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Abstract

Inspection of industrial and scientific facilities is a crucial task that must be performed regularly. These in-

spections tasks ensure that the facility’s structure is in safe operational conditions for humans. Furthermore,

the safe operation of industrial machinery, is dependent on the conditions of the environment. For safety

reasons, inspections for both structural integrity and equipment is often manually performed by operators

or technicians. Naturally, this is often a tedious and laborious task. Additionally, buildings and structures

frequently contain hard to reach or dangerous areas, which leads to the harm, injury or death of humans.

Autonomous robotic systems offer an attractive solution to the automation of inspections. This is due to

their ability to reach remote and dangerous areas. Consequently, significant research efforts have been made

for the use Unmanned Aerial Vehicle (UAV) and drones as flight inspection units. Compared to Unmanned

Ground Vehicle (UGV), drones offer significantly better acrobatic and agility performance.

Needless to say, an autonomous drone must posses certain abilities to carry out inspections with little or

no human intervention. Foremost, the drone must be able to position and orient itself towards inspection

waypoints. Moreover, the drone must be able to use a map of the environment to identify and navigate to

areas of interest on an inspection mission.

These abilities alone do not provide the drone the autonomy and efficiency required to perform quality

inspections within required time frames. The inspection problem is often framed as a way to maximize the

amount of volume a drone can cover through the use of coverage path planning. Therefore, drone systems

spend most of the time inspecting areas or objects that produce little to no value for identifying defects.

In addition, more time and drone flights must be performed to cover an entire area. Thus, this thesis

proposes a novel approach to perform intelligent inspections using deep learning and Quick Response (QR)

codes to identify, prioritize and segment objects of interest in the context of an inspection. Additionally,

a novel navigation architecture that can find and prioritize collision-free trajectories is proposed. This

architecture proposes the use of hierarchical state machines to capture complex reactive behavior found

on a task driven robot. In conjunction, the proposed systems solve the inspection problem by identifying,

prioritizing, labelling and navigating towards areas or objects of interest.

vi
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Chapter 1: Introduction

Mobile robots have been used for the inspection of industrial and scientific environments. Robots can

potentially improve inspection tasks by making them safer and faster on tasks such as welding, painting

and packaging [1]. Additionally, a robot can utilize a multitude of sensors such as cameras, range detectors,

radar and depth sensors that yield a greater set of data, compared to just visual human inspection. The

data gathered from these sensors provides accurate measurements for a multitude of environment variables

that can assist in the process of automating human related tasks. Therefore, aerial mobile robots or drones,

have recently gained popularity in the field of automated inspections due to their low-cost, speed, agility

and inspection data output. In contrast, human inspection requires qualified personnel to visually inspect

structural and/or equipment, which is time consuming and in some cases, even dangerous. Thus, the objective

of an automated inspection task, is to detect structural or equipment damage or defects1.

However, drone robots still lack the autonomy to determine whether there are defects or not while

performing a flight mission. Current approaches heavily rely in the use of Ground Control Station (GCS),

to plan, execute and monitor drone flight missions. Other approaches simply require an operator to conduct

the mission manually through the use of a remote controller. Consequently, drone inspections are manual,

slow and energy inefficient, as several fly missions are required to fully inspect an area.

This research aims to add a layer of automation and intelligence using deep learning neural networks

and Quick Response (QR) codes as navigation markers. In addition, a novel drone navigation architecture

with priority oriented navigation goals is presented in this thesis. This navigation architecture has the

autonomy to choose between a low priority inspection plan, and high priority object or QR detection marker

by interrupting and re-planning the original navigation trajectory, with a new higher priority trajectory.

This chapter will introduce the research problem, followed by aims, objectives and research significance.

Additionally, several background research sections are presented at the beginning of this chapter. These

sections provide the background study and concepts used to develop the ideas presented in this thesis.

Finally, a section is dedicated to outline the chapters included in this thesis document.

1A damaged or defect is defined as visual signs of wear, tear or environment exposure that could potentially compromise the

functionality and safety of the inspected item
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1.1 Research Problem

Performing inspections using drones is certainly not a new research topic. Drone systems have been pro-

posed for the inspection of public and private infrastructure such as bridges, power plants, sewers and wind

turbines [2]. Inspection drones have also been used in areas such as cartography, agriculture, volcanology

and photogrammetry [3]. Nonetheless, there is still a great interest on increasing the autonomy of drones,

specifically on running Artifical Intelligence (AI) algorithms directly on the drone flight control computer.

Increasing the level of autonomy on a drone would reduce human intervention, while at the same time in-

creasing the decision making process of the drone. Moreover, increasing the level of autonomy would result

in energy efficient inspections, as the number of flights will be reduced by limiting the inspection problem

to observing and prioritizing detected areas, objects or markers.

Several efforts have been made to include deep learning to drones, with the aim to perform image

recognition and segmentation [4, 5]. Traffic [6], agriculture [7] and natural disaster [8] surveillance, landing

marker detection [9] and object marker detection [10] are some of the applications that make use of deep

learning on drones.

Nevertheless, these applications are fairly limited on what they can accomplish. As an example, deep

learning for object recognition or segmentation are only used as defect markers for post-processing tasks,

as it is the case for agriculture surveillance. Moreover, these defect markers do not affect the flight mission

of the drone, as they are simply ignored for navigation purposes. This is troublesome for applications such

as natural disaster surveillance or automated inspections, where further actions need to be taken after a

detection has been confirmed. For instance, in the application of natural disaster surveillance, assistance

should be provided to human subjects in distress or in a dangerous situations by performing a set of actions

or relaying information about the status of the situation.

Ultimately, this leads to inaction and a lack of autonomy, as the drone will not be capable of making

smart and reactive decisions based on the output of its sensors and AI algorithms. This is a problem because

some cases require extra actions to be taken. In the context of inspections, detecting defects on a building

or equipment might require further actions such as navigating to the detected anomaly, recording a video,

obtaining images, or capturing point-cloud data. This is especially important since drone flight time is

limited, so capturing and detecting data becomes a crucial task.

Therefore, in this work, a concrete scenario is presented in section 7.6, where an initial inspection plan is

generated on one of the walls of the National Full-Scale Aerodynamics Complex (NFAC) facility located at

NASA AMES. While performing the initial inspection mission, a QR code marker is detected, which signals

the drone to interrupt the initial inspection trajectory for a new higher priority inspection trajectory task.

The drone then navigates to this new location where the QR code marker was detected. The drone performs
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actions such as recording images, video and point-cloud measurements at the marker’s location. Lastly, the

drone resumes its initial inspection mission and waits for another marker detection.

1.2 Research Aims and Objectives

Given the lack of research and development of drone autonomy in the context of inspections, this study aims

to build and study an autonomous drone that can perform actions based on marker detections using deep

learning and other image based codes. To complete this study, the following items must be accomplished:

1. Study and develop a drone navigation stack that can perform path planning using a map2 (Chapter 4)

2. Identify a suitable deep learning neural network model and a QR system for automated detections

(Chapter 5)

3. Construct and study the framework needed to bridge the gap between object recognition and drone

navigation, which will add a new level of autonomy to the proposed inspection drone system. (Chapter

3)

4. Integrate actions that will improve and enhance the inspection quality (Chapter 6)

Ultimately, this thesis seeks to find an answer to the following specific question:

How can deep learning in conjunction with path planning be used to increase the level of autonomy of a drone

for an inspection task?

1.3 Research Significance

This study will bring in new ideas on how to enhance the autonomy of a drone using path planning and

deep learning neural networks by constructing a new framework that uses image recognition as markers for

path planning. Additionally, this study also contributes to the field of autonomous inspection using drones

by presenting a study case on a scientific environment.

This will address the lack of autonomy found on both commercial and research drones for inspection tasks.

Furthermore, the presented work will fill the technical gap needed to achieve this autonomy by providing the

software tools needed to complete this study. This will result in a reduction of human personnel needed to

2For a definition of a map in the context of this work see section 1.4.1
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inspect structures, reduced facility downtime, an increase of periodic and reliable inspections, and a greater

volume of data such as video, images and point-cloud that will assist in the early detection of damages.

1.4 Mobile Robot Navigation Architecture

An autonomous mobile robot must be able to navigate its environment on both static and dynamic objects3.

Furthermore, it must obtain data from sensors and interpret it in a way that can be used to both localize

and position the robot. Thus, a navigation architecture integrates components that can accomplish these

tasks. For the majority of mobile robots, a navigation architecture requires two main components: Path

planning and collision avoidance. Path planning tries to find a trajectory given a map. Its main objective

is to change the robot from an initial state pinitial to a goal state pgoal. In contrast, collision avoidance uses

real-time sensor information to perform fast and dynamic avoidance of obstacles.

Another important aspect of navigation is the discretization of a continuous environment. This must

always be the case before performing path planning, and it can have a great impact on the performance

of the navigation system. For example, high resolution maps greatly increase the memory and storage

requirements, which subsequently affects the computational complexity required for navigation, and the

real-time response of the robotic system.

The following sections present the background study for mobile robot navigation architectures, with

a focus on drone systems. On the first section, environment discretization with octrees and octomap is

presented. This is followed by a brief introduction to path planning, along with the key research and

techniques relevant to this thesis.

1.4.1 Octrees and Octomap

The first step in any navigation task is to transform a continuous environment into its discrete counterpart

[11]. This can be accomplished using ranging sensor data and storing it into a spatial data structure. Some

examples of spatial data structures are grid-maps, quad-trees, oc-trees and k-d-trees.

Although grid-maps are a popular choice in ground mobile robots, for drone applications this approach

is impractical due to the memory size needed to store medium to large maps in IR3. This fact is especially

severe for embedded computers with constrained memory resources. For this reason, tree data structures are

preferred over grid-maps, specifically for mobile robots that are not constrained in IR2. Octrees can consol-

3This study defines static objects as those that cannot or are infrequently positioned into a different location and dynamic

objects those that frequently change positions
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idate large volumes of occupied or unoccupied space into a single voxel. Therefore, for drone applications,

using octrees present an efficient way of creating and storing maps.

Figure 1.1: Example of a octree data structure and its tree representation [12]

An octree is a tree data structure that has exactly 8 node children. An octree is used along with sensor

readings to discretize an environment in IR3, by recursively partitioning space into 8 octants. Figure 1.1

shows an example of the tree structure used to partition space efficiently. Notice how some partitions are

larger than others, this fact is the reason octrees are more efficient at discretizing environments for robotic

applications in IR3, since an octree can cluster portions of a map into bigger voxels.

Octomap is an efficient probabilistic 3D mapping software framework that uses an octree data structure

to generate 3-dimensional maps [12]. The octomap framework is capable of representing occupied space

through the following probabilistic model:

P (n|z1:t) = [1 +
1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1

P (n|z1:t−1)

P (n)

1− P (n)
]−1 (1.1)

Where, zt is a current measurement and P (n), P (n|z1:t−1) is a prior and previous estimate respectively.

Finally, P (n|zt) represents the probability of voxel n to be occupied given sensor measurement zt.

Additionally, the octomap framework uses ray-casting from the sensor’s field of view to occupied voxels to

detect free or unoccupied space. This is a useful feature for path planning, since a configuration space with

occupied and unoccupied partitions is required. Additionally, multiple resolutions from the same octomap

can be queried. This is another useful feature, as there is no need to create multiple resolution scans of the

same environment. Figure 1.2 show that the same octomap can be used at multiple resolutions.

1.4.2 Path Planning

Path planning seeks to find a collision-free trajectory from an initial location pinitial to a target location

pgoal within a reasonable amount of computational time, and with the shortest possible path. As previously
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Figure 1.2: Octomap at different resolution levels [12]

stated, the first step for path planning is to discretize or obtain a map of a continuous environment. Using

this map, a path planner can construct a graph considering cells on Cfree, while simultaneously avoiding any

cells on Coccupied. The constructed graph can be searched using path-finding algorithms such as depth-first,

breadth-first search, dijkstra’s or A* search algorithms to obtain a valid trajectory from pinitial to pgoal.

Apart from graph searching, potential field methods for path planning are also found on the literature.

In contrast to graph based methods, potential methods use gradient field vectors to find collision-free trajec-

tories, much in the same way gravitational or electrical potential gradients are used to find body or electrical

signals trajectories in space. However, these methods will not be covered in this thesis, so they are not part

of the final study.

The next couple of sections introduce key ideas and strategies for graph construction and searching.

1.4.3 Graph Construction

Graph construction produces a graph G = {V,E}, where V is the set of unoccupied partitions or vertices on

Cfree and E is the set of edges that connects all elements in V to its neighbors [13]. Clearly, the first step

to construct a graph G, is to find all the elements V ∈ Cfree. For completeness, every element V ∈ Cfree

should be considered, however, in practice this is often computationally expensive or impractical. For this

reason, there are two main graph construction strategies: structured graph construction and randomized

graph construction.

A structured graph construction leverages the topology of the discretized environment to search for

V ∈ Cfree. For instance, on a binary occupancy grid-map, elements in V can be found by searching all

elements in Cfree, which are represented by a boolean value of 0. Some other examples of structured graph

searches are visibility, cell decomposition, voronoi diagrams, and lattice graphs. Figure 1.3 shows the different

strategies methods for graph construction.

However, for higher dimensional spaces, finding all elements V ∈ Cfree can become impractical. There-

fore, for this case, randomized graph searches on Cfree are used. A randomized graph search randomly

samples elements V ∈ Cfree, so as to reduce the number of elements V on a graph. Rapidly Exploring
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(a) visibility graph (b) voronoi graph

(c) cell decomposition graph

Figure 1.3: Different graph construction strategies for path planning [11]

Random Trees (RRT) is one example of a randomized graph search strategy.

1.4.4 Graph Search

Once a graph is constructed, graph search algorithms can be used to find a trajectory between pinitial and

pgoal. A graph search algorithm attempts to find an optimal path, which for most robotic applications,

refers to finding the shortest path to reach pgoal. Some examples of graph search algorithms are breadth-first

search, depth-first search, dijkstra’s and A* [14].

Furthermore, incremental graph searching and planning can be found on robotic applications. These

search algorithms use previous search results to refine subsequent search queries. Moreover, incremental

path planning constantly updates both the map and graph, which ultimately, results in faster searches.

Popular incremental search algorithms are D* and Life Prolonged A* (LPA*).

Although all search algorithms produce optimal results, in this thesis an A* search was selected. For the

A* algorithm, see Appendix A.

1.5 Hierarchical State Machines

Reactive event-driven software systems are thoroughly used in robotic applications, as it concisely expresses

the reaction nature of many of the robot’s components. For instance, a robot must react to the different

sensor stimuli through a set of pre-determined actions. Consequently, this behavior is often described through

the use of Finite State Machine (FSM). However, expressing complex systems through the use of a FSM,

causes a phenomenon known as state explosion [15], where many of the state machine’s behaviors require

an untractable amount of repeated states and transitions. Therefore, several extensions to traditional FSMs

have been proposed by Harel [16], with the following requirements:
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1. Cluster states together into hierarchical super states

2. Independence or orthogonality between states

3. General transitions

4. Refinement of states

These extensions allow traditional FSMs to cluster functionality into a higher-level states that can all

react to common behavior. Hence, code abstraction can be used to hide complex behavior between states.

Figure 1.4 shows an example how a pedestrian light control [15] leverages hierarchical state machines to design

a complex reactive event-driven system. The following sections will briefly explain important concepts and

background information related to hierarchical states, events, transitions, conditional guards and orthogonal

states.

Figure 1.4: A complex pedestrian control system [15]

1.5.1 Hierarchical States

A hierarchical state is a higher-level state that surrounds one or more lower-level states. Hierarchical states

or super-states, factor out common behavior from lower-sub states. Thus, sub-states can relay events and

transitions to super-states, which ultimately avoids state and event repetition.
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In addition, nesting states into super and sub states, restricts the visibility of a system to a specific

level, which can be extremely useful for debugging. If needed, a system can be zoomed in or zoomed out

to reveal some of its components. For example, in figure 1.4, two main super states OPERATIONAL

and OFFLINE display the first level of abstraction for a pedestrian light controlled system. Moreover, it

can also be observed, that these super states contain several other sub-states that show different levels of

abstraction.

1.5.2 Events and Transitions

An event is a temporal or spatial trigger that causes a transition between states. This is often represented

graphically as an arrow with the event name on it as shown in figure 1.4. Usually after an event transition,

ENTRY and EXIT actions take place. These actions can setup and cleanup state transitions smoothly.

Figure 1.5: Set of transitions and events between states at different levels [15]

For hierarchical state machines, in figure 1.5 notice how events can be directly propagated to four different

state levels, s1→ s2, s2→ s11, s21→ s11 and s11→ s211. Indeed, this is a unique feature of hierarchical

state machines, however, transitions at different hierarchies, will again degrade into a traditional FSM; so,

a design with fewer transitions between levels is preferred.

1.5.3 Conditional Guards

For some state transitions, boolean conditional statements are needed when there is a fork between two or

more state transitions. In the case of extended state machines, this results in an if conditional statement

that is graphically represented as a diamond as shown in figure 1.6. This conditional statement is what is

known as a conditional guard, and it is used to select transitions between states based on events.

Guard conditions are sometimes unavoidable, and are often part of the design requirement of a state

machine. However, too many guard guard conditions, can reduce the quality of the state machine, as it will
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Figure 1.6: Example of a guard condition for a state machine [15]

become harder to maintain and extend.

1.5.4 Orthogonal States

An orthogonal state can be described as the logical AND decomposition of hierarchical states [15]. Simi-

larly, a clustered hierarchical state can be thought of an logical OR decomposition. Figure 1.7 shows a state

machine for a keyboard [15] with two orthogonal regions; MAIN KEYPAD and NUMERIC KEYPAD.

In this example, the keyboard state machine is initially in two different states, DEFAULT AND NUM-

BERS, which represent the AND decomposition previously mentioned. Additionally, notice that the

MAIN KEYPAD orthogonal state can be at either the DEFAULT OR CAPS LOCKED state. Finally,

orthogonal state’s events do not cause transitions on other orthogonal regions, which is also why orthogonal

states show state and event independence.

Figure 1.7: Simple keyboard state machine with two orthogonal regions [15]

1.6 Deep Learning and Neural Networks

Attaching some sort of AI to a robot system has been the ultimate goal for the majority of robotic ap-

plications. Human-like behavior for robots could greatly increase the safety and utility of a great deal of

human-specific jobs. Furthermore, AI intends to increase the level of autonomy of a robot by supplying

the decision making mechanisms typically found on a human or biological organism. This translates to an
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increased level of perception that assists on the selection of adequate actions. Altogether, AI modifies a

robot’s behavior through a higher level of perception and decision making that is based on sensory inputs.

Figure 1.8: Neural network with multiple hidden layers[17]

Recently, there has been a great deal of advances on a subset field of Machine Learning (which is subse-

quently a subset of AI) known as Neural Networks. These type of AI algorithms seek to mimic the behavior

of the human brain using a collection of interconnected artificial neurons known as perceptrons. Neural

networks can contain several hidden layers between the input and output layers as shown in figure 1.8 [17].

This type of network is known as a Deep Learning Neural Network, and it can solve all sorts of interesting

machine learning problems [18]. In this work, an object recognition neural network was used.

The following sections provide the relevant background information related to deep learning and neural

networks. The first section briefly explains neural networks with some mathematical background. This

section is then followed by a short introduction on gradient descent and backpropagation. Finally, this

section concludes with background information on deep learning and convolutional neural networks, both of

which compose most of modern neural networks applications.

1.6.1 Neural Networks

1.6.1.1 Perceptron

Neural networks are made of multiple layers of perceptrons. A perceptron is an idealized mathematical

model of a biological neuron that takes several input values and produces a binary output based on the

weighted sum of the inputs [17]. Figure 1.9 shows a perceptron model with three inputs x1, x2, x3 and one

output y.

Generally, the output y of a perceptron with inputs x1, x2, ..., xn, weights w1, w2, ..., wn and threshold

value b is given by the following functions:
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Figure 1.9: Visual representation of a perceptron model[17]

y =

0, if
∑n

i xiwi ≤ b

1, if
∑n

i xiwi > b

 (1.2)

Equation 1.3 can be compactly expressed in vector notation by x = [x1, x2, ..., xn] andw⊤ = [w1, w2, ..., wn].

Subsequently, the threshold b can be move to the right hand side of the equation to produce the following

equations:

y =

0, if x ·w⊤ + b ≤ 0

1, if x ·w⊤ + b > 0

 (1.3)

1.6.1.2 Activation Functions

Nevertheless, fully interconnected perceptron neural networks cannot solve complex problems due to the

binary nature of its output. This is due to the fact that small variations on weight values can cause large

variations on the neuron’s output. As a consequence of this, training a perceptron network, proves to be a

complicated task as it is difficult to find the appropriate weights that produce the desired output.

Hence, smooth and continuous activation functions are usually preferred over threshold output values.

An optional activation function, is the sigmoid function σ(z) shown in figure 1.10, which takes as input the

dot product z = x ·w⊤. The sigmoid function is defined by the following equation:

σ(z) =
1

1 + e−z
=

1

1 + e−(x·w⊤)
(1.4)
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Figure 1.10: Sigmoid function graph

A more popular choice for an activation function is the piecewise linear function known as the Rectified

Linear Unit (ReLU). The ReLU activation function has become the de-facto standard because it shows better

training performance compared to a sigmoid function. Other useful activation functions found on neural

networks are the Tanh, Hard Tanh and Sign functions, though with the exception of the hard tanh, these

are not widely used on modern networks [19].

1.6.1.3 Neural Network Layers

Similarly to the input and output neuron layers, a hidden neuron layer n can be expressed as a vector

a(n) = [a
(n)
1 , a

(n),...,an
m

2 ]. Hidden layers are interconnected between the input, output and hidden layers

through a set of weights. Figure 1.11 shows the input layer x connected to the first layer a(1) through

a set of weights w(1) = [w1,1, w1,2, ..., w1,n], and a bias vector b.

On closer inspection of neuron a
(1)
1 , it can be seen that its output a

(2)
1 can be given by,

a
(2)
1 = σ(x1w1,1 + x2w1,2 + . . .+ xnw1,n + b

(1)
1 ) = σ(


x1

x2

...

xn

 ·
[
w1,1 w1,2 . . . w1,n

]
+ b

(1)
1 ) (1.5)
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Figure 1.11: A single input layer connected to a hidden layer

Or in a more compact notation,

a
(2)
1 = σ(x ·w(1) + b

(1)
1 ) (1.6)

It then follows that the all neuron outputs for this layer can be represented in matrix notation as


a
(2)
1

a
(2)
1

...

a
(2)
m

 = σ(


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

. . .
...

wm,1 wm,2 . . . wm,n




a
(1)
1

a
(1)
1

...

a
(1)
m

+


b
(1)
1

b
(1)
1

...

b
(1)
m

) (1.7)

Similarly as for a single neuron, this can be re-written more compactly as,
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a(2) = σ(W(1)a(1) + b(1)) (1.8)

In general, these equations relate an input layer a(n−1) to an output layer an, through a weight matrix

W(n) and bias vector bn

1.6.1.4 Cost Functions

A cost function tries to minimize the error between the output value of the neural network ŷ and the true

value of the output y given the set of inputs x for a data set of size n. To quantify the error over a pre-

sented dataset, a quadratic or Mean Squared Error(MSE) function is used [17]. The Mean Squared Error is

represented by the following formula:

C(W,b) =

n∑
k=1

(yk − ŷk)
2
=

n∑
k=1

(yk − σ(Wxk + b))
2

(1.9)

In practice, several other cost functions are used to quantify the networks error. A few examples are

cross entropy, Hinge and Huber cost functions.

1.6.1.5 Gradient Descent

A neural network can be trained to produce a desired output y with the correct selection of weights W, bias

b and input x. However, it will be impractical to assume that these weights can be found experimentally,

due to the large number of weights and biases. Therefore, to automate the process of finding the correct

weights, and thus, train a network, there must exist an operation that minimizes the output of the cost

function C(W,b). Through careful observation, it can be noted that incremental weight changes must be

performed to reduce the output of the cost function 1.9. This can be mathematically expressed through the

use of a gradient descent algorithm [17],

Wk+1 = Wk − η∇C (1.10)

bk+1 = bk − η∇C (1.11)

This iterative process attempts to find a global minima on the multi-variable cost function 1.9 through

the process of choosing a new set of slightly modified set of weights and biases. Finally, the parameter η is

known as the learning rate, and it plays a crucial role on the effectiveness of a trained neural model.
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It can also be noted that there is a large number of weight value corrections that must be computed on

every iteration. Therefore, for practical networks, random batches of inputs are selected on every training

cycle. This is method is known as stochastic gradient descent and it is largely used on modern neural network

architectures.

1.6.1.6 Backpropagation

The previous section demonstrated that weights and biases can be adjusted so that a cost function C(W,b)

can be minimized. Equations 1.10 and 1.11 required the computation of the gradient of the cost function

η∇C. Subsequently, to find the gradient, the partial derivatives of ∂C
∂W and ∂C

∂b must be computed over all

weight and bias values. Computing η∇C, is therefore, inherently expensive, as it requires several arithmetic

operations per weight.

The backpropagation algorithm was introduced as a way to speed up the process of computing the

gradient of the cost function ∇C. The core of the backpropagation algorithm is solve the partial derivatives

∂C
∂W and ∂C

∂b for every weight and bias on the network [17], through the use of the cost function C(W,b).

The backpropagation takes the local error at the left-most or output layer, and then it uses this error to

modify the weights at the previous layer. This is then repeated throughout all layers in the network. The

four fundamental equations for backpropagation are [17]:

δL = ∇aC ⊙ σ′(zL) (1.12)

δl = ((wl+1)T δl+1)⊙ σ′(zL) (1.13)

∂C

∂blj
= δlj (1.14)

∂C

∂wl
jk

= al−1
k δlj (1.15)

1.6.1.7 What is deep learning?

Modern neural networks are capable of decomposing complex problems using deeply nested neuron layers.

Through the use of several layers, a network model can learn to identify specific features on a dataset. For

example, for the image of a human face, a deep neural network can learn to identify distinctive features that

make up a face [17]. These can be thought of as a set of questions that the neural network asks; is there

a nose?, is there a mouth? And what about eyes?.The scope of these questions get narrower as the data
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progresses through the network. Using the same human face analogy, a deeper layer could be attempting

to answer the following questions; Is there an eyebrow?, is there an iris?, what about a pupil?. Eventually,

patterns down to individual pixels could be recognized by a deeply nested network. Deep learning, thus, is

a neural network with multiple layers that is able to recognize patterns at multiple levels.

However, multiple layered networks present a challenge for large datasets such as images. The number

of weights parameters increases exponentially, which causes the training process to become more difficult.

As a result, development of new techniques such as Convolutional Neural Networks have been the result of

pushing the boundaries of state-of-the-art deep learning algorithms.

1.6.2 Convolutional Neural Networks

Traditional deep neural networks take an input vector x as a set of uncorrelated values [17]. For instance,

an image with a resolution of 28 by 28 pixels can be decomposed as a vector of length of 28x28 = 784, which

correspond to an input layer of 784 neurons. This traditional approach will give equal importance to every

single pixel input, with the same equal importance on its weights and bias values. As a result of this, this

network architecture will need to identify per pixel patterns that determine features for a true output value.

Moreover, this network does not consider the spatial structure of the data. For this reason, Convolutional

Neural Networks were introduced as an alternative to traditional neural networks.

Figure 1.12: Convolutional neural network with local receptive fields[17]

A Convolutional Neural Network uses local receptive fields, shared weights and pooling to detect spatial

features on a set of input data [17]. These networks are well-suited for image classification and segmentation,

as they can detect local features. Furthermore, convolutional networks can be trained faster than traditional

neural networks due to their lower number of weight parameters. Figure 1.12 shows the basic principle of

what a convolutional network is and how it extracts local features through the use of its receptive fields.
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1.7 Thesis Outline

Chapter one presents the background study, research problem, questions, objectives and significance. This

chapter establishes the research topic and why it is important in the context of autonomous inspections.

Chapter two will present the literature review of path planning for drones followed by a review of deep

learning neural network applications on autonomous drones. This chapter identifies key innovations used on

autonomous inspections.

Chapter three discusses the methodology and simulations used in the development of the work presented

on the following chapters. This chapters serves as an introduction to the tools and ideas for the software

development of this thesis.

Chapter four presents the methodology used to develop a innovative drone navigation stack that can avoid

both static and dynamic obstacles. In addition, a priority oriented global path planner is also presented in

this chapter.

Chapter five will introduce the methodology used to develop an object recognition and localization system

using deep learning neural network and QR codes.

Chapter six presents the methodology developed to create inspection waypoints on octomaps as well as

on object and QR detections.

Chapter seven shows the conclusions and a case study that demonstrates an inspection mission using the

proposed methods and software.
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Chapter 2: Literature Review

2.1 Drone Inspection

UAV automated inspection systems have recently gained research popularity due to the abundance of hard-

ware and software tools to perform safe and repeatable flights. Plenty of drone platforms have been proposed

to solve a great deal of inspection tasks. For instance, Banic et al. [20] proposed a UAV vision system for

railway infrastructure inspection and monitoring using a single derivative Canny Edge detection and a K-

nearest neighbor algorithm to detect and classify rail track damage. A similar study by Mao et al. [21]

developed a drone detection system using Histogram of Oriented Gradients (HOG) and a Support Vector

Machine (SVM) for the inspection of power transmission lines. The SVM model was assisted by a Principal

Component Analysis (PCA) algorithm to increase the processing speed at the cost of accuracy. This study

determined that HOG and PCA assisted SVM can reach an accuracy of 85.2% for the the detection of

damaged power lines. In both of these cases, in can be observed that the computer vision algorithms are not

part of the flight strategy of the drone, and are only used as post-processing tools for detection. Moreover,

these are algorithms are highly specialized for their intended application, which means that these methods

are not portable to other inspection tasks.

Other inspection methods still rely on a human operator to flight and inspect an area. Such is the case

for the study done by Marecelo Teixeira et al. [22] where they proposed a drone for structural inspection

that can be controlled through a set of head and motion gestures using the google glasses. Moreover, this

drone directly streams the captured video to the glasses, so that the user can visually inspect a building.

A similar example was proposed by Seo et al. [23] with a five stage process to safely and manually inspect

a bridge. In their study, Seo et. al used a DJI drone to capture high resolution images that were visually

evaluated by a local department of transportation. The study concluded that drone inspections can be

performed, but weather conditions and operator flight experience can become an issue for routinely and

reliable inspections. These study cases present one end of the spectrum for drone inspections, in which they

do not present neither the navigation or detection autonomy for an inspection task. Both tasks rely on a

human operator to navigate an environment and detect defects on an input sensor or image. Consequently,

these drone platforms are extremely limited from an autonomy standpoint and do not offer a solution to the

problem of automated inspections.

Lastly, Irizarry et al. [24] explored the usability of drones as inspection tools for safety, by heuristic

evaluations of user interfaces. The aim of this study was to evaluate the feasibility of drone inspections

for construction sites through the use of mobile phones and tablets. At the end of their study, Irizarry et
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al. concluded that the ideal safety inspection drone should have autonomous navigation, voice interaction,

environmental applicability, high resolution cameras, a multitasking application, and a collaborative user

interface. These set of requirements were found to be lacking on the previous proposed drone systems, and

as it will be shown, it can also be demonstrated that most drones lack one or more feature requirements

proposed on this study.

Table 2.1: Drone Inspection Systems Review

Author & Year Inspection Task Autonomy Level Deep Learning Enabled

Zahid et. al 2020 Power Lines Manual Yes

Mc Aree et al. 2016 General Inspection Semi-autonomous No

Zhang et al. 2022 Power Lines Manual Yes

Mao et al. 2019 Power Line Manual No

Besada et al. 2018 General Inspection Autonomous No

Seo et al. 2018 Bridges Manual No

Banic et al. 2019 Railways Manual No

Ashour et al. 2016 Construction Autonomous No

Teixeira et al. 2014 General Inspection Manual No

Zefir at al. 2018 Solar Panels Autonomous No

Irizarry et al. 2012 Construction Manual No

Shivauddin et al. 2019 Wind turbines Manual Yes

Nevertheless, other drone inspection research efforts have concentrated on including deep learning al-

gorithms to assist with the detection and classification of defects for several inspection applications. One

example is the work of Siddiqui et. al [25], where a remotely controlled drone was used to capture images

on high voltage transmission power lines. The images were processed using a deep learning neural network

framework to detect and localize damaged power lines. Likewise, Shivauddin et. al [26] also used a remotely

controlled drone to inspect wind turbines using a deep learning model. In their work, Shivauddin et. al

used the wind turbine images to train multiple neural network architectures, which were able to achieve

a Mean Average Precision (MAP) of 90.63%. Additionally, they showed that the precision of the models

could be increased by augmenting the training data set. Another study by Zhang et. al [27] demonstrated

a traditional HOG and deep neural network to detect damaged power lines with an accuracy of up 97%.

Moreover, the authors were able to categorize 14 different power line defects using the mentioned methods.

Clearly, these studies show that deep learning and neural networks have practical applications in the
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field of automated drone inspections. However, the proposed methods still rely on manual drone flights

around the inspection area. Other proposed systems do attempt to automate the inspection by using a

GCS for mission planning and logging. An example of such system is presented in the work of Besada et

al. [28] where a mission plan system was proposed as an extension to simple waypoint based GCS. Besada

et al. proposed a Mission Definition System (MDS) with the goal of aerial infrastructure inspections using

high-level mission definition primitives. Their system seeks to facilitate pre-flight mission planning, mission

visualization and post-flight evaluation tools. A similar drone system that uses pre-flight mission software is

showed in the work of Zefri et al. [29]. In their paper, an UAV was used to inspect photovoltaic installations

through the use of thermal and photogrammetry imaging. Both sets of images were processed to generate

visual orthomosaics that were used to detect defects on photovoltaic panels. Zefri et al. concluded that

their study required imaging sensors with higher resolution due to the small scale of the defects encountered

on the panels. A comparable drone system proposed by Ashour et al. [30] uses a GCS connected to a

government database to perform routine inspections on constructions sites. The proposed drone platform

visually inspects a construction site to detect anomalies that could potentially cause a safety hazard.

The previous proposed drone systems do demonstrate a level of autonomy, however, this is only through

the use of a pre-determined flight mission that cannot be changed by the drone. Therefore, a drone will

not be able to plan a different mission mid-flight or avoid dynamic collisions. A proposed solution by Mc

Aree et. al [31] uses a semi-autonomous drone to inspect buildings with complex geometry features. The

drone can assist an operator to maintain a fixed distance to a wall using LiDAR sensor readings. Using this

feature, an operator can maneuver the drone around constrained or difficult to reach sections in a building.

2.2 Drone Path Planning

Most automated drone inspection systems work through the use of a GCS system that generates a pre-flight

mission based on manually specified waypoints. These kind of systems offer limited navigation abilities

for autonomous drones. Thus, path planning algorithms for autonomous navigation has recently attracted

numerous researchers. Genetic algorithms have been proposed for path planning, where the goal is to

iteratively find a suitable path determined by a certain criteria. Such is the case for the work of Shivgan

and Dong [32] where a genetic algorithm was used to find an energy efficient trajectory between a set of

waypoints. Shivgan and Dong re-formulated the path planning search as as traveling salesman problem, with

the goal to minimize the energy consumption for a planned trajectory. Moreover, the genetic algorithm uses

a fitness equation to choose the fittest trajectories between generations. In their results, they showed that

a path generated by their genetic algorithm, consumes less energy than a greedy approach by constructing

a trajectory between 10 random waypoints. A similar study done by Hayat et al. [33] used a coverage
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path planning algorithm for multi-UAV search and rescue missions. With the proposed system, drones

can disseminate information regarding mission objectives and planning requirements. The multiple drone

trajectories are evaluated using a genetic algorithm to choose and re-plan the optimal coverage path. Hayat

et al. concluded that their approach improved the completion time for multi-UAV coverage path planning

mission. Another coverage path planning and genetic algorithm UAV system is mentioned in [34]. This study

employs a coverage probabilistic road-map to construct a graph which is subsequently used to reformulate a

min-max set-covering vehicle routing problem. To solve the problem, a modified genetic biased key genetic

algorithm was used to generate collision-free trajectories for complex structure geometries with paths that

are up to 48 times shorter than other methods.

Graph search algorithms are also popular methods used to solve path planning problems. An example

is the work of Zompas [35] where he proposed a path planning system using a visibility graph and A* given

a previously obtained map with the octomap framework. In his results, Zompas showed that his visibility

graph could be constructed in 7.94 seconds with a search time of 0.24 seconds using A*, which demonstrates

a practical use case for online and real-time path planning. A similar path planning system that uses

the octomap software is presented by Bergstrom [36], where he worked on a path planning system that

constructs a graph using a cell decomposition method. Furthermore, Bergstrom applied weight penalties to

graph vertices that were closer to a wall. With this method, Bergstrom uses an A* search algorithm to find a

collision-free path, while also keeping a safe distance from walls. A final example is provided by Fangyu et al.

[37] using a voxel grid system and a novel 3D propagating approximate Euclidean distance transformation

to plan trajectories in known environments. In their work, they proposed an A* searching algorithm to find

the safest short path and the safest least cost path, both of which ensure a minimal distance to an obstacle.

As mentioned on 1.4.4, random based graph searches can be useful when large or higher dimensional con-

figuration spaces are used. For instance, Oleynikova et al. [38] proposed a collision avoidance algorithm using

a high-degree polynomial made out of several segments with the assistance of a RRT* planning algorithm.

The RRT* algorithm was used to quickly re-plan rough trajectory estimations that could be latter refined

using their continuous polynomial algorithm. Both algorithms can generate a new trajectory plan quickly,

which is ideal to perform collision avoidance at higher frequencies. In contrast, Zheng et al. [39] explored the

possibility of performing path planning directly on point clouds without conversion to a traditional mapping

format. The proposed path planning system uses kd-trees and RRT to perform collision avoidance on a

down sampled point cloud.

In [40], a stochastic model to characterize the path traversal time using the transportation network was

proposed. In this work, the authors also consider the battery life of the drone so that the flight time can

be maximized according to the feasibility of a produced path. Another unique method explained by Qin at

al. [41] uses both a UAV and UGV to map an environment without the use of a Global Positioning System
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Table 2.2: Drone Path Planning Review

Author & Year Path Planning Method Mapping System

Qin et. al 2020 Batch Informed Trees (BIT*-H) Octomap

Oleynikova et al. 2016 Continuos Time Trajectory Spline + RTT* Octomap

Zompas 2016 A* + visibility graph Octomap

Shivgan et al. 2020 Genetic algorithm N/A

Hayat et al. 2019 Coverage Path Planning + Genetic algorithm N/A

Jing et al. 2020 Genetic algorithm Octomap

Bergestrom 2018 A* + cell decomposition Octomap

Zheng et al. 2020 RRT + k-d tree Raw Point Cloud

Huang et al. 2021 Stochastic model Transportation Network

Fangyu at al. 2018 A* + Distance Transformation Voxel Grid

(GPS). Both platforms work jointly to produce a map using the octomap software. Moreover, the UAV and

UGV use a frontier algorithm to explored unmapped Sections of the environment. For this task, a Batch

Informed Tree (BIT*-H) was used to for path planning.
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Chapter 3: Methodology and Simulations

Drone flight missions can be time consuming and in some cases even dangerous, especially at the software

prototyping stage. Therefore, for software development and testing, a drone dynamics and visualization

simulation was used. In addition, flight control software was used to maintain position set-points of the

aircraft, as well as to communicate with other external software components using the well established

Mavlink protocol [42]. With the simulation software bundle, external software modules were developed to

perform basic navigation, path planning, object and QR detection, and waypoint generation. Moreover,

software unit testing tools were used to carry out repeatable drone flight mission scenarios.

In this chapter, the software simulation components are briefly introduced and explained. Moreover,

the methodology for the software design and testing is also presented in this chapter. Lastly, this chapter

establishes the tools and methods used to developed the software system components presented in the

following chapters.

3.1 Simulation Environment

This work used a simulation environment to visualize and test software modules. The simulation environment

is composed of the following software elements:

1. Drone dynamics and visualization (section 3.1.1)

2. Drone sensors and algorithms visualization (section 3.1.3)

3. Drone Software In The Loop (SITL) flight controller (section 3.1.2)

4. Drone software communication protocol (section 3.1.4)

In conjunction, these components can simulate a flight mission on a variety of user defined environments

by computing a dynamical model of a drone and then visualizing the output using a Graphical User Interface

(GUI). The dynamic model is controlled by the SITL flight controller, which is the same software that will

be deployed on the drone’s hardware. Moreover, a different software tool is used to visualize the drone’s

sensor and algorithms output form the developed software modules.

Lastly, the developed software uses a communication protocol to command the SITL flight control to take

a specific action. Consequently, this sets the inputs to the drone dynamic model. On a final note, simulation

parameters such as wind, friction and gravity can de defined for an environment. Evidently, several case

scenarios can be performed on the same environment. Figure 3.1 shows the software simulation components

used to test the work presented in this thesis.

24



Figure 3.1: Simulation software components diagram

The next sections introduce and briefly explain each of the software tools used to create and deploy a

drone flight mission, as well as the tools used to develop the software packages presented in latter chapters.

3.1.1 Gazebo

Gazebo is a simulation and visualization software tool for dynamic robotic models. Gazebo’s Application

Programming Interface (API) allows developers to design and test robotic models with the help of a physics

simulation library and a GUI. In addition, gazebo uses a plugin system that accepts simulation models for a

great variety of known and established mechanical and sensor models. Through the use of model and world

files, a simulation environment can be defined using a mesh, collision and physical models.

Figure 3.2: Gazebo robot simulation environment for drone simulations

For this work, a set of pre-defined models, worlds and plugin files [43] were used to simulate a dy-
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namic drone model on several environments. The drone simulation model uses a plugin system for all of

its components. The plugins define the behavior and physical properties of components such as the Inertial

Measurement Unit (IMU) and the GPS. Evidently, with the plugin system, the drone software model com-

ponents can be added or removed as needed. Finally, the robot can be visualized using a mesh and texture

models. This is useful to visualize and debug the robot’s behavior in real-time. Figure 3.2 shows the GUI

for the gazebo robot simulation software suite.

3.1.2 PX4 Autopilot Software

For low-level hardware control, the PX4 autopilot software was used1. This software runs directly on the flight

control computer and it is used to stabilize the attitude, position and velocity of the aircraft. Alternatively,

the PX4 autopilot software can be deployed as a SITL on other hosts machines through the use of simulated

sensor models.

Figure 3.3: Attitude control diagram for the PX4 autopilot software [43]

Indeed, this computer must follow hard timing deadlines for control, therefore, real-time performance is

needed. To achieve this, the autopilot software first fuses a set of sensor measurements using the Extended

Kalman Filter (EKF). The fused measurements are used to control the attitude of the aircraft using the

architecture shown in figure 3.3. Additionally, the PX4 software handles low-level communication with an

off-board computer using the Mavlink protocol. Using the Mavlink protocol, the off-board computer can

command the flight computer to perform tasks such as taking off, landing and moving to certain locations.

3.1.3 rviz

The rviz software tool is used to visualize sensor and user defined primitive markers. Data from multiple

sensors such as depth, RGB cameras, LiDAR scanners, encoders, and others, can be displayed selectively

using topic messages. Additionally, primitive markers can be defined through the use of a list of 3-dimensional

1The PX4 project page can be found at https://px4.io/
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points. These markers display data from developed software and algorithms, and serve as a debugging

and visualization tool. For example, the navigation waypoints and computed path trajectory can both be

displayed using markers as shown in figures 4.3 and 4.5. Figure 3.4 demonstrates the GUI used to select the

sensor and marker topic messages.

Figure 3.4: rviz was used to visualize software output and sensor data

3.1.4 Mavlink and Mavros

The Mavlink protocol is used for low-level communication between system components, GCS and off-board

computers. The protocol defines the low-level binary encoding used to transfer data packages between

devices. The protocol is lightweight, with embedded systems as the intended host devices. Mavlink is

also a flexible protocol that can be expanded or modified with user defined messages. Lastly, the Mavlink

protocol uses a publish/subscribe software architecture using messages and topics. This architecture allows

for reactive message transfers that will be broadcasted to software components or off-board computers that

need the message data.

The Mavlink protocol was latter ported to be used along with ROS (see section 3.1.5), which it then

became known as MavROS. MavROS uses a similar publish/subscribe software model to communicate with

a off-board flight control computer, but unlike the Mavlink protocol, additional control software can be

developed to modify the behavior of the drone.
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3.1.5 ROS

ROS is a set of software tools used to develop and test complex robotic systems with multiple sensors and

actuators. Similar to the Mavlink protocol shown in section 3.1.4, ROS uses a publish/subscribe software

model. The publisher and subscriber nodes use topics to post and receive messages. The software model

used by ROS captures the reactive and modular nature of most robotic platforms. For instance, with ROS,

sensor drivers can be developed as publisher nodes that broadcast a message with sensor data. One or more

subscriber nodes can listen to this message, and will react once a new message has been received.

Figure 3.5: ROS node graph for the proposed drone navigation architecture and marker detection

The proposed drone system uses six ROS packages to divide the functionality into modular and maintain-

able software modules. Each package is composed of one or more nodes that publish and subscribe to different

message topics. For example,the drone uses a message structure as shown in table 3.1 to publish waypoint

data that positions and orients the drone. The combination of topics and messages produces complex, event

driven and modular robotic software platforms with multiple interactions between its components. ROS has

a way to visualize these interactions through a graph network diagram. Figure 3.5 shows the nodes and their

interactions for the inspection drone system.
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Table 3.1: Topic message used on the dronenav package

Waypoint message

Field Data type Description

action uint8 Action flag for this waypoint

flags uint8 Navigation flags for the drone and path planner

position Point Waypoint position in x, y, z coordinates

normal Point Normal vector of this waypoint

yaw float64 Yaw angle of this waypoint

3.2 Software Methodology

ROS software tools allow distinct robot components to be separated into modular units called nodes. How-

ever, ROS does not specify how nodes should communicate or what messages should be used. Furthermore,

packaging and organizing nodes into common functionality is not a trivial task. Consequently, nodes that

share common functionality or perform similar tasks, should be packaged together. Nevertheless, identifying

common functionality is an iterative task that was performed throughout the software development process.

Additionally, each ROS package should be designed according to specific methodologies and philosophies

in mind to fulfill usage and test requirements for practical use and deployment. The methodologies used in

this study for the software development process were:

1. Each package should be fully modular and independent of the inner workings of other packages.

2. Each package should be responsible of one and only one task.

3. Each package should have a test suite for one or more test cases.

4. A package should be parametrized so that it can be adapted to several use cases and user customization.

5. Packages should only communicate with each other through the use of pre-defined messages

The following sections present the software architecture design used to create the packages and nodes

needed for the drone inspection platform, as well as the testing platform used to check the functionality and

validity of the programs.
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3.2.1 Software Architecture

As mentioned in section 3.1.5 six ROS packages were developed to modularize distinct software components

needed for the drone inspection system. The packages along with a brief description is presented in table 3.2

Table 3.2: Drone Inspection ROS software packages

Package Description

dronenav Core drone navigation package

dronenav actions Drone inspection actions package

dronenav msgs Drone system message definitions

dronenav tests Drone system integration and tests

global planner Path planning for octomaps package

object recognition Object recognition and tracking package

qr tracking QR code detection and tracking package

Each package consists of one or more ROS nodes that communicate with other package nodes. Custom

drone inspection messages are defined on the dronenav msgs and are shared for all other packages. Further-

more, ROS nodes can contain a number of Publisher, Subscriber, Services, and Actions. For example, the

dronenav package defines the a ROS node with a Landing Service server that can be called from a terminal.

The same dronenav node also exposes the Waypoint Publish topic that can be used to queue navigation

waypoints. Lastly, ROS actions are used for the dronenav actions package nodes to command and receive

feedback on the progress of an action (see section 6.4).

To launch and specify parameters for all nodes, an XML launch file was used. This file specifies what

and how the nodes should be launched for specific packages through the definition of parameters and pre-

launch tasks. Once nodes are launched, topics, services and actions are exposed to a terminal, which can

subsequently be used to post and call messages that will modify the drone’s behavior reactively.

3.2.2 Software Testing

Software testing is an important part of quality software design. Additionally, testing assists in writing

code examples and documentation. For that reason, software unit testing was a crucial component in the

development process.

To test packages, the rostest and gtest software testing framework were used. Using rostest, a test suite

fixture can be defined, where the setup and cleanup of a test case is done. For the case of a ROS package, this
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means that Publishers, Subscribers and Services infrastructure is defined before running a test case. Once

completed, messages can be posted to topics that will cause the drone to perform a specific action. The

validity of the execution can then be tested using ASSERTION or EXPECTED values. One example of

such case is presented in listing 3.1, where a test is performed to check whether the drone was commanded

to a particular position and orientation.

Listing 3.1: Node software unit test for the dronenav package

1 TEST F( DronenavTestFixture , d ronenav te s t )

2 {

3 /∗Takeof f r eque s t ∗/

4 dronenav msgs : : Takeoff t a k e o f f s r v ;

5 /∗Request t a k e o f f and t e s t i f r eque s t was s u c c e s s f u l l y sent ∗/

6 t a k e o f f c l i e n t . c a l l ( t a k e o f f s r v ) ;

7 ASSERTTRUE( t a k e o f f s r v . r e sponse . su c c e s s ) ;

8

9 /∗Wait un t i l we have take o f f and in po s i t i o n ∗/

10 wa i t f o r s t a t e (dronenav msgs : : Status : : HOVERING STATE, 1 0 . 0 ) ;

11 EXPECTSTREQ( s t a tu s . s t a t e . c s t r ( ) , dronenav msgs : : Status : :HOVERING STATE. c s t r ( ) ) ;

12

13 /∗Send a waypoint ∗/

14 waypoint pub . pub l i sh ( waypoint ) ;

15

16 /∗Check i f drone i s in the c o r r e c t p o s i t i o n ∗/

17 EXPECTNEAR( s t a tu s . c u r r e n t p o s i t i o n . x , waypoint [ 0 ] . p o s i t i o n . x , 0 . 1 ) ;

18 EXPECTNEAR( s t a tu s . c u r r e n t p o s i t i o n . y , waypoint [ 0 ] . p o s i t i o n . y , 0 . 1 ) ;

19 EXPECTNEAR( s t a tu s . c u r r e n t p o s i t i o n . z , waypoint [ 0 ] . p o s i t i o n . z , 0 . 1 ) ;

20 EXPECTNEAR( s t a tu s . current yaw , waypoint [ 0 ] . yaw , 0 . 1 ) ;

21

22 /∗Land reque s t ∗/

23 dronenav msgs : :Land l and s rv ;

24 /∗Request land and t e s t i f r eque s t was s u c c e s s f u l l y sent ∗/

25 l a n d c l i e n t . c a l l ( l and s rv ) ;

26 ASSERTTRUE( l and s rv . r e sponse . s u c c e s s ) ;

27

28 /∗Wait un t i l we have landed ∗/

29 wa i t f o r s t a t e (dronenav msgs : : Status : :LANDEDTOUCHDOWNSTATE, 1 0 . 0 ) ;

30 EXPECTSTREQ( s t a tu s . s t a t e . c s t r ( ) ,

31 dronenav msgs : : Status : :LANDEDTOUCHDOWNSTATE. c s t r ( ) ) ;

32 }
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Chapter 4: Drone Navigation Architecture

A drone navigation architecture is the integration of distinct systems with the goal of orienting and posi-

tioning a drone without colliding with static or dynamic obstacles. Furthermore, a navigation architecture

seeks to provide a higher level trajectory strategy so that the drone can complete a specific mission. Indeed,

for an inspection mission, the goal is to detect and record defects, which is often solved by a coverage path

mission.

However, as shown in 2, most inspection missions are pre-planned at the pre-flight stage, using a set of

fixed waypoints. This is problematic from a navigation standpoint for two reasons. First, the pre-planned

mission is often static and not flexible enough to react to specific flight events, such as defect detections

and/or collision events. Second, the drone cannot use the environment to plan a new trajectory strategy

based on external events. Both of these issues are not addressed in the literature and on most inspection

drones. Moreover, the proposed drone navigation architectures are fairly limited to just path planning, and

do not look to add complex behavior aside from finding collision-free trajectories

Figure 4.1: Drone navigation system

Therefore, this chapter proposes a novel navigation architecture that focuses on re-planning paths caused

by external events such as defect detections captured by an imaging sensor. The proposed navigation

architecture uses the octomap framework to generate a map that can be used for path planning. The path

planner then uses this map to construct and search a graph for a valid path. Finally, a hierarchical state

machine handles the events and states for both the drone positioning and orientation system, as well as

the path planner trajectory output system. Additionally, the planner system features a path selection and

prioritization event that is used for re-planning.

The next outline demonstrates the methodology used to map an environment, construct a priority based

path planning system and a hierarchical state machine that controls complex behaviors and interactions
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between all of the mapping and path planning systems.

4.1 Mapping System

The mapping system selected for this project was the octomap mapping software [12], which uses an octree

data structure and a probabilistic model function to update voxel occupancy values. To create a map using

octomap, a sensor capable of measuring range data is needed. For this study, a simulated depth camera with

the parameters shown in table 4.1 was used for mapping.

Table 4.1: Simulated Depth Camera Specifications

Parameter Value Unit

Depth Range 6.0 meters

RGB Resolution 640x480 pixels

Depth Resolution 640x480 points

Field of View 1.02974 meters

Frame Rate 20 frames
second

The simulated depth camera generates a point cloud sensor message with the individual 3D world coor-

dinates of each pixel. These set of measurements can then be used to construct an octomap using a mapping

server. The recorded octomap can be stored into disk after enough of the map has been recorded, which can

be later restored in a future mapping session.

4.1.1 Octomap

For the purposes of navigation, an octomap can give the required partition data to identify Cfree. The

octomap can be searched to find all elements in Cfree that can be considered for path planning. However,

not all voxels on an octomap have the same size, due to the structure of an octree. This presents a challenge

from a graph construction standpoint, since it is difficult to index neighboring voxels. Nonetheless, the

octomap software has a method to quickly and efficiently query voxels around a bounding box, which is

useful to find and connect neighboring elements to a given voxel.

A manual simulated flight was performed to generate the octomap. Additionally, pre-computed waypoints

were used to automatically fly and record environments using the octomap mapping server. However, the

pre-computed waypoints were used only to map large structures. Figure 4.2 shows an octomap generated

from a 3D model of the NFAC wind tunnel.
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(a) NFAC 3D model (b) Octomap generated from NFAC 3D model

Figure 4.2: 3D model and octomap generated generated from a simulated environment

4.2 Path Planning

The octomap can be used to generate collision-free trajectories using a path planning algorithm. In this

study, a two step path planning is proposed, by first constructing a a graph data structure using a cell

decomposition algorithm, followed by the well-known A* graph search algorithm. Furthermore, the graph

construction algorithm can connect the initial and target positions for generated paths from the current

drone’s position to a desired location.

4.2.1 Graph Construction

Constructing a graph data structure is the first step in most path planning algorithms. A graph data

structure can be represented in two forms: Adjacency list or Adjacency Matrix. For this work, an adjacency

list data structure was used to represent a graph.

The adjacency list was constructed by first considering the voxels in Cfree, which make up the vertices of

the graph. For the edges of the graph, a bounding box is created around every vertex. Using this box, voxels

in Cfree can be queried fast and efficiently. These voxels are then connected to vertex where the bounding

box was applied. Figure 4.3 and 4.4 show the generated vertices and edges visually for the NFAC octomap.

However, the proposed method is impractical when considering every voxel on the map , due to the

number of voxels that will have to be considered. For this reason, the graph construction algorithm considers

voxels that are at a lower or specific size threshold. For an octomap, this requires a limit on the tree depth

level, which results on limiting the size of voxels that can be considered. Moreover, the voxels used for path

planning are only those found between the start and goal positions, by means of another larger bounding

box. Finally, vertex neighbors are limited both in size and number. Doing this, ensures fine granularity

34



Figure 4.3: Graph vertices shown as green spheres

Figure 4.4: Graph vertices and edges represented with blue line

between vertices that avoid invalid edge connections that will go through obstacles.

4.2.2 Graph Search using A*

Once the graph is constructed, a path can be found through the use of a graph searching algorithm. In this

work, an A* search algorithm was used to find a path between a start and goal vertices. The produced path

then becomes a set of waypoints with both position and yaw rotation if desired. Figure 4.5 demonstrates

the output path between the drone’s current position and a given goal position.

The planner queues the waypoints to the drone, and subsequently waits for the drone to finish navigating

the path. The planner then dequeues the next target position and computes a new path. This is repeated

until the planner has found (or in some cases not found) paths for all goal positions.
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Figure 4.5: Path trajectory between start and goal vertices

4.2.3 Path Planning Priority

The proposed path planning method is capable of re-planning a path if an event occurs during the flight. If

this event is considered of higher priority than the current path, a new path can be generated that preempts

the previous path. This effect is immediate and causes the drone to navigate the new higher priority path.

Once navigated, the path planner re-plans a new path using the previously preempted goal, which guarantees

the navigation of an interrupted goal. This method allows the drone to re-plan a collision free path according

to external events based on fault or damage detections.

To accomplish this behavior, a double ended queue data structure was used to append low-priority goals

at the back of the queue, and prepend high-priority goals at the top of the queue. This behavior ensures

that the planner generates paths for both an initial plan and reactive events. Figure 4.8 shows a graphical

representation of the double ended queue data structure and how it prepends and appends high and low

priority navigation goals.
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Figure 4.6: Path priority double ended queue

4.3 Drone Hierarchical State Machine

The proposed drone requires handling states based on external events such as QR a code or object detection.

Furthermore, the drone has several internal states that must be handled in the right sequence. One such

example are the transitions between positioning, orienting and performing an action, all of which must

happen in the right order. Traditional FSMs can be used to represent this behavior programmatically.

However, as explained in section 1.5.1, for complex systems, a traditional state machine implementation

becomes untractable and unmanageable. This is due to the number of states and event redundancies that

are needed to go from a shared state to another. For instance, a landing event can be triggered at any

time while the drone is flying. For a traditional state machine, events for every flying state will require a

transition to a landing state. Therefore, for hierarchical state machines, states can be clustered into super

states that will have one transition between another clustered state. This mechanism saves redundancies

between states and transitions. This advantage can be clearly shown in figure 1.4 where the landing and

flying states cluster other states that are components of a lower level drone functionality.

37



Figure 4.7: Proposed hierarchical state machine to control a drone

4.3.1 Drone Hierarchical States and Events

There are two super states on the presented state machine: LANDED and FLYING. These two super states

are clustered together into a super state named NAVIGATION, which represents the main state machine

for the drone. The LANDED super state contains several sub-states named LANDED POSITIONING,

LANDED YAWING and LANDED TOUCHDOWN. When the initial drone is commanded to land,

the drone will go through these states sequentially until it lands on the ground. Similarly, for the FLY-

ING super-state, an initial TAKEOFF POSITIONING and TAKEOFF YAWING states are trig-

gered when the drone is commanded to takeoff. Once the takeoff events are completed, the drone goes into

normal operation and waits for a waypoint at the HOVERING state. When a waypoint is received, the

drone first goes to the POSITIONING state followed by the YAWING state, and finally performing an
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action at the REACHED state. The drone’s state machine then goes back to the HOVERING state,

where it dequeues the next waypoint and triggers the same sequence of events if there is a waypoint waiting

on the queue.

4.3.2 Path Planning State Machine

The path planner expresses a complex system that needs to determine when a path has been navigated, and

whether a higher priority goal has been received. To handle both tasks, a state machine as shown in figure

4.8 was designed. As with the drone state machine, a higher-state transition needed to express the path

preemption behavior, which required two clustered states and a single event transition. Additionally, this

state machine will compute paths sequentially as goals are queued.

Figure 4.8: Path planning state machine to handle paths

4.3.3 Path Planning States and Events

There are 2 modes of operation for the proposed path planning system: ACTIVE and INTERRUPT.

The ACTIVE state contains the states for the normal operation of the path planner, which consists of
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WAITING, PlANNING and SENDING. The planner first waits for a new goal at the WAITING

state. When a goal is queued, the planner transitions to the PLANNING state, where the graph is

constructed and searched to find a trajectory. If a trajectory is not found, the planner goes back to the

WAITING state, where it checks the queue again. Otherwise, the planner goes to the SENDING state,

where the path is sent to the drone. The SENDING state then waits for the drone to finish traversing this

path before going back to the WAITING state and repeating the same process.

The second mode of operation is the INTERRUPT state. In this state, the planner first sends a

command to flush the waypoint queue of the drone, followed by a re-planning using the higher priority path.

When the planner finishes navigating the higher priority path, it goes back to the ACTIVE state, which

places the planner back into normal operation.
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Chapter 5: Deep Learning and Markers for

Intelligent Inspections

Deep learning has applications in image detection and segmentation, one of which is infrastructure detection

damage. Neural networks are trained to detect, label and localize damages on a given image. On the field of

machine learning, novel neural networks are proposed frequently. MobileNet neural networks [44] stand out

as an attractive solution for online, real-time object detection for mobile platforms. Indeed, this allows mobile

robot platforms to deploy object recognition neural networks that are fast, accurate and energy efficient.

Additionally, the MobileNet networks have been implemented using the Single Shot MultiBox Detector (SSD)

[45] neural network architecture, which further increases the accuracy and speed of detections.

However, deep learning algorithms are limited to detections and localization using the image pixel coor-

dinates. As a result of this, image detection analysis is often done offline at the post-flight stage. This is

problematic because the drone can not know where the detection happened with respect to a map frame.

This limits the drone’s ability to localize an object and generate a navigation plan for further inspection. In

addition, critical inspection and navigation information is ignored, as the drone will not be able to react and

navigate to a detection event. Evidently, detection events should be treated with high priority, and trigger

additional inspection actions and events.

Therefore, this chapter presents a novel marker detection and localization system using deep learning

neural networks and QR codes. The system uses a SSD MobileNet neural network and QR code software

to detect, segment, transform and localize a detection box in a 3-dimensional map space. This system is

capable of localizing and generating navigation waypoints (see section 6.2) by using the pixel coordinates

and point-cloud data of a depth camera to extract and segment the 3-dimensional coordinates of an object

or QR code. The segmented points are used to create a 3-dimensional bounding box that surrounds the

detected object or QR code. The 3-dimensional coordinates are then transformed from the camera’s frame

to the map’s inertial frame using a roll, pitch, yaw matrix transform. Using the transformed coordinate

points, navigation waypoints can be created using the transformed 3-dimensional detection boxes. Lastly, a

tracking system was implemented to uniquely identify detections and minimize false positive detections.

This chapter introduces the SSD MobileNet V1 neural network, how it was trained and deployed on

a simulation environment. This is followed by several sections that go over the point-cloud coordinates,

segmentation and transformation process to locate an object and a QR code with respect to an inertial

frame. The chapter is concluded by the QR code and object tracking system.
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5.1 SSD MobileNet V1

MobileNet is a new class of neural networks that are fast and efficient on embedded systems. This family

of networks use depthwise separable convolutional networks instead of traditional convolutional networks

that are found on deep learning models. A depthwise separable convolutional network greatly reduces the

number of weight parameters, which subsequently decreases the time and computational effort needed to

train a network. Additionally, once deployed, the network model can infer input images at a higher speed

and less computational effort than a traditional architecture with convolutional neural networks.

However, this architecture trades speed and efficiency at the cost of accuracy. To improve the accuracy,

the MobileNet architecture was integrated into a SSD architecture that improved the accuracy of the neural

network without significant latency penalties.

5.1.1 MobileNet

A MobileNet neural network is small and efficient architecture for real-time performance on mobile and

embedded devices. The MobileNet architecture achieves this by using depthwise separable convolutional

neural networks. In contrast to a traditional convolutional neural network, depthwise convolutional net-

works required fewer computations to filter and combine input datasets. Depthwise convolutional neural

networks filter input channels separately, followed by a a 1x1 convolution (known as point-wise convolution)

to combine the outputs of the depthwise convolutional layer. Figure 5.1 demonstrates the depthwise channel

convolutional layers and the 1x1 point-wise full convolutional layer.

(a) Depthwise separable convolutional networks [44] (b) Point-wise convolutional neural network [44]

Figure 5.1: Depthwise separable convolutional neural networks [44]

5.1.2 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) is a deep learning neural network architecture that improves the

accuracy of previous real-time detectors. SSD accomplishes this by eliminating bounding box proposals

and feature resampling. Moreover, SSD proposes convolutional neural networks at different aspect ratios to
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predict object categories. As a result, SSD improves the accuracy of real-time detection systems, and as

stated in the original article [45], the mAP increases from 64.3% to 74.3% for MobileNet networks. Figure

5.2 shows a diagram of a basic SSD neural network architecture using conventional convolutional neural

networks of different dimensions.

Figure 5.2: SSD Network Architecture [45]

5.1.3 Training and Deployment

The SSD MobileNet V1 model was trained using Microsoft’s Common Object in Context (COCO) dataset

[46], which contains photos of 91 objects that can be found frequently in a variety of contexts. According to

[44] a trained SSD 300 framework with the MobileNet model architecture is able to reach a mAP of 19.3%.

At the same time, the number of operations was greatly reduced for the SSD 300 network model.

For this study, a pre-trained tensorflow SSD MobileNet neural network was used to infer object detections

from a simulated RGB camera. To load and run the model, the Deep Learning OpenCV framework was used

to infer bounding boxes around possible detected objects. The object class and probability is also provided.

Figure 5.3 shows the image detection output using OpenCV and the pre-trained SSD MobileNet model.
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Figure 5.3: Object detection using the Deep Learning OpenCV framework and a pre-trained SSD MobileNet

model

5.2 QR code detection and Localization

QR code detection is a reliable, ubiquitous and fast method to extract information from an image. Therefore,

an alternative approach using QR code detection was developed to create automated inspection markers.

The markers will serve as a way to direct the drone to a section of interest, where some actions must be

performed. To detect QR codes, the zbar software library1 was used [47]. The same camera used in section

5.1.3 was used to capture RGB images that were later converted to a grayscale image for QR code detection.

Similarly to section 5.3, the QR detection pixel coordinates were transformed to 3-dimensional coordinates

using the same point-cloud indexing process shown in section 5.3.1. With the 3-dimensional coordinates, the

center point of the detection box can be found using the following equations:

X =
1

n

n∑
k=0

xi (5.1)

Y =
1

n

n∑
k=0

yi (5.2)

Where X and Y are the center coordinates of the detection box, xi and yi are the detection coordinates,

and n is the number of detection coordinates. Finally, the QR code type and data can be extracted and

displayed on an image. Figure 5.4 shows the QR code detection displayed on the original RGB input image.

1zbar library can be found at this link https://zbar.sourceforge.net/
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Figure 5.4: QR code detection with data displayed directly on the center of the code

5.3 Object Localization

The object and QR detection systems output bounding boxes with pixel point coordinates on a conventional

X − Y image frame. This is not particularly useful for navigation, since the 3-dimensional world coordinates

of the object cannot be extracted directly from the image detection output. Therefore, the following sections

present a novel method to transform pixel detection coordinates, to 3-dimensional coordinates that can be

used for localizing an object with respect to an inertial frame. The proposed method segments a point-cloud

measurement from the box detection pixel coordinates and image width parameter (see section 5.3.1 for more

details). The farthest and closest points are scanned on the segmented point-cloud. These two points are

then used to construct a 3-dimensional bounding box, which subsequently is used to estimate the object’s

location on the camera’s frame. Lastly, the estimated coordinates are transformed from the camera’s frame

to the map’s frame of reference, giving the final coordinates to localize an object for navigation. The final

estimated coordinates can then be used to create a navigation waypoint.

5.3.1 Object Point Cloud Segmentation

Point-clouds contains 3-dimensional range data from the camera’s position to obstacles found in an environ-

ment. Point-cloud data is often used for mapping or collision avoidance tasks. Nevertheless, in this work,

point-clouds and pixel detection coordinates are used to extract and segment portions of a larger point-cloud

measurements. Using the image width parameter and the pixel coordinates, an index is computed to find

the corresponding 3-dimensional point coordinate located inside a list of a larger point-cloud measurement.

Equation 5.3 demonstrates the equation used to compute a point-cloud index k given the i and j image

coordinates, and the image width w.
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k = i+ j ∗ w (5.3)

After finding the 3-dimensional point coordinates, a segmentation process is performed which consist

of storing the points inside the detection coordinates into a separate and smaller point-cloud. This subset

point-cloud represents the points that make up the detected object, and thus, can be used to locate an object

in IR3. Figure 5.5 shows the output of a point-cloud segmentation process using the found 3-dimensional

point detection coordinates. Notice that the segmented point-cloud is located with respect to the camera’s

frame of reference, section 5.3.3 explains in detail how to transform and translate the detection 3-dimensional

coordinates from the camera’s to the map’s frame.

(a) Drone facing the detected ob-

ject as seen from the map

(b) Camera detection output image (c) Point cloud segmentation repre-

sented as yellow dots

Figure 5.5: Object detection and point cloud segmentation process

5.3.2 Object Bounding Box from Point Cloud Segmentation

Although the segmented cloud gives 3-dimensional points that make up an object, it is still unclear which

of the points should be used to estimate the location of the object. Additionally, the depth information

about the object is now known, but it is not included in the original detection coordinates used on section

5.3.1. Hence, a 3-dimensional bounding box was created by first finding the farthest and closest points on

the segmented point-cloud, and then using these two points to create bounding box as shown in figure 5.6.

The center point can be found by using the maximum and minimum point coordinate values as shown in

equations 5.4-5.6. The computed coordinates are assumed to be the object’s position in the camera’s frame.

x =
xmax + xmin

2
(5.4)
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Figure 5.6: Bounding box for object recognition with coordinates used to localize object (minimum is closest

and maximum is farthest)

y =
ymax + ymin

2
(5.5)

z =
zmax + zmin

2
(5.6)

Ultimately, this process maps 2-dimensional detection pixel image coordinates, to 3-dimensional coordi-

nates for a bounding box and its center point, that uniquely identifies a detection event. Consequently, the

bounding box can be used to generate navigation waypoints useful for reactive inspection events (see section

6.2).

5.3.3 Object and QR code frame transformation

In sections 5.2 and 5.3.2 3-dimensional coordinates were extracted using point-cloud indexing and segmenta-

tion. However, these coordinates are with respect to the camera’s frame of reference, and hence, cannot be

used to locate an object or QR code on a map. For that reason, a matrix transformation followed by a vector

translation needs to be performed between the camera’s frame and the map’s inertial frame. Moreover, the

camera is attached the drone’s frame, so evidently, an intermediate transformation between the camera’s

frame and the drone’s frame has to be performed first. Figure 5.7 demonstrates the relationship between

the drone, camera and map frames.

The camera’s position and orientation with respect to the drone’s frame of reference are:
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Figure 5.7: Map, drone and camera frames

rc =


0.1

0.0

0.0

 (5.7)

θc =


−π
0.0

π

 (5.8)

Where rc is the translation vector and θc the orientation vector with pitch, roll and yaw values. Vector

values in 5.7 and 5.8 show that this is a static transform that requires the pitch and roll angles to be rotated

−π and π radians respectively. Furthermore, the frame must be translated −0.1 meters about the x-axis of

the drone frame of reference. Finally, a transform between the drone frame d and the camera frame c must

be performed. The equation that relates a vector in the camera frame pc to a vector in the drone frame pd

is

pd = Rd
cp

c + rd (5.9)

Where Rd
c and rd is the transform matrix and translation vector between the c and d frames. Similarly

a vector in the map’s frame pm can be related to a vector in the drone’s frame pd using 5.10
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pm = Rm
d pd + rm (5.10)

Where Rm
d and rm is the transform matrix and translation vector between the d and m frames.Using

equation 5.9 and 5.10, an equation to transform and translate vectors in pc and pm can be found,

pm = Rm
c pc +Rm

d rd + rm (5.11)

Rm
c = Rm

d Rd
c (5.12)

Lastly, the transform Rm
c and vector translations pd and pc relate a vector from the camera frame to the

map frame. It should be noted that equation 5.12 uses the ZY X euler convention and it is represented as,

R =


cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1




cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)



1 0 0

0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)

 (5.13)

5.3.4 Object and QR code detection tracking

Using the methodology of the previous sections, the proposed system can localize QR codes or objects on a

map. However, the detections do not have unique identifiers that will avoid the storage of multiple similar

detections. Moreover, the detection system does not have a way to deal with false positive events, as it will

consider detections that appear in one frame instead of multiple frames. For those reasons, a simple tracking

algorithm based on [48] was implemented to create unique identifiers based on new and previous detection

events that will prevent the tracking of duplicate and false positive detections. The tracking system starts

by computing a cost matrix using the euclidean distance from current and previous detections known as

tracks. The assignment problem is solved using the hungarian algorithm 2 and the previously computed cost

matrix. Lastly, the creation of new trackers is determined by the number of frames it has been detected and

the track quality determined by the euclidean distance of new detections. The following sections detail the

process to track and update detections.

5.3.4.1 Cost matrix

The cost matrix was computed using the euclidean distance between current and previous detections. Matrix

5.14 demonstrates the basic structure of the cost matrix using tracked and current detections. The tracked

2Software library used can be found at https://github.com/mcximing/hungarian-algorithm-cpp
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detections correspond to the columns of the matrix as t0, t1, . . . , tn, with the current detections d0, d1, . . . , dn

shown as the rows in the matrix. The index i, j corresponds to the euclidean distance ri,j between track i

and detection j.

C =

t0 t1 t2 . . . tn



r0,0 r0,1 r0,2 . . . r0,n d0

r1,0 r1,1 r1,2 . . . r1,n d1

r2,0 r2,1 r2,2 . . . r2,n d2
...

...
...

. . . r0,n
...

rn,0 rn,1 rn,2 . . . rn,n dn

(5.14)

5.3.4.2 Detection to track assignment

The objective of the detection to track assignment is to minimize the cost matrix element sum. For instance,

in the case of matrix 5.14, every detection row di must choose the lowest value in all tracked columns tj .

Moreover, two different detections cannot be assigned to the same track, as this will not create new tracks.

A hungarian algorithm implementation was used to solve the detection to track assignment problem. Once

solved, the algorithm will output a list of index assignments i, j such that element sum of the matrix C is

minimized. Detections that were not assigned to any tracked detections will have an index value of −1.

C =

t0 t1 t2 t3


0.12 1.30 3.58 10.3 d0

20.45 1.20 30.4 20.4 d1

1.02 3.2 0.45 0.02 d2

1.02 10.42 0.70 2.34 d3

(5.15)

Matrix 5.15 demonstrates an example cost matrix with the computed assignments underlined. The

assignments are (0, 0), (1, 1)(2, 3), (3, 2) and the total cost of this assignment is c = 2.04.

5.3.4.3 Creation and deletion of detections

Detections that were not assigned to tracks are candidates for the creation of a new track. However, potential

new tracks go under a supervisory period to avoid the indiscriminate addition of false positive detections.

The supervisory period consists of counting the number of frames in which the detection has appeared. If

the count exceeds a threshold, a track is created and assigned a unique ID. Otherwise, if the potential track

has not been observed for a number of frames, it gets deleted form the list.
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Additionally, poor detection to track assignments are ignored, as this will cause inadequate updates to

the current tracks. A poor detection is characterized by the euclidean distance between a detection and a

track. Detections that are beyond a threshold value ri,j > γ are considered to be low quality, and should

not be used to update current tracks. With this method, track noise is reduced and will help to maintain

good tracking updates for the position and labels of the current tracks.
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Chapter 6: Generation of Waypoints and

Actions for Drone Inspection

An autonomous inspection drone requires navigation waypoints to perform path planning and collect suitable

inspection data. Most inspection systems use coverage path planning [49] to generate waypoints on an

environment. Coverage path planning attempts to cover an entire surface or volume geometry with a

trajectory pattern. With this pattern, waypoints can be generated for a path planning system. During

the navigation phase, the drone can perform automated actions that will aid in the process of inspection.

Nevertheless, coverage path planning approaches are energy and time inefficient. The drone will spend

most of its flight time navigating towards areas that are empty or of little value from an inspection stand

point. Consequently, more flights are required to guarantee the detection of damage and defects. Moreover,

coverage path planning uses primitive geometries to generate inspection trajectories without the use of a

map. Evidently, most buildings poses sections with complex geometries and structures that will not be

inspected using coverage path planning algorithms. Ultimately, this results in low quality inspections that

do not yield meaningful data for the detection and characterization of damages and defects.

For those reasons, this chapter presents a novel method to generate waypoints using an octomap and

detection bounding boxes from object recognition and QR codes. For an octomap, voxel surface normals are

used to generate waypoints by extruding the normal vector by a parameter scalar value. Similarly, bounding

box surfaces from objects and QR codes are used to first compute vector normals from the box surfaces, and

then extrude these normal vectors in the same way as the octomap voxel normals. Additionally, waypoints

embed actions that are triggered once they been navigated. Thus, a waypoint contains information about

the location of an area of interest, and the action that must be performed once the location has been reached.

The next sections explain in detail waypoint generation for a map, object detection and QR codes.

Finally, a section is dedicated to detail the inspection actions that can be performed by the drone.

6.1 Waypoint Generation from Octomaps

An octomap was used in section 4.2 to generate collision free trajectories by scanning unoccupied voxels.

Similarly, an octomap can be used to scan occupied space. Although counterintuitive at first, occupied space

contains crucial data for an inspection. Occupied voxels determine the areas where building sections or

structures can be found. Moreover, a voxel can supply information about the direction in which the drone

must be facing to capture data. For instance, occupied voxels on a mapped surface can yield information
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about the position and direction of an area of interest through its surface vector normals. The vector normals

can be extruded to an offset distance from the voxels by simple scalar multiplication. For instance, consider

the following voxel with a vector position −→p and a surface normal vector −→n aligned with the x-axis of the

map,

−→p =


x

y

z

 (6.1)

−→n =


1.0

0.0

0.0

 (6.2)

Using the vector −→p , −→n and a scalar parameter β, a new vector −→w can be constructed. The vector

−→w contains the location to which the drone must navigate to capture inspection data. The vector −→w is

represented by the following equation,

−→w = −→p + β−→n =


x

y

z

+ β


1.0

0.0

0.0

 =


x+ β

y

x

 (6.3)

Additionally, the drone must be facing directly opposite to the normal vector. Hence the yaw angle for

the drone can be computed using the following equation:

θ = cos−1(−→n · −−→n ) (6.4)

Figure 6.1 shows the generated waypoints on an octomap using the voxels position, surface normal vectors

and a scalar parameter as shown in equation

However, as it was the case for the graph construction in section 4.2.1, considering every occupied voxel

will be impractical for medium and large maps. Therefore, number of scanned occupied voxels for waypoint

generation is down-sampled to a specified user parameter value.
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Figure 6.1: Waypoints generated from voxel surface normals using the octomap software

6.1.1 Viewport

The occupied voxels on an octomap contain face surface normals that can be used to generate waypoints

as shown in section 6.1. However, there is still ambiguity as to which surface normal should be used. For

instance, a voxel contains six surfaces, each with its own normal vector. In some cases, considering all six

normal vectors will generate waypoints that are impossible or impractical to reach for a drone. Furthermore,

for the case of an indoor inspection, vector normals must face to the inside of the building. Evidently, a

sense of direction must be given to test the direction of the normal vectors. This test selection process can

be performed mathematically through the use of a viewport vector −−−→vview and the following equation,

α = −→n · −−−→vview (6.5)

Where −→n is the normal vector under consideration and α is the result of the dot product operation that

can be interpreted as how ”equal” both vectors are. If the dot product of the two vectors is zero, then both

vectors are orthogonal to each other, which means that normal vector under consideration is not facing the

viewport vector. Therefore, this normal vector must not be considered to construct a waypoint. Likewise,

for a result of α = −1, the normal vector under consideration is pointing opposite to viewport vector, and

evidently, should not be considered. These results can be summarized in equation 6.6
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y =

true, if α = −→n · −−−→vview ≥ γ

false, if α = −→n · −−−→vview < γ

 (6.6)

Were γ is a parameter threshold used to determine how ”equal” both vectors should be if they want to be

considered for a waypoint. For y = true a waypoint must be generated from this surface normal, otherwise

if y = false this surface normal should be ignored.

6.2 Waypoints from object detection bounding box

While map waypoints are useful, there are instances where detected objects or areas require immediate

attention. Sections 5.3.2 and 5.3.4 discussed the detection and tracking of objects and QR codes through

the use of bounding boxes. However, the methods discussed in these sections estimate the 3-dimensional

coordinates at the center of the detected object. Generating a waypoint from these coordinates will certainly

place the drone at an unreasonable and dangerous position to the object. For that reason, the bounding box

construction method shown in section 5.3.2 is used to compute normal vectors along the surfaces of the box.

For instance, using one face of the bounding box, vectors
−−→
AB and

−→
AC can be constructed from the vertices

of this face. Figure 6.2 shows the face of a box with vectors
−−→
AB and

−→
AC

Figure 6.2: Surface normal from on of the faces of the detection box

Using these vectors a normal vector n⃗a on surface A can be found using the following equations,

v⃗1 =
−−→
AB (6.7)

v⃗2 =
−→
AC (6.8)

55



n⃗a = v⃗1 × v⃗2 (6.9)

Similar to section 6.1, the computed normal vectors can be used to orient and position the drone using

equations 6.3 and 6.4, which will ensure that the drone will be at a safe distance from the detected object

or area. Figure 6.4 demonstrates the computed surface normals on a constructed bounding box detection.

Observe that the distance from the object can be controlled by the scalar parameter β as discussed in section

6.1

Figure 6.3: Detected object bounding box normal vectors used to inspection waypoints

6.3 Waypoints from QR code detection surface

The QR detection system discussed in section 5.2 can also be used to generate navigation waypoints. In

contrast to an object, the QR detection output provides only a surface detection instead of a bounding box.

This fact reduces the number of normal vectors to one. Using equations 6.7, 6.8 and 6.9 a normal vector

to the detection surface can be computed. Similarly, the scalar parameter β controls the distance of the

waypoint from the QR detection surface. Figure 6.4 demonstrates a normal vector computed from a QR

detection surface.
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Figure 6.4: Detected QR code with computed surface normal, which is subsequently used to create a navi-

gation waypoint

6.4 Inspection Actions

An automated inspection drone must be able to perform actions suitable to detect and characterize defects

and damaged areas or objects. Section 2 showed that most drone inspection systems use imaging sensors

to capture photos of an area at pre-determined positions. However, these actions are determined at the

pre-flight stages and are not subject to change once the drone is performing a mission. Moreover, recording

images is the only action available to these drones, which limits the ability to detect defects on an inspection

mission by using only one type of sensor data.

Therefore, for the proposed drone inspection system, three distinctly actions are available: image record-

ing, video recording and point cloud recording. These actions make use of the depth camera capabilities

shown in section 4.1. Additionally, the action type is directly embedded on the waypoint, so when reached,

the action takes place at the location and orientation of the waypoint. This means that different actions can

be triggered at different times and locations, which greatly increases the volume and data sources relevant

for an inspection. Section 7.5 demonstrates the recorded point-cloud and images from an inspection mission.
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Chapter 7: Results and Case Studies

This chapter presents the results and case study for the inspection of the NFAC located at the NASA AMES

research facility. The NFAC is the largest wind tunnel facility in the world [50]. This building was selected

as part of a joint effort with the Fluid Mechanics Lab (FML) to automate the inspection of the NFAC

wind tunnel. The NFAC wind tunnel presents a unique inspection challenge because of the sheer scale of

the building. Additionally, the NFAC has remote and hard to reach areas that will be difficult to inspect

manually. For these reasons, a drone platform was selected to automate the inspection of the NFAC. The

NFAC was divided into two sections due to practical constraints on mesh model sizes for simulations.

To perform simulations on the NFAC, a mesh model was constructed using approximated dimensions.

This model was then placed into the simulation environnement discussed in chapter 3. With the mesh

model in place, an octomap is created manually by flying the drone using a remote controller. Following the

octomap recording, path planning and waypoint generation can be performed using the methods discussed

in 4.2 and 6.1 respectively. Finally, object and QR detection can be used to generate tracked detection

bounding boxes and surfaces waypoint generation and inspection as presented in section 6.2 and 5.2. The

waypoints determine the actions that must be taken at the end of navigation trajectory. Images, video

recordings and point-cloud data are produced at the end of the inspection.

The following sections present the results for the systems and methods shown in chapters 4- 6. Envi-

ronment models and mapping, path planning, and object/QR detection results are presented in the first

sections. Lastly, a study case inspection mission of the NFAC is presented on the last section. This acts as

a demonstration of the proposed methods and systems and its utility and innovation for automated drone

inspections.

7.1 Environment Models and Mapping

A mesh model was created to setup a simulation environment. Using the mesh model, an octomap was

created by manually flying around the mesh model. This resulted on a voxel map with an underlying octree

data structure. Figures 7.1 and 7.2 demonstrate the mesh models and maps generated by the octomap

software framework.

The octomaps were characterized by their memory size, number of free and occupied voxels, and the scan

latency of occupied and unoccupied voxels. Both are important metrics for online drone inspection mapping

and path planning. Table 7.1 demonstrates the results for the two sections of the NFAC facility.
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(a) NFAC section 0 (b) NFAC section 1

Figure 7.1: Mesh models of simulated environments

(a) NFAC section 0 octomap (b) NFAC section 1 octomap

Figure 7.2: Recorded octomaps for mesh models

Table 7.1: Octomap Results

Octomap Memory size Free Voxels Occupied Voxels Scan Latency

NFAC section 0 292.6kB 211272 483094 364 ms

NFAC section 1 77.1kB 115084 49966 77 ms

7.2 Path Planning Results

The path planning system must find a valid collision-free trajectory within a practical amount of time. To

accomplish low latency, the path planner must limit the number of vertices and edges that are considered to

construct a graph, regardless of the distance between the start and goal positions. Consequently, the graph

search algorithm will require fewer node graph searches, which ultimately results in fast path generations.
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To test the graph size, and path trajectory computation time1, 100 path finding searches were performed

using random start and goal positions. Figure 7.3 shows the edge and vertex count plot in relation to the

distance of the start and end positions. Similarly, figure 7.4 shows the computational time to construct and

search a trajectory path. Form the figures it can be observed that the the number of vertices and edges is

bounded, which subsequently bounds the computational time to construct and search a graph. Moreover,

the computational time mostly remains mostly constant at the sample average of 294 ms. This demonstrates

that fast path trajectory computations are possible even for large maps using the method in section 4.2.

Similarly, for graph construction, the vertex and edge count remains close to the sample average of 502 and

2043 respectively.
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Figure 7.3: Graph vertices and edges count as a function of distance between start and goal positions

1All tests were performed using an 11th Gen Intel Core i7-1165G7 2.8GHz CPU, with 23.3 GiB of memory
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Figure 7.4: Graph build time as a function of distance between start and goal positions

7.3 Object and QR Detection and tracking Results

The QR and object detection system was proposed as a way of generating waypoints for navigation and

inspection. Evidently, the quality of the inspection data is tightly coupled to the accuracy of the detection

system. Therefore, to test the accuracy and precision of the QR and object detection system, an experiment

was performed on the NFAC simulation. The experiment consisted of navigating, detecting and recording

the coordinates of four QR codes with unique data and positions. Using the recorded coordinates of the

detections, figure 7.5 was plotted.
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Figure 7.5: NFAC QR code detection positions

Figure 7.6 shows the coordinate locations for detections on QR code 0. From the image it can be observed
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that the detections were highly concentrated around the mean center point r = [15.039 18.14 3.40]⊤.

Compared to the true value position of r = [15.1 18.0 4.1]⊤, this represents a percent error of

rerror = [0.26% 0.22% 6.65%]⊤. The average deviations from the mean represent the precision of the

detection measurements and were recorded to be rdev = [±0.029 ± 0.008 ± 0.068]⊤
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Figure 7.6: Detections for QR code 0

Lastly, figure 7.7 show the approximated probability mass functions for the measurements on all 3 axis.

The figure demonstrates measurements concentrated around the mean with low variance, which exemplifies

the high accuracy and precision of the detection and tracking system.
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Figure 7.7: QR code 0 detection approximated probability density mass functions for x, y, z values
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7.4 Waypoint Generation Results

Waypoints can be generated using an octomap using the method described in section 6.1. A uniformly

distributed set of waypoints is a desired outcome of this method, as this will likely increase the inspection

coverage on an selected area. Therefore, to test waypoint distribution, generated waypoints for the NFAC

mesh model were plotted in figure 7.8 to observe the distribution of the x− z and y − z planes of the walls.

Moreover, the 2D histograms for the waypoint distribution of the walls were plotted on figure 7.9. The

2D histogram demonstrates the waypoint distribution count of 10x10 equally spaced plane regions. From

both figures, it can be observed that that the distribution of waypoints varies on different surfaces. This

might be due to a number of factors such as low voxel density, a high down-sample factor, inadequate map

segmentation and incorrect viewport direction.
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Figure 7.8: Waypoint distribution for the NFAC building

Computational time was also measured for the generation of waypoints of the NFAC octomap. Table 7.2

shows the results for the computational time and the number of waypoints generated for the four walls.

Table 7.2: NFAC waypoint generation time and waypoints found results

NFAC wall Time Waypoints found

North wall 1061.9 ms 27

East wall 507.604 ms 112

South wall 514.409 ms 731

West wall 499.927 ms 898
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Figure 7.9: Waypoint distribution 2D histogram

7.5 Inspection Data Results

The proposed drone inspection system is capable of recording images, point-clouds and videos at specific

waypoints. The waypoints found in section 7.4 are used to run a simulated test case to navigate and record

both images and point-cloud data form the NFAC south wall (Figure 7.9 (c)). Figure 7.10 shows the images

taken from the simulated inspection mission. The images show part of the wind tunnel’s fans. Additionally,

figures 7.11 and 7.12 show the point-cloud data images for the propellers from different viewing angles.

(a) NFAC image 0 (b) NFAC image 1 (c) NFAC image 2 (d) NFAC image 3

Figure 7.10: Inspection images taken from the NFAC model

The demonstrated images and point-cloud data can be used for post-flight image or point-cloud process-

ing, and/or human visual inspection. Additionally, the collected data can be used to certify or validate the

inspection of an area or object according to the building’s safety standard.
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(a) NFAC point-cloud 0 (b) NFAC point-cloud 1 (c) NFAC point-cloud 2 (d) NFAC point-cloud 0

Figure 7.11: Inspection point-cloud taken from the NFAC model, showing different perspectives

(a) NFAC fans point-cloud (b) NFAC fans point-cloud

Figure 7.12: Inspection point-cloud for the inside of the NFAC fans

7.6 Case Study: NFAC

A simulated case study was performed on the NFAC, were the objective was to test and demonstrate the

proposed system on a realistic and practical scenario. This study case demonstrates the ability for the

system to perform an initial inspection plan by autonomously generating waypoints from a given octomap.

The drone then detects a higher priority QR code that triggers an navigation interrupt that selects the new

waypoint as the goal for the path planner. At the same time, the original inspection plan is queued again, so

that the drone can continue the mission after inspecting the higher priority QR code detection. The drone

will then complete the original inspection mission and produce image and point-cloud data. The following

sections show the sequence of events for a realistic inspection mission using the proposed drone inspection

system.
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7.6.1 Drone Takeoff and Initial Inspection Plan

The test program initially requests the drone to takeoff and position itself at at the location

r = [0.0 0.0 3.0]. Figure 7.13 demonstrate the simulation images for the takeoff.

(a) Drone initial simulation state and position (b) Drone takeoff position and view on the simulation

environment

Figure 7.13: Drone initial position and takeoff

After takeoff, the drone requests a service to generate waypoints on the south wall of the NFAC mesh

model using a previously recorded octomap. This results in the generation of waypoints that will be used

for an inspection mission. The inspection height for the wall was limited to z = 10m. Figure 7.14 shows the

generated waypoints for the study case.

Figure 7.14: Inspection waypoints generated at the south wall of the NFAC model. The height is limited to

z = 10m

66



7.6.2 Drone Path Planning

The inspection waypoints are then passed to the planner to find collision-free trajectories for the generated

inspection waypoints. If a valid trajectory is found, the planner sends the navigation positions and headings

to the drone. This results in a series of path planning trajectories between the current drone’s position and

an inspection waypoint goal. Figures 7.15(a) and 7.15(b) show two generated paths between waypoints

(a) Path planner inspection trajectory from ini-

tial takeoff position

(b) Path planner inspection trajectory from

two waypoints

Figure 7.15: Path planner inspection trajectory from two waypoints

7.6.3 Drone QR Detection and Path Re-Planning

The drone QR detection and path re-planning is divided into four stages: Original path trajectory, detection,

path re-planning based on generated waypoint detection, and return to original path. The first stage is the

planned trajectory based on the original inspection waypoints. The second stage observes and reacts to a

detection event by generating a new inspection waypoint as discussed in section 6.3. The third stage sends a

new higher priority inspection waypoint for the computation of a navigation trajectory based on the detected

QR code’s position. The fourth and last stage re-plans the interrupted trajectory using the drone’s current

position, this takes the drone back to normal operation and to the original inspection mission. Figures 7.16

and 7.17 shows the detection and re-planning stages using visual markers and in real-time simulation images.
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(a) Original trajectory to inspect NFAC wall (b) Marker detection and waypoint generation form sur-

face normal

(c) Path re-planning based on high priority waypoint (d) Original inspection re-planning, back to normal op-

eration

Figure 7.16: Marker detection and inspection using high priority navigation waypoints
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(a) Original trajectory to inspect NFAC wall (b) Marker detection and waypoint generation form sur-

face normal

(c) Path re-planning based on high priority waypoint (d) Original inspection re-planning, back to normal op-

eration

Figure 7.17: Marker detection and inspection using high priority navigation waypoints
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7.6.4 Drone Landing and Inspection Results

Finally, once all detections and original waypoints are inspected, the drone requests a landing service. The

drone can request to land at the current position or at the takeoff position. In this study case, a land request

places the drone at the floor using the drone’s current location.

The recorded images, point-cloud and videos will be available and stored on the drone’s computer storage

and will be similar to those shown in section 7.5
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Chapter 8: Conclusion

This chapter present the conclusion of the conducted study and the previous chapters. It will also summarize

the key findings and answers to the initial research question. Furthermore, this chapter also outlines the

contributions and limitations of the study, as well as future research recommendations.

This study aimed to develop a drone system that could autonomously inspect industrial and scientific

infrastructure. To that end, the results and work presented in chapters 4 through 7 show that such system is

possible, and that autonomy for inspection can be achieved with the use of deep learning neural networks and

QR codes. Moreover, this study shows that complex reactive navigation architectures can be programmed,

extended and maintained using hierarchical state machines. The study also demonstrated a reliable method

to generate inspection waypoints on octomaps, object detection and QR codes. In conjunction, these sys-

tems demonstrate a drone inspection platform with a higher level of autonomy. Additionally, this study

demonstrated in chapter 2 that autonomy is an important characteristic of drone inspection systems, as

current systems do not react or detect critical damages or defects on infrastructure.

The study conducted proposed a novel drone inspection system that enhances the level of autonomy for

in-flight decision making. Key ideas, for the detection and navigation of damage or defects were presented in

this study. First, by presenting a reactive drone navigation architecture that prioritizes detection inspection

waypoints. Second, by object and QR detection, and third, by automating the generation of inspection

waypoints using an octomap and detections bounding boxes and surfaces.

Moreover, this study it attempts to solve the lack of automation of most inspection drone systems.

The presented solution attempts to solve the autonomy problem by increasing the perception of the drone

through the use of deep learning object recognition and QR. Moreover, this increased perception level leads

to complex actions and behaviors through the use of a hierarchical state machine.

Section 7.6 demonstrated a practical application of the proposed drone system. From that section, it can

be observed that the drone system can react to QR detections with a new navigation plan and inspection

actions. The data produced from the example inspection mission also demonstrates the utility of such

platform, and applications for pos-flight data analysis of image, point-cloud and video data, as well as

automated detection data.

However, this study did not cover collision avoidance, which is an important component of all robotic

navigation platforms. The lack of collision avoidance limits the utility of this drone to only static environ-

ments. Additionally, the drone requires an octomap before a mission takes place. To record an octomap,

this study proposed manual drone flights around the inspection area. Of course, this limits the autonomy

of the system, which goes against the goal of this study. Lastly, no field flights were performed during the
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conducted study. Evidently, a practical use case can not be verified until a field test is done. However, flight

control software did not report bugs or glitches during the simulated mission, which shows that deploying

the software into the hardware platform will not present fatal or critical errors.

Therefore, future work requires field testing on a hardware platform, which will finally certify a practical

use and utility of the drone inspection system. Additionally, more work needs to be done towards collision

avoidance, as this will increase the applicability of the system to dynamics environments. Lastly, more

research and development needs to be performed on exploration algorithms that will allow the drone to

map and navigate unknown areas. Ultimately, this will add another layer of automation for mapping and

exploration.
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NFAC National Full-Scale Aerodynamics Complex xii, 2, 33, 34, 58, 59, 61, 63–66, 68, 69
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RRT Rapidly Exploring Random Trees 7, 22

SITL Software In The Loop 24, 26
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UAV Unmanned Aerial Vehicle vi, 19, 21–23

UGV Unmanned Ground Vehicle vi, 23

UTEP University of Texas at El Paso 81
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Appendix A: A* algorithm

Algorithm 1 A* search algorithm

1: procedure a*(start, goal)

2: openset ← start

3: gscore[1 : n]←∞
4: gscore[0]← 0

5: fscore[1 : n]←∞
6: fscore[0]← h(0)

7: while openset ̸= empty do

8: current← minfscore(openset)

9: if current == goal then

10: RECONSTRUCT PATH(current)

11: return

12: end if

13: openset.remove(current)

14: for neighbor ∈ current.neighbors() do

15: gtemp ← gscore[current] + d(current, neighbor)

16: if gtemp < gscore[neighbor] then

17: gscore[neighbor]← gtemp

18: fscore[neighbor]← gtemp + h(neighbor)

19: if neighbor ̸∈ openset then

20: openset.add(neighbor)

21: end if

22: end if

23: end for

24: end while

25: end procedure
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