
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2022-12-01

Analyzing And Quantifying The Impact Of Software Diversification Analyzing And Quantifying The Impact Of Software Diversification

On Return-Oriented Programming (rop) Based Exploits On Return-Oriented Programming (rop) Based Exploits

David Reyes
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Reyes, David, "Analyzing And Quantifying The Impact Of Software Diversification On Return-Oriented
Programming (rop) Based Exploits" (2022). Open Access Theses & Dissertations. 3718.
https://scholarworks.utep.edu/open_etd/3718

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3718?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3718&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

ANALYZING AND QUANTIFYING THE IMPACT OF SOFTWARE DIVERSIFICATION

ON RETURN-ORIENTED PROGRAMMING (ROP) BASED EXPLOITS

DAVID REYES

Doctoral Program in Computer Science

APPROVED:

Salamah Salamah, Ph.D., Chair

Jaime Acosta, Ph.D.

Deepak Tosh, Ph.D.

Sai Mounika Errapotu Ph.D.

Stephen L. Crites, Jr., Ph.D.

Dean of the Graduate School

Copyright ©

by

David Reyes

2022

DEDICATION

To my mother, father, sister, nieces, and fiancé.

Your love, support, and patience have made all this possible. It has meant the world to me.

Finally, to my grandfather, Lorenzo Reyes Sr., who sadly is not here to witness this.

Ahora si, ya acabe Apa.

ANALYZING AND QUANTIFYING THE IMPACT OF SOFTWARE DIVERSIFICATION

ON RETURN-ORIENTED (ROP) BASED EXPLOITS

by

DAVID REYES, BSCS, MSSwE

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

December 2022

v

ACKNOWLEDGMENTS

I want to thank first and foremost, my committee Dr. Salamah Salamah, Dr. Jaime

Acosta, Dr. Deepak Tosh, and Dr. Sai Mounika Errapotu. Thank you all for your time and for

participating in this journey.

To Dr. Salamah Salamah and Dr. Jaime Acosta, thank you both for your support,

motivation, guidance, and most importantly, patience, without which this work would not have

been possible. Thank you both for being role models, mentors, teachers, and guides. Thank you,

Dr. Salamah Salamah, for constantly pushing me to excel. From the moment I first stepped into

your Software II class, throughout the Master's program, and finally during the Ph.D. process, I

know you have aged as much as I have. Thank you for entrusting me with programs such as the

Cyber Patriot Initiative and for putting more than I thought I could handle on my plate. But more

so, thank you for pushing me to keep going when I was ready to quit, believing in me when I

didn't, and helping me through the lows.

I also would like to thank Dr. Ann Q. Gates for your mentorship during my time as a

student in your Software Engineering I course and as your Teaching Assistant. I have learned so

much about software engineering, teaching, and mentorship from you, and I will take it with me

in this next chapter of my career.

I also want to thank the friends I made at UTEP, Pedro, Daniel, and Pruitt. Thank you,

guys, for being some of the most incredible friends in and out of UTEP. I have learned a lot from

the three of you, and I hope to continue to learn from you all. I'll see you all at Daniel's lake

house.

I would also like to thank the entire Computer Science department faculty and staff for all

of the work that they do. While I will miss the department while I am away, I plan to return

vi

eventually and teach what I learned from my time in the real world to the next generation of

students.

Finally and certainly not least, I want to thank a significant person in my life, my fiancé,

Cynthia Morales-Contreras; thank you for listening when I needed to vent, providing me with

someone to talk to during the hard times, and for always offering feedback over these past years.

vii

ABSTRACT

With the implementation of modern software mitigation techniques such: as Address Space

Layout Randomization (ASLR), stack canaries, and the No-Execute bit (N.X.), attackers can no

longer achieve arbitrary code execution simply by injecting shellcode into a vulnerable buffer and

redirecting execution to this vulnerable buffer. Instead, attackers have pivoted to Return Oriented

Programming (ROP) to achieve the same arbitrary code execution. Using this attack method,

attackers string together ROP gadgets, assembly code snippets found in the target binary, to form

what are known as ROP Chains. Using these ROP Chains, attackers can achieve the same

malicious behavior as previous code injection attacks on vulnerable buffers. Furthermore, because

of the static location of these ROP gadgets, attackers can re-use their exploit code across all

systems running the binary. This phenomenon is what is called a write-once, compromise-

everywhere scenario.

Software diversification has been presented as a possible mitigation strategy over the past

seventeen years. Software diversification is a technique that modifies the instructions in binaries

while maintaining their semantic behavior. The means given the same input binaries would

produce the same output; however, the diversified binary is syntactically different at the assembly

level.

Previous work in this area has shown general success in reducing the number of shared

gadgets. However, there has been a lack of research that analyzes how diversification affects an

attacker from re-using a previously crafted exploit. Furthermore, current research has not presented

approaches that measure diversification algorithms' impact and effectiveness on binaries. Finally,

because software diversification modifies the assembly code of binaries, different binaries are

affected in vastly different ways. In addition to the different diversification algorithms, defenders

viii

can find it challenging to determine which configurations best suit their needs. This uncertainty

may lead to unwanted trade-offs; for example, one diversification algorithm might make it harder

for modern tools like Fuzzers to find crashes or vulnerabilities. The impact might come at the cost

of increasing the total number of gadgets in the binary or increasing the program's run time.

Likewise, while one algorithm might offer protection while minimizing the number of ROP

gadgets, it might allow modern tools or attackers to locate the vulnerability faster than if another

algorithm were applied.

To address the lack of research in this area, the work presented in this dissertation analyzes

software diversification's impact on exploit re-use attacks, identifies the primary criteria to

quantify the efficacy of diversification algorithms, and proposes a method to quantify the

effectiveness of diversification algorithms. Finally, this work develops and presents a system that

identifies the appropriate algorithm(s) or combination of algorithms based on the end user's needs

using the quantification methods developed. This system allows the end user to quickly and easily

identify the appropriate algorithm based on their security preferences or requirements; while

giving the end user an understanding of the trade-offs between algorithms. With this

understanding, the end user can create multiple diversified variants of the target binary that meet

their security needs.

ix

TABLE OF CONTENTS

DEDICATION ...III

ACKNOWLEDGMENTS .. V

ABSTRACT ... VII

TABLE OF CONTENTS .. IX

LIST OF TABLES .. XIII

LIST OF FIGURES ... XIV

CHAPTER 1: INTRODUCTION ..1

1.1 MOTIVATION ..1

1.2 RESEARCH PROBLEM ...5

1.3 SIGNIFICANCE OF THE RESEARCH ...6

1.4 ORGANIZATION OF THE DISSERTATION..8

CHAPTER 2: BACKGROUND ..9

2.1 EXPLOITATION TECHNIQUE: BUFFER OVERFLOW ...9

2.2 EXPLOITATION TECHNIQUE: RETURN-ORIENTED PROGRAMMING

(ROP) ...12

2.3 DIVERSIFICATION TECHNIQUES ..16

2.3.1 Implementation Time ..16

2.3.2 Compiling and Linking Time..17

2.3.3 Installation Time ...20

2.3.4 Load Time ...25

2.3.5 IoT Devices ...28

2.4 SUMMARY ..29

CHAPTER 3: RELATED WORK ...31

3.1 MEASURING THE EFFECTIVENESS OF DIVERSIFICATION APPROACHES....31

3.1.1 Diversification on Gadget Removal..31

3.1.1 Diversification on Binary Performance ..34

3.2 SUMMARY ..38

x

CHAPTER 4: RESEARCH QUESTIONS ..39

4.1 RESEARCH GOAL..39

CHAPTER 5: METHODOLOGY ...41

5.1 EXAMINING THE IMPACT OF SOFTWARE DIVERSIFICATION ON

EXPLOIT DEVELOPMENT ..41

5.1.1 Experimental Overview ..41

5.1.1.1 Diversification Engine Selection ..41

5.1.1.2 Binary Selection ..43

5.1.1.3 ROP Gadget Analysis Toolset ..45

5.1.1.4 Experimental Design ...46

5.2 QUANTIFYING SOFTWARE DIVERSIFICATION ...47

5.2.1 Identifying the Appropriate Quantification Metrics ...48

5.2.2 Quantifying Attack Resistance ...48

5.2.3 Quantifying Exploit Complexity...50

5.2.4 Quantifying Resistance to Reverse Engineering ...51

5.3 IMPLEMENTATION OF THE SELECTOR SYSTEM FOR DIVERSIFIED

BINARIES ...52

5.3.1 Choice of Implementation Platform..53

5.3.2 System Components..54

5.3.3 High-Level System Design ...54

5.3.4 Execution Component ...55

5.3.5 Diversification Component ...56

5.3.6 Analysis Component ...57

5.3.7 Algorithm Selection Component ..58

5.3.8 Visualization Component..59

5.4 SUMMARY ..60

CHAPTER 6: RESULTS AND OBSERVATIONS ..61

6.1 IMPACT OF SOFTWARE DIVERSIFICATION ON EXPLOIT DEVELOPMENT ..61

6.1.2 Gadget Count ..61

6.1.2 Surviving Gadgets ...64

6.1.3 Exploit Generation ..68

6.2 QUANTIFICATION OF THE IMPACT OF SOFTWARE DIVERSIFICATION72

6.2.1 Diversification on Attack Resistance ..72

xi

6.2.2 Diversification on Exploit Complexity ...74

6.2.3 Diversification on Resistance to Reverse Engineering75

6.3 ALGORITHM SELECTION CASE STUDY ..76

6.3.1 Setup ...76

6.3.2 Maximizing Attack Resistance ...77

6.3.3 Balanced Diversification ...81

6.4 DISCUSSION ...85

CHAPTER 7: CONCLUSION ..87

7.1 SUMMARY ..87

7.2 FUTURE WORK ..88

REFERENCES ..91

GLOSSARY ..98

Definitions...98

Acronyms ..98

APPENDIX A ..99

Examples of ROP Gadgets..99

APPENDIX B ..100

Examples of System Calls ..100

APPENDIX C ..101

APPENDIX D ..102

APPENDIX E ..103

APPENDIX F...104

APPENDIX G ..105

APPENDIX H ..106

APPENDIX I ...107

Complete Attack Resistance Results ..107

APPENDIX J ...115

Complete Exploit Complexity Score Results ...115

xii

APPENDIX K ..122

Complete Resistance To Reverse Engineering Score Results ..122

VITA ..129

xiii

LIST OF TABLES

Table 1: Average Percentage of Shared Gadgets between Variants and Non-Diversified Binaries

... 65
Table 2: Attack Resistance Score Results ... 72
Table 3: Exploit Complexity Score Results .. 74
Table 4: Resistance to Reverse Engineering Score Results .. 75
Table 5: Definition of Terms Used ... 98

Table 6: Acronyms .. 98
Table 7: ROP Gadgets .. 99
Table 8: Exit System Call Values ... 100
Table 9: Attack Resistance Score Results for All Binaries ... 107
Table 10: Exploit Complexity Score Results for All Binaries .. 115

Table 11: Resistance to Reverse Engineering Score Results for All Binaries 122

xiv

LIST OF FIGURES

Figure 1: One Version Software ... 3

Figure 2: Software Diversification Approach ... 4
Figure 3: Buffer Overflow Example ... 11
Figure 4: ROP Chain Example ... 13
Figure 5: Full execve ROP Chain.. 15
Figure 6:Unaligned syscall Gadget Found by ROPPER... 46

Equation 1: Attack Resistance Formula .. 49
Figure 7: Example of a ROP gadget that clobbers registers ... 50
Figure 8: Selection System Architecture .. 55
Equation 2: Normalization Formula ... 58
Equation 3: Impact Score Formula ... 59

Figure 9: Function and Gadget Relationship Non-Diversified: Real-World 62
Figure 10: Function and Gadget Relationship All Algorithms and Non-Diversified: Real-World

... 63
Figure 11: Function and Gadget Relationship All Algorithms and Non-Diversified: Coreutils .. 64

Figure 12: Surviving Gadgets between Original and Variants PDFResserect 67
Figure 13: ROPPER Generated execve for Sipp .. 68
Figure 14: ROPPER Generated mprotect Exploit for Crossfire-Server 70

Figure 15: ROPPER Generated mprotect Exploit for Crossfire-Server All Diversification

Algorithms Applied .. 70

Figure 16: Base64 Best Attack Resistance Algorithm .. 78
Figure 17: CPU-Time Impact for Base64 ... 79
Figure 18: Sha512Sum Best Attack Resistance Focus ... 80

Figure 19: CPU-Time Impact for Sha512 Sum .. 81

Figure 20: Base64 Best Balanced ... 82
Figure 21: Base64 Total Execution Time ... 83
Figure 22: ls Best Balanced .. 84

Figure 23: ls Total Execution Time .. 85
Figure 24: Shred CPU Clock Cycles Plot ... 101
Figure 25: Shred ROP Gadgets Plot ... 102

Figure 26: CP CPU Clock Cycles Plot ... 103
Figure 27: CP ROP Gadgets Plot .. 104
Figure 28: ls CPU Clock Cycles Plot .. 105
Figure 29: ls ROP Gadgets Plot .. 106

1

CHAPTER 1: INTRODUCTION

Security vulnerabilities exist in many domains, including networking, operating system,

and application. Security risks at the application level are some of the most significant security

problems impacting systems today. These applications are connected to the cloud and are now

often available over various other networks. Failure to address security throughout the application

lifecycle can result in catastrophic damages like the loss of intellectual property, money, or data

[1]. A large number of critical systems further exacerbates this point. These systems contain

features such as low-level support, optimizations, and interfacing with hardware components.

However, the responsibility of securing these systems is almost exclusively to the programmer.

Coding issues such as user input sanitization, input bounds checking, or managing dynamically

allocated memory correctly can introduce vulnerabilities that might not be found in testing. This

code composes both small and large systems alike and is used across enterprises, with their

vulnerabilities unknown. [2].

1.1 MOTIVATION

Significant effort has been made to secure systems over the past fifteen years to address

the risk of coding issues. With the implementation of mitigation techniques such as stack canaries

[3], ASLR [4], and DEP [4], there has been an increase in the security of computer networks and

operating systems. However, the dynamic nature of securing software systems means attackers

continue successfully developing new methods and combining already-established ones to achieve

malicious actions. One method attackers have begun using to get around security mitigations is an

approach called Return Oriented Programming (ROP), also known as code re-use attack. Under

the right circumstances, ROP can allow attackers to execute arbitrary code on the vulnerable

2

program. This exploit is achieved through assembly code snippets called 'gadgets' which can be

linked together to execute larger commands. The linking of more than one ROP gadget is called

an ROP chain. One example of using this method occured in November of 2018 when a security

researcher using the pseudonym MorteNoir1 identified a zero-day vulnerability. This vulnerability

is unknown to the developers; therefore, it has been zero days since it was patched and created an

exploit with the ability to escape a virtualized environment. After escaping this virtualized

environment, the exploit could run arbitrary code on the host machine. This exploit also had

advanced capabilities that bypassed modern defenses such as ASLR and DEP. The researcher then

used a stack and heap overflow to gain control of the program's execution flow. Finally, using a

series of ROP gadgets, the researcher created a ROP chain to escape the virtual machine and cause

arbitrary code execution. This arbitrary code execution allowed him to escape from the guest VM

to the host system [5]. This example is only one of the many situations where attackers have used

ROP to gain arbitrary code execution in a program. We can expect these attacks to continue

without a way to secure a software program.

Furthermore, a single binary representation is distributed and installed when software is

distributed to numerous systems. The consequence of having identical binaries is that a security

vulnerability exploiting a particular binary will make all environments where the software system

is installed susceptible to the same exploit. Consequently, an attacker only has to develop a single

exploit that can impact a wide range of users. Figure 1, initially presented in [6], illustrates this

point.

3

Figure 1: One Version Software

Software diversification is an approach to software defense that creates unique variants of

the target program, given either source code or binary code. These variants are semantically

equivalent but have syntactically different assembly codes. This approach's advantage is the

availability of different binaries for the same system, which means that other users will install

variant binaries in their particular environment. This means that if an attacker develops or finds an

exploit for one of these variants, it is not guaranteed that the exploit will work as the assembly

code would differ on each variant. Thus critical pieces for the exploit could be missing or located

in different offsets than expected. This approach to software protection, which is not widely

adopted in software development, adds a layer of uncertainty to the target program. Knowledge

obtained by the attacker from one binary would then not apply to other copies. This approach can

be shown in Figure 2.

4

Figure 2: Software Diversification Approach

As seen in the figure, the assembly code for each variant is different. These subtitle

differences in assembly code would be enough to stop an attacker's code from being executed, as

each would produce unexpected or unwanted behavior. However, as noted in [7], most current

software diversification approaches have remained primarily academic. It is not widely known

whether software diversification will add any benefit to compiled binaries. This work aims to help

understand if diversification offers benefits when applied to binaries and if software diversification

would make it more difficult for an attacker to use pre-written exploits. There are many possible

reasons for software diversification's lack of mainstream acceptance. One reason has been

presented in [8]. In this work, the authors identify that there is currently a lack of research that

quantifies the impact diversification introduces from an exploitability standpoint. Therefore it is

not entirely known if diversification helps. Previous work in diversification has been heavily

5

focused on approaches and where and how diversification can be applied, i.e., upon compilation,

through binary re-writing.

Additionally, while most previous works have reported the impacts their diversification

engines have on performance, very few report on eliminating ROP gadgets and machine

instructions are already present in the code. Those that do report on the impact diversification has

on ROP gadgets use automated tools like ROPGadget [9], Mona [10], and Q [11] to try to find

gadgets. The use of these tools is an issue because most are relatively sensitive to change and

approaches, such as inserting a no-operation instruction (NOP). NOP instructions do not modify

the program's processing state and can fool these tools into thinking gadgets are eliminated. In

some works, gadget elimination is determined by whether a gadget still exists in the same memory

offsets across variants. Most of these tools used to find gadgets are not the only tactics used by an

attacker. Furthermore, skilled attackers might catch on that diversification tactics are being utilized

and adjust their exploits accordingly.

1.2 RESEARCH PROBLEM

Modern exploitation techniques leverage a mechanism called return-oriented programming

(ROP). ROP gadgets are defined as: a sequence of short meaningful instructions that are part of an

executable. Attackers can chain together ROP gadgets to create a ROP chain. When these ROP

gadgets are executed in a specific order they can complete a malicious action that has the same

effect as injecting shellcode into a program.

For example, most modern IP security cameras' firmware comes with a built-in web service

that allows the camera owner to modify the file configuration, view recordings, etc. These web

services often read user input from a web form; however, an attacker could craft an exploit if the

6

input is not correctly sanitized or validated. These exploits can redirect control of the binary to

execute attacker-requested commands (such as deleting recorded videos, viewing videos, stealing

passwords, resetting passwords, etc.). While this example illustrates one scenario using an Internet

of Things (IoT) device, these attacks are not limited to IoT devices or even the specific architecture

associated with IoT devices, as code injection continues to be a part of Open Web Application

Security Project’s (OWASP) top ten vulnerabilities.

This attack is not new as it has been around for over 17 years. Since then, software

diversification has been presented as a critical mechanism to thwart these types of attacks.

Software diversification attempts to modify an executable so that these gadgets needed to create

an exploit are no longer present, making the job harder for the attacker and adding some

uncertainty from executable to executable. However, the problem is that diversification's impact

on protecting against ROP exploits has not been evaluated in the research; currently, there is no

actual methodology to assess the effects of different diversification techniques.

1.3 SIGNIFICANCE OF THE RESEARCH

The study of the efficacy of diversification and how it affects an adversary's effort is

described by Larson et al. as an area that "is very much so in its infancy." As previously noted,

[12] echoed this statement by stating, "Few studies consider how diversity interfered with exploit

re-use attacks." This work takes forward steps in understanding how diversification interferes

with ROP attacks and learning more about how diversification can help defend against ROP

exploits. Additionally, this work presents ways to quantify the impact of software

diversification, and through the development of a selector system offers a method for defenders

to be able to select the best diversification algorithm for their scenarios.

7

The significance of this work is threefold. First, by understanding the effects of

diversification, it can be understood if diversification does add extra barriers to an attacker trying

to compromise diversified software systems and identify if diversification, at its current state, is a

suitable way to defend against ROP exploits. Second, such an effort to develop metrics to

analyze a methodology to quantify software diversification algorithms has never been attempted.

Through the metrics and evaluation techniques developed in this work, researchers will also be

able to compare the effectiveness of different algorithms. These techniques will also identify if

combining diversification algorithms offsets the benefits of using a single algorithm in terms of

performance and binary hardening. Finally, by using the quantifiable metrics developed in this

work, operators can better identify diversification algorithms that best meet their needs while

minimizing or understanding the trade-offs associated with diversification, not only from a

binary hardening standpoint but also from a performance standpoint. With the development of

these quantification models, the vision will be that this will allow researchers to have a way to

measure software diversification's impact. These models will serve as a starting point, and

researchers will be able to expand on them in future research.

The results from this dissertation will allow for several avenues of future research. This

work will make the quantification of data more accessible, enabling researchers to develop more

robust diversification engines, which will assist in efficiently eliminating or breaking up gadgets.

Additionally, by extending the automated framework and tools created as part of this work,

future researchers will be able to focus more attention on developing diversification algorithms

and use this work to analyze those algorithms. Finally, with the toolset developed as a part of this

work, operators will have access to a suite of tools to assist them in determining the best

diversification algorithm(s). The suite of tools created can help operators select diversification

8

algorithms that best suit their needs and visualize variables that apply to them other than just

ROP gadget elimination (i.e., file size, CPU cycles executed, power usage, etc.). This work will

help transition software diversification into a defense method widely accepted in the general

software development community.

1.4 ORGANIZATION OF THE DISSERTATION

This dissertation is organized as follows. Chapter 2 provides background on the buffer

overflow vulnerability, discusses return-oriented programming (ROP) as an exploitation

technique, and discusses the background work on existing software diversification approaches.

Chapter 3 discusses the related work concerning software diversification and previous work on

analyzing the impact of diversification approaches. Chapter 4 presents the research goals of this

dissertation. Chapter 5 details the methodology regarding the analysis of software diversification's

implications for exploit development, the identification of the criteria and methods proposed to

quantify the impact of software diversification, and the implementation details of the selection

system. Chapter 6 presents the results and observations from this work. Finally, Chapter 7

summarizes the work in this dissertation and discusses future directions in this area, followed by

a glossary of terms, appendices, and references.

9

CHAPTER 2: BACKGROUND

Before understanding and developing methods that can assist in developing new software

diversification techniques, it is first essential to understand what security vulnerabilities are and

how they occur. Additionally, it is crucial to know how attackers can use these vulnerabilities to

develop Return Oriented Programming (ROP) exploits that are Turing Complete [13]. Because

ROP-based exploits are the successor of Buffer overflow vulnerabilities, this chapter will begin by

giving a brief background on Buffer Overflow vulnerabilities, followed by a detailed explanation

of what ROP is, how it works, and how an attacker can use ROP gadgets to divert a program from

its normal execution. Finally, this chapter concludes with previous work in the software

diversification literature.

2.1 EXPLOITATION TECHNIQUE: BUFFER OVERFLOW

Due to the Von Neumann Architecture, code and data are treated the same [14]. This lack

of separation between the two allows for user data that can be executed like code to be executed,

thus allowing an attacker to divert a program's execution from normal execution. The buffer

overflow vulnerability was first published in 1996 by Aleph One in the e-zine Phrack and is a type

of memory corruption vulnerability where more data is written to a buffer than allocated space,

thus overwriting data on adjacent memory addresses [13]. This vulnerability is typically associated

with programming languages such as C and C++, which hand over memory allocation and bounds

checking to the programmer. This lack of bounds checking can be due to the programmer using

unsafe functions such as gets(), which keeps reading input until it receives a newline encountered,

or improper use of safe functions like fget(). Moreover, the memory overwriting associated with

buffer overflows allows attackers to write into areas that hold executable code or overwrite a

10

program's state. Allowing attackers the ability to execute a set of instructions injected and diverge

execution to this malicious code, historically the malicious code injected is known as shellcode.

While this attack is more than twenty years old, unfortunately it is still a relevant attack

method today; from 2016 to 2022, the National Vulnerability Database documented 5,856 buffer

overflow vulnerabilities in software systems [15]. Moreover, at the time of this dissertation's

publication, CVE-2022-3786 was the most recent buffer overflow vulnerability. Additionally,

those numbers do not consider the potential buffer overflow vulnerabilities between systems that

share source code. For example, [16] found that 62% of code source code was shared between

proprietary automobile firmware and open-sourced router firmware.

What makes buffer overflow vulnerabilities so dangerous is that in a traditional stack buffer

overflow, attackers redirect program execution by placing malicious shellcode directly onto a

vulnerable buffer and begin corrupting the adjacent memory. This allows the attacker to overwrite

the return address, the next instruction executed after a function terminates execution, with the

address of their shellcode. This redirection will cause the malicious shellcode to run when the

program tries to return. Figure 3 details an example of this technique.

11

Figure 3: Buffer Overflow Example

Under normal execution flow, the return address will redirect to the next instruction to be

executed after the function terminates, as shown on the left in Figure 3. As shown on the right, an

attacker can use the vulnerability to place their shellcode onto the buffer, overwrite the return

address, and point the return address to the shellcode on the stack. Thus when the function returns,

execution would be diverted to execute this malicious shellcode. In buffer overflow vulnerabilities,

the attacker is not limited to only executing shellcode. As long as the attacker has control of the

return address, they can re-route execution to any location in the memory they want.

Computer architecture designers began developing mitigation techniques to treat code and

data as separate entities to address the underlining problem presented by buffer overflow

vulnerabilities. These mitigation strategies led to the development and introduction of Data

Execution Prevention (DEP) in Windows systems and its Linux counterpart, the No-Execute bit

12

(NX). With the introduction of DEP in Windows systems and the No-Execute bit (NX) in Linux

systems, attackers no longer have the ability to execute shellcode directly from a buffer. To get

around these mitigation, attacks have shifted to a new technique called Return Oriented

Programming (ROP).

2.2 EXPLOITATION TECHNIQUE: RETURN-ORIENTED PROGRAMMING (ROP)

Due to modern mitigations like Data Execution Prevention (DEP) for Windows and Non-

Executable bit (NX) for Linux systems, attackers can no longer take advantage of a vulnerable

buffer by injecting shellcode and redirecting execution to the address of that shellcode. As a result,

modern exploit development methods used by attackers rely on an approach known as Return

Oriented Programming (ROP), an exploitation tactic first presented in [17]; this exploit method

bypasses mitigations like DEP/NX and achieves arbitrary code execution.

By linking, short code sequences already present in the program the attacker can achieve

code execution that is Turing-Complete [18]. These code snippets are comprised of instruction

sequences or immediate data words ending with a 'ret' and have traditionally been referred to as

ROP gadgets. These gadgets allow attackers to: modify registers, write/read to/from memory, and

execute system calls. To create a meaningful exploit, attackers combine multiple gadgets to

develop a ROP chain, a collection of one or more ROP gadgets. These ROP chains traditionally

end in a system call, although that might not always be the case. Once attackers have an entire

ROP chain, they can then use these ROP chains to create Turing-Complete [19] exploits that mimic

the same behavior as shellcode without injecting it into the program. Because these gadgets are

primarily in the .text section of the binary, the executable bit is enabled, allowing the attacker to

13

execute this malicious payload without being affected by the NX mitigation. Moreover, attackers

can even disable mitigations like NX with a small set of gadgets.

A brief example of gadgets that can be used to accomplish these actions is shown in Table 7.

Attackers can use ROP gadgets to create fake stack frames and set up the stack to make function

calls with arguments similar to how functions would be called during normal execution. A

example of how an attacker uses these ROP gadgets to execute the exit(0) system call is shown

in

Figure 4.

14

Figure 4: ROP Chain Example

From the example above, suppose that the attacker has identified a buffer overflow

vulnerability and can overwrite the return address. The attacker would then look for gadgets that

will allow them to execute system commands; in the example shown above, the attacker would

want to run the assembly code shown that executes the system call exit(0) (the function call that

successfully terminates the program). After identifying the vulnerabilities, the attacker would need

to know the values in the registers. Table 8 details the values registers should contain for standard

function calls. Using Table 8, the attacker knows that register eax should have a value of one (0x1),

and the register ebp should contain the value of the exit code in this example, which would be zero.

Next, the attacker would look for gadgets that allow them to meet the register value requirements.

These addresses would then be placed on the stack to execute. In this example, we can see that

when the function returns, instead of the original return address, the attacker will redirect execution

to the address 0x2653; this redirection will execute the instruction xor eax, eax; ret. When the

program runs the ret instruction, the program will perform the second gadget, and this process will

15

continue until int 80; executes. In x86 assembly code, int 0x80 is used to invoke a system call.

While this is a simple example, more advanced exploitations do not deviate much from this

example as they still rely on small gadgets to create more complex actions. The only difference is

that complex ROP chains require more ROP gadgets to populate registers and read or write to or

from memory, depending on the attacker's overall goal. Figure 5Error! Reference source not

found. shows an example of a complete ROP chain. An interactive shell is executed in this ROP

chain.

16

Figure 5: Full execve ROP Chain

17

2.3 DIVERSIFICATION TECHNIQUES

The idea of software diversification as a way of software defense is a concept that is at

least two decades old [8]. Previous work has determined that diversification can be added to a

program at the design and implementation phase of the software development lifecycle and at the

deployment and patching phases [20]. However, in defending against code reuse attacks, when we

decide to diversify would determine the toolset and approach used. These decisions will not only

affect how effective the removal of ROP gadgets is but also affect performance, CPU usage, and

the resulting binary.

This section discusses the various phases where diversification can be applied and each

step's different techniques. The following subsections provide a detailed summary of these phases

and methods.

2.3.1 Implementation Time

N-version programming is the independent generation of N > 2 functionally equivalent

programs from the exact initial specification [22]. Early work done in N-versioning was aimed

toward fault tolerance in mission-critical systems. This approach uses the idea of design diversity

where individual teams would implement components separately, design, and have different

implementations for similar algorithms. This minimizes the probability of similar errors at decision

points; different algorithms, programming languages, environments, and tools are used wherever

possible [23].

As explained in [24], the purpose of this approach is those redundant units are intended to

compensate for or mask a failed software unit when they are not affected by software faults that

cause similar errors at cross-check points. The output of these individual systems is then compared

and carried out by selection algorithms or, in most cases, a voting mechanism to derive a

18

consensus. These mechanisms are used to detect erroneous outputs from the individually created

versions. Finally, each version is integrated into the system, becoming a part of the more extensive

system.

While N-versioning seems like a practical solution to software diversification and is still

reasonably popular within different corporations such as Raytheon, this approach is not without

significant drawbacks. First, N-versioning for a given program shows an apparent increase in terms

of cost, as a different team is required for every unique version developed. Second, as [7] points

out, the logic implemented in one code version may be correct, incorrect, or missing altogether,

even though it passes the selection algorithm. Additionally, there is a possibility that faulty but

identical results (due to missing logic) may outvote correct results [22]. Finally, N-versioning does

not remove ROP gadgets. Instead, another program is created that may or may not have a similar

exploit.

2.3.2 Compiling and Linking Time

Software diversification at the compilation and linking stage allows for greater control over

how and where we can focus our diversification efforts. As noted in [8], diversifying binaries at

this level has three main advantages. The first advantage is information such as symbols and

control flow are still intact. This advantage is important because the transformation from source

code to object code is a lossy transformation. As a result, of this lossy transformation, perfect

recovery of a program’s control flow is not generally possible [8]. Second, one compiler mays also

support multiple instruction sets and architectures. This also allows transformations to be

generalizable and implemented across all compiler-supported architectures. For example, the GCC

compiler has a vast variety of hardware models and configurations that are readily available [25];

thus, by adding diversification techniques to the compiler, researchers can take advantage of

19

various hardware models. Finally, one of the most powerful benefits of compiler-generated

diversification is the ability to tap into the compiler’s optimizer. This means even after the binary

has gone through the optimization phases, diversification still occurs. This would potentially allow

us to keep the performance overhead to a minimum.

In [7], the authors present a hybrid approach to diversify software that uses a compiler to

embed metadata and a custom toolchain on the client side to achieve diversification. This approach

uses a modified LLVM/Clang compiler to embed metadata in the resulting object files. These

object files are then updated and consolidated during the linking phase, during which the authors

modified the GCC gold linker. In the compilation and linking steps, a new section is added to the

.text section, which the authors call .random. This section is added to each object file and in the

final resulting binary. In this work, the authors did not report on results concerning eliminating

ROP gadgets. However, the authors did report results on performance and file size. On average,

the authors note that they did see a 0.28% increase in performance, which they note is negligible.

Regarding file size, on average, authors saw an 11.46% increase in file size. Which, as they note,

is a modest size increase.

Additionally, in [26], another approach to diversifying software systems at the compiler

level is presented. This approach took advantage of a cloud computing environment to create more

variants in parallel rather than sequential. The diversification algorithms employed in this paper

were no operation (NOP) code insertion, instructions that do not modify the program processor

state, and adjustment of the instruction scheduling. Instruction scheduling is a technique that

compilers use to decrease pipeline hazards. In this paper, the authors used a value they called pnop

to determine if a NOP instruction will follow each instruction.

20

Regarding selecting how the instruction scheduling would be determined, the authors decided to

implement random choice and worst-case instruction scheduling. To evaluate their approach to

diversification, the authors collected data regarding security, performance, and file size. The

approach taken to measure security was based on a survivor algorithm they developed. Under the

survivor algorithm, a gadget is considered “survived” if it appears at the exact memory location

after diversification. If the memory location changes, the gadget is considered eliminated. Their

results in regards to security show that when using their instruction scheduling algorithm in both

worst case and best case, more than 95% of usable gadgets were removed on average. Additionally,

when using their NOP insertion algorithm, less than 4 percent of gadgets survived.

When discussing the results relating to file size for all NOP insertion diversification, the

authors saw a significant file size increase of 3.9% at the lower bounds and 40% at the upper limit.

Finally, regarding performance with the NOP insertion, authors observed an increase in

performance ranging from 1.3% to 40%. Some of the degradations are explained with pipeline

stalls caused by a bug in their compiler where two NOP instructions were added one after the other.

With the second algorithm, slowdowns were observed between 9 and 20 percent, with some

binaries having a performance increase well within the margin of error. These slowdowns are not

surprising as the compiler places the instructions in a specific way to increase the performance,

and rearranging them can lead to suboptimal performance.

While software diversification at the compiling and linking level gives more control over

the diversification process, several shortcomings exist. The most obvious one is the availability of

a compiler; much of the work presented here has been limited to only open-sourced compilers such

as GCC and LLVM. This limitation prevents software diversification from being extended to

proprietary compilers such as Microsoft’s MSVC. Additionally, this approach requires the

21

availability of source code, which is not always available for legacy systems. While at the vendor

level, it may be hard to imagine that source code would not be available for their legacy systems,

there are always exceptions. A specific example of such a case is presented in [27]. Microsoft

developers had to hand patch a vulnerability in their equation editor.

While the tools discussed in this section all have shown results that could be useful,

unfortunately, they are not open-sourced. Therefore, none of the tools presented will be used in

this work, but I found it necessary to summarize the work done at this level.

2.3.3 Installation Time

In these final three sections, I focus on diversification strategies where access to source

code is no longer an available. As mentioned earlier, the difficulty in transforming binaries when

source code is no longer available relies on the ability to disassemble binaries with and without

debugging symbols. While the recursive traversal algorithm is more efficient than the linear sweep

algorithm, when disassembling binaries. Factors such as data embedded in the code regions,

variable instruction size, indirect branch instructions [28], and encrypted sections contribute to the

prevention of perfectly disassembling stripped programs.

However, these limitations have not stopped work in this area. In [29], the authors

developed a system of diversifying PE binaries in place. This approach sidesteps the problem of

complete disassembly. In this work, authors used IDA Pro to disassemble the binary, ignoring

unreachable or unidentified assembly code. Once the disassembly was extracted and converted to

an internal representation, different algorithms were used. The first algorithm was an atomic

instruction substitution algorithm; in this algorithm, the original instruction was replaced with a

functionally equivalent algorithm. For example, given the instruction cmp bl, al, the functionally

equivalent instruction would be cmp al,bl; these instructions both make the same comparison.

22

However, this instruction can render gadgets unusable. The second algorithm used is an instruction

reordering algorithm. In this algorithm, through the implementation of a dependency graph, the

authors were able to modify the ordering of the code based on when it was last used and when it

was later defined. This had the fortunate side-effect of removing or moving ret instructions. While

gadgets were not eliminated in most cases, the alternate ordering would shift the gadget around so

that attackers would not be able to rely on that gadget. The final algorithm in this work was what

the authors called register reassignment. In this algorithm, through the use of a use-def algorithm,

values are stored in registers, swapped, and re-assigned. The authors claim they can break ROP

gadgets because with registers switched, any gadget that relies on specific gadgets to transfer

control flow might jump to incorrect addresses or invalid memory regions. The authors of this

paper evaluated their approach using a set of Windows DLLs and reported the percentage of

gadgets that were eliminated or deemed broken. They note that their system breaks 80% and

removes 10% of valuable gadgets. Their approach also worked in mitigating known exploits such

as CVE-2010-2883 [30] when automated ROP exploitation tools such as MONA [10] and Q [11]

were used.

Instruction Location Randomization (IRL) was presented in [31]. IRL rewrote binaries so

that every instruction is randomized within the process’s address space. This approach changes the

assumption that programs are loaded and executed sequentially. In this approach, an object dump

is used to recover the assembly code for the target program. Once the assembly code has been

extracted, the authors use a custom data structure called the fall-through map. This data structure

contains a set of rules that map assembly instructions to their associated randomized addresses.

Once rules are applied to the entire program, jump offsets and addresses are updated. The programs

23

are run through a process virtual machine. This virtual machine uses the fall-through table to

examine and translate instructions before they are executed.

Additionally, code fragments are cached to reduce overhead, and the virtual machine

controls the cached code. The authors successfully thwarted tools like ROPGadget [9] to re-create

an exploit for CVE-2006-3459 [32]. One such reason this tool could not successfully re-create an

exploit is that authors could randomize the location of 99.96% of gadgets through this approach.

However, this approach is not without its faults; from a performance standpoint, it incurred

performance overheads between 13% and 16%. These overheads can be attributed to the overhead

from their process virtual machine compounded with the overhead of their tool. Finally, the last

metric recorded was the memory size overhead for each program. As the authors noted, their

approach is ineffective, and their rewrite rules can be extensive. The average length of their rewrite

rules was 104MB. The increase in length of the rewrite rule is attributed to the authours preferring

readability and ease of debugging for this prototype.

As mentioned earlier, the biggest issue is the lack of symbols within the distributed binary.

However, this has not stopped researchers from developing tools that can diversify binaries. Marlin

[33] circumvents this issue using Unstrip [34], a tool designed to help restore symbols to stripped

binaries. Once the symbols are recovered, Marlin begins shuffling function blocks based on a

random permutation. Additionally, to address the changes in address offsets, Marlin does what the

authors call jump patching. This process overwrites the original offsets with updated offsets once

the shuffling phase is complete. This overwriting, in turn, breaks the assumption required by most

ROP-based exploits: the relative offsets and instructions within an application's code are constant.

Similar to previous papers in this section, the authors evaluated their approach by presenting the

24

processing time incurred by Marlin and demonstrating Marlin’s capabilities against defending

against ROP exploits.

Regarding processing time, the authors did not measure the increase in CPU usage or the

memory increase. One reason is that Marlin does not add additional instructions as opposed to

other tools I have seen; instead, Marlin rearranges functions in the binary. However, because this

tool calculates start addresses and mixes functions every time the binary starts up, an overhead of

3.3 seconds on average was observed in evaluating how Marlin protects diversified binaries against

ROP exploits. The authors developed a simple buffer overflow vulnerable application. To create

the exploit code, the authors used the popular ROP gadget-finding tool, ROPGadget [9]. When the

authors used the exploit code initially developed from the original program, the diversified variant

exploits failed. This failure further illustrates the sensitivity of ROP-based exploits and confirms

that changes to address layouts are enough to thwart exploits of this nature.

The final approach related to diversification to eliminate ROP gadgets was presented in

[35] and is referred to as binary stirring. This approach, similar to the previous method, randomizes

the code layout of binaries so that gadgets are found at a specific address in only one instance. This

randomization is achieved in two different phases a static phase and a load time phase. In the static

step, through the use of a disassembler, the target binary is disassembled. As has been mentioned

before, disassembly is not 100% accurate. Therefore, the workaround is to keep a copy of the

original binary in a special area in the .text section called .told. After creating this special area, a

copy of all the bytes that could be disassembled is created. This is done in a section called .tnew,

again found in the .text section. The original bytes become marked as non-executable to prevent

the use of any gadgets that could be found there.

25

Meanwhile, the disassembled copy is partitioned into basic blocks where jump offsets are

calculated and overwritten through a lookup table; this process prevents the program from crashing

due to an undefined address. The second phase in this approach uses an external library which

loads and executes first. The purpose of this library is to randomly reorder all of the basic blocks

in the .tnew section. From here, the .told section is also updated to point to the new basic block

addresses, and this pointing is done because sections of the .told section can hold strings or other

relevant data. Moving on to the evaluation portion, in terms of gadget elimination, binary stirring

was able successfully to render 99.99% of gadgets unusable. It is worth noting that these gadgets

were rendered ineffective, not because they were entirely removed from the binary, but because

they were no longer located in the same address space. This evaluation was done through the use

of three different tools that have been mentioned before: Q [11], Mona [10], and ROPGadget [9]

on Linux binaries. The authors evaluated the performance of the SPEC2000 benchmarks after

stirring. On average, the SPEC binaries increased by 6.6%, with the Windows program gap

exhibiting the worst overhead of 35%.

Although helpful information can be lost by diversifying after compilation, researchers

have still found clever ways to partially recover essential sections of a program and diversify what

they have to work with. While most of the approaches presented in this section have shown that

ROP exploits can be stopped using simple techniques, most do not eliminate gadgets; therefore,

these gadgets are still available for the attacker to craft an exploit. This is further confirmed in

[12], where authors developed their own method of measuring ROP gadget survival: Bag of

Gadgets, where memory location was not considered. Their results show that only a tiny

percentage of gadgets are eliminated when memory offsets and addresses are not taken into

consideration, as opposed to when they are, for example when methods such as the Survivor

26

algorithm is used. Additionally, because of these changes, it might be trivial for attackers to modify

their exploit code to work for different variants.

2.3.4 Load Time

Load time is when the Operating System’s loader begins the process of reading the

executable from non-volatile storage (hard drive) and loads it into volatile (RAM) memory to be

executed. During this time, shared libraries are loaded onto memory, registers are initialized, and

the program begins executing. In terms of software diversification, load time diversification offers

the flexibility that diversification can be introduced without the need for source code. However,

similar to other approaches mentioned have seen where software is unavailable, we are still limited

to disassembling what we can. This section will discuss two different methods in the literature to

diversify program load time.

In [36], the authors developed XIFER, a tool that diversifies programs at load time for both

the ARM and X86 architecture. XIFER does this by randomizing the memory addresses of the

executable and its segments (.text, .init, .data, etc.). In addition to randomizing the memory

addresses of the executable segments, the assembly code of the target program is broken down

into pieces and randomized within the address space; this is done to prevent memory leak

vulnerabilities from disclosing any relevant data or code information. This randomization takes

place on the fly before the program executes. While the relocation of a program is similar to

Position Independent Executable (PIE) mitigation, the main issue with PIE is that all of the relative

offsets within the code remain the same. At the same time, XIFER modifies all of the offsets too.

Through the use of a custom library, libewrite.so, XFIER begins by intercepting the loading of the

executable after libraries have loaded but before the binary starts execution. This customized

27

library contains its own .init section, which loads the necessary libraries and overwrites symbols

upon execution.

After the necessary libraries and symbols have been loaded and overwritten, XIFER begins

disassembling the program. In this step, the authors use a look-up process to identify any opcodes

followed by immediate values or addresses and used as inputs for the re-writing process. If the

instruction does not use immediate values or addresses, then these instructions are only seen as

black boxes of code and are ignored. This approach, the authors claim, allows their disassembler

to be faster than other disassemblers, such as objdump and IDA Pro. Once the program has been

disassembled and rewriting instructions have been identified, XIFER begins building the reference

graph. This reference graph is similar to a relocation table because it only saves parts of an

instruction that point to an absolute or relative address. In this process, all of the identified

instructions from the previous step are decoded and saved in a table using a method the authors

call FastDecodw. This method stores information on how to write back parts of instructions in an

assembler-agnostic way; in this step, references to the original instruction is kept. This step is

essential as it maintains references to the original instructions even though they might be moved

in memory in later steps. After the reference graph has been built, XIFER moves to the

transformation phase. In this phase, instruction sequences or individual instructions are broken

into chunks, and explicit jump instructions are added at the end of each code sequence, allowing

the code to redirect to the new address for the next instruction. This approach, in combination with

the reference graph, allows code to be moved to different locations and ensures that jump points

connect to the proper blocks of code. The final step in XIFER is the Fixation and Assembly step.

In this step, random addresses are given to each piece that has been selected to be relocated. After

addresses are assigned to all code sections, the instructions are written back into memory with their

28

new address; during this step, the references to code and data are updated. This is done using the

FastDecode information, and all of the information gathered from the reference graph step.

Finally, after the program has been re-written and the new code sections have been updated,

libewrite.so is unloaded, and the program begins its normal execution. The authors evaluated their

tool on 12 different binaries from the SPEC CPU 2006 suite. The first evaluation was on

identifying ROP gadgets; using ROPGadget [9], the authors note that no ROP gadgets were found

on the diversified binaries after diversification. In terms of performance, authors measured the

runtime overhead and the memory overhead for both architectures supported. The authors claim

that runtime overhead was only 5% and 2% for X86 and ARM, respectively. As far as memory

overhead goes, authors measured the size of libewrite.so and the total increase in binary size.

Results show that libewrite.so is only 72 kilobytes when loaded, increasing the diversified

program's total size by an average of 5%.

A second approach for diversifying binaries during load time was introduced in [37]. In

this method which the authors have called Binary Stirring, basic block addresses are determined

at load time and can be used on both Windows and Linux binaries with or without symbols. Binary

Stirring is broken down into two separate phases: a static rewriting phase and a load-time stirring

phase. The target binary is disassembled during the static re-writing phase using IDA Pro. After

disassembly, each basic block (contiguous sequence of data with one entry point) is copied into a

new section in the binary (.told). After all basic blocks have been copied to the .told code section,

the code goes through a transformation. Using two algorithms, code is transformed into a

randomizable representation. As part of this transformation, jump instructions are added to basic

blocks so that the code can be partitioned into small chunks that can be randomized during the

stirring phase. To maintain the integrity of addresses for jumps, a look-up table is used to track

29

address mappings. After all the code has been transformed, it is copied to a new section in the

binary (.tnew). This new section of code will be executed when the program begins execution.

Before the diversified program begins its execution, the load-time stirring phase begins. In this

phase, the program is loaded onto memory, and a statically linked library is loaded into memory.

This library performs two separate tasks: the first task loads and re-orders all the basic blocks in

the .tnew section. The second task begins after all the basic blocks have been loaded and re-

ordered; the lookup table is used to update all of the mappings stored to ensure that the program

jumps to the appropriate code bocks.

Once load-time stirring is complete, the .tnew section receives the same permissions as the

.text section, and execution begins like normal. To evaluate this diversification approach's effects,

the authors developed an experiment in which they diversified the SPEC CPU 2000 benchmarks

for Windows systems and 99 Coreutils binaries for Linux systems. Their results showed a code

size increase of 73% in Windows systems and 3% in Linux systems. Additionally, the authors note

that they measured a performance overhead of 4.6% on Windows and 0.3% on Linux applications.

The final evaluation the authors measured was the elimination of ROP gadgets. Using ROPGadget

the authors report that their approach rendered 99.9% of gadgets unusable (in this context, the

authors define unusable if it is no longer in the same virtual address after randomization). The

authors note that only pop and ret instructions remain in the exact location. However, the authors

do not mention whether any original gadgets exist within variants.

2.3.5 IoT Devices

Unlike other approaches, diversification for Internet of Things (IoT) devices has been

relatively limited. Most of the work that can be applied to IoT was done in conjunction with other

work presented in previous sections. This limitation can be attributed to authors using a compiler

30

that supported multiple architectures or expanding their binary re-writing approaches to be robust

enough to work on architectures other than x86. Currently, the work presented in this section is

only potential research directions that have not been implemented but whose ideas can be applied

only to IoT devices. Therefore for thoroughness, this section will present these diversification

techniques as they have not been demonstrated in prior sections.

[38] Authors propose two approaches to address security threats in IoT devices potentially.

The first approach is to introduce diversification in the OS and APIs used in the IoT device. The

main idea is exactly what it sounds like. The entire OS and APIs being used by the IoT device

would be diversified and then placed on the device. This approach, in theory, would prevent

attackers from injecting malicious code to spy on or manipulate the target system, as the attacker

would need to know how to interact with each unique system. As part of preliminary work noted

in their paper, authors were able to diversify Linux operating systems and API calls, making it

harder for malware to interact with the interfaces. More specifics on their previous work can be

found in [38].

The second approach proposed is to apply diversification on communication links among

network nodes. This approach aims at making it more difficult for an adversary to gain knowledge

of the protocol between the two notes for communication to prevent data packets from being

manipulated. Cryptography is a common way to obfuscate the protocol. Different levels of

encryption could be employed upon the security need and network capacity [39].

2.4 SUMMARY

This chapter presented an overview of modern binary exploitation techniques, first starting

with introducing the buffer overflow before discussing Return Oriented Programming (ROP).

31

Additionally, this chapter presented several areas where software diversification has been

introduced and the approaches used to diversify software. Since software diversification is a

research area over twenty years old and has yet to be widely adopted, there may not be a significant

understanding of whether diversification will be beneficial in preventing reusable exploits. This

work aims to make the analysis of diversification algorithms easier and, in turn, encourage real-

world use in mainstream applications. By quantifying these effects and measuring the results,

operators can make better decisions in selecting the algorithms used to diversify binaries.

32

CHAPTER 3: RELATED WORK

3.1 MEASURING THE EFFECTIVENESS OF DIVERSIFICATION APPROACHES

Previous subsections have all discussed and presented approaches and algorithms for

diversifying binaries. These approaches have ranged across the software engineering life cycle

from implementation, compiling and linking, installation, and load time. The following subsection

presents work related to analyzing software diversification's effect on ROP gadget removal and its

effect on exploit development, as well as the performance impact that software diversification has.

3.1.1 Diversification on Gadget Removal

In work presented in previous subsections, diversification has been primarily focused on

developing diversification engines and diversification algorithms. As noted in [12], researchers do

not use a widely accepted methodology to evaluate diversification techniques. This section will

discuss different works that have developed systems to evaluate the effectiveness of

diversification, both in removing ROP gadgets and mitigating exploits.

In [12], the authors began to explore how diversification techniques affect the available

gadgets and their remaining after diversification. The authors developed an approach for

evaluating the percentage of gadgets that survived diversification and compared it against an

existing method of counting gadget survival. The first approach is the Survivor approach, first

presented in [40], which considers gadget sequences and program offsets in its comparison. This

approach assumes that a gadget is helpful to an attacker only if the functionality is located at the

same address. The second approach, and one that was developed as part of this work, is what the

authors have called Bag of Gadgets. The Bag of Gadgets approach is different than the Survivor

strategy in that it considers the uniqueness of gadgets, such that even if a gadget is found in two

33

different binaries at two different memory locations, it would still be regarded as a surviving

gadget. The authors used these two methods to measure the amount of ROP gadgets that remain

across a set of variants after being diversified. Their results show that by using the Survivor

method, diversification can remove anywhere from 90-95% of gadgets in a program. However,

this is not the case when the same analysis was done using the Bag of Gadget method. The Bag of

Gadget results shows that there is only a slight reduction in gadgets. Additionally, the author notes

that this reduction might not be enough to stop code-reuse (ROP) attacks.

In [41], the authors evaluated software diversification's effectiveness in mitigating exploits.

In their experiments, authors selected to diversify the DARPA Cyber Grand Challenge (CGC)

binaries, as these programs had the Proof of Vulnerability (POV) readily available. This work

created one hundred variants per program using the Multicompiler [40] and the Obfuscator-LLVM

[42] diversification engines. The authors then ran the POVs against all the diversified binaries and

evaluated the number of exploits mitigated using diversification. Results show that diversification

was effective against 57.9% of Type 1 exploits, exploits that allow an attacker to gain control of

the target program, and was only 12.1% effective against Type 2 exploits, exploits that can cause

information leaks.

It should be noted that this does not mean that diversification mitigates all Type 1

vulnerabilities, as most exploited programs require a combination of Type 1 and Type 2 exploits.

Finally, the CGC binaries are not an accurate representation of real-world attacks, as these

programs are used to demonstrate the presence of a vulnerability. Therefore, they require the

minimum degree of work an attacker needs to launch an attack.

In [43], the authors developed a system to measure diversity in terms of code reuse by

using near-duplicate detection, an approach that has been used in plagiarism detection programs

34

[44] and identifying duplicate web pages [45], and symbol table analysis. Using these approaches,

authors could define the ground truth regarding code reuse among programs that share code. This

includes executables that share functions from statically-linked libraries. In their experiments, the

authors diversified a wide array of binaries. More specifically, they diversified: GNU core utilities,

Docker Images, Ubuntu packages (32 and 64-bit packages), and Microsoft’s Malware Challenge.

Results indicate that strategies implemented by diversification compilers are only marginally

successful, and while they do introduce considerable differences from non-diversification

approaches, similarity remains significant. While in this work the authors did not analyze surviving

gadgets on diversified variants, their work does propose that future work would correlate near-

duplicate detection with exploit prevention.

Finally, in [46], the authors developed a case study and analyzed the gadgets found before

and after the diversification introduction. The authors began by measuring the number of gadgets

found in non-diversified variants and classifying these gadgets based on their behavior in the set

of GNU core utilities, a group of commonly used Linux utilities. Following this measurement and

classification, they diversified GNU core utilities and analyzed the difference in the number of

gadgets and the change in where gadgets fall into each category. In this work, the authors observed

an increase in the total number of gadgets in diversified variants. Furthermore, the authors also

note that because of this increase, there was an increase in all gadget categories. Similar to other

work, however, the authors did not analyze if this increase in gadgets allows an attacker to develop

an exploit that can be re-used. Nor did they explore if new exploits could be developed with the

added gadgets that would not be possible without diversification.

35

3.1.1 Diversification on Binary Performance

In [1], my co-authors and I designed and implemented an analysis system that facilitates

the diversification of binaries using the Amoeba diversification engine [3]. This system presented

in that work was designed, implemented, and released to analyze the performance of diversified

binaries and how they are fair compared to the original. The tool developed was released as an

open-source analysis system that collects and visualizes the metrics associated with binaries

diversified using Amoeba [3]. However, as this dissertation will discuss in chapter 5, the system

initially presented was expanded to include new components. Additionally, as part of this original

work, a case study was conducted to illustrate the performance impact associated with

diversification and the total number of shared ROP Gadgets.

In the original experiment, all binaries were diversified 20, 30, 40, and 50 times each using

the nine diversification algorithms provided by Amoeba. The final algorithm, basic block

flattening, was not used due to non-responsiveness or failures when used with over 30 iterations.

After completing the diversification process, Perf executed and recorded performance metrics for

all binaries.

As part of the original study, the first binary diversified was Shred, a Linux utility program

that overwrites a file to hide its content. Shred, at the time, was selected primarily for its

functionality of writing and re-writing to disk. Shred was executed on a one-gigabyte file with

default arguments for this study. Figure 24, found in Appendix C, displays the original bar graph

of the results observed. For these figures, the x-axis is the name of the binary. The first number

represents the number of diversified iterations, and the second represents the diversification

algorithm used. The y-axis represents the number of CPU cycles taken. For readability, a black

line has been added to represent the results for the original binary.

36

The original version of Shred completed execution at around 13,000 CPU clock cycles,

with most diversified variants staying within the same range peaking at approximately 15,000 CPU

cycles. However, these results show two diversified binaries that stand out due to their significant

peaks. These binaries, Shred.20.005 and Shred.30.005 required roughly 29,000 cycles and 18,000

cycles, respectively. Both of these binaries were diversified using a function reordering algorithm.

The only main change between the two was in the number of diversification iterations,

Shred.20.005 went through 20, and Shred.30.005 went through 30. A special note is that when

Shred was diversified 40 times with the same algorithm, it performed slightly better than the

original binary. This performance improvement could mean that for this binary, more

diversification iterations could improve its performance.

Regarding comparing the total number of ROP gadgets between the diversified binaries

and the original, Figure 25, found in Appendix D, presents the results from that experiment. Again,

the x-axis is the name of the binary. The first number represents the number of diversified

iterations, and the second represents the diversification algorithm used. The y-axis represents the

total number of gadgets.

As observed, the original Shred contained 1,081 unique gadgets. In addition, the figure

shows that most of the diversified binaries had some ROP gadgets eliminated, with most averaging

around 990 distinct ROP gadgets. However, as observed in that work, three binaries removed more

ROP gadgets than the rest. These binaries are Shred.20.004, Shred.30.004, and Shred.40.004.

These variants contained 756, 757, and 760 unique ROP gadgets. All three of these binaries were

diversified using an instruction replacement algorithm. This elimination of ROP gadgets could be

because diversification may have broken down complex instructions during the replacement phase.

Overall, however, there was not a significant reduction in ROP gadgets.

37

The second binary discussed in the original work was CP, a Linux utility program that

copies files and directories. CP was selected for its functionality of writing bytes to a disk. Similar

to the Shred, CP was executed on a one-gigabyte file. Figure 26, found in Appendix E, details the

results when analyzing the performance impact.

In that experiment, the original CP completes the copying operation in roughly 2,500 CPU

cycles, with most diversified variants staying within the same range peaking at around 15,000 CPU

cycles. Also similar to Shred results, two binaries stand out due to the significant peaks. As was

the case with Shred, these binaries were CP.20.005 and CP.30.005, which took longer than 7,000

cycles and 4,000 cycles, respectively, to complete. Like Shred, these binaries were diversified

using the function reordering algorithm. However, unlike in the previous binary, when diversified

for 40 iterations, CP did not do better. In fact, the results presented show it took around the same

time as the original non-diversified binary to complete. The results show that function reordering

improves performance with CP, unlike with Shred. For instance, when diversified for 20 iterations

using the basic block split algorithm, CP appears to have a slight performance improvement. When

comparing the total number of ROP gadgets between the diversified binaries and the original, the

original CP contained about 2,000 unique ROP gadgets. Figure 27 shows the plot details

comparing the total number of ROP Gadgets.

As with Shred, the total number of ROP gadgets between the original and the diversified

binaries dropped. CP variants that were diversified 20, 30, and 40 times using the instruction

replacement diversification algorithm showed the best results regarding the total number of unique

gadgets, with a reduction of about 500 ROP gadgets compared to the original. These results can

be seen in Figure 27, found in Appendix F.

38

The final binary discussed as part of the case study in the original work was ls. Ls is a

Linux utility program that lists directory contents. ls was selected to show how diversification can

affect binaries that traverse directories. To gather performance metrics, ls displayed all files on the

system in that experiment with the –R flag. Figure 28 details the results recorded.

The original ls completed executing in about 3,500 clock cycles. However, unlike in other

experiments, the peaks that stand out the most in this experiment originated from the same

diversification algorithms. These algorithms are control flow branch diversification at the function

level and basic block splitting, with the peak being: control flow branch diversification with ten

iterations. This result could show that depending on the type of binary and the diversification

algorithm used could also significantly impact the binary's performance. Figure 28, found in

Appendix G, displays the results when comparing the total number of gadgets found before and

after diversification.

Once again, as with the other binaries observed that work, there is a reduction in ROP

gadgets using software diversification. Furthermore, similar to previous examples, the most

significant reduction comes from the instruction replacement algorithm. These results can be seen

in, Figure 29 found in Appendix H.

The results presented in that work show that different algorithms potentially impact

binaries differently. Those results also show it is crucial to understand these impacts, especially

when working with limited and constrained systems such as the Internet of Things (IoT) and the

Internet of Battlefield of Things (IoBT) devices. Chapter 5 will discuss the expansion of this

system as part of this work.

39

3.2 SUMMARY

This chapter introduced previous work in quantifying software diversification's impact.

Apart from work done in [2], [3], and [4], there has still been little work done regarding quantifying

the effects and limitations associated with software diversification. This chapter also presented my

previous research on understanding the impact of software diversification algorithms from a

performance aspect. The next chapter will discuss the research questions associated with this work.

40

CHAPTER 4: RESEARCH QUESTIONS

4.1 RESEARCH GOAL

Software diversification has been presented as viable mitigation to Return Oriented

Programming (ROP) exploits. Unfortunately, most of the work presented in the literature is

primarily focused on diversification algorithms and where these diversification algorithms can be

introduced in the software development lifecycle. As a result, there has been a lack of research

into the effectiveness of diversification techniques [5] [2] in quantifying the effectiveness of

diversification and how these techniques affect ROP chain re-use and ROP chain development.

This work aims to analyze the impact of software diversification on the development of

ROP-based exploits. This work also seeks to define methods to quantify diversification's effect on

diversified binaries. This work also presents a selector tool developed to assist operators in

analyzing, visualizing, and selecting the appropriate diversification algorithm, given their

preferences. Through this research and the development of this methodology, the research

community can begin to understand the impact diversification has on ROP exploit creation. With

the development of quantifiable methods, researchers can analyze the benefits, trade-offs, and side

effects resulting from software diversification. This work defines side effects as an increase in total

execution time, CPU computation time, and additions of new ROP gadgets.

While previous work has looked at the percentage of shared gadgets between non-

diversified and diversified binaries, these works did not analyze whether the shared ROP gadgets

between variants are enough for an attacker to develop a shared exploit. One of the outcomes of

this work is to create a case study to analyze and understand that impact. Through the use of this

case study, this work aims to show how effective software diversification algorithms are in

protecting against commonly used ROP chains. Additionally, this work seeks to know if it is

41

feasible for an attacker to create a new exploit with the ROP gadgets that survive diversification

or with the gadgets added during the diversification process. Based on the results in these areas,

this work identifies and develops several metrics to measure the impact of diversification

algorithms.

The research questions associated with this research are as follows:

RQ1: How effective are software diversification algorithms in preventing

attackers from using previously crafted or developing new ROP-based exploits?

RQ2: What are the primary criteria to consider in determining the efficacy of

diversification algorithms in preventing exploit re-use and development?

RQ3: What is the appropriate set of metrics to quantify the efficacy of software

diversification?

In addition to answering these research questions, this work also designs and creates a

selector system that will assist operators in identifying what software diversification algorithms

would be best for their use case.

This work begins by analyzing software diversification's impact on ROP-based exploit

development to achieve the research goal. This work is then followed by then identifying the

appropriate set of criteria necessary to quantify software diversification and developing

quantifiable metrics based on these criteria to measure software diversification's impact on

binaries. Finally, by creating a selector system, this work will allow the end user to identify

diversification algorithms that best meet their needs while considering the metrics developed and

any performance impact associated with diversification.

42

CHAPTER 5: METHODOLOGY

5.1 EXAMINING THE IMPACT OF SOFTWARE DIVERSIFICATION ON EXPLOIT

DEVELOPMENT

As part of this work, a case study was developed to better understand software

diversification's impact when generating exploits and its role in allowing an attacker to re-use an

exploit. This section describes the methodology created to understand software diversification's

impact on exploit development and answer R1: How effective are software diversification

algorithms in preventing attackers from using previously crafted or developing new ROP-based

exploits?

5.1.1 Experimental Overview

I developed a case study that uses real-world binaries with known and documented exploits

to analyze the impact of different software diversification algorithms on ROP chain generation.

For this work, it was important that the case study developed use real-world binaries outside the

traditional GNU Coreutils dataset. While the GNU Coreutils dataset is appropriate to measure

diversification’s impact, that dataset does not suffer from many known and exploitable

vulnerabilities.

The following topics discuss in depth the approach for Binary Selection, Diversification

Engine Selection, and the ROP gadget finder toolset.

5.1.1.1 Diversification Engine Selection

I decided to use Obfuscator-LLVM [47] as the main diversification engine in this work.

While the official version of Obfuscator-LLVM is built upon LLVM version 4.10, I found and

43

built a copy using LLVM version 10.0. The decision to use an open-source compiler was beneficial

and due to several reasons. First, the decision to use an open-source diversification engine for

simplicity and replicability. While it would have been better to use multiple diversification

engines, most software diversification engines that we analyzed have been closed-source and

therefore cannot be used for our analysis. Second, the ability to diversify at compile time allows

for greater control of where the diversification happens. In previous work that I have done in the

software diversification area [6], I utilized binary-level diversification engines. In that work,

runtime issues were raised in which diversified variants have had unwanted segmentation fault

errors due to the consistent assemble and disassemble process from the diversification process.

These errors are due in part to the complexity of this disassembly re-assembly phase, Disassembly

is still a complex problem to solve and an active area of research. As a part of this work, I generated

and analyzed exploits for diversified and non-diversified variants, documented the changes in

exploits, and investigated if the shared gadgets found after diversification allow an attacker to

create a re-useable exploit.

Another motivating decision was widely accepted in previous works and the literature, as

there has been a wide variety of work that uses LLVM and studies that have used O-LLVM in the

diversification literature.

Finally, by using Obfuscator-LLVM, I can take advantage of several out-of-the-box

transformations. These transformations are also widely accepted in diversification and obfuscation

literature. The transformations supported and a brief description of these transformations are as

follows:

44

Instruction Substitution: This obfuscation technique replaces binary operators such as

addition, subtraction, or Boolean operations with a functionally equivalent set of procedures to

maintain the same functionality. [43]

Control Flow Flattening: This obfuscation technique works by flattening the control flow

graph of the binary. This is done by modifying basic blocks and putting these blocks that were

originally at different nesting levels next to each other. [43]

Bogus Control Flow: This obfuscation technique modified the function control flow graph

by adding a basic block before the current basic block. The new basic block contains an opaque

predicate, which will make a conditional jump to the original basic block. [43]

While these transformations may seem limited, Obfuscator-LLVM allows combining

different algorithms, allowing for a total of seven various mutations.

5.1.1.2 Binary Selection

Because I am interested in seeing software diversification algorithms' impact from an

exploit development standpoint, I decided to move away from using the GNU Coreutil binaries as

our dataset. This decision is a change from previous research, which looked at gadget survival

primarily using GNU Coreutils as the primary dataset. While in this work, I diversified GNU

Coreutils and analyzed the effects of software diversification algorithms on Coreutils as a baseline

for experimentation since I could not develop complete working exploit chains using Coreutils.

Additionally, Coreutils might not accurately represent the general population of binaries available.

Furthermore, as known from prior research aside from touch and date, not many

vulnerabilities have been discovered in GNU Coreutil binaries. Therefore, using ExploitDB, I

searched for binaries that best met my selection criteria. ExploitDB is an archive of proof-of-

45

vulnerabilities (POV) and proof-of-concept (POC) exploits which publicly documents previously

identified vulnerabilities in software systems. By using ExploitDB with its search functionality, I

could quickly identify a dataset.

The selection criteria were as follows: First, the program should be vulnerable to a buffer

overflow. Meeting this criterion is critical because, as mentioned in Chapter 2, ROP exploits are

the successor of buffer overflow vulnerabilities and therefore need a buffer overflow vulnerability

to overwrite the return address and hijack program execution. The second criterion was the

program should have a sample exploit associated with it; this criterion was primarily used to

confirm a vulnerability in the program. The final criterion was the vulnerable binary should have

source code available, either through ExploitDB itself or through the vendor. This criterion was

just as important as our first one because, as I are using a compiler-based diversification engine, a

source code was needed to compile and apply the transformations. Using these criteria, nine

binaries were identified and used in this work.

The identified programs and a brief description are as follows:

 PDFResurrect- A tool aimed at analyzing PDF documents.

 DNSTracer- A tool to determine where a given DNS receives information.

 MP3Info- A tool used to read and modify the ID3 tags of MP3 files.

 SIPP- A Sip protocol test tool.

 Netperf- A benchmark tool that can be used to measure the performance of

different types of networking.

 LamaHub- A multi-platform NMDC Protocol server.

 yTree- A tool for working with merger tree data from multiple sources.

 Mcrypt- A replacement for the Linux crypt command.

46

 Crossfire-server- An open-source, cooperative multiplayer RPG and

adventure game.

Apart from these nine binaries, OpenSSL, an open-source software library used in

applications that use secure communication protocols, was identified and also used. The decision

to use OpenSSL was due to the widespread Heartbleed vulnerability, which also used a ROP chain

to leak private information.

5.1.1.3 ROP Gadget Analysis Toolset

The best and most effective ROP gadget finders are built using the Galileo algorithm [48].

The Galileo algorithm introduced in [48] has been shown to be an effective method for identifying

gadgets that can be used to generate a ROP chain; therefore I selected to use the Galileo algorithm

as our analytical toolset.

The Galileo algorithm begins by building a tree of possible ROP gadgets. This algorithm

first identifies a ‘c3’, the operation code for the ‘ret’ instruction, hex values in the binary. After

identifying a ‘c3’, the algorithm then tries to construct a ROP chain by working backward to

determine if the instructions before the ‘c3’ operation code can be used to create a ROP gadget.

This algorithm's main advantage is that it allows tools to identify more ROP gadgets than

traditional gadget-finding tools that only look at gadgets at the end of a function.

Two separate tools were identified that use this algorithm. Both tools internally use the

Galileo algorithm and have been used extensively in the literature and in the hacking community.

The first tool identified was ROPPER [49], while the second was ROPGadget [9]. For this work,

however, ROPPER was the best tool, for several reasons. First, ROPPER supports searching for

syscall gadgets even if the gadget is found in unaligned memory. ROPPER first looks for a useable

syscall gadget in the binary; if one is not found, it begins looking for the opcode ‘0f05’, syscall

47

opcode, in the entire binary. These opcodes could be seen as part of a more extensive instruction

that might be harder to diversify away, as shown below in Figure 6, and thus be identified as

ROPPER as a valid syscall gadget. For readability, I have highlighted the opcode associated with

the syscall gadget.

Figure 6:Unaligned syscall Gadget Found by ROPPER

The second reason ROPPER was selected was its scriptable Python API, which allows a

more straightforward method to analyze gadgets. Finally, ROPPER was chosen because it allows

for the creation of two different exploit chains, execve, a system call that executes a program as

specified by the pathname, and mprotect, a system call that allows for the changing of protection

on the specified page of memory. While ROPGadget does have some support for ROP chain

generation, in our pre-analysis ROPPER was discovered to be the superior tool as it generated

shorter and more complete execve chains than ROPGadget.

5.1.1.4 Experimental Design

To analyze software diversification's impact on the generation of ROP-based exploits, I

developed an experiment using the programs and tools described earlier in this section. As part of

this experiment, all programs were compiled in two different ways. First, programs were compiled

without any transformation applied, which I call original; this compilation was done to have a non-

modified version of the program, which would serve as our control dataset. The second way

binaries were compiled was with each of the diversification algorithms ten total times and

48

compiled with all possible combinations. These combinations resulted in a total of seven different

transformations, which has been short-handed:

 Instruction Substitution (sub)

 Control Flow Flattening (fla)

 Bogus Control Flow (bcf)

 Instruction Substitution and Control Flow Flattening (sub fla)

 Instruction Substitution and Bogus Control Flow (sub bcf)

 Bogus Control Flow and Control Flow Flattening (bcf fla)

 All three transformations (sub bcf fla)

 This approach allowed for a total dataset of 700 compiled programs, with 70 unique

variants for each program.

After compiling all the programs, I collected the total number of gadgets and the total

number of functions for all of the binaries in our dataset. I also created two different ROP exploits

for all variants and the original binaries. The following section will discuss how the data collected

was used to generate the results for this work.

5.2 QUANTIFYING SOFTWARE DIVERSIFICATION

This section identifies the criteria to answer R2: Identify the primary criteria to consider in

determining the efficacy of diversification algorithms in preventing exploit re-use and

development. Additionally, this subchapter proposes methods to answer R3: What is the

appropriate set of metrics to quantify the efficacy of software diversification?

49

5.2.1 Identifying the Appropriate Quantification Metrics

As mentioned previously, in the research, there have not been methods or models proposed

to quantify the impact of software diversification. As a result, there is currently no way to

understand the strengths and trade-offs associated with diversified binaries, primarily on how

diversification affects an attacker generating new exploits. However, in [2], the authors offer

insight into possible criteria. Most notably, they point out that an ideal diversification scheme

should satisfy three objectives: Attack Resistance, Reducing Exploit Re-use, and Resistance to

Reverse Engineering. This work defines the Reducing Exploit Re-use as the change in the exploit

code. Therefore, I have renamed this objective to Exploit Complexity. This name change originates

from the work conducted earlier and personal experience developing exploits. While analyzing

gadgets used to generate an exploit, I observed that in most cases, ROP gadgets become longer

and more complex. Thus this work proposes the following three criteria to consider in determining

the efficacy of diversification algorithms:

 Attack Resistance

 Exploit Complexity

 Resistance to Reverse Engineering

In the following sections, this chapter will discuss various metrics used to quantify the

effectiveness of software diversification algorithms.

5.2.2 Quantifying Attack Resistance

As described in the previous section, based on the literature review conducted, this work

identified three primary criteria for determining the efficacy of diversification. This section

discusses and proposes a metric to quantify Attack Resistance.

50

This work proposes calculating the difference in ROP gadgets between the diversified

variants and the original binary to measure Attack Resistance. Equation 1 details the formula used

to calculate the Attack Resistance score.

𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (1 −
𝐺𝑎𝑑𝑔𝑒𝑡𝑠 𝑖𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑡

𝐺𝑎𝑑𝑔𝑒𝑡𝑠 𝑖𝑛 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
)

Equation 1: Attack Resistance Formula

Calculating Attack Resistance using Equation 1 originates from my previous work and

observations. In the work presented originally in [1], my co-authors and I observed that in some

cases, Amoeba [6], the diversification engine used in that work, reduced the total number of

gadgets, while in other instances, I observed an increase in the number of ROP gadgets.

Additionally, when analyzing the published literature, most authors claim that their proposed

algorithm is a superior approach to diversification because it introduces randomization without

increasing the total number of ROP gadgets in the diversified binary or it removes ROP gadgets

altogether. This claim is significant because, as noted in [2] and [7], the overhead associated with

developing a successful or reusable exploit is low, as most ROP-bussed exploits only require a

small subset of gadgets. Thus an increase in the number of gadgets could lead to an attacker

developing a reusable exploit.

Using the Attack Resistant score described, an analyst can use diversification to introduce

randomness and security into the ecosystem while ensuring that ROP gadgets introduced are kept

to a minimum. Maintaining an Attack Resistance score close to one or lower than one provides

security without risking the possibility that ROP gadgets can be used or re-used to launch a

successful exploit.

51

5.2.3 Quantifying Exploit Complexity

The second criterion identified as part of this work is Exploit Complexity. As the proposed

method for quantifying the Exploit Complexity score, this work counts the total number of

clobbered registers, any register over one modified in a specific gadget, as a method to calculate

Exploit Complexity. Figure 7 shows an example of a ROP gadget that "clobbers" more than one

register.

Figure 7: Example of a ROP gadget that clobbers registers

In the figure above, the primary ROP would be RAX, as it is the gadget of interest to the

attacker. However, as can be seen, two other registers are modified within the ROP gadget (RBX

and RBP); the unwanted modifications of these gadgets could have undesirable consequences for

the attacker.

As discussed in previous sections, ROP gadget-finding tools such as ROPPER and

ROPGadget are excellent for finding gadgets because of the use of the Galileo algorithm, but they

fall short when generating exploits. More sophisticated exploit development tooling, such as

ANGR ROP [8], PEASE [9], and Majorca [10], utilize a combination of symbolic execution or

constraint-solving frameworks such as Z3 [11], which allow them to generate far superior ROP

chains. Because these tools use these frameworks, they consider clobbered gadgets in determining

the feasibility of creating an exploit. As it could be the case due to the consistent clobbering of

critical registers, a ROP exploit would be unfeasible.

52

Furthermore, tools like Majorca also utilize a scoring system to determine the "fitness

score" of ROP gadgets. As part of this scoring system, clobbered registers are a critical component

of the fitness score; the more clobbered registers there are, the lower the fitness score is for that

specific ROP gadget. Additionally, the more registers clobbered within a ROP gadget can mean a

potential increase in the length of the gadget. As discussed in [12], an increase in ROP gadget

length leads to a degradation in the quality of ROP gadgets and unwanted side effects.

For a diversification algorithm to be effective using the metric described, the expectation

would be a high Exploit Complexity score. An Exploitation Complexity score higher than one

found in the original binary would signify that the quality of the gadgets would degrade due to

more registers getting clobbered, making it difficult for an attacker to create an exploit. A high

Exploitation Complexity score would also mean that ROP gadgets will have unwanted side effects.

Likewise, a diversification algorithm with a low Exploit Complexity score would signify that there

are more singleton gadgets, that is, more gadgets that modify one and only one register, which

could lead to ample space for exploitation.

5.2.4 Quantifying Resistance to Reverse Engineering

The final criterion identified as part of this work is the Resistance to Reverse Engineering.

This work proposes the summation of the McCabe Cyclomatic Complexity [56] for each function

in the diversified binary as the method to calculate the Resistance to Reverse Engineering score.

The McCabe Cyclomatic Complexity is well known for its use in software engineering to

measure software complexity. However, this formula is also used extensively in the software

obfuscation world to calculate the quality of obfuscation algorithms. In [12], the authors present

measures to evaluate the strength of obfuscation techniques. One such measurement is Cyclomatic

53

Complexity, which, as the authors present, falls into the control-flow-based metrics. Furthermore,

in more recent work in a literature review on obfuscation published in 2021, [13] Cyclomatic

Complexity is still a popular measurement as it is among the three highest frequency topics.

Additionally, Cyclomatic Complexity has not only been used in the obfuscation literature

but also as a method to measure the increase in complexity of modern malware. The authors in

[14] and [15] explain how the Cyclomatic Complexity score is still widely accepted for calculating

software complexity. They detail how they use McCabe's Cyclomatic Complexity to measure

changes in modern malware's sophistication over the past thirty years.

Similar to the Exploit Complexity score, for a diversification algorithm to be effective

using the metric described, the expectation would be a high Resistance to Reverse Engineering

score. A higher Resistance to Reverse Engineering score would result in it possibly taking a reverse

engineer or an attacker longer to identify the vulnerability in the diversified binary. A high

Resistance to Reverse Engineering score would also mean that even modern vulnerability-finding

tools, such as Fuzzers, would have difficulty finding a crash, which could mean a vulnerability.

5.3 IMPLEMENTATION OF THE SELECTOR SYSTEM FOR DIVERSIFIED BINARIES

This section discusses the implementation details of the selection system developed for

selecting and visualizing the appropriate diversification algorithm. This selection system expands

the work presented in [6] by my co-authors and myself.

This subchapter is organized as follows. First, the technologies used to implement the

selector system are described, followed by the components that make up the selector system.

Finally, a case study illustrates the use of the selector system to identify the appropriate

diversification algorithm and the performance impact that algorithm has.

54

5.3.1 Choice of Implementation Platform

To facilitate the development of this selection system, several tools were utilized. These

tools included a programming language that supports publicly available and commercial third-

party libraries for binary analysis, data plotting, and multiplatform execution. Additionally, these

tools have been developed with the flexibility to run in an integrated development environment

(IDE) or inside a code editor and operating system where this system can be run.

To implement each component in the system, this work used Python version 3.10. This

decision is primarily due to Python's robust libraries, as well as the growing popularity of Python

in modern binary analysis tools such as Ghidra [16], Binary Ninja [17], and IDA Pro [18]. Section

6.2.3 will discuss in more depth why these tools were necessary.

This selection system was initially developed in Visual Studio code primarily because it is

free. In addition, Visual Studio Code supports a robust extensions marketplace, allowing for the

installation of lightweight Python linting, ensuring the code written adheres to best code practices.

Finally, while Visual Studio Code was the primary development environment, several components

were developed in PyCharm, a Python IDE.

This system runs on the Ubuntu version 22.04 Long Term Support (LTS) distribution of

the Linux operating system. This new operating system is an upgrade from the prior system that

utilized Ubuntu's outdated 12.04 LTS version. The decision to use this updated version of Ubuntu

is to maintain the tools as updated as possible to allow for continuous development. Additionally,

the diversification engine and other libraries require an updated platform. Additionally, because

Ubuntu is open source, it can be installed on any computer without a license. Also, most of the

binary analysis tools used in this work interface easier on Linux systems than on other systems.

55

5.3.2 System Components

As mentioned earlier in this chapter, the selection system was built as an extension of work

previously published by myself and my research group. This work was designed and built to be

automated, configurable, and allow for repeatability. In the updated state, this system provides

analysis of diversified binaries using any of the diversification algorithms and combinations

currently supported by Obfuscator-LLVM.

This system's second goal is to include a robust data-capturing mechanism to quantify the

impact based on the criteria and quantification methods presented in chapter 5 and record binary

performance. The data collected is used along with user-specified input as to what criteria they are

most interested in analyzing or maximizing.

Finally, the system must provide the ability to visually represent the data collected to

facilitate the comparison of algorithms and visualize the performance impact associated with each

algorithm. The following sections will describe each of the components in further detail, starting

with the high-level design of the system.

5.3.3 High-Level System Design

This system currently consists of several components: the main execution engine, the

diversification component, an analysis component, which has since been updated from previous

work [1] to include the calculation of the metrics described in section 5.2, a visualization

component, and a newly built algorithm selection component, as shown in Figure 8.

56

Figure 8: Selection System Architecture

The primary responsibility of the execution engine is to start this system's diversification

and analysis engines. Once the diversification engine creates diversified variants, it stores the

diversified binaries in a specified directory. The analysis engine then collects metrics from the

diversified binaries, saving these results to a comma-separated value (CSV) file. Finally, the

graphing engine will use the results to produce interactive charts.

The system design utilizes a plug-in-based architecture that allows components to be

swapped out and thus enables the user to extend and modify the standard functionality, as was

done as part of this work.

5.3.4 Execution Component

This system uses an execution engine to automate the diversification, analysis, selection,

and graphing process. The execution engine starts by reading a configuration file. This

configuration file contains the number of variants to create, the name and path to the program's

source code, the diversification algorithms to be used, the weight for each of the quantification

criteria that users are interested in maximizing criteria 1 (C1) which represents Attack Resistance,

criteria 2 (C2) which represents Exploit Complexity, and C3 criteria 3 (C3) which represents

57

Resistance to Reverse Engineering. The final field in the configuration file is the performance

metrics to record. In this case, these metrics were related to CPU clock time.

After reading and parsing this configuration file, the execution engine provides the path to

the program source code, the number of variants to create, and the names of the diversification

algorithms to the diversification engine. Afterward, all diversified binaries are stored in a separate

folder for later use. The execution engine forwards the set of performance statistics to be recorded

and the path to the diversified binaries to the analysis component.

5.3.5 Diversification Component

In the first iteration of this system, Amoeba [6] was used as the diversification engine. This

engine has since been replaced with Obfuscator-LLVM. This replacement was a widely needed

update, as Amoeba, a binary-level diversification engine, only supported x86 binaries with

debugging symbols, whereas Obfuscator-LLVM is a compiler-based diversification engine. This

addition allows for the compilation and diversification of programs to any architecture supported

by Obfuscator-LLVM, which will allow for further analysis of how diversification affects other

architectures.

The execution engine parses the following from the configuration file: the number of

variants to be created, and the diversification algorithm(s) to apply. Those values along with the

path to the target binary are sent to the diversification component. The diversification component

initiates Obfuscator-LLVM, ensuring that the program is compiled with the correct diversification

flags. During the compilation process, variants are saved in their respective folders. After the

compilation phase, the file path where all diversified binaries are stored is sent to the analysis

component.

58

5.3.6 Analysis Component

A significant goal of this selector system is to quantify the impact of diversification

algorithms based on the criteria and methods presented earlier and analyze the performance of

diversified binaries. This work utilizes ROPPER [19] to quantify two of the three scores. The

decision to use ROPPER to find ROP gadgets is due to its gadget-finding algorithm. As previously

discussed, ROPPER utilizes the Galileo algorithm to find gadgets, allowing ROPPER to locate

more gadgets than its counterparts. Finally, because ROPPER also includes a robust and powerful

Python API, it provides for scriptable analysis of the gadgets found.

First, ROPPER collects and counts the total number of gadgets for all variants and the

original binary. The information gathered from ROPPER is used to calculate the attack resistance

score, using the approach described in section 5.2.1 for both the original binary and diversified

variants. Then, using ROPPER's API, the analysis component calculates the exploit complexity

score. After the analysis component calculates these two scores, they are saved to a CSV file for

later use by the algorithmic selection component.

This system uses Binary Ninja to calculate the resistance to reverse engineering score as

part of the analysis component. However, other disassemblers, such as Ghidra or IDA Pro, can be

used because of the plug-in architecture. The decision to use Binary Ninja was primarily due to

known issues with Ghidra's binary analysis phase. During the analysis process, Ghidra sometimes

never finished analyzing a binary, as was discovered in an earlier iteration when Ghidra was

initially used to calculate the resistance to reverse engineering score.

After Binary Ninja calculates the resistance to reverse engineering scores for both original

binaries and diversified variants, the system writes these scores to the same CSV file that contains

the attack resistance and exploit complexity scores.

59

Finally, to achieve the second goal of this system and analyze the performance of

diversified binaries, Perf, the Linux performance tool, is used to collect metrics. Perf can measure

and record information such as CPU usage, process memory usage, and power consumption. Perf

executes the diversified and non-diversified binaries using the program arguments provided by the

execution engine. After Perf generates the results, the system stores the generated results in a

directory. The graphing engine then reads these files to generate the plots of the results.

5.3.7 Algorithm Selection Component

With the development of the algorithm selector component, the system's final goal is to

recommend the best diversification algorithm to the end user is achieved. This component parses

the CSV file generated by the analysis component using pandas, a data science library written in

Python. After parsing the CSV file, the algorithm selector normalizes Attack Resistance, Exploit

Complexity, and Reverse Engineering Resistance scores for every binary in the CVS file. This

normalization uses the normalization formula shown in Equation 2, where X is the non-normalized

value for each quantified impact value.

𝑋𝑛𝑜𝑟𝑚=
(𝑋 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

Equation 2: Normalization Formula

 Following the normalization process, the selection component calculates a selection score

for every binary using the criteria C1, C2, and C3 from the configuration file. These criteria

represent the percentage of importance the user wants to give to each quantified value generated

from the analysis component. Equation 3 details the formula used to calculate the selection score.

60

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

= (𝐶1(𝐴𝑡𝑡𝑎𝑐𝑘 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚) + 𝐶2(𝐸𝑥𝑝𝑙𝑜𝑖𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑛𝑜𝑟𝑚)

+ 𝐶3(𝑅𝑒𝑣𝑒𝑟𝑠𝑒 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚))

Equation 3: Impact Score Formula

After all binaries in this dataset have a selection score, the algorithm selector component

sorts the resulting scores from highest to lowest. The analysis component selects the first two

algorithms with the highest selection score. The entire dataset is then sent to the visualization

component to graph how each algorithm compares.

5.3.8 Visualization Component

To assist in visualizing the results generated from Perf and the analysis component, Plotly

[20] is used. Plotly is an open-source library that is a simple yet powerful graphing module for

Python that supports various types of interactive plots. In addition, Plotly produces its graphs in

an HTML output, allowing an easy view of the graphs locally or on a web page hosted on a server.

The visualization component utilizes the CSV files generated by Perf during the analysis

phase, the output generated by the algorithm selector component, and plots the data for each binary

in the CSV file. In this work, the graphs displayed to the user are as follows. Bar graphs are used

to show the results from the performance metrics generated from the analysis components. In

contrast, box charts display the best diversification algorithm for a user. Using box charts to show

the best diversification algorithm, users can see how algorithms compare and the range of impact

of each diversification algorithm.

61

5.4 SUMMARY

This chapter discussed the overview of the case study to analyze the impact that software

diversification has in terms of preventing attackers from developing exploits or re-using previously

crafted exploits. Additionally, this chapter discussed the identification of criteria needed to

quantify the impact of software diversification and proposed methods to quantify the effect.

Finally, this chapter discussed the implementation details of the selection system for deciding on

the best diversification algorithm based on user preference.

62

CHAPTER 6: RESULTS AND OBSERVATIONS

6.1 IMPACT OF SOFTWARE DIVERSIFICATION ON EXPLOIT DEVELOPMENT

The main goal of software diversification is to prevent an attacker from developing a

working master exploit that can be used across all systems. Most of the work done in understanding

how diversification affects ROP exploits has only examined the change in gadgets and has not

studied if the surviving gadgets or gadgets added as part of the diversification process are enough

to allow an attacker to create a successful exploit. This section discusses the work done on

examining compiler-based software diversification's impact in generating and creating ROP

exploits that can be used.

6.1.2 Gadget Count

As previously mentioned, the first analysis analyzed the relationship between the number

of functions in the binary and the total number of gadgets. Figure 9 shows the relationship between

the number function in a binary for the original (non-diversified) variants generated.

63

Figure 9: Function and Gadget Relationship Non-Diversified: Real-World

Following the analysis of the original binaries, the same relationship was plotted with

diversified variants. This plotting was done to compare results with those originally found in [51].

Authors in that work noticed that when any diversification algorithm is applied, there is an increase

in the total number of gadgets.

Figure 10Error! Reference source not found. shows the same relationship, the number

of functions and gadgets. However, in this figure, apart from the original binaries (red diamonds),

programs compiled with all transformations (sub bcf fla) are also shown (blue circles).

The results in this figure showed something that was not expected: diversification

transformations are not only increasing the number of gadgets in a program, but they are also

increasing the number of functions in a program. This anomaly hints that during compilation, to

64

include the transformation of the diversification engine, the compiler adds pre-made functions that

have some of the changes already implemented.

Figure 10: Function and Gadget Relationship All Algorithms and Non-Diversified: Real-World

Another anomaly identified, shown in the figure above, is an apparent increase in the

number of gadgets. This increase is not as significant as was expected.

As part of the preliminary analysis for this work, the GNU Coreutils dataset was compiled

in the same manner explained in chapter 5. However, a much larger increase in both gadget count

and function count was observed in the Coreutils dataset. Figure 11Figure 11 shows the

relationship between the number of functions and the number of gadgets for the Coreutil dataset.

Both the original and binaries diversified are displayed with all transformations applied.

65

Figure 11: Function and Gadget Relationship All Algorithms and Non-Diversified: Coreutils

As seen in the figure above, Coreutils has only one similarity with the real-world dataset:

an increase in the number of functions and gadgets. This inconsistency leads to the conclusion that

the diversification engine affects binaries in unpredictable ways, which may be caused by the

random seed used in Obfuscator-LLVM.

6.1.2 Surviving Gadgets

The second phase of this work was to understand how diversification affects the total

number of surviving gadgets between the original binaries and their respective diversified variants.

For this analysis, surviving gadgets are defined as the same gadget found in the same memory

66

address. Surviving gadgets were of particular interest because while the total number of similar

gadgets would help an attacker, in theory, the attacker would need and additional vulnerability to

leak the new location of the gadgets. Whereas with surviving gadgets, a new vulnerability would

not be needed as attacker can easily modify their exploit without much difficulty. If the total

number of surviving gadgets is large enough, the probability that they might be helpful to an

attacker grows. Furthermore, suppose an attacker is able to identify these gadgets. In that case,

they might be able to develop a successful exploit that can be used across all binaries, even if

diversification is applied.

For this work, two areas were analyzed. First, I calculated the average percentage of

surviving gadgets between the original non-diversified binary and all of the variants. Second, the

shared gadgets were extracted and analyzed to understand if the surviving gadgets were substantial

enough for attackers to generate a meaningful exploit that they could re-use.

To identify the surviving gadgets. ROPPER was used to find all the gadgets and addresses

for each binary. Afterward, the intersection was calculated for the variants and the original. This

was used to calculate the percentage of shared gadgets. Table 1 shows the results of this analysis.

Table 1: Average Percentage of Shared Gadgets between Variants and Non-Diversified Binaries

Binary Name SUB BCF FLA SUB

&

BCF

SUB

&

FLA

BCF

&

FLA

ALL

Crossfire 2.76% 0.0% 2.72% 0.0% 2.74% 0.0% 0.0%

DNSTracker 7.14% 7.11% 7.14% 7.03% 7.14% 6.86% 6.86%

LamaHub 2.52% 2.44% 2.33% 2.13% 2.23% 2.33% 2.42%

Mcrypt 6.00% 2.66% 2.69% 2.68% 2.71% 2.57% 2.45%

MP3Info 14.38% 7.32% 7.35% 7.15% 7.35% 6.85% 6.88%

NetPerf 2.67% 1.13% 0.98% 1.03% 1.03% 0.98% 1.14%

67

PDFResserect 8.79% 8.50% 8.46% 8.14% 8.46% 8.11% 8.14%

Sipp 0.22% 0.17% 0.20% 0.16% 0.21% 0.15% 0.15%

yTree 1.4% 1.41% 1.35% 1.45% 1.41% 1.46% 1.41%

As shown in Table 1, when the average percentage of surviving gadgets is analyzed, it is

clear that while diversification does add new gadgets to the binary, it is still highly effective

because it moves gadgets around the address space. This movement makes it harder for an attacker

to take advantage of all the gadgets in the binary. These results are similar to the ones observed in

[12]. However, the significant difference is that in [12], the authors did not analyze the type of

gadgets that survive diversification to understand if an attacker can create an exploit with them.

Therefore, I then decided to extract and analyze those survivor gadgets.

When analyzing the gadgets that survive diversification, I discovered that in most cases,

the ones that survive diversification are actually not enough for an attacker to generate a

meaningful exploit. Figure 12: Surviving Gadgets between Original and Variants

PDFResserectFigure 12 shows an example of the surviving gadgets found in all variants for

PDFResserect, the binary with the highest percentage of shared gadgets overall.

68

Figure 12: Surviving Gadgets between Original and Variants PDFResserect

As seen in the figure above, while some gadgets might seem problematic, such as “call

rax” and “jmp rax.” These gadgets, hi-lighted in yellow in Figure 12, only allow an attacker to

launch a Denial of Service (DOS) attack. This problem also carries over to scenarios where

potentially dangerous gadgets such as syscall are shared between variants. When analyzing

Crossfire-Server, I found potentially hazardous gadgets that were shared. I do not find this

particularly worrying, as apart from a few syscall gadgets, no other gadgets that could modify

registers were shared between variants. Furthermore, as shown in Table 1, the overall percentage

of shared gadgets changes dramatically between all variants, further demonstrating the strength of

diversification and its ability to reduce the number of successful exploit generation. In this

analysis, there did not appear to be enough surviving gadgets to create more advanced exploits.

This appearance carries over to larger binaries, such as the OpenSSL program in the dataset used

in this work.

69

6.1.3 Exploit Generation

The final phase of this work was to analyze how different diversification algorithms affect

exploit generation. Using ROPPER’s exploit generation functionality, target binaries were scanned

and two separate ROP chains were created. First, execve ROP chains for all binaries in our data

set were created, followed by mprotect ROP chains. In this section, I will present the results from

the analysis done on a program in our dataset, Sipp, and report on our observations on how

different diversification algorithms affect the resulting chain. I decided to present Sipp for showing

the execve analysis while selecting binaries for the dataset. It was discovered that Sipp was the

only binary that had a tool-generated execve ROP chain exploit in ExploitDB. Therefore, because

it was known that Sipp had all of the instructions needed to generate a ROP chain, it was the perfect

candidate to demonstrate the changes in exploits.

Figure 13: ROPPER Generated execve for Sipp

Figure 13 shows the ROPPER-generated ROP chain. My results show interesting results

when analyzing the generated exploits for the diversified variants. When the Instruction

Substitution algorithm was applied, ROPPER could develop a partial ROP chain for 80% of

70

variants. This work defines a partial ROP chain as one where one or more critical gadgets are

missing. In the remaining 20% of variants, ROPPER could not generate a ROP chain, as it could

not identify the necessary gadgets needed to create a ROP chain. These results are identical when

the Bogus Control Flow algorithm is applied.

When looking at the generated exploit chain for the Control Flow Flattening algorithms, I

could see that ROPPER found enough gadgets to create a chain for only one variant. However,

this chain is also a partial ROP chain, as the syscall gadget was missing. With this algorithm, only

one binary had a complete exploit chain with a syscall instruction. Outside of these two exploit

chains for the remaining 80% of variants, ROPPER could not find any valuable gadgets to generate

a ROP chain.

When I combine algorithms, there are minor changes to the results observed. When variants

are compiled using the Bogus Control Flow and Control Flow Flattening, 40% of our variants

have full ROP chains with a syscall instruction, 50% have a partial ROP chain, and 10% of

variants, a ROP chain was not generated.

When Instruction Substitution and Control Flow Flattening algorithms are combined, only

20% of variants had a complete ROP chain, 40% had no ROP chain generated, 30% had a partial

ROP chain with the missing syscall, and only 10% had no ROP chain but did have a syscall gadget

available.

When binaries are compiled using the Instruction Substitution and Bogus Control Flow,

60% had a partial ROP chain (missing syscall), 20% had an entire ROP chain, 10% had no ROP

chain, and 10% only had a syscall gadget available.

Finally, when all diversification algorithms are used during compilation, 30% had full ROP

chains, 60% had partial ROP chains, and 30% had no ROP chains.

71

Following the generation and analysis of the execve exploit chain, exploits were generated

for another famous exploit, mprotect. Similar to the execve analysis, exploits were developed for

all binaries in our dataset. In my study, I discovered a bug in ROPPER. Because of this bug, there

were minor issues with ROPPER finding the syscall gadget within the target binary. This bug has

since been patched.

Figure 14 shows an example of a generated mprotect ROP chain for the non-diversified

version of Crossfire-Server.

Figure 14: ROPPER Generated mprotect Exploit for Crossfire-Server

The results for mprotect, surprisingly, are different than those for execve. I noticed that in

90% of generated exploits, there exist enough gadgets in the diversified variants such that an

attacker can create a similar exploit to the original even when all diversification algorithms are

applied. An example is shown in Figure 15.

Figure 15: ROPPER Generated mprotect Exploit for Crossfire-Server All Diversification

Algorithms Applied

72

As seen in the Figure above, there is very little difference between the diversified variant

and the original binaries. This observation is especially surprising after analyzing the results

from the execve generated exploit. This led me to hypothesize that for an execve exploit to be

effective, it requires a gadget that falls into the Load/Store criteria. This gadget type is often

called a ‘write-what-where’ gadget. These gadgets are used to allow an attacker to write the

string ‘/bin/sh’ to a writable section of memory within the binary, usually in the .bss section of

memory. The attacker would then load the address where that string is stored to a register. An

example of this gadget would be: "mov qword ptr [rdx], rax; ret;.” These sets of gadgets

appear to be rare in smaller programs and not found in abundance, whether or not diversification

is applied. However, in other exploit types such as mprotect, these write-what-where gadgets are

not required but require a different limited set of gadgets. This set of gadgets is limited to

gadgets that only need immediate loading values to the registers: RDI, RSI, RDX R10, R8, R9,

and RAX, which are the first six arguments in Linux systems for a function.

These register-populating gadgets are abundant in binaries due to restoring registers to a

previous state before a function is called, and therefore might explain why diversification does

not eliminate these gadgets. In larger binaries, however, the analysis indicates this explanation is

not the case. In my research with OpenSSL, I noticed that ROPPER successfully created both a

full execve and mprotect exploit. This is primarily due to how large these programs are; as such,

ROPPER has more gadgets to select from and can select from areas that might not be affected by

diversification.

This work is just a small step in analyzing software diversification algorithms' impact on

binaries. In this section, I presented our results by looking at two exploits. I can begin to gain

73

insight into which gadgets can be diversified away and which cannot because they are critical to

the binary or returning a binary to a previous state.

6.2 QUANTIFICATION OF THE IMPACT OF SOFTWARE DIVERSIFICATION

6.2.1 Diversification on Attack Resistance

After diversifying all of the binaries in the dataset, the results generated when calculating

the Attack Resistant scores, refer to section 5.2.2 for details on how the Attack Resistance score

was calculated, show that, in most cases, Instruction Substitution is the best algorithm for Attack

Resistant. To offer randomization while reducing the total number of ROP gadgets added. Table

2 details the results for several binaries in the dataset. Ideally, an Attack Resistance score that is

as close to the Attack Resistance score of the original binary is desired as that means the number

of ROP gadgets is not being incremented. Whereas a lower score indicated that diversification is

increasing the total amount of ROP gadgets in the compiled variant. Results for the full dataset

can be found in Appendix I.

Table 2: Attack Resistance Score Results

(Refer to Section 5.2.2 for Calculation Details)

Binary

Name

Original SUB FLA BCF SUB &

BCF

SUB

&

FLA

BCF &

FLA

ALL

Base64 0 -0.22 –

0.34

-1.93 -

2.18

-7.34 -

8.78

-10.32 -

11.38

-2.07 -

2.44

-7.64 -

8.46

-15.22

-

16.37

74

ls 0 -0.12 -

0.20

-0.70 -

0.80

-5.39 -

5.78

-7.35 -

8.36

-0.89 -

1.03

-5.10 -

5.58

-10.31

-

11.09

CP 0 -0.16 –

0.23

-0.75 -

0.87

-5.73 -

6.21

-8.16 -

9.02

-0.92 -

1.06

-5.47 -

6.09

-11.10

-

11.92

Sha512Sum 0 -0.17 –

0.41

-0.30 -

0.39

-2.96 -

3.55

-5.42 -

6.32

-0.94 -

1.09

-3.14 -

3.74

-7.36 -

8.11

OpenSSL 0 -0.18 –

0.19

-0.31 -

0.34

-0.31 -

0.33

-2.14 -

2.19

-0.45 -

0.47

-1.10 -

1.16

-2.02 -

2.18

One observation from the table above is how much the Attack Resistance score changes

with different diversification algorithms. For instance, regarding the Attack Resistance score for

Base64, Table 2 details how any algorithm other than Instruction Substitution would negatively

affect the Attack Resistant score; as mentioned earlier, the goal would be to have a low Attack

Resistant score. This impact, however, does not appear to scale the same way for every binary. For

instance, when diversifying Base64 with the Control Flow Flattening algorithm, there is a

significant increase in the Attack Resistant score, as it jumps from about 1.2 to almost 3.0. Whereas

ls only has a moderate jump from 1.12 to 1.71. This difference is more noticeable when compared

against a larger binary such as OpenSSL. For instance, when the binaries in this dataset are

compiled with all diversification algorithms, the Attack Resistance Score increases significantly.

However, with OpenSSL this increase, while still significant, is not to the scale of the other

binaries. This increase may be due to the large size of OpenSSL. For instance, since OpenSSL has

plenty of ROP gadgets, any change in ROP gadgets might not be as impactful as smaller binaries

with fewer ROP gadgets.

75

6.2.2 Diversification on Exploit Complexity

When analyzing the dataset's results for the Exploit Complexity score, refer to section 5.2.3

for details on how the Exploit Complexity score was calculated, some results stand out. Most

notably, as shown in Table 2, several diversification algorithms negatively affected the Exploit

Complexity score while they did well on the Attack Resistance score. Results for the full dataset

can be found in Appendix J.

Table 3: Exploit Complexity Score Results

(Refer to Section 5.2.3 for Calculation Details)

Binary

Name

Original SUB FLA BCF SUB &

BCF

SUB &

FLA

BCF &

FLA

ALL

Base64 263 27 –

67

34 – 51 266 –

440

829 –

953

53 – 100 547 –

652

1565 –

1780

ls 1019 133 –

214

104 –

144

987 –

1255

2919 –

3425

196 –

277

1595 –

1789

4858 –

5343

CP 779 116 -

173

109 –

129

916 –

1119

2261 –

2694

172 –

234

1345 –

1514

3805 –

4237

Sha512Sum 296 80 –

119

35 – 55 305 –

485

968 –

1117

104 –

135

520 –

698

1632 –

1827

OpenSSL 15393 15944

-

16046

22258 -

22339

18358 –

18803

31809 –

32675

22562 –

22820

29895 –

30915

31028

–

31518

For instance, as shown in the table above, Instruction Substitution was one of the worst-

performing algorithms in maximizing the Exploit Complexity score for almost all binaries, the

exception being OpenSSL. These results indicate that Instruction Substitution breaks down

76

gadgets more, resulting in more singleton gadgets. This observation means that ROP gadgets

become substantially shorter and can allow attackers to craft new exploits with little or no risk of

having previously set registers clobbered or modified. As with the Attack Resistance score results,

a larger binary such as OpenSSL benefits from only having Instruction Substitution applied. Again,

this seems to indicate that diversification, while beneficial for all binaries, might be more effective

in larger binaries. While with smaller binaries, there is an apparent trade-off.

6.2.3 Diversification on Resistance to Reverse Engineering

The final results to discuss are those of the Resistance to Reverse Engineering scores, refer

to section 5.2.4 for details on how the Resistance to Reverse Engineering score was calculated,.

The most surprising discovery from the results shown in Table 4 appears to be that all algorithms

effectively increase the Resistance to Reverse Engineering scores. While these results were

expected from algorithms such as Control Flow Flattening or Bogus Control Flow, which

effectively modified the control flow structure of the compiled binary, the increase in Resistance

to Reverse Engineering score is not expected from the Instruction Substitution algorithm. Results

for the full dataset can be found in Appendix K.

Table 4: Resistance to Reverse Engineering Score Results

(Refer to Section 5.2.4 for Calculation Details)

Binary

Name

Original SUB FLA BCF SUB &

BCF

SUB &

FLA

BCF &

FLA

ALL

Base64 638 1536 –

1640

2323 2680 –

2856

2726 –

2838

2323 4191 –

4330

4166 –

4382

77

ls 2909 3305 –

4087

6272
6669 –

6849

7369 –

8058

6272 114020

– 11658

11342

–

11742

CP 1925 2563 –

3162

4750
5101 –

5293

5147 –

5382

4750 8607 –

8920

8583 –

8926

Sha512Sum 682 1312 –

1555

2298 2424 –

2594

2504 –

2566

2298 4143 –

4272

4124 –

4307

OpenSSL 30520 30549

-

30597

77792

–

77803

63545 –

64765

65164 –

66292

77738 –

77816

144340

–

145741

152999

–

155075

As shown in the table above, Instruction Substitution offers moderate Resistance to

Reverse Engineering for all binaries. In some cases, Instruction Substitution can improve the

Resistance to Reverse Engineering score by as much as double, as with Base 64 and Sha512sum.

For larger binaries, however, such as OpenSSL, this increase is minimal but should still be noted.

6.3 ALGORITHM SELECTION CASE STUDY

To demonstrate how the system developed can recommend the best diversification

algorithm and the performance impact associated with each diversification algorithm, this work

presents two case studies.

6.3.1 Setup

The system developed was installed on a Dell Precision 7720 laptop with a Xenon

processor and 64 gigabytes of memory. As a part of this case study, GNU Coreutils and vulnerable

binaries described in chapter 4 were diversified using Obfuscator-LLVM. All the programs in this

78

dataset were diversified using all three diversification algorithms and their combinations ten times.

All binaries had all three quantification criteria calculated using the analysis component following

the diversification process. In addition, all of the binaries in this dataset had two separate

performance metrics collected using Perf, CPU clock time, and total execution time.

After completing the previous step, the algorithm selector component selected the best

algorithm for two different percentage combinations. Finally, the graphing engine utilized the

information from the selector component and generated Perf output to generate a graph of the

performance impact and display the best diversification algorithm.

6.3.2 Maximizing Attack Resistance

For the first use case scenario to demonstrate the inner working of the selector system, the

target system has limited memory and hard drive space for this first scenario. This system could

be either router, industrial control device, or a program running on an automobile. For this

scenario, Base64 and Sha512sum were selected, as these programs are standard programs used in

smaller systems such as routers. This scenario is focused on maximizing the Attack Resistance

score as this score offers diversification without drastically modifying the program's structure,

unlike control flow flattening and bogus control flow.

After using the developed system to create variants of both programs, calculate their

respective Attack Resistance Scores, and run the performance analysis, the system generated two

different graphs. Figure 16 displays the results for Base64 after using the selector system

developed in this work. In this figure, the x-axis is the name of the diversification algorithms. The

algorithms are color coded as follows: Instruction Substitution in blue, Control Flow Flattening in

red, Bogus Control Flow in green, Instruction Substitution combined with Bogus Control Flow in

79

purple, Instruction Substitution combined with Control Flow Flattening in orange, Bogus Control

Flow combined with Control Flow Flattening in light blue, and all diversification algorithms in

pink.

Figure 16: Base64 Best Attack Resistance Algorithm

The graph generated by the system compares algorithms and visualizes where each

algorithm or combination of algorithms scores based on the user's input.

As shown in the figure above, after analyzing all variants, the algorithm selector system

would recommend that Base64 binaries be compiled with the Instruction Substitution algorithm,

followed by the Control Flow Flattening algorithm.

Furthermore, when the system analyzes performance metrics associated with diversified

binaries, the selector system also displays a performance graph, as shown in Figure 17 detailing

the performance impact associated with each binary.

80

Figure 17: CPU-Time Impact for Base64

As seen in the box plot generated by this system, the results indicate that Instruction

Substitution would be the best algorithm to use as it would be the algorithm that would offer the

randomness of diversification while minimally impacting performance.

While the selector system recommends instruction substitution as the best algorithm for

Base64, this recommendation is not necessarily the case for the second binary, Sha512Sum. When

the selector system analyzes Sha512sum, the best algorithm can be Instruction Substitution or

Control Flow Flattening. Figure 18 displays the complete results generated from the selector

algorithm.

81

Figure 18: Sha512Sum Best Attack Resistance Focus

As seen in the figure above, both Instruction Substitution and Control Flow Flattening are

potential candidates as the optimal algorithm based on the criteria the analyst wants to maximize.

Although Instruction Substitution and Control Flow Flattening might be the best algorithm for

maximizing Attack Resistance, the selection system details that using these two algorithms will

have some performance penalty with Sha512Sum. Figure 19 displays the performance penalties

associated with Sha512Sum.

82

Figure 19: CPU-Time Impact for Sha512 Sum

In this scenario, the diversification algorithm that would have a minimal impact on

performance would be Bogus Control Flow. This scenario demonstrates the trade-offs associated

with diversification and the need to leave the final decision to the end user regarding which

algorithm to use.

6.3.3 Balanced Diversification

For this final scenario, we suppose the system is your standard workspace; this system

could be either an all-in-one workstation, a desktop computer, or a modern laptop. Unlike the

previous scenario, this scenario will demonstrate the selector component’s ability to show how

diversifications can impact total execution time of the diversified binaries. Similar to the previous

scenario, the binaries selected were Base64 and ls. These binaries, apart from being used in small

83

devices, are standard on systems running the Linux operating system. However, wherein the last

scenario, the goal was to maximize the Attack Resistant score, in this scenario, the goal is to have

a diversification algorithm that evenly disperses its impact. That is to say, the goal is a 33% focus

on Attack Resistance Exploit Complexity and Resistance to Reverse Engineering.

After the selector system diversifies and analyzes the binaries, the system generates the

box plot shown in Figure 20. Similar to the previous scenario, the x-axis is the name of the

diversification algorithms. The algorithms are color coded as follows: Instruction Substitution in

blue, Control Flow Flattening in red, Bogus Control Flow in green, Instruction Substitution

combined with Bogus Control Flow in purple, Instruction Substitution combined with Control

Flow Flattening in orange, Bogus Control Flow combined with Control Flow Flattening in light

blue, and all diversification algorithms in pink.

Figure 20: Base64 Best Balanced

84

The results from the analysis would indicate that the best diversification engine to use to

balance out the impact of diversification for Base64 would be to compile Base64 with all

diversification algorithms. The second best algorithm would be a binary compiled with Bogus

Control Flow and Control Flow Flattening. Similar to the scenario above, the selector system also

generates a graph visualizing the overall impact of diversification, except this scenario presents

the total time elapsed diagram. Figure 21 illustrates the execution time associated with Base64.

Figure 21: Base64 Total Execution Time

As shown in the figure above, diversifying with all diversification flags might be the best

to offer a balanced level of diversification, but there is some performance impact. However,

looking at the overall execution time, execution time only increased by .04 of a second. Because

85

of this minor increase, it would be appropriate to diversify using all algorithms, as the execution

time impact might be negligible when running on a more extensive system.

Finally, for the second program in this scenario ls, the selector system would suggest that

variants of ls be compiled using the same combination of algorithms as with Base64. Figure 22

displays the results of this analysis.

Figure 22: ls Best Balanced

One notable difference between Base64 and LS is that while Bogus Control Flow and

Control Flow Flattening is the second algorithm, the impact spread is closer. This signifies that

with ls, unlike Base64, there will be less variation between diversified variants. Additionally, less

spread may be good if the end user wants more consistent variants.

86

Finally, when analyzing the total time graph similar to previous examples, compiling with

all diversification flags does have a significant performance impact for ls. The result in terms of

total execution time can be seen in Figure 23

Figure 23: ls Total Execution Time

The figure shows that the total time it would take to execute using all diversification

algorithms is substantially significant.

6.4 DISCUSSION

The results presented in this chapter make it clear that software diversification is highly

effective at modifying the binary such that ROP gadgets move around a program's memory space.

Additionally, as the results presented detail, diversification can sometimes remove critical ROP

87

gadgets that could affect the development of certain ROP chains, as was the case with execve.

Moreover, this work supports theories presented in [2] and [21] in that some ROP gadgets cannot

be removed through diversification. Furthermore, the results presented in this work detail that

while there are ROP gadgets that are survivors between variants and the original binary, these

gadgets are insufficient for an attacker to develop a significant exploit.

When discussing the impact of software diversification on binaries from a quantification

aspect, it is clear that software diversification, as with everything in security, is a trade-off. While

one algorithm might offer more protection in terms of the Attack Resistance score developed in

this work, that algorithm might affect the Exploit Complexity score or even performance

depending on the binary. This trade-off is a primary reason the selector system was developed.

With the quantification metrics presented along with the selector system designed and produced,

this work hopes to alleviate some of the decision-making by allowing analysts to visualize the

impact.

Finally, there are several constraints to this work. The first constraint has to do with the

architecture. While this work only analyzed software diversification's impact on the Intel x86-64

architecture, with development of the selector system and the quantification methods presented

can easily be expanded to analyze other architectures. Another constraint associated with this work

is when diversification can be introduced; in this work, diversification is introduced during the

compilation phase. This means that diversification cannot be introduced on binaries that are

already running on a system. Thus these systems would need to be taken offline for a short period

to re-compile binaries and introduce diversification. As more diversification engines become open-

sourced, this could change in the future, and diversification can be introduced without taking entire

systems offline to re-compile binaries.

88

CHAPTER 7: CONCLUSION

7.1 SUMMARY

Although the area of software diversification is over 20 years old, most of the literature to

date has primarily focused on the algorithmic development side. As a result, previous work has

failed to evaluate the effects of software diversification hindering an attacker's ability to create

new exploits or re-use existing exploits. Furthermore, there has yet to be an effort to quantify the

impact of software diversification algorithms.

The significant contribution of this work was in gaining a greater understanding of software

diversification's impact on binaries. This work analyzed software diversification's impact on

binaries regarding its ability to prevent attackers from re-using their previously crafted exploit and

generating a new exploit post-diversification. With the development of a case study that used real-

world binaries with known vulnerabilities, this work discovered that software diversification is

highly effective at preventing certain classes of exploits, such as execve. This work also identified

that for other categories of ROP exploits, such as mprotect, diversification is limited to modifying

the length of gadgets and moving them around the program's address space. This work is the first

of its kind to examine how software diversification impacts exploit development using vulnerable

programs.

Following this analysis, this research focused on quantifying software diversification's

impact on binaries. Through an in-depth literature review, this work identified three criteria that

the ideal diversification algorithm should address and maximize 1) Attack Resistance, 2) Exploit

Complexity, and 3) Hardening against reverse engineering. Through the methods proposed to

quantify software diversification's impact, researchers can understand the tradeoffs associated with

89

each diversification algorithm which can be expanded and applied to compile time diversification

and other diversification approaches. The results observed in terms of quantifying the impact of

software diversification concerning the quantification methods show that software diversification

is a trade-off. While one diversification algorithm might maximize one criterion, it could also

lower the score of another criterion.

To address this trade-off, this work expanded on previous work presented and developed a

selector tool. This tool allows operators to streamline the analysis process and identify and

visualize the best diversification algorithm for the criteria they want to maximize. Finally, similar

to previous work the selector tool still allows for the performance impact analysis of diversified

binaries. This selector system makes it easier for analysts to select the best diversification

algorithm based on their criteria and visualizes the results to allow them to see and understand how

each algorithm compares against the other. Through the use of the selector system developed in

this dissertation, analysts can make informed decisions when selecting the best algorithm for their

needs.

7.2 FUTURE WORK

Future work in this area can be divided into three different sections. The first section

concerns the selector system. Future work in this area will expand our selector system to

incorporate more diversification engines. As previously mentioned, diversification engines

currently presented in the literature have been primarily closed-sourced. As a result, this work has

mainly used Obfuscator-LLVM because it is open-sourced, used extensively in the literature, and

used in industry. These new diversification engines do not have to be compiler-based either; as

demonstrated initially, the selection system utilized a post-compilation diversification engine.

90

With the architecture and structure of the selection tool, integrating new diversification toolsets

and analysis tools can be done quickly and easily.

Regarding the selector system section, the current selection system only records CPU time

and total execution time. Another area of future work would be to record other metrics, such as

CPU usage, memory usage, and power consumption. As well as creating additional components

by developing a prediction component using AI and Machine Learning to predict the impact of

different diversification techniques.

The second section of future work concerns the analysis portion of this dissertation. One

area available for future work would be to expand the dataset used; this work envisions a

consistently growing dataset to allow for a broader picture of how diversification affects binaries.

Along with the growing dataset, this work anticipates introducing new quantification methods

similar to those presented in the software obfuscation world, as there exists an overlap between

the two. Additionally, future work could examine the impact of software diversification on binaries

with multiple vulnerabilities. This work only investigated software diversification's effect on

binaries with only a fundamental buffer overflow vulnerability. However, it would be interesting

to examine diversification's role in preventing ROP-based exploits when combined with other

vulnerabilities, such as a buffer overflow vulnerability with an information leak.

The final section of future work is related to the diversification standpoint. One area open

for future work is something that this work is calling Percentage-Based Diversification. Before

transformations are applied to a binary, a list of all the locations where those transformations will

be used is created. Unfortunately, operators cannot select a subset of that list, making it an all-or-

nothing ordeal. With Percentage-Based Diversification, operators could randomly select a subset

of that list, allowing for fine-tuning of diversification. This has the potential to improve the results

91

observed in this work and will allow for more flexibility when diversifying binaries. The final area

of future research, form the diversification standpoint, is expanding this work to different

architectures. By using the methods, and the selector system developed in this work, future work

can examine the impact of diversification on different architectures such as ARM. Through the

use of Obfuscator-LLVM, diversifying for multiple architectures can be done with minimal

complications. Additionally, because ROPPER utilizes the Capstone, Unicorn, and Keystone to

disassemble binaries, the only limitation would be architectures also supported by those Python

libraries.

92

REFERENCES

[1] J. C. Foster and J. Deckard, "Buffer Overflow Attacks: Detect, Exploit, Prevent,"

Rockland, Syngress Publishing, Inc, 2005, p. 403.

[2] S. Schirra, "Ropper - rop gadget finder and binary information tool," 2013. [Online].

Available: https://scoding.de/ropper/.

[3] M. Dowd, J. McDonald and J. Schuh, "The Art Of Software Security Assessment,"

Addison Wesley, 2006, p. 89.

[4] D. Day and Z. Zhengxu, "Protecting Against Address Space Layout Randomization

(ASLR) Compromises and Return-to-Libc Attacks Using Network Intrusion Detection

Systems," in International Journal of Automation and Computing, 2011.

[5] Z. Sergey, "VirtualBox E1000 Guest-to-Host Escape," November 2018. [Online].

Available: https://github.com/MorteNoir1/virtualbox_e1000_0day. [Accessed December

2018].

[6] D. Reyes, J. C. Acosta, A. Escobar De La Torre and S. I. Salamah, "A System for

Analyzing Diversified Software Binaries," in MilCom, Norfolk, 2019.

[7] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis and M. Polychronakis, "Compiler-Assisted Code

Randomization," in 2018 IEEE Symposium on Security and Privacy (SP), San Jose, Ca,

2018.

[8] P. Larson, A. Homescu, S. Brunthaler and M. Franz, "SoK: Automated Software

Diversity," in IEEE Symposium on Security and Privacy, San Jose, CA, 2014.

[9] J. Salwan, "ROPgadget -Gadgets finder and auto-roper," 12 March 2011. [Online].

Available: https://github.com/JonathanSalwan/ROPgadget. [Accessed 20 April 2020].

[10] C. Team, "mona.py – the manual," 14 July 2011. [Online]. Available:

https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/. [Accessed 20 April

2020].

[11] E. J. Schwartz, T. Avgerinos and B. David, "Q: Exploit Hardening Made Easy," in

USENIX Security Symposium, 2011.

93

[12] J. Coffman, D. M. Kelly, C. C. Wellons and A. S. Gearhart, "ROP Gadget Prevalence and

Survival under Compiler-Based Binary Diversification Schemes," in Proceedings of the

2016 ACM Workshop on Software PROtection, Vienna, Austria, 2016.

[13] A. One, "Smashing The Stack For Fun And Profit," Phrack, 1996.

[14] J. v. Neumann, "The First Draft Report on the EDVAC," Moore School of Electrical

Engineering University of Pennsylvania, Pennsylvania , 1945.

[15] National Institute of Standards and Technology, "National Vulnerability Databse Statistics

Results," [Online]. Available:

https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&query

=Buffer+Overflow&search_type=all&isCpeNameSearch=false. [Accessed 24 October

2022].

[16] B. Potteiger, J. Mills, D. Cohen and P. Velez, "RUCKUS: A Cybersecurity Engine for

Performing Autonomous Cyber-Physical System Vulnerability Discovery at Scale," in

Proceedings of the 7th Symposium on Hot Topics in the Science of Security, New York,

NY, USA, 2020.

[17] E. Buchanan, R. Roemer and S. Savage, Return-Oriented Programming: Exploits Without

Code Injection, Las Vegas, 2008.

[18] R. Romer, E. Buchanan, H. Shacham and S. Savage, "Return-Oriented Programming:

Systems, Languages, and Applications," ACM Trans. Inf. Syst. Secur., vol. 15, no. 1, 2012.

[19] A. Bansal and D. Mishra, "A practical analysis of ROP attacks," CoRR, vol.

abs/2111.03537, 2021.

[20] P. Larsen, S. Brunthaler and M. Franz, "Automatic Software Diversity," 2015.

[21] C. Liming and A. Algirdas, "N-version Programming: A Fault Tolerance Approach to

Reliability of Software Operation," in Annual International Conference on Fault-Tolerant

Computing, 1978.

[22] V. Bharathi, "N-Version programming method of Software Fault Tolerance: A Critical

Review," in National Conference On Nonlinear Systems & Dynamics, 2003.

[23] GCC, "Hardware Models and Configurations," [Online]. Available:

https://gcc.gnu.org/onlinedocs/gcc-4.9.4/gcc/Submodel-Options.html. [Accessed 12 2

2019].

94

[24] T. J. S. C. S. B. P. L. a. M. F. A. Homescu, "Large-Scale Automated Software Diversity—

Program Evolution Redux," IEEE Transactions on Dependable and Secure Computing,

vol. 14, no. 2, pp. 158-171, 2017.

[25] M. Kolsek, "0patch Blog," [Online]. Available: https://blog.0patch.com/2017/11/did-

microsoft-just-manually-patch-their.html.

[26] M. Prasad, "Disassembly Challenges," 04 05 2003. [Online]. Available:

https://static.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/node5.html.

[Accessed 9 2 2020].

[27] V. Pappas, M. Polychronakis and A. Keromytis, "Smashing the Gadgets: Hindering

Return-Oriented Programming Using In-place Code Randomization," in Proceedings -

IEEE Symposium on Security and Privacy, 10.1109.

[28] "Adobe CoolType - SING Table 'uniqueName' Local Stack Buffer Overflow," [Online].

Available: http:// www.exploit- db. com/exploits/ 16619/. [Accessed 9 2 2020].

[29] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall and J. W. Davidson, "ILR: Where’d My

Gadgets Go?," in IEEE Symposium on Security and Privacy, 2012.

[30] N. V. Database, "CVE-2006-3459 Detail," 02 08 2006. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2006-3459. [Accessed 9 2 2020].

[31] A. Gupta, S. Kerr, M. S. Kirkpatrick and E. Bertino, "Marlin: A fine grained

randomization approach to defend against ROP attacks," in NSS 2013: Network and

System Security, Madrid, 2013.

[32] "Paradyn Pro ject: UNSTRIP," 2011. [Online]. Available:

http://paradyn.org/html/tools/unstrip.html. [Accessed 10 2 2020].

[33] R. Wartell, V. Moha, K. W. Hamlen and Z. Lin, "Binary Stirring: Self-randomizing

Instruction Addresses of Legacy x86 Binary Code," in CCS'12: the ACM Conference on

Computer and Communications Security, Raleigh, 2012.

[34] L. Davi, A. Dmitrienko, S. Nürnberger and A.-R. Sadeghi, "Gadge Me If You Can Secure

and Efficient Ad-hoc Instruction-Level Randomization," in Proceedings of the 8th ACM

SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou

China, 2013.

95

[35] R. Wartell, V. Mohan, K. W. Hamlen and Z. Lin, "Binary Stirring: Self-randomizing

Instruction Addresses of Legacy x86 Binary Code," in Proceedings of the 2012 ACM

conference on Computer and communications security, Raleigh, 2012.

[36] S. Hosseinzadeh, S. Hyrynsalmi and V. Leppänen, "Obfuscation and diversification for

securing the internet of things (IoT)," in Internet of Things Principles and Paradigms,

2016, pp. 259-274.

[37] E. Hjelmvik and W. John, "Breaking and Improving Protocol Obfuscation," Technical

Report No. 2010-05.

[38] A. Homescru, S. Neisius, P. Larson, S. Brunthaler and M. Franz, "Profile-guided

automated software diversity," in Proceedings of the 2013 IEEE/ACM International

Symposium on Code Generation and Optimization, 2013.

[39] D. M. Kelly, C. C. Wellons, J. Coffman and A. S. Gearhart, "Automatically Validating the

Effectiveness of Software Diversity Schemes," in 2019 IEEE/IFIP International

Conference on Dependable Systems and Networks Supplemental.

[40] P. Junod, J. Rinaldini, J. Wehrli and J. Michielin, "Obfuscator-LLVM — Software

Protection for the Masses," in Proceedings of the 1st International Workshop on Software

Protection,, 2015.

[41] J. Coffman, A. Chakravarty, J. A. Russo and A. S. Gearhart, "Quantifying the

Effectiveness of Software Diversity Using Near-Duplicate Detection Algorithms," in

Proceedings of the 5th ACM Workshop on Moving Target Defense, Toronto, Canada,

2018.

[42] S. Schleimer, D. S. Wilkerson and A. Aiken, "Winnowing: Local Algorithms for

Document Fingerprinting," in Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, San Diego, 2003.

[43] M. Henzinger, "Finding Near-Duplicate Web Pages: A Large-Scale Evaluation of

Algorithms," in Proceedings of the 29th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Seattle, 2006.

[44] H. Joshi, A. Dhanasekaran and R. Dutta, "Trading Off a Vulnerability: Does Software

Obfuscation Increase the Risk of ROP Attacks," Journal of Cyber Security and Mobility,

vol. 4, pp. 305-324, 2016.

96

[45] H. Shacham, "The geometry of innocent flesh on the bone: return-into-libc without

function calls (on the x86)," in CCS '07: Proceedings of the 14th ACM conference on

Computer and communications security, 2007.

[46] S. Schirra, "Ropper - rop gadget finder and binary information tool," 2013. [Online].

Available: https://scoding.de/ropper/. [Accessed 24 07 2022].

[47] S. Wang, P. Wang and D. Wu, "Composite Software Diversification," in IEEE

International Conference on Software Maintenance and Evolution (ICSME), Shanghai,

2017.

[48] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S.

Feng, C. Hauser, C. Kruegel and G. Vigna, "SoK: (State of) The Art of War: Offensive

Techniques in Binary Analysis," in IEEE Symposium on Security and Privacy, 2016.

[49] A. Daroc, "Exploiting More Binaries by Using Planning to Assemble ROP Attacks,,"

2020.

[50] A. Nurmukhametov, A. Vishnyakov, V. Logunova and S. Kurmangaleev, "MAJORCA:

Multi-Architecture JOP and ROP Chain Assembler," Ivannikov ISPRAS Open Conference

(ISPRAS), no. IEEE, pp. 37-46, 2021.

[51] M. Research, Z3 Theorem Prover, Microsoft Corporation, 2012.

[52] C. Collberg, C. Thomborson and D. Low, "A Taxonomy of Obfuscating Transfomrations,"

The University of Auckland, 1997.

[53] S. A. Ebad, A. A. Darem and J. H. Abawajy, "Measuring Software Obfuscation Quality- A

Systematic Literature Review," in IEEE Access, 2021.

[54] A. Calleja, J. Tapiador and C. JUan, "A Look into 30 Years of Malware Development

from a Software Metrics Perspective," in 19th International Symposium on Research in

Attacks, Intrusions and Defenses, 2016.

[55] A. Calleja, J. Tapiador and J. Caballero, "The MalSource Dataset: Quantifying

Complexity and Code Reuse in Malware Development,," IEEE Transactions on

Information Forensics and Security, vol. 14, no. 12, pp. 3175-3190, 2019.

[56] NSA, "NSA/CSS," 5 March 2019. [Online]. Available: https://www.nsa.gov/Press-

Room/News-Highlights/Article/Article/1775584/ghidra-the-software-reverse-engineering-

tool-youve-been-waiting-for-is-here/. [Accessed 27 October 2022].

97

[57] V. 35, "Binary Ninja," [Online]. Available: https://binary.ninja/. [Accessed 27 October

2022].

[58] Hex-Rays, "IDA Pro," [Online]. Available: https://hex-rays.com/IDA-pro/. [Accessed 27

October 2022].

[59] Plotly, "Plotly python open source graphing library," [Online]. Available:

https://plotly.com/python/. [Accessed 28 October 2022].

[60] P. H. Joshi, D. Aravindhan and D. Rudra, "Impact of Software Obfuscation on

Susceptibility to Return-Oriented Programming Attacks," in 36th IEEE Sarnoff

Symposium, 2015.

[61] A. Avizienis, The Methodology of N-Version Programming, 1995.

[62] O. Foundation, "OWASP Top Ten," OWASP, [Online]. Available:

https://owasp.org/www-project-top-ten/. [Accessed 17 May 2021].

[63] R. Roemer, E. Buchanan, H. Shacham and S. Savage, "Return-Oriented Programming:

Systems, Languages, and Applications," ACM Transactions on Information and System

Security, vol. 15, no. 1, 2012.

[64] B. Thomas, "U.S. Cyber Command Technical Challenge Problems Guidance," 12 March

2019. [Online]. Available:

https://www.cybercom.mil/Portals/56/Documents/Technical%20Outreach/Technical%20C

hallenge%20Problems.pdf?ver=2019-07-02-151118-497. [Accessed 21 January 2020].

[65] M. Smithson, K. Elwazeer, K. Anand, A. Kotha and R. Barua, "Static Binary Rewriting

without Supplemental Information Overcoming the Tradeoff between Coverage and

Correctness," in 20th Working Conference on Reverse Engineering, 2013.

[66] H. Ralf, H. Thorsten and F. C. Felix, "Return-Oriented Rootkits: Bypassing Kernel Code

Integrity Protection Mechanisms," in 18th USENIX Security Symposium, Montreal, 2009.

[67] P. Larsen, A. Homescu, S. Brunthaler and M. Franz, "SoK: Automated Software

Diversity," in Proceedings of the 2014 IEEE Symposium on Security and Privacy, 2014.

[68] P. Junod, J. Rinaldini, J. Wehrli and J. Michielin, "Obfuscator-LLVM -- Software

Protection for the Masses," Proceedings of the IEEE/ACM 1st International Workshop on

Software Protection, 2015.

98

[69] C. Ping, X. Xiao, M. Bing and X. Li, "Return-Oriented Rootkit without Returns (on the

x86)," in Information and Communications Security. ICICS 2010, 2010.

[70] F. B. Cohen, "Operating System Protection Through Program Evoluation," Computers and

Security, vol. 12, no. 6, pp. 565-584, 1993.

[71] D. A. R. P. Agency, "Cyber Fault-tolerant Attack Recovery (CFAR)," [Online]. Available:

https://www.darpa.mil/program/cyber-fault-tolerant-attack-recovery. [Accessed 23 10

2022].

[72] T. J. McCabe, "A Complexi-ty Measure," IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING,, vol. 2, no. 4, pp. 308 - 320, December 1976.

99

GLOSSARY

DEFINITIONS

This section defines the terms used in the context of this document. The intention of Table

5 is to assist the user in their understanding of the document.

Table 5: Definition of Terms Used

TERMS Definition

ROP Gadget A contiguous instruction sequence already

present in the program ending with the RET

instruction.

ROP Chain The linking together of more than one ROP

gadget in such a way that a logical goal is

achieved.

Zero-Day Vulnerability Newly discovered software vulnerability that

has not been patched.

ACRONYMS

 Table 6 lists the acronyms used in this document.

Table 6: Acronyms

TERM Definition

API Application Programming Interface

ASLR Address Space Layout Randomization

DEP Data Execution Prevention

GCC GNU Compiler Collection

IoT Internet of Things

O.S. Operating System

ROP Return Oriented Programming

V.M. Virtual Machine

I.R. Intermediate Representation

100

APPENDIX A

EXAMPLES OF ROP GADGETS

 Table 7 provides examples and descriptions of common ROP gadgets.

Table 7: ROP Gadgets

ROP Gadget Details

mov qword ptr [r13], r12;

ret;

Move the value stored in r12 and store it in

the address pointed to by r13. Finally, jump to

the following address on the stack

pop r12;

pop r13;

ret;

Store the value on top of the stack onto the

r12 register. Then store the next value in the

r13 register. Finally, jump to the following

address on the stack.

add eax, ebp;

ret;

Add the value ebp to eax, and store the result

in eax. Finally, jump to the following address

on the stack.

xor byte ptr [r15], r14b;

ret;

XOR the lower byte stored in r14, with the

value of the byte stored in the address pointed

to by r15. Finally, jump to the following

address on the stack.

call rax; Call the address that is stored in the rax

register

101

APPENDIX B

EXAMPLES OF SYSTEM CALLS

Table 8Table 7 lists the system call information needed to execute widespread system calls using

Linux x86 systems. The whole system call table can is found at: https://syscall.sh

Table 8: Exit System Call Values

System

Call

EAX

Value

EAX

Value

EBX Value ECX Value EDX

Value

ESI

Value

EDI

Value

EBP

Value

sys_exit 0x01 Int

error_code

- - - - - -

sys_read 0c03 unsigned

int fd

char __user

*buf

size_t count - - - -

sys_write 0x04 unsigned

int fd

const char

__user *buf

size_t count - - - -

sys_execve 0x0b const char

__user

*filename

const char

__user *const

__user *argv

const char __user

*const __user

*envp

- - - -

102

APPENDIX C

Figure 24: Shred CPU Clock Cycles Plot

103

APPENDIX D

Figure 25: Shred ROP Gadgets Plot

104

APPENDIX E

Figure 26: CP CPU Clock Cycles Plot

105

APPENDIX F

Figure 27: CP ROP Gadgets Plot

106

APPENDIX G

Figure 28: ls CPU Clock Cycles Plot

107

APPENDIX H

Figure 29: ls ROP Gadgets Plot

108

APPENDIX I

COMPLETE ATTACK RESISTANCE RESULTS

Table 9 lists complete Attack Resistance scores for all binaries in the dataset used in this work

Table 9: Attack Resistance Score Results for All Binaries

(Refer to Section 5.2.2 for Calculation Details)

Binary

Name

Original SUB BCF FLA SUB &

FLA

SUB &

BCF

BCF &

FLA

ALL

OpenSSL 0 -0.18 -

-0.19

-0.31 -

-0.33

-0.31 - -

0.34

-0.44 - -

0.47

-2.14 - -

2.19

-1.1 - -

1.16

-2.02 -

-2.18

crossfire 0 -0.32 -

-0.36

-4.23 -

-4.42

-0.24 - -

0.29

-0.48 - -

0.56

-5.9 - -

6.14

-3.61 - -

4.21

-7.27 -

-7.56

dnstracker 0 -0.02 -

-0.17

-2.95 -

-3.85

-0.15 - -

0.32

-0.23 - -

0.5

-4.69 - -

5.73

-3.03 - -

4.03

-5.41 -

-7

lamahub 0 -0.37 -

-0.45

-5.35 -

-5.59

-0.37 - -

0.52

-0.76 - -

0.97

-7.3 - -

8.2

-4.34 - -

4.98

-9.58 -

-10.57

mcrypt 0

-0.7 - -

0.91

-8.15 -

-8.77

-0.48 - -

0.98

-1.19 - -

1.42

-10.74 -

-12.08

-7.18 - -

8.17

-14.39

- -

16.02

mp3info 0
-0.18 -

-0.31

-3.75 -

-5.12

-0.14 - -

0.45

-0.19 - -

0.75

-6.13 - -

8.12

-7.89 - -

7.89

-7.89 -

-7.89

netperf 0
-0.04 -

-0.14

-4.44 -

-4.85

-0.13 - -

0.21

-0.3 - -

0.35

-6.25 - -

6.85

-3.97 - -

4.49

-8.4 - -

8.96

pdfresurrect 0
-0.25 -

-0.38

-6.22 -

-7.55

-0.27 - -

0.47

-0.49 - -

0.78

-8.21 - -

9.62

-5.26 - -

11.88

-9.64 -

-11.85

Sipp 0
-0.06 -

-0.07

-0.12 -

-0.18

-0.01 - -

0.02

-0.07 - -

0.08

-0.21 - -

0.4

-0.1 - -

0.15

-0.3 - -

0.39

ytree 0
-0.48 -

-0.56

-7.34 -

-7.9

-0.41 - -

0.54

-0.89 - -

1.03

-10.1 - -

10.74

-5.89 - -

6.3

-13.2 -

-13.75

[0

-0.17 -

-0.27

-5.92 -

-7.62

-1.24 - -

1.38

-1.39 - -

1.61

-8.78 - -

9.6

-6.36 - -

7.72

-12.71

- -

13.56

basenc 0

-0.08 -

-0.18

-6.17 -

-7.12

-1.43 - -

1.66

-1.53 - -

1.73

-8.25 - -

9.28

-5.99 - -

6.69

-12.44

- -

13.28

chown 0

-0.1 - -

0.18

-6.02 -

-6.9

-0.81 - -

0.94

-1.03 - -

1.2

-8.55 - -

9.48

-5.75 - -

6.92

-11.72

- -

12.51

109

csplit 0

-0.66 -

-0.76

-8.33 -

-9.04

-1.2 - -

1.34

-1.64 - -

1.85

-11.15 -

-12.15

-7.36 - -

7.87

-15.02

- -

15.49

dir 0

-0.12 -

-0.19

-5.39 -

-5.78

-0.7 - -

0.8

-0.89 - -

1.03

-7.35 - -

8.36

-5.1 - -

5.58

-10.31

- -

11.09

env 0

-0.14 -

-0.24

-6.58 -

-7.84

-1.57 - -

1.77

-1.63 - -

1.96

-9.28 - -

10.07

-6.97 - -

7.99

-13.26

- -

14.74

fmt 0

0.01 - -

0.07

-5.4 - -

6.45

-1.03 - -

1.22

-1.19 - -

1.43

-7.9 - -

8.76

-5.44 - -

6.41

-11.21

- -

12.13

id 0

-0.04 -

-0.12

-5.96 -

-7.03

-1.37 - -

1.53

-1.39 - -

1.62

-8.33 - -

9.43

-6.54 - -

8

-12.55

- -

13.79

ln 0

-0.08 -

-0.13

-5.41 -

-6.24

-0.85 - -

0.99

-0.97 - -

1.17

-7.78 - -

8.36

-5.48 - -

5.94

-10.86

- -

11.65

mkfifo 0

-0.24 -

-0.31

-6.11 -

-7.37

-1.45 - -

1.67

-1.61 - -

1.9

-8.81 - -

9.93

-6.55 - -

7.39

-12.94

- -

13.84

nl 0
-0.75 -

-0.83

-8.55 -

-9.21

-1.16 - -

1.26

-1.63 - -

1.83

-11.49 -

-11.9

-7.61 - -

8.42

-15.3 -

-15.88

paste 0

-0.04 -

-0.16

-6.6 - -

7.84

-1.57 - -

1.78

-1.62 - -

1.97

-9.09 - -

10.38

-6.82 - -

7.66

-13.31

- -

14.42

printf 0

-0.17 -

-0.24

-6.04 -

-7.23

-1.37 - -

1.54

-1.47 - -

1.76

-8.77 - -

9.72

-6.54 - -

7.22

-12.83

- -

13.47

rm 0

-0.13 -

-0.25

-6.13 -

-6.82

-0.81 - -

0.99

-1.03 - -

1.17

-8.64 - -

9.4

-5.72 - -

6.5

-11.75

- -

12.45

sha224sum 0
-1.43 -

-1.55

-3.76 -

-4.64

-0.58 - -

0.71

-2.3 - -

2.65

-7.48 - -

8.29

-3.99 - -

4.46

-9.31 -

-11.05

shuf 0
-0.04 -

-0.11

-4.59 -

-5.22

-0.87 - -

0.94

-0.83 - -

1.02

-6.65 - -

7.28

-4.48 - -

5.08

-9.01 -

-9.96

stdbuf 0

0.00 - -

0.18

-5.35 -

-6.52

-1.13 - -

1.3

-1.18 - -

1.46

-7.8 - -

8.59

-5.36 - -

6.55

-11.39

- -

12.23

tail 0

-0.35 -

-0.44

-6.35 -

-7.08

-1.05 - -

1.33

-1.22 - -

1.4

-8.63 - -

9.32

-6.27 - -

6.75

-11.96

- -

13.28

tr 0

-0.07 -

-0.19

-5.88 -

-7.09

-1.21 - -

1.37

-1.27 - -

1.46

-8.81 - -

9.54

-5.91 - -

7

-12.31

- -

13.54

110

uname 0

-0.11 -

-0.24

-6.51 -

-7.93

-1.85 - -

2.1

-1.74 - -

1.99

-9.35 - -

10.49

-6.83 - -

7.77

-13.64

- -

14.72

users 0

-0.06 -

-0.16

-6.37 -

-7.04

-1.69 - -

1.91

-1.53 - -

1.79

-8.21 - -

9.33

-6.2 - -

7.31

-12.14

- -

13.75

yes 0

0 - -

0.09

-6.01 -

-6.79

-1.35 - -

1.62

-1.55 - -

1.79

-7.85 - -

8.93

-5.98 - -

6.77

-11.82

- -

13.16

b2sum 0

-1.05 -

-1.4

-4.42 -

-5.11

-0.69 - -

0.78

-2 - -

2.23

-7.74 - -

8.48

-4.27 - -

4.84

-10.25

- -

11.29

cat 0

-0.14 -

-0.24

-5.9 - -

7.06

-1.5 - -

1.74

-1.6 - -

1.76

-8.86 - -

9.7

-6.24 - -

7.16

-12.33

- -

13.65

chroot 0

0.15 -

0.01

-5.04 -

-6.02

-0.9 - -

1.05

-0.93 - -

1.22

-7.24 - -

8.15

-5.4 - -

6.26

-10.59

- -

11.41

cut 0

-0.16 -

-0.26

-6.47 -

-7.91

-1.45 - -

1.63

-1.6 - -

1.88

-9.25 - -

10.35

-7.06 - -

8.02

-13.74

- -

15.15

dircolors 0

-0.18 -

-0.29

-6.05 -

-7.15

-1.39 - -

1.55

-1.54 - -

1.81

-8.64 - -

9.58

-6.15 - -

7.15

-12.31

- -

13.61

expand 0

-0.08 -

-0.19

-6.28 -

-7.23

-1.46 - -

1.65

-1.51 - -

1.76

-8.83 - -

9.78

-6.57 - -

7.36

-12.85

- -

14.11

fold 0

0.08 - -

0.03

-5.27 -

-6.39

-1.19 - -

1.36

-1.21 - -

1.48

-7.77 - -

8.62

-5.44 - -

6.4

-11.12

- -

12.37

install 0

-0.19 -

-0.25

-5.64 -

-6.41

-0.68 - -

0.79

-0.93 - -

1.06

-8.09 - -

8.82

-5.44 - -

6.07

-11.12

- -

12.04

logname 0

-0.05 -

-0.14

-5.83 -

-7.05

-1.48 - -

1.74

-1.76 - -

2.03

-8.43 - -

9.34

-6.24 - -

7.16

-12.32

- -

13.51

mknod 0

-0.12 -

-0.27

-5.55 -

-6.69

-1.25 - -

1.42

-1.34 - -

1.65

-7.99 - -

8.82

-5.66 - -

6.6

-11.74

- -

12.64

nohup 0

-0.06 -

-0.21

-5.74 -

-6.95

-1.41 - -

1.6

-1.44 - -

1.74

-8.19 - -

9.1

-6.22 - -

7.04

-11.93

- -

13.32

pathchk 0

-0.14 -

-0.22

-6.76 -

-7.87

-1.87 - -

2.13

-1.76 - -

1.97

-9.47 - -

10.4

-7.09 - -

8.01

-13.73

- -

14.85

111

ptx 0
-0.68 -

-0.79

-7.59 -

-8.77

-0.98 - -

1.06

-1.4 - -

1.57

-10.57 -

-11.57

-6.98 - -

7.94

-13.97

- -14.4

rmdir 0
-0.07 -

-0.17

-6.36 -

-7.26

-1.5 - -

1.74

-1.56 - -

1.84

-8.7 - -

9.52

-6.45 - -

7.17

-12.9 -

-13.79

sha256sum 0
-1.45 -

-1.56

-3.7 - -

4.69

-0.59 - -

0.7

-2.36 - -

2.68

-7.41 - -

8.37

-3.99 - -

4.56

-9.51 -

-11.19

sleep 0

-0.07 -

-0.17

-5.9 - -

6.68

-1.53 - -

1.74

-1.37 - -

1.65

-7.83 - -

8.91

-5.89 - -

6.69

-11.81

- -

12.73

sty 0

-0.16 -

-0.25

-6.04 -

-7.11

-1.22 - -

1.35

-1.46 - -

1.73

-9.06 - -

9.66

-5.86 - -

6.98

-12.83

- -

13.71

tee 0

0.04 - -

0.03

-5.62 -

-6.66

-1.26 - -

1.43

-1.28 - -

1.52

-7.95 - -

9.17

-5.88 - -

6.75

-11.74

- -

12.69

TRUE 0

-0.2 - -

0.3

-6.26 -

-8.15

-1.66 - -

1.9

-1.71 - -

2.01

-9.15 - -

10.07

-6.8 - -

7.79

-13.39

- -

15.23

unexpand 0

-0.06 -

-0.14

-6.36 -

-7.42

-1.6 - -

1.8

-1.59 - -

1.83

-8.92 - -

9.83

-6.65 - -

7.3

-13.07

- -

14.33

vdir 0

-0.12 -

-0.19

-5.39 -

-5.78

-0.7 - -

0.8

-0.89 - -

1.03

-7.35 - -

8.36

-5.1 - -

5.58

-10.31

- -

11.09

base32 0

-0.26 -

-0.37

-7.54 -

-9.14

-1.97 - -

2.23

-2.08 - -

2.3

-10.39 -

-11.44

-7.69 - -

8.64

-15.52

- -

16.61

chcon 0
-0.11 -

-0.21

-6.02 -

-7.03

-0.86 - -

0.99

-1.05 - -

1.23

-8.79 - -

9.63

-5.8 - -

6.6

-11.8 -

-12.56

cksum 0
-1.98 -

-2.12

-2.31 -

-2.73

0.16 -

0.10

-2.39 - -

2.57

-6.23 - -

6.76

-1.73 - -

2.17

-7.39 -

-8.01

date 0

-0.72 -

-0.96

-13.61

- -

14.58

-3.74 - -

4.16

-4.21 - -

4.5

-16.83 -

-17.89

-12.1 - -

13.47

-24.83

- -

26.08

dirname 0
-0.08 -

-0.17

-5.99 -

-7.41

-1.5 - -

1.73

-1.78 - -

2.12

-8.59 - -

9.34

-6.48 - -

7.6

-12.6 -

-13.91

expr 0

-0.65 -

-0.73

-8.05 -

-8.71

-1.06 - -

1.14

-1.47 - -

1.67

-10.94 -

-11.36

-7.14 - -

7.67

-14.49

- -

15.05

groups 0

-0.06 -

-0.15

-6.18 -

-8.25

-1.47 - -

1.65

-1.5 - -

1.77

-8.85 - -

10.29

-6.84 - -

7.4

-12.83

- -

14.27

112

join 0
0.18 -

0.05

-4.14 -

-5.1

-0.65 - -

0.77

-0.76 - -

0.94

-6.16 - -

7.25

-4.56 - -

5.13

-9.13 -

-10.37

ls 0

-0.12 -

-0.19

-5.39 -

-5.78

-0.7 - -

0.8

-0.89 - -

1.03

-7.35 - -

8.36

-5.1 - -

5.58

-10.31

- -

11.09

mktemp 0

-0.13 -

-0.21

-6.42 -

-7.62

-1.61 - -

1.84

-1.63 - -

1.94

-9.13 - -

10.23

-6.79 - -

7.77

-13.53

- -

14.48

nproc 0

0.08 - -

0.01

-5.3 - -

6.6

-1.14 - -

1.36

-1.21 - -

1.5

-7.77 - -

9

-5.49 - -

6.48

-11.55

- -

12.43

pinky 0

-0.23 -

-0.29

-7.59 -

-8.69

-2.03 - -

2.28

-2.17 - -

2.41

-10.03 -

-11.22

-8.06 - -

8.82

-15.23

- -

16.37

pwd 0

-0.08 -

-0.18

-6.56 -

-7.61

-1.55 - -

1.77

-1.64 - -

1.9

-8.87 - -

10.27

-6.67 - -

7.58

-13.46

- -

14.36

runcon 0

-0.15 -

-0.26

-6.51 -

-7.8

-1.69 - -

1.93

-1.9 - -

2.2

-9.28 - -

10.22

-7.01 - -

8.14

-13.48

- -

15.04

sha384sum 0
-0.18 -

-0.4

-2.93 -

-3.47

-0.31 - -

0.39

-0.91 - -

1.08

-5.28 - -

6.4

-3.02 - -

3.64

-7.21 -

-7.77

sort 0

-0.43 -

-0.55

-5.38 -

-5.94

-0.57 - -

0.69

-1.12 - -

1.26

-8.11 - -

8.38

-4.97 - -

5.53

-10.42

- -

11.98

sum 0

-0.09 -

-0.17

-5.39 -

-6.15

-1.13 - -

1.27

-1.21 - -

1.51

-7.69 - -

8.74

-5.52 - -

6.13

-10.87

- -

12.12

test 0
-0.23 -

-0.36

-6.53 -

-7.82

-1.38 - -

1.71

-1.58 - -

1.87

-9.4 - -

10.39

-6.91 - -

8.55

-13.54

- -16.1

truncate 0

-0.19 -

-0.29

-8 - -

9.55

-2.11 - -

2.4

-2.25 - -

2.61

-10.67 -

-12.14

-8.29 - -

9.22

-16.03

- -

17.55

uniq 0
0.16 -

0.00

-4.77 -

-5.84

-0.97 - -

1.11

-0.99 - -

1.3

-7.11 - -

7.81

-5.12 - -

6.25

-10.2 -

-11.31

wc 0

-0.17 -

-0.29

-5.68 -

-6.48

-1.23 - -

1.41

-1.35 - -

1.59

-8.32 - -

9.49

-6.19 - -

6.96

-11.83

- -

13.11

base64 0

-0.22 -

-0.34

-7.34 -

-8.78

-1.93 - -

2.18

-2.06 - -

2.44

-10.32 -

-11.38

-7.64 - -

8.46

-15.22

- -

16.37

chgrp 0

-0.12 -

-0.21

-6.05 -

-6.86

-0.88 - -

1

-1.05 - -

1.21

-8.73 - -

9.42

-5.92 - -

6.65

-11.75

- -

12.54

113

comm 0

-0.03 -

-0.65

-5.6 - -

6.99

-1.24 - -

1.45

-1.29 - -

1.58

-8.12 - -

9.02

-6.07 - -

6.86

-11.71

- -

13.08

dd 0
-0.07 -

-0.16

-4.72 -

-5.37

-0.67 - -

0.81

-0.83 - -

1.06

-7.22 - -

7.85

-4.99 - -

5.61

-9.93 -

-10.54

du 0

-0.57 -

-0.61

-7.72 -

-10.03

-0.94 - -

1.03

-1.34 - -

1.48

-10.45 -

-10.92

-6.78 - -

7.2

-13.86

- -

14.48

factor 0
-0.19 -

-0.3

-4.48 -

-5.33

-0.65 - -

0.75

-0.81 - -

0.97

-6.79 - -

7.92

-4.58 - -

4.91

-9.1 - -

9.69

head 0

-0.12 -

-0.2

-6.12 -

-7.34

-1.3 - -

1.49

-1.38 - -

1.6

-8.79 - -

9.48

-6.04 - -

7.48

-12.51

- -

13.39

kill 0

-0.06 -

-0.19

-6.42 -

-7.64

-1.48 - -

1.67

-1.62 - -

1.92

-8.84 - -

10.03

-6.54 - -

7.55

-13.04

- -

14.26

md5sum 0
-0.81 -

-0.98

-5.86 -

-6.88

-1.21 - -

1.41

-2.13 - -

2.45

-9.11 - -

10.31

-6.04 - -

6.52

-12.54

- -13.5

mv 0

-0.27 -

-0.34

-6.19 -

-6.56

-0.72 - -

0.83

-0.95 - -

1.05

-8.48 - -

9.3

-5.73 - -

6.41

-11.62

- -

12.57

numfmt 0

-0.06 -

-0.13

-5.85 -

-6.66

-0.99 - -

1.15

-1.15 - -

1.41

-8.12 - -

8.8

-6.1 - -

6.62

-11.74

- -

12.37

pr 0

-0.18 -

-0.39

-8.21 -

-9.35

-1.71 - -

1.89

-2.01 - -

2.23

-11.5 - -

12.31

-7.72 - -

8.97

-16.85

- -

18.13

readlink 0

-0.09 -

-0.19

-5.95 -

-6.88

-1.09 - -

1.23

-1.23 - -

1.39

-8.14 - -

9.03

-5.95 - -

6.66

-11.51

- -

12.61

seq 0

-0.11 -

-0.22

-6.09 -

-7.3

-1.38 - -

1.62

-1.51 - -

1.87

-9.01 - -

9.85

-6.81 - -

7.43

-13.06

- -

14.03

sha512sum 0
-0.17 -

-0.41

-2.96 -

-3.56

-0.3 - -

0.39

-0.94 - -

1.09

-5.42 - -

6.32

-3.14 - -

3.73

-7.36 -

-8.11

split 0

-0.02 -

-0.09

-5.55 -

-6.25

-1.07 - -

1.31

-1.09 - -

1.26

-7.94 - -

8.49

-5.52 - -

6.49

-11.02

- -

12.03

sync 0
-0.08 -

-0.16

-6.77 -

-7.91

-1.89 - -

2.1

-1.69 - -

2

-9.11 - -

10.14

-6.95 - -

7.9

-13.31

- -14.6

timeout 0

-0.12 -

-0.22

-5.7 - -

6.78

-1.31 - -

1.48

-1.38 - -

1.61

-8.24 - -

9.07

-6.09 - -

6.82

-11.91

- -

13.18

114

tsort 0

-0.07 -

-0.13

-5.88 -

-6.91

-1.3 - -

1.47

-1.33 - -

1.53

-8.4 - -

9.23

-6.07 - -

6.82

-11.62

- -

12.88

unlink 0
-0.04 -

-0.14

-5.82 -

-7.82

-1.48 - -

1.71

-1.65 - -

1.94

-8.28 - -

9.28

-6.2 - -

7.89

-12.2 -

-13.55

who 0

-0.17 -

-0.31

-6.71 -

-7.89

-1.69 - -

1.89

-1.71 - -

1.94

-9.29 - -

10.3

-6.82 - -

7.78

-13.01

- -

14.45

basename 0

-0.03 -

-0.12

-5.8 - -

7

-1.58 - -

1.83

-1.55 - -

1.77

-8.43 - -

9.14

-6.15 - -

7.42

-12.25

- -

13.45

chmod 0

-0.24 -

-0.72

-6.27 -

-6.99

-0.86 - -

1

-1.15 - -

1.29

-8.82 - -

9.59

-5.81 - -

6.55

-11.92

- -

12.91

cp 0
-0.16 -

-0.23

-5.72 -

-6.21

-0.75 - -

0.87

-0.92 - -

1.06

-8.16 - -

9.02

-5.47 - -

6.09

-11.1 -

-11.92

df 0

-0.19 -

-0.29

-5.94 -

-6.57

-0.83 - -

1

-1.07 - -

1.24

-8.17 - -

9.02

-5.7 - -

6.18

-11.49

- -

11.89

echo 0

-0.1 - -

0.18

-6.38 -

-7.8

-1.83 - -

2.06

-1.69 - -

1.94

-9.1 - -

10.06

-7.11 - -

7.87

-13.41

- -

14.72

FALSE 0

-0.19 -

-0.29

-6.35 -

-7.91

-1.64 - -

1.87

-1.68 - -

1.98

-9.09 - -

10.02

-6.82 - -

7.76

-13.29

- -

15.13

hostid 0

-0.05 -

-0.14

-5.82 -

-7.25

-1.46 - -

1.7

-1.64 - -

1.92

-8.28 - -

9.17

-6.24 - -

7.05

-12.17

- -

13.37

link 0
-0.03 -

-0.14

-5.85 -

-7

-1.45 - -

1.68

-1.63 - -

1.91

-8.26 - -

9.14

-6.19 - -

7.23

-12.04

- -13.3

mkdir 0

-0.13 -

-0.2

-5.57 -

-6.71

-1.06 - -

1.27

-1.19 - -

1.46

-8.05 - -

8.86

-5.97 - -

6.71

-11.82

- -

12.67

nice 0

-0.09 -

-0.2

-6.7 - -

7.91

-1.56 - -

1.82

-1.69 - -

2.01

-9.22 - -

10.17

-6.83 - -

8.06

-13.63

- -

14.92

od 0
0.15 -

0.09

-4.56 -

-5.32

-0.96 - -

1.11

-0.81 - -

1.02

-6.48 - -

7.2

-4.84 - -

5.24

-9.12 -

-9.92

printenv 0
-0.05 -

-0.19

-6.37 -

-7.77

-1.58 - -

1.83

-1.77 - -

2.05

-8.95 - -

9.83

-6.68 - -

7.83

-13.2 -

-14.41

realpath 0

-0.16 -

-0.26

-6.21 -

-6.83

-1.14 - -

1.27

-1.3 - -

1.51

-8.32 - -

9.67

-6.07 - -

6.66

-11.79

- -

13.02

115

sha1sum 0

-1.54 -

-1.85

-6.28 -

-8.1

-1.37 - -

1.56

-2.98 - -

3.22

-9.67 - -

11.34

-6.22 - -

6.98

-13.58

- -

15.54

shred 0

-0.22 -

-0.3

-5.16 -

-6.05

-0.82 - -

0.99

-1.1 - -

1.32

-7.39 - -

8.1

-5.07 - -

5.73

-10.38

- -

11.18

stat 0

-0.13 -

-0.26

-6.28 -

-7.13

-1.19 - -

1.33

-1.34 - -

1.57

-8.74 - -

9.42

-6.17 - -

7.06

-12.25

- -

13.08

tac 0

-0.66 -

-0.76

-8.14 -

-8.82

-1.07 - -

1.17

-1.54 - -

1.72

-10.99 -

-11.46

-7.23 - -

7.75

-14.54

- -

15.11

touch 0

-0.64 -

-0.77

-12.29

- -

13.29

-3.52 - -

3.88

-3.91 - -

4.1

-15.28 -

-16.31

-11.06 -

-12.19

-22.44

- -

23.48

tty 0

-0.07 -

-0.17

-6.4 - -

7.75

-1.66 - -

1.9

-1.69 - -

2

-9.18 - -

10.29

-6.9 - -

7.86

-13.55

- -

14.77

uptime 0

-0.05 -

-0.33

-7.34 -

-8.45

-1.55 - -

1.73

-1.63 - -

1.94

-9.88 - -

11.23

-7.03 - -

7.98

-14.71

- -

16.33

whoami 0

-0.03 -

-0.11

-5.85 -

-7.04

-1.45 - -

1.66

-1.7 - -

1.97

-8.15 - -

9.3

-6.11 - -

6.96

-12.06

- -

13.23

116

APPENDIX J

COMPLETE EXPLOIT COMPLEXITY SCORE RESULTS

Table 10 lists complete Exploit Complexity scores for all binaries in the dataset used in this work

Table 10: Exploit Complexity Score Results for All Binaries

(Refer to Section 5.2.3 for Calculation Details)

Binary

Name

Original SUB BCF FLA SUB &

FLA

SUB &

BCF

BCF &

FLA

ALL

OpenSSL 15393 15944

-

16046

18358

-

18803

22258 -

22339

22562 -

22820

31809 -

32675

29895 -

30915

31028 -

31518

crossfire 3503 3831 -

3943

7653 -

8108

3590 -

3667

4001 -

4124

14841 -

15818

9247 -

9502

20450 -

21569

dnstracker 62 50 –

70

111 –

154

50 – 66 52 - 75 276 -

305

127 –

189

359 –

443

lamahub 55 89 –

114

651 –

765

53 – 61 102 –

143

1599 –

1813

759 –

890

2313 –

2438

mcrypt 28 51 –

77

416 –

543

30 – 49 62 – 87 1081 –

1239

662 –

799

1948 –

2158

mp3info 15 19 –

30

48 –

130

13 – 19 17 – 36 249 –

340

340 –

340

340 -

340

netperf 165 241 -

285

720 -

906

224 -

261

260 -

304

1902 -

2172

1224 -

1422

3380 -

3758

pdfresurrect 15 14 - 21 119 -

197

15 - 24 14 - 30

333 -

422

202 -

271

533 -

646

Sipp 1586 1657 -

1703

1664 -

1797

1686 -

1697

1666 -

1722

1905 -

2099

1784 -

1972

2148 -

2302

ytree 49 77 –

98

1007

–

1253

66 - 111 98 - 159 2855 -

3028

1284 -

1468

4514 -

4780

[275 39 –

76

255 -

458

27 – 48 41 – 97 905 -

1024

548 -

683

1640 -

1842

basenc 372 37 –

85

406 -

525

31 – 51 69 - 120 1155 -

1404

749 -

911

2139 -

2377

chown 471 63 –

98

526 -

713

50 – 81 74 - 130 1543 -

1827

864 -

1109

2562 -

2814

csplit 905 224 –

313

1269 -

1494

119 -

154

334 -

414

3065 -

3931

1865 -

2079

5259 -

5472

117

dir 1019 133 –

214

987 -

1255

104 -

144

196 -

277

2919 -

3425

1595 -

1789

4858 -

5343

env 260 34 –

61

270 -

385

37 – 61 45 – 85 829 –

926

530 –

675

1539 -

1728

fmt 260 33 –

69

237 -

422

28 – 54 55 - 116 842 -

1029

498 -

598

1518 -

1694

id 259 28 –

56

250 -

392

29 – 57 42 – 90 829 -

1006

507 -

605

1551 -

1807

ln 514 54 –

103

571 -

758

40 – 63 79 - 123 1532 -

1827

875 -

983

2575 –

2805

mkfifo 239 27 –

54

200 -

368

28 – 47 36 – 81 719 –

853

437 -

529

1355 -

1504

nl 849 219 -

304

1103 -

1364

118 -

145

322 -

391

2734 -

3056

1724 -

2449

4640 -

4812

paste 229 24 –

53

198 -

358

27 – 46 33 – 76 675 –

835

423 -

540

1269 -

1459

printf 268 35 –

67

251 -

440

28 – 47 42 – 79 810 -

1001

501 -

689

1532 -

1662

rm 536 51 –

99

573 -

746

46 – 74 73 - 119 1657 -

1899

874 -

1002

2732 -

2915

sha224sum 291 102 -

181

300 -

441

31 – 49 111 -

168

934 -

1118

551 -

675

1641 -

1998

shuf 461 65 -

115

470 -

642

56 - 74 90 - 154 1311 -

1550

768 -

876

2299 -

2579

stdbuf 239 26 –

54

218 -

377

29 – 48 37 – 97 788 –

916

471 -

608

1484 -

1638

tail 484 66 -

120

518 -

734

40 – 74 72 - 157 1594 -

1849

893 -

1089

2691 –

2993

tr 289 28 –

60

294 -

478

53 – 74 42 - 100 957 -

1157

641 -

714

1778 -

2005

uname 197 24 –

53

195 -

339

30 – 49 34 – 79 621 –

778

413 -

515

1189 -

1415

users 243

40 - 69

236 -

373 53 - 75 56 - 100

656 -

826

433 -

530

1242 -

1449

yes 241

37 - 66

229 -

345 42 - 62 49 - 89

619 -

794

430 -

536

1231 -

1433

118

b2sum 319

45 - 82

349 -

518 41 - 60 57 - 116

935 -

1198

609 -

729

1815 -

2051

cat 245

47 - 76

228 -

389 51 - 82 55 - 101

723 -

851

474 -

589

1331 -

1554

chroot 279

25 - 56

242 -

399 29 - 48 36 - 95

846 -

999

519 -

602

1457 -

1676

cut 251

40 - 69

259 -

399 32 - 51 57 - 96

817 -

995

545 -

736

1513 -

1839

dircolors 261

49 - 89

212 -

410 30 - 54 71 - 114

808 -

937

461 -

553

1405 -

1623

expand 236

26 - 55

225 -

378 30 - 55 37 - 78

749 -

897

435 -

550

1362 -

1582

fold 236

26 - 55

207 -

367 28 - 47 34 - 95

663 -

847

457 -

537

1327 -

1492

install 884
128 -

190

945 -

1281

106 -

130

205 -

278

2558 -

2912

1459 -

1674

4393 -

5373

logname 214

39 - 68

206 -

336 40 - 62 46 - 91

621 -

748

422 -

514

1180 -

1344

mknod 255

29 - 60

214 -

385 30 - 51 39 - 101

729 -

882

471 -

571

1406 -

1569

nohup 246

37 - 66

248 -

415 40 - 60 46 - 92

677 -

843

456 -

605

1300 -

1581

pathchk 199

24 - 53

195 -

342 30 - 49 33 - 82

660 -

809

434 -

514

1288 -

1461

ptx 1066
239 -

330

1276 -

1625

132 -

162

339 -

422

3289 -

3753

2002 -

2255

5437 -

5674

rmdir 214

24 - 53

203 -

348 30 - 51 36 - 76

703 -

826

425 -

508

1327 -

1460

sha256sum 290
104 -

181

281 -

421 30 - 57

107 -

170

950 -

1135

563 -

675

1642 -

1849

sleep 256

49 - 91

242 -

389 48 - 68 59 - 113

691 -

849

462 -

549

1382 -

1495

stty 283

29 - 60

330 -

495 33 - 52 43 - 106

931 -

1098

599 -

750

1791 -

1966

tee 273

24 - 53

254 -

407 27 - 48 35 - 76

721 -

922

437 -

550

1360 -

1507

119

TRUE 186

26 - 55

184 -

323 29 - 48 35 - 78

618 -

747

391 -

490

1134 -

1444

unexpand 233

27 - 56

212 -

361 30 - 58 45 - 92

729 -

912

448 -

546

1348 -

1593

vdir 1019
133 -

214

987 -

1255

104 -

144

196 -

277

2919 -

3425

1595 -

1789

4858 -

5343

base32 271

34 - 65

257 -

458 31 - 51 51 - 99

834 -

957

549 -

645

1591 -

1798

chcon 483

47 - 84

543 -

751 43 - 64 60 - 106

1658 -

1881

840 -

1006

2655 -

2888

cksum 793
343 -

445

736 -

936 82 - 125

363 -

497

2032 -

2240

1019 -

1517

3154 -

3450

date 409
101 -

128

754 -

905 86 - 136

163 -

217

1648 -

1979

1505 -

1707

3872 -

4122

dirname 206

26 - 55

194 -

348 29 - 49 37 - 79

642 -

786

416 -

502

1201 -

1388

expr 927
243 -

323

1246 -

1421

139 -

165

340 -

413

2981 -

3260

1852 -

2049

4943 -

5193

groups 225

24 - 53

209 -

386 30 - 49 33 - 76

686 -

821

431 -

600

1274 -

1550

join 362

37 - 69

297 -

510 33 - 54 45 - 107

973 -

1189

611 -

731

1781 -

1986

ls 1019
133 -

214

987 -

1255

104 -

144

196 -

277

2919 -

3425

1595 -

1789

4858 -

5343

mktemp 233

38 - 64

227 -

395 33 - 50 45 - 85

679 -

849

471 -

556

1319 -

1520

nproc 235

26 - 55

209 -

384 28 - 47 37 - 95

674 -

854

447 -

533

1307 -

1470

pinky 237

29 - 61

263 -

417 35 - 60 38 - 87

796 -

913

546 -

658

1512 -

1756

pwd 205

24 - 53

220 -

355 30 - 49 36 - 79

647 -

833

439 -

565

1319 -

1484

runcon 192

24 - 53

209 -

329 30 - 49 33 - 76

667 -

785

410 -

521

1232 -

1460

sha384sum 305
87 -

121

307 -

470 34 - 54

113 -

137

983 -

1127

572 -

675

1658 -

1805

120

sort 839
114 -

202

950 -

1113 52 - 87

178 -

256

2575 -

2874

1356 -

1516

4160 -

4441

sum 331

60 - 91

347 -

507 64 - 84 78 - 137

935 -

1208

592 -

711

1740 -

2072

test 263

27 - 69

233 -

438 25 - 40 36 - 89

837 -

962

538 -

689

1618 -

1809

truncate 226

27 - 66

229 -

409 28 - 48 54 - 93

706 -

850

526 -

657

1415 -

1614

uniq 314

27 - 60

248 -

413 36 - 59 45 - 106

860 -

1099

489 -

677

1515 -

1748

wc 318
47 -

101

303 -

478 46 - 66 82 - 139

959 -

1208

554 -

673

1703 -

1962

base64 263

27 - 67

266 -

440 34 - 51 53 - 100

829 -

953

547 -

652

1565 -

1780

chgrp 447

58 - 94

527 -

710 50 - 73 77 - 128

1495 -

1822

816 -

961

2551 -

2771

comm 287

27 - 55

272 -

433 30 - 51 37 - 83

764 -

974

552 -

618

1475 -

1715

dd 469
77 -

112

457 -

627 65 - 90 92 - 156

1299 -

1482

753 -

884

2295 -

2502

du 1346
310 -

403

1696 -

4603

164 -

185

423 -

513

4335 -

4832

2499 -

2789

7232 -

7583

factor 603
69 -

125

488 -

679 70 - 88

106 -

155

1372 -

1560

847 -

991

2288 -

2505

head 255

27 - 55

218 -

462 39 - 61 40 - 101

859 -

1045

552 -

630

1576 -

1756

kill 232

28 - 57

245 -

379 31 - 50 37 - 86

687 -

816

443 -

528

1309 -

1472

md5sum 270

44 - 82

285 -

444 34 - 51 55 - 101

839 -

1044

532 -

679

1591 -

1745

mv 897
123 -

178

1070 -

1316

108 -

134

177 -

236

2806 -

3107

1568 -

1871

4552 -

5070

numfmt 342

33 - 64

348 -

551 31 - 53 48 - 107

1056 -

1243

674 -

802

1940 -

2131

pr 469

42 - 68

473 -

604 62 - 108 79 - 144

1427 -

1667

859 -

983

3010 -

3242

121

readlink 342

36 - 80

360 -

485 33 - 52 56 - 99

1035 -

1212

584 -

809

1848 -

2012

seq 255

29 - 65

248 -

396 27 - 48 42 - 85

772 -

927

482 -

616

1431 -

1663

sha512sum 296
80 -

119

305 -

485 36 - 55

104 -

135

968 -

1117

520 -

698

1632 -

1827

split 362

37 - 71

352 -

512 39 - 61 57 - 109

993 -

1208

657 -

802

1893 -

2284

sync 204

26 - 53

217 -

353 27 - 46 35 - 78

645 -

773

420 -

503

1235 -

1415

timeout 261

32 - 75

252 -

370 31 - 51 40 - 94

746 -

923

474 -

581

1439 -

1723

tsort 275

47 - 76

253 -

408 51 - 75 61 - 107

716 -

928

484 -

595

1395 -

1576

unlink 215

40 - 69

205 -

344 40 - 60 48 - 90

620 -

779

420 -

509

1167 -

1351

who 235

45 - 74

268 -

440 54 - 75 63 - 104

764 -

923

493 -

592

1387 -

1623

basename 209

26 - 55

220 -

351 32 - 51 37 - 82

656 -

809

413 -

516

1264 -

1490

chmod 454

53 - 88

498 -

730 50 - 70 73 - 127

1489 -

1739

829 -

946

2517 -

2735

cp 779
116 -

173

916 -

1119

109 -

129

172 -

234

2261 -

2694

1345 -

1514

3805 -

4237

df 542
95 -

146

691 -

865 43 - 69

123 -

179

1754 -

2088

996 -

1176

3022 -

3203

echo 199

24 - 53

192 -

347 30 - 49 35 - 77

631 -

753

403 -

510

1206 -

1422

FALSE 190

24 - 53

179 -

325 27 - 46 33 - 76

621 -

733

392 -

501

1134 -

1434

hostid 218

37 - 66

209 -

339 40 - 61 46 - 91

611 -

782

420 -

504

1169 -

1345

link 223

37 - 69

225 -

334 43 - 63 51 - 92

623 -

777

420 -

507

1167 -

1425

mkdir 337

35 - 65

277 -

485 35 - 54 46 - 100

927 -

1084

535 -

635

1703 -

1863

122

nice 217

25 - 54

210 -

358 27 - 46 34 - 84

657 -

774

425 -

552

1304 -

1489

od 504

48 - 81

369 -

545 35 - 55 68 - 126

1122 -

1299

686 -

808

1926 -

2125

printenv 197

24 - 53

193 -

321 27 - 47 33 - 76

627 -

760

397 -

503

1217 -

1344

realpath 344

39 - 86

376 -

529 36 - 55 67 - 114

1098 -

1277

591 -

745

1878 -

2206

sha1sum 268
46 -

102

302 -

442 35 - 55 72 - 119

872 -

1063

564 -

661

1645 -

1784

shred 413

66 - 99

397 -

608 35 - 52 82 - 144

1116 -

1382

695 -

852

2026 -

2369

stat 467

59 - 94

479 -

675 45 - 90 84 - 121

1493 -

1695

882 -

1067

2647 -

2797

tac 854
217 -

303

1118 -

1444

115 -

154

316 -

388

2806 -

3066

1729 -

2182

4684 -

4868

touch 411
111 -

136

687 -

856 91 - 142

144 -

206

1529 -

1848

1375 -

1834

3449 -

3758

tty 192

24 - 53

189 -

335 27 - 46 33 - 76

617 -

746

393 -

491

1199 -

1325

uptime 312

45 - 75

293 -

456 63 - 85 85 - 117

884 -

1088

578 -

733

1885 -

2046

whoami 215

39 - 68

222 -

350 40 - 60 48 - 89

610 -

766

427 -

512

1182 -

1342

123

APPENDIX K

COMPLETE RESISTANCE TO REVERSE ENGINEERING SCORE RESULTS

Table 11 lists complete Resistance to Reverse Engineering scores for all binaries in the dataset

used in this work

Table 11: Resistance to Reverse Engineering Score Results for All Binaries

(Refer to Section 5.2.4 for Calculation Details)

Binary

Name

Original SUB BCF FLA SUB

&

FLA

SUB &

BCF

BCF &

FLA

ALL

OpenSSL 30520 30549

-

30597

63545 -

64765

77792 -

77803

77738

-

77816

65164 -

66292

144340

-

145741

152999

-

155075

crossfire 20911 20905

-

20911

33807 -

34249

33368 -

33374

33368

-

33374

33689 -

34141

52948 -

53372

52488

-

53347

dnstracker 271 271 -

271

489 -

535

545 -

545

545 -

545

507 -

549

873 -

991

878 -

983

lamahub 976 976 -

976

2114 -

2184

2177 -

2177

2177 -

2177

2080 -

2212

3892 -

4031

3907 -

4143

mcrypt 1207
1207 -

1207

2593 -

2687

2625 -

2625

2625 -

2625

2561 -

2663

4715 -

4935

4596 -

4875

mp3info 319
319 -

319

565 -

619

659 -

659

659 -

659

589 -

655

635 -

635

635 -

635

netperf 2222
2222 -

2222

4615 -

4805

4968 -

4968

4968 -

4968

4668 -

4844

8778 -

9033

8792 -

8973

pdfresurrect 345
345 -

345

711 -

773

721 -

721

721 -

721

713 -

765

1281 -

1417

1248 -

1350

Sipp 5909
5909 -

5909

6273 -

6349

6341 -

6341

6341 -

6341

6269 -

6371

6864 -

6981

6859 -

6991

ytree 2578

2578 -

2578

5704 -

5944

5960 -

5960

5960 -

5960

5608 -

5852

10566 -

10949

10638

-

10942

[663
1356 -

1498

2426 -

2642

2211 -

2211

2211 -

2211

2500 -

2568

4015 -

4126

3971 -

4217

basenc 890
2005 -

2095

3551 -

3731

3009 -

3009

3009 -

3009

3599 -

3689

5473 -

5700

5491 -

5701

124

chown 1262
1910 -

2088

3646 -

3787

3410 -

3410

3410 -

3410

3659 -

3804

6007 -

6376

6083 -

6314

csplit 3293

3960 -

4055

8037 -

8262

7527 -

7527

7527 -

7527

8076 -

8227

13803 -

14166

13750

-

14104

dir 2909

3389 -

4087

6669 -

6849

6272 -

6272

6272 -

6272

7369 -

8058

11402 -

11658

11342

-

11742

env 670
1286 -

1561

2302 -

2470

2107 -

2107

2107 -

2107

2366 -

2424

3763 -

3891

3764 -

3928

fmt 688
1285 -

1461

2325 -

2469

2113 -

2113

2113 -

2113

2365 -

2441

3757 -

3916

3724 -

3891

id 628
1354 -

1558

2436 -

2546

2192 -

2192

2192 -

2192

2450 -

2554

3883 -

4048

3882 -

4100

ln 1149
1756 -

1967

3306 -

3485

3043 -

3043

3043 -

3043

3317 -

3466

5490 -

5694

5501 -

5719

mkfifo 504
1188 -

1336

2092 -

2242

1876 -

1876

1876 -

1876

2140 -

2188

3346 -

3449

3321 -

3510

nl 3101

3504 -

3601

7199 -

7458

6804 -

6804

6804 -

6804

7290 -

7394

12539 -

12830

12430

-

12693

paste 529
1162 -

1300

2048 -

2190

1827 -

1827

1827 -

1827

2090 -

2166

3277 -

3395

3240 -

3409

printf 625
1283 -

1469

2283 -

2431

2097 -

2097

2097 -

2097

2329 -

2419

3729 -

3867

3714 -

3880

rm 1269
1894 -

2185

3622 -

3777

3347 -

3347

3347 -

3347

3643 -

3773

5978 -

6261

6035 -

6250

sha224sum 682
1312 -

1561

2424 -

2590

2266 -

2266

2266 -

2266

2480 -

2548

4063 -

4161

4089 -

4251

shuf 968
1597 -

1763

2977 -

3146

2756 -

2756

2756 -

2756

3000 -

3133

4921 -

5070

4915 -

5138

stdbuf 562
1223 -

1375

2157 -

2297

1978 -

1978

1978 -

1978

2227 -

2283

3456 -

3636

3509 -

3634

tail 1386
2024 -

2341

3808 -

4018

3723 -

3723

3723 -

3723

3806 -

3931

6495 -

6685

6484 -

6751

tr 759
1413 -

1825

2571 -

2749

2462 -

2462

2462 -

2462

2647 -

2745

4347 -

4519

4343 -

4566

uname 485
1108 -

1245

1940 -

2080

1716 -

1716

1716 -

1716

1982 -

2060

3055 -

3180

3042 -

3198

125

users 472
1121 -

1228

1977 -

2091

1721 -

1721

1721 -

1721

1999 -

2069

3062 -

3189

3056 -

3235

yes 462
1121 -

1228

1977 -

2091

1721 -

1721

1721 -

1721

1999 -

2069

3062 -

3189

3056 -

3235

b2sum 739
1412 -

1646

2692 -

2882

2577 -

2577

2577 -

2577

2720 -

2816

4617 -

4792

4626 -

4766

cat 541
1209 -

1253

2135 -

2285

1906 -

1906

1906 -

1906

2195 -

2279

3428 -

3510

3416 -

3603

chroot 647
1353 -

1530

2433 -

2563

2228 -

2228

2228 -

2228

2467 -

2559

3923 -

4078

3934 -

4070

cut 635
1279 -

1455

2317 -

2467

2118 -

2118

2118 -

2118

2363 -

2435

3824 -

3950

3784 -

4017

dircolors 559
1228 -

1385

2190 -

2340

1967 -

1967

1967 -

1967

2244 -

2328

3494 -

3653

3511 -

3690

expand 524
1177 -

1350

2119 -

2221

1860 -

1860

1860 -

1860

2159 -

2201

3328 -

3461

3343 -

3512

fold 523
1186 -

1328

2084 -

2238

1892 -

1892

1892 -

1892

2136 -

2194

3328 -

3480

3347 -

3514

install 2108
2883 -

3219

5605 -

5874

5227 -

5227

5227 -

5227

5621 -

5836

9393 -

9789

9432 -

9788

logname 438
1089 -

1191

1899 -

2027

1661 -

1661

1661 -

1661

1939 -

2011

2959 -

3085

2969 -

3115

mknod 558
1258 -

1443

2208 -

2378

2042 -

2042

2042 -

2042

2254 -

2316

3560 -

3710

3587 -

3761

nohup 509
1168 -

1315

2038 -

2184

1817 -

1817

1817 -

1817

2100 -

2148

3212 -

3338

3225 -

3378

pathchk 471
1132 -

1272

1996 -

2134

1762 -

1762

1762 -

1762

2042 -

2104

3166 -

3269

3155 -

3304

ptx 3751

4036 -

4137

8403 -

8734

8053 -

8053

8053 -

8053

8510 -

8640

14899 -

15261

14759

-

15002

rmdir 490
1149 -

1297

2019 -

2141

1782 -

1782

1782 -

1782

2073 -

2113

3180 -

3283

3158 -

3322

sha256sum 682
1312 -

1560

2396 -

2580

2266 -

2266

2266 -

2266

2460 -

2548

4033 -

4184

4055 -

4254

sleep 485
1142 -

1272

2018 -

2141

1768 -

1768

1768 -

1768

2044 -

2117

3156 -

3268

3147 -

3312

126

stty 858
1456 -

1852

2634 -

2818

2516 -

2516

2516 -

2516

2704 -

2786

4428 -

4612

4444 -

4607

tee 531
1185 -

1307

2085 -

2219

1851 -

1851

1851 -

1851

2139 -

2189

3290 -

3431

3302 -

3459

TRUE 429
1077 -

1197

1867 -

2005

1628 -

1628

1628 -

1628

1919 -

1981

2914 -

3022

2918 -

3078

unexpand 541
1194 -

1332

2148 -

2254

1892 -

1892

1892 -

1892

2186 -

2244

3407 -

3544

3387 -

3586

vdir 2909

3305 -

4087

6669 -

6849

6272 -

6272

6272 -

6272

7369 -

8058

11402 -

11658

11342

-

11742

base32 632
1555 -

1652

2747 -

2907

2359 -

2359

2359 -

2359

2793 -

2855

4221 -

4411

4240 -

4394

chcon 1195
1885 -

2130

3579 -

3750

3308 -

3308

3308 -

3308

3600 -

3762

5935 -

6207

5980 -

6172

cksum 1119
1836 -

2125

4102 -

4384

4311 -

4311

4311 -

4311

4206 -

4326

7812 -

8198

7869 -

8235

date 1513

4969 -

5148

9039 -

10324

7364 -

7364

7364 -

7364

10707 -

12341

13671 -

13974

13519

-

13790

dirname 454
1098 -

1221

1918 -

2056

1693 -

1693

1693 -

1693

1982 -

2012

3036 -

3149

3030 -

3186

expr 3243

3612 -

3818

7493 -

7786

7060 -

7060

7060 -

7060

7576 -

7700

13091 -

13450

12959

-

13297

groups 504
1163 -

1321

2053 -

2213

1813 -

1813

1813 -

1813

2105 -

2187

3238 -

3368

3232 -

3394

join 884
1463 -

1644

2633 -

2831

2514 -

2514

2514 -

2514

2691 -

2799

4425 -

4599

4421 -

4622

ls 2909

3305 -

4087

6669 -

6849

6272 -

6272

6272 -

6272

7369 -

8058

11402 -

11658

11342

-

11742

mktemp 522
1170 -

1342

2062 -

2202

1826 -

1826

1826 -

1826

2122 -

2170

3246 -

3417

3243 -

3408

nproc 515
1174 -

1311

2070 -

2228

1870 -

1870

1870 -

1870

2120 -

2196

3300 -

3432

3327 -

3452

pinky 561
1492 -

1644

2616 -

2754

2201 -

2201

2201 -

2201

2638 -

2740

3979 -

4105

3969 -

4150

pwd 495
1151 -

1281

2007 -

2167

1772 -

1772

1772 -

1772

2033 -

2125

3165 -

3276

3161 -

3321

127

runcon 447
1111 -

1292

1944 -

2074

1695 -

1695

1695 -

1695

1994 -

2046

3034 -

3181

3032 -

3196

sha384sum 682
1312 -

1559

2432 -

2594

2298 -

2298

2298 -

2298

2508 -

2580

4107 -

4260

4112 -

4300

sort 2195
2591 -

2903

5214 -

5447

5037 -

5037

5037 -

5037

5265 -

5357

9174 -

9380

9079 -

9354

sum 673
1435 -

1653

2625 -

2771

2419 -

2419

2419 -

2419

2659 -

2743

4271 -

4437

4285 -

4456

test 629
1332 -

1426

2406 -

2554

2156 -

2156

2156 -

2156

2452 -

2526

3923 -

4014

3872 -

4097

truncate 574
1516 -

2007

2652 -

2794

2268 -

2268

2268 -

2268

2662 -

2764

4071 -

4195

4023 -

4193

uniq 655
1302 -

1404

2308 -

2488

2126 -

2126

2126 -

2126

2384 -

2422

3767 -

3959

3726 -

3944

wc 708
1393 -

1551

2553 -

2695

2280 -

2280

2280 -

2280

2567 -

2657

4138 -

4247

4098 -

4348

base64 638
1536 -

1640

2680 -

2856

2323 -

2323

2323 -

2323

2726 -

2838

4191 -

4330

4166 -

4382

chgrp 1225
1870 -

2071

3546 -

3721

3331 -

3331

3331 -

3331

3579 -

3717

5840 -

6217

5951 -

6160

comm 568
1221 -

1384

2139 -

2339

1942 -

1942

1942 -

1942

2233 -

2283

3473 -

3604

3465 -

3648

dd 1113
1720 -

1819

3208 -

3378

3005 -

3005

3005 -

3005

3288 -

3418

5424 -

5566

5406 -

5581

du 4568

5245 -

5355

10848 -

12332

10378 -

10378

10378

-

10378

11684 -

12919

19153 -

19478

18931

-

19333

factor 1227
1679 -

1855

3271 -

3503

3149 -

3149

3149 -

3149

3379 -

3591

5810 -

5924

5690 -

5869

head 640
1331 -

1758

2425 -

2559

2209 -

2209

2209 -

2209

2451 -

2511

3924 -

4048

3874 -

4083

kill 534
1166 -

1317

2068 -

2202

1840 -

1840

1840 -

1840

2108 -

2190

3305 -

3419

3306 -

3456

md5sum 669
1302 -

1547

2394 -

2586

2247 -

2247

2247 -

2247

2448 -

2532

4030 -

4148

4013 -

4181

mv 2293

3047 -

3527

6016 -

6196

5576 -

5576

5576 -

5576

6028 -

6218

10136 -

10514

10144

-

10542

128

numfmt 919
1578 -

1968

2897 -

3129

2782 -

2782

2782 -

2782

2980 -

3033

4943 -

5104

4952 -

5091

pr 1596
3210 -

3334

5830 -

6092

5125 -

5125

5125 -

5125

6596 -

7221

9235 -

9413

9241 -

9507

readlink 789
1386 -

1589

2563 -

2712

2306 -

2306

2306 -

2306

2545 -

2692

4202 -

4368

4151 -

4368

seq 590
1249 -

1403

2205 -

2365

1974 -

1974

1974 -

1974

2273 -

2330

3571 -

3700

3573 -

3713

sha512sum 682
1312 -

1555

2424 -

2594

2298 -

2298

2298 -

2298

2504 -

2566

4143 -

4272

4124 -

4307

split 869
1577 -

1673

2935 -

3089

2725 -

2725

2725 -

2725

2985 -

3055

4877 -

5063

4856 -

5012

sync 476
1142 -

1280

1998 -

2148

1770 -

1770

1770 -

1770

2034 -

2104

3120 -

3289

3147 -

3303

timeout 576
1228 -

1367

2145 -

2302

1918 -

1918

1918 -

1918

2205 -

2273

3423 -

3540

3420 -

3578

tsort 545
1204 -

1354

2168 -

2292

1919 -

1919

1919 -

1919

2184 -

2274

3438 -

3596

3404 -

3570

unlink 437
1088 -

1197

1900 -

2026

1662 -

1662

1662 -

1662

1936 -

2006

2959 -

3079

2947 -

3128

who 582
1231 -

1375

2177 -

2341

1941 -

1941

1941 -

1941

2211 -

2305

3478 -

3606

3448 -

3619

basename 460
1108 -

1203

1946 -

2070

1713 -

1713

1713 -

1713

1998 -

2048

3081 -

3183

3053 -

3234

chmod 1195
1817 -

2056

3475 -

3627

3250 -

3250

3250 -

3250

3462 -

3608

5780 -

6034

5790 -

6077

cp 1925
2563 -

3162

5101 -

5293

4750 -

4750

4750 -

4750

5147 -

5382

8607 -

8920

8583 -

8926

df 1555
2116 -

2455

4020 -

4208

3783 -

3783

3783 -

3783

4028 -

4240

6820 -

7079

6840 -

7037

echo 501
1135 -

1315

1977 -

2131

1775 -

1775

1775 -

1775

2029 -

2093

3154 -

3269

3160 -

3287

FALSE 429
1077 -

1200

1881 -

2015

1628 -

1628

1628 -

1628

1917 -

1981

2915 -

3036

2913 -

3080

hostid 437
1087 -

1187

1899 -

2029

1658 -

1658

1658 -

1658

1933 -

1997

2959 -

3076

2962 -

3111

129

link 438
1089 -

1207

1905 -

2033

1665 -

1665

1665 -

1665

1931 -

2009

2968 -

3100

2972 -

3127

mkdir 680
1388 -

1521

2484 -

2658

2284 -

2284

2284 -

2284

2524 -

2592

4053 -

4198

4064 -

4226

nice 519
1153 -

1280

2015 -

2165

1817 -

1817

1817 -

1817

2069 -

2127

3213 -

3381

3199 -

3370

od 869
1503 -

1731

2777 -

2932

2663 -

2663

2663 -

2663

2840 -

2937

4697 -

4844

4672 -

4857

printenv 444
1091 -

1204

1919 -

2053

1673 -

1673

1673 -

1673

1947 -

2015

2990 -

3128

3000 -

3156

realpath 838
1425 -

1547

2650 -

2783

2380 -

2380

2380 -

2380

2616 -

2775

4327 -

4483

4291 -

4514

sha1sum 668
1303 -

1561

2417 -

2583

2283 -

2283

2283 -

2283

2473 -

2555

4054 -

4251

4084 -

4299

shred 878
1588 -

1786

2950 -

3126

2709 -

2709

2709 -

2709

2984 -

3086

4840 -

5004

4852 -

4978

stat 2145
2352 -

2496

4334 -

4546

4216 -

4216

4216 -

4216

5102 -

5783

7322 -

7522

7349 -

7533

tac 3066

3499 -

3656

7202 -

7497

6765 -

6765

6765 -

6765

7280 -

7446

12564 -

12857

12410

-

12721

touch 1297

4440 -

4599

7934 -

8134

6286 -

6286

6286 -

6286

8604 -

9337

11698 -

11886

11579

-

11782

tty 435
1085 -

1192

1891 -

2023

1656 -

1656

1656 -

1656

1933 -

2007

2969 -

3066

2945 -

3116

uptime 807
1768 -

1880

3314 -

4649

3000 -

3000

3000 -

3000

4084 -

5321

5383 -

5654

5380 -

5647

whoami 441
1092 -

1197

1902 -

2034

1666 -

1666

1666 -

1666

1942 -

2012

2967 -

3098

2962 -

3119

130

VITA

David Reyes earned his Bachelor of Science in Computer Science from The University of

Texas at El Paso in the fall of 2014. He completed the Master of Science in Software Engineering

program with a concentration in Secure Cyber-Systems in 2016. After graduating with a Master

of Science in Software Engineering, David joined the Ph.D. program in 2017 under the guidance

of Dr. Salamah Salamah and Dr. Jaime Acosta.

David has six years of internship experience; through those six years, he has worked with

the City of El Paso Department of Technology Information Services, Lockheed Martin

Corporation, MIT Lincoln Laboratory, Raytheon, and Sandia National Laboratories.

At the University of Texas at El Paso, David participated in the CyberRIG Lab, where he

focused on work related to software diversification and assisted in the development of challenges

for the CyberRIG 2022 annual hackathon. He also served as a teaching assistant for the Computer

Science Department for multiple Computer Science courses, including software reverse

engineering and software engineering I and II.

David has received numerous honors and awards, including the Murchison Graduate

Scholarship, National GEM Consortium Fellowship, Google-CAHSI Dissertation, Faculty Start-

Up Award, and the NSF CyberCorps Scholarship for Service Fellowship.

This dissertation was typed by David Reyes.

	Analyzing And Quantifying The Impact Of Software Diversification On Return-Oriented Programming (rop) Based Exploits
	Recommended Citation

	ThesisAndDissertationDocumentTemplate

