so some

relevant images aligned with the target were sourced. In addition, in batches 3 and 4, 86 and
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277 synthetically generated data were added respectively (Figure 5.4) based on the three types of

corrosion.

Figure 5.4: Database Summary for Real & Synthetic Data, Developed in Batches for

‘Corrosion’ Detection

Table 5.1: Data Set Summary

Batch
Total No. of

Images

Training

Set

Validation

Set

Test

Set

Bounding

Boxes

1 868 708 130 30 1406

2 1123 836 259 28 1714

3 1231 893 290 48 1909

4 1422 1043 331 48 2022
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Annotation is a crucial step, as the training and detection are highly dependent on the precision

of the labeling of the images. After basic pre-processing (geometric transformation & random color

adjustments), the images were split for training, validation, and test sets. The data summary

table in Figure 5.4 shows the development of batches and data split, and Table 5.1 shows the

number of bounding boxes by the batch at a glance for all real and synthetic images.

5.4.2 Custom Model Development

Training

The YOLOv4 model was used to train an OD DL model for corrosion detection. The model was

trained over the cloud (section 2.2.4). Table 5.2 shows training configuration and combinations

of different training parameters that have been tried and tested for custom model development.

The model took around 7 hours for 6000 iterations for the input size of 416. Some of the BOS

& BOF tools of YOLOv4 were used, e.g., the ‘mosaic’ augmentation technique and the use of

saturation, exposure, hue, and ‘mish’ activation function. The hyper-parameters initially selected

are a learning rate of 0.001 with 0.0005 decay and 0.949 momentum.

For the transfer learning, pre-trained YOLOv4’s layer-137 weight is used to begin training

the model on the custom data set. After the first trial, the best weights from previous custom-

trained models were used for transfer learning to experiment with the model outcome in trials

2 & 3. Transfer learning uses pre-trained frozen layers already trained on feature extraction

from the pre-trained weights to reduce model training time and improve accuracy drastically.

The learning rate, momentum, and decay are important hyper-parameters selected and altered

for experimentation. Data augmentation techniques from BoF were used to avoid network over-

fitting issues. Different hyper-parameter combinations are used with BOF & BOS tools in different

combinations to find optimal outcomes.
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Table 5.2: Training Outline: Custom YOLOv4 Model

Training Hyper-

parameter

Trial 1 Trial 2 Trial 3 Trial 4

Iteration 6000 6000 6000 6000

Batch 64 64 64 64

Momentum 0.949 0.949 0.949 0.8

Decay 0.0005 0.0005 0.0005 0.0005

Learning rate 0.001 0.001 0.001 0.005

Saturation (BoF) 1.5 1.5 1.5 1.5

Exposure (BoF) 1.5 1.5 1.5 1.5

Image Augmentation

(BoF)

mosaic mosaic mosaic,

angle = 30

angle = 45

Activation (BoS) mish mish mish mish

Data set Batch 1 Batch 2 Batch 3 Batch 4

Data Addition Base Yes Yes Yes

Data type Real Real Real &

Synthetic

Real &

Synthetic

Data augmentation

(Pre-training)

No Yes Yes Yes

Pre-trained weights

(conv-137)

YOLOv4 Trial-1

(best)

Trial-2

(best)

YOLOv4

Training time 5.5 Hours 5.5 Hours 6 Hours 6 Hours

5.4.3 Model Deployment

Offline Model Deployment

The best weight of the trained model can be deployed as is after the training. It can be de-

ployed over the cloud platform to check model performance on the test data set. It can also be
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transferred to other computational tools (laptop or computer) with the required software and

DL APIs (chapter 2.2.4). The model can be deployed and used from these machines with high

enough computational power to run inference. Results are presented and discussed in section 5.5.

However, the model weights have much training-related information that is not strictly needed

for such deployment; as such, it is not a suitable form to deploy from an SBC for edge use. The

best-trained model is checked in offline mode on saved images and videos.

Online Model Deployment

It is called an online deployment when the best model is deployed directly on the real-time

camera feed for inference on a laptop or other setups. However, for edge deployment, the model

needs to be optimized. The best model is selected for optimization to adapt it to the embedded

platform Jetson Nano. as discussed in section 4.3.2, the model is quantized using TensorRT.

During quantization, information regarding the inference is preserved, the convolutional layers

are frozen, nodes are fused, GPU memory is used, and a TensorRT engine is generated. This

engine is the lighter version of the model, which can be run at the edge with reduced latency. It

is tested using the IP RGB sensor, Raspberry Pi 2.0, for real-time inference. The results are also

shown and discussed in the following section 5.5.

5.5 Result & Discussion

The results of four experiments conducted to find the best model using a combination of real-

synthetic data with different training hyper-parameter configurations are presented in this section.

For the validation experiment, the custom algorithm is checked on data unknown to the model

(Table 5.1) and on different image qualities. Some probable cases are- i) images with no corrosion

or defects, ii) low light, iii) distorted images, and so on. In all these cases, the algorithm holds well,

gives an acceptable result, and successfully flags the anomalies (corrosion) that need attention

from an inspector.
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5.5.1 Model Evaluation

The training was conducted over the cloud, as mentioned in the tools section. Table 5.2 shows

the outline of the custom model training parameters of all four trials. Trial 1 is the initial model

trained on the base, batch-1 real data (Table 5.1). The outcome gives a preliminary idea of the

model performance. Corrosion detection needs a complex feature combined with texture and

color. Due to its wide variety, inconsistent shape/size, diverse nature, and the small data set, the

training results in 29% mAP with 0.55, 0.32, and 0.41 precision, recall, and F1-scores respectively

(Table 5.3). The 11-point AP measurement is used to calculate the mAP at IoU 50.

Figure 5.5: Training Chart Showing ‘mAP’ and Average Loss Over 6000 Iterations

For trial 2, 30% additional images is added creating a new data set batch 2 for training (Table

5.1). Before training, basic image augmentation techniques, i.e., geometric transformation and
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Table 5.3: Custom YOLOv4 Model Scores: Corrosion Detection

Evaluation Parameter Trial 1 Trial 2 Trial 3 Trial 4

Mean Average Precision, mAP@0.50 29.05% 47.47% 56.44% 72.33%

True Positives (TP) 77 156 182 599

False Positives (FP) 64 139 54 234

False Negatives (FN) 161 180 195 237

Precision 55% 53% 77% 72%

Recall 32% 46% 48% 72%

F1-score 41% 49% 59% 72%

Average loss 1.61 2.09 2.11 0.606

Best weight size (MB) 244.2 244.2 256 244.2

Figure 5.6: Model Training & Evaluation Scores

random color adjustment, are done to increase the data set size and add linear variation. For

pre-trained weight, the frozen ‘conv-137’ layer of the best weight from trial 1 is used for transfer

learning in this trial. An 18% mAP jump to 47.47% is observed. The precision falls to 0.53,

whereas recall and F1 scores show improved scores at 0.46 & 0.49, respectively.
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For further improvement, in trial 3, concentration is given to find ways to enrich the data set

for the specific types of corrosion. In trial 3, the batch-3 data set is used as a mixture of real

and synthetic data. For weight, the frozen conv-137 layer of the best weight from trial 2 is used

to reuse its feature-learned layers. Additionally, one of the BoF image augmentation techniques,

image rotation at a 30◦ angle, is added to the configuration. This amendment and adjustment

yield a 13% improvement in mAP to 56.44%, as well as improved precision, recall, and F1 scores.

The best model weight increased slightly to 256 MB.

Finally, in the fourth trial, the batch-4 data set is used with even more data (Figure 5.4).

For pre-trained weight, YOLOv4 pre-trained weight conv-137 is used. The image augmentation

technique ‘mosaic’ is removed which is not giving the desired result and the angular rotation is

increased to 45◦. Hyperparameters were also adjusted, such as decreasing the momentum from

0.949 to 0.8 and increasing the learning rate five folds to 0.005. This results in a 16% increase of

mAP to 72.33% (Figure 5.5). There is also an improvement in recall and F1 score to 0.72 (Table

5.3), whereas the precision has a slight dip to 0.72. Another major improvement observed is in

the training loss (specifically ‘Complete Intersection-Over-Union’ or CIoU loss for YOLOv4) as it

drops continuously throughout the training phase to 0.606% (blue line in Figure 5.5) indication

that the model is not over-fitting. The red line is the mAP at 50% IoU threshold (mAP@0.5),

which checks the model’s performance on a never-before-seen validation data set. Overall the mAP

remains flat with little variations, but the average loss keeps dropping throughout the training

phase, which is a good indication.

The overall improvement in model performance in terms of mAP@50 is from 29% to 47.47%

with real data only. After adding additional target-specific synthetically generated data, the

mAP@50 increases to 56.44% in trial-3 and 72.33% in trial-4. The mAP@50 significantly increases

by 43% (a factor of 1.6), from 29% to 72%, as the data set increases from 868 to 1422 by 60%

. The average loss falls below 1% as the model converges over the 6000 iterations. In the four

trials, the data set is enriched, and different hyperparameters and augmentation combinations

are used as training configurations; as such, the improvement cannot be correlated. However, the

model performance definitely improves with the increase of data, specific data augmentation, and

hyperparameter adjustments, with the fourth trial generating the best model with an accuracy of

over 70%.
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Figure 5.7: Iteration vs. ‘mAP’ Score Comparison in Different Standard Data Sets for the

Best Custom YOLOv4 Model

The performance score is analyzed against Pascal VOC 2007 and MS COCO data sets (Figure

5.7 ) at 50% and 75% IoU thresholds. The mAP data set for the custom data set at 50%

threshold is closely followed by the MS COCO data set, with a drop in mAP for Pascal VOC.

For IoU threshold 75%, all three data sets are approximately the same, with the custom data set

scoring the highest mAP@75 of 50%.

Images shown in Figure 5.8 were randomly selected by the algorithm from the database for

testing to demonstrate the detection performance of the improved model more intuitively. The

custom model is used to identify corrosion in images under different settings, and some of the

detection results are shown in the said figure. Example images are taken under different angles

and illumination conditions and with blurred and noisy (textured) backgrounds. The bounding

boxes (red) display the model confidence score, and the detection FPS can be seen in the top

left corner of each inferred image. It can be observed that in all four images, corrosion can be

detected correctly.
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(a) Input Image (b) Detection on Blurred Image

(c) Input Image (d) Detection on Uneven Surface

(e) Input Image Taken in Late Afternoon

Sunlight

(f) Detection on image (e)

(g) Input Image with Textured Background (h) Detection on Image (g)

Figure 5.8: Detection Results of Corrosion Under Different Lighting Conditions
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5.5.2 Experimental Result at the Edge

For further validation of the processing capability of the improved model in mobile devices, the

trained model is deployed on the Jetson Nano. Its processor is small in size, low in power

consumption, and strong in computing performance compared to its peers. The full-size YOLOv4

model is slower due to its heavy & complex structure, which cannot meet the needs of mobile

devices for real-time detection. The optimized & quantized lighter version, model TensorRT

engine’s performance is tested by deploying it on images, videos, and live camera feed for inference.

To compare the result, the lighter version of the model, YOLOv4-tiny, is trained with the batch-4

data set (Table 5.4). Among the models, the custom quantized model shows a faster deployment

FPS of 2.5, as seen on the top left side of each inference image. The optimized model is tested

by deploying it in the UAV setup at a local power station. Utilizing ROS bag files and custom

Python script, the real-time camera feed is infered using the model (Figure 5.9). It retains the

higher accuracy of the parent model and achieves a faster processing speed, meeting the demand

of a real-time OD application at the edge.

Table 5.4: Training Outline: Custom YOLOv4 Model

Model Training/

Conversion

Time

Frames

Per Sec-

ond

(FPS)

Mean

Average

Precision

(mAP,

%)

Average

Loss

Custom YOLOv4

(Darknet) (Best)

6 hrs 1 72.33 0.606

YOLOv4-tiny 5 hrs 1.2 69.54 1.025

Quantized Custom

YOLOv4 (TensorRT)

1 hr 2.5 - -
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(a) Frame 1 (b) Frame 3 (c) Frame 5

(d) Frame 7 (e) Frame 9 (f) Frame 11

(g) Frame 13 (h) Frame 15 (i) Frame 17

Figure 5.9: Corrosion Detection/Inference at the Edge (Old Power Plant Stack of El Paso

Electric)

5.6 Conclusion

In this work, a deep learning (DL) based corrosion detection model is developed for automated

visual inspection of industrial infrastructures. Among different types of corrosion, pitting, crevice

& concrete corrosion are selected as the scope of this inspection, which reduces the variation,

data-drift and also ensures enough data for each corrosion type to get a well-balanced and qual-

ity data set. A custom data set comprises both real and synthetically generated data to cater

to limited corrosion data. YOLOv4 is used to build a custom model using transfer learning for

its faster detection speed and significantly higher accuracy. This method conducts inspection
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on images, videos and camera feed captured from the camera on an edge device, identifies ar-

eas of interest, and flags it for further inspection by an experienced inspector without having to

reach inspection areas physically. The model is quantized for faster deployment and inference.

Detection accuracy and model performance are improved using different combinations of data

augmentation techniques and varying training hyper-parameters. Experimental results confirm

that the proposed optimized detector obtains satisfactory corrosion detection results, achieving

72.33% mAP for corrosion identification in a complex environment and getting real-time perfor-

mance (2.5 FPS) with an off-the-shelf commercial SBC platform. Essentially, this method reduces

the inspection and analysis period and subsequently reduces operational downtime, saving costs

without compromising reliability.
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Chapter 6

Multi-Spectral Visual Inspection

6.1 Introduction

Different non-destructive testing (NDT) techniques provide the knowledge and skills to swiftly and

effectively evaluate and monitor aging structures for engineers and stakeholders. These techniques

are employed for local structural health monitoring and damage detection [101]. The most popular

and common NDT technique, ‘visual inspection,’ is performed using true color or RGB images,

which can identify a defect in the visible spectrum. The obvious limitation is that the acquired

information is limited to the lighting condition, as a regular RGB camera inspection feed without

proper or any lighting under-performs or fails in poorly lit or dark areas. Even with a lighting

solution, a vision-based inspection can be done only on the visible spectrum. Adding another

spectrum of information can add important information to the visual inspection approach. In

this work, the infrared spectrum is added to the true color scope as a solution to such visual

inspection to generate a multispectral inspection capability.

Multispectral imaging is one of the most exciting technologies that have been used in different

areas for non-destructive quality and safety inspection. The agriculture and food processing areas

have been extensively using a multispectral analysis by combining color with different spectrum,

e.g., ultraviolet or infrared [102, 103, 104]. However, these methods had unsolved issues that

resulted in incorrect estimations [105]. Some of the notable work done in other inspection areas

using multispectral imaging are bridge inspection to detect concrete cavities, [106], building in-

spection using UAV [107], and undercarriage inspection of railroad equipment [108]. All the work

stated uses off-the-shelf costly multispectral cameras. Mostly these works are limited to com-

ponents of interest, making them component-specific. This work aims to develop multispectral

capacity usable across different infrastructures cost-effectively.
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A multispectral inspection capability can make the analysis or health condition monitoring

more robust and well-rounded. Multispectral images are usually modeled as mixtures of a few

spectral endmembers. The multispectral analysis produces images with pixel-wise overlayed in-

formation from another spectrum in addition to the visual one through appropriate pixel-level

correlation and calibration. However, off the shelf, high-resolution multispectral cameras/sensors

easily cost over a couple of thousand USD on average. This work aims to develop a low-cost

analysis method using visible (RGB) & LWIR (Long Wave Infrared) thermal spectrums, each

corresponding to a significant scene component to constructing the multispectral scene.

6.1.1 Thermal Spectrum.

There are three modes of heat transfer; Conduction, Convection, and Radiation, and three ways an

object dissipates radiation heat energy, absorption, transmission, and reflection [109]. A material

with zero transmissivity and reflectivity is called a black-body. The temperature and emissivity

of an object are determined by how much IR radiation it emits. The Stefan-Boltzmann Law

describes the total radiation energy that a surface can release is,

E = εσT 4 (6.1)

Where E is the radiation energy (W/m2), T is the temperature (K), σ is the Stefan-Boltzmann

constant, and ε is the object’s emissivity.

Figure 6.1: The Electromagnetic Spectrum [5]

Figure 6.1 shows the useful range of IR radiation in the electromagnetic spectrum, with

wavelengths between 0.8 and 14μm, located between the visible and microwave spectrum. The

96



thermal spectrum can be broken down into the near-infrared region (0.8-1.5 μm), short-wavelength

infrared region (1.5-2.5 μm), mid-wavelength infrared region (2.5-8 μm), and long-wavelength

infrared region (8-14 μm). All object releases infrared radiation at temperatures over 273.15 °C

(absolute zero temperature) in the MWIR and LWIR wavelengths in quantity proportional to the

body’s temperature.

Thermal & Radiometric Imaging. Thermal cameras ‘see’ the heat instead of light. They

produce an image of a scene that portrays the temperature of the objects (infrared imaging)

instead of the visible properties.

Figure 6.2: A Side-by-side Comparison of Near Infrared (NWIR) and Long Wave Thermal

Infrared (LWIR) Cameras Display of a Scene [6].

‘Thermal imaging’ detects radiation and translates the temperature variations into grey scale,

where brighter and darker shades of grey represent hotter and cooler temperatures to give a

visual representation of the heat profile of the scene. In contrast, IR ‘Radiometric imaging’ can

give pixel-wise temperature readings of the scene. If the temperature range is known in a frame

of thermal image, then it can be called ‘Radiometric’ or ‘Thermographic’ representation. Some

areas the IR inspection could be useful are in sub-surface defect detection, wear/friction detection,

insulation problem detection, leak detection, electrical inspection, and fire prevention. ‘LWIR’

is chosen as it is representative of objects’ temperature and it is not affected by ambient light.

Figure 6.2 shows the difference between NWIR & LWIR spectrum, as the wavelength is much

different from the visible spectrum range (figure 6.1). LWIR is useful as it can give low-light, day
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& night vision with occlusion coverage and sub-surface inspection [110].

6.1.2 Applications.

Infrastructures may have sub-level issues that need to be determined effectively, which cannot be

identified using only visual spectrum-based inspections. IR camera observes surface radiations

(electromagnetic waves) connected to changes in temperature in the IR spectrum to find subsur-

face flaws [110]. Multiple literature confirm that emissivity is a crucial parameter for accurately

measuring surface temperature with a maximum error in surface temperature of up to 7◦C. [111].

Most inspection guidelines recommend testing materials with emissivity higher than 0.6-0.7 [112].

The emissivity of most metals and materials on infrastructures usually exceeds that limit with

some exceptions [111]. For example, concrete is one of the most common infrastructure materials

with an emissivity higher than 0.92 [109]. The emissivity is typically influenced by the material’s

surface roughness, chemical composition, and moisture content. Other attributes on its surface

which might cause visible changes in the image temperature are stains, water, and paint markings.

Observing the thermal profile can give useful clues to the sub-surface defects, usually hidden

from the naked eye. For example, a concrete surface heats up by the increase in the surrounding

temperature through heat absorption during the daytime, which then begins to radiate energy. If

there are subsurface anomalies, the area inhibits heat conduction and warms up faster than the

surrounding area of unaffected concrete. This difference in heat profile can be observed on IR

imagery as a ”hot spot” with a higher temperature. The sound concrete region loses heat slower

than delaminated sections in comparison to at night when the ambient temperature typically

drops. Thus, ”cold spots” on the concrete surface with lower temperatures indicate underlying

issues on thermal and IR images. IR thermography can be useful for assessing underlying anoma-

lies of surfaces that obstruct and alters the general heat transfer profile. Therefore multispectral

inspection can be effective for infrastructure inspection.

6.1.3 Thermal Sensor.

Among the IR cameras available in the market for this work, a budget-friendly LWIR camera,

FLIR Lepton 3.5, is selected as mentioned in section 2.2.2. This inexpensive IR camera (about one-
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tenth the cost of traditional IR cameras) solution has a small dimension and power requirement,

which is usable in any of the handheld setups or onboard a UAV with limited power 2.3. This

sensor is coupled with a Purethermal 2.0 smart I/O Module that is programmable and connects

with micro-B type USB with the IP SBC, Jetson Nano [22]. The sensor comes pre-calibrated

and streams temperature values in 0.01K pixel resolution. One of the prime features of the IR

sensor is that it is radiometric, meaning that the temperature data is embedded in each pixel.

The non-contact temperature data can be accessed with custom coding through the sensor board.

6.1.4 Challenges.

Normally, in a standard multispectral inspection system, two almost superimposed sensors are

used; where one is sensitive to IR or some other spectrum, and the other is the RGB (true color)

camera for visual image acquisition of the same surface. Since in this work, two different cameras

are used, the acquired frames will vary in terms of resolution, FOV, and the number of images

will depend on individual frame rates. A careful cross-system calibration is necessary for the

pixel level overlap, which is time-consuming and presents several challenges, such as pixel level

drift or inconsistent timing of the two frames. There are also hardware and software-associated

configurations causing overlay deviation, depending on the hardware design, data encoding, and

frame rate. Therefore, the two sensors need to be carefully configured, synced, and the data ap-

propriately post-processed before they can be overlayed together on a pixel-by-pixel basis to get a

consistent multispectral display. From an experimental point of view, thermographic techniques

are classified into two major categories: ‘Active’ and ‘Passive.’ A transient heat transfer state

is more effective in thermal inspection, as the thermal profile becomes obvious over time [113];

This can be achieved using an external excitation source for heating or cooling, e.g., photographic

flashes and Halogen lamps. This method, known as ‘active thermography,’ needs a well-controlled

lab environment. However, due to the onsite and periodical nature of the inspection, and con-

sidering IP mounted on platforms like UAV or handheld setups, this external heating cannot be

achieved effectively. As such, the scope of this work is limited to passive thermography, which

does not need external heating.
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6.1.5 Contributions.

This work has developed a multispectral inspection capability by fusing RGB & IR feeds from the

same scene. An integrated inspection system has been developed where a custom-built ‘User In-

terface’ (UI) can be used to perform data post-processing and multispectral inspection & analysis

of infrastructure.

6.2 Technical Approach

Figure 6.3 shows the four steps of the technical approach of this work.

Figure 6.3: Technical Approach for Multi-spectral Inspection

6.2.1 Experimental Setup

The maximum resolution of the RGB camera is 3280 × 2464 pixels & 120x160 pixels for the IR.

The focal length is also different; however, the field of view (FOV) of the RGB camera is 62.2°,

which is pretty close to 57°, the FOV of the IR camera as mentioned in sections 2.2.2 & 2.2.2,

which is a major reason for selecting this IR sensor.

For a close comparison of a scene, some adjustments regarding the resolution, frame rate, and

frame saving rates must be made. However, some pixels will be lost due to the non-conformity

of the aspect ratios and physical distance of the two sensors, as they cannot be physically put in

the same location. A closer look at the RGB camera shows that the sensor is connected to the
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board with a non-rigid connector, which may have a slight play during testing due to vibration

caused by movement.

Figure 6.4: Expanded View of Custom Camera Mount with Two Sensors in CAD for

Maximum Frame Overlap

The physical distance between the two sensors can be reduced as much as possible by putting

the sensors as close as possible by designing custom camera mounts (Figure 6.4). The camera

attributes are carefully selected considering IP computational power, power requirement, and best

frame synchronicity. Some of the important parameters are as follows:

Table 6.1: Sensor Configurations

Sensor

Configurations

RGB Camera

(Raspberry Pi 2.0)

IR Sensor

(Lepton 3.5)

Encoding “bgr8” “bgr8” or “mono8”

Resolution 1280x720 160x120

Frequency 14 8

One of the prime features of the IR sensor is that it is radiometric, meaning that the pixel-wise

temperature can be accessed via the sensor board through custom coding. For IR images, either

‘bgr8’ or ‘mono8’ encoding can be used.
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6.2.2 Data Acquisition

ROS is used for data acquisition. Data acquisition includes extracting images from an RGB

camera, temperature values from radiometric or ‘raw’ feed & normalized ‘thermal’ images from

an IR sensor to view the thermal frame. The raw images are not discernible with the naked eye

as the pixel or temperature variation in a raw feed is small (Figure 6.5b). As such, the raw data

is normalized from 0 to 65535 and converted to the grey scale to view (Figure 6.5c). Below are

images taken with the sensors:

(a) Visible Spectrum Image

(Original Size 960x540)

(b) 8-bit Raw Thermal Image

(Original Size 160x120)

(c) 8-bit Normalized IR

Spectrum Image

(Original Size 160x120)

Figure 6.5: Three Representations of an Instance from the Two Sensors

The sensor data are extracted and stored using custom ROS node ‘image extraction.py’ coded

in Python. All sensor data is saved in a ROS bag file with timestamps for post-analysis.

6.2.3 Multispectral Display

Sub-sampling

The timestamps are used to name the data frames for correlating between 3 different represen-

tations of an instance, i.e., RGB, raw & thermal (normalized). Raw & thermal images have the

same number of images. As the frame rates of the sensors differ, the images are sub-sampled

for synchronizing the multi-spectrum feed. Image numbers are compared as the first step of sub-

sampling between the RGB and thermal images. RGB has more images due to higher image

acquisition frequency, so it is sub-sampled to the thermal image. Next, During sub-sampling, the
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closest float up to 2 decimal points are considered to look for a match. Once a match is found,

these images are sub-sampled to another sub-folder called ‘Extracted.’ After sub-sampling, all 3

data representations will have an extracted folder with the same number of images. The directory

should look like the following:

Figure 6.6: Image Directory Tree

Resizing

The two sensors’ images need to be the same size to get the multispectral view by overlaying

one over the other. As mentioned before, there is a difference in the aspect ratio and the FOV

of the sensors. For this analysis, generic image processing techniques, i.e., cropping & resizing,

are used to get the same size and aspect ratio. Given that constant frame resolutions, frame

rate, sensor-to-inspection surface distance & FOVs are maintained during image acquisition, this

generic technique would work adequately for this analysis. After studying the shapes, a suitable

final image size, 1190 x 565 & aspect ratio, 2.1, is selected, so the least pixels are lost in the

process. The RGB image is first resized from the original 960x540 to 1280x720, then cropped to

1190 x 565, ending with the desired 2:1 aspect ratio. The IR images are at first cropped to 145x69

to adhere to the 2:1 aspect ratio, then resized to the final size of 1190 x 565. The cropping ensures

that the maximum overlap of the scene is achieved. The process is automated on the complete

data set with a python script.
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(a) Visible Spectrum Image (b) Normalized IR Spectrum Image

(c) Multi-spectrum Image (Opacity 50%)

Figure 6.7: RGB, IR & Overlayed Multispectral View of an Instance

(Final Size 1190×565)

Overlay

All three RGB, IR, and raw have the same number of files and are resized to the same size. Using

OpenCV, the IR & RGB images are blended from the index (0,0). The opacity of the blend

is customizable. However, 50% opacity is taken as default. The figures below show the images

together for a qualitative study of the Multispectral view, seen in Figure 6.7c.
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6.2.4 UI for Multispectral Inspection

An integrated inspection system has been developed to perform data extraction, sub-sampling,

multispectral display, and radiometric (temperature) reading of a scene using a UI. The custom-

built UI titled “UI for Multispectral Inspection” aids users in easily executing data post-processing,

inspection, and analysis in the multispectral domain with the click of a button.

Figure 6.8: UI for Multispectral & Thermal Inspection

The functional buttons are placed on the top left corner of the UI window, and the names are

expressive of the operation it performs, i.e., ‘Bag Image Extraction,’ ‘Sub-sampling & Overlaying,’

& ‘Select Pre-processed files.’ Clicking on any of these options opens up a file explorer in the

system path to choose the file in the directory.

If the files have already been extracted, sub-sampled & overlayed, further analysis is done by

clicking on the ‘Select Pre-processed files’ button. Once this button is pressed, and subsequently,

the required ‘image’ directory containing the required sub-folders 6.6 is chosen via the file explorer,

the UI will start populating all the color images on top, over the scroll bar. All images can be easily

navigated by scrolling from left to right for each test set. The color image is correlated to sampled

thermal and raw images. Selecting any of the color images selects the three representations for
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multispectral analysis. The selected file’s name is displayed just below the list of color images.

The top row displays the ‘Color’ & the normalized ‘Thermal Image,’ and the bottom row shows

the ‘Multispectral Image’ and ‘Heatmap’ (Figure 6.9b).

(a) Heatmap (b) Heatmap (Grey scale)

Figure 6.9: Heat-map with Maximum, Minimum and Pixel-wise (Yellow Highlight)

Temperatures (°C) Displayed

The multispectral image gives additional thermal information on the inspection surfaces. In

Figure 6.8, the corrosion, although visible in the color image, is more prominent in the multispec-

tral view due to the thermal profile seen in the LWIR spectrum. The exact location of metal loss

can be found under the evenly corroded colored surface.

Along with the visual & multispectral views, a thermal heat map with temperature readings

is generated. The temperature scale can be chosen from the adjacent conversion button in degrees

Celsius (default) and degrees Fahrenheit. By default, the heat map shows the highest (red) and

the lowest (blue) temperatures. A temperature scale displays the instance’s temperature range

(on the right), and pixel-wise temperatures can be read by hovering the mouse pointer above the

display, as seen in Figure 6.8.
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6.3 Experimental Results

6.3.1 Test Runs

Several experimental studies have been conducted in different test facilities mentioned in section

2.4 using IP on handheld setup-1 and UAV (section 2.3). Initial studies were conducted to try

out the radiometric and thermal features. There were a total of 5 flight tests conducted at

Vinton & EPE to acquire multispectral data from the two sensors. All relevant sensor data

were saved in ROS bag files containing RGB, raw & thermal images from three ROS topics, i.e.,

/main camera/image raw, and /thermal img. Here is the breakdown of the images extracted from

the ROS bag file using the Python extraction code.

Table 6.2: Data Acquisition by IP Onboard UAV

Bag File Name

RGB images

(1280x720)

Thermal images

(160x120)
Flight

Duration

(s)Total
Frequency

(Hz)
Total

Frequency

(Hz)

t1 vinton.bag 405 5.6 690 10.1 15.58

t2 vinton.bag 396 6.1 688 10.2 15.12

t1 therm EPE 060922.bag 944 14.24 550 8.3 66.38

t3 therm EPE 060922.bag 1550 14.53 921 8.63 106.67

t4 therm EPE 060922.bag 1870 13.63 1076 8.2 137.41

6.3.2 Temperature Reading & Thresholding.

Using Heat-maps from the UI, the temperature measurement or thermographic study can be

conducted at the region of interest 6.9b. Another functionality of the thermal imaging technique,

‘thermal thresholding,’ is added to get an augmented view of the temperature profile. The thermal

thresholding adds pseudo colors to radiometric pixels within a custom preset temperature.

The pseudo-colored area of the radiometric feed has a temperature within the set threshold,

making problem regions easily identifiable from the surrounding. It can easily detect hot-spots or
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Figure 6.10: Thermal Thresholding Between 30-40°C

surfaces with a loss of insulation. In Figure 6.10, a thermal thresholding of 30-40°C is set while

running the experiment indoors at a well-air-conditioned test site of ambient temperature 26°C

(approximately). In comparison, the outside temperature was approximately 33°C that day.

6.3.3 Defect Detection.

(a) Instance 1 (Color) (b) Instance 1 (Thermal) (c) Instance 1 (Multispectral)

(d) Instance 2 (Color) (e) Instance 2 (Thermal) (f) Instance 2 (Multispectral)

Figure 6.11: Multispectral Analysis of Corrosion.
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Some interesting damage spots are captured to evaluate the method’s potential (Figures 6.11

& 6.12). In general, the majority of the damage types or features can be detected using color

image data. Figure 6.11a shows a corroded gear in a tool shed at Vinton. There are visible rust

spots, which indicate moisture penetration or corrosion. The gear teeth also show similar defect

spots. However, the multispectral view shows more information as to the extent of corrosion. The

darker region shows slower heat transfer due to the rust formation, whereas the lighter surface

emits heat quicker, indicating a defect-free surface area. A closer look at the gear in Figure 6.11c

shows the advantage of the IR spectrum that makes the damage detection discernible even in

poorly lit areas.

(a) Instance 3 (Color) (b) Instance 3 (Thermal) (c) Instance 3 (Multispectral)

(d) Instance 4 (Color) (e) Instance 4 (Thermal) (f) Instance 4 (Multispectral)

Figure 6.12: Multispectral Analysis of Crack.

Similarly, cracks as thin as 1 mm can be detected from a distance of 3 ft (Figure 6.12c). Figure

6.12f shows another example of a crack on a concrete surface recognizable in the multispectral

display.

109



6.3.4 Thermal Sensor Issues.

The low-resolution IR camera poses some concerns, and the defect cannot always be easily under-

stood. Due to the in-built auto-calibration, the IR sensor performs Flat Field Correction (FFC) to

re-calibrate when the camera changes temperature and periodically during operation as needed,

which results in granular output (Figures 6.13) [114]. The thermal profile still exists. However, it

would take a trained eye to pick the subtle change. Pseudo-coloring or thresholding can be used

to augment the temperature profile.

Figure 6.13: Granular Thermal Image due to Sensor’s Periodic Flat Field Correction (FFC)

Another issue observed was the loss of data in some cases, observed in the IR image of Figures

6.14, most likely due to electrical or shutter issues. A manual pre-processing is needed to eliminate

these erroneous data from the database.

The IR sensor does not have a built-in cooling system, which is needed to keep the sensor

temperature within range. Continuous use in hot climates is another issue that sometimes gener-

ates shadow pixels (Figures 6.15); the shadow pixels are previous IR data getting locked in some

of the sensor pixels, which needs the sensor to re-calibrate to resolve.

Given the results, the corrosion detection shows promising results over the crack detection

with this budget-friendly multispectral inspection system. However, it can be assumed that

other common defects, such as water leaks, semi-exposed subsurface metals, or foreign matters in
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Figure 6.14: Thermal Data Loss at the Top of the IR Image

Figure 6.15: Temperature Drift Causes Shadow Pixels of the Pillar in the Bottom Right

Thermal Image

infrastructures, can be easily detectable with a high-resolution multispectral setup.
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6.4 Conclusion

The chapter presents a time- and cost-efficient integrated multispectral inspection system for

infrastructure inspection tasks. Data has been acquired using IP on handheld setup and on-

board UAV. The multispectral inspection system consists of an RGB & IR sensor to fulfill the

requirements for detection and localization of the majority of damages on the inspection sur-

face. Several practical studies were carried out to evaluate the system’s performance. The results

prove that the system is sufficient for crack and corrosion detection based on the investigation.

At the same time, thermal imaging and radiometric capability add more functionality to detect

known infrastructural defects, such as hot-spot identification or leak detection. Besides, the ad-

vantages of UAV-based monitoring and the other versatile and flexible functionalities added via

the development of the UI make the inspection task easier at the user end.

Another fact is that, given the mentioned low-budget sensor limitations, it is not possible

to solve all required inspection tasks. Image data can study and detect defect features on the

surface of the infrastructure using multispectral vision. However, some defects, such as hairline

cracks, can be better detected with an active thermography approach using external excitation

in a lab setting. Nevertheless, UAV-based damage detection is a helpful and flexible assisting

tool in infrastructure inspection. The multispectral analysis significantly facilitates the visual

interpretation of infrastructure conditions monitoring and damage detection.
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Chapter 7

Conclusion

7.1 Summary

The main objective of this dissertation was to develop a time- and cost-efficient inspection payload

to perform intelligent inspection in infrastructures to detect cracks & corrosion. The methods

can be applied in real-time or offline, and the inspection payload is inter-operable in different

platforms, e.g., a handheld setup or onboard an aerial platform. The inspection task has four

segments, and these are summarized below:

In the first part of the dissertation, a novel advanced manufacturing technique-based offline

trajectory generation method was developed and verified for close-quarter aerial inspection of

infrastructure using unmanned aerial vehicles (UAVs) in GPS and communication-denied envi-

ronments in known & static settings. Two approaches presented are based on Computer Aided

Manufacturing (CAM) and Additive Manufacturing (AM) machines. In both methods, the spatial

coordinates were extracted from the generated machining tool paths of the infrastructure from the

manufacturing environment of Computer Aided Design (CAD) software. The dense toolpath data

was modified and optimized to construct a custom aerial trajectory that permits flight in reduced

space without GPS or line of sight to perform a visual inspection. Of the two, the AM is the

preferred method as it is much faster, more accurate, and has no machine-related limitation for

intricate geometries. Simulations performed in the open-source robotics simulator Gazebo with

a PX4 flight controller demonstrated the feasibility of the approaches. The proposed method

requires multiple flights for large area coverage due to UAV’s power constraint.

The second and third segments developed custom deep learning (DL)-based intelligent auto-

mated defect detection and localization algorithms for ‘crack’ and ‘corrosion’, respectively. Cus-

tom data sets have been developed using local and available resources. Corrosion provided some
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challenges due to its multiplicity, inconsistent features, and inadequate data; as such, the study

focuses on three common types: pitting, crevice & concrete corrosion. Additional synthetic data

was added to create the standard-sized, balanced data set. A custom object detection model,

‘YOLOv4’, is trained using transfer learning and fine-tuning the hyper-parameters and configu-

rations. The trained custom model is further optimized using model quantization and tested in a

real-time application at the edge. Experimental results validate that the proposed algorithms and

solutions can successfully detect crack and corrosion with satisfactory results, achieving 98.44% &

72.33% mean average precision (mAP), respectively, in a complex environment and getting real-

time performance 2.5 frames per second (FPS) with an off-the-shelf commercial SBC platform.

In the last segment, an integrated multispectral inspection system is developed to detect

infrastructural defects by fusing data from an RGB & an infrared (IR) sensor. A custom user

interface (UI) is developed to extract, sub-sample, overlay, and perform thermal & radiometric

analysis, making the inspection task easier for the end user. Experimental studies show that the

proposed system and solutions can effectively identify cracks and corrosion and has the potential

to detect other infrastructural defects, e.g., hot-spot, leaks, or subsurface anomalies.

7.2 Future Work

The future goal of this dissertation includes combining the defect detection projects to devise an

integrated advanced inspection system onboard a UAV platform for real-time end-to-end adapta-

tion. Swapping the single board computer (SBC) with a higher computational-capable one and

modular integration can make real-time inspection feasible. An obstacle detection and avoidance

system can be added to the offline trajectory generation method to avoid unforeseen obstruc-

tions, resulting in a situationally aware, more robust navigation system. Further, the corrosion

detection model performance can be improved, and simultaneous crack and corrosion detection

model can be devised by appropriately increasing and enriching the data set in future. Addition-

ally, advanced image processing techniques or machine learning algorithms can be investigated

to improve the quality of multispectral overlaying operations. Collected images can be used to

train a multispectral-based DL algorithm to develop advanced inspection techniques. An active

thermography approach using external excitation can be explored in the future.
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