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Abstract

As technology progresses, sensors and computers become cheaper, so we can afford to per-

form more measurements and process the data faster. However, this also brings challenges.

The goal of this thesis is to enumerate these challenges and to provide possible solutions.

The first challenge is related to the fact that the existing metrological recommendations

are mostly based on the previous practice, when we could only afford to have a small number

of measurements. In this regard, our objective is to describe the related problem and to

propose a solution to this problem. These description (on the example of the design of the

Thermonuclear Research Center) and proposed solution form the first contribution of this

thesis.

The second challenge is related to the fact that in the past, when there were few afford-

able measuring instruments and we could only afford a few measurements, there were not

that many options. So, we could select one of these options “by hand”. Nowadays, with a

potential to perform a large number of measurements and the availability of many different

measuring instruments, the number of possible measurement options become large. Our

related objective is to develop methods for optimal planning. Our related contribution is

developing such a method for an important case of distributed measurements.

The third challenge is related to the fact that with the possibility to perform numerous

measurements and process their results, we often encounter situations when for different

pairs of measurement errors we have different types of information: some are known to

be independent, for others, we do not have such information. Our objective is develop

algorithms for dealing with such situations. Our contribution is to develop algorithms for

the case when we have a small number of pairs with different type of information.

The final challenge is to extract useful information from all these measurement results.

This extraction is the fourth objective of this thesis. Our contribution is in handling an

important particular case of this objective: finding faults in a smart electric grid.
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Chapter 1

Introduction

1.1 Background: Practical Computer-Enhanced Mea-

surements

All the information about the world comes from measurements – and from computer-based

processing of these measurements; see, e.g., [20]. From the measurement viewpoint, the

corresponding process can be divided into the following stages [20]:

� First, to make sure that the measurement results provide useful and reliable informa-

tion, we need to set up some general principles about measurements – how to gauge

the accuracy of measuring instruments, how to calibrate these instrument, etc. This

information is usually codified in measurement-related (“metrological”) standards

and other documents.

� Second, we need to plan the measurements – and perform them.

� After that, we need to process measurement results to come up with useful information

about the world.

– In some cases, we already have efficient data processing algorithms. In such

situations, from the metrological viewpoint, the main challenge is to understand

how accurate are the results of data processing – i.e., how the measurement

errors affect the result of data processing.

– In many other cases, we do not yet have efficient data processing algorithms. In

such cases, we need to come up with such algorithms.
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1.2 Challenges Related to Practical Computer-

Enhanced Measurements: What Is Known, and

What Are Remaining Problems

As technology progresses, sensors and computers become cheaper. As a result, we can

afford more measurements, and we can afford to process them faster and better. However,

on all above-described stages, this progress also brings challenges. The overall objective of

this thesis is to provide solutions to at least the simplest particular cases of these challenges.

The first challenge. The first challenge is related to the fact that the existing metrological

recommendations are mostly based on the previous practice, when we could only afford to

have a small number of measurements. As a result, the same system that in the past

(when fewer measurements were possible) would have successfully passed the metrological

analysis is no longer certified when more measurement results are available. This is a serious

problem that, e.g., halted the design of the International Thermonuclear Experimental

Reactor ITER; see, e.g., [9, 12].

The second challenge. The second challenge is related to the fact that in the past,

when there were few affordable measuring instruments and we could only afford a few

measurements, there were not that many options. In such cases, planning measurements

simply meant selecting one of these options. So, we could plan the measurements “by

hand”. Nowadays, with a potential to perform a large number of measurements and the

availability of many different measuring instruments, the number of possible measurement

options becomes so large that we need to develop methods for optimal planning. There exist

techniques for such planning – see, e.g., [3, 5, 6, 8, 11, 14, 18, 21, 22] – but these techniques

are mostly based on limited number of measurements. For situations when we have a large

number of measurements, to the best of our knowledge, no practical general methods are

known – even for the simplest case when the data processing algorithms consists of simply
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adding or averaging the measurement results.

The third challenge. The third challenge is related to the fact that in the past, when

we could only afford a few measurements, these measurements were usually performed

by similar measuring instruments, instruments for which we had a good understanding of

what causes their measurement errors; see, e.g., [20]. In some situations, most measurement

errors were causes by internal features of the instruments. In this case, the corresponding

measurement errors were independent. In other situations, mostly external features were

dominant, in which case we do have any information about the relation between different

measurement errors. In both types of situations, formulas were developed for processing

the resulting uncertainty. With the possibility to perform numerous measurements and

process their results, we often encounter situations when some pairs of measurement errors

are independent but for other pairs of measurement errors, we do not have any information

about their relation.

The fourth challenge. The final – fourth – challenge is how to extract useful information

from all these measurement results [20].

1.3 Specific Objectives of This Thesis

The main objective of this study is to deal with these four challenges – at least with the

simplest possible cases of these challenges.

The first objective. Our first objective – related to the first challenge – is to explain how

to makes sure that the measurement standards do not lead to the current counterintuitive

practice of reducing the number of measurements.

The second objective. Our second objective – related to the second challenge – is to

come up with optimal experiment design for the simplest case when the data processing

algorithms consists of simply adding or averaging the measurement results.

The third objective. Our third objective – related to the third challenge – is to come up

3



with techniques for processing measurement results in situations which are slightly different

from the above-described well-studied ones; namely:

� for the situations when for most pairs of measuring instruments, we know that the

corresponding measuring errors are independent, but for a few pairs, we do not have

any information about their dependence, and

� for the situations in which for most pairs of measuring instruments, we have no in-

formation about the dependence between the corresponding measurement errors, but

for some pairs, we know that the corresponding measurement errors are independent.

The fourth objective. Our fourth objective – related to the fourth challenge – is to

extract information from the measurements, in the simplest case when we only know the

ordering of the measurement results, but not the actual numerical values.

1.4 How We Are Contributing to These Objectives

Our contribution to the first objective. For the first objective, we propose the idea of

how to change the standards, so as to avoid the above-mentioned unfortunate situations,

when additional measurements can (and do) put the system at risk of not being approved.

Our contribution to the second objective. For the second objective, we provide

a theoretical analysis of the problem and find a new explicit formulas for the optimal

measurement design. As an interesting side effect of this theoretical analysis, we come up

with an explanation of why measurement accuracy is usually described by listing absolute

and relative error components. To the best of our knowledge, ours is the first theoretical

explanation for this widely used practice.

Our contribution to the third objective. For the third challenge, we provide new ex-

plicit easy-to-implement formulas describing the uncertainty of the result of data processing

in above-described situations.
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Our contribution to the fourth objective. Finally, for the fourth challenge, we provide

a theoretical result explaining – on the example of fault location in an electric grid – that

information about the ordering of measurement results can be sufficient to accurately locate

the fault.

1.5 Limitations of the Study and Remaining Problems

In all four cases, in this thesis, we only deal with the simplest possible cases of the general

challenges.

Limitations and remaining problems related to the first challenge. For the first

challenge – related to measurement-related certification of systems – we simply propose

an idea, it is still necessary to develop this idea and to come up with the corresponding

standards.

Limitations and remaining problems related to the second challenge. For the

second challenge – related to measurement design – we only deal with the simplest case when

the data processing algorithms consists of simply adding or averaging the measurement

results. It is necessary to extend our analysis to more complex data processing algorithms.

Limitations and remaining problems related to the third challenge. For the third

challenge – of uncertainty analysis in situations when we have different information about

different pairs of measurements – we only deal with the cases when for the most pairs, we

have information of the same type, and only for a small number of pairs, we have different

information. It is necessary to extend our analysis to situations when we have a larger

number of pairs with different information.

Limitations and remaining problems related to the fourth challenge. Finally, for

the fourth challenge – related to processing measurement results – we only deal with the

case when we know the ordering of the measurement results, but not the numerical values

5



themselves. It is necessary to extend our analysis to situations when we have (and can use)

numerical values as well.

1.6 Organization of the Thesis

We deal with our four objectives, correspondingly, in Chapters 2 through 5:

� Chapter 2 deals with the first objective,

� Chapter 3 deals with the second objective,

� Chapter 4 deals with the third objective, and

� Chapter 5 deals with the fourth objective.

The final Chapter 6 contains conclusions and recommendations for future work.
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Chapter 2

Over-Measurement Paradox:

Suspension of Thermonuclear

Research Center and Need to Update

Standards

In this chapter, we deal with the first of the four challenges outlined in Chapter 1. This

challenge is related to the fact that

� while in general, the more measurements we perform, the more information we gain

about the system and thus, the more adequate decisions we will be able to make,

� in situations when we perform measurements to check for safety, the situation is

sometimes opposite: the more additional measurements we perform beyond what is

required, the worse the decisions will be: namely, the higher the chance that a per-

fectly safe system will be erroneously classified as unsafe and therefore, unnecessary

additional features will be added to the system design.

As we have mentioned, this is not just a theoretical possibility: exactly this phenomenon is

one of the reasons why the construction of a world-wide thermonuclear research center has

been suspended. In this chapter, we show that the reason for this paradox is in the way

the safety standards are formulated now – what was a right formulation when sensors were

much more expensive is no longer adequate now when sensors and measurements are much

7



cheaper. We also propose how to modify the safety standards so as to avoid this paradox

and make sure that additional measurements always lead to better solutions.

2.1 What Is Over-Measurement Paradox

General case: the more measurements, the better. Most of our knowledge about

the world comes from measurements; see, e.g., [20]. Each measurement provides is with

an additional information about the world – and once we have a sufficient number of

measurements of the same system, we may be able to find the equations that describe the

dynamics of this system and thus, to get even more additional information that was hidden

in the original measurements.

The more measurements we perform, the more information we gain about the system,

the more accurate our estimates, and thus, the better will be our decisions. From this

viewpoint:

� the more measurements we perform,

� the better.

We only expect one limitation on the number of measurements – the financial one. Indeed,

at some point, after we have performed a large number of measurements, we get a very

accurate picture of the measured system. Decisions based on this picture are close to

optimal, and a very small expected increase in optimality may not be worth spending

money on additional measurements.

Over-measurement paradox: case study. Most of our energy comes from the Sun.

In the Sun, as in most stars, energy is generated by the thermonuclear synthesis, when

protons – i.e., nuclei of Hydrogen (H) – combine together to form nuclei of Helium (He).

This is a very efficient way of generating energy, a way that does not lead to pollution or

other side effects. The majority of physicists believe that this is a way to get energy for our

civilization: instead of relying on direct or indirect energy from the thermonuclear reaction

8



inside the Sun, why not use the same reactions ourselves – this will be a very effective and

clean idea.

The idea is theoretically feasible, but technically, this is a very difficult task. Researchers

and engineers all over the world have been working on it since the 1950s. To speed up the

process, researchers from 35 major world countries decided to join efforts, and allocated

$65 billion dollars to build an international research center where specialists from all the

world will work on this topic. This project is named ITER – this is both:

� an abbreviation of International Thermonuclear Experimental Reactor and

� the Latin word meaning “the way”; see, e.g., [9].

The problem is that as of now, this project is suspended, and one of the main reasons

for this suspension is over-measurement; see, e.g., [12]. In a nutshell, the requirement was

that, to guarantee safety, the level of danger – e.g., the level of radiation – was supposed

to be below the safety threshold at a certain number of locations and scenarios.

� The current design does satisfy this criterion.

� However, the designers decided to be thorough and simulated more measurement

situations.

Unfortunately, some of the expected measurement results exceed the threshold. As a result,

the whole project is in suspension. Making sure that all future measurements satisfy the

criterion would require a drastic redesign and a drastic further increase in the cost of the

whole project – so drastic that it is doubtful that this additional funding will appear,

especially in the current economic situation.

Why is it a paradox? If the designers did not perform these additional measurements,

the design would have been approved and the project would have started. So in this case,

additional measurements made the situation much worse – not only for the researchers, but

for the humankind as a whole. This is a clear situation where additional measurements do

not help at all.

9



But is it really a paradox? Maybe it is good that the project stopped – maybe additional

measurements revealed that the original design was unsafe?

What we do in this chapter. In this chapter, we analyze the situation from the general

measurement viewpoint and come up with several conclusions.

� first, we show that this situation is, in principle, ubiquitous: a similar problem will

surface in many other projects, including those that have already been approved and

designed and seem to function OK;

� second, although it may look that the problem is caused by insufficient safety of

the original design, we show that this is not the case: practically any design, no

matter how safe, will fail the currently used criteria if we perform sufficiently many

measurements;

� finally, we propose a natural suggestion on now to change the corresponding standards

so as to avoid such unfortunate situations.

2.2 Analysis of the Problem

Let us formulate the situation in precise terms. We are interested in studying states

of different systems. A usual way to describe each state is by describing the values of the

corresponding quantities at different locations and at different moments of time.

Usually, specifications include constraints on the values of some of these quantities.

These may be constrains on the radioactivity level, constraints on concentration of poten-

tially harmless chemicals, on the temperature, etc.

In all these cases, a typical constraint is that the value of some quantity q should not

exceed some threshold q0: q ≤ q0.

How can we check this constraint: seemingly natural idea. In the ideal world, we

should be able to measure the value q(x, t) at all possible spatial locations x and for all

possible moments of time t, and check that all these values do not exceed q0.

10



Of course, in real life, we can only perform finitely many measurements. So, a seemingly

natural idea is to perform several measurements, and to check that all measurement results

q1, . . . , qn do not exceed q0. However, it is known that this seemingly natural idea can lead

to dangerous consequences; see, e.g., [20]. Let us explain why.

Why the above seemingly natural idea is dangerous. The actual value of the

quantity q depends on many factors which are beyond our control. For example, the actual

radioactivity level at a given location is affected by the natural radioactivity level at this

location – the level that can change based, e.g., on weather conditions, when wind brings

matter from neighboring areas where this natural level is somewhat higher. There are many

small independent factors affecting the actual value of the quantity q.

In addition, the measurement result is somewhat different from the actual value of the

measured quantity; see, e.g., [20]. We may be able to get rid of major sources of such

measurement errors, but there are always a lot of small independent factors that lead to

small changes of the measurement results.

Because of both types of random factors, the measured value differs from its locally-

average level, and this difference is the result of a joint effort of a large number of small

independent factors. It is known (see, e.g., [23]) that such a joint effect is usually well

described by a normal (Gaussian) distribution. To be more precise:

� What is known is that in the limit, when the number N of small independent random

factors increases (and the size of each factor appropriately decreases), the probability

distribution of the joint effect of all these factors tends to the normal distribution –

which thus appears as the limit of the actual distributions when N increases.

� By definition of the limit, this means exactly that when the number N of factors is

large – and in many practical situations it is large – the actual distribution is very

close to normal.

So, with high accuracy, we can safely assume that this distribution is normal.
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This assumption explains why the above seemingly natural idea is dangerous. Indeed,

what we have is several measurement results q1, . . . , qn, i.e., in effect, several samples from

the normal distribution. Usually, measurement errors corresponding to different measure-

ments are practically independent – and the same can be said about the random factors

affecting the value of the quantity q at different spatial locations and at different moments

of time. From this viewpoint, what we observe are n independent samples from a normal

distribution.

If we only require that qi ≤ q0, we thus require that max(q1, . . . , qn) ≤ q0. Usually, our

resources are limited, so we try to make the minimal effort to satisfy the requirements. In

other words, when we institute more and more efficient filters – thus slowly decreasing the

value qi – and finally, reach the condition max(q1, . . . , qn) ≤ q0, we stop and declare this

design to be safe.

� We start with the design for which max(q1, . . . , qn) > q0.

� So the first time when we satisfy the desired constraint max(q1, . . . , qn) ≤ q0 is when

we get

max(q1, . . . , qn) = q0.

This again may sound reasonable, but it is known that the probability that the next random

variable will exceed the maximum max(q1, . . . , qn) is proportional to 1/(n+ 1). So:

� even if we perform 40 measurements – and this is, e.g., what measurement theory

requires for a thorough analysis of a measuring instrument (see, e.g., [20]),

� we get a 1/40 ≈ 2.5% probability that next time, we will go beyond the safety

threshold.

This is clearly not an acceptable level of safety – especially when we talk about serious,

potentially deadly dangers like radioactivity or dangerous chemicals.

So what can be done to avoid this danger. To simplify our analysis, let us suppose

that the mean value of q is 0. This can always be achieved if we simply subtract the
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actual mean value from all the measurements result, i.e., for example, consider not the

actual radioactivity level, but the excess radioactivity over the average value of the natural

radioactivity background.

In this case, measurement results q1, . . . , qn form a sample from a normal distribution

with 0 mean and some standard deviation σ.

� Of course, no matter how small σ, the normally distributed random variable always

has a non-zero probability of being as large as possible – since the probability density

function of a normal distribution is always positive, and never reaches 0.

� So, we cannot absolutely guarantee that all future values of q will be smaller than or

equal to q0.

� We can only guarantee that the probability of this happening is smaller than some

given probability p0, i.e., that

Prob(q > q0) ≤ p0.

So, to drastically decrease the probability of a possible disaster – from the unsafe 2.5% to

the much smaller safety level p0 ≪ 2.5%:

� instead of the original threshold q0,

� we select a smaller threshold q̃0 < q0 that guarantees that the conditional probability

of exceeding q0 is small:

Prob(q > q0 | max(q1, . . . , qn) ≤ q̃0) ≤ p0.

In this case:

� if we have n measurement q1, . . . , qn all below q̃0,

� then we guarantee, with almost-1 probability 1−p0, that the next value will be below

the actual danger threshold q0.
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This value q̃0 depends on q0 and on the number of measurements n:

� the larger n,

� the larger the value q̃0.

When n increases, this value tends to q0.

So what is included in the safety standard. When safety standards are designed, one

of the objectives is to make them easy to follow:

� We do not want practitioners – who need to follow these standards – to perform

complex computations of conditional probabilities.

� We need to give them clear simple recommendations.

From this viewpoint, the easiest to check if whether the measurement result satisfies a given

inequality.

So, a reasonable way to set up the corresponding standard is to set up:

� the new threshold q̃0 and

� the minimal necessary number of measurements n.

The standard then says that:

� if we perform n measurements, and the results q1, . . . , qn of all these n measurements

do not exceed this threshold q̃0, then the situation is safe;

� otherwise, the situation is not safe, and additional measures need to be undertaken

to make this situation safer.

Resulting common misunderstanding. The fact that safety standards provide such a

simplified description – and rarely mention actual threshold q0 > q̃0 – makes most people

assume that the critical value q̃0 provided by a standard is the actual danger level, so
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any situation in which a measured value exceeds q̃0 is unacceptable. This is exactly what

happened in the above case study.

And this is wrong conclusion:

� if we perform a sufficiently large number of measurements,

� we will eventually get beyond any threshold.

Indeed, according to the extreme value theory (see, e.g., [1, 2, 4, 7, 15]), for normal dis-

tribution with mean 0 and standard deviation σ, the average value An of the maximum

max(q1, . . . , qn) grows with n as

An ∼ γ ·
√

2 ln(n) · σ,

where γ ≈ 0.5772 is the Euler’s constant

γ
def
= lim

n→∞

(
n∑

k=1

1

k
− ln(n)

)
.

So, this mean value indeed grows with n.

Why this problem surfaces only now? Gaussian distribution was invented by Gauss

in the early 19th century, measurements have been performed since antiquity, so why is

this problem surfacing only now? Why did not it surface much earlier?

The main reason, in our opinion, is that, until recently:

� sensors were reasonably expensive – especially accurate ones – and the cost of mea-

surements was non-negligible;

� in this case, while in principle, it was possible to perform more measurement than

required for safety testing, this would have led to useless costs.

Lately, however:

� sensors have become very cheap: kids buy them to make robots, the cheapest cell

phones have very accurate sensors of positions, acceleration, etc.;
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� as a result, it is reasonably inexpensive to perform many more measurements than

required;

� and, as we have mentioned, as a result, in situations that would previously – based

on only the required number of measurements – would be classified as safe, now we

get values exceeding the threshold q̃0 provided by the standard – and thus, we end

up classifying perfectly safe situations as unsafe.

2.3 So What Do We Propose

What is the problem now: summarizing our findings. The reason why we have the

over-measurement paradox is that current safety standards usually list only two numbers:

� the recommended threshold q̃0 and

� the recommended number of measurements n.

The idea that the results of all the measurements must not exceed q̃0 for the situation to

be considered safe.

The problem is that the recommended threshold q̃0 is actually not the safety threshold

q0, it is smaller than the safety threshold – smaller so that for the prescribed number of

measurements n, we would guarantee that:

� for all future values,

� the probability to exceed the real safety threshold q0 should be smaller than the

desired small value p0.

When, in an actually safe situation, in which the probability to exceed q0 does not exceed

p0, we perform more measurements than recommended, then it is eventually inevitable that

some of them will be larger than the recommended threshold q̃0 – even though they will

still, with almost-1 probability, be not larger than the actual danger threshold q0. This

leads to the following natural solution to the over-measurement problem.
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Proposed solution: we need to change the standards. In addition to providing the

two numbers q̃0 and n, we should provide the formula describing the dependence of the

testing safety threshold t(n′) for different numbers n′ ≥ n of actual measurements, so that

for all n′, we should have

Prob(q > q0 | max(q1, . . . , qn′) ≤ t(n′)) ≤ p0.

At least we should provide the value t(n′) for several different values n′, thus taking care

of the cases when, due to thoroughness, practitioners will provide more measurements.

2.4 Conclusions and Recommendations for Future

Work

Conclusions. In this chapter, we deal with the first of the four challenges of practical

computer-enhanced measurements. This challenge is related to the fact that the existing

metrological recommendations are mostly based on the previous practice, when we could

only afford to have a small number of measurements. As a result, the same system that

in the past (when fewer measurements were possible) would have successfully passed the

metrological analysis is no longer certified when more measurement results are available.

This is a serious problem that, e.g., halted the design of the International Thermonuclear

Experimental Reactor ITER; see, e.g., [9, 12].

In this chapter, we propose the idea of how to change the standards, so as to avoid the

above-mentioned unfortunate situations, when additional measurements can (and do) put

the system at risk of not being approved.

Recommendations for future work. In the current chapter, we simply propose an idea.

It is still necessary to develop this idea and to come up with the corresponding standards.
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Chapter 3

Need for Optimal Distributed

Measurement of Cumulative

Quantities Explains the Ubiquity of

Absolute and Relative Error

Components

In this chapter, we deal with the second of the above-described challenges– related to the

need for optimal organization of measurements. Specifically, we deal with the simplest

case of this challenge, when the data processing algorithms consists of simply adding or

averaging the measurement results. This case is practically important, since in many

practical situations, we need to measure the value of a cumulative quantity, i.e., a quantity

that is obtained by adding measurement results corresponding to different spatial locations.

How can we select the measuring instruments so that the resulting cumulative quantity

can be determined with known accuracy – and, to avoid unnecessary expenses, not more

accurately than needed? It turns out that the only case where such an optimal arrangement

is possible is when the required accuracy means selecting the upper bounds on absolute and

relative error components. These results provide a possible explanation for the ubiquity of

such two-component accuracy requirements.
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3.1 Formulation of the Problem

Need for distributed measurements. In many practical situations, we are interested

in estimating the value x of a cumulative quantity: e.g., we want to estimate the overall

amount of oil in a given area, the overall amount of CO2 emissions, etc.

How to perform distributed measurements. Measuring instruments usually measure

quantities in a given location, i.e., they measure local values x1, . . . , xn that together form

the desired value

x = x1 + . . .+ xn.

So, a natural way to produce an estimate x̃ for the cumulative value x is:

� to place measuring instruments at several locations within a given area,

� to measure the values xi of the desired quantity in these locations, and

� to add up the results x̃1 + . . .+ x̃n of these measurement:

x̃ = x̃1 + . . .+ x̃n.

Need for optimal planning. Usually, we want to reach a certain estimation accuracy. To

achieve this accuracy, we need to plan how accurate the deployed measurement instruments

should be. Use of accurate measuring instruments is often very expensive, while budgets are

usually limited. It is therefore desirable to come up with the deployment plan that would

achieve the desired overall accuracy within the minimal cost. This implies, in particular,

that the resulting estimate should not be more accurate than needed – this would mean

that we could use less accurate (and thus, cheaper) measuring instruments.

What we do in this chapter. In this chapter, we provide a condition under which such

optimal planning is possible – and the corresponding optimal planning algorithm. The

resulting condition will explain why usually, measuring instruments are characterized by

their absolute and relative accuracy.
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3.2 Let Us Formulate the Problem in Precise Terms

How we can describe measurement accuracy. Measurements are never absolutely

accurate, the measurement result x̃i is, in general, different from the actual (unknown)

value xi of the corresponding quantity. In other words, the difference ∆xi
def
= x̃i − xi is, in

general, different from 0. This difference is known as the measurement error.

For each measuring instrument, we should know how large the measurement error can

be. In precise terms, we need to know an upper bound ∆ on the absolute value |∆xi| of

the measurement error. This upper bound should be provided by the manufacturer of the

measuring instrument. Indeed, if no such upper is known, this means that whatever the

reading of the measuring instrument, the actual value can be as far away from this reading

as possible, so we get no information whatsoever about the actual value – in this case, this

is not a measuring instrument, it is a wild guess.

Ideally, in addition to knowing that the measurement error ∆xi is somewhere in the

interval [−∆,∆], it is desirable to know how probable are different values from this interval,

i.e., what is the probability distribution on the measurement error. Sometimes, we know

this probability distribution, but in many practical situations, we don’t know it, and the

upper bound is all we know. So, in this section, we will consider this value as the measure

of the instrument’s accuracy.

This upper bound ∆ may depend on the measured value. For example, if we are

measuring current in the range from 1 mA to 1 A, then it is relatively easy to maintain

accuracy of 0.1 mA when the actual current is 1 mA – this means measuring with one

correct decimal digit. We can get values 0.813. . . , 0.825. . . , but since the measurement

accuracy is 0.1, this means that these measurement results may correspond to the same

actual value. In other words, whatever the measuring instrument shows, only one digit is

meaningful and significant – all the other digits may be caused by measurement errors. On

the other hand, to maintain the same accuracy of 0.1 mA when we measure currents close

to 1 A would mean that we need to distinguish between values 0.94651 A = 946.51 mA and
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0.94637 A = 946.37 mA, since the difference between these two values is larger than 0.1

mA. This would mean that we require that in the measurement result, we should have not

one, but four significant digits – and this would require much more accurate measurements.

Because of this, we will explicitly take into account that the accuracy ∆ depends on

the measured value: ∆ = ∆(x). Usually, small changes in x lead to only small changes in

the accuracy, so we can safely assume that the dependence ∆(x) is smooth.

What we want. We want to estimate the desired cumulative value x with some accuracy

δ. In other words, we want to make sure that the difference between our estimate x̃ and

the actual value x does not exceed δ: |x̃− x| ≤ δ.

The cumulative value is estimated based on n measurement results. As we have men-

tioned, the accuracy that we can achieve in each measurement, in general, depends on the

measured value: the larger the value of the measured quantity, the more difficult it is to

maintain the corresponding accuracy. It is therefore reasonable to conclude that, whatever

measuring instruments we use to measure each value xi, it will be more difficult to estimate

the larger cumulative value x with the same accuracy. Thus, it makes sense to require that

the desired accuracy δ should also depend on the value that we want to estimate δ = δ(x):

the larger the value x, the larger the uncertainty δ(x) that we can achieve.

So, our problem takes the following form:

� we want to be able to estimate the cumulative value x with given accuracy δ(x) –

i.e., we are given a function δ(x) and we want to estimate the cumulative value with

this accuracy;

� we want to find the measuring instruments that would guarantee this estimation

accuracy – and that would be optimal for this task, i.e., that would not provide

better accuracy than needed.

Let us describe what we want in precise terms. To formulate this problem in precise

terms, let us analyze what estimation accuracy we can achieve if we use, for each of n

measurements, the measuring instrument characterized by the accuracy ∆(x).
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Based on each measurement result x̃i, we can conclude that the actual value xi of the

corresponding quantity is located somewhere in the interval [x̃i − ∆(xi), x̃i + ∆(xi)]: the

smallest possible value is x̃i −∆(xi), the largest possible value is x̃i +∆(xi).

When we add the measurement results, we get the estimate x̃ = x̃1 + . . . + x̃n for the

desired quantity x. What are the possible values of this quantity? The sum x = x1+. . .+xn

attains its smallest value if all values xi are the smallest, i.e., when

x = (x̃1 −∆(x1)) + . . .+ (x̃n −∆(xn)) = (x̃1 + . . .+ x̃n)− (∆(x1) + . . .+∆(xn)),

i.e., when

x = x̃− (∆(x1) + . . .+∆(xn)).

Similarly, the sum x = x1 + . . .+ xn attains its largest value if all values xi are the largest,

i.e., when

x = (x̃1 +∆(x1)) + . . .+ (x̃n +∆(xn)) = (x̃1 + . . .+ x̃n) + (∆(x1) + . . .+∆(xn)),

i.e., when

x = x̃+ (∆(x1) + . . .+∆(xn)).

Thus, all we can conclude about the value x is that this value belongs to the interval

[x̃− (∆(x1) + . . .+∆(xn)), x̃+ (∆(x1) + . . .+∆(xn))].

This means that we get an estimate of x with the accuracy ∆(x1) + . . .+∆(xn).

Our objective is to make sure that this is exactly the desired accuracy δ(x). In other

words, we want to make sure that whenever x = x1 + . . .+ xn, we should have

δ(x) = ∆(x1) + . . .+∆(xn).

Substituting x = x1 + . . .+ xn into this formula, we get

δ(x1 + . . .+ xn) = ∆(x1) + . . .+∆(xn). (3.1)
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We do not know a priori what will be the values xi, so if we want to maintain the desired

accuracy δ(x) – and make sure that we do not get more accuracy – we should make sure

that the equality (3.1) be satisfied for all possible values x1, . . . , xn.

In these terms, the problem takes the following form:

� For which functions δ(x) is it possible to have a function ∆(x) for which the equality

(3.1) is satisfied? and

� For the functions δ(x) for which such function ∆(x) is possible, how can we find this

function ∆(x) – that describes the corresponding measuring instrument?

This is the problem that we solve in this chapter.

3.3 When Is Optimal Distributive Measurement of

Cumulative Quantities Possible?

Let us first analyze when the optimal distributive measurement of a cumulative quantity is

possible, i.e., for which functions δ(x), there exists a function ∆(x) for which the equality

(3.1) is always satisfied.

We have assumed that the function ∆(x) is smooth, i.e., differentiable. Thus, the

sum δ(x) of such functions is differentiable too. Since both functions ∆(x) and δ(x) are

differentiable, we can differentiate both sides of the equality (3.1) with respect to one of

the variables – e.g., with respect to the variable x1. The terms ∆(x1), . . . ,∆(xn) do not

depend on x1 at all, so their derivative with respect to x1 is 0, and the resulting formula

takes the form

δ′(x1 + . . .+ xn) = ∆′(x1), (3.2)

where, as usual, δ′ and ∆′ denote the derivatives of the corresponding functions.

The equality (3.2) holds for all possible values x2, . . . , xn. For every real number x0, we

can take, e.g., x2 = x0 − x1 and x3 = . . . + xn = 0, then we will have x1 + . . . + xn = x0,
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and the equality (3.2) takes the form

δ′(x0) = ∆′(x1).

The right-hand side does not depend on x0, which means that the derivative δ′(x0) is a

constant not depending on x0 either.

The only functions whose derivative is a constant are linear functions, so we conclude

that the dependence δ(x) is linear:

δ(x) = a+ b · x

for some constants a and b.

Interestingly, this fits well with the usual description of measurement error, as consisting

of two components:

� the absolute error component a that does not depend on x at all, and

� the relative error component – according to which, the bound on the measurement

error is a certain percentage of the actual value x, i.e., has the form b · x for some

constant b (e.g., for 10% accuracy, b = 0.1).

Thus, our result explains this usual description.

3.4 What Measuring Instrument Should We Select to

Get the Optimal Distributive Measurement of Cu-

mulative Quantity?

Now that we know for what desired accuracy δ(x), we can have the optimal distributive

measurement of a cumulative quantity, the natural next question is: given one of such

functions δ(x), what measuring instrument – i.e., what function ∆(x) – should we select

for this optimal measurement?
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To answer this question, we can take x1 = . . . = xn. In this case, ∆(x1) = . . . = ∆(xn),

so the equality (3.2) takes the form

δ(n · x1) = n ·∆(x1). (3.3)

We know that δ(x) = a+ b · x, so the formula (3.3) takes the form

a+ b · n · x1 = n ·∆(x1).

If we divide both sides of this equality by x1, and rename x1 into x, we get the desired

expression for ∆(x):

∆(x) =
a

n
+ b · x.

In other words:

� the bound on the relative error component of each measuring instrument should be

the same as the desired relative accuracy of the cumulative quantity, and

� the bound on the absolute error component should be n times smaller than the desired

bound on the absolute accuracy of the cumulative quantity.

3.5 Conclusions and Recommendations for Future

Work

Conclusions. In this chapter, we deal with the second of the four metrological challenges

listed in Chapter 1. This challenge is related to the fact that in the past, when there

were few affordable measuring instruments and we could only afford a few measurements,

there were not that many options. In such cases, planning measurements simply meant

selecting one of these options. So, we could plan the measurements “by hand”. Nowadays,

with a potential to perform a large number of measurements and the availability of many

different measuring instruments, the number of possible measurement options becomes so

large that we need to develop methods for optimal planning. There exist techniques for such
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planning, but these techniques are mostly based on limited number of measurements. For

situations when we have a large number of measurements, to the best of our knowledge, no

practical general methods are known – even for the simplest case when the data processing

algorithms consists of simply adding or averaging the measurement results.

In the current chapter, we provide a theoretical analysis of the problem and find a

new explicit formulas for the optimal measurement design. As an interesting side effect of

this theoretical analysis, we come up with an explanation of why measurement accuracy

is usually described by listing absolute and relative error components. To the best of our

knowledge, ours is the first theoretical explanation for this widely used practice.

Recommendations for future work. In this chapter, we only deal with the simplest

case when the data processing algorithms consists of simply adding or averaging the mea-

surement results. It is necessary to extend our analysis to more complex data processing

algorithms.
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Chapter 4

Graph Approach to Uncertainty

Quantification

In the previous chapters, we outlined four main challenges of practical computer-enhanced

measurements (in Chapter 1), and suggested – in Chapters 2 and 3 – how to deal with the

first two challenges. In this chapter, we deal with the third challenge: that for different

pairs of measurements, we may have different information about the dependence between

the corresponding measurement errors. Specifically, we develop techniques for processing

measurement results in situations which are slightly different from the above-described

well-studied ones.

Traditional analysis of uncertainty of the result of data processing assumes that all

measurement errors are independent. In reality, there may be common factor affecting

these errors, so these errors may be dependent. In such cases, the independence assumption

may lead to underestimation of uncertainty. In such cases, a guaranteed way to be on the

safe side is to make no assumption about independence at all. In practice, however, we

may have information that a few pairs of measurement errors are indeed independent –

while we still have no information about all other pairs. Alternatively, we may suspect

that for a few pairs of measurement errors, there may be correlation – but for all other

pairs, measurement errors are independent. In both cases, unusual pairs can be naturally

represented as edges of a graph. In this chapter, we show how to estimate the uncertainty

of the result of data processing when this graph is small.
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4.1 Introduction

What is the problem and what we do about it: a brief description. Estimating

uncertainty of the result of data processing is important in many practical applications.

Corresponding formulas are well known for two extreme cases:

� when all measurement errors are independent, and

� when we have no information about the dependence.

These cases are indeed ubiquitous, but often, the actual cases are somewhat different; e.g.:

� most pairs of inputs are known to be independent, but

� there are a few pairs for which we are not sure.

Alternatively, for almost all pairs, we may have no information about the dependence,

but for a few pairs of inputs, we know that the corresponding measurement errors are

independent. Such unusual pairs can be naturally represented as edges of a graph. It is

desirable to analyze how the presence of this graph changes the corresponding estimates.

In this chapter, we start answering this question for all graphs of sizes 2, 3, and 4. We

hope that our results will be extended to larger-size graphs.

Structure of the chapter. In Section 2, we provide a detailed description of the general

problem, and describe how uncertainty is estimated in the above-described two extreme

cases. In the following sections, we present our results about situations in which the

deviation from one of these extreme cases is described by a small-size graph.

4.2 Detailed Formulation of the Problem

Need for data processing. One of the main objectives of science is to describe the

current state of the world and to predict future events based on what we know about the
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current and past states. In general, the state of a system is characterized by the values of

corresponding quantities.

Some quantities we can measure directly – e.g., we can directly measure the temperature

in the room or the distance between two campus buildings. However, some quantities

cannot (yet) be measured directly: we cannot directly measure the temperature inside a

star or a distance to this star. Since we cannot measure such quantities directly, the only

way we can estimate the values of these quantities is by measuring them indirectly: i.e.,

by measuring related quantities x1, . . . , xn that are related by y by a known dependence

y = f (x1, . . . , xn). Once we know such related quantities, we can measure their values,

and use the measurement results x̃1, . . . , x̃n to compute the estimate ỹ = f (x̃1, . . . , x̃n) for

y. Computing this estimate is an important case of data processing.

Data processing is also needed for predictions. For example, we may want to predict

the future location of a near-Earth asteroid or tomorrow’s weather. The future state can

be described if we describe the future values of all the quantities characterizing this state.

For example, tomorrow’s weather can be characterized by temperature, wind speed, etc.

To be able to make this prediction, for each of the quantities describing the future state,

we need to know the relation y = f (x1, . . . , xn) between the future value y of this quantity

and the current and past values xi of related quantities. Once we know this relation, then

we can use it to transform the measured values x̃i of the quantities xi into the estimate

ỹ = f (x̃1, . . . , x̃n) for the desired quantity y. Computing ỹ based on the measured values

x̃i is another important case of data processing.

Need for uncertainty quantification. Measurement results x̃ are, in general, somewhat

different from the actual (unknown) value x of the corresponding quantity; see, e.g., [20].

In other words, the difference ∆x
def
= x̃− x is usually non-zero. This difference is known as

the measurement error.

Since the inputs x̃i to the algorithm f are, in general, different from the actual values

xi, the resulting estimate ỹ = f (x̃1, . . . , x̃n) is, in general, different from the actual value

y = f (x1, . . . , xn) that we would have gotten if we knew the exact values xi. In practical
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situations, it is important to know how big this difference can be. For example, suppose

we predict that the asteroid will pass at a distance of 150,000 km from the Earth; then:

� if the accuracy of this estimate is ±200, 000 km, then this asteroid may hit the Earth,

while

� if the the accuracy is ±20, 000 km, this particular asteroid is harmless.

Estimating the accuracy of our estimates is an important case of uncertainty quantification.

What we know about measurement errors. In similar situations, with the exact

same value of the measured quantity, the same measuring instrument can produce different

results. This is well known to anyone who has ever repeatedly measured the same quantity:

the results are always somewhat different, whether it is a current or body temperature or

blood pressure. In this sense, measurement errors are random. Each random variable has

an average (mean) value, and its actual values deviate from this mean.

Measuring instruments are usually calibrated: the measurement results provided by

this instrument are compared with measurement results provided by a much more accurate

(“standard”) measuring instrument. If the mean difference is non-zero – i.e., in statistical

terms, if the measuring instrument has a bias – then we can simply subtract this bias from

all the measurement results and thus, make the mean error equal to 0. For example, if

a person knows that his/her watch is 5 minutes ahead, this person can always subtract 5

minutes from the watch’s reading and get the correct time. So, we can safely assume that

the mean value E[∆x] of each measurement error ∆x is 0: E[∆x] = 0.

The deviations from the mean value are usually described by the mean squared deviation

– which is known as the standard deviation σ. Instead of the standard deviation σ, it is

sometimes convenient to use its square V
def
= σ2 which is called the variance. In precise

terms, the variance is the mean value of the square of the difference between the random

variable and its mean value: V [X] = E
[
(X − E[X])2

]
. For measurement error, the mean

is E[∆x] = 0, so we get a simplified formula V [∆x] = E[(∆x)2].
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For each measuring instrument, the standard deviation is also determined during the

calibration. So, we can assume that for each measuring instrument:

� we know that the mean value of its measurement error is 0, and

� we know the standard deviation of the measurement error.

In many cases, distributions are normal. In most practical cases, there are many

factors that contribute to the measurement error. For example, if we measure voltage, the

measuring instrument is affected not only by the current that we measure but also by the

currents of multiple devices present in the room, including the computer used to process

the data, the lamps in the ceiling, etc. Each of these factors may be relatively small, but

there are many of them, and thus, the resulting measurement error is much larger than

each of them.

It is known – see, e.g., [23] – that the probability distribution of the joint effect of a

large number of small random factors is close to Gaussian (normal). Thus, in such cases,

we can safely assume that the measurement errors are normally distributed.

Possibility of linearization. In general, the estimation error is equal to ∆y
def
= ỹ − y.

Here, ỹ = f (x̃1, . . . , x̃n) and y = f (x1, . . . , xn), so

∆y = f (x̃1, . . . , x̃n)− f (x1, . . . , xn) ,

By definition of the measurement error ∆xi as the difference ∆xi = x̃i − xi, we have

xi = x̃i −∆xi. Thus, the above expression for the approximation error takes the form

∆y = f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn) . (4.1)

Measurement errors are usually relatively small, so that terms quadratic in these errors can

be safely ignored. For example, if the measurement error is 10%, its square is 1%, which

is much smaller. Thus, we can expand the right-hand side of the equality (4.1) in Taylor

series and keep only linear terms in this expansion. As a result, we conclude that

∆y =
n∑

i=1

ci ·∆xi, (4.2)
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where we denoted

ci
def
=

∂f

∂xi |x1=x̃1,...,xn=x̃n

.

In other words, the desired estimation error ∆y is a linear combination of measurement

errors ∆xi.

Case when all measurement errors are independent. It is known that the variance

of the sum of the several random variables is equal to the sum of their variances. It is also

known that if we multiply a random variable by a constant, then its standard deviation is

multiplied by the absolute value of this constant. So, if we denote the standard deviation

of the i-th measuring instrument by σi, then the standard deviation of the product ci ·∆xi

is equal to |ci| · σi and thus, its variance is equal to (|ci| · σi)
2 = c2i · σ2

i . Thus, the variance

of the sum ∆y is equal to the sum of these variances:

σ2 =
n∑

i=1

c2i · σ2
i , (4.3)

and thus, the standard deviation is equal to

σ =

√√√√ n∑
i=1

c2i · σ2
i . (4.4)

Towards the general case: a known geometric interpretation of random vari-

ables. We have n random variables vi
def
= ci ·∆xi. For each variable, we know its standard

deviation |ci| · σi, and we are interested in estimating the standard deviation of the sum

∆y = v1 + . . .+ vn of these variable. It is known (see, e.g., [23]) that we can interpret each

variable – and, correspondingly, each linear combination of the variables – as vectors a⃗, b⃗ in

an n-dimensional space, so that the length ∥a⃗∥ =
√
a⃗ · a⃗ of each vector (where a⃗ · b⃗ means

dot (scalar) product) is equal to the standard deviation of the corresponding variable. In

these terms, independence means that the two vectors are orthogonal. Indeed:

� In statistical terms, independence implies that the variance of the sum if equal to the

sum of the variances.
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� For the sum a⃗+ b⃗ of two vectors, the square of the length has the form∥∥∥a⃗+ b⃗
∥∥∥2 = (a⃗+ b⃗

)
·
(
a⃗+ b⃗

)
= a⃗ · a⃗+ b⃗ · b⃗+ 2a⃗ · b⃗.

Here, a⃗ · a⃗ = ∥a⃗∥2, b⃗ · b⃗ =
∥∥∥⃗b∥∥∥2, and a⃗ · b⃗ = ∥a⃗∥ ·

∥∥∥⃗b∥∥∥ · cos (θ), where θ is the angle

between the two vectors, so the above expression takes the form∥∥∥a⃗+ b⃗
∥∥∥2 = ∥a⃗∥2 +

∥∥∥⃗b∥∥∥2 + 2∥a⃗∥ ·
∥∥∥⃗b∥∥∥ · cos (θ) .

So, the variance
∥∥∥a⃗+ b⃗

∥∥∥2 of the sum is equal to the sum ∥a⃗∥2+
∥∥∥⃗b∥∥∥2 of the variances if

and only if cos (θ) = 0, i.e., if only if the angle is 90◦, and the vectors are orthogonal.

In the independent case, n vectors v⃗i corresponding to individual measurements are or-

thogonal to each other, so, similarly to the above argument, one can show that the length

of their sum is equal to the square root of the sum of the squares of their lengths:

∥v⃗1 + . . .+ v⃗n∥2 = ∥v⃗1∥2 + . . .+ ∥v⃗n∥2.

Let us use this geometric interpretation to estimate the uncertainty in situations when we

know nothing about correlation between different measurement errors.

What if we have no information about correlations: analysis of the problem and

the resulting formula. In this case, we still have n vectors v⃗1, . . . , v⃗n of given lengths

∥v⃗i∥ = |ci| ·σi. The main difference from the independent case is that these vectors are not

necessarily orthogonal, we can have different angles between them. In this case, in contrast

to the independent case, the length of the sum is not uniquely determined. For example:

� if two vectors of equal length are parallel, the length of their sum is double the length

of each vector, but

� if they are anti-parallel b⃗ = −a⃗, then their sum has length 0.

In such cases, it is reasonable to find the worst possible standard deviation, i.e., the largest

possible length.
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One can easily check that the sum of several vectors of given length is the largest when

all these vectors are parallel and oriented in the same direction. In this case, the length of

the sum is simply equal to the sum of the lengths, so we get

σ =
n∑

i=1

|ci| · σi, (4.5)

and

σ2 =

(
n∑

i=1

|ci| · σi

)2

. (4.6)

Precise mathematical formulation of this result. The above result can be presented

in the following precise form.

Definition 4.1.

� Let s = (σ1, . . . , σn) be a tuple of non-negative real numbers.

� Let D denote the class of all possible multi-D distributions (∆x1, . . . ,∆xn) for which,

for each i, we have E[∆xi] = 0 and σ[∆xi] = σi.

� Let S be a subset of the set D; we will denote it, as usual, by S ⊆ D.

� Let c = (c1, . . . , cn) be a tuple of real numbers.

� For each distribution from D, let ∆y denote ∆y
def
= c1 ·∆x1 + . . .+ cn ·∆xn.

Then, by σ (c, s,S) we denote the largest possible value of the standard deviation σρ[∆y]

over all distributions from the set S:

σ (s,S, c) def
= max

ρ∈S
σρ[∆y].

In these terms, the above result takes the following form:
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Proposition 4.1. For the set S = D of all possible distributions, we have

σ (s,D, c) =
n∑

i=1

|ci| · σi.

Similarly, the previous result – about independent case – takes the following form.

Definition 4.2. By I ⊂ D, we denote the class of all distributions for which, for all i and

j, the variables ∆xi and ∆xj are independent. We will call I independent set.

Proposition 4.2. For the independent set I, we have

σ (s, I, c) =

√√√√ n∑
i=1

c2i · σ2
i .

Comment. Interestingly, the formula (4.5) is similar to what we get in the linearized version

of the interval case (see, e.g., [10, 13, 16, 19, 20]), i.e., the case when we only know the

upper bound ∆xi on the absolute value of the measurement error. In other words, this

means that:

� the measurement error is located somewhere in the interval [−∆xi,∆xi], and

� we have no information about the probability of different values from this interval.

In this case, the largest possible value of the estimation error

∆y = c1 ·∆x1 + . . .+ cn ·∆xn

is equal to |c1| ·∆1+ . . .+ |cn| ·∆n. This is indeed the same expression as our formula (4.5).

4.3 What If a Few Pairs of Measurement Errors Are

Not Necessarily Independent

4.3.1 Description of the Situation

Descriptions of the situation. In the previous text, we considered two extreme cases:
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� when we know that all measurement errors are independent, and

� when we have no information about their dependence.

Such cases are indeed frequent, but sometimes, situations are similar but not exactly the

same. For example, we can have the case of “almost independence”, when for most pairs,

we know that they are independent, but for a few pairs, we do not have this information.

This is the situation that we describe in this section.

Comment. The opposite situations, when we only have independence information about a

few pairs, is described in the next section.

Graph representation of such situations. To describe such situations, we need to know

for which pairs of measurement errors, we do not have information about independence. A

natural way to represent such information is by an undirected graph in which:

� measurement errors are vertices and

� an edge connects pairs for which we do not have information about independence.

We only need to know which vertices are connected. So, it makes sense to include, in

the description of the graph, only vertices that are connected by some edge, i.e., only

measurement errors that may not be independent with respect to others. In this case, we

arrive at the following definition.

Definition 4.3.

� Let G = (V,E) be an undirected graph with the set of vertices V ⊆ {1, . . . , n} for

which every vertex is connected to some other vertex. Here, E is a subset E ⊆ V ×V

for which:

– for each a ∈ V , we have (a, a) ̸∈ E,

– for each a and b, (a, b) ∈ E if and only if (b, a) ∈ E, and

– for each a ∈ V , we have (a, b) ∈ E for some b ∈ V .

36



� By IG ⊆ D, we mean the class of all distributions for which for all pairs (i, j) ̸∈ E

the variables ∆xi and ∆xj are independent.

Discussion. Our objective is to find the value σ (s, IG, c) for different graphs G. In this

chapter, we only consider the simplest graphs: all graphs with 2, 3, or 4 vertices. We hope

that this work will be extended to larger-size graphs.

4.3.2 General Results

Let us first present some general results. For this purpose, let us introduce the following

notations. For any set S ⊆ {1, . . . , n}, by a restriction cS we mean sub-tuples consisting

only of elements ci for which i ∈ S. For example, for c = (c1, c2, c3, c4) and S = {1, 3}, we

have cS = (c1, c3). Similarly, we can define the restriction sS. It is then relatively easy to

show that the following result holds:

Proposition 4.3. For each graph G = (V,E), we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i + (σ (sV , IG, cV ))

2 .

Comments.

� In other words, it is sufficient to only consider measurement errors from the exception

set V – which are not necessarily independent, then all other measurement errors can

be treated the same way as in the case when all measurement errors are independent.

� For reader’s conveniences, all the proofs are placed in a special Proofs section.

Another easy-to-analyze important case is when the graph G is disconnected, i.e., con-

sists of several connected components.
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Proposition 4.4. When the graph G = (V,E) consists of several connected components

G1 = (V1, E1) , . . . , Gk = (Vk, Ek) with for which V = V1 ∪ . . . ∪ Vk, then

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

k∑
j=1

(
σ
(
sVj

,SGj
, cVj

))2
.

Comment. In view of this result, it is sufficient to estimate the value σ (s, IG, c) for con-

nected graphs. We consider connected graphs with 2, 3, or 4 vertices.

4.3.3 Connected Graph of Size 2

There is only one connected graph of size 2: two vertices i1 and i2 connected by an edge,

so that V = {i1, i2} and E = {(i1, i2) , (i2, i1)}.

@� @�
i1 i2

Proposition 4.5. When the graph G = (V,E) consists of two vertices i1 and i2 connected

by an edge, then

σ2 (s, IG, c) =
∑

i ̸=i1,i2

c2i · σ2
i + (|ci1| · σi1 + |ci2| · σi2)

2 .

4.3.4 Connected Graphs of Size 3

In a connected graph of size 3, two vertices are connected, and the third vertex is:

� either connected to both of them – in this case we have a connected 3-element graph,
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@� @�
i1 i2

@�
@

@
@
@

@
@

@
@
@

@

i3

� or to only one of them.

@� @�
i1 i2

@�

i3

So, modulo isomorphism, there are two different connected graphs of size 3. For these

graphs, we get the following results:

Proposition 4.6. When G = (V,E) is a complete 3-element graph with V = {i1, i2, i3},

then

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i + (|ci1| · σi1 + |ci2| · σi2 + |ci3| · σi3)

2 .

Proposition 4.7. For a 3-element graph with V = {i1, i2, i3} in which i1 is connected to

i2 and i3 but i2 and i3 are not connected, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

(
|ci1| · σi1 +

√
c2i2 · σ

2
i2
+ c2i3 · σ

2
i3

)2
.
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4.3.5 Connected Graphs of Size 4

Let us first consider graphs of size 4 for which there is a vertex (we will denote it i1)

connected with all three other vertices. In this case, there are four possible options:

� when connections between i1 and all three other vertices are the only connections:

@� @�
i1 i2

@�

i3

@�
i4

� when, in addition to edges connecting i1 to three other vertices, there is also one

connection between two of these other vertices:

@� @�
i1 i2

@�

i3

@�
i4

@
@

@
@

@
@
@

@
@
@

� when, in addition to edges connecting i1 to three other vertices, there are two con-

nection between these other vertices:
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� and when we have a complete 4-element graph:

@� @�
i1 i2

@�

i3

@�
i4

@
@

@
@

@
@
@

@
@
@

�
�

�
�

�
�

�
�

�
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HHH

HHH
HHH

�
���

���
���

Finally, let us consider graphs in which each vertex is connected to no more than two

others. If each vertex is connected to only one vertex, then a vertex i1 is connected to some

vertex i2, and there is no space for each of them to have any other connection – so the

4-element graph containing vertices i1 and i2 cannot be connected. Thus, there should be

at least one vertex connected to two others.

Let us denote one such vertex by i2, and the two vertices to which i2 is connected by i1

and i3. Since the graph is connected, the fourth vertex i4 must be connected to one of the

previous three vertices. The vertex i4 cannot be connected to i2 – because then i2 should be

connected to three other vertices, and we consider the case when each vertex is connected
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to no more than two others. Thus, i4 is connected to i1 and/or i3. If it is connected to

i1, then we can swap the names of vertices i1 and i3, and get the same configuration as

when i4 is connected to i3. If i4 is connected to both i1 and i3, then the resulting graph

is uniquely determined. Thus, under the assumption that each vertex is connected to no

more than two others, we have two possible graphs:

� a “linear” graph:

@� @� @� @�
i1 i2 i3 i4

� and a “square graph”:

@� @�
i1 i2

@�

i4 i3
@�

For all these graphs, we have the following results:

Proposition 4.8. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1 is connected

to i2, i3, and i4, but i2, i3, and i4 are not connected to each other, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

(
|ci1| · σi1 +

√
c2i2 · σ

2
i2
+ c2i3 · σ

2
i3
+ c2i4 · σ

2
i4

)2
.

Proposition 4.9. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1, i2, and i3

form a complete graph, and i4 is connected only to i1, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

(
|ci1| · σi1 +

√
(|ci2| · σi2 + |ci3| · σi3)

2 + c2i4 · σ
2
i4

)2

.
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Proposition 4.10. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1, i2, and i3

form a complete graph, and i4 is corrected to i1 and i3, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

(
|ci1| · σi1 + |ci3| · σi3 +

√
c2i2 · σ

2
i2
+ c2i4 · σ

2
i4

)2
.

Proposition 4.11. For a complete 4-element graph with V = {i1, i2, i3, i4}, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i + (|ci1| · σi1 + |ci2| · σi2 + |ci3| · σi3 + |ci4| · σi4)

2 .

Proposition 4.12. For a linear 4-element graph with V = {i1, i2, i3, i4}, the value

σ (s, IG, c) has the following form:

� if |ci2| · σi2 · |ci3| · σi3 > |ci1| · σi1 · |ci4| · σi4, then

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +

(√
c2i1 · σ

2
i1
+ c2i2 · σ

2
i2
+
√

c2i3 · σ
2
i3
+ c2i4 · σ

2
i4

)2
;

� otherwise, we get

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i +max(σ2

2, σ
2
3, σ

2
0), where

σ2
2 = v2i3 +

(√
v2i1 + v2i2 + vi4

)2
,

σ2
3 = v2i2 +

(
vi1 +

√
v2i3 + v2i4

)2
, and

σ2
0 = (vi1 + vi3)

2 + (vi2 + vi4)
2 .

Proposition 4.13. For a square 4-element graph with V = {i1, i2, i3, i4}, we have:

σ2 (s, IG, c) =
∑
i ̸∈V

c2i · σ2
i+

(√
c2i1 · σ

2
i1
+ c2i3 · σ

2
i3
+
√

c2i2 · σ
2
i2
+ c2i4 · σ

2
i4

)2
.
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4.4 What If Only a Few Pairs of Measurement Errors

Are Known to Be Independent

4.4.1 Description of the Situation

Graph representation of such situations. To describe such situations, we need to

know for which pairs of measurement errors, we have information about independence. A

natural way to represent such information is by an undirected graph in which:

� measurement errors are vertices and

� an edge connects pairs for which we have information about independence.

For simplicity, we can only consider vertices that are connected by some edge, i.e., only

measurement errors that are known to be independent with respect to others. In this case,

we arrive at the following definition.

Definition 4.4.

� Let G = (V,E) be an undirected graph with the set of vertices V ⊆ {1, . . . , n}. Here,

E is a subset E ⊆ V × V for which:

– for each a ∈ V , we have (a, a) ̸∈ E, and

– for each a and b, (a, b) ∈ E if and only if (b, a) ∈ E.

� By DG ⊆ D, we mean the class of all distributions for which for all pairs (i, j) ∈ E

the variables ∆xi and ∆xj are independent.

Discussion. Our objective is to find the value σ (s,DG, c) for different graphs G. In this

chapter, we only consider the simplest graphs: all graphs with 2, 3, or 4 vertices. We hope

that this work will be extended to larger-size graphs.
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4.4.2 General Results

Let us first present some general results. It is then relatively easy to show that the following

result holds:

Proposition 4.14. For each graph G = (V,E), we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi + σ (sV , DG, cV ) .

Comment. In other words, it is sufficient to only consider measurement errors from the

exception set V – which are not necessarily independent; then all other measurement errors

can be treated the same way as in the case when we have no information about dependence.

Another easy-to-analyze important case is when the graph G is disconnected, consisting

of several connected components.

Proposition 4.15. When the graph G = (V,E) consists several connected components

G1 = (V1, E1) , . . . , Gk = (Vk, Ek) with for which V = V1 ∪ . . . ∪ Vk, then

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
k∑

j=1

σ
(
sVj

,SGj
, cVj

)
.

Comment. In view of this result, it is sufficient to estimate the value σ (s,DG, c) for

connected graphs. In this chapter, we consider all connected graphs with 2, 3, or 4 vertices.

4.4.3 Connected Graph of Size 2

Proposition 4.16. When the graph G = (V,E) consists of two vertices i1 and i2 connected

by an edge, then

σ2 (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√
c2i1 · σ

2
i1
+ c2i2 · σ

2
i2
.
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4.4.4 Connected Graphs of Size 3

Proposition 4.17. When G = (V,E) is a complete 3-element graph with V = {i1, i2, i3},

then

σ2 (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ c2i2 · σ

2
i2
+ c2i3 · σ

2
i3
.

Proposition 4.18. For a 3-element graph with V = {i1, i2, i3}, in which i1 is connected

to i2 and i3 but i2 and i3 are not connected, we have:

σ2 (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ (|ci2| · σi2 + |ci3| · σi3)

2.

4.4.5 Connected Graphs of Size 4

Proposition 4.19. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1 is connected

to i2, i3, and i4, but i2, i3, and i4 are not connected to each other, we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ (|ci2 | · σi2 + |ci3 | · σi3 + |ci4 | · σi4)

2.

Proposition 4.20. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1, i2, and i3

form a complete graph, and i4 is connected only to i1, we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +

√
c2i1 · σ

2
i1
+
(√

c2i2 · σ
2
i2
+ c2i3 · σ

2
i3
+ |ci4| · σi4

)2
.

Proposition 4.21. For a 4-element graph with V = {i1, i2, i3, i4}, in which i1, i2, and i3

form a complete graph, and i4 is corrected to i1 and i3, we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ c2i3 · σ

2
i3
+ (|ci2| · σi2 + |ci4| · σi4)

2.
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Proposition 4.22. For a complete 4-element graph with V = {i1, i2, i3, i4}, , we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ c2i2 · σ

2
i2
+ c2i3 · σ

2
i3
+ c2i4 · σ

2
i4
.

Proposition 4.23. For a linear 4-element graph with V = {i1, i2, i3, i4}:

� if |ci1| · σi1 · |ci4| · σi4 > |ci2| · σi2 · |ci3| · σi3, then

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

c2i1 · σ
2
i1
+ c2i2 · σ

2
i2
+
√

c2i3 · σ
2
i3
+ c2i4 · σ

2
i4
.

� otherwise, we get

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi +
√

max(σ2
2, σ

2
3, σ

2
0), where

σ2
2 = v2i3 +

(√
v2i1 + v2i2 + vi4

)2
,

σ2
3 = v2i2 +

(
vi1 +

√
v2i3 + v2i4

)2
, and

σ2
0 = (vi1 + vi3)

2 + (vi2 + vi4)
2 .

Proposition 4.24. For a square 4-element graph with V = {i1, i2, i3, i4}, we have:

σ (s,DG, c) =
∑
i ̸∈V

|ci| · σi+

√
(|ci1| · σi1 + |ci3| · σi3)

2 + (|ci2| · σi2 + |ci4| · σi4)
2.

4.5 Proofs

Proof of Proposition 4.3. The proof of this proposition naturally follows from the

geometric interpretation, in which we associate a vector to each random variable, and we
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are looking for a configuration in which the sum of these vectors has the largest length.

Here, the sum v⃗ of all the corresponding vectors v⃗ = v⃗1 + . . .+ v⃗n can be represented as∑
i ̸∈V

v⃗i + a⃗,

where

a⃗
def
=
∑
j∈V

v⃗j.

Vectors v⃗i corresponding to “normal” errors (i ̸∈ V ) are orthogonal (since the corresponding

measurement errors are independent), and since each of them is orthogonal to each of the

“abnormal” vectors v⃗j, it is also orthogonal to the sum a⃗ of these abnormal vectors. Thus,

the square of the length of the sum v⃗ is equal to the sum of the squares of the lengths of

the “normal” vectors v⃗i and of the vector a⃗:

∥v⃗∥2 =
∑
i ̸∈V

∥v⃗i∥2 + ∥a⃗∥2.

The values ∥v⃗i∥2 are given: they are equal to c2i · σ2
i Thus, the largest possible value of ∥v⃗∥

is attained when the length ∥a⃗∥ is the largest. This largest length is what in Definitions 1

and 3 we denoted by σ (sV , IG, cV ). Thus, we get the desired formula.

The proposition is proven.

Proof of Proposition 4.5. For this graph, the value σ (s, IG, c) follows from Proposition

4.1 – it is equal to |ci1 | ·σi1 + |ci2 | ·σi2 . Thus, by Proposition 4.3, we get the desired result.

Proof of Propositions 6 is similar to the proof of Proposition 4.5.

Proof of Proposition 4.7. Since the vertices i2 and i3 are not connected, this means that

the measurement errors corresponding to these vertices are independent, so the length of

v⃗i2 + v⃗i3 is equal to
√

∥v⃗i2∥2 + ∥v⃗i3∥2.

The vertex i1 is connected to both i2 and i3, which means that we know nothing about

the dependence between the corresponding measurement errors. Thus, as we have described

earlier, the largest possible length of the sum

v⃗i1 + v⃗i2 + v⃗i3 = v⃗i1 + (v⃗i2 + v⃗i3)
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can be obtained by adding the lengths of v⃗i1 and of v⃗i2 + v⃗i3 :

∥v⃗i3∥+
√

∥v⃗i2∥2 + ∥v⃗i3∥2.

The desired result now follows from Proposition 4.3.

Proof of Proposition 4.8 is similar to the proof of Proposition 4.7.

Proof of Proposition 4.9. We have no restriction on vectors v⃗i2 and v⃗i3 , so the largest

possible length of their sum v⃗i2 + v⃗i3 is the sum of their lengths: ∥v⃗i2∥+ ∥v⃗i3∥. There is no

edge between i4 and the group of vertices (i2, i3), this means that the measurement errors

corresponding to i4 are independent from the measurement errors ∆xi2 and ∆xi3 . Thus,

the vector v⃗i4 is orthogonal to vectors v⃗i2 and v⃗i3 and is, thus, orthogonal to their sum

v⃗i2 + v⃗i3 . So, the maximum length of the sum

v⃗i2 + v⃗i3 + v⃗i4 = (v⃗i2 + v⃗i3) + v⃗i4

is equal to the square root of the sums of their lengths:√
(∥v⃗i2∥+ ∥v⃗i3∥)

2 + ∥v⃗i4∥2.

Since i1 is connected to all the three other vertices, this means that there is no restriction

on the relation between the vector i1 and three other vectors. So, the maximum length of

the sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = v⃗i1 + (v⃗i2 + v⃗i3 + v⃗i4) .

Thus, the maximum length of this sum is equal to the sum of the lengths:

∥v⃗i1∥+
√

(∥v⃗i2∥+ ∥v⃗i3∥)
2 + ∥v⃗i4∥2.

The use of Proposition 4.3 completes the proof.

Proof of Proposition 4.10. Vectors i2 and i4 are independent, so the length of the sum

v⃗i2 + v⃗i4 is equal to
√

∥v⃗i2∥2 + ∥v⃗i4∥2. Now, there are no restrictions on the relation between

v⃗i1 , v⃗i3 , and v⃗i2 + v⃗i4 . Thus, the maximum length of the sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = v⃗i1 + v⃗i3 + (v⃗i2 + v⃗i4)
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is equal to the sum of the lengths:

∥v⃗i1∥+ ∥v⃗i3∥+
√

∥v⃗i2∥2 + ∥v⃗i4∥2.

The use of Proposition 4.3 completes the proof.

Proof of Proposition 4.11 is similar to the proofs of Propositions 5 and 6.

Proof of Proposition 4.12. The given graph means that between the four vertices, the

only independent pairs are those which are not connected by an egde, i.e., pairs (i3, i1),

(i1, i4), and (i4, i2). One can easily see that these vertices also form a linear graph. For this

case, the largest value of the sum of the four vectors is computed in the proof of Proposition

4.23. The use of Proposition 4.3 completes the proof.

Proof of Proposition 4.13. Since the vertices i1 and i3 are not connected, this means

that the measurement errors corresponding to these vertices are independent, so the length

of v⃗i1 + v⃗i3 is equal to
√

∥v⃗i1∥2 + ∥v⃗i3∥2. Similarly, since the vertices i2 and i4 are not

connected, this means that the measurement errors corresponding to these vertices are

independent, so the length of v⃗i2 + v⃗i4 is equal to
√

∥v⃗i2∥2 + ∥v⃗i4∥2.

Each of the vertices i1 and i3 is connected to both i2 and i4, which means that we know

nothing about the dependence between the corresponding measurement errors. Thus, as

we have described earlier, the largest possible length of the sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = (v⃗i1 + v⃗i3) + (v⃗i2 + v⃗i4)

can be obtained by adding the lengths of v⃗i1 + v⃗i3 and of v⃗i2 + v⃗i4 :√
∥v⃗i1∥2 + ∥v⃗i3∥2 +

√
∥v⃗i2∥2 + ∥v⃗i4∥2.

The desired result now follows from Proposition 4.3.

Proof of Proposition 4.14. The proof of this proposition naturally follows from the

geometric interpretation, in which we associate a vector to each random variable, and we
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are looking for a configuration in which the sum of these vectors has the largest length.

Here, the sum v⃗ of all the corresponding vectors v⃗ = v⃗1 + . . .+ v⃗n can be represented as∑
i ̸∈V

v⃗i + a⃗,

where

a⃗
def
=
∑
j∈V

v⃗j.

We do not have any restrictions on the relative orientation of the vectors v⃗i corresponding

to “normal” errors (i ̸∈ V ) and of the vector a⃗. Thus, the largest possible value of the

length of the sum v⃗ is equal to the sum of the lengths of the “normal” vectors v⃗i and of

the vector a⃗:

max ∥v⃗∥ =
∑
i ̸∈V

∥v⃗i∥+ ∥a⃗∥.

The values ∥v⃗i∥ are given: they are equal to |ci| ·σi. Thus, the largest possible value of ∥v⃗∥

is attained when the length ∥a⃗∥ is the largest. This largest length is what in Definitions 1

and 4 we denoted by σ (sV , DG, cV ). Thus, we get the desired formula.

The proposition is proven.

Proof of Proposition 4.16. For this graph, the value σ (s,DG, c) follows from Proposition

4.2 – it is equal to
√

c2i1 · σ
2
i1
+ c2i2 · σ

2
i2
. Thus, by Proposition 4.12, we get the desired result.

Proof of Proposition 4.17 is similar to the proof of Proposition 4.16.

Proof of Proposition 4.18. Since the vertices i2 and i3 are not connected, this means

that we do not have any restrictions on the relative location of the vectors v⃗i2 and v⃗i3 , so

the largest possible value of the length of the sum v⃗i2+ v⃗i3 is equal to the sum of the lengths

∥v⃗i2∥+ ∥v⃗i3∥.

The vertex i1 is connected to both i2 and i3, which means that we the measurement

error corresponding to i1 is independent of the errors corresponding to i2 and i3. Thus, as

we have described earlier, the largest possible length of the sum

v⃗i1 + v⃗i2 + v⃗i3 = v⃗i1 + (v⃗i2 + v⃗i3)
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is equal to √
∥v⃗i1∥2 + (∥v⃗i2∥+ ∥v⃗i3∥)

2.

The desired result now follows from Proposition 4.14.

Proof of Proposition 4.19 is similar to the proof of Proposition 4.18.

Proof of Proposition 4.20. The vectors v⃗i2 and v⃗i3 are independent, so the length of

their sum v⃗i2 + v⃗i3 is equal to
√

∥v⃗i2∥2 + ∥v⃗i3∥2. There is no edge between i4 and the group

of vertices (i2, i3), this means there is no restriction on the relation between v⃗i4 and v⃗i2+ v⃗i3 .

Thus, the largest possible length of the sum

v⃗i2 + v⃗i3 + v⃗i4 = (v⃗i2 + v⃗i3) + v⃗i4

is equal to the sum of their lengths:√
∥v⃗i2∥2 + ∥v⃗i3∥2 + ∥v⃗i4∥.

Since i1 is connected to all the three other vertices, this means that this vector is orthogonal

to three other vectors – and thus, to their sum. So, the maximum length of the sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = v⃗i1 + (v⃗i2 + v⃗i3 + v⃗i4) .

is equal to √
∥v⃗i1∥2 +

(√
∥v⃗i2∥2 + ∥v⃗i3∥2 + ∥v⃗i4∥

)2
.

The use of Proposition 4.11 completes the proof.

Proof of Proposition 4.21. There is no constraint on the vectors i2 and i4, so the

maximum length of the sum v⃗i2 + v⃗i4 is equal to the sum of their length: ∥v⃗i2∥+∥v⃗i4∥. Now,

the three vectors v⃗i1 , v⃗i3 , and v⃗i2 + v⃗i4 are independent. Thus, the maximum length of the

sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = v⃗i1 + v⃗i3 + (v⃗i2 + v⃗i4)

is equal to: √
∥v⃗i1∥2 + ∥v⃗i3∥2 + (∥v⃗i2∥+ ∥v⃗i4∥)

2.
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The use of Proposition 4.11 completes the proof.

Proof of Proposition 4.22 is similar to the proof of Propositions 16 and 17.

Proof of Proposition 4.23. In accordance with Proposition 4.14, we need to compute

σ
def
= σ (sV , DG, cV ), the largest possible length of the vector v⃗ = v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 . In

general, the square ∥v⃗∥2 of the length ∥v⃗∥ of the sum v⃗ = v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 of the four

vectors is equal to

∥v⃗∥2 = ∥v⃗i1∥2 + ∥v⃗i2∥2 + ∥v⃗i3∥2 + ∥v⃗i4∥2+

2v⃗i1 · v⃗i2 + 2v⃗i1 · v⃗i3 + 2v⃗i1 · v⃗i4 + 2v⃗i2 · v⃗i3 + 2v⃗i2 · v⃗i4 + 2v⃗i3 · v⃗i4 .

For the situation described by the given graph, vector v⃗i1 is orthogonal to v⃗i2 , the vector

v⃗i2 is orthogonal to v⃗i3 , and the vector v⃗i3 is orthogonal to v⃗i4 . Thus, we have

∥v⃗∥2 = ∥v⃗i1∥2 + ∥v⃗i2∥2 + ∥v⃗i3∥2 + ∥v⃗i4∥2 + 2v⃗i1 · v⃗i3 + 2v⃗i1 · v⃗i4 + 2v⃗i2 · v⃗i4 .

The length of each vector ∥v⃗ij∥ is fixed ∥v⃗ij∥2 = v2ij , so to maximize the length of the sum,

we need to maximize the sum of the remaining terms:

2v⃗i1 · v⃗i3 + 2v⃗i1 · v⃗i4 + 2v⃗i2 · v⃗i4 .

Let us denote the half of this sum by J , then the sum itself becomes equal to 2J .

We need to maximize the sum 2J under the constraints

∥v⃗ij∥2 = v2ij for all j, v⃗i1 · v⃗i2 = 0, v⃗i2 · v⃗i3 = 0, and v⃗i3 · v⃗i4 = 0.

By using the Lagrange multiplier method, we can reduce the above-described conditional

optimization problem to the following unconstrained optimization problem:

2v⃗i1 · v⃗i3 + 2v⃗i1 · v⃗i4 + 2v⃗i2 · v⃗i4 +
4∑

j=1

λj · ∥v⃗ij∥2 +
3∑

j=1

µj · v⃗ij · v⃗ij+1
,

where λj and µj are Lagrange multipliers.

Differentiating this expression with respect to v⃗i2 and equating the derivative to 0, we

conclude that

2v⃗i4 + 2λ2 · v⃗i2 + µ1 · v⃗i1 + µ2 · v⃗i3 = 0,
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hence

v⃗i4 = −λ2 · v⃗i2 −
1

2
· µ1 · v⃗i1 −

1

2
· µ2 · v⃗i3 .

So, the vector v⃗i4 belongs to the linear space generated by vectors v⃗i2 , v⃗i3 , and v⃗i1 . Let us

denote the unit vectors in the directions of v⃗i2 and v⃗i3 by, correspondingly,

e⃗2 =
v⃗i2
vi2

and e⃗3 =
v⃗i3
vi3

.

Since the vectors v⃗i2 and v⃗i3 are orthogonal, the unit vectors e⃗2 and e⃗3 are orthogonal too, so

they can be viewed as two vectors from the orthonormal basis in the linear space generated

by the vectors v⃗i2 , v⃗i3 , and v⃗i1 .

� If this linear space is 3-dimensional, in this 3-D spoace we can select the third unit

vector e⃗ which is orthogonal to both e⃗2 and e⃗3.

� If the above linear space is 2-dimensional – i.e., if v⃗i1 lies in the 2-D space generated

by v⃗i2 and v⃗i3 – then let us take, as e⃗, any unit vector which is orthogonal to both e⃗2

and e⃗3.

In both cases, vectors v⃗i1 and v⃗i4 belong to the linear space generated by the vectors e⃗2, e⃗3,

and e⃗. In particular, this means that v⃗i1 = c12 · e⃗2 + c13 · e⃗3 + c1 · e⃗ for some numbers c12,

c13, and c1. Since v⃗i1 ⊥ v⃗i2 , we have c12 = 0, so v⃗i1 = c13 · e⃗3 + c1 · e⃗. From this formula,

we conclude that v2i1 = ∥v⃗i1∥2 = c213 + c21, so c21 ≤ v2i1 . Let us denote the ratio c1/vi1 by β1,

then c1 = vi1 · β1 and, correspondingly, c13 = vi1 ·
√

1− β2
1 . So, the expression for v⃗i1 takes

the form

v⃗i1 = vi1 ·
√

1− β2
1 · e⃗3 + vi1 · β1 · e⃗.

Similarly, we can conclude that

v⃗i4 = vi4 ·
√

1− β2
4 · e⃗2 + vi4 · β4 · e⃗,

for some value β4 for which |β4| ≤ 1. For each pair of orthogonal vectors e⃗2 and v⃗i3 of

lengths vi2 and vi3 , the above-defined vectors satisfy all the constraints. So, what remains
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is to find the values β1 and β4 for which the expression

2v⃗i1 · v⃗i3 + 2v⃗i1 · v⃗i4 + 2v⃗i2 · v⃗i4

attaints its largest value – i.e., equivalently, for which the above-defined half-of-the-

maximized-expression

J = v⃗i1 · v⃗i3 + v⃗i1 · v⃗i4 + v⃗i2 · v⃗i4

attains its largest value. Substituting the above expressions for v⃗i1 and v⃗i4 into this formula,

and taking into account that, by our choice of e⃗2 and e⃗3, we have v⃗i2 = vi2 ·e⃗2 and v⃗i3 = vi3 ·e⃗3,

we conclude that

J = vi1 · vi3 ·
√

1− β2
1 + vi2 · vi4 ·

√
1− β2

4 + β1 · β4 · vi1 · vi4 .

Each of the unknown β1 and β4 has values from the interval [−1, 1]. Thus, for each of

the variables β1 and β4, the maximum of this expression is attained:

� either at one of the endpoints −1 and 1 of this interval,

� or at the point inside this interval, in which case the derivative with respect to this

variable should be equal to 0.

We have two cases for each of the two variables β1 and β4, so overall, we need to consider

all 2 ·2 = 4 cases. To find the largest possible value of the expression J , we need to consider

all four possible cases, and find the largest of the corresponding values. Let us consider

these cases one by one.

Case 1. If both values β1 and β4 are equal to ±1, then we get J = ±vi1 · vi4 . The largest

of these values is when the sign is positive, then the value of the quantity J is equal to

J1 = vi1 · vi4 .

Case 2. Let us now consider the case when β1 = ±1 and β4 ∈ (−1, 1) . In this case, the

expression J takes the form J = vi2 ·vi4 ·
√

1− β2
4±vi1 ·vi4 ·β4. Differentiating this expression

with respect to β4 and equating the derivative to 0, we get

−2β4 · vi2 · vi4
2
√

1− β2
4

± vi1 · vi4 · β1 = 0.
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If we divide both sides by vi4 , divide both the numerator and the denominator of the

fraction by a common factor 2, and multiply both sides by the denominator, we get

β4 · vi2 = ±
√
1− β2

4 · vi1 .

If we square both sides, we get

β2
4 · v2i2 =

(
1− β2

4

)
· v2i1 = v2i1 − β2

4 · v2i1 .

So

β2
4 ·
(
v2i1 + v2i2

)
= v2i2

and

β2
4 =

v2i2
v2i1 + v2i2

.

Therefore,

1− β2
4 =

v2i1
v2i1 + v2i2

,

so

β4 = ± vi2√
v2i1 + v2i2

and √
1− β2

4 = ± vi1√
v2i1 + v2i2

.

Substituting these expressions into the formula for J , we conclude that

J = ±
v2i2 · vi4√
v2i1 + v2i2

±
v2i1 · vi4√
v2i1 + v2i2

.

The largest value of this expression is attained when both signs are positive, so we get

J =
v2i2 · vi4√
v2i1 + v2i2

±
v2i1 · vi4√
v2i1 + v2i2

=
vi4 ·

(
v2i1 + v2i2

)√
v2i1 + v2i2

and thus, the value J is equal to

J2 = vi4 ·
√
v2i1 + v2i2 .
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In this case, the largest value of ∥v⃗∥2 is equal to:

σ2
2 = v2i1 + v2i2 + v2i3 + v2i4 + 2vi4 ·

√
v2i1 + v2i2 =

v2i3 +
((

v2i1 + v2i2
)
+ v2i4 + 2vi4 ·

√
v2i1 + v2i2

)
=

v2i3 +
(√

v2i1 + v2i2 + vi4

)2
.

Comparing Case 1 and Case 2. Since v2i1 + v2i2 > v2i1 , we have
√

v2i1 + v2i2 > vi1 , hence

J2 = vi4 ·
√
v2i1 + v2i2 > vi1 · vi4 = J1. Thus, when we are looking for the largest value of the

expression J , we can safely ignore Case 1, since the values obtained in Case 2 can be larger

than anything we get in Case 1.

Case 3. Similarly, we can consider the case when β4 = ±1 and β1 ∈ (−1, 1) . In this case,

we get the largest possible value of J equal to J3 = vi1 ·
√
v2i3 + v2i4 , so the largest possible

value of σ2 is equal to:

σ2
3 = v2i2 +

(
vi1 +

√
v2i3 + v2i4

)
.

Case 4. Finally, let us consider the case when for the pair (β1, β4) at which the expression

J attains its largest value, both values β1 and β4 are located inside the interval (−1, 1). In

this case, to find the maximum of the expression J , we need to differentiate it with respect

to the unknowns β1 and β4 and equate the resulting derivatives to 0. If we differentiate by

β1, we get

−2β1 · vi1 · vi3
2
√
1− β2

1

+ vi1 · vi4 · β4 = 0.

Thus,

β4 =
β1 · vi3√
1− β2

1 · vi4
,

and

β2
4 =

β2
1 · v2i3

(1− β2
1) · v2i4

.
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Differentiating the above expression for J with respect to β4 and equating the derivative

to 0, we conclude that

−2β4 · vi2 · vi4
2
√
1− β2

4

+ vi1 · vi4 · β1 = 0.

If we divide both sides by vi4 , divide both the numerator and the denominator of the

fraction by a common factor 2, and multiply both sides by the denominator, we get

β4 · vi2 =
√

1− β2
4 · vi1 · β1.

If we square both sides, we get

β2
4 · v2i2 =

(
1− β2

4

)
· v2i1 · β

2
1 = v2i1 · β

2
1 − β2

4 · v2i1 · β
2
1 .

Substituting the above expression for β2
4 into this formula, we get

β2
1 · v2i2 · v

3
2√

1− β2
1 · v2i4

= β2
1 · v2i1 −

β4
1 · v2i1 · v

2
i3√

1− β2
1 · v2i4

.

Case 4, subcase when β1 = 0. Both sides of this equality contain the common factor β1.

So, it is possible that β1 = 0, in which case β4 = 0, and the expression J attains the value

J0 = vi1 · vi3 + vi2 · vi4 .

In this case, the value of σ2 is equal to:

σ2
0 = v2i1 + v2i2 + v2i3 + v2i4 + 2vi1 · vi3 + 2vi2 · vi4 =(
v2i1 + v2i3 + 2vi1 · vi3

)
+
(
v2i2 + v2i4 + 2vi2 · vi4

)
=

(vi1 + vi3)
2 + (vi2 + vi4)

2 .

Case 4, subcase when β1 ̸= 0. If β1 ̸= 0, then we can divide both sides of the above equality

by β2
1 . Multiplying both sides by the denominator, we get

v2i2 · v
2
i3
= v2i1 · v

2
i4
·
(
1− β2

1

)
− β2

1 · v2i1 · v
2
i3
,
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so

v2i2 · v
2
i3
= v2i1 · v

2
i4
− β2

1 · v2i1 · v
2
i4
− β2

1 · v2i1 · v
2
i3
.

If we move all the terms containing β2
1 to the left-hand side and all the other terms to the

right-hand side, we get:

β·
1v

2
i1
·
(
v2i3 + v2i4

)
= v2i1 · v

2
i4
− v2i1 · v

2
i3
,

thus

β2
1 =

v2i1 · v
2
i4
− v2i2 · v

2
i3

v2i1 ·
(
v2i3 + v2i4

) .

Here:

� when vi1 ·vi4 < vi2 ·vi3 , the right-hand side is negative, so we cannot have such a case;

� when vi1 · vi4 = vi2 · vi3 , then β1 = 0, and we have already analyzed this case.

So, the only possibility to have β1 ̸= 0 is when vi1 · vi4 > vi2 · vi3 .

In general, the situation does not change if we swap 1 and 4 and swap 2 and 3. Thus,

for β2
4 , we get a similar expression

β2
4 =

v2i1 · v
2
i4
− v2i2 · v

2
i3

v2i4 ·
(
v2i1 + v2i2

) .

From the expressions for β2
1 and β2

4 , we conclude that

1− β2
1 = 1−

v2i1 · v
2
i4
− v2i2 · v

2
i3

v2i1 ·
(
v2i3 + v2i4

) =

v2i1 · v
2
i3
+ v2i1 · v

2
i4
− v2i1 · v

2
i4
+ v2i2 · v

2
i3

v2i1 ·
(
v2i3 + v2i4

) =

v2i3 ·
(
v2i1 + v2i2

)
v2i1 ·

(
v2i3 + v2i4

) .
Similarly, we have

1− β2
4 =

v2i2 ·
(
v2i3 + v2i4

)
v2i4 ·

(
v2i1 + v2i2

) .
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Thus, for the expression J , we get the value

J4 = vi1 · vi3 ·
vi3 ·

√
v2i1 + v2i2

vi1 ·
√

v2i3 + v2i4

+ vi2 · vi4 ·
vi2 ·

√
v2i3 + v2i4

vi4 ·
√

v2i1 + v2i2

+

vi1 · vi4 ·
v2i1 · v

2
i4
− v2i2 · v

2
i3

vi1 · vi4 ·
√

v2i3 + v2i4 ·
√
v2i1 + v2i2

.

We can somewhat simplify this expression if:

� in the first term, we delete vi1 in the numerator and in the denominator,

� in the second term, we delete vi4 from the numerator and from the denominator, and

� in the third term, we delete both vi1 and vi4 from the numerator and from the de-

nominator.

Then, we get:

J4 = vi3 ·
vi3 ·

√
v2i1 + v2i2√

v2i3 + v2i4

+ vi2 ·
vi2 ·

√
v2i3 + v2i4√

v2i1 + v2i2

+
v2i1 · v

2
i4
− v2i2 · v

2
i3√

v2i3 + v2i4 ·
√
v2i1 + v2i2

.

If we bring all the terms to the common denominator
√
v2i3 + v2i4 ·

√
v2i1 + v2i2 , then we get

J4 =
v2i3 ·

(
v2i1 + v2i2

)
+ v2i2 ·

(
v2i3 + v2i4

)
+ v2i1 · v

2
i4
− v2i2 · v

2
i3√

v2i3 + v2i4 ·
√
v2i1 + v2i2

.

The numerator of this expression has the form

v2i1 · v
2
i3
+ v2i2 · v

2
i3
+ v2i2 · v

2
i3
+ v2i2 · v

2
i4
+ v2i1 · v

2
i4
− v2i2 · v

2
i3
=

v2i1 · v
2
i3
+ v2i2 · v

2
i3
+ v2i2 · v

2
i4
+ v2i1 · v

2
i4
=(

v2i1 + v2i2
)
·
(
v2i3 + v2i4

)
.

Thus, we get

J4 =

(
v2i1 + v2i2

)
·
(
v2i3 + v2i4

)√
v2i3 + v2i4 ·

√
v2i1 + v2i2

,

60



i.e.,

J4 =
√

v2i1 + v2i2 ·
√
v2i3 + v2i4 .

Comparing J4 with J2 and J3. One can easily see that we always have J2
2 ≤ J2

4 and J2
3 ≤ J2

4 ,

thus J2 ≤ J4 and J3 ≤ J4. Thus, if the estimate J4 is possible, there is no need to consider

J2 and J3, we only need to cosider J4 and J0.

Comparing J4 and J0. Let us show that we always have J0 ≤ J4, i.e.,

vi1 · vi3 + vi2 · vi4 ≤
√

v2i1 + v2i2 ·
√
v2i3 + v2i4 .

Indeed, this inequality between positive numbers is equivalent to a similar inequality be-

tween their squares:

v2i1 · v
2
i3
+ v2i2 · v

2
i4
+ 2vi1 · vi2 · vi3 · vi4 ≤

(
v2i1 + v2i2

)
·
(
v2i3 + v2i4

)
,

i.e.,

v2i1 · v
2
i3
+ v2i2 · v

2
i4
+ 2vi1 · vi2 · vi3 · vi4 ≤ v2i1 · v

2
i3
+ v2i1 · v

2
i4
+ v2i2 · v

2
i3
+ v2i2 · v

2
i4
.

Subtracting v2i1 ·v
2
i3
+v2i2 ·v

2
i4
from both sides of this inequality, we get an equivalent inequality

2vi1 · vi2 · vi3 · vi4 ≤ v2i1 · v
2
i4
+ v2i2 · v

2
i3
,

i.e., equivalently,

0 ≤ v2i1 · v
2
i4
+ v2i2 · v

2
i3
− 2vi1 · vi2 · vi3 · vi4 = (vi1 · vi4 − vi2 · vi3)

2 ,

which is, of course, always true. Thus, when the estimate J4 is possible, we do not need to

consider the value J0 either: it is sufficient to take J = J4.

Value of σ in case J4 is possible: conclusion. So, if the value J4 is possible, we get

σ2 = v2i1 + v2i2 + v2i3 + v2i4 + 2
√

v2i1 + v2i2 ·
√

v2i3 + v2i4 =
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(
v2i1 + v2i2

)
+
(
v2i3 + v2i4

)
+ 2
√

v2i1 + v2i2 ·
√
v2i3 + v2i4 =(√

v2i1 + v2i2 +
√
v2i3 + v2i4

)2
,

so σ =
√
v2i1 + v2i2 +

√
v2i3 + v2i4 .

General comment. The desired result for this case now follows from Proposition 4.14.

Proof of Proposition 4.24. Since the vertices i2 and i4 are not connected, this means

that we do not have any restrictions on the relative location of the vectors v⃗i2 and v⃗i4 ,

so the largest possible value of the length of the sum v⃗i2 + v⃗i4 is equal to the sum of the

lengths ∥v⃗i2∥ + ∥v⃗i4∥. Similarly, since the vertices i1 and i3 are not connected, this means

that we do not have any restrictions on the relative location of the vectors v⃗i1 and v⃗i3 , so

the largest possible value of the length of the sum v⃗i1+ v⃗i3 is equal to the sum of the lengths

∥v⃗i1∥+ ∥v⃗i3∥.

Each of the vertices i1 and i3 is connected to both i2 and i4, which means that the

measurement errors corresponding to i1 and i3 are independent of the errors corresponding

to i2 and i4. Thus, as we have described earlier, the largest possible length of the sum

v⃗i1 + v⃗i2 + v⃗i3 + v⃗i4 = (v⃗i1 + v⃗i3) + (v⃗i2 + v⃗i4)

is equal to √
(∥v⃗i1∥+ ∥v⃗i3∥)

2 + (∥v⃗i2∥+ ∥v⃗i3∥)
2.

The desired result now follows from Proposition 4.14.

4.6 Conclusions and Recommendations for Future

Work

Conclusions. In this chapter, we deal with the third of the four challenges of practical

computer-enhanced measurements. This challenge is related to the fact that in the past,

when we could only afford a few measurements, these measurements were usually performed
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by similar measuring instruments, instruments for which we had a good understanding of

what causes their measurement errors.

� In some situations, most measurement errors were causes by internal features of the

instruments. In this case, the corresponding measurement errors were independent.

� In other situations, mostly external features were dominant, in which case we do have

any information about the relation between different measurement errors.

In both types of situations, formulas were developed for processing the resulting uncertainty.

With the possibility to perform numerous measurements and process their results, we often

encounter situations when some pairs of measurement errors are independent but for other

pairs of measurement errors, we do not have any information about their relation.

In this chapter, our objective was to come up with techniques for processing measure-

ment results in situations which are slightly different from the above-described well-studied

ones; namely:

� for the situations when for most pairs of measuring instruments, we know that the

corresponding measuring errors are independent, but for a few pairs, we do not have

any information about their dependence, and

� for the situations in which for most pairs of measuring instruments, we have no in-

formation about the dependence between the corresponding measurement errors, but

for some pairs, we know that the corresponding measurement errors are independent.

As a result of our analysis, we provide new explicit easy-to-implement formulas describ-

ing the uncertainty of the result of data processing in above-described situations.

Recommendations for future work. In the current chapter, we only deal with the

cases when for the most pairs, we have information of the same type, and only for a small

number of pairs, we have different information. It is necessary to extend our analysis to

situations when we have a larger number of pairs with different information.
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Chapter 5

Fault Detection in a Smart Electric

Grid: Geometric Analysis

In this chapter, we deal with the last of the four challenges of practical computer-enhanced

measurements – the challenge related to the need to extract information from the measure-

ment results. Specifically, we deal with the simplest case when we only know the ordering

of the measurement results, but not the actual numerical values.

An important example of such a situation is locating fault in a smart electric grid. The

main idea behind a smart grid is to equip the grid with a dense lattice of sensors monitoring

the state of the grid. If there is a fault, the sensors closer to the fault will detect larger

deviations from the normal readings than sensors that are farther away. In this chapter,

we show that this fact can be used to locate the fault with high accuracy.

5.1 What Is a Smart Electric Grid

The main idea is to set up a lattice of sensors that would monitor the electric grid; see,

e.g., [17]. Based on the measurement results provided by the sensors:

� we would get a good picture of the current state of the grid, and

� we would be able to effectively control it.
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5.2 How the Grid of Sensors Can Detect Faults

Each sensor measures characteristics of the electric current at its location. Each fault

affects all the sensors, some more, some less.

By observing the changes in the sensor signals, we can detect the existence of the fault.

We can also get some information about the fault’s location.

Sensors closer to the fault’s location will detect a stronger change in their measurement

results than sensors which are further away. Thus, by comparing the measurement results

of the two sensors, we can decide whether the fault is:

� closer to the first sensor or

� closer to the second sensor.

5.3 Let Us Describe This Situation in Precise Terms

Let us consider the case when the sensors form a (potentially infinite) rectangular lattice.

For simplicity of analysis, let us select a coordinate system in which:

� the location of one the sensors is the starting point (0, 0), and
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� the distance between the closest sensors is used as a measuring unit.

In this coordinate system, sensors are located at all the points (a, b) with integer coordi-

nates.
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These sensors divide the plane into squares [a, a+ 1]× [b, b+ 1].
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Each spatial location (x, y) is in one of these squares:
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One can easily check that:

� for each spatial location within a square,

� the vertices (a, b), (a, b+1), (a+1, b), and (a+1, b+1) of this square are the closest

grid points.

Thus:

� by finding the 4 sensors at which the disturbance signal is the strongest,

� we can find the square that contains the location of the fault.
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5.4 Research Question

Can we determine the location of the fault more accurately than “somewhere in the square”?

5.5 Our Answer

We show that, in principle:

� by using the lattice of sensors,

� we can locate the fault with any desired accuracy.

Indeed, without losing generality, let us assume that the square containing the fault is

the square [0, 1] × [0, 1]. In other words, we know that the coordinates (x, y) of the fault

satisfy the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

For each pair of positive integers (p, q), we can check whether

� the sensor at (p,−q) gets a stronger signal than

� the sensor at (−p, q).
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The first sensor’s signal is stronger if and only if:

� the squared distance d2(f, s1) = (x − p)2 + (y − (−q))2 between the fault f and the

first sensor s1 is smaller than

� the squared distance d2(f, s2) = (x− (−p))2 + (y − q)2 to the second sensor.

One can check that d2(f, s1) < d2(f, s2) if and only if q · y < p · x, i.e., if and only if

y

x
<

p

q
.

A real number can be uniquely determined if we know:

� which rational numbers p/q are smaller than this number and

� which are larger.

Thus:

� by comparing signals from different sensors,

� we can determine the ratio r
def
= y/x with any given accuracy.

Hence, we can determine the line y = r · x going through (0, 0) that contains the fault:
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m

(0, 1) (1, 1)

Similarly, we can find a straight line going through the point (1, 1) that contains the fault.

Thus:
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� the fault’s location can be uniquely determined

� as the intersection of these two straight lines.
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5.6 Conclusions and Recommendations for Future

Work

Conclusions. In this chapter, we deal with the last of the four challenges of practical

computer-enhanced measurements. This challenge is related to the need to extract useful

information from the measurement results. In the current chapter, we analyze the simplest

case of this challenge, when we only know the ordering of the measurement results, but not

the actual numerical values.

As a result of our analysis, we come up with a theoretical result explaining – on the

example of fault location in an electric grid – that information about the ordering of

measurement results can be sufficient to accurately locate the fault.

Recommendations for future work. In the current chapter, we only deal with the

case when we know the ordering of the measurement results, but not the numerical values

themselves. It is necessary to extend our analysis to situations when we have (and can use)

numerical values as well.
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Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions

Challenges. In this thesis, we dealt with the main challenges related to practical computer-

enhanced measurements:

� The first challenge is related to the fact that the existing metrological recommenda-

tions are mostly based on the previous practice, when we could only afford to have a

small number of measurements. As a result, the same system that in the past (when

fewer measurements were possible) would have successfully passed the metrological

analysis is no longer certified when more measurement results are available. This is

a serious problem that, e.g., halted the design of the International Thermonuclear

Experimental Reactor ITER.

� The second challenge is related to the fact that in the past, when there were few afford-

able measuring instruments and we could only afford a few measurements, there were

not that many options. In such cases, planning measurements simply meant selecting

one of these options. So, we could plan the measurements “by hand”. Nowadays,

with a potential to perform a large number of measurements and the availability of

many different measuring instruments, the number of possible measurement options

becomes so large that we need to develop methods for optimal planning. There exist

techniques for such planning, but these techniques are mostly based on limited num-
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ber of measurements. For situations when we have a large number of measurements,

to the best of our knowledge, no practical general methods are known – even for

the simplest case when the data processing algorithms consists of simply adding or

averaging the measurement results.

� The third challenge is related to the fact that in the past, when we could only afford

a few measurements, these measurements were usually performed by similar measur-

ing instruments, instruments for which we had a good understanding of what causes

their measurement errors. In some situations, most measurement errors were causes

by internal features of the instruments. In this case, the corresponding measurement

errors were independent. In other situations, mostly external features were dominant,

in which case we do have any information about the relation between different mea-

surement errors. In both types of situations, formulas were developed for processing

the resulting uncertainty. With the possibility to perform numerous measurements

and process their results, we often encounter situations when some pairs of measure-

ment errors are independent but for other pairs of measurement errors, we do not

have any information about their relation.

� The final – fourth – challenge is how to extract useful information from all these

measurement results.

Objectives. In this thesis, our main objective was to deal with the simplest possible cases

of these challenges:

� In relation to the first challenge, we analyzed how to make sure that the measurement

standards do not lead to the current counterintuitive practice of reducing the number

of measurements.

� In relation to the second challenge, we analyzed how to come up with optimal exper-

iment design for the simplest case when the data processing algorithms consists of

simply adding or averaging the measurement results.
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� In relation to the third challenge, we analyzed how to come up with techniques for

processing measurement results in situations which are slightly different from the

above-described well-studied ones; namely:

– for the situations when for most pairs of measuring instruments, we know that

the corresponding measuring errors are independent, but for a few pairs, we do

not have any information about their dependence, and

– for the situations in which for most pairs of measuring instruments, we have

no information about the dependence between the corresponding measurement

errors, but for some pairs, we know that the corresponding measurement errors

are independent.

� In relation to the fourth challenge, we analyzed how to extract information from the

measurements, in the simplest case when we only know the ordering of the measure-

ment results, but not the actual numerical values.

Contributions. As a result of our analysis, we came up with the following contributions:

� For the first objective, we propose the idea of how to change the standards, so as

to avoid the above-mentioned unfortunate situations, when additional measurements

can (and do) put the system at risk of not being approved.

� For the second objective, we provide a theoretical analysis of the problem and find

a new explicit formulas for the optimal measurement design. As an interesting side

effect of this theoretical analysis, we come up with an explanation of why measurement

accuracy is usually described by listing absolute and relative error components. To

the best of our knowledge, ours is the first theoretical explanation for this widely used

practice.

� For the third challenge, we provide new explicit easy-to-implement formulas describ-

ing the uncertainty of the result of data processing in above-described situations.
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� Finally, for the fourth challenge, we provide a theoretical result explaining – on the

example of fault location in an electric grid – that information about the ordering of

measurement results can be sufficient to accurately locate the fault.

6.2 Recommendations for Future Work

For all four challenges, in this thesis, we only deal with the simplest possible cases of the

general challenges; it is necessary to extend our analysis to more general cases.

� For the first challenge – related to measurement-related certification of systems – we

simply propose an idea, it is still necessary to develop this idea and to come up with

the corresponding standards.

� For the second challenge – related to measurement design – we only deal with the sim-

plest case when the data processing algorithms consists of simply adding or averaging

the measurement results. It is necessary to extend our analysis to more complex data

processing algorithms.

� For the third challenge – of uncertainty analysis in situations when we have different

information about different pairs of measurements – we only deal with the cases

when for the most pairs, we have information of the same type, and only for a small

number of pairs, we have different information. It is necessary to extend our analysis

to situations when we have a larger number of pairs with different information.

� Finally, for the fourth challenge – related to processing measurement results – we only

deal with the case when we know the ordering of the measurement results, but not

the numerical values themselves. It is necessary to extend our analysis to situations

when we have (and can use) numerical values as well.
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