
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2022-12-01

CAD-Based Aerial Trajectory Generation And 3D Mapping For CAD-Based Aerial Trajectory Generation And 3D Mapping For

Close-Quarter Inspection Close-Quarter Inspection

Angel Guillermo Ortega Castillo
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Ortega Castillo, Angel Guillermo, "CAD-Based Aerial Trajectory Generation And 3D Mapping For Close-
Quarter Inspection" (2022). Open Access Theses & Dissertations. 3710.
https://scholarworks.utep.edu/open_etd/3710

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3710?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

CAD-BASED AERIAL TRAJECTORY GENERATION AND

3D MAPPING FOR CLOSE-QUARTER INSPECTION

ANGEL GUILLERMO ORTEGA CASTILLO

Doctoral Program in Mechanical Engineering

APPROVED:

Angel Flores-Abad, Chair, Ph.D.

Ahsan R. Choudhuri, Co-Chair, Ph.D.

Joel Quintana, Ph.D.

Virgilio Gonzalez, Ph.D.

Stephen L. Crites, Jr., Ph.D.
Dean of the Graduate School

©Copyright

by

Angel Guillermo Ortega Castillo

2022

“People think I am crazy.

OPPORTUNITY passes before us all,

but it is only visible to those who SEEK IT."

-JLCH

CAD-BASED AERIAL TRAJECTORY GENERATION AND

3D MAPPING FOR CLOSE-QUARTER INSPECTION

by

ANGEL GUILLERMO ORTEGA CASTILLO, B.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Aerospace and Mechanical Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

December 2022

Acknowledgements

I would like to express my deep-felt gratitude to my advisor, Dr. Angel Flores-Abad of the

Mechanical Engineering Department at The University of Texas at El Paso, for his advice,

encouragement, enduring patience, and constant support in this endeavor. He has paved

roads for international students to aspire to advanced degrees.

I also wish to thank the other members of my committee, Dr. Ahsan Choudhuri and Dr.

Joel Quintana of the Aerospace and Mechanical Engineering Department and Dr. Virgilio

Gonzalez of the Electrical Engineering Department, both at The University of Texas at

El Paso. Their suggestions, comments, and additional guidance were invaluable to the

completion of this work.

Additionally, I want to thank The University of Texas at El Paso Aerospace and Me-

chanical Engineering Department professors and staff for all their hard work and dedication,

providing me with the means to complete my degree and prepare me for a career as a me-

chanical engineer. This includes (but certainly is not limited to) the following individuals

whom I consider my mentors:

Dr. Jack Chessa, Dr. Yirong Lin, Dr. Methaq Abed, Dr. Louis Everett, Dr.

Frank Medina, Dr. Cesar Terrazas, Dr. Norman Love.

I would also like to thank my team who have experienced this journey with me: Julio Reyes,

Mousumi Rizia, and Noshin Habib. This study was supported by the US Department of

Energy (DOE) Award # DE-FE0031655 and The University of Texas at El Paso – Aerospace

Center. I would like to thank all the individuals from both institutions that allowed us to

conduct this research work.

I would also like to thank Vinton Steel and El Paso Electric for allowing us access to your

facilities to conduct our experiments. I would like to thank Jose Bustamante of El Paso

Electric for believing in our project and climbing with us.

v

I must thank my parents and brothers for putting up with me during the development

of this work with continuing, loving support. Each of you has made sacrifices that have

allowed me to be here today. There are not enough words to express my love and gratitude.

Papa, Mama, Ramses, Jose, Uriel, gracias!

To the rest of my family, thank you for guiding me and for all your love. I hope to make

you proud.

NOTE: This thesis was submitted to my Supervising Committee on November 15, 2022.

vi

Abstract

Robotic technologies for inspection purposes of large-scale structures have grown in interest.

Such technologies are encouraged to reduce the risk in which human operators are involved

and to reduce costs due to downtime of the equipment. In the Energy sector, high interest is

placed on power plant components where their correct operation is paramount. This work

is inspired by the synthetic vision systems for aerial vehicles that use three-dimensional

space (3D) to provide pilots with clear and intuitive means of understanding their flying

environment. This work can be separated into three main sections: Trajectory Generation

from Computer-Aided Design (CAD) Models, Crack Detection using Convolutional Neural

Networks (CNNs), and 3D Reconstruction. This work proposes a solution to complete

flight missions in GPS-denied environments and a method of obtaining a reconstruction

point cloud with segmented cracks.

Human inspectors are the most common way to inspect high-interest structures in the

energy sector. That means that such inspectors must be trained to inspect specific struc-

tures but also must put themselves at risk to correctly inspect such structures. Some of the

common hazards include very high altitudes and some environments can be detrimental

to the health of the inspectors due to particulate byproducts from the structures. The

inspectors then keep a manual log of their findings and relay that information to mainte-

nance crews to fix or replace the damaged components. This type of inspection practice

is prone to miss defects, incorrectly logging, and incorrectly locating defects found by the

inspectors. Another approach in the industry is to use robotic systems to inspect like the

use of UAVs or drones. Most of the current UAV technologies depend on a stable GPS

signal to operate and complete their flight mission tasks. This is a big disadvantage in the

inspection industry because some inspections must take place inside big structures that

cause heavy signal interference. Also, most of the technologies available require a human

pilot in command to be proficient at operating the UAV to prevent collisions and to cover

vii

as much surface as possible. This leads to human error and can prove difficult to even the

most experienced pilots to navigate the complex structures.

The objective of this work is to provide a platform to perform inspection tasks on

high-interest structures within the energy sector. We propose a CAD-based aerial trajec-

tory generation and 3D mapping platform for close-quarter inspections. With the use of

CAD models of structures that are readily available, we can generate an offline trajectory

that employs a wall offset and is capable of reaching virtually all exposed surfaces of the

structures of interest with a minimum surface offset distance. The system also employs

the use of Artificial Intelligence to detect, segment, and localize desired defects within the

inspections. This eliminates human error in classifying and documenting the defects while

maintaining a record of the defects. This data could then be used to map the environment

with the discovered defects to better assess the level of damage. Finally, our system em-

ploys photogrammetry and point cloud reconstruction algorithms to accurately reconstruct

the inspected environments. This could also be used in instances where an initial CAD

model of the inspection structure is not available.

With this work, we hope to streamline the inspection procedures that employ robotic

technologies to remove human inspectors from hazardous environments. By utilizing an

autonomous UAV platform that does not employ GPS we hope to complete inspections

in even the most demanding environments. The system would allow the inspectors to

accurately view all the detected defects as soon as each flight mission is completed, thus

allowing a more efficient maintenance plan for such plants.

viii

Table of Contents

Page

Acknowledgements . v

Abstract . vii

Table of Contents . ix

List of Figures . xii

Chapter

1 Introduction . 1

1.1 Research Objectives . 2

1.2 Scope . 2

1.3 Methodology . 3

2 Literature Review . 5

2.1 Trajectory Generation . 6

2.2 Defect Detection . 8

2.3 3D Reconstruction . 9

2.3.1 Photogrammetry . 9

2.3.2 SLAM . 10

3 Trajectory Generation from CAD Models . 12

3.1 CAD Model . 14

3.2 Slicer Algorithm . 16

3.3 Outline Algorithm and Wall Offset . 22

3.4 Polyshape and Matrix Interconnection . 25

3.5 Vertical Layer Comparison . 27

3.6 Trajectory Generation . 29

3.7 Yaw Generation for Attitude Control . 32

3.8 Final Trajectory . 32

ix

4 Crack Detection using Convolutional Neural Networks 35

4.1 Training Dataset Pre-Processing . 35

4.2 Neural Network Training . 36

4.3 Neural Network Validation . 39

4.4 Testing Environment and Image Sectioning 39

4.5 Neural Network Testing . 49

4.6 Image Segmentation . 49

5 3D Reconstruction . 53

5.1 Payload Sensor Parameters . 53

5.2 Photogrammetry . 55

5.2.1 AliceVision Meshroom Background 55

5.2.2 Meshroom Implementation . 57

5.3 ORB-SLAM2 . 58

5.3.1 Map Saving and Loading Extension 58

5.3.2 Mesh From Point Cloud Data . 59

5.4 Open3D . 67

5.5 RTAB-Map . 69

5.5.1 RTAB-Map Background . 69

5.5.2 RTAB-Map Implementation . 70

6 The UAV Platform . 73

6.1 The UAV System Modeling . 73

6.2 UAV Control System . 78

7 Experimental Studies . 80

7.1 Trajectory Simulation Study . 80

7.2 Experimental Platforms . 84

7.2.1 Experimental Handheld Platform 84

7.2.2 Experimental UAV Platform . 84

7.3 Experimental Environments . 86

x

7.3.1 Aerospace Center Fabens Facility 86

7.3.2 El Paso Electric - Rio Grande Plant 87

7.4 Experimental Results . 87

7.4.1 Fabens - Validation of Reconstruction with Photogrammetry and

Trajectory Generation . 87

7.4.2 El Paso Electric - Validation of Reconstruction in Industrial Settings

with Photogrammetry and RTAB-Map 94

8 Conclusions . 105

8.1 Summary . 105

8.1.1 Trajectory Generation . 105

8.1.2 Defect Detection . 106

8.1.3 3D Reconstruction . 106

8.2 Future Work . 107

References . 109

Curriculum Vitae . 116

xi

List of Figures

2.1 Laser Scan of Power Plant [31] . 7

2.2 UAV Inspection Platform [31] . 7

2.3 Camera trajectory obtained by RGB-D camera suing ORB-SLAM2 [41] . . 11

3.1 Flight Path Generation Algorithm . 15

3.2 CAD Model of a Coal-Fired Power Plant 16

3.3 STL Mesh of CAD Model . 17

3.4 Slice - CAD Interaction . 18

3.5 STL Mesh Coordinates . 18

3.6 Slice - Triangle Interaction . 19

3.7 Slicer Algorithm . 21

3.8 Outline Identification Algorithm . 23

3.9 Wall Offset Introduction Algorithm . 24

3.10 Outline Combination . 26

3.11 Vertical Layer Comparison: (a) Model with overhang. (b) Model with Con-

flict Layer and Comparison Layers. (c) Outlines of Conflict Layer and Com-

parison Layers. (d) Resulting Cumulative Layer after combination of outlines. 28

3.12 Matrix Interconnection Algorithm . 29

3.13 Wall Offset Introduction Algorithm . 29

3.14 a) Trajectory generated using MATLAB’s default boundary algorithm b)

Trajectory generated using our boundary algorithm. 30

3.15 Trajectory Algorithm Process using arbitrary slice: (a) Points from Slicer

Algorithm. (b) Outlines generated from Outline Algorithm. (c) Wall Offset

and Outline Intersection Algorithm. (d) Final Trajectory with Jump Location. 31

3.16 Final Trajectory generated using our method with STL present 33

xii

3.17 Final Trajectory generated using MATLAB’s default boundary algorithm . 34

4.1 MATLAB Dataset Recolor . 37

4.2 CNN Training Behaviors . 38

4.3 Training Progress with 40,000 Images . 40

4.4 Training Progress with 160,000 Images . 41

4.5 Training Progress with 200 Images . 42

4.6 Training Progress – ILR 0.1 . 43

4.7 Training Progress – ILR 0.01 . 44

4.8 Training Progress – ILR 0.001 . 45

4.9 Prediction Confidence Charts . 46

4.10 Concrete Testing Environment . 46

4.11 Image Sectioning . 48

4.12 Image Sectioning with Overlap . 48

4.13 CNN Testing with Actual Images (Original Images) 50

4.14 Training vs. Testing Images . 50

4.15 CNN Testing with Actual Images (Modified Images) 51

4.16 Image Segmentation . 52

5.1 Raspberry Pi Camera Module v2 . 53

5.2 Intel RealSense D435i Depth Camera . 54

5.3 AliceVision Meshroom Pipeline . 55

5.4 Photogrammetric Reconstruction . 58

5.5 Inside View of Vinton Steel Structure . 60

5.6 ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Initial Seconds of Test . 61

5.7 ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Final Seconds of Test . 62

xiii

5.8 ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Camera Loses Track and Tries to Re-localize Itself 63

5.9 Final Point-Cloud generated deployed in MATLAB 64

5.10 Occupancy Map with Mesh Size of 3 cells/meter. 66

5.11 Occupancy Map with Mesh Size of 5 cells/meter. 66

5.12 Integrated Reconstruction Using Open3D and Visualized in MeshLab . . . 69

5.13 Partial Reconstruction using Open3D Library 70

5.14 Unaligned RTAB-Map Reconstruction Sections Displayed in MeshLab . . . 72

5.15 Integrated RTAB-Map Reconstruction Displayed in MeshLab 72

6.1 UAV Kinematic Forces. 73

6.2 Kinematic Diagram: Frames definition and inspection distances. 75

6.3 UAV controllers for position and attitude control. 78

7.1 Comparison of: 1) The Z position of the tool based on the CAD and the

altitude of the UAV during flight (left). 2) The top view of both the CAD

generated trajectory and the UAV inspection path (right). 82

7.2 Comparison of: 1) The front view of the CAD-generated trajectory and the

UAV flight path (left). 2) The right view of the CAD-generated trajectory

and the UAV flight trajectory (right). 83

7.3 Simulated Drone Flight Trajectory . 84

7.4 Handheld Setup Used for Visual Inspection and Experimentation 85

7.5 The UAV platform used in the experimental validation 86

7.6 UTEP Aerospace Center - Fabens Acceleration Park Hangar 87

7.7 EPE Rio Grande - Individual Stack . 88

7.8 EPE Rio Grande - Power Unit - Outside of Boiler Furnace 88

7.9 EPE Rio Grande - Power Unit - Inside of Boiler Furnace 89

7.10 EPE Rio Grande - Main Building - Roof Stacks and POWER Sign 89

xiv

7.11 UTEP Aerospace Center - Fabens Acceleration Park Hangar - 3D Model

Generated with Photogrammetry . 90

7.12 Hangar inspection path generated with the proposed approach 91

7.13 Drone flying the generated trajectory . 91

7.14 Logged Drone Position in x, y, and z-coordinates 92

7.15 Logged Drone x-y trajectory . 92

7.16 Logged Drone Altitude . 93

7.17 Captured Inspection Images Normal to the Structure Surface 93

7.18 EPE - Captured Images of Stack for Photogrammetric Reconstruction . . . 94

7.19 EPE - Photogrammetric Reconstruction of Single Stack 95

7.20 EPE - STL Model of the Reconstructed Stack 96

7.21 EPE - Boiler Entrance . 97

7.22 EPE - Boiler Environment . 97

7.23 EPE - RTAB-Map Reconstruction of Inside of a Boiler - Color Disabled . . 98

7.24 EPE - RTAB-Map Reconstruction of Inside of a Boiler - Color Enabled . . 99

7.25 Initial Map of Rooftop Environment with Visible Mapping Trajectories (West

Heading) . 100

7.26 Initial Map of Rooftop Environment with Visible Mapping Trajectories (North

Heading) . 100

7.27 Reconstructed Model of Rooftop Environment 101

7.28 RTAB-Map ROS Running in Mapping Mode 102

7.29 RTAB-Map in Mapping Mode from Drone Flying at Altitude 103

7.30 UAV Collecting Data at Altitude . 104

7.31 Final Map Displayed in MeshLab After Post-Processing 104

xv

Chapter 1

Introduction

Power plants are critical components in the energy sector and their proper maintenance

and operation are of vital importance. To do so, the industry must constantly inspect the

critical components such as the boiler systems in fossil fuel power plants. The percentage

of energy produced in the US by fossil fuels is 60.8 percent with 21.8% and 38.3% com-

ing from coal and natural gas respectively. Because of these large percentiles, the correct

maintenance of such installations is paramount for the energy supply of the country. The

current maintenance approaches for such facilities involve human operators that must per-

sonally inspect the structures. A big issue of the current approaches is the need to shut

down sections of the plant to inspect and repair for extended periods where the human

operators must visually inspect and record their findings. This means that some defects

may go unnoticed such as hairline fractures in piping. There are also hard-to-reach sections

inside boilers that an inspector might not be able to reach easily and scaffolding must be

installed just to reach such areas to inspect. Robotic technologies have also grown and are

currently deployed to fulfill such needs. Such robotic technologies include the crawling type

of robots that deploy on all surfaces of the structure and Unmanned Aerial Vehicles (UAVs)

that must be deployed to visualize specific areas of the structures. However, the use of hu-

man inspectors and other robotic technologies like magnetic crawlers still requires a lot of

time and planning. Human operators must have scaffolding installed to complete their in-

spections and they must face hazardous environments inside such structures. Crawlers will

take a long time inspecting all the surfaces and must be tethered. Current UAV platforms

require strong GPS signals as they are communication-dependent and an operator must

maintain a line of sight at all times. Also, a major drawback of manually operating a UAV

1

in confined spaces is the high chance of crashing while not being able to get too close to

structures due to perception errors. In this work, we propose the use of Unmanned Aerial

Vehicles (UAVs) to inspect, classify, and map 3D environments.

1.1 Research Objectives

This research presents an improved and streamlined inspection method applicable to diverse

infrastructures. The goal is to provide an intelligent autonomous inspection system with a

real-time application. The research objectives are as follows:

1. Develop a method to perform a close-quarter trajectory for aerial inspection in GPS-

denied areas using available CAD models

2. Create an AI-based framework to automatically detect structural defects

3. Integrate 3D-reconstructed maps using Photogrammetry and Point-Cloud-based meth-

ods

1.2 Scope

The use of UAVs allows the inspection to take place in hard-to-reach places where human

operators might not be able to go and does so promptly without the use of external struc-

tures to be put in place. This work presents a trajectory generation method to perform

the close-quarter inspection using readily available Computer Aided Design (CAD) models

of structures. This will allow efficient area coverage that will minimize the needed flight

time to complete the inspections while allowing the UAV to collect as much detail from

structures as possible. Since the system is vision based, we do not need GPS which allows

us to go to places where most other drone systems cannot go because of their dependability

on GPS. This work also aims to create an AI-based framework to automatically detect

structural defects through the use of Convolutional Neural Networks. Thus, removing the

2

need for a human operator to surf through thousands of images to identify such defects

or physically identify such defects while in a hazardous environment. Finally, we aim to

integrate 3D-reconstructed maps using Photogrammetry and Point-Cloud-based methods

for structures where the CAD models might not be available. This work was validated

in different experimental and industrial settings which include the inside of a furnace of a

natural gas boiler at the Rio Grande Power Plant operated by El Paso Electric and the

cSETR Fabens Facility Hangar where most of the initial experiments were conducted.

1.3 Methodology

This work provides a streamlined system to inspect virtually any structure within a GPS-

denied environment. To do so, we can separate the contributions into three main sections:

Trajectory Generation from CAD Models (Chapter 3), Automatic Crack Detection using

Convolutional Neural Networks (Chapter 4), and 3D Reconstruction (Chapter 5). Chap-

ter 6 includes real-life testing results in experimental and industrial environments of the

previously mentioned contributions.

Usually, human operators must personally inspect the structures placing them in a very

hazardous environment. Robotic technologies have proved beneficial to remove humans

from hazardous environments while still allowing them to reach all corners of the structures

they need to inspect. Artificial Intelligence has also allowed human operators to process

data more efficiently. Convolutional Neural Networks have allowed the processing of large

amounts of images to classify specific details within the images. We are currently interested

in finding images with defects such as cracks. Different software and libraries have also made

it possible to obtain 3D data from images or video feed along with depth data from specific

sensors. This data can then be used to obtain a reconstruction of environments that have

never been mapped before.

3

1. Trajectory Generation Unmanned Aerial Vehicles with this autonomous capability

have the potential to minimize human interaction in hazardous environments and signifi-

cantly reduce the time and cost requirements for such inspections. This system provides an

alternative to expensive localization equipment by utilizing CAD models of the inspection

structures which are for the most part readily available.

2. Defect Detection The use of Neural Networks will provide a way to easily classify

and manipulate acquired data from inspections. This data can help identify the location

and severity of such defects promptly. Such defects can also be highlighted by using im-

age segmentation to allow the user to identify them. There is a possibility the image

with highlighted defects can be used in reconstructions to highlight the defects in the 3D

environments.

3. Reconstruction One major problem our system might face is the lack of an initial

CAD model of the structure to be inspected. One way to solve this problem would be to

generate a model following the traditional blueprints of the structure but this would be

time-consuming and thus inefficient for a single inspection. One way to work around this

issue would be to generate an initial inspection and use the initial map to build upon after

each inspection. The initial map could provide sufficient data to generate a close-quarters

trajectory and after each inspection, the trajectory could be computed again and again as

more details are added to the 3D map.

4

Chapter 2

Literature Review

In the following paragraphs we can find relevant literature related to the robotic technologies

developed for similar applications along with concepts related to Artificial Intelligence and

3D environment reconstructions.

Having the CAD model of the structure to inspect enables us to accurately place the

UAV in all three dimensions not just latitude and longitude. This work includes documents

presented and approved for publication [33, 38, 39, 37] and propose a novel method to

generate offline flight trajectories for UAV’s to inspect structural components in both indoor

and outdoor environments. The robotics community has made advancements in recent

years to prevent injury to the operators thus saving time and money. Different robotic

technologies have been used to inspect these structures. Examples of robotic technology

for inspection purposes include different types of robots and multiple UAV systems and

have been studies since the 90’s. UAVs, cable climbing robots, and monorail-type robots

are some of the technologies developed by researchers. [42, 25, 35, 40, 7, 12, 24, 10, 45, 46].

The robotics field is involved with inspections of multiple structures in different indus-

tries. Such industries include, energy, oil and gas, and environmental. Yamamoto et al [47]

developed a mono-rail type robot for inspection inside a nuclear power plant. Shukla et al

[44] studied the then (2013) state of the art robotic technologies for inspection in the oil

and gas industry. They mainly focus on the use of in-pipe inspection robots (IPIRs) and

tank inspection robots (TIRs).

5

2.1 Trajectory Generation

In order to achieve autonomous inspection, a drone must be able to navigate in complex

and intricate environments without the luxury of GPS signal many times. For GPS-denied

environments, most of the research is based on hardware such as sensors and cameras

used as the primary location system. Using two cameras, Nikolic et al [31], demonstrated

a successful approach for UAV navigation inside a Coal-fired Power Plant Boiler. Their

research tackled the particulate deflection problem successfully but requires mounting of

two external cameras to the drone thus limiting the minimum payload requirement of the

drone. The system relies heavily on the sensing capabilities of the hardware to avoid contact

with the structure. They demonstrated some of the complexities of flying inside a power

plant boiler, some of the same issues we would later face as well. Figures 2.1 and 2.2 display

the structure where they tested their system along with their drone platform. They prove

that vision based systems require state-of-the-art sensors and their performance is heavily

dependent on the environment.

Shan et al [43] propose a system that compares the current image obtained by the UAV’s

camera to the Google Maps database to obtain the current position of the UAV. Although

their system employs an extensive database to use virtually anywhere in the world, it faces

the problem that the database is not updated constantly so it may encounter inconsistencies.

Another problem with the approach for our purposes is the fact that aerial images do not

contain much information in the third dimension of the structures. Structure elements such

as overhangs are not visible and therefore limit the application of the system for inspection

purposes.

Ferreira da Silva et al [16] used a Quadrotor UAV (Unmanned Aerial Vehicle) to perform

aerial inspection of transmission power lines, where a Kalman Filter allowed to mitigate the

problems that the power line electromagnetic fields cause on the on-board sensors. They

mitigate the environment’s negative effects in software rather than hardware.

Artificial Intelligence has also been employed to improve autonomy of UAVs [21]. In

6

Figure 2.1: Laser Scan of Power Plant [31]

Figure 2.2: UAV Inspection Platform [31]

7

the area of defense, great advancements have been made with Nano Air Vehicles (NAV)

as explained by Zhang et al [49], where they developed a Nano-scale quadrotor helicopter

weighing less than 50 grams. Such research is supported by agencies such as the Defense

Advanced Research Projects Agency (DARPA) for its great potential in the field. Their

system uses on-board vision to calculate its current location. This poses a challenge since

repetitive structure features can easily confuse the KLT optical flow technique used. To

eliminate this problem, they used Parallel Tracking and Mapping (PTAM) algorithm, but

it requires an initialization procedure to generate the required initial map.

The system proposed in this work tackles all those issues through the use of a CAD

model of the structures in question. The process is based in an Additive Manufacturing con-

cept called slicing as explained by Brown et al [9]. Since the trajectory is pre-programmed

into the system, additional hardware is only based upon the type of inspection/mission the

UAV will tackle. Close contact sensing can then be applied only as a fail-safe mechanism

to prevent crashes due to structures not accounted for in the CAD model.

2.2 Defect Detection

Convolutional Neural Networks (CNN’s) are commonly used for image classification and for

defect detection and it has been very well documented. There are requirements needed to

correctly train and operate a CNN. One of the most important is a good training dataset

containing images with labels that closely resemble the actual objects that the network

will have to identify. There is variation in the size of such datasets with some researchers

claiming that the more images in the training dataset the better (20,000-40,000 images

per category), while others argue that a more conservative number is enough (100- 200

images per category). For this work we have tested both approaches and found that it is

easier to work with smaller dataset while still getting similar accuracy and results. Different

studies contain approaches that combine CAD models and CNN’s to obtain different results

ranging from model classification to pixel comparison to existing road data [34, 6]. In our

8

stage of the study we have not combined both technologies for results but plan to do so

in the future. This work is primarily based on crack detection in structures and the use of

CNN’s for this purpose is well documented [28, 26, 48, 11].

2.3 3D Reconstruction

2.3.1 Photogrammetry

The last part of our research will encompass the reconstruction of a 3D environment for

visualization of the inspection. We use photogrammetry which is the process of obtaining

reliable information about physical objects and/or environment through recording, mea-

suring, and interpreting images and patterns. There is a wide range of software capable

of doing all the internal calculations needed to produce a point cloud. We employ Alicevi-

sion’s Meshroom since it allows us to have control over every step in the process rather than

having no modification capability like other software. Reljic et al. compare some of those

available meshing software options including Meshroom [36]. Since we are dealing with 3D

reconstruction from 2D images, we employ a technique within photogrammetry technology

called Structure-from-Motion (SfM), which is a technique for estimating three-dimensional

structures from two-dimensional image sequences by identifying features [13, 23, 29, 15, 22].

Different researchers have used this technique but have also found drawbacks in the tech-

nology that result in distortion of the environments. Some of the proposed solutions include

ground and aerial images for a better stitching and employing different camera angles at

the same location to obtain more data in every location [50, 5]. We solve the first issue by

having only aerial images that cover virtually all the features of the structure in detail and

we plan on incorporating a second inspection camera to our system to improve the data

acquisition.

9

2.3.2 SLAM

From a robotics standpoint, one of the most studied problems is Simultaneous Localization

and Mapping (SLAM) [18, 8] which asks if it is possible for a robot to navigate its way

through an unknown environment while being able to continuously build a map of such

environment and be able to locate itself within that map. The tracking camera we employ,

Intel RealSense T265, uses a SLAM algorithm internally to track the current location of

the UAV through a combination of camera feeds and Inertial Measurement Units. One

add-on we hope to employ using SLAM is to start with an initial map of the environment

which we already have in the form of a CAD. We intend to use the SLAM algorithms

to not only map but also locate itself within the existing environment through a system

called ORB-SLAM2 [30]. ORB-SLAM2 allows the use of different sensor types including

stereo and monocular. Ruan et al [41] compared the results between the two sensor types

and found that with better computation capabilities, stereo results outperform monocular

results. They also employ results from RGB-D sensor as a benchmark proving that the

RGB-D mode yields the best results. This work helped us identify a suitable starting point

for our research using ORB-SLAM2 and the different settings. Figure 2.3 displays their

camera trajectory obtained by RGB-D camera. Although the systems are very capable and

offer good results, it was impossible for us to get ORB-SLAM2 working correctly on the

companion computer. We explain more on this in Chapter 5.

10

Figure 2.3: Camera trajectory obtained by RGB-D camera suing ORB-SLAM2 [41]

11

Chapter 3

Trajectory Generation from CAD

Models

This chapter is based in its majority on an article presented in the AIAA SciTech Forum

2020, under the name Drone Inspection Flight Path Generation from 3D CAD Models:

Power Plant Boiler Case Study. Some hardware changes have taken place but the majority

of the software is still the same.

UAV systems allow access to inspection areas that would be hard to reach for other

systems and even human operators. Because a flying system has virtually unlimited mo-

bility, this is an idea that has great potential to substitute any current technology applied

in the field. The only limitation to these systems is the payload capabilities where the

inspection cameras and battery packs are the most critical components, but since hard-

ware advancements are constantly being made, these systems will only get smaller as time

advances. The other benefit is that in theory, these systems could fly with more than one

UAV at a time thus reducing the battery pack requirements. While UAVs offer multiple

benefits, they also carry some difficulties in the implementation such as their navigation

and maneuverability. Conventional UAV systems heavily depend on a strong GPS signal

to correctly navigate but we study a method for environments where a GPS signal might

be too weak or simply non-existent. To be able to do so, a predefined trajectory must be

programmed on the UAV to follow.

This system uses a CAD model to produce a trajectory using a MATLAB algorithm.

The algorithm utilizes the slicer concept taken from the Additive Manufacturing (AM) field.

Just like in AM, the CAD model must first be converted into a Stereolithography (STL) file

12

which contains only the surface information of a model. The information is derived into a

triangular mesh that defines the surface geometry of the model. The STL file also contains

the normal vector information for each triangle in the mesh. Once the STL file has been

created, it is then arranged into matrices within MATLAB for its further manipulation

where it is first "sliced" and then the data acquired is calculated to become a trajectory.

In AM, the idea of the slicer irises from the need of defining the layer thickness for the

AM technology being employed. For our purposes, we define the layer thickness not from

material and extruder needs but from hardware parameters like camera view angle and

overlap percentage needed to map the camera feed, we refer to it as slicer height. Keeping

this in mind, the system can be easily calibrated to different values by changing a few lines

of code. Once the data of the slices is acquired, it is then processed to become a trajectory

that the UAV can follow. We are currently using a Raspberry Pi Camera Module v2 for

image acquisition for the inspections. Based on the hardware properties we decided to

employ a 300-mm (roughly 1-foot) wall offset and slicer height. The model is scaled to

1x104 m to prevent rounding errors within the MATLAB calculations and after the process

is scaled back down to meters.

This section is separated into five individual processes as can be seen in Figure 3.1 and

each will be explained in detail within their section. There are only three required inputs:

Slicer Height Distance, Wall Offset Distance, and an arbitrary Layer Jump Location. The

first two variables were explained in the previous section. The third variable is a location the

operator must select as the starting point of the trajectory and that same x and y coordinate

will be used as the jump location between each layer of the trajectory. This variable is

arbitrary since each structure is different but any location the operator desires can be

used for this variable. The system will generate two outputs; Yaw Data and Trajectory

Coordinates both saved as comma-separated value (.csv) files.

1. CAD Model

2. Slicer Algorithm

13

3. Outline Algorithm & Wall Offset

4. Matrix Interconnection Algorithm & Trajectory Generation

5. Yaw Generation

6. Final Trajectory

3.1 CAD Model

Because of the advantages that CAD software has, it has now become a fundamental part

of the design process in almost every field. That means that CAD models of structures are

for the most part readily available. Most CAD packages allow the user to not only design

components in a 3D interface but also be able to simulate its operating environment and

detect possible flaws in the design way before the components are even manufactured. For

that reason, a great amount of resources is destined by companies for the CAD models of

components and that translates to models that are extremely accurate when compared to

the components once they have been manufactured. This makes the CAD a perfect starting

point for the trajectory generation needed for the UAV to complete its mission.

For this research, a simple CAD model was created following literature and online re-

sources since access to power plant components is limited and so are their CAD models.

Even though the model lacks detail, it is perfect for testing our algorithm and troubleshoot-

ing the code. Since we employ a slicer method in our algorithm, if more detail was provided

in the CAD, it would only add more points of intersection per slice, producing an even bet-

ter trajectory. It is important to note that CAD models exist in almost every engineering

discipline including civil engineering meaning that our system is still a viable option for

inspection not only on mechanical components but also structures in general.

The CAD model is critical to our method since it is used to limit the chances of collision

of the UAV with any of the components. Figure 3.2 shows the CAD model we created and

14

Figure 3.1: Flight Path Generation Algorithm

15

will be used in this study. The image also shows the different parts commonly found in

a Power Plant Boiler. To use the CAD information in our system, the model must be

converted into STL to define the surface coordinates. These surfaces are defined by a mesh

made up of triangles and each triangular surface also contains a normal vector. Figure 3.3

depicts the STL format of the CAD model used in this effort.

Figure 3.2: CAD Model of a Coal-Fired Power Plant

3.2 Slicer Algorithm

Since the STL file provides a triangular mesh defining the surface of the model, we create

an imaginary x-y plane at a set height Sh in the z direction, and calculate the intersection

points between this plane/slice and the triangular mesh. We produce a number of these

planes which will eventually become the layers of our trajectory. Figure 3.4 depicts the

interaction between these desired slices and the existing STL mesh. At this point, the

triangle vertices are stored in matrix T with dimensions n x 9. The number of rows n is

equal to the number of triangles present in the STL. Figure 3.5 depicts a single triangle

with its coordinates. This provides the data for a single row in the following matrix. A

sorting algorithm is used to order the z-values in ascending order. That means that the

first vertex has the smallest z-value, and the last vertex has the highest z-value. This makes

16

Figure 3.3: STL Mesh of CAD Model

the logic for the next process easier to implement.

T =



xI,1 yI,1 zI,1 xII,1 yII,1 zII,1 xIII,1 yIII,1 zIII,1

xI,2 yI,2 zI,2 xII,2 yII,2 zII,2 xIII,2 yIII,2 zIII,2

.

.

.

xI,n yI,n zI,n xII,n yII,n zII,n xIII,n yIII,n zIII,n


;n = 1 : Number of Triangles

(3.1)

In this format, the first vertex is composed of the lowest z-value (zI) and the x and

y-values associated with that point, (xI and yI). The following vertex is composed of

the next biggest z-value (zII) and the corresponding x and y-coordinates (xII and yII).

Finally, the last vertex is composed of the biggest z-value of the three vertices (zIII) and

its corresponding x and y-values (xIII and yIII). The algorithm then assigns a “Case”

number to the triangles depending on how they interact with the slice. The mathematical

17

Figure 3.4: Slice - CAD Interaction

Figure 3.5: STL Mesh Coordinates

18

relationship of each case can be seen in the list below. This interaction can be seen in

Figure 3.6.

Figure 3.6: Slice - Triangle Interaction

1. zI > Sh

2. zIII < Sh

3. zI = Sh

4. (zII = Sh) & (zIII = Sh)

5. (zI = Sh) & (zII = Sh)

6. (zI < Sh) & (zIII > Sh)

7. (zI = Sh) & (zII = Sh) & (zIII = Sh)

If the triangle is completely above or below the slice height (Case 1 & 2) they are not

considered as they don’t intersect with the slice. If all three corners of the triangle have

a z-coordinate that is equal to the slice height (Case 7), then they are also not considered

since they do not provide any valuable information to generate the outline of the body

19

from the slice intersection. The rest of the cases include triangles that intersect the slice

at one or two points. From these, only the cases where the slice intersects the triangle at

two points are considered since the other cases would only produce repeated points. From

Figures 3.6 and 3.7, only Cases 4,5, and 6 are used to generate the intersection points

between the slice and the structure based on the logic expressed earlier.

These points are important since they will define the outline of the body. Our slice

algorithm is capable of identifying the boundary/boundaries of single or multiple areas on

each slice. If the slice intersects at exactly two corners of the triangle, then the x and y

values of those points are added to the outline matrix, but if the slicer intersects the triangle

at any other location, an extra calculation is required to obtain the x and y coordinates.

To identify those coordinates, linear interpolation is used.

x =

(
xII − xI
zII − zI

)
(Sh − zI) + xI (3.2)

In this equation, the known values include the slice height (z), and the point coordinates

(x1, x2, z1, and z2). These coordinates are taken directly from the previous step only for

triangles that fall into the Case 6 category. This equation must be used to find both the

x and y coordinates by substituting y’s for all the x’s in the equation. This will yield

the x and y coordinates of the intersection point between the slice and a single side of the

triangle. The process can then be repeated to find the other intersection point for the other

line segments in the category. Both points would share the z coordinate with the slice.

The product of this part of the algorithm is a matrix containing all the slice intersection

points with their corresponding x, y, and z-coordinates. This data represents the surface

coordinates at the specific slice heights, but it does not yet recognize if the points make up

a single boundary or multiple boundaries at that specific slice height. The next algorithm

will separate the points into outline matrices, and it will introduce the desired wall offset

distance to each of the boundaries.

20

Figure 3.7: Slicer Algorithm

21

3.3 Outline Algorithm and Wall Offset

The data points obtained in the slicer are arranged in a single matrix of the total number

of points by the 3 dimensions (x, y, z). This matrix includes multiple repeated points that

will be eliminated in this section. Here, the number of points from the previous section will

be cut in half, meaning that a CAD with extreme detail poses no issues for the algorithm

and that this data is small enough to transfer to the UAV processor.

S =



Px,1 Py,1 Pz,1

Px,2 Py,2 Pz,2

. . .

. . .

. . .

Px,k Py,k Pz,k


; k = 1 : Intersection Points @ Sh(3.3)

The data must first be sorted to generate the desired trajectory. If only a single outline

is present, then the trajectory for that slice is simple as the data only needs to be sorted

using the repeated values. If the data includes multiple outlines, the process to obtain the

trajectory just requires some extra steps. The sorting process starts with the first coordinate

in the slicer matrix which is arbitrary and takes the second coordinate as the connection.

The algorithm then finds the index i of that repeated coordinate and identifies if the index

is even or odd. If the index is odd, then the next connection would be the coordinate of i+1,

otherwise, if the index is even, the next connection would be the coordinate of i-1. Once

the coordinates are used, they are deleted from the original matrix. Since only the cases

where the slice comes into contact with the triangles are used in the slicer algorithm, this

logic works to find the repeated coordinates to sort the data into outlines. If the connecting

coordinate is the same as the first coordinate that means that the outline has now closed.

If there are remaining coordinates after a closed outline, the first index is again selected

as the start of the outline, and the process is repeated. This algorithm will yield a cell

22

array containing the ordered coordinates that make up each outline area of the slice. These

matrices have repeated coordinates, a unique command is used to remove the duplicates

thus reducing the matrices’ size by half. This process is depicted in Figure 3.8. Now that

we have the coordinates for each outline, the wall offset distance is introduced as shown in

Figure 3.9.

Figure 3.8: Outline Identification Algorithm

Before we introduce the wall offset algorithm, each outline coordinate matrix is con-

verted into a polyshape object, a MATLAB Structure format. This is done so specific

commands within MATLAB can be used. Once the data is in polyshape format, the buffer

command is used to introduce the desired wall offset, which is a set distance we need from

the wall to prevent collision and to be at the correct distance for image acquisition. The

23

Figure 3.9: Wall Offset Introduction Algorithm

24

command used a circular area where the radius is the desired wall offset distance and sim-

ply traces that circle through the entire outline. The result is an outline that now has the

desired offset, but it also rounds off the convex corners similar to what a spline algorithm

would do. This is important since the accelerations at those corners are reduced thus gen-

erating a better trajectory for the drone to follow. The next planned improvement to the

algorithm would be to introduce a spline algorithm for the concave corners to reduce the

accelerations required for the drone to complete that corner. This is required since the

buffer command only rounds off the convex corners but not the concave ones. Depending

on the type of inspection, the wall offset will either move the trajectory inward or outward

for internal or external inspection accordingly. For this study, we are focusing only on

external inspection.

3.4 Polyshape and Matrix Interconnection

After the wall offset is introduced, the resulting outlines must be checked to see if any

interconnection between outlines has taken place. The Polyshape outlines are stored in a

cell array containing all the outlines for that layer. Because we are focusing on an external

inspection, only three modes of interaction between the outlines may exist and they can be

seen in Figure 3.10.

Mode 1 is an outline that fits inside another outline without any intersection (Bodies

1 & 2). For this mode, only the outside outline is taken and the other is eliminated from

the trajectory. Mode 2 contains two or more outlines that do not intersect (Bodies 1 & 4).

For this mode, the outlines are not modified. Mode 3 consists of two outlines that intersect

(Bodies 1 & 3). This means that while the slicer did not encounter any intersections,

the wall offset introduction has expanded two outlines to the point where they are now

in contact with each other. This means that there is not enough space for the UAV to

safely travel between the two outlines. Therefore, only the outside sections of the outlines

are used for the trajectory while the sections that intersect are discarded. This type of

25

Figure 3.10: Outline Combination

26

intersection is commonly found in overhang sections but is not common for the outlines to

cross if the slicer did not detect it first. The second part of Figure 3.10 depicts the result of

these outline combinations. This product is achieved by using a MATLAB command called

Union which is used to combine two Polyshape objects. We can also modify this procedure

for internal inspections by substituting the Union command with Intersect which produces

the internal boundary of the intersection.

3.5 Vertical Layer Comparison

When we tested the original boiler CAD model we created of the power plant we soon

realized that the overhang angles were accounted for in the XY plane but not in the Z

direction. We also implemented a method to prevent collisions due to such overhangs

and tight spaces above and below the UAV’s current altitude, we call it a Vertical Layer

Comparison. To correctly identify such features a couple of layers are constructed above and

below each main layer. The number of layers and the spacing between them is completely

dependent on the user and the drone dimensions. It is a simple process that repeats the

Outline Combination algorithm but this time instead of doing so for a single main layer it

does it for the comparison layers. The algorithm defined the different outlines for all the

separate bodies present in the layers to be compared. It then combines all the outlines to

achieve the best possible outline for all the layers. If the inspection mode is set to external

inspection, then the outlines with the biggest area will take precedence and the overall

geometry to be inspected for that layer height would be the larger resulting geometry. If the

inspection mode is set to internal, then the opposite occurs, where the smaller outline takes

precedence resulting in the inspection taking place around the smaller outlines at the layer

height. This produces a safe outline that prevents any type of collision due to overhangs.

For this, we created two variables called Comparison Layer Height and Comparison Layer

Number. Each of those helps identify the height at which a comparison layer will be

calculated and compared to the main inspection layer. The number of layers and the

27

spacing between them is completely dependent on the user and the drone dimensions. Our

values are based on our UAV which measures 30 cm in height. We then assign a value of 50

cm to account for any error in the UAV’s flight controller and estimation and we assign a

value of 5 to our Comparison Layer Number. This means that the algorithm will compare

two layers below and two layers above the Current Inspection Layer and they will vary by

10 cm in height, roughly double the height of the UAV.

Figure 3.11: Vertical Layer Comparison: (a) Model with overhang. (b) Model with Conflict

Layer and Comparison Layers. (c) Outlines of Conflict Layer and Comparison Layers. (d)

Resulting Cumulative Layer after combination of outlines.

This then takes into account any other features not present at that specific height but

features that could become obstacles for the UAV and a possible collision. Figure figlay

depicts this process in a generic structure with clear overhangs. The values for the variables

could be changed depending on the UAV and also the level of detail in the comparison, i.e.

28

make the height lower and the number of comparisons higher to cover more volume. At

the end of this process, the data is still stored as matrices in a cell array that will then be

used to generate a trajectory.

3.6 Trajectory Generation

A layer jump location must be selected for the next process in the algorithm to take place.

It is encouraged to select an area where the jump from layer to layer can be done safely

e.g. a place free of overhangs and other components. This jump location is arbitrary but

can be adjusted for each inspection.

Figure 3.12: Matrix Interconnection

Algorithm

Figure 3.13: Wall Offset Introduc-

tion Algorithm

At this point, the data is divided into multiple matrices that would then have to be

29

combined in a single matrix to be considered a trajectory. The way that data is combined

has been researched to obtain results that can be applied to any outline regardless of how

complex the shapes are. The process was achieved through a closest-neighbor approach

where the closest points between matrices were found and added to a matrix called a

Combination Matrix, seen in Figure matrix. This matrix was then used to generate a path

using those points to transition from outline to outline. This process can be seen in Figure

3.13. The only remaining process is to generate the trajectory by starting at the layer

jump location, going to the closest neighbor in another matrix, and copying the points up

until the next closest neighbor is located. At this point, it would repeat the transition

to the other boundary and the process repeats until all the points have been read and

copied achieving the final trajectory for that particular slice. MATLAB has a boundary

algorithm, but it removes a lot of points in the trajectory meaning that the UAV wouldn’t

fly to places of interest in the structure. A comparison between our boundary algorithm

and the MATLAB boundary algorithm can be seen in Figure 3.14.

Figure 3.14: a) Trajectory generated using MATLAB’s default boundary algorithm b)

Trajectory generated using our boundary algorithm.

30

After the data has been correctly sorted, it can be called a trajectory. The trajectory

obtained in this work is extremely similar to G-Code which is often used in other robotic

systems like Additive Manufacturing (AM) and Computer Numerical Control (CNC) ma-

chines. Figure 3.15 depicts the process that takes place with different algorithms for each

step. Once all the processes have taken place, the algorithm loops over to the next slice

height until all the layers are completed. Since each layer start and ends at the arbi-

trary jump location, the jump from each layer height happens at exactly the same x and

y-coordinates.

Figure 3.15: Trajectory Algorithm Process using arbitrary slice: (a) Points from Slicer

Algorithm. (b) Outlines generated from Outline Algorithm. (c) Wall Offset and Outline

Intersection Algorithm. (d) Final Trajectory with Jump Location.

31

3.7 Yaw Generation for Attitude Control

The system uses a quadcopter as the UAV. This type of aircraft was chosen for its stability

and compact size. Another advantage of using a quadcopter is the ability to maneuver

with a roll and pitch that is the same. For that reason, the only degree of freedom that

requires calculation based on the trajectory points is the yaw. Since we are interested in

inspection using the UAV, the attitude of the UAV is important. The system is equipped

with EOS and infrared cameras that can be used both for data acquisition and obstacle

detection. The yaw was obtained by calculating the normal vectors of the trajectory by

using the following formula.

θ = atan2(y, x) (3.4)

The 2-argument arctangent function is defined as the angle between the positive x-axis

and the vector (x, y). The function describes the angle in the Euclidean plane and converts

the cartesian coordinates (x, y) to polar coordinates (r, θ). Theta then becomes the angle

between the target point and the x-axis in the global spectrum, also known as yaw. This

function is applied in a loop for each consecutive target point where (x, y) is the difference

between the target and the current points. Those yaw values are then stored in a new

column for the trajectory matrix. Resulting in a matrix of n by 4; x, y, z-coordinates, and

yaw for that specific point given in radians.

3.8 Final Trajectory

A trajectory is successfully achieved from the STL file of the CAD model. Figure 3.16

depicts the final obtained trajectory, and the STL of the Boiler CAD is also provided as a

reference. We can see how the wall offset and slice height selected translates to the trajec-

tory generated. A comparison between Figure 3.16 and 3.17 demonstrates the added detail

of our algorithm vs a simpler approach using only default commands within the MATLAB

32

environment. The extra steps yield a trajectory that provides access to most surfaces thus

providing a more detailed inspection. There is a reasonable difference in distance between

the two Results. The MATLAB Default Outline generations yield a total distance of 1,370

meters of trajectory for the entire structure while our system yields a trajectory of 2,515

meters. The difference of over 1 kilometer of trajectory directly translates to a trajectory

that covers much more surfaces allowing more detail in the inspection mission. Future work

for this section includes the implementation of more complex CAD models and simultane-

ous trajectory generation for internal and external inspection. Current work includes the

implementation of deep neural networks for image processing and automatic flaw detec-

tion along with an improved real-time localization system based on the CAD model for

GPS-denied environments.

Figure 3.16: Final Trajectory generated using our method with STL present

33

Figure 3.17: Final Trajectory generated using MATLAB’s default boundary algorithm

34

Chapter 4

Crack Detection using Convolutional

Neural Networks

In this chapter, we will identify the use of Convolutional Neural Networks (CNNs)for au-

tomatic crack detection and the results of the technology. The defect detection system is

composed of four sections that will be explained in detail within their section. MATLAB’s

AlexNet CNN will be used to process images and automatically identify if a crack is present.

Although AlexNet already has multiple datasets built in, we must create a new database

containing images of cracks in concrete or download an existing database. For this purpose,

we decided to use a dataset containing 40,000 images of concrete with and without cracks

which is available at https://data.mendeley.com/datasets/5y9wdsg2zt/2.

1. Training Dataset Pre-Processing

2. Neural Network Training

3. Neural Network Validation

4. Neural Network Testing & Image Sectioning

5. Image Segmentation

4.1 Training Dataset Pre-Processing

Once the original dataset is downloaded, it is reviewed to prevent any false classifications.

Although this might take some time it is important to do since these images and their

35

label will be used to train, test, and validate the network. The dataset already contains

40,000 images, 20,000 are true and 20,000 are false for cracks in concrete, but we decided to

test augmenting the dataset to expand this number. The purpose of this is to attempt to

generate copies of the same dataset with different angles, colors, and brightness to simulate

possible environmental conditions. MATLAB already has multiple algorithms that allow

to crop, mirror, and shift images but we created an algorithm to recolor the RGB images

with three different scales. Since the original images are already clear, two of the scales are

below 1 (0.5 & 0.7) and the third is above 1 (1.5). The following equation is used:

I = I ∗ s (4.1)

In this case, the RBG image I is in the form of a 227x227x3 matrix. The scale simply

increases or decreases each pixel value. If the scale s is above 1 it will yield a brighter

picture, but if the scale is below 1 then it will yield a darker picture. We believe darker-

than-usual environments are more prone to happen than brighter-than-usual ones. Figure

4.1 depicts these recolor results. At this point, we also divide the dataset into three sections,

80% of the images are for training, 10% are for testing, and 10% are for validating.

4.2 Neural Network Training

CNN’s work in a layer system. In this work, we worked with MATLAB’s AlexNet CNN.

The total number of layers in AlexNet is 25, 5 convolutional layers and 3 fully connected

layers, making it a Deep Neural Network. Deep learning neural networks are trained using

the stochastic gradient descent algorithm. The algorithm requires two variables to be set,

the initial learning rate and the momentum. The initial learning rate is the size of each

step in the gradient descent while the momentum is the angle difference at each step taken

towards the goal. Setting these two variables correctly is important for good training of

the network. If the learning rate is too small, there is a chance the network will never reach

the level of accuracy that is expected. If the initial learning rate is too big, there will be

36

Figure 4.1: MATLAB Dataset Recolor

37

an overshoot which can translate to the network getting close to its target but never really

hitting it. Some systems will run a series of training to automatically find the best values

for both variables. In AlexNet this is achieved through trial and error. We had to train

the networks following the logic of what a good network would have to look like and adjust

our parameters for the next training. Figure 4.2 depicts these behaviors in training.

Figure 4.2: CNN Training Behaviors

The biggest difference in training with either small datasets or large dataset is the

amount of time required for training. Our first training sessions were done using 20,000

images for crack labeling and 20,000 images of concrete without cracks. Training time for

a network with this number of images in the dataset ranged from 50 to 80 minutes. Figure

4.3 depicts a network trained with this size dataset. We also trained a network with 80,000

images for cracks and 80,000 images of concrete without cracks. The training time for those

CNN’s was roughly 4.5 hours. Figure 4.4 depicts a network trained with this size dataset.

Lastly, we trained another series of networks with just 100 images for cracks and 100 images

for concrete without cracks. The training times for these series of training range from 5-15

seconds. Figure 4.5 depicts a network trained with this size dataset. Clearly, there is a

time advantage in using smaller datasets for training, especially with the fact that multiple

training sessions must take place to tune the network to correct initial learning rate and

38

momentum values. We also started to modify the epoch size and batch size to further tune

the network.

The most important variable to set in a gradient descent learning algorithm is the initial

learning rate (ILR). For this purpose, we first trained three networks using varying initial

learning rates by a factor of 10 (0.1, 0.01, 0.001). Figures 4.6,4.7, and 4.8 depict the learning

charts of those three training sets. As shown in Figure 4, the best initial learning rate out

of the three is 0.001 since it is the only one that reaches 100% accuracy. The ILR simply

depicts the size of the step the model takes while trying to achieve the right classification.

The first two ILRs behave poorly. They are most likely overshooting because they are too

big.

4.3 Neural Network Validation

As explained previously, the network with the best ILR is 0.001, for that reason we only use

the results of that network. The other images that were previously separated for testing

and validating will now be used to run the CNN and compare the prediction to the actual

label. Figure 4.9 represents a confidence chart with these results. As it can be seen, only

7 images out of 8,000 (2,000 True/False, for Test and Validation each) were labeled wrong

while the remainder were correctly identified, 99.95% and 99.88% accuracy respectively.

4.4 Testing Environment and Image Sectioning

After the training has taken place, we created a testing environment consisting of a concrete

driveway with areas with and without cracks. This environment is used as a test bed to not

only test the trained CNN but also to test the drone’s capabilities of capturing images with

enough quality to be processed through the network. Figure 4.10 depicts the environment

used for the initial tests.

This environment was printed on a poster of size 36 x 48 feet. Consequently, the drone

39

Figure 4.3: Training Progress with 40,000 Images
40

Figure 4.4: Training Progress with 160,000 Images
41

Figure 4.5: Training Progress with 200 Images
42

Figure 4.6: Training Progress – ILR 0.1
43

Figure 4.7: Training Progress – ILR 0.01
44

Figure 4.8: Training Progress – ILR 0.001
45

Figure 4.9: Prediction Confidence Charts

Figure 4.10: Concrete Testing Environment

46

was used to automatically capture images as the drone was moved manually along the

environment. Multiple experiments were performed with this setup and the number of

images captured ranged from 100-500 for every run. Each of the images was saved and

then transferred into MATLAB as a datastore for access by AlexNet. Before the images

are processed, a normal CNN classification would have to resize the images to 227 x 227

pixels. Our method originally followed that same procedure, but we realized that the

Network would sometimes produce false predictions. To reduce that from happening, we

decided to write a code that would first section the original image into n-number of sections

where each section would get its own individual prediction and they would then be stitched

back together. We experimented with a different number of sections and found that 3x3 is

enough for this scenario, but smaller sections could be computed if needed. This decision

was also affected by the original image size coming from the drone, which is 480 x 640

pixels, meaning that the images with the current camera setup would yield sections of 160

x 214 pixels if divided into 3 x 3 sections. Each of these sections would then have to be

resized into 227 x 227 pixels. Since there is not too much difference in size, the resizing

algorithm only produced a marginal loss of quality and focus on each of the images. Figure

4.11 depicts this sectioning taking place in a test image.

After running some tests with this type of image sectioning we found that the location

of the crack in reference to the section image yields different results. This is because most of

the images from the training dataset contain cracks that either run all the way through the

image or are centered within the image. That means that if a crack is present in an edge or

corner of one of the sectioned images or is small enough, it might not get picked up by the

network and yield a false negative classification. In order to prevent this from happening, we

modified the sectioning algorithm to include overlap in each consecutive section in both the

x and y dimensions. We are currently working with a 78% overlap but that can be modified

easily in the algorithm. We found this number through experimentation, anything bigger

is too expensive computationally and anything lower still yields false negatives although at

a much lower rate than before. Figure 4.12 depicts this new sectioning with overlap.

47

Figure 4.11: Image Sectioning

Figure 4.12: Image Sectioning with Overlap

48

4.5 Neural Network Testing

To test the network, we used captured images from the testing environment. These images

were purposely different in brightness and colors from the training images so we could test

the actual capabilities of the trained CNN. Figure 4.13 depicts the results obtained and

it can be seen that the network predicted false negatives. This is really dangerous since

the network is overlooking an area of the structure with damages whereas if it were a false

positive it would flag an area as a defect where it does not exist. To prevent this from

happening, an algorithm that uses recolor was created. It simply recolors all the actual

images using a scale that is obtained by dividing the average Red value of the training

images by the average Red value of the actual images and repeating the same process for

the Green values and Blue values to obtain three different scales. This scale is then applied

to the entire folder of actual images and a new copy is created. Figure 4.14 depicts the

color difference between the training and the actual datasets. Figure 4.15 depicts the new

prediction using the modified/recolored actual images dataset.

4.6 Image Segmentation

After the original image has been sectioned and each section has been processed through

the CNN and given a prediction, they are processed in our segmentation algorithm. The

segmentation algorithm is applied only to the sections that have a positive classification

for a crack. The algorithm first uses the original section and transforms it into a grayscale

image. Then, a binarize command is used to create a binary image by using an adaptive

threshold. After the threshold has taken place the result is a grayscale image where the

darker features, which are usually cracks, are highlighted. This new binary image is then

used as a filter to produce only red on the original section image. At this point, this filter

is applied to the RGB image but only to the Red channel. Figure 4.16 depicts this process.

Finally, this process is applied to all the sections in all the images that were stored from the

49

Figure 4.13: CNN Testing with Actual Images (Original Images)

Figure 4.14: Training vs. Testing Images

50

Figure 4.15: CNN Testing with Actual Images (Modified Images)

drone camera. This results not only in a list of classifications for each of those images but

also in modified images that highlight the cracks and images that only include the cracks.

These three outputs can be used in the future to not only stitch into a single image or 3D

environment but the images with only cracks visible could possibly be used as a layer on a

such image or 3D environment.

51

Figure 4.16: Image Segmentation

52

Chapter 5

3D Reconstruction

In this chapter, we will compare the different methods commonly employed for 3D re-

constructions and the methods with the best result for our application. We will compare

Photogrammetric Reconstruction, Open3D, and RTAB-Map. Each method uses different

sensors from our payload and yields different results.

5.1 Payload Sensor Parameters

The RGB camera that was selected is the Raspberry Pi Camera Module v2 shown in Figure

5.1 and includes G-Streamer capabilities directly compatible with the Jetson Nano. The

specs of the RGB camera can be found in Table 5.1.

Figure 5.1: Raspberry Pi Camera Module v2

The payload also includes an Intel RealSense D435i depth camera as can be seen in

Figure 5.2. The depth camera employs a set of sensors that are identified in Table 5.2.

53

Table 5.1: Table to test captions and labels.

RGB Camera

Attribute Value

Sensor Type IMX219

Megapixels 8

F-Stop 2.0

Focal Length 3.04

Vertical Field of View 48.8

Horizontal Field of View 62.2

Maximum Resolution 3820 x 2864

Figure 5.2: Intel RealSense D435i Depth Camera

54

Table 5.2: Table to test captions and labels.

Depth Camera

Attribute Value

Sensor Type Intel RealSense D435

Depth Technology Stereoscopic

Range .3 m to 3 m

Depth Field of View (FOV) 87° × 58° (±3°)

Depth Stream Maximum Resolution 1280 × 720

Depth Stream Maximum Frame Rate 90 fps

RGB Maximum Resolution 1920 × 1080

RGB Sensor Resolution 2 MP

5.2 Photogrammetry

5.2.1 AliceVision Meshroom Background

For this work we decided to employ a photogrammetry approach to generate reconstructions

from RGB images. Figure 5.3 depicts the framework pipeline of AliceVision’s Meshroom.

The following list give some insight as to what each of those nodes is doing. This pipeline

is based on [1] and [20].

Figure 5.3: AliceVision Meshroom Pipeline

1. Camera Initialization – Initializes the camera parameters from images. Image meta-

55

data contains camera properties like focal length, camera type, make, model, sensor

width, and image height. Creates a virtual camera localization using the images and

metadata.

2. Feature Extraction - The objective of this step is to identify and extract specific

groups of pixels that are constant even with changing viewpoints from the camera.

This means that these pixels make up features that are identified within the camera

feed or image dataset.

3. Image Matching – The features found before for each image must then be compared

and matched to subsequent features in images.

4. Features Matching – Once all image pairs have been found, this step will identify

the feature between such image pairs. Individual distances between corresponding

features among two separate images are calculated. The difference between the two

pairs will eventually make a 3D structure from corresponding features.

5. Structure-from-Motion – This step tries to identify the geometric relationship between

the corresponding features. This step will output an initial 3D scene structure with

camera position and orientation, also called pose.

6. Depth Maps Estimation – Once all cameras have been calculated by SfM, the depth

value of each pixel in each scene is retrieved. For each image, a specific number of

cameras is found that are in the immediate vicinity of the current pose. A small

portion of the main image is reprojected into the neighboring cameras and each

neighboring projection will accumulate similarities.

7. Meshing – This step generates a dense geometric reconstruction of the scene. All

the depth maps from the previous step are merged into a single map also called an

octree. A 3D Delaunay tetrahedralization takes place to find interconnection between

all point in the point cloud. This then generates a mesh of the structure.

56

8. Texturing – For each triangle in the mesh previously created, texture candidates are

identified from vertex colors. Different pixel values are assigned to each vertex due

to the repetitive nature of the previous step. Finally, all of those values are averaged

to give each vertex its final pixel value.

5.2.2 Meshroom Implementation

After the images have been classified and post-processed, they are stored in a new folder

and they are later used to generate a 3D render of the entire inspection site. We use Al-

icevision’s MeshRoom open-source software since it allows us to control every step in the

photogrammetry process. This software uses the concept of Structure-from-Motion to ob-

tain matching features between images. This software does not require GPS information for

any of the images to create the render, instead, it calculates the “virtual” location of each

image internally. Although it doesn’t require GPS, most of the readily available images

might already have GPS information stored in the metadata of each image. The software

can use the information to skip the camera location calculations but it does require other

pieces of information mostly regarding camera properties like focal length and sensor size.

One of the challenges we faced in using the datasets from the drone camera is that most

of the metadata was missing in both the pre-processed and post-processed datasets. We

created another section of code that can override the metadata with the value pertaining

to the camera properties we need, listed in Table 5.1. This code was then used on both

datasets. Once the images are updated with the metadata, they are then sent to the Mesh-

Room software for stitching. We have obtained some results that still need improvement

but show great potential. Figure 5.4 depicts the 3D render obtained using the pre-processed

and post-processed datasets.

57

Figure 5.4: Photogrammetric Reconstruction

5.3 ORB-SLAM2

The process of installing and running ORB-SLAM2 in the companion computer Jetson

Nano proved more difficult than expected. There were a series of installation errors that

had to be addressed but were ultimately fixed. Within the ORB-SLAM2 system, there are

two main modes, SLAM Mode and Localization Mode. In SLAM Mode, the default mode,

the system runs three pipelines in parallel: Tracking, Local Mapping, and Loop Closing.

In this mode, the system localizes or “tracks” the camera, continuously builds the map

and tries to close loops. In Localization Mode, the system only localizes the camera but

deactivates the Local Mapping and Loop Closing pipelines. This mode can be used when

there is a good map of the environment, but it does not update the original map. We find

this process more convenient since we already have a very good map of the environment but

would still want to generate a new map with SLAM. To do so, we reviewed some articles

and found an extension available on GitHub that allows us to save the new map even in

Localization Mode while still being less computationally expensive than SLAM Mode [32].

5.3.1 Map Saving and Loading Extension

We spent a good amount of time working with the two codes in an attempt to under-

stand and tune the existing software to our needs and hardware. The extension we are

currently working with, allows us to run the ORB-SLAM2 algorithm through ROS but

58

it also publishes real-time ROS Messages from that code. These messages are extremely

important since they provide data from ORB-SLAM2 that was otherwise hidden within

the code and never published for the user. From this data, we can obtain the live location

of the camera, and live feed of the camera images before and after SLAM feature detection

and we also have access to a live and constantly updated Point Cloud of the environment

it is mapping. This new data gives us access to a map that we did not have before. We

ran initial tests with ORB-SLAM2 and the depth camera with the handheld setup at the

Vinton Steel factory. Figure 5.5 shows the inside of the structure we initially tested with

ORB-SLAM2. Figures 5.6, 5.7, and 5.8 depict a view of the camera feeds and the Point-

Cloud being generated, everything is being visualized through RVIZ. Figure 5.6 shows the

initial frames and Point-Cloud after a couple of seconds of initializing the system. Note

the difference between the two camera feeds in the top left corner. The first feed is the

original camera feed in RGB while the second is the output feed after the feature detection

of the SLAM algorithm. Figure 5.7 then depicts the updated Point-Cloud after the test was

done. Figure 5.8 depicts the feed when the camera might get lost due to rapid movement

or external factors, before finding its position again within the environment it has already

mapped. Figure 5.9 depicts the Point-Cloud generated being deployed in MATLAB which

proves it might help with the already existing Trajectory Generation Algorithm that was

developed earlier in the project. Figure 5.9 can be compared to Figure 5.5 in an attempt to

understand the perception of the Point-Cloud being displayed. We will continue our work

in using this Point-Cloud generated not only as a substitute for the CAD if needed but also

as an initial environment for the SLAM algorithms being deployed.

5.3.2 Mesh From Point Cloud Data

Obtaining a mesh from point cloud data is an important task for us since it would allow

us to use that mesh in our trajectory generation algorithm and obtain a close-inspection

trajectory for our flight missions. This is no easy task since there is no straightforward

method to do it. The industry uses different approaches to solve this issue. Some companies

59

Figure 5.5: Inside View of Vinton Steel Structure

provide the service at a cost to the consumer, but it can be expensive and requires a

turnaround time to process. Also, it does not provide the user with any control over

the final product. We studied different approaches ranging from algorithms that would

identify color patterns from the pixel data in each point from the point cloud to a very

simple closest-neighbor approach to connect all the points from the point cloud data.

We realized that the first approach would require a lot of work and we were unsure

if the extra work would provide any significant improvement over other more traditional

methods. The second approach also had some drawbacks since point clouds do not have a

uniform distance between points and a single value for hull parameters is invalid and thus

results in a mesh that does not match the scanned environment. This is where the private

companies come in, they analyze the entire data and assign different hull parameters to

different sections of the point cloud. They of course use proprietary algorithms that are

not accessible to the public. The third option we propose is to analyze the problem as a

histogram or OctoMap type of problem.

60

Figure 5.6: ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Initial Seconds of Test

61

Figure 5.7: ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Final Seconds of Test 62

Figure 5.8: ORB-SLAM2 Feed Being Displayed; Includes camera Feeds and Point-Cloud.

Camera Loses Track and Tries to Re-localize Itself63

Figure 5.9: Final Point-Cloud generated deployed in MATLAB
64

We have point cloud data that provides the location of features found from the envi-

ronment scan. This means that there is a body in each of those points. The approach

then turns into an occupied cell within a 3D array with a cell of uniform or variable di-

mensions. For our initial tests, we are using uniform dimensions that vary in size between

each test. The location of each occupied cell is then used to generate a cube mesh around

each occupied point. The initial tests prove our approach might work but will still need

some refinement. We are currently working on making the algorithm more efficient since

the number of points in the point cloud data could increase exponentially depending on the

size of the environment we can inspect. The second improvement we are currently working

on is to use a dense point cloud scanning method instead of the traditional SLAM algorithm

since SLAM greatly reduces the number of points in the dataset to be more efficient. We

would like to have as many points as possible to make our method more efficient. Figure

5.10 depicts the occupancy map method with a cube size of 3 cells/meter, the Point-Cloud

data is the same as in Figure 5.9. Figure 5.11 depicts the occupancy map method with a

cube size of 5 cells/meter. The cubes represent the mesh that could be used to generate the

trajectory and the red points represent each of the points in the point cloud data. Notice

that some cells might contain more than one point. We could reduce the mesh size even

more if we had a denser point cloud from our scans. A resolution of 10-20 cells/meter

would be ideal.

Unfortunately, we were unable to get ORB-SLAM2 running correctly on the companion

computer without crashing because of its computing requirements. Perhaps if a more

powerful computer like the Jetson Xavier was used, it would allow the algorithms to run

correctly. This would be complex since the reconstruction system would have to run in

parallel with all the flight control algorithms in the UAV. We decided to abandon this

research path and focus on alternatives to generate reconstructions.

65

Figure 5.10: Occupancy Map with Mesh Size of 3 cells/meter.

Figure 5.11: Occupancy Map with Mesh Size of 5 cells/meter.

66

5.4 Open3D

Open3D is an open-source library that supports the rapid development of software that

utilizes 3D data. We are currently exploring the option of using the library for three stages

in our 3D reconstruction of unknown environments or structures that do not have a readily

available CAD model. The first stage is Data Capture of point cloud data using an Intel

RealSense D435. We ran initial tests in this mode with modifications in different parameters

for the camera in capture mode. One of the main parameters we are focusing on is the

depth cut-off distance. We have successfully completed capture with the three distances of

1, 3, and 9 meters. Another aspect we focused on is the recording speed. Our initial tests

showed that our data capturing did not match the overlap of benchmark datasets that are

common for reconstructions. We identified a big difference in the overlap of the images

where the benchmark had much more overlap compared to our dataset. We fixed the issue

by making sure we move much slower when we record the images. A speed of 0.25 – 0.5

m/s is ideal.

Initial tests show that reconstructions of small datasets usually compute without many

issues. Tests also show that with an increase in the size of the datasets the algorithm

will often cause issues due to parameters not being fine-tuned. We ran tests to find the

modifications needed to allow this second stage to run correctly. We found that the system

did not like datasets higher than 200 images to do scene reconstruction. This has to do with

the computing capabilities of the computer used. We are currently using a computer with

16 GB of RAM and an additional swap file of 16 GB to supplement the physical RAM.

When we use datasets bigger than 200 images, we tend to have crashes on the system

because the RAM is ramped to the max. To fix this issue we opted to keep datasets of 150

images max for reconstructions. This means that we divide the main datasets into subsets

of 150 images for depth and RGB each and we usually use the last 50 images in a subset

as the first 50 images in the next subset. This is done so the reconstructed scene will have

overlapping areas we can use to stitch the two scenes together.

67

The second stage was obtaining a reconstructed model from the datasets recorded.

In this part, we can separate into two main components: individual scenes and integrated

scenes. For the individual scenes, we have found that when we use the benchmark datasets,

the data is perfect to run individual scenes and the reconstruction does not display any

errors. When we use our recorded datasets, we found that the data produced does not

yield the best results and it is visible in the reconstructions. We usually have issues with

points in the reconstruction that are out of place and some of those points even display as

rays in spaces where there should not be any points. We believe some of these issues are

because of the lighting conditions of the environment and how the camera behaves in these

conditions. Some of these issues will never be able to be fixed since there are limitations to

the hardware. We are researching if we could pre-process the dataset to account for some

of those conditions. Research has been done to normalize the depth images so they are

within a specific range, we plan on working with that to see if this step can help improve

our results.

When dealing with the integrated scene, we found some errors in Open3D that we could

not fix. Usually, Open3D will do individual scenes and then run an integration model to

give a final scene. From testing, we found that although individual scenes might look good,

once they pass through the integration step, the resulting scene tends to be wrong. The

most common error is the two scenes being stitched in the wrong place with respect to

each other. This means that the overlap between the two is wrong, resulting in a scene

that might not give any useful information. We have fixed this issue by looking at all the

individual scenes and running the integration with an external software called MeshLab.

Each individual scene is imported as a point cloud to the system, and each is kept as a

layer. The software then allows us to combine two layers by selecting intersection points

between each of them. Once that step is done, then the scene will be stitched together

into a single integrated scene. We tried to streamline this process to reduce the need for

operator manipulation to achieve quality reconstructions but were unable to do so. Figure

5.12 depicts a completed integrated scene with all the previous steps mentioned.

68

Figure 5.12: Integrated Reconstruction Using Open3D and Visualized in MeshLab

In this stage, the model is also saved as a PLY object. In this format, the model

can be manipulated and converted to STL to be used with our trajectory algorithm. We

also decided to test the library using our own dataset images. Figure 5.13 shows the

reconstruction of a classroom desk. As shown, the reconstruction works partially with

better results to be desired.

We decided to leave Open3D as a third alternative but Photogrammetry and RTAB-

Map yielded the best results for our systems. but ultimately abandoned the task due to

time constraints.

5.5 RTAB-Map

5.5.1 RTAB-Map Background

Real-Time Appearance-based Mapping (RTAB-Map) is a SLAM approach that employs an

color-depth (RGB-D) camera feed to map and localize itself within a virtual environment.

The system employ a loop closure approach with a bag-of-words approach where it tried

69

Figure 5.13: Partial Reconstruction using Open3D Library

to determine whether or not the current RGB-d image is part of a new location or if it has

already visited that location. Once an existing map has been created, the model can run

on Localization mode only, resulting in faster processing since it no longer needs to make

the decision of whether or not is a new location. Instead, the system knows to only look

for a location with matching point cloud features [4] [3] [17] [27].

5.5.2 RTAB-Map Implementation

After spending some time comparing the different methods we have employed for this

research, we have decided on two main methods that work best with our sensors and

onboard computer. We concluded that both Photogrammetry and RTAB-Map are the two

best options. RTAB-Map is a reconstruction approach that is based on an incremental

appearance-based loop closure detector. This system works with different types of cameras

such as Color-Depth (RGB-D), Stereo Cameras, and even LiDAR. For this technology, we

use the feed from the Intel D435 Depth Camera. This sensor has two RGB imagers along

with a depth infrared projector. That means that this camera could be used as an RGB-D

70

or a stereo sensor. For this approach we decided to take advantage of the depth sensor, so

we are running the system with an RGB-D input from the camera.

We are currently doing the process in two steps, we first capture, and then we process

the reconstruction. For capturing we are currently using two methods: we employ the

Jetson Nano and save bagfiles containing the feed from the multiple sensors; the second

method is using an Apple iPhone XS Max which contains a lidar sensor. RTAB-Map can

run on the iPhone through an app, the app will automatically generate a database file that

is interchangeable through the different operating systems, so we can run those files on

Ubuntu either on the onboard computer or an off-board machine.

The iPhone is first used to generate the initial reconstruction which is high quality,

but the range of the sensor is limited so objects at big heights or long distances are not

recognized. To solve that we then employ the Jetson Nano with the depth sensor to add

more detail to the reconstructions. Sometimes the reconstructions are also big so multiple

sections must be reconstructed individually. We make sure that there is enough overlap

between the different reconstructions to be able to stitch them together. The overlap can

be achieved with the feature detector of RTAB-Map or with the point alignment of point

clouds using MeshLab. RTAB-Map will work automatically by running code while MeshLab

requires manual operation of the software to achieve the alignment. Most of the time the

RTAB-Map alignment will work well unless the visual textures of the reconstructions are

not uniform due to lighting conditions. In that case, MeshLab is preferred since it does not

consider the visual properties of the point cloud but the point cloud density and shape at

the connection/overlap sections.

Figure 5.14 depicts the different section reconstructions in the same environment while

Figure 5.15 depicts the sections after they are aligned. Once those sections have been

aligned, they can be post-processed in MeshLab to convert the PLY format to either STL

or OBJ for use in Fusion 360. We pretend to use Fusion 360 to add any details that

might have not been captured. After that, the model is ready to be sent to our trajectory

generation algorithm.

71

Figure 5.14: Unaligned RTAB-Map Reconstruction Sections Displayed in MeshLab

Figure 5.15: Integrated RTAB-Map Reconstruction Displayed in MeshLab

72

Chapter 6

The UAV Platform

The aerial platform used in this project consists of an off-the-shelf frame with an Nvidia

Jetson onboard computer, Pixhawk flight controller, and custom hardware. The drone is

depicted in Figure 6.1. All data and parameters are taken from the said UAV system for

the corresponding calculations.

Figure 6.1: UAV Kinematic Forces.

6.1 The UAV System Modeling

To analyze the motion of the drone, an inertial frame of reference {A} (or world frame)

and a body coordinate frame {B} are included. {A} is selected at a convenient location

that acts as the global reference for the plant to be inspected. On the other hand, {B} has

73

its origin coincident with the center of gravity of the quadrotor, the z-axis downward, and

the x-axis in the direction of the flight, following the aerospace convention (Figure 6.1).

Besides, as depicted in Figure 6.2, the position of the drone in inertial frame {A} is given

by the vector r ∈ R3.

The inspection cameras on the UAV are installed in the chassis and are near the depth

sensors; therefore, the camera location can be considered as the point of origin/zero point

for the drone. Notably, the UAV propellers expand beyond this point by ad and from the

extreme endpoint of the propeller to the closest point on the inspection surface can be

designated as ds. As such, the total inspection offset from the camera at any time is,

d = ds + ad (6.1)

For safe flight path planning, a minimum drone offset distance ds is introduced. Also,

due to the design of the drone, the rotor blades expand a certain distance from the camera

which also needs to be considered along with the camera focal distance itself. Therefore,

the offset distance should be, d ≥ ds+ ad and d > f at any time (Figure 6.2). As such, the

position vector for the UAV camera is,

r =
[
x+ d y z

]T
(6.2)

For a quadrotor, the angular motion state about the three rotation axes is represented

by six state variables: the angular velocity vector, ω ∈ R3 = [ωx, ωy, ωz]
T about the three

axes of the body frame and the vector of Euler angles β ∈ R3 = [ϕ, θ, ψ]T , representing the

roll, pitch and yaw angles, respectively. The 3-2-1 (Z-Y-X) Euler angles are used to model

the rotation of the quadrotor in the global frame. The rotation matrix for transforming the

coordinates from {A} to {B} is given by the rotation matrices about each axis (R’ (ϕ), R’

(θ), and R’ (ψ)). Therefore, the rotation matrix R ∈ R3×3 that expresses the orientation

of the coordinate frame {B} with respect to global reference frame {A} is obtained.

74

sd

{ }B

{ }A

da

CMa

r

Figure 6.2: Kinematic Diagram: Frames definition and inspection distances.

R = R′(ϕ)R′(θ)R′(ψ)

R =


CθCψ CθCψ −Sθ
SϕSθCψ CϕCψ + SϕSθSψ SϕCθ

CϕSθCψ + SϕCψ CϕSθCψ − SϕCψ CψCθ

 (6.3)

Where Cϕ and Sϕ are abbreviations of cos(ϕ) and sin(ϕ), respectively, similarly for θ

and ψ. The components of the angular velocity of the quadrotor, ωx, ωy and ωz are related

to the derivatives of the roll, pitch, and yaw angles as,


ωx

ωy

ωz

 =


1 0 −Sθ
0 Cϕ SϕCθ

0 −Sϕ Sϕ



ϕ̇

θ̇

ψ̇

 (6.4)

The four rotors on the quadrotor are driven by electric motors powered by electric speed

controllers. The rotor speed is ωi and the thrust is an upward vector,

Ti = bωi, i = 1, 2, 3, 4 (6.5)

75

In the quadrotor’s negative z-direction, where b >0 is the lift constant, dependant on

number of blades, air density, the cube of the rotor blade radius and the chord length of

the blade. Assuming the quadrotor is a symmetric rigid body, its equations of motion can

be written as [14],

f = fg + T (6.6)

τ = J ω̇ + ω × Jω (6.7)

where f ∈ R3 and τ ∈ R3 are the force and torque applied to the vehicle, respectively;

J ∈ R3×3 is the inertia matrix of the quadrotor, and ω ∈ R3 is the angular velocity vector

of the UAV, fg is the force due to the gravity and T is the total thrust generated by the

propellers. The resultant force can be then expressed as

f =


0

0

mg

+R ×


0

0

T1 + T2 + T3 + T4

 (6.8)

Pairwise differences in rotor thrusts cause the vehicle to rotate. The rolling torque

about the vehicle’s x-axis is generated by the moments

τx = aCMT4 − aCMT2 (6.9)

aCM is the distance from the quadrotor centre of mass to the rotor axis (Figure 3.6).

Converting the equation in terms of rotor speeds using (6.5)

τx = aCMb(ω4
2 − ω2

2) (6.10)

Similarly, for the torque about its y-axis,

τy = aCMb(ω1
2 − ω3

2) (6.11)

The torque applied to each propeller by the motor needs to overcome the aerodynamic

drag,

Qi = kωi
2 (6.12)

76

where k depends on the same factors as b. From the torque, a reaction torque on the

airframe is transmitted that is responsible for the ’yaw’ torque about the propeller shaft in

the opposite direction to its rotation. The total torque about z-axis is,

τz = Q1 −Q2 +Q3 −Q4

= k(ω1
2 − ω2

2 + ω3
2 − ω4

2)
(6.13)

where the signs are different due to the rotation directions (counter-clock-wise taken as

positive for rotor 1 and 3) of the rotors.Therefore, yaw rotation is achieved by carefully

controlling all of the 4 rotor speeds. The applied torque τ is calculated from (6.10), (6.11),

(6.13) and (6.5) obtaining

τ =


τx

τy

τz

 =


aCMb(ω4

2 − ω2
2)

aCMb(ω1
2 − ω3

2)

k(ω1
2 − ω2

2 + ω3
2 − ω4

2)


= J ω̇ + ω × Jω

(6.14)

By combining equation (6.5) and (6.8) the following expression is obtained

T
τ

 =


−b −b −b −b

0 −aCMb 0 aCMb

aCMb 0 −aCMb 0

k −k k −k




ω1

2

ω2
2

ω3
2

ω4
2



= A


ω1

2

ω2
2

ω3
2

ω4
2



(6.15)

The moments and the forces of the quadrotor are function of the rotor speeds. The

matrix A is constant and the equation can be rewritten using matrix inversion for obtaining

the rotor speeds given the torques and forces [14],

77


ω1

2

ω2
2

ω3
2

ω4
2

 = A−1


T

τx

τy

τz

 (6.16)

P

Controller

PID

Controller

Position Controller

Conversion

P

Controller

PID

Controller

spr

r̂

r
maxv

maxv
v̂

T
maxT

sp

β̂ ˆ
β

Attitude and Rate Controllers

x

y

z







 
 
 
  

spv
+

-

v
+

-

maxT

T

spβ
β+



maxβ

+


maxβ

spβ β

Figure 6.3: UAV controllers for position and attitude control.

6.2 UAV Control System

To achieve autonomous flight in Drones, there is usually a hierarchical scheme with three

levels [19], the first is in charge of determining the flight trajectory and it is the main focus

of this paper. The second is the trajectory tracking control and the third is the actuator

level control. For levels two and three, we are using common control schemes. As depicted

in Fig. 6.3, the UAV position and attitude are controlled by a series of controllers built-

in in into the system. A position controller receives the desired coordinates to track in

the position vector set-point rsp ∈ R3 that is compared with the actual estimated drone

position r̂ ∈ R3 to obtain the position error r̃ ∈ R3 to compensate for. A Proportional

controller calculates then the desired velocity vsp ∈ R3 that is limited according to the

hardware capabilities. Then, a PID controller in cascade will determine the required thrust

T to achieve the desired altitude. While, through a conversion stage, the thrust and the

desired yaw angle ψsp determine the desired attitude βsp ∈ R3 that is compared with the

78

estimated attitude β̂ ∈ R3 to obtain the orientation error β̃ ∈ R3 that will be compensated

by a Proportional controller, leading to the attitude rate set point β̇sp ∈ R3 that at the

same time is related to the estimated attitude rate ˙̂
β ∈ R3 to determine the attitude rate

error ˙̃
β ∈ R3 that will be regulated by a PID controller that generates the control torques,

that together with the thrust command the drone to the desired position and orientation.

Finally, the required motor’s angular speed can be calculated by (6.16).

79

Chapter 7

Experimental Studies

7.1 Trajectory Simulation Study

Our first validation attempt for the trajectory generation system was done through sim-

ulation. For this, we employ the Gazebo simulator. This simulator uses the Pixhawk 4

(PX4) autopilot to simulate the real-world implementation of this path with a UAV. PX4

is an open-source flight stack software for controlling UAVs that implements different flight

modes and safety features, and it is widely used on several drone platforms today. This

software runs either on a flight controller, which is a computer on board the drone or on a

personal computer in the case of a simulation. PX4 offers different interfaces for interacting

with the user, all of them using the MAVLink protocol for communication: QGroundCon-

trol, a graphical interface to setup the drone, change parameters, create and execute flight

missions, and visualize telemetry data in real-time; and DronecodeSDK, an Application

Programming Interface (API) that provides the libraries for interacting with the UAV.

Moreover, ROS is a robotics framework that abstracts common robot functionalities in a

modular manner using the concept of independent programs called nodes that publish or

subscribe sensor data or computational results to topics. MAVROS is one of these ROS

programs for abstracting the transmission of MAVLink messages, so ROS can interact with

the PX4 flight stack. Finally, Gazebo is a powerful robotics simulator that offers a 3D

environment with a robust physics engine.

The chosen experimental setup consists of a general quadcopter model generated in the

Gazebo simulator and running the PX4 flight stack, which shows us how a real drone would

behave given the generated coordinates. For the simulation, some of the trajectory layers

80

were removed to reduce simulation time. This simulation validates our CAD-based method

for generating trajectories, as we prove that these paths can indeed be used to generate a

real UAV fly mission.

The proposed methodology consists of the following:

1. Use a ROS node to read a CSV file containing the coordinates of the waypoints that

compose the generated trajectory.

2. Iterate through each point of the mission array and send position commands using

the MAVROS node to follow the path using the simulated UAV in Gazebo.

3. Visualize the mission in real time using QGroundControl, while getting fly logs for

an offline analysis of the UAV’s trajectory and telemetry information.

The trajectory based on the power plant 3D model was used for creating the UAV’s

fly mission, and both the ideal generated trajectory and the actual inspection fly path

followed by the drone can be compared (Figures 7.1, 7.2, & 7.3). The displayed trajectory

was modified from the original trajectory by reducing the total number of layers. This

was done only to make the figures easier to read and understand, the original trajectory

achieves the same results with the total number of layers. We can see that the trajectories

are similar to each other, but the flight path is not as smooth as the ideal trajectory, which

can be explained by the inherent physical properties of a real environment and the actual

robotic system dynamics. The results show an adequate flight altitude during the test,

with some variation but still a monotonically increasing trend. The top view of the flight

path shows the general shape of the power plant, while the front and right views of the

flight path are close in shape to the generated trajectory, showing only some noise due to

the flight controller corrections.

The 3D view of the trajectories shows again that the drone is capable of flying very close

to the surface of the boiler. The simulation results prove that the proposed approach for

generating inspection paths based on the power plant 3D model can be indeed implemented

using a real UAV controlled by a widely used professional flight stack.

81

Figure 7.1: Comparison of: 1) The Z position of the tool based on the CAD and the altitude

of the UAV during flight (left). 2) The top view of both the CAD generated trajectory and

the UAV inspection path (right).

82

Figure 7.2: Comparison of: 1) The front view of the CAD-generated trajectory and the

UAV flight path (left). 2) The right view of the CAD-generated trajectory and the UAV

flight trajectory (right).

83

Figure 7.3: Simulated Drone Flight Trajectory

7.2 Experimental Platforms

7.2.1 Experimental Handheld Platform

We created a handheld setup containing the same Jetson Nano companion computer and

some of the onboard sensors also present in the UAV platform. The purpose of this setup is

to be able to accurately generate reconstructions using the sensors and also be able to test

the system without the need to be flying. The handheld setup carries the Intel RealSense

d435i camera along with the Raspberry Pi v2 RGB camera. The system also incorporates

an Adafruit 5-inch LCD display. The top section of the structure is based on the original

design by Devshank published on the hackster.io website [2].

7.2.2 Experimental UAV Platform

For the real-time implementation of the whole system, the UAV platform is based on the

DJI F450 platform previously mentioned in Chapter 6. We are employing a Jetson nano

as the onboard companion computer and the Pixhawk 4 flight controller. The system also

uses an Intel RealSense Depth Camera D435 for mapping purposes, in the case we do not

84

Figure 7.4: Handheld Setup Used for Visual Inspection and Experimentation

85

have readily available the CAD model; and an Intel RealSense Tracking Camera T265 is

utilized for navigation together with a 1D LiDAR. The system also features an RGB 8

MP Raspberry Pi Camera Module V2 and a FLIR Lepton 3.5 IR (Infra Red) camera for

inspection purposes. Figure 7.5 depicts the UAV with all the aforementioned components.

Tracking

Camera

8 MP Raspberry Pi RGB

Camera

Jetson Nano

Companion

Computer

D435 Depth Camera

Pixhawk Flight

Controller

FLIR Lepton 3.5-based

IR camera

Figure 7.5: The UAV platform used in the experimental validation

7.3 Experimental Environments

7.3.1 Aerospace Center Fabens Facility

Most of our initial experimentation took place in the UTEP’s Aerospace Center Technology

Research and Innovation Acceleration Park located in Fabens, Texas. The presented system

for trajectory generation has been successfully implemented in our UAV platform in an

indoor environment. Figure 7.6 depicts the interior of the UTEP Aerospace Center Research

Hangar located in Fabens, Texas.

86

Figure 7.6: UTEP Aerospace Center - Fabens Acceleration Park Hangar

7.3.2 El Paso Electric - Rio Grande Plant

The El Paso Electric (EPE) company allowed our team access to specific parts of their

facilities to conduct experiments. We were fortunate enough to not only learn more about

the energy sector and its day-to-day operations but also got access to highly guarded

structures like the inside of a power unit’s boiler. Figure 7.7 shows the first stack we were

able to run some experiments around. Figures 7.8 and 7.9 show the outside and inside of

the boiler structure we were granted access to. Figure 7.10 shows the stacks and iconic

"POWER" sign on top of the original El Paso Electric building. We were allowed to

reconstruct and test our systems in that area as well.

7.4 Experimental Results

7.4.1 Fabens - Validation of Reconstruction with Photogrammetry

and Trajectory Generation

We employ part of the research hangar for our experimental flights for testing and tuning of

our UAV. We generated the reconstruction with photogrammetry methods. A set of images

87

Figure 7.7: EPE Rio Grande - Individual Stack

Figure 7.8: EPE Rio Grande - Power Unit - Outside of Boiler Furnace

88

Figure 7.9: EPE Rio Grande - Power Unit - Inside of Boiler Furnace

Figure 7.10: EPE Rio Grande - Main Building - Roof Stacks and POWER Sign

89

of the environments were taken with slight overlap within one another. Those images

were then imported into AliceVision MeshRoom to create the reconstruction. MeshRoom

provides an STL file that can then be transferred to any CAD software to clean up by

removing unwanted sections of the reconstruction before transferring them to MATLAB.

Figure 7.11 depicts the reconstructed hangar using photogrammetry.

Figure 7.11: UTEP Aerospace Center - Fabens Acceleration Park Hangar - 3D Model

Generated with Photogrammetry

Once the STL is in MATLAB, the algorithm completes the flight path generation and

stores it as a CSV file. Figure 7.12 depicts the trajectory generated for this environment

and Figure 7.13 depicts the UAV flying the generated trajectory.

We are able to log the sensor reading of the drone at all times during the flight mission.

Figure 7.14 depicts the log of the mission in x, y, z-coordinates. Figure 7.15 depicts the log

in x, and y-coordinates only, while Figure 7.16 depicts the logs in z-coordinates vs time.

Note that in Figure 7.15 there is an area where the drone does not behave as stable as

the rest of the flight path. The area in the lower left of the path is the place where the

layer jump location takes place, at this point the drone must increase the thrust in order to

reach a higher altitude, this translates to some unexpected turbulence. This is the reason

90

Figure 7.12: Hangar inspection path generated with the proposed approach

Figure 7.13: Drone flying the generated trajectory

91

Figure 7.14: Logged Drone Position in x, y, and z-coordinates

Figure 7.15: Logged Drone x-y trajectory

92

this jump location coordinate must be identified individually for each structure.

During the flight test discussed above, Figure 7.13, our system always kept track of the

yaw set points, so a set of inspection images were acquired. These images had a frame rate

of 2Hz, more than enough for obtaining a good overlap between consecutive images, and

the timestamp was marked for further processing, see Figure 7.17.

Figure 7.16: Logged Drone Altitude

Figure 7.17: Captured Inspection Images Normal to the Structure Surface

93

7.4.2 El Paso Electric - Validation of Reconstruction in Industrial

Settings with Photogrammetry and RTAB-Map

RTAB-Map - Single Stack - Ground Level

While we were in El Paso Electric, were able to generate a reconstruction of a single cooling

stack on the ground level of the facilities. This was our initial test environment and helped

us validate some of our systems. We were able to show some of our initial results to the

El Paso Electric (EPE) representatives which gave them confidence and allowed further

access to their facilities. Figure 7.18 shows the folder containing the images captured to

generate a reconstruction using photogrammetry. For this experiment we also generated the

reconstruction using AliceVision’s Meshroom. Figure 7.19 shows the reconstructed model

of the stack. After the model was scaled, we were able to calculate different measurements

within the environment and they matched the actual measurements within 0.5 inch.

Figure 7.18: EPE - Captured Images of Stack for Photogrammetric Reconstruction

Figure 7.20 shows the reconstructed model displayed as an STL within Fusion 360. It

is important to note that although the photogrammetric reconstruction gives good results

in large features with enough detail, it tends to have a hard time with thin structures. It

94

Figure 7.19: EPE - Photogrammetric Reconstruction of Single Stack

95

can be seen in Figure 7.20 that the pipe structures in front of the stack are only partially

reconstructed. A last post-processing step would be required in this case to complete the

pipe in the CAD and clean up the rest of the STL before sending it to our trajectory

generation algorithm to generate a close-quarter inspection trajectory.

Figure 7.20: EPE - STL Model of the Reconstructed Stack

RTAB-Map - Inside Boiler Furnace

We were able to generate reconstructions in different environments while at the El Paso

Electric Rio Grande power plant. One of the most interesting environments was the inside

of the boiler of one of the power units. The environment proved to be one of the most

complex our systems encountered for multiple reasons. The inside of the structure is

covered in dirt, ash, rust, and other debris. Also, the inside of the structure is pitch dark

since the entire area is closed off to any outside ventilation and lighting. Figure 7.21 shows

the only entrance to the boiler. This makes it a hard environment to reconstruct with

the current sensor capabilities. We were provided spotlights to illuminate the inside of the

structure but this was still a difficult environment. Figure 7.22 depict the environment

inside the boiler. In that image, we were setting up the drone and testing the sensors inside

96

the structure. Part of those sensors were the RGB and depth cameras we employ for the

reconstructions.

Figure 7.21: EPE - Boiler Entrance

Figure 7.22: EPE - Boiler Environment

97

We were able to generate some reconstruction on the inside using the RTAB-Map sys-

tems in both the handheld platform and the iPhone. Figures 7.23 and 7.24 depict one of

the reconstructions of the inside of the boiler. Both reconstructions are the same but one

has the color enabled for each pixel while the other has the color disabled. Although we

also did some flight tests in an attempt to capture more images at altitude for the recon-

struction we were unable to improve our results. This was mainly due to how hard it was

for our drone platform to fly correctly and localize itself within the inside surfaces. It was

difficult because of the lighting but also because of the debris particulates that would fly

as soon as the propellers began spinning. Also, due to the boiler unit having to go back

online after the planned maintenance had concluded, we were not able to get access to the

boiler again.

Figure 7.23: EPE - RTAB-Map Reconstruction of Inside of a Boiler - Color Disabled

98

Figure 7.24: EPE - RTAB-Map Reconstruction of Inside of a Boiler - Color Enabled

RTAB-Map - Rooftop Stacks Initial Multi-Session Map

For these experiments, we decided to validate the data-collection system from the drone

platform with the map created of the rooftop environment. The map was created with

multiple session maps merged into one. Figures 7.25 and 7.26 depict the main map along

with the trajectories traveled to obtain the individual point clouds. Those individual point

clouds were collected with a variety of setups, which include the LiDAR sensor from an

iPhone 12 Pro running RTAB-Map, a handheld Jetson payload running RTAB-Map ROS

with an Intel RealSense D435 depth camera, and finally the same payload but on the drone

flying. We flew the UAV to make sure it could localize itself within this environment. The

red trajectory next to the yellow trajectory visible in Figure 7.26 depicts a trajectory the

drone flew in localization mode. The structure that is displayed in these figures in only the

point cloud data captured by the sensors and reconstructed by the RTAB-Map system.

The resulting reconstructed model can be seen in Figure 7.27. This model could then

be saved as an STL model and sent to the trajectory generation algorithm. Note that the

99

Figure 7.25: Initial Map of Rooftop Environment with Visible Mapping Trajectories (West

Heading)

Figure 7.26: Initial Map of Rooftop Environment with Visible Mapping Trajectories (North

Heading)

100

reconstructed model is made up of all the individual inspection paths depicted in Figures

7.25 and 7.26.

Figure 7.27: Reconstructed Model of Rooftop Environment

Mapping of New Section of Stack at Altitude

Our last test after seeing that the drone could localize itself within the pre-flight environ-

ment was to test if the drone could then map a new section of the environment that had

not been mapped before. A decision was made to send the UAV in a vertical path along

the entire height of one of the stacks. Figure 7.28 shows the gradual mapping of the UAV

with RTAB-Map Ros. Note that the reconstruction was complete offline after the UAV

stored the sensor data in a bagfile.

Figure 7.29 depicts the trajectory traveled by the drone with the mapping output at

altitude. Here, the system will use odometry and the data of the previous map to first

localize itself and then continue mapping. The red line on the right image depicts the path

traveled by the drone to create this map. Figure 7.30 shows the UAV flying the same path.

Figure 7.31 shows the final map obtained after the mission is complete and RTAB-Map

101

(a) 26 Second Time Stamp (b) 28 Second Time Stamp

(c) 42 Second Time Stamp (d) 49 Second Time Stamp

Figure 7.28: RTAB-Map ROS Running in Mapping Mode

102

has merged the original map with the new section mapped by the Drone. Some post-

processing was done in MeshLab to clean up the model. After this step, the model could

then be converted into any mesh file for further use like STL for our trajectory generation

algorithm.

Figure 7.29: RTAB-Map in Mapping Mode from Drone Flying at Altitude

103

Figure 7.30: UAV Collecting Data at Altitude

Figure 7.31: Final Map Displayed in MeshLab After Post-Processing

104

Chapter 8

Conclusions

8.1 Summary

This study presents a means to do close-quarter inspections of structures by using an

existing CAD model with a UAV system that does not require GPS to complete its mission.

Doing inspections using robotic technology allows workers to not be involved in hazardous

environments while saving time and money thus being more efficient. This system can also

be complemented with most of the existing developments for collision avoidance making it

suitable for almost any mission thinkable ranging from energy to defense applications. The

use of Artificial Intelligence provides a means to efficiently classify and segment inspection

images to deliver to human inspectors and maintenance crews. Also, structures that lack

initial CAD models could be reconstructed in an efficient manner in order to employ our

trajectory generation algorithm.

8.1.1 Trajectory Generation

The offline trajectory generation method we present allows the UAV platform to reach

virtually all surfaces within a structure. The system also takes into account any overhangs

that might be present within the structure and the algorithm uses vertical layer comparison

to account for such features and prevent collisions. Furthermore, the system employs a

closest-neighbor approach for connecting subsequent outlines within a layer thus resulting

in a single pass through each trajectory point. This yields the most efficient approach

to travel to all those trajectory points in the shortest and fastest route. In scenarios

105

where obstacles that were not accounted for are present in the trajectory, the drone must

operate with a simultaneous obstacle detection system to maneuver around such obstacles.

Once the UAV transmits all the inspection data to the ground station computer, the CAD

model could be updated offline with the reconstruction technologies available to us and

the trajectory could be calculated one more time. This means that after each inspection

the trajectory could be updated to account for any differences between the CAD model

and the structure itself. The trajectory system was tested and validated at the cSETR’s

Technology Research and Innovation Acceleration Park research hangar located in Fabens,

Texas. Those results can be seen in Chapter 7.

8.1.2 Defect Detection

The use of Artificial Intelligence in the form of Convolutional Neural Networks proves

beneficial to process the large amounts of inspection data collected by such inspections.

Our system has the capability to not only classify the defects in real time but also apply

image segmentation to the defect images offline. This is beneficial to the operators since it

allows the defects to be highlighted. The defect data can then be visualized along with the

defect location. This would provide a user-friendly defect report for maintenance crews.

8.1.3 3D Reconstruction

While testing our trajectory generation system at the Fabens Facility we identified the need

to reconstruct structures and environments in order to use our system. We identified multi-

ple approaches but settled on two main approaches, each employing different sensors in our

platform. Photogrammetry provides a decent reconstruction but must be scaled after the

model is generated. Scaling the model is trivial and the only requirement is a comparison

between two points of interest in both the actual structure and the reconstructed model.

The photogrammetry results depend heavily on the quality of the images provided by the

software and the lighting conditions. The second approach we identified and pursued is the

106

use of the RTAB-Map library which employs the depth information from a depth or LiDAR

camera. This approach yields the best results but is computationally expensive. This ap-

proach must be executed either in the ground station computer or in the iPhone app which

has been fine-tuned to run correctly with the hardware characteristics of the phone. The

results from either of the two systems are compatible with the other. This means that even

though you can initiate a reconstruction in the phone platform, you can continue mapping

in the Jetson platform adding to the initial map. Both approaches provided positive results

for the reconstruction under different conditions. The results can be seen in Chapter 7.

The Fabens research hangar model was reconstructed using the photogrammetry approach

while the El Paso Electric reconstruction was completed with the RTAB-Map approach

and the use of the iPhone lidar sensor and the Intel depth camera.

8.2 Future Work

The long-term goal of this work is to make the trajectory generation algorithm available for

further advancement by other investigators and to increase its current applications. We plan

on upgrading the algorithm to allow the selection of individual components within the CAD

assembly to be selected and inspected individually. We also hope to embed the CAD and

the planned trajectory to the reconstruction algorithms used to have a better localization

framework for the point cloud reconstruction effort. We hope to upgrade to a more powerful

onboard computer to allow the reconstruction, defect detection, and localization to happen

at the same time within the flight missions. Although defect detection has been refined

using other frameworks by other team members, we hope to continue working with AlexNet

and eventually generate a user-friendly interface to post-process the inspection data. We

want to continue working in capturing high quality images from the inspection camera.

We hope by doing this we could then integrate that new data into a reconstruction using

photogrammetry and compare the resulting reconstructions from point cloud data and

from images. This could help further refine the reconstructed model to have as much detail

107

present as possible. We hope this technology could help other industries as well.

108

References

[1] Alicevision. https://alicevision.org/#. Accessed: 2021-5-3.

[2] Jetscan. https://www.hackster.io/devshank/jetscan-16a521. Accessed: 2021-

09-30.

[3] Rtab-map. http://introlab.github.io/rtabmap/. Accessed: 2021-12-10.

[4] Rtab-map in ros. https://www.theconstructsim.com/robotigniteacademy_

learnros/ros-courses-library/rtab-map-in-ros-101/, note = Accessed: 2021-

12-6.

[5] Francisco Agüera-Vega, Fernando Carvajal-Ramírez, Patricio Martínez-Carricondo,

Julián Sánchez-Hermosilla López, Francisco Javier Mesas-Carrascosa, Alfonso García-

Ferrer, and Fernando Juan Pérez-Porras. Reconstruction of extreme topography from

uav structure from motion photogrammetry. Measurement, 121:127–138, 2018.

[6] F Farnood Ahmadia, MJ Valadan Zoeja, H Ebadia, and M Mokhtarzadea. The appli-

cation of neural networks, image processing and cad-based environments facilities in

automatic road extraction and vectorization from high resolution satellite images. The

international archives of the photogrammetry, remote sensing and spatial information

sciences, 37:585–592, 2008.

[7] Haruhiko Harry Asada, Anirban Mazumdar, Ian C. Rust, and Jun Fujita. Appa-

ratus and method of wireless underwater inspection robot for nuclear power plant.,

September 9 2019. US Patent 10,421,192 B2.

[8] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (slam): part

ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

109

https://alicevision.org/#
https://www.hackster.io/devshank/jetscan-16a521
http://introlab.github.io/rtabmap/
https://www.theconstructsim.com/robotigniteacademy_learnros/ros-courses-library/rtab-map-in-ros-101/
https://www.theconstructsim.com/robotigniteacademy_learnros/ros-courses-library/rtab-map-in-ros-101/

[9] Andrew C Brown and Deon De Beer. Development of a stereolithography (stl) slicing

and g-code generation algorithm for an entry level 3-d printer. In 2013 Africon, pages

1–5. IEEE, 2013.

[10] Michael Burri, Nikolic Janosch, Christoph Hurzeler, Gilles Caprari, and Roland Sieg-

wart. Aerial service robots for visual inspection of thermal power plant boiler systems.

In International Conference on Applied Robotics for the Power Industry (CARPI),

Switzerland, pages 70–75, 2012.

[11] Young-Jin Cha, Wooram Choi, and Oral Büyüköztürk. Deep learning-based crack

damage detection using convolutional neural networks. Computer-Aided Civil and

Infrastructure Engineering, 32(5):361–378, 2017.

[12] Brodie Chan, Hong Guan, Jun Jo, and Michael Blumenstein. Towards uav-based

bridge inspection systems: A review and an application perspective. Structural Mon-

itoring and Maintenance, 2(3):283–300, 2015.

[13] Ismael Colomina and Pere Molina. Unmanned aerial systems for photogrammetry and

remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing,

92:79–97, 2014.

[14] P. Corke. Robotics, Vision and Control, Fundamental Algorithms in MATLAB.

Springer Berlin Heidelberg, 2011.

[15] Hainan Cui, Shuhan Shen, Wei Gao, Hongmin Liu, and Zhiheng Wang. Efficient and

robust large-scale structure-from-motion via track selection and camera prioritization.

ISPRS Journal of Photogrammetry and Remote Sensing, 156:202–214, 2019.

[16] Mathaus Ferreira da Silva, Leonardo M Honório, Andre Luis M Marcato, Vinicius F

Vidal, and Murillo F Santos. Unmanned aerial vehicle for transmission line inspec-

tion using an extended kalman filter with colored electromagnetic interference. ISA

transactions, 100:322–333, 2020.

110

[17] Kesse Jonatas de Jesus, Henry Julio Kobs, Anselmo Rafael Cukla, Marco Antonio de

Souza Leite Cuadros, and Daniel Fernando Tello Gamarra. Comparison of visual slam

algorithms orb-slam2, rtab-map and sptam in internal and external environments with

ros. In 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium

on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE), pages 216–

221. IEEE, 2021.

[18] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part

i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[19] Daniel C Gandolfo, Lucio R Salinas, Mario E Serrano, and Juan M Toibero. En-

ergy evaluation of low-level control in uavs powered by lithium polymer battery. ISA

transactions, 71:563–572, 2017.

[20] Carsten Griwodz, Simone Gasparini, Lilian Calvet, Pierre Gurdjos, Fabien Castan,

Benoit Maujean, Gregoire De Lillo, and Yann Lanthony. Alicevision meshroom: An

open-source 3d reconstruction pipeline. In Proceedings of the 12th ACM Multimedia

Systems Conference, pages 241–247, 2021.

[21] Lei He, Nabil Aouf, and Bifeng Song. Explainable deep reinforcement learning for uav

autonomous path planning. Aerospace Science and Technology, 118:107052, 2021.

[22] San Jiang, Cheng Jiang, and Wanshou Jiang. Efficient structure from motion for

large-scale uav images: A review and a comparison of sfm tools. ISPRS Journal of

Photogrammetry and Remote Sensing, 167:230–251, 2020.

[23] Christine A Jones and Elizabeth Church. Photogrammetry is for everyone: Structure-

from-motion software user experiences in archaeology. Journal of Archaeological Sci-

ence: Reports, 30:102261, 2020.

111

[24] N. Kawauchi, S. Shiotani, H. Kanazawa, T. Sasaki, and H. Tsuji. A plant mainte-

nance humanoid robot system. In IEEE International Conference on Robotics and

Automation, Vol. 3, IEEE, Taipei, Taiwan, pages 2973–2978, 2003.

[25] Ho Moon Kim, Kyeong Ho Cho, Fengyi Liu, and HyoukRyeol Choi. Development of

cable climbing robotic system for inspection of suspension bridge. In International

Symposium on Automation and Robotics in Construction, pages 1422–1423, 2011.

[26] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. Data-dependent

initializations of convolutional neural networks. arXiv preprint arXiv:1511.06856,

2015.

[27] Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual

simultaneous localization and mapping library for large-scale and long-term online

operation. Journal of Field Robotics, 36(2):416–446, 2019.

[28] Shengyuan Li and Xuefeng Zhao. Image-based concrete crack detection using convolu-

tional neural network and exhaustive search technique. Advances in Civil Engineering,

2019, 2019.

[29] Mario Michelini and Helmut Mayer. Structure from motion for complex image sets.

ISPRS Journal of Photogrammetry and Remote Sensing, 166:140–152, 2020.

[30] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–

1262, 2017.

[31] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and R. Siegwart. A uav

system for inspection of industrial facilities. In IEEE Aerospace Conference, Montana,

pages 1–8, 2013.

[32] Felix Nobis, Odysseas Papanikolaou, Johannes Betz, and Markus Lienkamp. Persistent

map saving for visual localization for autonomous vehicles: An orb-slam 2 extension.

112

In 2020 Fifteenth International Conference on Ecological Vehicles and Renewable En-

ergies (EVER), pages 1–9. IEEE, 2020.

[33] Angel Ortega, Julio Reyes Muñoz, Michael McGee, Ahsan R Choudhuri, and Angel

Flores-Abad. Drone inspection flight path generation from 3d cad models: Power plant

boiler case study. In AIAA Scitech 2020 Forum, page 1091, 2020.

[34] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, and Xiang Chen. A deep

learning approach to the classification of 3d cad models. Journal of Zhejiang University

SCIENCE C, 15(2):91–106, 2014.

[35] Tarek Rakha and Alice Gorodetsky. Review of unmanned aerial system (uas) appli-

cations in the built environment: Towards automated building inspection procedures

using drones. Automation in Construction, 93:252–264, 2018.

[36] Ivan Reljić, Ivan Dunđer, and Sanja Seljan. Photogrammetric 3d scanning of physical

objects: Tools and workflow. TEM Journal, 8(2):383, 2019.

[37] Julio A. Reyes-Munoz and Angel Flores-Abad. A mav platform for indoors and out-

doors autonomous navigation in gps-denied environments. In 2021 IEEE 17th Interna-

tional Conference on Automation Science and Engineering (CASE), pages 1708–1713,

2021.

[38] Mousumi Rizia, Angel Ortega, Julio Reyes Muñoz, Michael McGee, Ahsan R Choud-

huri, and Angel Flores-Abad. A cam/am-based trajectory generation method for aerial

power plant inspection in gps-denied environments. In AIAA Scitech 2020 Forum, page

0858, 2020.

[39] Mousumi Rizia, Julio A Reyes-Munoz, Angel G Ortega, Ahsan Choudhuri, and Angel

Flores-Abad. Autonomous aerial flight path inspection using advanced manufacturing

techniques. Robotica, pages 1–24, 2022.

113

[40] H. T. Roman. Robotic applications in PSE&G’s nuclear and fossil power plants. In

IEEE Transactions on Energy Conversion Conference Vol. 8, No. 3, pages 584–592,

1993.

[41] Tianshu Ruan, V Amrusha Aryasomyajula, and Nasser Houshangi. Performance of

monocular and stereo camera in indoor environment for visual slam using orb method.

In 2022 IEEE International Conference on Electro Information Technology (eIT),

pages 273–278. IEEE, 2022.

[42] J Savall, Alejo Avello, and Leoncio Briones. Two compact robots for remote inspection

of hazardous areas in nuclear power plants. In Proceedings 1999 IEEE International

Conference on Robotics and Automation (Cat. No. 99CH36288C), volume 3, pages

1993–1998. IEEE, 1999.

[43] M. Shan, F. Wang, F. Lin, Z. Gao, Z. Tang, Y., and M. Chen, B. Google map

aided visual navigation for uavs in gps-denied environment. In IEEE International

Conference on Robotics and Biomimetics (ROBIO),Zhuhai, China, pages 114–119,

2015.

[44] Amit Shukla and Hamad Karki. A review of robotics in onshore oil-gas industry. In

2013 IEEE International Conference on Mechatronics and Automation, pages 1153–

1160. IEEE, 2013.

[45] Amit Shukla, Huang Xiaoqian, and Hamad Karki. Autonomous tracking of oil and gas

pipelines by an unmanned aerial vehicle. In 2016 IEEE 59th International Midwest

Symposium on Circuits and Systems (MWSCAS), pages 1–4. IEEE, 2016.

[46] Kevin J Wu, Thomas Stan Gregory, Julian Moore, Bryan Hooper, Dexter Lewis, and

Zion Tsz Ho Tse. Development of an indoor guidance system for unmanned aerial

vehicles with power industry applications. IET Radar, Sonar & Navigation, 11(1):212–

218, 2017.

114

[47] S Yamamoto. Development of inspection robot for nuclear power plant. In IEEE

International Conference on Robotics and Automation, Vol. 2, IEEE, Nice, France,

pages 1559–1566, 1993.

[48] Suguru Yokoyama and Takashi Matsumoto. Development of an automatic detector of

cracks in concrete using machine learning. Procedia engineering, 171:1250–1255, 2017.

[49] Xu Zhang, Bin Xian, Bo Zhao, and Yao Zhang. Autonomous flight control of a

nano quadrotor helicopter in a gps-denied environment using on-board vision. IEEE

Transactions on Industrial Electronics, 62(10):6392–6403, 2015.

[50] Qing Zhu, Zhendong Wang, Han Hu, Linfu Xie, Xuming Ge, and Yeting Zhang. Lever-

aging photogrammetric mesh models for aerial-ground feature point matching toward

integrated 3d reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing,

166:26–40, 2020.

115

Curriculum Vitae

Angel Guillermo Ortega Castillo was born on August 27, 1994, in Mexico City, Mexico. The

fourth son of Salvador Ortega Oropeza and Rosa Isela Castillo Hernandez, he graduated

from J.M. Hanks High School, El Paso, Texas, in the spring of 2012. He entered The

University of Texas at El Paso in the fall of 2012. He received his bachelor’s degree in

Mechanical Engineering in the spring of 2016, achieving CUM LAUDE and receiving the

Mechanical Engineering Department’s Academic Performance Award. For this, he was

invited to complete his Doctorate at The University of Texas at El Paso by the then Chair,

Dr. Ahsan Choudhuri.

In the fall of 2016, he entered the Graduate School of The University of Texas at El Paso.

While pursuing his doctorate degree in Mechanical Engineering he worked as a Teaching

and Research Assistant. He instructed over 2,200 students over a span of 5 years, first

as teaching assistant lead instructor and then as instructor of record. He participated in

research funded by the Department of Energy which employed the use Unmanned Aerial

Vehicles for inspection purposes. He is a member of the Pi Tau Sigma UTEP Chapter

Honor Society.

Contact information: agortega@miners.utep.edu

orte94oros@gmail.com

Permanent address: 8441 Lasso Cir., El Paso, Texas 79907

116

	CAD-Based Aerial Trajectory Generation And 3D Mapping For Close-Quarter Inspection
	Recommended Citation

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Research Objectives
	Scope
	Methodology

	Literature Review
	Trajectory Generation
	Defect Detection
	3D Reconstruction
	Photogrammetry
	SLAM

	Trajectory Generation from CAD Models
	CAD Model
	Slicer Algorithm
	Outline Algorithm and Wall Offset
	Polyshape and Matrix Interconnection
	Vertical Layer Comparison
	Trajectory Generation
	Yaw Generation for Attitude Control
	Final Trajectory

	Crack Detection using Convolutional Neural Networks
	Training Dataset Pre-Processing
	Neural Network Training
	Neural Network Validation
	Testing Environment and Image Sectioning
	Neural Network Testing
	Image Segmentation

	3D Reconstruction
	Payload Sensor Parameters
	Photogrammetry
	AliceVision Meshroom Background
	Meshroom Implementation

	ORB-SLAM2
	Map Saving and Loading Extension
	Mesh From Point Cloud Data

	Open3D
	RTAB-Map
	RTAB-Map Background
	RTAB-Map Implementation

	The UAV Platform
	The UAV System Modeling
	UAV Control System

	Experimental Studies
	Trajectory Simulation Study
	Experimental Platforms
	Experimental Handheld Platform
	Experimental UAV Platform

	Experimental Environments
	Aerospace Center Fabens Facility
	El Paso Electric - Rio Grande Plant

	Experimental Results
	Fabens - Validation of Reconstruction with Photogrammetry and Trajectory Generation
	El Paso Electric - Validation of Reconstruction in Industrial Settings with Photogrammetry and RTAB-Map

	Conclusions
	Summary
	Trajectory Generation
	Defect Detection
	3D Reconstruction

	Future Work

	References
	Curriculum Vitae

