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Abstract

Graph theory modeling is a common modeling approach in neurobiology research studies.

These models are useful since they describe patterns of connection for regions of interest

in the brain using resting state fMRI images. The standard rule of thumb is to threshold

the observed activation levels prior to model building. It is reasonable to assume that the

use of this threshold affects the statistical distribution of commonly reported centrality

metrics from the graph theory model, such as degree, betweenness, and closeness. In this

study we examine the differential effect of using the standard approaches versus alternative

direct thresholds and incorporation of thresholds through soft and hard covariance esti-

mation. Along with the way it is viewed we care about the way we preprocess the data.

Results indicate that direct thresholding is a more reliable preprocessing strategy, but soft

thresholding of the covariance matrix may be a promising alternative in particular settings.
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Chapter 1

Introduction

There are many ways to analyze and view data. Visually, graphs help with seeing how

the data is related The use of graph theory modeling allows the user to see the data as a

network of nodes and edges. The graph theory models reveal how a network’s nodes are

connected and how they directly and indirectly affect one another. Not only that, but when

given data, researchers tend to ‘clean’ up the data. As in, we want to focus on what we

want to find as well as if there is any data missing or inputted incorrectly. Thus, there are

different preprocessing strategies that researchers use to find the variables they care about,

or that are deemed important.

Through this paper we will be testing several different preprocessing strategies and how

they affect the centralities of graphical theory models. We ask the question on if different

preprocessing strategies will effect the analysis and reporting of centrality measures of

graphical theory models.

1.1 Graph Theory Modeling

Graphical Theory Modeling uses networks to view how the data is connected. The data is

viewed as a network of nodes and edges, where the data point is a node and an edge is the

connection between nodes.

While there are many ways to utilize graph theory modeling to understand relationships

in data, we focus on the centrality graph metrics in this study. The centrality metric mea-

sures the importance of nodes within the network, and there are many ways to find what is

considered to be central [3]. Here, we are focused particularly on degree, betweenness, and

1



closeness since these are measures commonly reported when analyzing brain imaging data.

These centrality metrics are commonly used to analyze nodes connection and connective

attributes within the network. Although all three measures help determine centrality and

node importance, they actually measure distinct attributes of these centrality and impor-

tance relations. In fact, assessing multiple centralities simultaneously tells a complete story

about node connection and importance. For instance, a node could have a low degree and

have high betweenness, as in the node may not have many edges connected to it, but if

taken out it will affect the rest of the network. Similarly, a node with low betweenness

and high degree would have many connections, but not place a role in other node con-

nections. In the following, these three network metrics are described qualitatively and via

mathematical formula.

1.1.1 Degree

The degree of a network is the measure of how many connections a node has or how many

edges connect to a node. Usually the node with the highest degree means that it has the

most connections or edges to it. Although the simplest centrality, it only determines the

quantity of edges that are connected to a node. This can be defined as

D =
n∑

j=1

Aij

where n is the number of rows in the adjacency matrix A and Aij is the number of

edges between nodes i and j. [4]

1.1.2 Betweenness

The betweenness centrality measures the path between nodes. Those nodes with high

measure for betweenness usually mean that those nodes are of high importance within the

network. The betweenness can be calculated as follows:

xi =
∑
st

ni
st

gst

2



where ni
st is the number of shortest paths from s to t through i, and gst is the total

number of shortest paths. [3]

1.1.3 Closeness

The closeness of a network is determined by “measuring the mean distance from a node to

other nodes” [p.170 Networks] This can be expressed through the harmonic mean distance

by the following equation:

C ′
i =

n∑
j(̸=i) dij

where dij is the shortest distance from node i to node j [3]

1.2 Applications of Graph Theory

Graph theory can be used in many different settings. In general, graph theory modeling

is useful in order to show “patterns of interactions between parts of a system.” [3]. For

example, one can view social networks, seeing how many connections a person has in

different settings. or one can also see biological networks, for instance a neural network.

Moreover, networks build to model brain images and connections between brain regions

of interest (ROI) is an important application of graph theory modeling. An example of

this is in the article “Functional Connectivity Differences between Two Culturally Distinct

Prairie Vole Populations: Insights into the Prosocial Network.” [4]

Ortiz [4] explored the idea of using graph theory to better understand functional con-

nectivity of two different behaviorally distinct populations of prairie voles (Microtus Ochro-

gaster). Prairie voles are an excellent pre-clinical laboratory animal model used to better

understand human-relevant social behaviors, as they display a suite of prosocial behaviors

that are similar to humans. He analyzed the connectivity in three “cores” of neural re-

gions, the prosocial core, olfactory core, and a control ‘core’, between the Kansas-Illinois

(KI) and Illinois (IL) male brain. He also included a social bonding core and integrated

3



it with the prosocial core. Focusing on three graph metrics – degree, betweenness, and

closeness centrality— helped analyze which nodes are significantly connected between the

cores and highlighted differences between the KI and IL cores.

1.3 Preprocessing

In recent studies, it has been found that resting state functional MRI (rs-fMRI) is a powerful

tool used in neuro-imaging to evaluate functional connectivity patterns. [1] In the article,

“Evaluating the reliability of different preprocessing steps to estimate graph theoretical

measures in resting state fMRI data” they use different preprocessing steps rather than

post-processing methods to help calculate the connectivity of the brain. They test the

preprocessing with a reliability and reproducibility of commonly reported graph theory

metrics.

Preprocessing is the process by which researchers clean the data. This stage in analyzing

data allows the user to fix mistakes that may have happened and be able to easily find

trends. Preprocessing also is useful for de-noising the data to allow for important signals in

the graph theoretic model to emerge. In Ortiz [4] a threshold of 2.3 was used to de-noise his

data. In other words, if a connection had a measure of anything less than 2.3 he made those

zeros. The threshold follows from a gaussian random field theory where the 2.3 equates to

a connectivity significantly greater or less than 0.[7]

However, this threshold was used as a standard rule-of-thumb from other influential

studies [7]. This may not be the optimum threshold to use for de-noising data. Moreover,

a data-dependent threshold may be ideal and useful for just about any data setting when

preparing for graph theory modeling.

In the article, “Evaluating the reliability of different preprocessing steps to estimate

graph theoretical measures in resting state fMRI data” they used seven different prepro-

cessing strategies to compare the data with two different test. Although they used seven

different preprocessing strategies, they were mixed with 5 different conditions. Bandpass

4



filtering filtered data between 0.01 and 0.1 Hz, White Matter (WM), Cerebrospinal Fluid

(CSF), and Global Signal Regression is a multiple regression step where the extracted CSF,

WM, or Global signals were nuisance variables.

A. None

B. Bandpass Filtering

C. CSF and WM Regression

D. Bandpass and CSF and WM Regression

E. Bandpass, CSF and WM Regression, and Scrubbing with Motion

F. Bandpass, CSF and WM Regression, and Scrubbing with Outliers

G. Bandpass, CSF and WM Regression, and Global Signal Regression

Here, they did three different tests to check the reliability and reproducibility. One

of the tests was on motion versus the graphical theory measures correlation. [1]. They

found that “adding or removing different preprocessing schemes greatly affect the final

results”[1]. Using four graphical theory measurements they tested the reliability and the

reproducibility of each strategy. This end results they found were that strategy “F” should

be used as it increased the reliability of using it.

Using a similar idea, we will use seven different preprocessing strategies to help analyze

the data and the results.

1.3.1 Thresholding

The portion of preprocessing we are focused on is the type of threshold we are using on the

data. Threshold, in simplicity is the cut off point. If values are less than a certain number

they will yield to zero. Will changing the threshold affect the conclusion of the data? The

thresholds used here are the 2.3 threshold, hard and soft threshold based on the data set,

and folded normal distribution. Each uses a process to determine the threshold and apply

it to the data.

5



Chapter 2

Methodology

This study is designed to examine the effect of different preprocessing strategies on the

analysis and on the reporting of graphical theory models. To achieve this goal, we will

follow these steps:

• Test data from Ortiz’s paper with 7 preprocessing strategies (thresholds)

• Compare the KI and IL results (from Ortiz’s paper)

• Simulate random graphs with n = 10, 50, and 100 with p = 0.1, 0.5, and 0.9

• Apply the cases to the simulated random graphs

• Compare same to same

– Generate two n = 10, with p = 0.1 for both

– Similar for each n for each p

• Compare the different graphs

– Compare each 0.1, 0.5, and 0.9 for each n.

2.1 Data Strategies

To start we are going to look at the data presented in Ortiz’s [4] paper of the KI and

IL voles brains. As stated he studied the connections within the brain ROIs and used

graph modeling to view and analyse the results. Using his data we are going to change the

threshold to see if looking at different thresholds will affect the graphical model, as in that

the thresholds will lead to different results.

There are seven cases that we begin to look at:

6



0. Raw Data using Standard Covariance

1. 2.3 Threshold (Ortiz’s Threshold)

2. Assumes folded normal distribution since activation levels are bounded by 0, rather

than normal.

3. Raw Data with Soft Thresholding

A threshold based on the size of the data estimated by [6]

a = 2− (
2 + log(1)

log(n)
)
1
2

where n is the size of the data.

3.1 Uses 10-fold validation for optimizing parameter estimates

3.2 Sequencing from .01 to the threshold a

4. Raw Data with Hard Thresholding

A threshold based on the size of the data found in Case 3

4.1 Uses 10-fold validation for optimizing parameter estimates

4.2 Sequencing from .01 to the threshold a

2.2 Soft versus Hard Thresholds for Covarince Matrix

Estimation

To define soft and hard thesholds let us define a generalized thresholding operator. For any

λ ≥ 0, define a generalized thresholding operator to be a function sλ : R → R such that

for all z ∈ R the following are satisfied:

i. |sλ(z)| ≤ |z|

ii. sλ(z) = 0 for |z| ≤ λ

iii. |sλ(z)− z| ≤ λ

7



Hard thresholding is appropriate for sparse covariance and applies to off-diagonal ele-

ments of the sample covariance matrix. The entry of sample covariance matrix Si,j = 0 if

|Si,j| ≤ λ where λ is a thresholding value. This means that for hard thresholding everything

is set to zero except the largest values. [2]

The soft thresholding method for covariance estimation takes off-diagonal elements z of

sample covariance matrix and applies

h(z) = sgn(z)(|z| − λ)+

where sgn(z) is a sign of the value z, and

(x)+ = max(x, 0).

This essentially applies a lasso penalty to provide maximum shrinkage. It essentially shrinks

all the values towards zero, not just a specific type of value. [2]

2.3 Comparing KI vs IL

Of each threshold, we compared the IL vs the KI data, by looking at the differences on a

histogram, as well as comparing their mean, median, and standard deviation of each of the

centrality measures.

2.4 Random Graphs

After comparing the KI vs IL data, we created random graphs with 10, 50, and 100 nodes

with a probability of 0.1, 0.5, and 0.9 of having an edge. We created 500 simulations of the

data to compare.

8



2.5 Compare Simulations

After creating the 500 simulations, we pulled the maxs of each simulation of the degree,

closeness, and betweenness. We then compared each p with itself and between the other

p’s.

As in, for each n we compared it with the same probablity and between the different

probabilities.

9



Chapter 3

Results

3.1 KI vs IL

For each case we output the table of the mean, median and standard deviation (StdDev)

of each centrality metric. We also include the graphs of the differences of each metric.

3.1.1 Case 0:

Table 3.1: Case 0 (* < 0.05 and ** < 0.01)

Mean Degree** Mean Between Mean Close**

KI 31.75 51.89 0.00

IL 27.95 53.05 0.00

Median Degree Median Between Median Close

KI 31.77 26 0.00

IL 28.28 30 0.00

StdDev Degree StdDev Between StdDev Close

KI 7.47 69.18 0.00

IL 6.80 64.22 0.00

For the KI the max (or node with the highest measure) for degree and closeness is

the Paraflocculus Cerebellum with a degree of 46.9602 and closeness of 0.00346054. The

highest betweenness is found at the Reticular Nucleus with a measure of 394.

For the IL the max for degree, betweenness, and closeness is the Caudate Putamen
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Striatum with a degree of 42.02879, betweenness of 322 and closeness of 0.003194883.

Figure 3.1: KI vs IL: Case 0

From the graph we can see that the differences in degree and betweenness are relatively

normally distributed where closeness looks to be slightly right skewed.
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3.1.2 Case 1:

Table 3.2: Case 1 (* < 0.05 and ** < 0.01)

MeanDeg** MeanBetween* MeanClose**

KI 9.66 145.12 0.00

IL 12.09 106.58 0.00

MedDeg MedBetween MedClose

KI 9.79 108 0.00

IL 12.00 72 0.00

StDevDeg StDevBetween StDevClose

KI 1.63 131.48 0.00

IL 2.18 113.20 0.00

For the KI the max for betweenness and closeness is the Superior Colliculus with a

betweenness of 818 and closeness of 0.001272408. The max degree is found at the Pontine

Reticular Nucleus Oral with a measure of 14.70715.

For the IL the max for degree, betweenness, and closeness is the Caudate Putamen

Striatum with a degree of 42.02879, betweenness of 322 and closeness of 0.003194883.

From the graphs we can see that the differences of betweenness look slightly right skewed

and the differences of closeness and degree look slightly left skewed.
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Figure 3.2: KI vs IL: Case 1

3.1.3 Case 2:

Table 3.3: Case 2(* < 0.05 and ** < 0.01)

MeanDeg** MeanBetween* MeanClose**

KI 7.51 186.40 0.00

IL 10.51 143.55 0.00

MedDeg MedBetween MedClose

KI 7.44 140 0.00

IL 10.63 112 0.00

StdDevDeg StdDevBetween StdDevClose

KI 2.03 191.53 0.00

IL 1.92 133.75 0.00

For the KI the max for betweenness and closeness is the Anterior Cingulate Ctx with a

betweenness of 1088 and closeness of 0.001316408. The max degree is found at the Pontine

13



Reticular Nucleus Oral with a measure of 13.56319.

For the IL the max for degree and closeness is the Reticular Formation with a degree

of 14.79103 and closeness of 0.001360383. The max betweenness is found at the Pontine

REticular Nucleus Oral with a measure of 848.

Figure 3.3: KI vs IL: Case 2

From the graphs it is easy to see that the difference of betweenness is right skewed.
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3.1.4 Case 3.1:

Table 3.4: Case 3.1(* < 0.05 and ** < 0.01)

MeanDeg MeanBetween MeanClose

KI 6.71 185.64 0.00

IL 5.73 160.77 0.00

MedDeg MedBetween MedClose

KI 4.61 0 0

IL 3.63 0 0

StDevDeg StDevBetween StDevClose

KI 6.67 626.13 0.00

IL 5.78 465.31 0.00

For the KI the max for betweenness is found at Reticular Nuclues with a measure of

4506. The max for degree is found at Crus Ansiform Lobule with a measure of 29.28603

For the IL the max for betweenness is found at Reticular Nuclues of 3034 and de-

gree is found at Pontine Reticular Nucleus Caudal with a measure of 24.95146 For both

populations, the closeness is 0 for all nodes.

From the table and the and the graph, when applying the soft thresholding with a

threshold based on the data, all closeness measures become zero. This means that the

average distance between each node is 0. The difference of betweenness and degree look

mostly normally distributed.
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Figure 3.4: KI vs IL: Case 3.1

3.1.5 Case 3.2:

For the KI the max for degree and closeness is the Crus Ansiform Lobule with a degree

of 81.1653 and closeness of 0.00572378. The max betweenness is found at the Reticular

Nucleus with a measure of 1402.

For the IL the max for degree and closeness is the Pontine Reticular Nucleus Caudal

with a degree of 76.97324 and closeness of 0.005686382. The max betweenness is found at

the Reticular Nucleus with a measure of 1154.

Difference of degree looks to be slightly left skewed and difference of betweenness looks

to be mostly normal.
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Table 3.5: Case 3.2 (* < 0.05 and ** < 0.01)

MeanDeg MeanBetween MeanClose

KI 45.12 65.17 0.00

IL 43.98 66.23 0.00

MedDeg MedBetween MedClose

KI 45.57 4 0.00

IL 44.68 8 0.00

StDevDeg StDevBetween StDevClose

KI 14.70 191.14 0.00

IL 14.06 173.50 0.00

Figure 3.5: KI vs IL: Case 3.2

3.1.6 Case 4.1:

For the KI the max for betweenness is 1842 and degree is 68.53373

For the IL the max for betweenness is 1610 and degree is 66.54229 For both populations,

the closeness is 0 for all nodes.
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Table 3.6: Case 4.1 (* < 0.05 and ** < 0.01)

MeanDeg MeanBetween MeanClose

KI 24.82 92.18 0.00

IL 22.58 89.68 0.00

MedDeg MedBetween MedClose

KI 22.67 4 0

IL 19.72 4 0

StDevDeg StDevBetween StDevClose

KI 17.70 254.57 0.00

IL 16.71 238.79 0.00

Figure 3.6: KI vs IL: Case 4.1

Similar to case 3.1 (soft thresholding using a threshold based on the data size) the

difference of degree and betweenness look normal where the difference of closeness is zero.

Every node has a measure of 0 for its closeness.
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3.1.7 Case 4.2:

Table 3.7: Case 4.2 (* < 0.05 and ** < 0.01)

MeanDeg MeanBetween MeanClose

KI 46.20 63.77 0.00

IL 45.06 64.92 0.00

MedDeg MedBetween MedClose

KI 46.67 4 0.00

IL 45.77 8 0.00

StDevDeg StDevBetween StDevClose

KI 14.71 185.82 0.00

IL 14.07 169.41 0.00

For the KI the max for degree and closeness is the Crus Ansiform Lobule with a degree

of 82.2553 and closeness of 0.005807079. The max betweenness is found at the Reticular

Nucleus with a measure of 1344.

For the IL the max for degree and closeness is the Pontine Reticular Nucleus Caudal

with a degree of 78.05324 and closeness of 0.005763311. The max betweenness is found at

the Reticular Nucleus with a measure of 1118.

Similar to case 3.2, the difference of betweenness looks to be normally distributed and

the difference of degree looks to be slightly left skewed.
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Figure 3.7: KI vs IL: Case 4.2

3.2 Random Simulations

Following the strategy using Ortiz’s data, we randomly simulate our own data using the

erdos.renyi.game function in the iGraph package. This function creates random graphs

with n nodes and p probability of the node having an edge. Testing for n = 10, 50, and 100

each with probability p = 0.1, 0.5, and 0.9, we ran this simulation 500 times comparing for

each n with the same p and with different p’s.

3.2.1 n = 10

For comparing with the same p, the average difference of closeness is 0. For all cases except

case 0, the closeness is 0 for each node. For case 0, the difference of closeness is distributed

normally. For difference in degree, for each case they are normally distributed where the

mean looks to be 0. The higher p is, the more case 0 looks normally distributed and for

each case of the difference in betweenness the mean is 0.

For different p’s, the mean of each centrality is 0, whereas for the null case, most of the
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differences in the centrality measures are normally distributed.

3.2.2 n = 50

For comparing with the same p, cases 0 to 2 the difference of degrees and betweenness are

normally distributed. Interesting to note that for case 3.2 the difference of degree has a

mean of 0 whereas 3.1 and 4 the degree is 0 for all. As for the difference of closeness, all

cases except case 0 has a measure of 0. Case 0 is normally distributed which we can easily

see that as p gets higher, the more noticable it is.

Comparing p = 0.1 to p = 0.5 and p = 0.9 for difference in degree cases 0, 1 and

2 all look left skewed where case 3.1 and 4 has a measure 0 and 3.2 has an average of

approximately 0. For the difference of closeness the measures are 0 for all cases except case

0 which is normally distributed. The difference of betweenness for case 1 and 2 look to be

left skewed where cases 3 and 4 are 0. For the null case it is normally distributed comparing

p = 0.5 to p = 0.9 and right skewed for comparing p = 0.5 and p = 0.9 to p = 0.1.

3.2.3 n = 100

Comparing the same p, similar to n = 50, the difference of degree the higher p is the more

it is noticable that it is distributed normally for cases 0, 1, and 2. Whereas for case 3.1

and 4.1 is 0 and for 3.2 and 4.2 the mean is approximately 0. For difference in closeness all

of the cases have a measure of 0 except the null case which is normally distributed. As for

difference in betweenness the higher the p is, the more the distribution is normal, where

case 3 and 4 are 0.

Comparing p = 0.1 to p = 0.5 and p = 0.9 for difference in degree cases 0, 1 and 2 all

look left skewed where cases 3 and 4 are either 0 or have an average of 0. The difference of

closeness are all 0 except case 0. Comparing Comparing p = 0.5 to p = 0.9 it is normally

distributed where as for p = 0.1 versus p = 0.5 or p = 0.9 is left skewed. For difference of

betweenness, p = 0.5 versus p = 0.9 case 0 is normally distributed and for p = 0.1 versus
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p = 0.5 or p = 0.9 it is right skewed. Case 1 and 2 are similarly left skewed and case 3 and

4 have a measure of 0.
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Chapter 4

Analysis

Comparing the results between each case.

4.1 KI vs IL

Between the cases 3 and 4, both yielded similar results, and comparing to the null case

(based solely on the original data using standard covariance) the mean degree gets smaller

between cases 0 and 2 the mean betweenness gets larger. It is also interesting to note that

comparing case 0 with 3.2 and 4.2 the measures are larger than the null case. Case 3.1 and

4.1 have very similar distributions and 3.2 and 4.2 also have very similar distributions. In

fact, for all of case 3 and 4 they have the same node that has the max centrality (excluding

the closeness centrality since for 3.1 and 4.1 those come out to zero).

Since case 3 and 4 yield similar results, such that the areas where the maxes are found

are also in the same region. I would argue that case 3.2 and 4.2 can be interchangable as

the results are very similar and yield to a similar conclusion between the two.

Similarly case 1 and 2 yield similar results, not precisely the same. they have slight

differences. For instance the degree measures for both the KI and IL in case 1 and 2 are

the same, with the measure being slightly different.

4.2 Random Simulations

For the random simulations Cases 3.1 and 4.1 (10 fold of the adaptive threshold) are both

similar and yield similar results which is why 4.1 was not added to the output.
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As more nodes came through, closeness for the null case was normally distributed

whereas for the rest of the cases, the closeness measures all became 0.

As for case 4 as a whole, many of the differences became 0 especially for betweenness

and closeness which aligns with saying that the distances between each of the nodes is the

same for each of the probabilities no matter the size of the network.

Actually it is very interesting to note that for almost all n’s the null case is normally

distributed for each centrality metric. The some of the null cases that it is not normally

distributed is found in the following:

• All difference of metrics in n = 10 are right skewed

• Difference of Betweenness

– n = 50

∗ p1 = 0.1 vs p2 = 0.9 (Right Skewed)

– n = 100

∗ p1 = 0.1 vs p2 = 0.5 (Right Skewed)

∗ p1 = 0.1 vs p2 = 0.9 (Right Skewed)

The more nodes we can compare the more likely it is to see the distribution and the

more likely the distribution is going to be normal. For cases 3 and 4, the measures are

either 0 or the average difference is approximately zero which is normal in the case of 3.2.
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Chapter 5

Concluding Remarks

There were major differences in the thresholding approaches and effect on the network

statistical estimates. In general, cases 3 and 4 tended to pull all betweenness and closeness

estimates to 0. As case 3 and 4 are based on soft and hard thresholding of the covariance

estimate based on the observed activiation levels, this may indicate that a direct threshold is

more appropriate. However in the KI vs IL data, it could be argued that either thresholding

approach (direct or via covariance matrix thresholding) operates similarly as they uniformly

lead to similar results and generally yield the same conclusion. Generally, cases 1 and 2

yield similar results for these reported metrics. These simulations provide support for using

either the 2.3 or multiplicity (node size) corrected direct thresholds on activation levels. The

variation among some of the differences in each case (excluding case 0) is 0 thus resulting

in NA. Future research could focus on improving the soft and hard thresholding for the

covariance estimation approaches and incorporate a more realistic graph theory simulation

model for comparison.
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Table 5.1: Statistical Difference in KI vs IL

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

Case 0 Difference** No Difference Difference**

Case 1 Difference** Difference* Difference**

Case 2 Difference** Difference* Difference**

Case 3.1 No Difference No Difference No Difference

Case 3.2 No Difference No Difference No Difference

Case 4.1 No Difference No Difference No Difference

Case 4.2 No Difference No Difference No Difference
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Table 5.2: Statistical Difference for Random Simulations (where p1 = p2 = 0.1)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: Difference * No Difference Difference **

Case 0 n = 50: No Difference No Difference Difference **

n = 100: Difference** No Differencec Difference**

n = 10: No Diffference No Difference NA

Case 1 n = 50: No Difference No Difference NA

n = 100: Difference** Difference* NA

n = 10: No Difference NA NA

Case 2 n = 50: Difference * No Difference NA

n = 100: No Difference No Difference NA

n = 10: No Difference NA NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference No Difference NA

Case 3.2 n = 50: No Difference NA NA

n = 100: No Difference NA NA

n = 10: Difference** NA NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference No Difference NA

Case 4.2 n = 50: NA NA NA

n = 100: NA NA NA
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Table 5.3: Statistical Difference for Random Simulations (where p1 = p2 = 0.5)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: No Difference No Difference Difference **

Case 0 n = 50: No Difference No Difference Difference*

n = 100: No Difference No Difference No Difference

n = 10: Difference* No Difference NA

Case 1 n = 50: No Difference No Difference NA

n = 100: No Difference No Difference NA

n = 10: No Difference No Difference NA

Case 2 n = 50: Difference * No Difference NA

n = 100: No Difference No Difference NA

n = 10: No Difference NA NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference No Difference NA

Case 3.2 n = 50: No Difference No Difference NA

n = 100: No Difference Difference** NA

n = 10: No Difference NA NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference NA NA

Case 4.2 n = 50: NA NA NA

n = 100: NA NA NA
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Table 5.4: Statistical Difference for Random Simulations (where p1 = p2 = 0.9)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: No Difference No Difference No Difference

Case 0 n = 50: No Difference No Difference No Difference

n = 100: No Difference No Difference Difference**

n = 10: No Difference No Difference NA

Case 1 n = 50: Difference* No Difference NA

n = 100: Difference* No Difference NA

n = 10: No Difference No Difference NA

Case 2 n = 50: No Difference No Difference NA

n = 100: No Difference No Difference NA

n = 10: No Difference No Difference(p val = 1) NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference No Difference Difference**

Case 3.2 n = 50: No Difference No Difference NA

n = 100: No Difference No Difference NA

n = 10: No Difference No Difference NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference NA NA

Case 4.2 n = 50: NA NA NA

n = 100: NA NA NA
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Table 5.5: Statistical Difference for Random Simulations (where p1 = 0.1 vs. p2 = 0.5)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: Difference** Difference** Difference**

Case 0 n = 50: Difference** Difference** Difference**

n = 100: Difference** Difference** Difference**

n = 10: Difference* No Difference NA

Case 1 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** NA

n = 10: Difference** NA NA

Case 2 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** NA

n = 10: Difference** No Difference NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: Difference** Difference** Difference**

Case 3.2 n = 50: Difference* NA NA

n = 100: Difference** Difference** NA

n = 10: Difference** No Difference NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: Difference** No Difference NA

Case 4.2 n = 50: No Difference NA NA

n = 100: NA NA NA
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Table 5.6: Statistical Difference for Random Simulations (where p1 = 0.1 vs. p2 = 0.9)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: Difference** Difference** Difference**

Case 0 n = 50: Difference** Difference** Difference**

n = 100: Difference** Difference** Difference**

n = 10: Difference** Difference** NA

Case 1 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** NA

n = 10: Difference** No Difference NA

Case 2 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** NA

n = 10: Difference** No Difference NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: Difference** Difference** NA

Case 3.2 n = 50: Difference** NA NA

n = 100: Difference** Difference** NA

n = 10: Difference** NA NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: Difference** Difference* NA

Case 4.2 n = 50: NA NA NA

n = 100: Difference* NA NA
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Table 5.7: Statistical Difference for Random Simulations (where p1 = 0.5 vs. p2 = 0.9)

*: p < 0.05, and **: p < 0.01

Degree Betweenness Closeness

n = 10: Difference** Difference** Difference**

Case 0 n = 50: No Difference No Difference Difference**

n = 100: No Difference No Difference Difference**

n = 10: Difference** Difference** NA

Case 1 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** Difference**

n = 10: Difference** Difference* NA

Case 2 n = 50: Difference** Difference** NA

n = 100: Difference** Difference** NA

n = 10: Difference** No Difference NA

Case 3.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: Difference** Difference* Difference**

Case 3.2 n = 50: No Difference No Difference (1) NA

n = 100: Difference** Difference** NA

n = 10: Difference* Difference** NA

Case 4.1 n = 50: NA NA NA

n = 100: NA NA NA

n = 10: No Difference No Difference NA

Case 4.2 n = 50: NA NA NA

n = 100: No Difference NA NA
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Appendix A

Graphs

The following are some of the graphs mentioned from chapter 4.

Figure A.1: n = 10: Differences in Betweenness for p1 = p2 = 0.5
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Figure A.2: n = 10: Differences in Degree for p1 = p2 = 0.9

Figure A.3: n = 10: Differences in Degree for p1 = 0.5 vs p2 = 0.9
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Figure A.4: n = 50: Differences in Closeness for p1 = p2 = 0.1

Figure A.5: n = 50: Differences in Closeness for p1 = p2 = 0.9
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Figure A.6: n = 50: Differences in Degree for p1 = 0.1 vs p2 = 0.9

Figure A.7: n = 50: Differences in Closeness for p1 = 0.5 vs p2 = 0.9
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Figure A.8: n = 100: Differences in Betweenness for p1 = p2 = 0.9

Figure A.9: n = 100: Differences in Degree for p1 = 0.1 vs p2 = 0.5
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Figure A.10: n = 100: Differences in Degree for p1 = 0.5 vs p2 = 0.9
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