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Abstract

Accurate mapping of phase transitions boundaries is crucial in accurately modeling the

equation of state of materials. The phase transitions can be structural (solid-solid) driven

by temperature or pressure or a phase change like melting which defines the solid-liquid

melt line. There exist many computational methods for evaluating the phase diagram

at a particular point in temperature (T) and pressure (P). Most of these methods involve

evaluation of a single (P,T) point at a time. The present work partially automates the search

for phase boundaries lines utilizing a machine learning method based on convolutional

neural networks and an efficient search algorithm and a shrinking enclosure. This neural

network (NN) approach is applied to the prediction of the melt line of metals as a function

of pressure. The proposed NN method is implemented using the so-called Z-method [1],

a molecular-dynamics-based computational approach for determining upper bounds in the

solid-liquid melt line of a material. In this method, the system is subjected to ”jumps” in

temperature until melting is achieved. The usefulness of our proposed NN search method

is that it can be easily applied to a wide range of inter-atomic potentials and hence help

test their accuracy and agreement with experiments. Future machine learning applications

can be similarly applied for determining more subtle and complex phase diagrams.
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Chapter 1

Introduction

In many applications, it is important to know how the melting temperature of various metals

depends on the pressure. This dependence is known as the melting line. In principle, it is

possible to measure melting temperature for all the pressure values, but for high pressures,

such a measurement is very difficult and expensive to perform. So, to find the melting line,

researchers come up with numerical models describing melting, and use these models to

determine the melting line.

In this thesis, we propose a more efficient method of determining the melting line of

various metals (such as copper0 that uses convolutional neural networks, the binary search

algorithm, and a shrinking enclosure. These machine learning, search algorithm, and inter-

val computation methods or similar can be used to produce more detailed phase transition

lines between solid phases of crystal metals and higher dimensional phase diagrams.

In this work, by neural networks, we will mean artificial neural networks as opposed to

biological neural networks. Neural networks are a machine learning method for interpola-

tion. A neural network aims to guess the correct output to an input. A particular kind of

neural network is the so-called convolutional neural network, which has a topology suited

for image recognition, where an image is the input and a categorical value, or perhaps a

corresponding integer, is the output.

In this work we will focus on the so-called z-method [1]. In this method, a system with

periodic boundary conditions is set to a super-heated critical temperature TLS until the

system melts and the temperature drops to the melting temperature Tm.

Although the z-method is considered for the application convolutional neural networks,

there are other methods for finding the melting line of metals. The z-method goes from solid
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to liquid across the melting line, but going from liquid to solid (solidification or freezing)

can also be used to map the melting line. The process involves starting at a liquid state and

applying pressure until solidification occurs. A work on this [2] applied pressure on liquid

tantalum for spontaneous crystal nucleation as shown in Figure 1.1. This method was

applied on systems of 64K and 16M tantalum atoms, with periodic boundary conditions,

and replicated the smaller system, contiguous to each other, for same size comparison. The

replicated smaller system crystals did not coincide with that of the larger system crystals

as shown in Figure 1.2.

Figure 1.1: Graph shows the percentage of the system that solidified as time went
on when pressure was exerted [2].
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Figure 1.2: Sub-figures a-c show the pressure-induced nucleation of the 16M atoms
tantalum system, and sub-figures d-f show the pressure-induced nucle-
ation of the 64k atoms system, replicated 250 times in total across all
three dimensions [2].

Yet another method for calculating the melting temperature involves a more theoretical

approach. The Gibbs free energy of a system is calculated using ab-initio methods such

as density functional theory (DFT)[3]. This so-called free-energy approach makes use of a

reference system to reproduce the Gibbs free energy as a function of temperature of liquid

and solid states, and finds the change in slope from solid to liquid to determine the enthalpy

of fusion as shown in Figure 1.3. This enthalpy of fusion is used to determine the melting

temperature Tm.
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Figure 1.3: Free energy approach for determining the melting temperature Tm at
constant pressure by finding the intersection of the solid state Gibbs
free energy Gsolid and the liquid state Gibbs free energy Gliquid [3].

The application of machine learning methods to these two other methods, even the one

used in this work, is also possible but with more adjustments. In particular, one would

need to break the plotting in smaller intervals of graphs such as those in Figures 1.2 and

1.3 for the identification of phase change by the neural networks used in this work and

subsequent numerical computations.

Yet another method is the so-called two-phase coexistence, which required several more

particles than the previous methods. In this method, portions of the system must exist in

both solid and liquid phases as show in figure 1.4.
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Figure 1.4: The two phase coexistence entails having both solid and liquid phases
portions of the system [4]. Solid circles are atoms initially in the solid
phase, while open circles are atoms initially in the liquid phase.

In summary, methods for mapping the melting line include the following:

� z-method

� pressure-induced nucleation

� Gibbs-based methods

� two-phase coexistence

1.1 Motivation

The purpose of this study stemmed from the more manual computation of data points for

the melting line of copper (Cu) using the so-called z-method. Using this method requires

a molecular dynamics (MD) simulation of the micro-canonical ensemble of a system at a

5



specified temperature for various temperatures and for sufficiently long simulation times.

The temperature versus time graph needs to be plotted, and a sudden drop in temperature

needs to occur to indicate melting. The accuracy of the melting temperature can be

increased, but this still requires the same type of simulations and amount of simulation

time but just at a shorter temperature range. The temperature range can continually be

shrunk to increase the melting temperature accuracy. This is a very time consuming and

tedious task as a user needs to plot the graphs and note where the melting happens, and

the need for a sufficiently long simulation time, which in the more manual computation of

Cu shown in this paper is 10ps which yields to about 10 minutes of real time for a parallel

run in the MD software used with four processors, which leads to the user requiring a lot

of patience.

No programs seem to exist online that facilitate this procedure, and, furthermore, no

programs seem to exist that go beyond just finding the melting line of a metal like Cu,

such as mapping the phase transitions between crystals or conveniently creating higher-

dimensional phase diagrams (i.e. those beyond just two dimensions). These programs

can be very useful for the analysis of systems and the testing of inter-atomic potentials in

molecular dynamics.

The chapters of this paper are organized sequentially and information from previous

chapter is referenced in later chapters. In this chapter we introduced our thesis and our

motivation. In Chapter 2 we go over some thermodynamic and solid state concepts to better

understand the type of systems we are analyzing. In Chapter 3 we cover molecular dynamics

simulations and how we applied them to naively compute the melting line of copper. In

Chapter 4 we introduced convolutional neural networks, the center-piece of the proposed

method, along with a binary search algorithm and a shrinking enclosure algorithm, both

necessary to aid and improve the efficacy of the neural network. In Chapter 5 we describe

the implementation of the machine learning method and two algorithms introduced in

Chapter 4, including the pseudo-code. In Chapter 6 we apply our proposed method to the

same copper system along with two other new systems, FCC aluminum and BCC tantalum.

6



In chapter 7 we discuss the efficacy and shortcomings of our proposed method. Finally, in

Chapter 8 we talk about future work, including promising algorithms and more intricate

phase diagrams we may be able to map using machine learning methods.

7



Chapter 2

Systems of Interest

2.1 Thermodynamic Analysis of a System

2.1.1 Power of Processes Exerted on a System

A process in thermodynamics is defined as any interaction between the environment and

the system, the system being the part of the universe that is of interest and analyzed

and the environment being everything else. Processes are any interactions between the

environment and the system. Three types of processes can be characterized: mechanical,

thermal, and chemical. Looking at the thermodynamic analysis of a system as in book [5],

chapter 1, these processes are given quantitative meaning respectively by work on or by the

system, heat transfer, and chemical work on or by the system. Work on or by the system

is the pressure p times the negative in change in volume ΔV of the system, which must be

a deformation of the system’s volume, defined by the system’s boundaries. Heat transfer

occurs when there is a temperature difference between the system and the environment,

in which heat flows from higher to lower temperature. It is defined by the product of

temperature T and a change in entropy ΔS. Chemical work is the diffusion of particles

across the system boundaries. The system does chemical work when it gives up particles,

and chemical work is done on the system when it receives particles from the environment.

The chemical work done on the system involving particles of species (where species is a

type of particle) A is given by the product of the chemical potential of A – denoted by µA

times the change in particles of species A – denoted by ΔNA.

Processes can change the value of a state variable (or more generally state functions

8



where a state variable is a trivial state function) of the system. State variables specify

the state of the system entirely. Extensive state variables are the sum of state variables

of compartmentalized parts of the system (subsystems). These have respective conjugated

paired intensive variables, which do not posses the same property and thus are system-size

independent. These conjugated pairs are partial derivatives of the internal energy of the

system of each other as shown in Equation (2.1)

∂E

∂Xi

= Yi,
∂E

∂Yi

= Xi (2.1)

where E is the internal energy of the system, Xi is an extensive variable, and Yi is its

intensive variable pair.

For our purposes, we want to look at the extensive variables entropy S, volume V ,

and number NA of particles of a certain species A in the system, and at their respective

conjugated variables: temperature T , pressure p, and chemical potential µA of this species

A.

It is worth explaining entropy as the natural logarithm of the degeneracy of a system

at a particular energy, given by the following formula, chapter 2 of [13],

S(N, V,E) = kB ln(Ω(N, V,E)) (2.2)

Here, Ω is the degeneracy of the system at a certain state (N, V,E). The natural logarithm

is taken to make entropy an extensive variable; kB is the Boltzmann constant, and the

system is fixed at a certain number of particles N , volume V , and internal energy E.

While most of the state variables mentioned are self explanatory, it also worth clarifying

that the chemical potential of a species A, usually denoted as µA, is the change in the

internal energy of the system when a particle of species A enters the system, and it would

be the energy lost when a particle of species A leaves the system.

It is also worth noting that the temperature of the system is related to the total kinetic
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energy of the system by the following [14]

dNkT =
N�

i=1

mi|ui|2 (2.3)

Here, ui is the velocity of particle i, mi is its mass, d is the number of dimensions of the

system (e.g. 2D or 3D) and k is a proportionality constant. We can use the state variables

we are interested in to completely define the state of the system.

If we consider Equation (2.1), we can use the chain rule and write in general

dE

dt
=

�

i

Yi
∂Xi

∂t
(2.4)

Using Equation (2.4), we can look at the powers exerted on the system and look at the rate

of change of the internal energy with respect to time with Equation (2.5) shown below

dE

dt
= T

dS

dt
− p

dV

dt
+

�

A

µA
dNA

dt
(2.5)

The last term in Equation (2.5) is a summation over the number of different species A in

the system.

It is worth noting that the term p
dV

dt
in Equation (2.5) has a negative sign because a

positive change in volume ΔV > 0 indicates the system doing work on the environment,

and thus losing energy. In engineering, the sign is positive because engineers are more

interested in building machines that do work, but here we use the physics convention.

In literature, the internal energy E is derived from Equation (2.5) first using the so-called

Gibbs-Duhem relation, which states that the sum of the terms involving the differentials of

the intensive state variables T, p and µA equates to zero. This yields that the time integral

of Equation (2.5) is just

E = TS − pV +
S�

A

µANA (2.6)

This is the so-called Euler equation in thermodynamics. It will be of interest in future
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sections.

2.1.2 Equipartition Theorem and Point Mass Particles with Har-

monic Oscillator Potentials

The equipartition theorem states that the thermal energy of a system is distributed equally

among all forms of energy. Or more generally and precisely, as shown in [15], given the

Hamiltonian of a system H, which for our purposes will equal the energy of the system, we

can consider all the homogeneous terms in the Hamiltonian as in Equation (2.7)

H =
�

l

gl(xi, .., xj) + h (2.7)

where gl is some homogeneous term dependent on some subset, improper or not, of the

components of the system’s phase �x, as defined in Section 3.2, and h is independent of the

phase coordinates in �x.

A function g has degree of homogeneity r if it satisfies Equation (2.8).

g(λx1, ...,λxL) = λrg(x1, ..., xL) (2.8)

where λ is a constant. All such terms gl in Equation (2.7) that have the same degree of

homogeneity r and are dependent on the same number of arguments L make the same

contribution to the mean total energy.

For our purposes, and as an example, we will look at point mass particles, i.e. matter

particles that occupy no volume, that interact with each other via a quadratic potential

U , which has the form U =
1

2
kcΔr with spring constant kc and displacement Δr. Thus,

no rotational kinetic energy terms are present and thus, for N particles, the Hamiltonian

of the system is

H =
1

2
mi

N�

i

[u2
ix + u2

iy + u2
iz] +

1

4
kc

N�

i,j

[(rix − rjx)
2 + (riy − rjy)

2 + (riz − rjz)
2] (2.9)
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Here, the sums are taken over the N particles, denoted by i or j. The last summation has

an extra 1/2 factor to account for double counting for the sum over all the N i-particles

and the N j-particles (a double summation where terms are repeated), and isotropy for

the spring constant kc is assumed.

According to the equipartition theorem, the steady-state energy contribution of each

term is

gL =
1

r
kT (2.10)

where T is the temperature of the system.

If we split all the terms in square brackets in Equation (2.9) into functions of degree of

homogeneity 2 that take 3 phase components as arguments, e.g.
N�
i
miu

2
ix, and taking into

account that miu
2
ix = pix/mi, then we have for each of the 3N homogeneous functions of

degree 2

g3 =
1

2
kT (2.11)

We can rewrite the Hamiltonian in the more simpler form

H =
1

2

N�

i

�pi
2

mi

+
1

4
kc

N�

i,j

r2ij (2.12)

where the dot product of �pi is taken with itself and where

r2ij = (rix − rjx)
2 + (riy − rjy)

2 + (riz − rjz)
2 (2.13)

With this notation, we split the Hamiltonian terms into the kinetic and quadratic potential

energy contributions, and thus the internal energy E at the steady state is given by

E =
1

2
Ng3 +

1

4
· 2Ng3 (2.14)

In Equation (2.14), the first term come from the translation kinetic energy of the particles,

and the second term comes from the vibrations of the particles. As can be seen, both

12



terms equal
1

2
· N · g3, indicating equal contribution to the internal energy, or conversely,

given power exerted on the system, in the steady state, the change in internal energy ΔE

would split evenly between the velocity of the particles and the stretching of the “springs”

(vibrational modes) between particles.

2.1.3 Virial Theorem

The virial theorem is related to the aforementioned equipartition theorem. The virial

theorem applies to a system of particles if the position and momentum of each particle is

bounded, which is the case for a solid crystal system. As discussed in the section on the

virial theorem in [16], the virial theorem can be derived by starting with Newton’s second

law which on a single particle a is

�Fa = ma�̈r = �̇pa (2.15)

where the superior dots indicate time derivatives. This vector equation can be multiplied

by �ra for the scalar product and produce

�ra · �Fa = �ra · �̇pa =
d(�ra · �pa)

dt
−ma · �̇ra

2
(2.16)

Noting that the kinetic energy of atom a is
1

2
·ma · �̇ra

2
= Ta, we can write

d(�ra · �pa)
dt

= �ra · �Fa + 2Ta (2.17)

The time average of a function f is

f̄ =
1

τ

� τ

0
fdt (2.18)
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Applying this to Equation (2.17) we get

1

τ
[�ra · �pa]τ0 = �ra · �Fa + 2T̄a (2.19)

where the superior bar indicates the time average.

The left-hand-side of Equation (2.19) can be made 0 if the motion is periodic or the

period for averaging τ can be made large enough to make the left-hand-side be close enough

to 0. Doing this we arrive at

−2T̄a = �ra · �Fa (2.20)

If we have a system of more than one particle, we can just sum over all the particles and

obtain

−2T̄ =
�

a

�ra · �Fa (2.21)

The right-hand-side of Equation (2.21) is called the virial.

Now, non-conservative forces (e.g., friction) on particles time-average to zero. Con-

servative forces are derived from a potential. For a conservative force on atom a from a

potential U , the following follows

�Fa = −∇aU (2.22)

Here, the gradient is taken with respect to the position coordinates of particle a since the

potential would involve arguments at least from the position of some other particle.

If the potential is a homogeneous function of degree r as defined by Equation (2.8), then

making the replacement of Equation (2.22) into right-hand-side of Equation (2.21) yields

−
�

�ra · �Fa =
�

�ra ·∇aU = rU (2.23)

where, as mentioned earlier, r is the degree of homogeneity of U . With this, we can finally

write

2T̄ = rŪ (2.24)
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If U is approximated by a quadratic potential, then U has a degree of homogeneity of 2

and thus we arrive at

T̄ = Ū (2.25)

Equation (2.25), along with section 2.2.3 will, be used to justify the initial velocity re-scaling

of particles in a Cu system for finding the melting point at a given pressure.

2.2 Crystal Systems

2.2.1 Types of Crystal Structures

Crystal structures, as opposed to amorphous materials, have a repeating pattern across

space, determined by a lattice and a basis, where the lattice is all geometric points in

space, with position �r� determined by the lattice translation vectors {�ai} [17]

�r� = �r + u1 �a1 + u2 �a2 + u3 �a3 (2.26)

and the basis is all groups of particles attached to a lattice point. The position of each

particle j is given by

�rj = xj �a1 + yj �a2 + zj �a3 (2.27)

The factors xj, yj and zj are between 0 and 1, and thus all particles reside within the

conventional unit cell delimited by the {�ai} with volume Vc

Vc = |�a1 · (�a2 × �a3)| (2.28)

Fourteen types of lattices exist in three dimensions, defined by point group symmetric

operations (i.e. operations that move all but one point across space but keep the geometry

of the lattice the same) or the number and type of constrains in the cells. The lattice types

are divided into six groups as shown in Table 2.1 (pg. 9 of [17])
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Table 2.1: The 14 lattice types in three dimensions.
System Number of lattices Restrictions on conventional cell axes and angles

Triclinic 1 a1 �= a2 �= a3 and α �= β �= γ
Monoclinic 2 a1 �= a2 �= a3 and α = β = 90◦ �= γ

Orthorhombic 4 a1 �= a2 �= a3 and α = β = γ = 90◦

Tetragonal 2 a1 = a2 �= a3 and α = β = γ = 90◦

Cubic 3 a1 = a2 = a3 and α = β = γ = 90◦

Trigonal 1 a1 = a2 = a3 and α = β = γ < 120◦, �= 90◦

Hexagonal 1 a1 = a2 �= a3 and α = β = 90◦, γ = 120◦

All these lattice types of parallelepiped figures (i.e., three dimensional figures composed

of 6 parallelograms joined at the edges) need different types of constraints on the three side

lengths and three angles to completely define them geometrically. For our purposes, we are

interested in the cubic system, which consists of the simple cubic (SC), body-centered cubic

(BCC) and face centered cubic (FCC) lattices. Shown in Figure 2.1 are the conventional

unit cells of these systems generated with the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) software [18].

Figure 2.1: Simple cubic, face centered cubic and body centered cubic conventional
unit cells from left to right.

As shown in Table 2.1 for the cubic system, there are 5 constraints on the cubic system,

meaning only the side length of the cube is needed to define the lattice types in this system.

We call this side length the lattice constant.
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2.2.2 Types of Phase Transitions

As discussed in Chapter 6 of [5], pg. 140, “A phase is a state of matter which occu-

pies a subspace of the state space characterized by physical properties of the system.” As

discussed previously, examples of state variables that can make up a state space include

volume V , entropy S, energy E, etc. Examples of phases include solid, liquid, gas, plasma,

ferromagnetic, superconducting and superfluid. In addition, more nuance types of phases

in a solid can be the different crystal structures in Table 2.1.

A system can transition from one phase to another. Examples of these transitions

are melting, solidification, vaporisation, condensation, sublimation and deposition. Phase

transitions also include transitions from one crystal structure to another, such as from iron

FCC to iron BCC.

One thing to clarify is that the phase spoken of here is that related to solid state

physics. The previously mentioned phase of a system denoted by the vector �x is that

related to molecular dynamics. The difference should be clear by the context.

Certain state functions change when there is a phase transition. Phase transitions occur

in response to physical processes. For example, when heat is added, a solid can melt, the

temperature stays constant but the energy increases because there is a release in the inter-

particle bonds. More specifically, as mentioned in pg. 140 of [5], according to the Ehrenfest

classification, there are two types of phase transitions.

First-order phase transitions are characterized by discontinuities in the partial deriva-

tives of the Gibbs free energy with respect to volume V and entropy S. The Gibbs free

energy is a Legendre transformation with respect to the entropy and volume. Normally,

the internal energy is a state function of the extensive quantities entropy S, volume V and

number NA of particles of the species A. However, in experiments, it is many times more

practical to control some of the intensive quantities (i.e., temperature T , pressure p and

chemical potential µA). The Gibbs free energy gives all the same information as the internal

energy, and one can be converted into the other by a Legendre transformation. This type of

transformation replaces a variable by the partial derivative of the function in question with
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respect of that variable. The extensive-intensive conjugate pair relationship of Equation

(2.1) makes it such that for internal energy, extensive state variables are replaced by their

intensive conjugate pairs and vice versa. The Gibbs free energy is defined as below

G(T, p,NA) = E + pV − TS (2.29)

Here, the expression in the right is computed and then the variables V and S are replaced by

their conjugates p and T in the equation through their relationships p =
∂E

∂V
and T =

∂E

∂S
,

for whatever form the state function E has.

An example of the discontinuity mentioned is shown in the temperature versus Gibbs

free energy graph in Figure 2.2.

Figure 2.2: Temperature T versus Gibbs free energy G graph. The partial deriva-
tive of the Gibbs free energy with respect to temperature is the entropy,
and discontinuity in this can be seen on the graph by sharp turns of
the graph ([5] pg. 141)

In this paper, we will focus mainly on phase transition of the first order, but it is worth

mentioning that phase-transitions of the second order are characterized by discontinuities

in the second partial derivative of the Gibbs free energy. An example of this is when the

state of a system evolves through the critical point, which is the point where two phases of

18



matter become indistinguishable from each other, such as at high pressure and temperature

liquid water and water vapor.

2.2.3 Quasi-Harmonic Approximation of Inter-Atomic Energies

Here, we want to show that we can approximate the interaction between two particles in

a solid crystal by a harmonic oscillator. As our test case, we look at two Cu atoms, whose

interaction is dictated by the potential developed by Mishin et al. in 2001 [19], which is an

embedded atom method (EAM) type of potential. We want to approximate this by a two

mass spring system and determine the frequency of oscillation between the two Cu atoms.

Simulating a system of two Cu atoms, initially separated by 3 Angstroms, starting at

0 temperature, we plot the separation distance as a function of the pairwise energy U and

after we approximate around the minimum with a quadratic polynomial as shown in Figure

2.3.

19



Figure 2.3: Quasi-harmonic interaction between two isolated copper atoms approx-
imated by a quadratic polynomial.

Here, data points with inter-atomic distance values in the range [2.01363, 2.41363]A

are included, which includes the minimum (2.31363A, −0.947211eV) of U , which are the

equilibrium distance and the minimum energy respectively. The formula for the quadratic

interpolation is shown at the top of the graph.

Another system where a similar analysis can be made is on the Cu face centered cubic

crystal in which we look at only two Cu atoms, whose pairwise energy graph and interpolate

quadratic polynomial are shown in Figure 2.4. We simulate this system in MD, do the same

kind of interpolation and apply the same analysis. Now, we want to approximate U with a

truncated Taylor expansion up to the square term about the minimum and equate to the

quadratic interpolation formula we have.
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Figure 2.4: Quasi-harmonic interaction between two copper atoms in an FCC crys-
tal approximated by a quadratic polynomial.

The truncated Taylor expansion about the equilibrium distance x0:

U(x) = U(x0) +
∂U

∂x
(x0)(x− x0) +

1

2

∂2U

∂x2
(x0)(x− x0)

2 (2.30)

If we approximate about the minimum, then by definition, the first derivative
∂U

∂x
(x0) = 0.

Thus, we are left only with the constant and square terms:

U(x) = U(x0) +
1

2

∂2U

∂x2
(x0)(x− x0)

2 (2.31)

As such, we want our interpolated polynomial to resemble this form, so we complete the

21



square using the following formula:

c+ bx+ ax2 = c− b2

4a
+ a

�
b

2a
+ x

�2

(2.32)

We can equate the quadratic interpolation formula to our truncated Taylor and see that:

1

2

∂2U

∂2x
(x0) = a (2.33)

Now we want to recall the model of a two spring system to determine the frequency and

period of oscillations between the two Cu atoms. The model of a two mass spring system

is governed by this equation of motion:

µ
d2x

dt2
= −kx (2.34)

Here, µ is the reduced mass of the two masses m1 and m2, given by µ =
m1m2

m1 +m2

, and k

is the spring constant. Reformulating this differential equation in the following form gives:

d2x

dt2
+

kx

µ
= 0 (2.35)

This differential equation is solved by a sinusoidal of amplitude A, phase φ and angular

frequency ω: A sin(ωx + φ). A and φ are determined by the initial conditions, but the

angular frequency ω is determined by the spring constant k and reduced mass µ by:

ω =

�
k

µ
(2.36)

The reduced mass model of the two mass spring system treats the original system of two

masses as one. Thus, we can use the potential energy of the single mass attached to a

spring on this reduced mass model. Recall that the potential energy of a mass in a spring

22



Figure 2.5: Simulation data of two isolated Cu atoms of time versus displacement.

is given by

U =
1

2
k(x− x0)

2 (2.37)

This analysis is not perfect since the interpolating polynomial needs to include a certain

range of data points such that the period of oscillation in the simulation is consistent

with the value of a in Equation (2.32). For example, figure 2.5 shows the displacement

versus time of the two isolated Cu atoms system. The value of a needs to be consistent, in

accordance with Equations (2.33), (2.36), and (2.37), with the period in Figure 2.5, which

in this case is about 0.32 ps.

This analysis is just to show that the interaction between two Cu atoms, part of an

FCC crystal or isolated, can be considered quasi-harmonic (i.e. almost harmonic), and

thus be approximated by a harmonic potential within a certain range of the displacement

from equilibrium between particles. This, along with Subsections 2.1.2 and 2.1.3, will tie

in with the way we need to initialize the temperature of our systems to attain a desired

temperature for our determination of melting lines using the z-method.
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Chapter 3

Molecular Dynamics

3.1 Newton’s Equations of Motion

Molecular dynamics (MD) is a mostly classical view, as opposed to taking quantum me-

chanics into consideration, of the motion of particles. As described in [20], MD can be

described as computational statistical mechanics, where give the rules for the system, MD

can be used to quantify system properties, such as temperature. A system is considered

composed of discrete particles and an equation of motion like Equation (2.15) is sought.

The application of Newton’s second law, in the most basic implementation of MD, leads

to the time evolution of the system. The force Fa on a particle a is derived from some

potential as in Equation (2.22). The evolution of the positions of the particles is sought

from the equations of motion. These particles’ trajectories require an integration method

that is numerical in nature, for the particles’ equations of motion are coupled since the

potential U in Equation (2.22) always involves the phase coordinates of more than one

particle, since potential energy is an energy existing only through interactions. It is well

known that there is no analytical solution for a three or more body problem when there is

interaction between the particles, leaving numerical solutions as the only option.

Aside from Newton’s second law, more powerful methods of determining the system’s

particles’ causation of motion are through Lagrangian and Hamiltonian dynamics. As

shown in Chapter 3 of [21], the equations of motion for Lagrangian dynamics with con-

straints (for more generality) are

d

dt

�
∂L

∂q̇i

�
− ∂L

∂qi
=

�

l

λlali, i = 1, ..., N (3.1)
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where {qi, q̇i} are the generalized coordinates and velocities, ali involve coefficients for linear

constraints on the generalized velocities, and the Lagrangian L is

L = T − U (3.2)

where T is the total kinetic energy, U is the total potential energy, and L = L({qi}, {q̇i}, t).
The Hamiltonian equations is a Legendre transform of the Lagrangian as shown

H =
�

i

q̇ipi − L (3.3)

where the {pi} are the generalized momenta. The Hamiltonian equations of motion are

given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(3.4)

For our purposes, equations of the form of (2.22), which derive from Equation (3.1) if the

{qi} correspond to the Cartesian coordinates, for each particle of the system, will suffice,

but as previously shown in Subsection 2.1.2, it is useful to make use of the Hamiltonian

operator.

For the MD software used in this work, LAMMPS, we will make use of the Verlet inte-

gration algorithm, which is generally the case by default for time-stepping (i.e. progression

of time in the simulation) in LAMMPS simulations. This algorithm, as shown in chapter

2 of [21], is shown below in Equations (3.6), (3.7), and (3.5).

Taking h as the length of the time-step (i.e., the Δt since this is a numerical method

partitioning the time integral into time intervals of size h), we first update the particles’

velocities by half a time-step, getting aix(t) from the current force, which is taken from

Equation (2.22):

uix(t+ h/2) = uix(t) + (h/2)aix(t) (3.5)

Afterwards, we advance the positions a full time-step using the half-time-step advanced
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Figure 3.1: As can be seen, the velocity is updated half a time-step with the current
positions for the acceleration, the positions follow for a full time-step,
and finally the velocities follow again for another half time-step using
the just updated positions for the acceleration.

velocities from Equation (3.5):

rix(t+ h) = rix(t) + huix(t+ h/2) (3.6)

Lastly, we use the full-time-step advanced positions from Equation (3.6) to compute the

potential, then the forces, and finally the needed accelerations aix(t+ h):

uix(t+ h) = uix(t+ h/2) + (h/2)aix(t+ h) (3.7)

The Verlet method can be seen visually in figure 3.1.

This three-step process is repeated until the simulated time-length is reached. The user

usually specifies the number of time-steps for the desired simulated time. The advantage

of Verlet is that it is a relatively simple and computationally inexpensive time-integration

method (e.g. as compared to high order Runge-Kutta methods), yet it has smaller-order

errors. Verlet has errors of order O(h4) for the coordinates and O(h2) for the velocities, as

compared to the Euler method which has an error of order O(h) for the coordinates.
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3.2 Types of Ensembles

An ensemble is, in theory, an infinite set of versions of a system, where each version has

the same values for particular state variables but not the same individual micro-states for

each individual particle of the system. We can define the phase of a system of N particles

as a vector �x, just like it was done in [22], which is the concatenation of all the system

particles’ positions ri and momenta pi, where pi = miui. The ensemble consists of infinite

versions of the same system because it aims to include all possible phases of the system

that fall under the specified constraints.

As such, we say that the systems are in the same state, depending on which state

variables we want all the versions to have the same, but in different phases. Depending on

which state variables we want to keep constant, we determine a different type of ensemble,

as described in [13].

The micro-canonical ensemble is that in which all the systems in the ensemble have the

same energy. This is also denoted as the NVE ensemble for these are the state variables

that we keep constant. In terms of Equation (2.5), this means that
dNA

dt
= 0 for all A,

dV

dt
= 0 and

dE

dt
= 0. Another kind of ensemble is the canonical ensemble, also denoted

as the NVT ensemble. In this ensemble, we keep the temperature constant (i.e.
dT

dt
= 0)

instead of the energy. Finally, we can also consider the grand-canonical ensembles, also

denoted as the µVT ensembles. In this ensemble, as compared to the canonical ensemble,

the chemical potential is held constant (i.e.,
µA

dt
= 0) instead of the number of particles.

This type of ensemble can represent systems where there is both heat and chemical work

processes.

The equations of motion for these ensembles can be summarized as follows:

1. NVE: use of the standard Newton’s equation of motion F = ma

2. NVT: thermostats to keep T constant that make use of extended variables such as

Langevin [23], Berendsen [24], velocity re-scaling, Nose-Hoover [25], etc.
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3. µVT: similar to the NVT ensemble but
µA

dt
= 0

As discussed in [26], all thermodynamics properties of a system can be computed from

any of the types of ensembles. Here we mention only three, but any ensemble can be define

by the set of constant-kept state variables. For our purposes of finding the melting line

of various metals, we will focus on the micro-canonical ensemble to compute the melting

temperature at a constant pressure. But for future applications (Sections 8.2 and 8.3),

other types of ensembles may be considered.

3.3 Normal Method for Determining Copper Melting

Line

The type of phase transition we will focus on is melting, as the title suggests, and the

method that we will use is the so-called z-method. As described in [6], in this method, a user

runs a simulation in the NVE ensemble at a certain temperature, and spontaneous melting

occurs if the temperature is high enough. When melting occurs, there is an increase in the

latent heat of fusion. This increase in potential energy leads to a decrease in temperature.

The method is called the z-method because the value from which the temperature falls

from when melting occurs is a super-heating temperature, and the temperature the system

falls to is the melting temperature. Plotting the temperature versus energy graph leads to

a z shape as shown in the left graph of Figure 3.2. Repeating this procedure for different

volumes can be used to map the melting line of a metal as shown in the right graph of

Figure 3.2.
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Figure 3.2: In the left graph we see the drop from the super-heating temperature
to the melting temperature. On the right graph, we can see how this
can be used to map the melting line in the P-V graphs. P-V points
on the left side of the melting line correspond to solid states, and P-V
points ont the right-side correspond to liquid states[6].

To determine the melting line of FCC copper, we used the so-called z-method. This

method is describe as follows.

To determine the melting temperatures of FCC Cu at various pressures, we ran a micro-

canonical ensemble simulation of a system of 5324 Cu atoms. We controlled the volume of

the system by specifying a lattice constant for the FCC conventional unit cells. In turn, the

system’s pressure was controlled by the volume since the lattice constants of the FCC cells

at 0 GPa must be about 3.6A. Thus, a smaller lattice constant indicates that the system

is under compression, i.e. positive pressure. In this manner, we determined the pressures

at which the system melts after determining the temperatures at which it melted.

The simulations ran for 2 · 104 steps with a step size of 1 femto-second (fs), leading to

20 picoseconds (ps) of simulated time.

We first sought a range to where the MD software program would reasonably work

and to where the pressure that the system melts would reach the 200 GPa range. The

range in lattice constants that worked was from 3.15 to 3.50 Angstroms. Starting from the

lower bound of this range, we sought a lattice constant every 0.035A, leading to 11 lattice
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constants. The way the system was set to a certain temperature was through velocity re-

scaling. In theory, this would mean that the velocities of the Cu atoms would have to have

magnitudes so that in Equation (2.3) the temperature T was the desired value. However,

because of the equipartition theorem and virial theorem of Subsections 2.1.2 and 2.1.3, the

temperature value must be double for the initial temperature as shown in Equation (3.8).

Tneeded = 2Twanted. (3.8)

This is because half of the kinetic energy will go to the modes of the springs, i.e. the

potential energy terms of Equation (2.9), and the other half will stay with the atoms’

velocities. Therefore, the temperature in the MD software must be set to twice the desired

temperature value in Equation (2.3). It is important to emphasize that this is for an initial

run, where no previous phase of a previous simulation is used to initialize the system. This

is done and explained shortly.

The temperature value that yielded the first time the system melted was determined by

plotting the temperature against the time. Melting occurred when the temperature had a

sudden drop. The pressure was noted at this temperature.

The reason this temperature drop and pressure increase happen is because we are run-

ning an NVE simulation. In this simulation type, the state variables N , V and E are kept

constant. In addition, we need look at Equation (2.6). Because the system is melting, the

entropy S must increase. Therefore, if we look at Equation (2.6), in order for the internal

energy E to stay constant, the other free state variables T and p must change as well to

compensate.

A time-average of both the temperature and the pressure for the last 15% of the sim-

ulation time was used as the recorded values for the melting temperature and pressure.

It is important to note that these are the values after the system melts, and the average

is taken to cancel out the natural fluctuations. The change in the system for both state

variables can be seen in Figure 3.3. As can be seen, whereas the temperature has a sudden
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Figure 3.3: Change in temperature and pressure due to melting for a system of Cu
atoms in FCC with conventional unit cell lattice constant of 3.150A.

decrease, the pressure has a sudden increase. This melting could occur at any time in the

simulation. This is part of the reason why the simulation times were so long (20ps), to

capture the moment the system melted if it was meant to melt at that temperature.

We did enclosures for where the melting point would be found, starting from 3200 to

7200 K at steps of 500 K for the given lattice constant set. We found the temperature

from this discrete search and repeated for each lattice constant for 100 K steps within a

500 K range, then 20 K steps for within a 100 K range, then 4 K steps for within a 20

K range, and finally a 1 K step for within a 4 K range. It is necessary to use the phase

of the previous simulation to start the next simulation in the temperature set for each

temperature range. To do this, a data file with the phase is dumped and used to initialize

the next simulation. However, in the next simulation, the initial velocities are re-scaled

by equating the temperature value T to the previous temperature plus twice the difference

between this value and the desired temperature as shown in Equation (3.9).

Tneeded = Tprevious wanted + 2(Twanted − Tprevious wanted) (3.9)

The temperature needed Tneeded is the value set in the velocity-re-scaling command in the

MD software that takes in the previous simulation’s phase. The reason for this has the same
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logic as that of Equation (3.8). The “springs” (the inter-atomic forces) are already stretched

to the amount needed for the system to have the phase for the previous temperature.

As such, one just needs the velocity portion normal temperature of Equation (2.3) plus

the difference between temperatures for the modes of the springs (Equation (2.37)) in

order to satisfy Equation (2.24). It is again important to emphasize that the velocity re-

scaling used for the system with the very first temperature for each temperature set follows

Equation (3.8) while each subsequent simulated system for the rest of the temperatures

follows equation 3.9.

The method of partitioning the initial temperature range into ever-smaller ranges greatly

reduced computation time as compared to the estimated time of 1 K steps for all lattice

constants by a factor of about 5 to 6. Each simulation took about 12 minutes, and the

number of simulations for each of the 11 data points in Table 3.1 was 29, yielding a total of

319 simulations and an estimated time of 66 hours for 4 processors running LAMMPS in

parallel. This, however, does not take into account the need for the user to manually set the

temperature range of the aforementioned cycles by looking at graphs that are like the left

graph of Figure 3.3. This is a very tedious and exhausting task for the sets of simulations

take hours to finish, and the new simulations must be started after the temperature range

determination.

3.4 Melting Line of FCC Copper

3.4.1 Result of MD Simulation for Copper Melting Line

Here, we present the results of the naive implementation of the z-method as described in

the previous section for determining the melting line of FCC Cu. By naive implementation,

we mean linear search as described in Subsection 4.3.2 and with no other algorithmic or

machine learning implementations. This procedure will be referred to as the “normal

procedure”. In addition, by the melting line we mean the curve marking the transition
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Table 3.1: Normal procedure simulation results for the melting line of Cu.
Latt. Const. (A) Melt. Press. (GPa) Melt. Press. Err. (GPa) Melt. Temp. (K) Melt. Temp. Err. (K)

3.150 218.93 0.22240 5769.84 55.4534
3.185 189.03 0.19585 5356.34 52.1689
3.220 163.02 0.19153 4945.84 45.9514
3.255 140.26 0.16355 4611.78 39.8171
3.290 120.10 0.14182 4239.91 37.0017
3.325 103.14 0.11902 3984.07 29.7303
3.360 87.45 0.13422 3637.64 31.9107
3.395 74.11 0.12831 3397.62 28.4171
3.430 62.27 0.10306 3135.67 24.7346
3.465 51.44 0.11033 2836.19 25.5035
3.500 42.40 0.09805 2624.67 21.7108
3.600 21.67 0.06130 2050.37 12.7977

from solid to liquid in the temperature T versus pressure P graph (a two-dimensional

phase diagram). The solid and melting states can be seen in figure 3.4. Since the lattice

constant determines the pressure on the system, it is also included.

Figure 3.4: On the image in the left, the system of Cu atoms is vibrating but still
solid FCC. In contrast, the system has melted in the image on the right.

3.4.2 Experimental Data of Copper Melting Line

Here, we present experimental data of the melting of Cu in figure 3.5. This data was taken

from [27].
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Table 3.2: Experimental data for Cu melting.
Press. (GPa) Melt. Temp. (K) Error in Melt. Temp. (K)

0.0 1354 5
4.0 1533 13
6.9 1628 18
9.8 1753 23
12.8 1803 15
12.8 1823 50
16.0 1923 15

3.4.3 Simon-Glatzel Equation Interpolation of Simulation and

Experimental Data and Comparison

Finally, we present the data plotted along with the Simon-Glatzel interpolation from [28].

This interpolation equation tries to relate the melting temperature to pressure of a solid.

It fits well for metals such as copper. The equation has the form

Tm = Tref

�
(P − Pref )

a
+ 1

�b

(3.10)

Here, Tref and Pref is any data point. The one taken for each interpolation on this work is

that of the melting temperature at zero pressure, thus Pref = 0. All fits were done using

the plotting tool xmgrace.
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Figure 3.5: For FCC Cu system, experimental data (black circles), MD simulation
data (red circles), and Simon-Glatzel fitting of MD simulation data
(green line) plotted.

As can be seen, the Simon-Glatzel fitting from the MD simulation data coincides fairly

well with the experimental data. For this fit, the parameters obtained were Tref = 1190.83,

a = 12.8919 and b = 0.546141. The experimental value of Tref = 1354, as can be seen in

Table 3.2. This leads to a relative percent error of 12.05% for the melting temperature at

zero pressure.
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Chapter 4

Convolutional Neural Networks in

Machine Learning

In this section, we will go over the machine learning method that will be used to partially

automate the determination of the melting line of Sections 3.4 and 3.5.

4.1 Basic Mechanism Behind Neural Networks and

Applications

Neural Networks (NN) are a machine learning (ML) method that aims to mimic the in fact

not completely understood mechanism of biological neural networks in the brain. As the

name suggests, NNs are composed of neurons belonging to a layer. Neurons connect with

each other to pass information. Neurons in the same layer are not connected, but neurons

in different layers can connect in a multitude of ways. The simplest case is the so-called

feed-forward NN where each neuron in a layer, except the input layer, gets input from each

neuron in the previous layer. An example of such NN can be seen in Figure 4.1. This is the

type of neurons connections we will focus on. The architecture of the neuron connections

is the topology of the NN.

In addition to neural connection types, a NN is also characterized by its three types of

layers: the input layer, the hidden layers, and the output layer. The hidden layers are the

layers in-between the input and output layers. If there are many hidden layers, where more

than three is considered many, then the NN is considered a deep neural network (DNN).
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Figure 4.1: Here is an example of a shallow (not that many hidden layers) and fully-
connected layers (each neuron in the previous layer connects to each
neuron in the next layer) NN with only one hidden layer, Chapter 2 of
[7].

These are the types of NNs that find practical applications. “Shallow” NNs are only useful

for specific problems. ML methods perform better than shallow NNs for more practical

problems. As such, DNNs are the main focus of this and many works.

NNs are used to answer a question in the form of input to output. The problem is

finding a mapping from Rn → Rm where n is the dimension of the input vector and m is

the dimension of the output vector. However, NNs need to “learn” in order to answer this

type of question. To learn, NNs need input-output data pairs as well as a learning method.

The NN is subjected to a learning or training stage. Afterwards, the NN is usually

tested with another set of data, usually separate from the one used to train it, for accuracy.

It is important to note that NNs are only good for interpolation and are not meant to be

used for extrapolating data. For example, NNs can be used for image recognition by using

the image pixels as input. A NN can be taught to learn to identify an image as a cat in a

binary manner, such as yes or no as its output. As such, this NN would not be able to say,

for example, whether an image of animal was a duck or not. The hyper-parameters of NNs

are the number of layers and the number of neurons per layer. Along with the NN topology,
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the hyper-parameters do not change during the learning stage of the NN. The parameters

of the NN are the weights and the biases. These parameters are adjusted by the learning

method during the learning stage. Each neuron produces an output, for it needs to pass

information to another neuron, that can be concisely put as follows (Chapter 2 of [7])

alj = σ

��

k

wl
jka

l−1
k + blj

�
(4.1)

Here, the output alj is that of the j
th neuron in the lth layer. As such, al−1

k is the output from

the kth neuron of the previous layer. The values wl
jk are the weights. These can be thought

of as the connections from the previous layer to the next layer, connecting neuron k from

Layer l− 1 to neuron j of Layer l. As the summation suggests, there is one weight for each

input al−1
k . Next, the bias blj, a number greater than zero, is added to the total summation

and corresponds to the jth neuron in the lth layer. Finally, σ is the so-called activation

function. The previous summation is the input of this function. These activation functions

are meant to be non-linear, for its input is already so. The role of activation functions is

to allow for non-linearity in the NN. NNs are meant to approximate an unknown function

from Rn → Rm that fits the given data. The likely non-linearity of this unknown function is

dealt with the non-linearity of the activation functions. Some common activation functions

are shown below.

Sigmoid:

σ(x) =
1

1 + e−x
(4.2)

Hyperbolic tangent:

σ(x) =
2

1 + e−2x
− 1 (4.3)

Rectified linear unit:

σ(x) = max(0, x) (4.4)

The learning method aims to minimize the difference between the outputs of the network

and the outputs of the training data. Since the NN is essentially a network composition of
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functions, its gradient can be used to minimize the error of its output. Some common cost

functions for the error are the mean square error (MSE) and the root mean square (RMS).

One common algorithm to minimize the error is the so-called gradient descent through

back-propagation. In this algorithm, staring from the last layer and ending at the first

layer, the weights and biases are updated by following the negative gradient of the cost

function with respect to the weights and bias of the current layer being updated.

4.2 Theory Behind Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of NN with an architecture better suited

for image recognition. These types of NNs are very distinct from the one shown in Figure

4.1, for they are not fully-connected like.

For context, images are made up of pixels arranged in a grid. The resolution of an

image is the amount of pixels it is composed of, for more pixels leads to greater detail in

the image but also more memory space in storage. The output value of a pixel can be a

shade of a color or just simply a color in the grayscale. The latter can take up less memory

in storage if stored in a file format that takes advantage of the monochromaticity. As such,

we will concern ourselves only with monochromatic images. Keeping the arrangement of

pixels in a grid and, for our purposes, the value they store in mind, we can look at the

architecture of CNNs and why CNNs are suited for image recognition. As explained in

Chapter 6 of [7], CNNs use three basic ideas for this: local receptive fields, shared weights

and biases, and pooling.

4.2.1 Local Receptive Fields

The inputs of a CNN are the pixels of an image. Local receptive fields are small groups of

pixels located in the same general region. These local receptive fields take the output of a

p×q region of pixels and convert it into one value for one neuron in a so-called convolutional

layer to take as input. The purpose of this is to identify a feature (i.e., a characteristic of
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the image such as a cat’s ear for identifying images of cats, although this region of pixels

would be too big for use in practice) of the image. Because the region of pixels is greater

than 1, the data is reduced and the number of neurons in one convolutional layer is less

than the number of pixels. In addition, because an image, in general, has several features,

it is necessary to have several convolutional layers that are each independently connected

to the input layer of pixels but not to each other, making most CNNs deep NNs. In this

way, different convolutional layers, also called feature maps, identify different features.

4.2.2 Shared Weights and Biases

Because a feature can be located in different regions of the image, all the neurons in a

convolutional layer share the same weights and bias. Because of this, the shared parameters

are often collectively called filters or kernels. Filters ensures a degree of translational

invariance of the images because each neuron in the same convolutional layer detects the

same feature, just at a different position in the image. The output of a neuron in a

convolutional layer with shared weights and bias has the form

alj = σ

�
b+

p�

l=0

q�

m=0

wl,kaj+l,k+m

�
(4.5)

where p and q are the dimensions of the rectangular region of pixels taken as input for a

neuron. The variables have the same meaning as those in Equation (4.1).

4.2.3 Pooling

Lastly, pooling is done in the so-called pooling layers. These layers are used right after

the convolutional layers, and their role is to “condense” the output of convolutional layers.

This is done by taking another small region of the neurons in the convolutional layers

and taking some aggregate value from the group of neurons. Two operations for these are

taking the maximum neuron output or taking the square root of the sum of the squares

of the neurons’ outputs, each known respectively as max-pooling and L2 pooling. As with
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Figure 4.2: Example diagram of a CNN with an input layer, convolutional layers,
pooling layers, and an output layer, Chapter 6 of [7].

the convolutional layers with the input pixels, the pooling layers are smaller than the

convolutional layers in terms of number of neurons. Pooling layers can be thought of as

affirming that a feature is indeed located in a certain region of the pixels but afterwards

disregarding the positional information. This is so that the “condensed” information can be

fed to the output layer more easily (less parameters needed and thus easier training of the

network). Each convolutional layer is connected to a pooling layer, there are no connections

between pooling layers, and pooling layers can be fully-connected to the output layer. An

example CNN topology shown in Figure 4.2.

4.3 Enclosures and Search Algorithms

In this section, we go over the methods and algorithms that will be used to aid the CNN

described in the previous section. The necessity of these algorithms will be explained in

chapter 5, the implementation of the proposed procedure of this work.

4.3.1 Enclosures

As described in Chapter 4 of [29], for a system of equations of the form

AIx = bI (4.6)
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an enclosure is an interval vector [y, y] satisfying

X ⊆ [y, y] (4.7)

where X is the set

X = {x;Ax = b for some A ∈ AI , b ∈ bI} (4.8)

For our purposes, we will consider only the general idea of enclosures containing the true

value of any general problem, not just unresolved systems of linear equations. In addition,

we will consider scalars instead of vectors, although the idea of vectors can be extended

to include scalars as one-dimensional vectors. In particular, we note that having a smaller

enclosure leads to greater accuracy in the true value of our solution if we consider the

midpoint of the enclosure as our solution y, where, for scalar solutions, the midpoint would

be

y = (y + y)/2 (4.9)

This leads the absolute error from the true value ỹ to be

|ỹ − y| ≤ (y − y)/2 (4.10)

where we reiterate that y is the lower bound of the enclosure and y the upper bound.

4.3.2 Search Algorithms

As described in Chapter 3 of [8], a search algorithm aims to find a key k within a data

structure D of records. Many times, D is a so-called associative array (also known as a

table or dictionary). Associative arrays map a disjoint set of keys to an arbitrary set of

values. A table can have order or not, and it is defined by a set of ordered pairs (k, v)

where k is the key and v is the value associated with it. In particular, a table must not

have identical keys since entries are identified by their key.
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Two types of search algorithms to consider are the sequential search algorithm and the

binary search algorithm. Both search algorithms work best if the table is ordered (i.e., the

keys, depending on their type, are ordered). For our purposes, we can assume this.

The sequential search algorithm just starts at the of the head of the table and examines

each element until it find the correct key. The matching of the key can be determined by

its associated value as well. For the purposes of determining the melting line of metals,

this will be the case.

In contrast, the binary search algorithm looks first at the middle element of the table

and determines if this element is the desired one, i.e. k = m where m is the desired value.

If this is the case, the binary search terminates, otherwise if k < m then a recursive call is

made on the head sublist, and if k > m then the recursive call is made on the tail sublist

instead. This process is repeated until k = m. For our purposes, there will be a tolerance

such that the upper bound of Equation (4.10) is given. So instead, the error of k from m

must be smaller than a given tolerance. An example of the binary search algorithm is given

in Figure 4.3.

It is easy to prove that given the length n of a table, the sequential search algorithm

takes O(n) time-complexity for a successful or unsuccessful find while the binary search

algorithm takes O(log n) time complexity. We will concern ourselves only with the binary

search algorithm because it is faster yet still relatively simple.
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Figure 4.3: Example of the binary search algorithm where the key k = m = 42 is
sought, Chapter 3 of [8].
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Chapter 5

Proposed Method for Defining

Transition Lines

As introduced in the introduction of this paper, we seek to determine the melting line of

metals in a more efficient and automated way. To this end, we will use enclosures, binary

search, and CNNs. The use of CNNs has been done before in [30], however, in this paper,

they used unsupervised CNNs for classification. In our case, our CNNs will use training

data to categorize. For this end, we will explain how the methods of Section 4.3 will be used

to make the CNN more effective. After, we explain how our CNN will be used as well as

present its architecture. Lastly, we will present how we put all these methods together with

the computer languages used for their implementation in actual code and a pseudo-code.

5.1 The Proposed Search Algorithm and Enclosure

Method to Reduce Computation Time

As mentioned in Subsections 4.3.1 and 4.3.2, we will make use of enclosures and the binary

search algorithm to speed up the determination of the melting line as compared to the

procedure described in Section 3.4.
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5.1.1 Binary Search Implementation for the Finding the Melting

Temperature

As mentioned in Section 3.4, the temperature ranges were divided into rather numerous

intervals. For a given lattice constant, and an initial interval from 3200 to 7200, 29 sim-

ulations were needed to calculate the melting temperature within one Kelvin. In this

sub-section, we want to prove that using the binary search is optimal because we minimize

the number of simulations we need to run to find the melting temperature within a given

tolerance/error. Given an initial temperature interval [TL, TU ] that we seek to repeatedly

divide into smaller sub-intervals until the size of the sub-intervals is of length e, were we

define the length ΔT of an interval as in Equation (5.1),

ΔT = TU − TL (5.1)

then we can prove that the number of iterative divisions d that leads to the least number

of sub-intervals is 2. That is, given the task of dividing an interval of length ΔT until it is

of size e or smaller, then the number of sub-intervals we must produce for each division is

2. First we note that the number of divisions has to be a natural number since we do not

define decimal divisions in any way. Now we show that in order for the next sub-intervals

to be smaller than the previous sub-intervals, the previous sub-intervals have to be divided

into at least two sub-intervals as shown in Equation (5.2)

d ≥ 2 (5.2)

We also note that all the sub-intervals from the same division are of equal length. Thus,

we can conclude that the least number of divisions of a sub-interval such that the resulting

sub-intervals are smaller is 2 because the infimum of the set {d ≥ 2 | d ∈ N} is 2.

This implies naturally that the binary search algorithm of Subsection 4.3.2 should be

used, where instead of a numerical comparison indicating which sub-interval should be
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searched, the melting in the graph of the temperature versus time graph mentioned in

section 3.4 should be used instead. If the graph shows no melting, then the head sub-

interval should be searched, and if the graph shows melting, then the tail sub-interval

should be searched instead.

Two is the optimal number of iterative divisions for the determination of the melting line

procedure because, as mentioned in Section 3.4, a simulation set at a certain temperature

takes several minutes to complete, and the total time is shown in Equation (5.3)

τtot = NSτavgNlatt (5.3)

where NS is the total number of simulations needed so that the melting temperature is

within the desired temperature range length Δr, Nlatt is the number of lattice constants

lengths, and τavg is the average time of all the simulations. From practice, all simulations

with the same number of steps take about the same amount of time, regardless of temper-

ature or lattice constant. If we minimize d, we minimize NS, and thus we minimize τtot.

τavg is fixed because it depends on the number of processors used and the number of steps

for time-stepping. Nlatt is also fixed because we desire a certain number of data points for

a good interpolation of the Simon-Glatzel equation. As such, in Equation (5.3), only NS

can be minimized. Given that d = 2 for optimal search, we can see that given a desired

interval length of err (melting temperature error), the number of division Nd on an initial

interval length ΔTinitial to reach e can be determined by Equation (5.4)

Nd = log2(ΔTinitial)− log2(err) (5.4)

It is important now to more specifically explain how this binary search will be implemented.

In particular, we make use of Equations (4.9) and (4.10) from Subsection 4.3.1 regarding en-

closures to further optimize the binary search. The temperature interval [TL, TU ] is assumed

to be an enclosure such that it is ensured that melting will not occur at a temperature of TL

and melting will occur at a temperature of TU . This can be achieved by taking a [TL, TU ] to
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be very large and using some experimental information, such as the melting temperature

of the metal at 0 GPa, i.e. at the natural lattice constant of the crystal, to determine what

is considered large. First, we run a simulation for a system at a temperature of TL. After-

wards, we run another simulation using the phase of the previous simulation, as explained

in Section 3.4, with temperature Tm, where Tm is the midpoint of TL and TU . Thus, have

to consider three values, TL, Tm and TU in the binary search. Recalling the aforementioned

rule for determining which sub-interval, either the head or tail sub-interval, to search next,

Tm must replace either TL or TU for the next sub-interval. TL if melting does not occur at

Tm and TU if it does. This process is repeated until the temperature interval length ΔTk

at the kth division is less than or equal to 2e. To make use of enclosures and Equation

(4.9), which places our temperature at the best place to have a max boundary on the error

from the true melting temperature, Equation (4.10), we run one more simulation at the

midpoint of the interval having length 2e to fulfill the maximum error of e. As a result, we

see that the relation between Nd and NS for this procedure is

NS = 1 +Nd (5.5)

5.1.2 Updating Upper Boundary of Next Longest Lattice Con-

stant: Shrinking Enclosure

Another optimization can be made regarding the initial temperature range length linitial of

each lattice constant. The boundaries [rL, rU ] corresponding to linitial are the temperature

range where the melting temperature is searched. We can make linitial lattice-constant

dependent and add the a subscript to it as shown here: linitial,a. If we make the assumption

that at a higher pressure the melting temperature is higher, then we can start the binary

search at the shortest lattice constant and find its melting temperature first. After this, we

can use this melting temperature as the upper boundary of the next lowest lattice constant

since its melting temperature has to be higher than the next lowest lattice constant. Using
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this, we can repeat this procedure for the subsequent melting temperatures searches as

shown in Equation (5.6)

rupper,ap−Δa = Tmelting,ap (5.6)

Here, ap is a particular lattice constant in the list of lattice constants. We can assume that

the set {ap} is ordered from smallest to largest and the difference between lattice constants

in this set is a constant value Δa. Thus, we can continually shrink the linitial,a of the bigger

length lattice constants. This will help reduce the number of Nd,a for each lattice constant

a and thus speed the process at least some more.

5.2 Using Convolutional Neural Networks to Partially

Automate Procedure

5.2.1 Reason for Using Convolutional Neural Networks as Op-

posed to Normal Neural Networks

The CNNs mentioned in Chapter 4 will be used for the classifying of melting or not melting

of a system, and thus provide the evaluation of the binary variable that will be used for the

binary search algorithm of Subsection 5.1.1. The data form the procedure in Section 3.4

will be used to train the CNN. This will be like a human trying to identify graphs like those

in figure 5.1 for melting and graphs like those in figure 5.2 for no melting. We note that

the axis labels and interval numbering in the graphs are removed. This greatly simplifies

the learning of the CNN.

As mentioned in Subsection 4.2, we will stick with gray-scale images because they take

up less memory space. In addition, the images will be jpg files and have 72 dots per inch

(dpi) for the resolution and be 480× 480 pixels in size as mentioned in [31]. This enables

us to set the size of the file regardless of the size of the original data file. This means that

for sufficiently big data files, the graph images will take less space and thus be superior for
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Figure 5.1: Sample of training data for the CNN to recognize melting.

Figure 5.2: Sample of training data for the CNN to recognize no melting.

storage. The data file size is determined by the frequency a data point is recorded and by

the number of steps in the simulation.

The previous paragraph gives one argument in favor of not building a non-convolutional

NNs and just feed the data files directly into it. If the simulations need to be longer to

capture the melting, then the image jpg files have the potential to take up less memory

space. Another argument for using a CNN as opposed to a conventional NN is that NNs

(including CNNs) are not perfect and can mislabel a graph. Most NNs are rated by a

percent accuracy when identifying the correct value for the training data. The only way

for a human to check for potential errors in our melting line determination procedure is to

look at the temperature versus time graphs. This allows a user to more easily understand

why a CNN would label a graph a certain way. This is noted in Chapter 7 regarding partial

melting.
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However, a data transformation will be applied to the data files before plotting: the

first 1% of the data points will be deleted. This is done because, when doing the velocity

re-scaling for the system’s target temperature, the MD takes time to equipartition the total

energy into the kinetic and potential energies. Because the temperature is determined only

by the kinetic energy, the temperature at first is as high as that suggested by Equation (2.3).

This produces at least one outlier, so, when the data is plotted, the temperature axis is

scaled to include this or these outliers (depending on the time-step and the time it takes

for the system to equilibrate to the wanted temperature, there could be more than one

outlier). As such, the visual representation of the rest of the data is scaled down in size,

and thus the “melting feature” (“feature” as described in Subsection 4.2.1, Local Receptive

Fields) is more difficult to “see” (by both humans and the CNN). Removing the outlier(s)

solves this issue.

5.2.2 Building our Convolutionl Neural Network in Python

There are two popular machine learning packages for building, for example, NNs in Python:

PyTorch and TensorFlow. As mentioned in the blog post [32], TensorFlow is easier to

implement, and because our CNN has to categorize graphs into just two types: melting and

non-melting, we can go with the easier but less dynamic machine learning implementation

of TensorFlow.

The online guides used for building our CNN come from [33], [34], and [35]. Our CNN

is composed of two convolutional layers of 64 neurons each and ReLU activation functions

and strides of 3 by 3. Each of these are followed by a max-pooling layer of pool-size 2

by 2. These two parallel convolutional-pooling layer pairs are both connected to a regular

densely-connected layer (like that of Figure 4.1) of 64 neurons with regularizer activation

function. Finally, this layer is connected to another regular densely-connected of 1 neuron

for the output layer of 0 or 1 with sigmoid activation function. The optimizer is the so-called

Adam algorithm and the loss function is the binary cross-entropy.

The CNN will be trained with 55 melting graph images and 126 not-melting graph
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images, for a total of 181 training data points. The images are originally of 480 by 480

pixels, but these are reduced to images of 300 by 300 pixels to be fed to the CNN. The

CNN was trained with 4 epoch and with batch sizes of 32 data points.

5.3 Implementation of Proposed Procedure

Our implementation will be a wrapper program that makes use of python, R language,

shell bash, and LAMMPS scripts. The pseudo-code is provided in Algorithms 1, 2, and

3. The code can be downloaded from github at https://github.com/caibarra5/LAMMPS-

Wrapper-Machine-Learning-Assisted-Melting-Line-Determination-for-Metals.

Algorithm 1 Calculate Melting Line Points of Metal part 1
1: Get steps per run
2: Get steps per data point
3: Get steps per dump
4: Get initial range[ ] array
5: Get user input error tol
6: for file in List of Needed Files do
7: if file does not exist then
8: Terminate program and throw error.
9: end if

10: end for
11: error tol = 2 ∗ user input error tol
12: Put list of lattice constants into array latts
13: ca array len = length(latts)
14: ca last index = ca array len− 1
15: Set output file
16: for i = 0; i < $ca array len; i++ do
17: Generate lattice directory for latts[i]
18: Put initial temperature range into array initial range
19: l bound = initial range[0]
20: u bound = initial range[1]
21: m point = (l bound+ u bound)/2
22: Run LAMMPS script melt intial run given
23: prev temp = null
24: temp = l bound
25: a = latts[i]

52



Algorithm 2 Calculate Melting Line Points of Metal part 2
n = steps per run
k = steps per data point
l = steps per dump
dt = dt
restart file = null

Remove first 1% of data points in dumped thermo. data file
Graph data without labels or intervals with R script
Categorize melting with CNN in python script
melted signal = output from CNN
print melted signal
if melted signal = 1 then
Exit program and output error: Lower bound too high, need to lower it.

end if
error = u bound− l bound
if error < error tol then
error less than tol = 1

else
error less than tol = 0

end if
while error less than tol = 0 do
Run LAMMPS script melt iterative run given
prev temp = l bound
temp = m point
a = latts[i]
n = steps per run
k = steps per data point
l = steps per dump
dt = dt
restart file = l bound restart file

Remove first 1% of data points in dumped thermo. data file
Graph data without labels or intervals with R script
Categorize melting with CNN in python script
Move thermo. data file and corresponding graph file into lattice directory for latts[i]
melted signal = output from CNN
print melted signal
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Algorithm 3 Calculate Melting Line Points of Metal part 3

if melted signal = 0 then
remove restart file from l bound
l bound = m point

else if melted signal = 1 then
remove restart file from u bound
u bound = m point

end if
m point = (l bound+ u bound)/2
print l bound
print m point
print u bound
error = u bound− l bound
if error < error tol then
error less than tol = 1

else
error less than tol = 0

end if
end while
m point = (l bound+ u bound)/2
Run LAMMPS script melt iterative run given
prev temp = l bound
temp = m point
a = latts[i]
n = steps per run
k = steps per data point
l = steps per dump
dt = dt
restart file = l bound restart file

Remove first 1% of data points in dumped thermo. data file
melt temp = average(last 100 temperature data points from thermo. file)
melt press = average(last 100 pressure data points from thermo. file)
Store latts[i], melt press and melt temp in output file
Move thermo. data file into latts[i] directory
Set initial range[1] = m point
end for
Print wall-clock time
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Chapter 6

Results of New Procedure on Copper

and Other Metals

6.1 Copper

We run our code using the same list of lattice constants as that of Table 3.1 and use the

algorithm described in Subsection 5.3 to compute the melting pressure and temperature.

From several runs of our procedure, we conclude that without user intervention in the

number of steps, the algorithm cannot be as accurate as the manual computation. The

error tolerance that seems to work best is around 100K. Any smaller error makes it trickier

to determine the number of steps necessary to see the melting feature. As such, the CNN

does not see melting and thus keeps outputting a 0 for melting, leading to the program

to search for higher melting temperatures until it reaches a distance of the error tolerance

from the upper bound. The results can be seen in Table 6.1.

Table 6.1: Melting temperature and pressure results of Cu from proposed proce-
dure for an error in melting temperature of 100K.

Latt. Const. (A) Melt. Press. (GPa) Melt. Press. Err. (GPa) Melt. Temp. (K) Melt. Temp. Err. (K)
3.150 219.298 0.23098 5825.62 58.5191
3.185 190.276 0.18646 5448.58 50.7609
3.220 165.175 0.21501 5218.57 50.5499
3.255 141.019 0.16025 4707.11 37.0924
3.290 121.337 0.19307 4396.74 45.1702
3.360 88.523 0.11294 3803.45 29.3288
3.395 75.317 0.13528 3534.96 32.4642
3.430 63.200 0.09132 3249.70 23.4639
3.500 43.435 0.09828 2795.18 22.4904
3.600 22.344 0.08188 2150.48 16.1339
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Furthermore, the wall-clock time of this run was just 26 minutes and 28 seconds as

compared to the 66 hours of the manual computation. The proposed procedure is 150

times faster but the accuracy is much greater in the manual determination (100 times more

accurate at least). The reason for this speed up is that the number of steps that worked

best for each simulation in the proposed method, regardless of change in temperature ΔT

from the previous run, was about 10000 steps. This is much less than the 105 to 3 · 105

range used for the manual determination of the melting line. In addition, it seemed that

a large ΔT from the previous to the current run helped the melting feature be present.

This could be because, along with the 10 ps corresponding to the 10000 steps, the system

does not have time to equilibrate to the temperature of the previous phase. That is, the

“springs” between atoms could more easily be broken if the kinetic energy available allowed

it to be so without having to wait for the system to equilibrate. A shorter simulation time

may have helped this melting feature in the graph from being scaled down.

The best comparison that can be between the normal and proposed methods is the

plot of the Simon-Glatzel equations as shown in Figure 6.1. The bars for each data point

correspond to the standard deviation of the data points used to calculate the average

temperature corresponding to the melting temperature. These bars were also included

for the graphs in Figures 6.3 and 6.5 for aluminum and tantalum respectively. The two

methods for copper are fairly close.
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Figure 6.1: Normal method compared with proposed method for Copper melt-line
determination data points along with the interpolated Simon-Glatzel
curve.

Table 6.2: Results of proposed procedure for melting line of Cu for an error in
melting temperature of 100K.

Latt. Const. (A) Lower Bound (K) Midpoint (K) Upper Bound (K) Interval Size (K) Melting Signal
3.150 6625.0000 7187.5000 7750.0000 1125.0000 0
3.185 6531.6161 6583.8012 6635.9862 104.3701 1
3.220 6234.8136 6322.0605 6409.3074 174.4938 1
3.255 5656.8029 5739.9601 5823.1173 166.3144 1
3.290 5295.5889 5369.6507 5443.7126 148.1237 1
3.360 4526.8713 4587.6794 4648.4875 121.6162 1
3.395 4139.2195 4363.4495 4587.6794 448.4599 0
3.430 3869.4428 3979.8059 4090.1691 220.7263 1
3.500 3319.1357 3401.9620 3484.7883 165.6526 1
3.600 2501.2263 2651.3489 2801.4715 300.2452 1

In Table 6.2 we see the temperature range used for the melting temperatures of Figure

6.1 along with the melting signal. A melting signal of 0 means the system did not melt

according to the CNN while a 1 means it did. This is why this work is titled “assisted”

instead of “automated” mapping of the melting line. All the thermodynamic data files
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used for Figure 6.1 and Tables 6.1 and 6.2 showed melting of the system, so all the melting

signals in Table 6.2 should be 1 but the CNN has an about 80% accuracy with this system.

The CNN cannot be perfect, and its best use is by allowing un-supervised determination

of what temperatures need to be used for subsequent simulations in the binary search

algorithm. After each full run of the proposed procedure, a series of data files and images

of graphs are kept, and the user can see all these graphs and determine which data values

to use for post-processing.

Table 6.3: Results of proposed procedure for melting line of Cu for an error in
melting temperature of 100K.

Midpoint (K) Melting Signal
1000.0000 0
3184.8254 0
4277.2380 0
4823.4443 0
5096.5475 1
4959.9959 1
4891.7201 0
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Figure 6.2: The melting signal (open circles) is plotted against the temperature,
where a value of 0 indicates the system melts at that temperature, and
a melting signal of 1 indicates it does not.

Figure 6.2 shows an example of the binary search of Copper. Here, the initial range is

from 1000 to about 5369.6508. Table 6.3 shows the exact values and the sequential order

of the search.

6.2 Aluminum

Here we use the potential as described by [36]. The melting temperature of aluminum

at 0 GPa is 933.5K. This point in the T-P graphs is used for the Simon-Glatzel equation

interpolation. The user error tolerance was 100K and the wall-clock time was 1 hour, 1

minute and 47 seconds. The data produced is in Table 6.4, plotted in Figure 6.3, and

information about the melting temperature to evaluate the CNN is provided in Table 6.5.
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Table 6.4: Results of proposed procedure for melting line of Al for an error in
melting temperature of 100K.

Latt. Const. (A) Melt. Press. (GPa) Melt. Press. Err. (GPa) Melt. Temp. (K) Melt. Temp. Err. (K)
3.50 109.1700 0.0612375 3424.48 25.6206
3.55 92.0788 0.0424759 3201.69 23.6320
3.60 77.2372 0.0555393 2996.82 27.2949
3.65 64.3363 0.0447707 2764.82 18.3809
3.70 53.5704 0.0523602 2644.90 20.0571
3.75 43.9180 0.0464520 2441.63 19.2482
3.80 36.4674 0.0570211 2428.61 23.4342
3.85 28.3400 0.0529603 2080.38 20.0343
3.90 22.5703 0.0438710 1958.89 14.5535
3.95 16.9506 0.0422857 1721.85 13.2672
4.00 12.6823 0.0401613 1606.57 15.0156

Figure 6.3 can be compared with Figure 6.4, which uses shock compression under static

conditions [9]. However, we can still see that the two curves agree fairly well.

Figure 6.3: Proposed method melt-line determination of Aluminum data points
(black circles) with Simon-Glatzel interpolation curve (black curve) and
melting points from more accurate phase-coexistence method [4] (red
circles).
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Figure 6.4: Aluminum melt-lines and Hugoniot lines with more accurate methods
than the z-method [9].

Table 6.5: Melting information for binary search for final melting temperature of
Aluminum at given lattice constant.

Latt. Const. (A) Lower Bound (K) Midpoint (K) Upper Bound (K) Interval Size (K) Melting Signal
3.50 4000.0000 4250.0000 4500.0000 500.0000 0
3.55 3578.1250 4007.8125 4437.5000 859.3750 1
3.60 3584.8389 3677.1546 3769.4703 184.6314 1
3.65 3342.5102 3426.1713 3509.8324 167.3222 1
3.70 3122.8999 3274.5356 3426.1713 303.2714 1
3.75 2923.8780 2992.5879 3061.2978 137.4198 1
3.80 2743.5144 2868.0512 2992.5879 249.0735 0
3.85 2447.7397 2568.3846 2689.0296 241.2899 0
3.90 2323.3245 2374.2216 2425.1187 101.7942 1
3.95 2030.6662 2116.5550 2202.4439 171.7777 1
4.00 1837.4162 1976.9856 2116.5550 279.1388 1

6.3 Tantalum

Here we used the potential as described by [10]. The melting temperature of tantalum at 0

GPa pressure is 3293K. This point in the T-P graphs is used for the Simon-Glatzel equation

interpolation. The user error tolerance was 100K and the wall-clock time was 29 minutes
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and 49 seconds. The data produced is in Table 6.6, plotted in Figure 6.5, and information

about the melting temperature to evaluate the CNN is provided in Table 6.7.

Table 6.6: Results of proposed procedure for melting line of Ta for an error in
melting temperature of 100 K.

Latt. Const. (A) Melt. Press. (GPa) Melt. Press. Err. (GPa) Melt. Temp. (K) Melt. Temp. Err. (K)
3.000 117.412 0.13423 4136.61 50.1941
3.025 103.889 0.10475 4255.47 49.0543
3.050 90.674 0.11757 4196.96 49.5546
3.100 66.424 0.10153 3928.98 46.0076
3.125 55.853 0.10042 3831.81 42.6721
3.150 46.114 0.10408 3661.64 42.4867
3.175 38.031 0.09060 3758.83 40.0053
3.200 30.142 0.08365 3521.98 41.9185
3.225 23.503 0.09059 3427.50 43.6133
3.250 17.977 0.10810 3443.49 43.0064

Figure 6.5 can be compared with Figure 6.6, which uses more accurate methods to the

z-method, including a DFT method, for determining the melting line of tantalum.

Figure 6.5: Simulation data (black circles) with errors and Simon-Glatzel interpo-
lation (blue curve) for Tantalum. Red circles make use of two-phase
coexistence [10].
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Figure 6.6: Tantalum melt-lines and Hugoniot lines [10].

As can be seen, both graphs agree fairly well.

Table 6.7: Melting information for binary search for final melting temperature of
Tantalum at given lattice constant.

Latt. Const. (A) Lower Bound (K) Midpoint (K) Upper Bound (K) Interval Size (K) Melting Signal
3.000 5125.0000 5296.8750 5468.7500 343.7500 0
3.025 5108.8867 5177.3682 5245.8496 136.9629 1
3.050 4916.2827 5046.8255 5177.3682 261.0855 0
3.100 4674.3834 4796.8628 4919.3423 244.9589 0
3.125 4616.9711 4677.2540 4737.5368 120.5657 0
3.150 4447.4256 4504.8827 4562.3398 114.9142 1
3.175 4395.3551 4450.1189 4504.8827 109.5276 0
3.200 4234.4865 4342.3027 4450.1189 215.6324 0
3.225 4183.9476 4237.0134 4290.0792 106.1316 0
3.250 4135.8567 4186.4351 4237.0134 101.1567 0
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Chapter 7

Conclusion

As the implementation of the proposed method shows in Tables 6.2, 6.5, and 6.7, the CNN

makes mistakes. The thermodynamic information data files were chosen manually such that

full melting occurred. As such, all the melting signals should be 1s, but in all systems, there

are a few 0s, especially in Tantalum. The benefit was that the data files were generated

automatically, which is the optimal use of the proposed method and code implementation.

The method is only meant to greatly aid the determination of the melting line of metals.

The great difficulty of fully automating the procedure is explained below.

In reality, the CNN used in Algorithms 1 to ?? has a 80% accuracy with respect to

the training data. However, for the copper re-run of Table 6.2, the accuracy is 80%. For

aluminum, Table 6.5, it is 72%, and for tantalum it is 20%. If we take all systems into

consideration, then there is a 39% accuracy. The lower accuracy for the new systems may

be due to the CNN not being trained with their melting/non-melting data points. As such,

the copper graphs don’t generalize perfectly.

The tolerance used for all the data points found in Tables 6.2, 6.5, and 6.7 was 100K,

meaning that the interval size for all these tables would ideally be 200K or less, but for

many data points this is not the case, meaning the desired accuracy is not achieved and can

only serve as a rough stop for the algorithm. Several parameters affect the accuracy of data

points. The shape of the time versus temperature graph of a melting system is affected by

the length of the simulation (the number of steps), the initial temperature range to search

for melting temperatures, the user input tolerance, and even the list of lattice constants and

the frequency of recording data points. Because the potential used for each system also

determines the melting, the optimal values for all these parameters is not determinable

64



in practice. The best use of the proposed method and the code implementation is to

have before-hand knowledge of the systems lattice constant and melting temperature at 0

pressure and determine a suitable range of lattice constants to find P-T data points. The

melting temperature at 0 pressure can give a rough idea of the initial temperature range,

but a run with the lowest and highest lattice constants alone to find better boundaries for

the initial temperature range is essentially necessary. The rest of the parameters mentioned

are set in the code, seem to work well and thus it is recommended they are not modified.

One would think that having a more accurate CNN would help, but it is better to train

the CNN with new data and not use the same data. That is, run the program and use

the new graphs generated to train the CNN. The motive for not training a CNN to have

100% prediction for the training data already used is to avoid over-training. Over-training

the CNN leads to the CNN memorizing the “solutions” and thus impeding interpolation

(new predictions for data points within the class of data the CNN was trained with). The

determination of the optimal parameters and even the hyper-parameters of the CNN is a

complex issue, and thus the CNN implementation in this paper was done in the simplest

form, and the CNN parameter values were chosen so that the CNN worked fairly well. Only

6 batches (training cycles) were done and only an 80% accuracy was considered suitable to

avoid over-training.
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Chapter 8

Future Work

8.1 Replacement of CNN with Numerical Filter

The CNN comes with its downfalls when applied to the temperature versus time graphs

of the systems. As such, we can propose another method for determining if a graph shows

melting or not. This method makes use of normalizing the data by subtracting the min-

imum and dividing by the maximum. This method, a sort of filter, aims to apply the

aforementioned data normalization at some percentage p of the first and last number data

points. After, we compute the average of these two extremes of data point groups. Lastly,

we subtract the average of the last normalized data points from that of the first normalized

data points. Now, determine a value 0 < c < 1. If the difference between averages is

greater than c, then the system melted. If not, then it did not melt. We can call the set of

all temperature data points {Ti}. As such we can say the following

Tavg,−%p = avg(last �%p|{Ti}|� of {Ti}) (8.1)

Tavg,%p = avg(first �%p|{Ti}|� of {Ti}) (8.2)

The data normalization can be done after computing the averages by simply applying the

normalization to the averages.

Tavg,−%p,normal = (Tavg,−%p −min({Ti}))/(max({Ti})−min({Ti})) (8.3)

Tavg,%p,normal = (Tavg,%p −min({Ti}))/(max({Ti})−min({Ti})) (8.4)
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Thus, Tavg,−%p,normal and Tavg,%p,normal must be between 0 and 1. In particular, Tavg,−%p,normal ≈
0 and Tavg,%p,normal ≈ 1. Given these, we can see that if the system melts, the normalized

drop in temperature,

ΔTnormal = Tavg,%p,normal − Tavg,−%p,normal (8.5)

would ideally be around 1. In reality, however, a number of situations can prevent this,

such as the averages capturing not enough data points for Tavg,%p,normal to constitute a

higher enough value than Tavg,−%p,normal or the system not melting completely. As such, it

is ideal to have a value c as a threshold. Thus, the following condition can be used

Algorithm 4 Numerical Filter Replacement for CNN

1: if ΔTnormal > c then
2: melted signal = 1
3: else
4: melted signal = 0
5: end if

The disadvantage of this, besides the aforementioned failure of not identifying melting

for a not-small-enough c value, is that this method might actually identify partially melted

systems as just melted systems. That is, the temperature the system should fall to after

melting is not fully achieved. This can be seen in Figure 8.1.
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Figure 8.1: On the image in the left, the original data. On the right is the normal-
ized data. The average for the first 10% and last 10% of the simulation
for the normalized data are plotted.

Here, Tavg,%p,normal = 0.885708 and Tavg,−%p,normal = 0.118905, leading to a difference

of 0.766803. Thus, a c value of 0.5 would classify this as melting. From the application,

the CNN does not do this. The CNN does not tend to consider partially melted system as

melted, which in truth is beneficial because we want to take the average temperature and

pressure of the end of the simulation when it melts. A partially melted system is not very

useful to us.

Finally, an optimal value for c seems to be 0.5 and one for p% should be a low value

such as 10%.

An example of this method is shown below in Figure 8.2.
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Figure 8.2: On the image in the left, the original data. On the right is the normal-
ized data. The average for the first 10% and last 10% of the simulation
for the normalized data are plotted.

Here, the two averages are 0.0818661 and 0.913804. Their difference is 0.8319379. Thus,

a c value of 0.50 would identify this as melting.

One would think that taking averages such as those of Equations (8.4) and (8.3) are

not necessary, for probably the last temperature value and first temperature values should

suffice, but if we consider a non-melting system, this has the probability of leading to

a incorrect melting classification. We can consider the system below for FCC copper at

1000 K, Figure 8.3.
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Figure 8.3: On the image in the left, the original data. On the right is the normal-
ized data. The average in this case for %p is only the first data point
and for −%p is the last data point.

Here, Tavg,%p,normal = 1 and Tavg,−%p,normal = 0.289436, leading to a difference of

0.710564. Thus, a c value of 0.5 would classify this as melting, which would be incor-

rect. This type of system, in particular, has a temperature much lower than melting, but

the issue with this system is that it takes a long time to equilibrate to 1000K. The system

starts off at 2000K, but it takes a small amount of time for its temperature to fluctuate

about 1000K. This lag leads to its incorrect classification, and thus why taking an average

is better. As seen below, we take a 10% average, and using a c value of 0.5, leads to a

better classification of not melting.
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Figure 8.4: This is the normalized data. In this case, p = 10 and the correct
classification is achieved.

Here, Tavg,%10,normal = 0.317988 and Tavg,%10,normal = 0.321413, yielding a difference of

−0.003425 < 0.50.

Another advantage to note about the CNN is that a third classification of “partially

melted” can be considered. As such, when this classification occurs, the simulation can be

run longer and thus achieve full melting, classified by the CNN for assurance. However,

this would require retraining the CNN, but in theory, the CNN would be able to do this

while the numerical filter would not.
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8.2 Phase Transition Lines between Crystal Structures

Although this work concerns itself with melting, the more intricate phase transitions be-

tween crystal structures is more interesting. As discussed in Subsection 2.2.2, first order

phase transitions can be identified by discontinuities in the first derivative of the Gibbs

free energy with respect to state variables such as entropy S and volume V . This classifies

phase transitions, but one can just look for a change in a state variable to see a phase

transition. After, the system can be inspected and the crystal structure can be identified.

Several points at different initial states can be recorded for a phase transition, and the

phase transition line can be mapped.

An example of a phase diagram can be seen in Figure 8.5.

Figure 8.5: Experimental mapping of phase diagram of iron [11]. Here, we can see
three regions in the P-T graph corresponding to FCC, BCC and HCP
crystal structures.
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For Figure 8.5, and as explained in [11], a phase change was noted by changes in

electrical resistance with change of pressure or temperature. Resistance is difficult to

simulate, but [11] also noted that the density of the iron sample also changed. As noted

in Subsection 2.2.1, for a given lattice constant, FCC crystals are denser than SC or BCC

crystals. As such, a changing density can also be used to identify a phase transition.

Strategies for the calculation of phase diagrams can be explored in [37].

Given a state variable to keep track of, a machine learning method for classification like

the one in this work can in theory be developed for these more intricate phase transitions

between crystal structures.

8.3 Higher-Dimensional Phase Diagrams

Another subject of exploration regarding mapping the state of a system is the construction

of higher-dimensional (more than 2 dimensions) phase diagrams. As noted in [12], systems

such as high-entropy alloys contain multiple principal component alloys. These compounds

are composed of multiple elements and thus the concentration of each element, along with

some other state variable such as pressure or temperature, can be plotted. However, given

e elements, the phase diagram tends to have n = e−1 dimensions. As such, it is easy to go

beyond the three-dimensional visualization with multiple component systems. Nevertheless,

phase boundaries can still be defined using curved hyper-surfaces. A system composed of

cobalt (Co), chromium (Cr), iron (Fe), nickel (Ni) and vanadium (V) is shown in Figure 8.6.
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Figure 8.6: Co-Cr-Fe-Ni-V system where the surfaces indicate phase boundaries
and the concentration of V is gradually increased from 0% to about
100% [12]

.

Beside particle concentration for multi-species systems, other state variables along with

the two explored in this work can be varied. In particular, as discussed in Subsection 2.1.1,

another extensive state variable, that was kept constant in the NVE MD simulations of

this work, was volume. Thus, the exploration of mapping P-T-V phase diagrams can be
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considered.

How the implementation of CNNs procedures can aid in mapping out these higher-

dimensional phase diagrams is proposed for future work. Even the exploration of other

machine learning methods besides NNs can be considered.
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“A Liouville-operator derived measure-preserving integrator for molecular dynamics 

simulations in the isothermal–isobaric ensemble,”J. Phys. A Math. Gen., vol. 39, 

p. 5629, Apr. 2006. 

 
[23] N. Grønbech-Jensen and O. Farago, “A simple and effective verlet-type algorithm for 

simulating langevin dynamics,”Molecular Physics, vol. 111, no. 8, pp. 983–991, 2013. 

[24] H. J. Berendsen, J. v. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, 

“Molecular dynamics with coupling to an external bath,”The Journal of chemical 

physics, vol. 81, no. 8, pp. 3684–3690, 1984. 

[25] D. J. Evans and B. L. Holian, “The nose–hoover thermostat,”The Journal of chemical 

physics, vol. 83, no. 8, pp. 4069–4074, 1985. 

[26] J. Lebowitz, J. Percus, and L. Verlet, “Ensemble dependence offluctuations with 

application to machine computations,”Physical Review, vol. 153, no. 1, p. 250, 1967. 

[27] H. Brand, D. Dobson, L. Voˇcadlo, and I. Wood, “Melting curve of copper measured to 

16 gpa using a multi-anvil press,”High Pressure Research, vol. 26, no. 3, pp. 185–191, 

2006. 



79  

[28] F. Simon and G. Glatzel, “Bemerkungen zur schmelzdruckkurve,”Zeitschrift f ü r  anor- 
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