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Dr. Jorge López who generously provided knowledge and expertise and for his invaluable

patience and feedback. This endeavor would not have been possible without Dr. Dmitriy

Morozov, who introduced me into the mathematical model and the computational tools

to analyze the nuclear data. I would like to extend my sincere thanks to Dr. Art Duval

and Dr. Ramón Ravelo, my defense committee, for their support and knowledge. Special

thanks to Jorge Munoz for giving me Cori hours to run the simulations. Lastly, I would like

to mention Diana P. Carrasco-Rojas, Jacob A. Mireles Yahir E. Garay, Jahayra J. Chairez

who helped me collecting the results.

iv



Abstract

The nuclear pasta is important because is an astromaterial with incredible strength that

may be a source for gravitational waves, which observe from the rotation of neutron stars.

The characterization of the pasta is vital because the nuclear phases have transport proper-

ties — compressibility, neutrino opacity, thermal conductivity, and electrical conductivity

— associated with their shape for which neutron stars may be sensitive. These properties

could interpret observations of supernova neutrinos, magnetic field decay, and crust cooling

of accreting neutron stars. Here, we study the nuclear pasta using alpha shapes to achieve a

phase characterization with the Minkowski functionals (area, volume, Euler characteristics,

and curvature) where the principal analysis will revolve around the relation between the

topological and geometry properties. The pasta phases are produced by means of molec-

ular dynamics for nuclear matter systems with symmetrical properties (same quantity of

protons and neutrons). The generated matter variates in density and final temperature,

computing the pressure and energies for the time the system cools. Followed by calculating

the Minkowski functionals using the alpha shapes model defined in the DIODE library for a

fixed alpha radius. The use of alpha shapes give the result that the Minkowski functionals

have a trend for a cooling system, and once the nuclear pasta achieves its final phase, their

topological and geometric properties are associated with the density and temperature. We

conclude that an optimized α gives a clockwise trend in the Euler Characteristic versus

Curvature graph, following gnocchi to anti-gnocchi pasta structures. Were found that the

anti-pastas had an negative curvature, while the pastas were positive. As well, as long as

the α does not become a concave or convex hull the trend preserve with the exception of

the lasagnas.
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Chapter 1

Introduction

The nuclear pastas are an exotic phase that could form in the inner crust of neutron stars,

their name is associated to their resemblance to pasta-like shapes [1]. They are conformed

by clusters of nucleons embedded in an electron gas [3]. The shapes of these structures

are the result of the interaction between nuclear forces among protons and neutrons and

the Coulomb forces between protons and electrons. Figure 1.1 shows an example of pastas

found in the study of [1].
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Figure 16. Structures formed in neutron star matter at densities ρ =0.08, 0.12 and 0.16 fm−3 and
T = 0.1 MeV. The system has equal number of protons and neutrons (5832 total nucleons). Notice
the formation of pasta-like structures at sub-saturation densities.

Figure 17. Pasta structures formed in neutron star matter at densities ρ = 0.04, 0.08 and 0.10 fm−3

and T = 0.1 MeV for a 5,832 nucleon system with similar number of neutrons and protons.

Figure 18 shows two structures of neutron star matter obtained with 1,944 protons and
3,888 neutrons (x = protons/nucleons = 0.3), at a temperature of T = 0.1 MeV and ρ =
0.04 and 0.08 fm−3; to clarify the structures, the position of the protons is also presented.

Figure 18. Pasta structures formed in isospin asymmetric neutron star matter at densities ρ = 0.04
and 0.08 fm−3 and T = 0.1 MeV for a 5,832 nucleon system with 30% of protons and the rest of
neutrons.

Figure 1.1: Pasta structures formed in neutron star matter at densities ρ = 0.08, 0.12, and

0.16 fm−3 and at T = 0.1 MeV for a 5832-nucleon system with equal number of protons

and neutrons [1].

It is expected that these pasta phases form in the crust of neutron stars [3]. Neutron

stars are formed in core-collapse supernova explosions of a massive star. In such explosions,

the consumption of its nuclear fuel bloats the star envelope followed by the ejection of

mass [5], creating an unbalance between the thermal pressure and gravity, which contracts
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the star [2, 5]. Throughout the process the star releases mass and, if the remaining mass

surpasses the Chandrasekhar mass limit, the remnant will become a neutron star [1, 5].

The gravitational compression will be halted by the nucleon degeneracy pressure pro-

duced by the Pauli exclusion principle which forbids equal particles to occupy similar

positions and energy levels. At such high pressures electrons are forced to combine with

protons to generate matter consisting mostly of neutrons, thus giving the name of neutron

star to the remnant of the dying star [5]. The reaction between electrons (e−) and protons

(p) that yields neutrons (n) and electron neutrinos (νe) is known as inverse beta decay:

p+ e− → n+ νe, (1.1)

The production of neutrons is called neutron drip as neutrons begin to drip freely out of the

structures they were in. It happens once the density is higher than a density of 3.2× 1014

kg m−3 [5].

In general, neutron stars have a mass between the Chandrasekhar limit, 1.4M⊙ and a

maximum mass of ∼ 3M⊙, a radius of ∼ 10 km, and an average density of 6.65× 1017 kg

m−3 close to an average density of a degenerate Fermi gas composed of nucleons, or about

that of normal nuclei [1, 2].

The inverse beta decay happens throughout the neutron star, reaching balances of neu-

tron to protons to electrons of 8:1:1, but near the edge the proportion of protons increases

considerably. The structure of the star consist of, basically, two regions: crust and core

(Fig. 1.2). The crust has three layers; lighter mix layer, conformed of electron gas, pro-

tons and neutrons with densities decreasing practically to zero; neutron drip density layer,

rich in neutrons with a density around 4 ×1014 kg m −3, and normal nuclear density layer

around 3 ×1017 kg m −3 [1].

At the densities and temperatures found in the crust of the neutron star, protons and

neutrons form the structures known as pastas. The configuration of such structures vary

according to the temperature and densities, Fig. 1.3 shows an instance of such variation,

calculated with the model known as “Classical Molecular Dynamics” (CMD) [4]. It has

2



Figure 1.2: Neutron star layers zoom-in on the crust showing exotic pasta phases [18].

been found that the pasta occupies approximately 25% of the crust thickness and provides

about 70% of the mass crust [20]. The pastas play an important role in the cooling of

the neutron stars by regulating the flow of neutrinos, which constitute the main cooling

mechanism.

Several models have been used to study the nuclear pastas, and they can be classified

as static or dynamic models. The most common static models are the Compressible Liquid

Drop Model, the extended Thomas-Fermi model, and the Hartree Fock method; while the

dynamical models are the semi-classical molecular dynamics (CMD), and the quantum

molecular dynamics (QMD) [4].

In particular the dynamical models follow the motion of either nucleons (CMD) or

“quasi-particles” (QMD) at a given density and temperature as they interact by some

prescribed force. CMD does this using classical newtonian mechanics, while QMD uses

quantum mechanics. Although QMD is more proper as it respects all quantum principles,

in practice uses a series of approximations that reduce its validity. Namely, the use of a

few quasi-particles to represent the motions of groups nucleons, the use of average forces

instead of nucleon-nucleon interactions, etc. produces systems that cannot form clusters

nor produce the phase changes needed in the formation of the pastas.
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Figure 1.3: Mèlange of pasta structures as they vary with density. The values of the density

are given in fm−3 and at T = 0.1 MeV for equal number of rotons and neutrons [4].

CMD, on the other hand, uses protons and neutrons as point particles and uses inter-

action potentials with forces that yield fragments and phase changes as it is needed in this

type of study [4]. Additionally, CMD is computational cheaper compared to QMD and

can be used to explore the phase space more thoroughly. This document uses CMD, and

through the document it will be referred simply as molecular dynamics.

An important feature of the pastas is the characterization of their shapes as they vary

as a function of density, temperature and proportion of protons to neutrons. The identifi-

cation of phases has been done mainly globally using, for instance, average densities [24]
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and volume fractions of the different phases [25], as well as bulk properties, such as the

shear viscosity [26], diffusion coefficients [27], and radial correlation functions to charac-

terize the nucleon distributions [28] and the pasta structure factor to study charge density

fluctuations [29].

A major advance in this type of studies [4] used topological measures, such as the

Minkowski functionals [30], to measure the superficial area, volume, mean curvature, and

Euler characteristic of the pasta structures. Ever since, the Euler characteristic and mean

curvature have been used to distinguish among the major pasta shapes, namely “lasagna”,

’spaghetti”, “gnocci” and their anti-structures [1, 4, 31].

Although the study of Dorso, Giménez-Molinelli and L’opez [4] was selected to be

showcased in “Physics” the magazine from the American Physical Society that reports on

papers that “will change the course of research, inspire a new way of thinking, or spark

curiosity”, it presented an impractical procedure.

A problem of the classification used is that it is based on solid bodies and not on a

collection of points, such as those obtained by, e.g., CMD, and the construction of such

solid bodies from a collection of points was based on the use of “voxels” representing

a particle on a regular grid in three-dimensional space. Unfortunately, such procedure

presented a major problem, namely, the size of the voxels is left unspecified, and had to be

adjusted by the operator by hand on particle position data dumped by the code calculating

the pasta structures. That is, it required manual interaction which made it difficult to be

applied to vast amounts of data.

In a 2021 collaboration of LBNL’s researcher Dmitryi Morozov and UTEP professor

Jorge López and his group, a new method was developed and tested: the use of alpha

shapes to substitute the voxels. The α-shapes model has been used to measure structures as

diverse as the morphology of mammalian baculum [32], . Moreover, the galaxy distribution

of the Megaparsec Cosmic Web [33], and other. In this thesis the method will be used to

test the relationship found between curvature and Euler characteristic in the classification

of the pastas.
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In this work nuclear pastas will be generated by a molecular dynamics simulator (LAMMPS),

and the α- shapes method will be used to obtain the solid structures from which the

Minkowski functionals will be calculated. This procedure will be used to a plethora of

structures obtained under different values of density, temperature and proton-neutron ra-

tios. The various components of this procedure will now be presented in turn.
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Chapter 2

Nuclear Pastas

This chapter focuses on the pasta phase caused by nucleon interactions in nuclear matter,

that is, neglecting the electron gas interaction. It will describe the pasta as part of the

phase diagram of nuclear matter, will explain how to study it using molecular dynamics

with the so-called “New Medium potential”.

2.1 Nuclear Matter

Although it was argued that the pastas are formed due to the interplay of nuclear and

Coulomb forces, pastas can also form from the competition of the neutron-proton attrac-

tion and the proton-proton and neutron-neutron repulsion, i.e. without the electron gas.

As studied in [1], the main effect of an embedding electron gas on the pastas is in the

distribution of cluster size. In this section we study nuclear matter, which differs from the

neutron star matter, where the electron gas fills the voids of the clusters in the nuclear

pastas, whereas for nuclear matter the voids remain empty. Nuclear pastas are the low

density-low temperature limit of nuclear matter.

Systems composed solely of protons and neutrons (with no embedding electrons) are

known as nuclear matter. Being fermions, at low densities a gas of protons and neutrons

can be approximated as a free Fermi gas in which the particles interact with one another

only through the exclusion principle embedded in the Fermi Dirac statistics. At higher

densities, however, the strong and Coulomb forces play an important role, and the effects

of the interactions must be added. Since such interaction has not been yet evaluated from

first principles (e.g. QCD and the like), phenomenological methods must be used.
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The usual approach is to use a phenomenology-inspired interaction in the form of a mean

field (for QMD or static computational methods) or a two-body potential (for CMD). Such

interactions are adjusted as to yield known properties of nuclei, such as the energy per

nucleon in infinite systems (ε(n0) = −8 MeV) and saturation density (n0 = 0.16 fm−3)

and T = 0. Also, since a nucleus is stable at this density, the pressure should be p = 0,

and, as observed in experiments of nuclear oscillations, the compressibility should be of the

order 100 MeV < K(n0) < 300 MeV [34].

These basic ingredients are enough to deduce that nuclear matter can exist in gaseous

and liquid states, as well as in a mixture of gas and liquid in a coexistence region. Figure 2.1

shows the phase diagram of nuclear matter obtained for a phenomenological interaction [34].

Figure 2.1: Theoretical predicted phase diagram for nuclear matter where the density is

given in multiples of normal nuclear matter density. For the EoS used, he critical point is

at ρc = 0.061 fm−3 and Tc = 14.542 MeV [35].
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2.2 Properties of the Nuclear Pastas

In spite of how detailed the phase diagram 2.1 is, it is missing the phases that occur at very

low temperatures (under T = 1.0 MeV) and sub-saturation densities (< 0.16 fm−3), i.e.

the pasta phases. Schematically, the nuclear pasta exists in the lower part of the diagram

shown in figure 2.2. Shown in figure 2.2, is a third variable, isospin, which represents the

proton fraction

ρ =
z

A
(2.1)

where z is the number of protons and A is number of nucleons and it equals n+ p.

Figure 2.2: Schematic phase diagram for nuclear matter indicating the location of the

nuclear pastas in the density-temperature axes (with the density in units f nuclear density).

The third axis, “isospin”, is to represent the ratio of protons to neutrons in the nuclear

matter system.

Previous studies with various interaction potentials have investigated the structure of

nuclear matter at various densities and temperatures. Figure 2.3 shows the binding energy

per nucleon at several densities and temperatures.

9



Figure 2.3: Binding energy per nucleon for nuclear matter. [36]

Such plot, from [36], shows that at densities around 0.16 fm3 the curves follow the

“U” shape characteristic of a uniform crystalline phase, with the minimum of the “U”

corresponding to the normal nuclear density (0.16 fm−3), known as saturation density.

Notice that if the density decreases below, say, 0.13 fm3, the systems move away from the

uniform phase forming non-homogeneous stable arrangements, known as the pasta phase.

Figure 2.4 shows the structures obtained at T = 0.001 MeV and at T = 1.0 MeV for the

four densities labeled from “a” to “d”, and “A” to “D”.

In preparation to the upcoming section on the Minkowsly functionals, it is convenient

to show the location of the structures presented in figures 2.3 and 2.4 in the Curvature-

Euler number plane. Figure 2.5Curvature-Euler shows the trajectories of the cooling of

such structures as they vary from T = 1.0 MeV to 0.001 MeV [36]. It is easy to see the

value of the plane Curvature-Euler number in the characterization of the pastas.

2.3 Molecular Dynamics

In a nutshell, CMD treats nucleons as classical particles interacting through pair potentials

and predicts their dynamics by solving their equations of motion numerically. The method

does not contain adjustable parameters, and uses the Pandharipande potentials [32], or

10



Figure 2.4: Pasta structures obtained corresponding to the points “a” to “d” and “A” to

“D”. [36]

the “New Medium Potential”, which is a fine tuning of the previous one. These potentials

have an attractive term between neutrons and protons, and a repulsive one between equal

nucleons. The New Medium Potential is given by the following expressions:

Vnp(r) =
Vr

r

−µrr

− Vr

rc

−µrrc

− Va

r

−µar

+
Va

rc

−µrrc

Vnn(r) =
V0

r

−µ0r

− V0

rc

−µ0rc

(2.2)

where rc is the cutoff radius after which the potentials are set to zero (table 2.1). The

potential does not include the Coulomb potential reducing to a nucleon environment.

These potentials attain a saturation density of 0.16 fm−3, a binding energy at saturation

11



Figure 2.5: Curvature-Euler coordinates of the structures from figure 2.3. The lines con-

nect points with the same densities and temperatures varying rom T = 1.0 MeV to 0.001

MeV. [36]

density and T = 0 of E = −16MeV/nucleon and a compressibility about 250 MeV [1].

2.4 Methodology: LAMMPS

The molecular dynamics calculations are performed using the code LAMMPS from Sandia

National Lab [16] operating with a force table obtained from the New Medium Potential.

The procedure is to place a large number of protons and neutrons in a cubic cell with its

size adjusted to have a desired density by means of ρ = N+Z
l3

. Such cell is then surrounded

by replicas to simulate periodic boundary conditions. In the beginning, the particles are

endowed with velocities corresponding to a Maxwell-Boltzmann distribution at an initial

temperature, and the system is then cooled down from a relatively high temperature (T ≤
4.0 MeV) to a desired cool temperature in small temperature steps (∆T = 0.01 MeV ) and

assuring that the energy, temperature, and their fluctuations are stable.

The template text file to simulate the nuclear matter is shown in the figure 2.6. Each

simulation was contained in a box with dimensions to hold 4000 nucleons with densities

ranging from 0.2 fm−3 < ρ < 0.20 fm−3.
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Table 2.1: Parameter set for the CMD computations [1].

Parameter Pandharipande New Medium Units

Vr 3088.118 3097.0 MeV

Va 2666.647 2696.0 MeV

V0 373.118 379.5 MeV

µr 1.7468 1.648 fm−1

µa 1.6000 1.528 fm−1

µ0 1.5000 1.628 fm−1

rc 5.4 5.4/20 fm

In detail, the nuclear pastas were cooled down from 4 MeV to the final temperatures

0.01, 0.25, 0.50, 0.75, and 1 MeV by taking 10 snapshots of the kinetic and potential

energy, the pressure, and the temperature at that moment. The snapshots are controlled

by the command line dump (fig. 2.6) and the run command. In the command line dump,

LAMMPS stores information in lammpstrj format every 100,000 timesteps. For the nuclear

pastas, the position of the particles with their respective velocity was stored. Whereas the

run command defines the number of cycles in each timestep, by establishing that a timestep

is a differential time in seconds of a computer step with the subsequent step. Implying the

input file runs one million cycles every 0.10 timesteps when the nuclear structure is cooling

down.

Furthermore, the temperatures are fixed to one particle type from 4 MeV to ∆ T during

a run with the nvt command. The code is also limited by the pair coeff commands, in

which a particle interaction potential is limited by the distance depending of the particle’s

ID(fig. 2.6) For the simulations, the algorithm used was Hessian-free truncated Newton

algorithm. Where, at each iteration of the quadratic model, the energy potential is solved

by a conjugate gradient inner iteration [16].

The temperature is calculated through the kinetic energy divided by the degrees of
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Figure 2.6: Input file for ρ = 0.02 fm3 for T = 0.01 MeV.

freedom. By observing that the kinetic energy is associated with the momentum, there

are two approaches to calculating the thermal velocity from the total velocity: thermostat-

ting or barostatting. The nuclear pastas needed the thermostatting approach because the

temperature is controlled for one type of particle and used Nosee-Hover Thermostats from

several. In other words, the method equilibrates the system through the temperature, not

the pressure.

The Nosee-Hover Thermostats only collect the translational velocity of the particles.

And it performs a time integration, which means that it predicts the next position of the

particle with the potential and from the velocity, calculates the kinetic energy, and extracts

the temperature without adding extra temperature to the system like in other thermostats.

Not performing time integration updates.

The computations were performed in the HPC system NERSC of LBNL [37], and once

they were finished the output files containing the position and velocities of each of the

particles were imported to be used in a visualization code [38] to picture the pastas.
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Chapter 3

α - Shapes Method

The problem of obtaining a solid object out of a set of points distributed in 3 dimensions has

been approached in mathematics mainly by the Delaunay triangulation. In this method,

a triangulation mesh is created for a given set of discrete points, such that no point of the

set is inside of any circumscribed sphere of any triangle, that is the circumscribed spheres

of every triangle have empty interiors [8].

It is worth mentioning that the Delaunay triangulation is not unique for a given set of

points, but it is useful in producing solid bodies that encompass a cloud of points, from

which a volume, surface area, average curvature and Euler characteristic can be computed.

Later, the triangles of Delaunay were generalized to simplicial complexes, that is, sets

of points, line segments, triangles, and higher dimensional counterparts, into what was

named the “Alpha shapes” method. The name arises from the use of α as a parameter

to characterize the simplicial complexes, which have vertices in the point set, simplices

on the Delaunay triangles, and even different weights for the points; this makes the alpha

complexes efficiently computable [9].

The alpha shapes method has been used extensively in applications ranging from macro-

molecules [10], where atoms are weighted points, to the reconstruction of surfaces off

sampled points [11]. These advances have been facilitated by the creation efficient al-

gorithms [12, 14].

To explain the alpha shapes method in simple terms, we use the example of D. Moro-

zov [13]. The guiding idea is to determine the volume of a set of points. Figure 3.1 shows

a set of points, P , in its left panel. To create a volume (or an area in 2 dimensions) cor-

responding to the set of points, one can place spheres, Bα(p), of radius α centered at each
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point, and take the volume of the union of the spheres, Uballs,α =
⋃

pBα(p), as the volume

of the set; this is represented in the middle panel of figure 3.1. To avoid overcounting due

to the overlap of the spheres, one resorts to the use of the Voronoi diagram which partitions

the space between points by bisecting them: V or(p) = {x ∈ Rn|∥x− p∥ ≤ ∥x− q∥∀q ∈ P};
its application to the point set of the figure 3.1 is shown in the right panel of the figure.

Figure 3.1: Left panel: point set; middle panel: union of balls of radius α; right panel:

Voronoi cells.

Finally, to limit the Voronoi cells that extend to infinity one forms the intersection of

the union of balls and Voronoi cells, thus forming the nerve C = {Bα(p)
⋂
V or(p)}. The

results is shown in figure 3.2.

Figure 3.2: Nerve composed of the intersection of the union of balls of radius α and the

Voronoi cells.
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Next we present the alpha shapes method and its use to extract the Minkowski func-

tionals to characterize the pasta.

3.1 Intersections of spheres of the order 1 and higher

Here we will introduce the intersection of spheres with the consideration that in some

arrangements, some spheres may have one point overlap, the intersection of m spheres, or

even non-interacting spheres. Next, the implications of the Voronoi Diagram are followed

by calculating the Euler characteristic and curvature.

The method depends on the number of spheres (n) intersecting among each other. For

n = 1, the volume (V ) and superficial area (S) of the sphere are calculated with the

following equations,

Vd(R) =
π2/d

Γ(d
2
+ 1)

Rd, d ≥ 1 (3.1)

Sd(R) = d
π2/d

Γ(d
2
+ 1)

Rd−1, d ≥ 2 (3.2)

Where d is the dimension’s degree, R is the sphere radius. The proof of these equations

is given via the summation of the volumes E(d−1) [15].

For a system with n = 2, the intersection of the spheres must be analyzed before

calculating the area and volume. Assume that sphere one, n1, has a radius R1 and is

centered at c1, while the second sphere, n2, has a radius R2 and is centered at c2. The

arrangement of the spheres could lead to an empty space, one point intersection, a lens, or

c1 inside c2 or vice versa (fig. 3.3).
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(a) (b) (c)

Figure 3.3: Type of intersections for n=2.

The type of intersection determines the method to calculate V and S, the empty case

(fig. 3.3a) and one point intersection (fig. 3.3b) use invariably equations 3.1-3.2; however,

for the lens case (fig. 3.3c), the overlap area and volume must be subtracted from the

volume and surface of n1 and n2. The V and S of the total system are thereby calculated

with

V = V1 + V2 − V12, (3.3)

S = S1 + S2 − S12, (3.4)

where V12 and S12 are unions. The above equations include the overlap region, which

essentially is a lens, and these exist when:

|R1 −R2| ≤ ||c2 − c1|| ≤ |R1 +R2|, (3.5)

The calculation of the overlap region cannot be written in terms of equations 3.1-3.2

instead these should be arranged in terms of the angles θ1 and θ2 and the intersection point,

t12 (fig. 3.4).
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Figure 3.4: Calculate V12 for n = 2 in terms of V (R, θ) and S(R, θ).

Changing to polar coordinates, the lens region for 3D is solved with,

V3(R, θ) =
πR3

3
(1− cosθ)2(2 + cosθ), (3.6)

S3(R, θ) = 2πR2(1− cosθ), (3.7)

where θ takes values in [0, π]. However, from these equations, the angles are unknown,

which can be found by knowing t12,

t12 = (
c1 + c2

2
) +

R2
1 −R2

2

||c2 − c1||2
(
c2 − c1

2
) (3.8)

||t12 − c1|| =
1

2
(||c2 − c1||+

R2
1 −R2

2

||c2 − c1||
) (3.9)

||t12 − c2|| =
1

2
(||c2 − c1||+

R2
2 −R2

1

||c2 − c1||
) (3.10)

where the transposed vector t′12 of the intersection lens t12 defines ||t12||2 = t′12t12 [15].

Hereafter, with Pythagorean theorem calculate, (fig. 3.4),

|cos θ1| =
||t12 − c1||

R1

(3.11)

|cos θ2| =
||t12 − c2||

R2

. (3.12)
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Once the angles are known plug them in equations 3.6 - 3.7. Notice that for a fixed α

radius, where all the spheres have the same radius, the above equations reduce to θ1 = θ2.

Increasing the number of spheres to n = 3 gives a variety of arranged systems, i.e. no

contact point, 2-6 contact points. This leads to a region that is subtracted twice (S123 and

V123) and must be added to the net sum. It is because after the second sphere, for n3 the

subtraction with respect n1, and n2 overlaps in the region S123 (fig. 3.5).

(a) (b) (c)

Figure 3.5: Sketch of intersections for n=3. (a) Shows the sum of S1, S2 and S3, (b) the

union in between n1 and n2, and (c) highlights the overlap region S123.

Then, the total V and S is written as

V = V1 + V2 + V3 − V12 − V13 − V23 + V123 (3.13)

S = S1 + S2 + S3 − S12 − S13 − S23 + S123 (3.14)

where the union n1, n2 and n3 is trivial [15]. With the previous knowledge, it is notice-

able that when the quantity of spheres increases, the union of spheres will be subtracted

from the summation. If a triple union exists, this will be added to the system. A general

expression higher order intersections are given as,

V =
∑

1≤i≤n

Vi −
∑

1≤i1≤i2≤n

Vi1i2 +
∑

1≤i1≤i2≤i3≤n

Vi1i2i3 + · · ·+ (−1)n−1Vi1i2···in (3.15)
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S =
∑

1≤i≤n

Si −
∑

1≤i1≤i2≤n

Si1i2 +
∑

1≤i1≤i2≤i3≤n

Si1i2i3 + · · ·+ (−1)n−1Si1i2···in (3.16)

These expressions indicate the volume and surface area of the intersections of spheres;

however, for practical computations, the location of cn, data position, with its nearest

neighbors requires locating them in a narrowed region instead of the complete space.

3.2 Voronoi Diagram

Once the number of data points increases (cn for n = 1, 2, 3, ..., N), the complexity to

identify the closest c to a point q increases too. Therefore, a technique like the Voronoi

diagram simplifies the complexity of measuring the intersection for nearest neighbors. To

design this diagram, one must draw planes at half the distance of c to another. The

intersections of these planes define a Voronoi cell for cn point. The Voronoi cell defines the

region closest to a point c, e.g., if q is located in the cell that contains c3, then q is closer

to c3 than any other point c (fig. 3.6).

Figure 3.6: Process schematics to draw a Voronoi diagram with n = 5, using the half-plane

method.

In other words, the Voronoi cell is constrained by the location of point q. If q is moved

out of the cell, it will belong to another cell, and the point is renamed to p. Hence, the

Voronoi diagram is the limit where q and p have the equivalent distance to their respective

cn. Which is described by the equation,
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V or(p) = {x ϵ Rn| ||x− p|| ≤ ||x− q|| ∀ q ϵ P} (3.17)

Followed by the selection of the fixed α, the next step is to draw a sphere for each vertex

(particles’ position) where the Voronoi diagram identifies which particle lands inside the

sphere of a neighboring cell (fig. 3.7).

Figure 3.7: Procedure to define an αn represented by rn

The Voronoi diagram creates a skeleton that connects the nearest data points. This

skeleton is conformed of vertexes, edges, triangles, and tetrahedrons for a structure in 3D.

A vertex is a particle isolatetd from others where the distance that separates it is greater

than thee α radius. The interaction of two data points defines an edge, and its name

is associated with the fact that when two data points interact, these create an edge on

the skeleton similar to a tail. The triangle defines the interaction of three particles, and

these mostly represent the superficial area of the structure. Finally, the tetrahedron will

determine the volume of the nuclear structure formed by the interaction of three particles

(fig. 3.8). The complexity of particles interacting in the Voronoi diagram defines the

simplex degree. For example, a simplex of degree 0 is a vertex, degree 1 is an edge, degree

2 is a triangle, and degree 3 is a tetrahedron. From these simplexes, the spheres with an α

radius will be drawn centered on the particle’s position from the nuclear matter structures,

and the Minkowski functionals are calculated with the intersection of spheres.
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Figure 3.8: Defined simplexes for 3D objects.

The application of the α-shapes model was added with the DioDe library from Dmitriy

Morozov, which works on python. This library reads the particle positions of the molecular

dynamics simulations and calculates the simplexes found with their respective lengths.

However, not all the simplexes given satisfy the desired conditions. For instance, the

lengths must be proportional to the chosen α, and only the simplex-2 and simplex-3 are

required to compute the Minkowski functionals.

3.3 Minkowski functionals

Once the α- shapes model is implemented to calculate the simplexes of the nuclear structure,

the next step is to get the Minkowski functionals. It is the geometrical and topological

properties calculated from a structure, and it calculates the superficial area(S), volume(V ),

Euler characteristic (χ), and curvature (B).

3.3.1 Area

The acquisition of the area requires simplex-2 (triangle), which determines the superficial

area of the nuclear structure, and a fixed α. DioDe gives vectors for the positions of the

particles, then to calculate the area,

S =
1

2
||(B⃗ − A⃗) × (C⃗ − A⃗)|| (3.18)
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where A⃗, B⃗, C⃗ are the vectors given of the simplex-2. Apply this function to every

simplex-2 and add them.

3.3.2 Volume

The volume calculation can be obtained with the parallelepiped area, filled with six tetra-

hedrons. Then,

Vtet =
1

6
(l⃗1 × l⃗2) · l⃗3 (3.19)

However, the equation 3.20 is for the vector sides of the tetrahedron, and as mentioned

previously, DioDe provides the vectors for an origin,

V =
1

6
[(B⃗ − A⃗)× (C⃗ − A⃗)] · A⃗

=
1

6

∣∣∣∣∣∣∣∣∣
Bx − Ax By − Ay Bz − Az

Cx − Ax Cy − Ay Cz − Az

Ax Ay Az

∣∣∣∣∣∣∣∣∣
(3.20)

where A⃗, B⃗ and C⃗ are the vectors collected from DioDe.

3.3.3 Euler Characteristic

The Euler Characteristic, χ, is a topological property related to

χ = V − E + F, (3.21)

Where V is the volume, E is the edge, and F is the face of the figure. However, by

knowing the simplex complex, χ can also be calculated with the following,

χ =
κ∑
k

Nk(−1)k (3.22)
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where Nk is the total amount of simplex in k dimension. Summing all the simplex

dimensions (until the highest κ) found in the data.

3.3.4 Mean Curvature

The last Minkowski functional to mention is the integral mean curvature, B. This calculates

the total orientation of the surface. For instance, if we have lasagna, the curvature should

be close to zero because of its wavelike shape; some regions will be positive while others

negative, giving a net curvature approximated to zero.

B =
1

2π

∫ 2π

0

κ(θ)dθ (3.23)

Where κ is the signed curvature for the respective θ. The curvature is determined by

the normal and the orientation triangle face. With DioDe, the first step to determine the

curvature is to identify the normal of the triangle, which is given by the cross product

of two vector sizes of the triangle or tetrahedron. Find the orientation of the normal, it

requires the knowledge of the angle of these two vectors, which can be calculated with the

following relation,

cos(γ) =
A⃗ × B⃗

||A⃗ × B⃗||
(3.24)

Where γ is the angle among A⃗ and B⃗. The cotangent can determine the orientation of

the triangle,

cot(γ) =
cos(γ)

sin(γ)
(3.25)

which is multiplied by the magnitude of the vectors,

curvA =
B⃗ − A⃗

2
cot(γ)

curvB =
A⃗− B⃗

2
cot(γ)

(3.26)
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The orientation curv alongside the normal determines a single curvature, where the net

curvature is the addition of the multiplication of the normal and curvature..
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Chapter 4

Results

In this chapter, the first section illustrates NM simulations captured from LAMMPS visu-

alized with OVITO, a visualization of molecular dynamics tool (VMD). The second section

presents the optimization of the Minkowski functionals by varying α and finalizing with

the sought trend in the Euler Characteristic and Integral Mean Curvature graph.

4.1 Nuclear Matter Structures

For this research, the nuclear matter structures have densities, ρ, that range from 0.02

fm−3 to 0.20 fm−3 and are made of 2000 protons and 2000 neutrons. All the densities were

simulated with an initial temperature of 4 MeV and a final temperature varying from 0.1

MeV to 1 MeV. The results present that for higher densities, the fight of the Coulomb and

nuclear forces do not form nuclear pastas, and by defining the cutoff density as the highest

density in which a nuclear pasta can be seen, the cutoff density decreases with higher final

temperatures. In other words, there are fewer pasta phases for 1 MeV than for 0.1 Mev.

Figure 4.1: Nuclear matter structures for T = 1 MeV.
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In the figure 4.1 exits two nuclear pastas (that were simulated), where ρ = 0.04 fm−3

is a waffle or jungle-gym, and ρ = 0.08 fm−3 is anti-gnocchi. The densities above the anti-

gnocchi pasta do not create a structure resembling pasta. By comparing all the simulations,

the cutoff density in which pasta-like does not form resembles an anti-gnocchi pasta. The

vast majority of the pastas were anti-gnocchi, where the lowest densities present a more

symmetric feature. The highest densities have a few holes in their nuclear matter structure.

This phenomenon is observed in T = 0.50 MeV, three anti-gnocchi pastas are present, and

in the latter, there exists an observable hole 4.2. The remaining nuclear matter simulations

are in Appendix A.

Figure 4.2: Nuclear matter structures for T = 0.50 MeV.

Moreover, the nuclear matter transitions from 4 MeV to Tf can be analyzed through the

caloric curve, which is a temperature-excitation energy correlation, because they belong to

the first-order liquid-gas phase [1]. The caloric curve (fig. 4.3) connects the cooling system’s
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Figure 4.3: Energy and pressure as function of the temperature (leftmost) at ρ = 0.05

fm−3, and (rightmost) at ρ=0.05, 0.08, and 0.12 fm−3.

temperature to the added energy required to reach Tf . In figure 4.3 for E(T ), it can be

observe the phase shifts that are present on the discontinuities around T = 0.5 MeV, and

less noticeable, 2 MeV. The discontinuities match previous results that used molecular

dynamics as a model [1]. A phase shift is produced because the energy that flows into the

system is employed in non-thermal means, like breaking bonds while melting a crystal.

In general, the molecular dynamics simulations were able to reproduce pastas like gnoc-

chi, spaghetti, lasagna, waffles, or defects, and the anti-pastas like anti-gnocchi and anti-

spaghetti. Also, by observation, some of the structures were considerably hard to determine

because they presented a combination of two types of pastas, which later were categorized

as transitory pastas. Its name is because the surrounding densities of the transitory pas-

tas have one of the two pastas. The nuclear matter structures that did not resemble any

category of the nuclear pastas are referred to as nuclear matter or non-pastas. Figure

4.4 illustrates the visualizations on VMD for structures with different temperatures and
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densities. Where a-d is lasagna-like, and e-h is an anti-gnocchi.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Diagram illustrating lasagna and anti-gnocchi pastas. (a) and (e) at 4 MeV;

(b) and (f) at T= 0.01 MeV, and 0.50 MeV, respectively. While (c) and (g) implement the

constructed surface mesh from OVITO, (d) slices (c) and (h) fill the void regions of (g).

4.2 Minkowski Functionals

Hereafter, the accuracy of the Minkowski functionals will depend on the chosen α, which

requires refinement before using the Euler-Curvature graph. From where it determines the

pasta classification. The optimized results depend on analyzing the Minkowski functionals

individually by giving a wide range of αs and identifying the radius that produces concave

and convex hulls. The concave hull is expected for lower α’s because, within the pasta

cluster, an α that is short enough cannot have a particle A with a particle B touching that
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are members of the same cluster. In contrast, α is large enough to intersect with a particle

from a neighboring cluster for the convex hull.

Figure 4.5: Minkowski functionals for T = 1 MeV with 0 < α < 10 , and density from 0.2

to 0.2 fm−3

Then, the optimization requires multiple steps; the first step is to identify the range in

which the α is a convex hull. The next step is to find a constant volume until α interacts

with a neighboring cluster. However, a constant volume is hard to recognize due to the

multiple shapes a nuclear pasta can be (if it is pasta). For example, if α varies from zero

to ten, the constant volume cannot be appreciated in the nuclear matter for 1 MeV (fig.

4.5). However, for the temperature 0.01 MeV is more appreciable in figure 4.6 around the

lengths 2 < α < 4.

Another parameter to consider is density. It affects a collapse in the Minkowski func-

tionals for shorter and greater α’s. For the nuclear structures with a higher density, their

optimized α is shorter compared to the lower densities because they are prone to convex.

For example, p > 0.12 fm−3 have constant volumes sooner than the lower densities, more-
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Figure 4.6: Minkowski functionals for T = 0.1 MeV with 0 < α < 10 , and density from

0.2 to 0.2 fm−3

over, ρ = 0.02 fm−3 is the last nuclear pasta to collapse (gnocchi). The gnocchi structure

takes longer to collapse, and multiple constant volumes can be seen that look like steps,

which is better appreciated in the normalization of the volume (fig. 4.7).

The normalization of the volume proves that DioDe is designed to have a maximum

volume proportional to the box conditions because for α = 105 the volume remains constant,

equivalent to α = 10. Moreover, the superficial area becomes zero once the maximum

volume is archived, indicating that the area is equivalent to the box faces. Furthermore, χ

and B will tend to zero as no superficial area exists to measure. Consequently, the convex

hull is defined for α’s that gives the box volume and for a zero superficial area, giving χ

and B equal to zero. Moreover, determining the Minkowski functionals must consider that

α can fall into a concave hull, and the optimization requires refinement.
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centerline

Figure 4.7: Volume normalization for T = 0.01 MeV and 0.02 fm−3 < ρ <0.20 fm −3, where

unity is equivalent to a volume with box dimensions.

4.2.1 Dictate Level of Refinement

The refinement procedure must find the concave hull limit by reducing the intervals of α

and closely observe the Minkowski functionals. Once the concave hull limit is identified,

and the Minkowski functionals are ideal, it is stated that for αr. The concave hull in the

volume behaves as a stepper slope for the volume change, and αr is for the volume, which

approximately has a constant slope. For the superficial area, the concave hull is identified as

a maximum. The refined superficial area has a specific number of simplex-3 (tetrahedrons);

however, for a shorter α some simplex-3 may be counted as simplex-2, which calculates the

higher surface area.

More importantly, χ is the variable that pinpoints αr. Whereas the volume and super-

ficial area behave by the analysis, the multiple pastas have a slight complication in finding

this constant parameter. However, χ is a topological tool, and independent of the size, its

topology remains constant. In brief, the refinement process is accomplished by first opti-

mizing an α range, then locating a maximum area followed by an approximated constant

increasing volume. After that range, look for χ constant by optimizing the Minkowski
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Figure 4.8: Illustration of the volume normalization, and χ for three optimizations of the

α for T = 0.25 MeV.

functionals. At the same time, the non-pastas require a third optimization caused by their

non-pasta shape. As mentioned above, the greater densities are prone to the convex hull

and small jump from the concave to the convex hull. Then, with a third optimization,

αr is found for a more specific value, in which χ is constant and should be closer to zero

(no-holes).

In figure 4.8, the gray dotted line indicates the observed region for three relevant op-

timizations. In the first optimization, α varied from 0 to 10 for the normalized volume

and χ, and the region in the gray dotted space is the emphasized region for the second

optimization, and those values that were hard to determine, such as the non-pasta struc-

ture, required a third optimization. Most non-pasta structures have χ proportional to zero

because the particles are organized in a structure without holes.
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4.2.2 Relation χ, and B

Once the nuclear structures were analyzed, the non-pasta structures were removed from

the trend identification. Either their particle occupied most of the box volume, and DioDe

visualized those structures as a convex hull with outputs such as χ = 0, S = 0, and B = 0

or they were unable to optimize.

Figure 4.9: Euler Characteristic versus Curvature graph for optimized α.

The last item to visualize is B versus χ graph (fig. 4.9 ). A trend could be identified

with the density; it flows in the clockwise direction and finalizes with the cutoff pasta

(anti-gnocchi). After that, the non-pasta will tend to zero. The lasagna is an exception

to the trend; it had small curvature compared to the other pastas, and their χ is almost

proportional to zero (if the structure does not have a perforation on it like for 0.50 MeV).

Furthermore, the pastas are located in the positive curvature region and the anti-pastas

in the negative region. Besides, the pastas with a more complex structure are expected to

have a more negative χ than sphere-like structures. For instance, gnocchi and anti-gnocchi

have a more positive value than spaghetti and jungle gym and their respective anti-pastas.
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Moreover, suppose the pastas were visualized with a non-refined α, which did not belong

to either the convex or concave hull. In that case, the pattern persists, except that lasagnas

are no longer equivalent to zero. Figure 4.10 shows α = 1.5 in which most of their structures

landed in the parameter of concave hull region, and α = 2.0 most were not concave and

were selected by visualizing the volume that increased slowly proportionally to α. For

α = 2.0, the trend flows in the clockwise direction, and the pastas that almost became

non-pastas (some anti gnocchi) had the highest χ.
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Figure 4.10: Euler-Curvature relation for (a-b) α = 1.5, and (c-d) α = 2.0.
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Chapter 5

Conclusions

The α shape model can measure the Minkowski functionals of nuclear pastas, in which a

trend is found. The trend simplifies the classification of nuclear pastas when a surface con-

struction tool is not provided in the visualization tool. It suffices for various nuclear pastas,

including gnocchi, spaghetti, jungle gym, defects, and their anti-pastas. Furthermore, the

α model struggles to measure the nuclear matter structures that did not produce nuclear

pastas. By neglecting the non-pasta forms, the Euler Characteristic and Curvature graph

trend flows in the clockwise direction. The pattern persists for non-optimized α radius as

long as the length does not fall in the concave or convex hull.

The α’s optimization may be accomplished by observing the Minkowski functionals for a

range of and, mainly, finding a constant χ. The main difference when the α is not optimized

from a refined value is that in the Euler versus Curvature graph, the lasagnas are in the

origin because their wavy curvature gives a net sum close to zero, but the trend persists.

Moreover, when the lasagna pastas do not present holes in their structure, computing a

χ = 0. On the other hand, anti-pastas have negative curvature, and pastas have positive

curvature, and χ gives the complexity of the structure; for simple systems like gnocchi and

anti-gnocchi, χ has the most significant values. At the same time, structures with more

complex (intersecting slobs) have a lower χ independently of their optimized α.

Furthermore, nuclear matter structures for higher final temperatures have fewer pasta

structures than cooler ones. It was found that the last nuclear pasta to appear was the

anti-gnocchi for higher densities, and the symmetry of the structure disappeared. From

the simulations, none of a single temperature could generate a pasta for density above 0.12

fm−3. With the α shapes model, the anti-gnocchi pastas almost considered non-pastas had
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properties close to the convex hull.

The optimized results indicated that those that are non-pastas tend to disrupt the

clockwise trend. In conclusion, the pastas follow a clockwise direction, and the greatest

χ values belong to the gnocchi or anti-gnocchi pastas. Meanwhile, positive curvature is

equivalent to pastas, and negative curvature to anti-pastas.

With this method, future work could be to determine two kinds of pasta from a molec-

ular dynamics’ simulation in the analysis of nuclear pasta. The nuclear structure must

contain a variable density in the system instead of a fixed density, and it is expected that

a transition could be found. Moreover, more structures must be analyzed, including the

asymmetrical conditions in which the number of protons is not equivalent to the number

of neutrons, multiple final temperatures, and, as mentioned before, a variable density in

the initial conditions.
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Appendix A

Results: Nuclear Pasta structures

Figure A.1: Nuclear matter structures for T = 0.01 MeV.

44



Figure A.2: Nuclear matter structures for T = 0.25 MeV.
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Figure A.3: Nuclear matter structures for T = 0.50 MeV.
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Figure A.4: Nuclear matter structures for T = 0.75 MeV.

Figure A.5: Nuclear matter structures for T = 1 MeV.
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Appendix B

Table

Table B.1: Classification Curvature - Euler from [4].

Density x = 0.5

(fm−3) Curvature Euler Topology

0.01 (a) 100 100 Gnocchi

0.015 73 50 Gnocchi

0.018 58 17 Gnocchi - Spaghetti

0.021 36 -25 Spaghetti - Jungle gym

0.024 22 -28 Spaghetti - Jungle gym

0.027 9 -42 Jungle gym - Lasagna

0.03 10 -39 Jungle gym - Lasagna

0.033 9 -47 Jungle gym

0.036 8 -42 Jungle gym

0.039 -11 -6 Lasagna - Anti jungle gym

0.042 -15 -8 Lasagna - Anti jungle gym

0.045 1 -33 Lasagna - Jungle gym

0.048 -5 -11 Lasagna

0.051 -7 -17 Anti-Spaghetti - Anti jungle gym

0.054 -1 -11 Lasagna - Anti jungle gym

0.057 -9 -30 Anti jungle gym

0.06 -9 -17 Anti jungle gym

0.063 -10 -30 Anti jungle gym

0.072 -12 -8 Anti Spaghetti -Anti jungle gym

0.084 (t) -19 -8 Anti jungle gym
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