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Abstract 

Water scarcity has increased substantially in the last decades in many parts of the world, 

and it is expected to worsen due to the significant increase in global water withdrawals, intensive 

population growth, and climate change. Water is easily one of the most essential and invaluable 

global resources due to its many uses, such as drinking, industrial processes, and irrigation. The 

agriculture sector is one of the most significant water users globally, accounting for nearly 70% of 

global freshwater withdrawals. Cities and industries compete with the agriculture sector for water 

sources, producing alarming levels of stress and pollution in the water sources by the increasing 

numbers of countries and populations. The global population is expected to increase over the 

following years, reaching 8.6 billion people in 2030 and rising further to 9.8 billion in 2050. To 

this extent, the agricultural sector will have to increase food production by more than 60 percent. 

Therefore, increasing water productivity is critical in many countries.  

The agriculture sector's main challenges are adapting to climate change and water scarcity 

impacts on developing low-cost, reliable, and efficient irrigation systems that support water 

conservation practices, mitigate environmental effects and improve food production. However, 

their selection and spatial placement for land use represent another challenge at the watershed 

scale. 

In order to achieve the best possible outcome with limited natural resources, this work 

proposes an irrigation systems optimization framework that integrates The Soil Water Assessment 

Tool (SWAT) and Multiple Objective Evolutionary Algorithm (MOEA) to identify the optimal 

spatial placement of land-use and irrigation systems to reduce tradeoffs between conflicting 

objectives in irrigated agriculture. Hydrologic simulation models are commonly used as water 

balance and crop estimators. On the other hand, multiple objective optimization has emerged as a 
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solution to solve many real-life problems. In many situations, evolutionary algorithms can 

simultaneously optimize conflicting objectives and develop Pareto-optimal sets that decision-

makers can use to explore the trade-off between optimal solutions.  

Furthermore, the findings of this research will provide decision-makers with the best spatial 

placement configuration of land-use and irrigation systems that will enable them to plan 

management practices for each hydrological response unit by considering crop yield, energy 

consumption, and irrigation system costs. This research will also allow decision-makers to explore 

different management strategies that can inform them about possible outcomes for different 

scenarios. 
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Chapter 1: Introduction 

Water is a fundamental resource and is the most abundant liquid on Earth. Unfortunately, 

most of it is saline. Water resources are under increasing stress and degradation primarily due to 

unsustainable consumption, production, and population pressure. Climate change intensifies these 

factors altering rainfall patterns, hydrological management, and freshwater availability. The 

imbalance in human demand for water and finite sources will cause and is causing water scarcity 

and shortages in some parts of the world.  

Variations of freshwater volumes over time caused by climate change and intensive use 

(exploitation) may have drastic impacts on local or regional scales. For instance, shrinking lakes, 

natural springs that are disappearing worldwide, the decline in river flows, and falling groundwater 

levels in aquifers systems that experience intensive water withdrawals. Freshwater withdrawals 

from lakes, streams, aquifers, and reservoirs made by humans have increased during the last 

century and are still rising in most parts of the world. Fresh water use has increased by a factor of 

six over the past 100 years (Figure 1). Globally water use is expected to grow approximately 1% 

per year over the next 30 years. If things continue business as usual, the world will face a 40% 

global deficit by 2030. Projected water demand is expected to increase by 55% between 2000 and 

2050 (United Nations, 2021). It is estimated that about 4 billion people worldwide live in 

potentially water-scarce areas at least one month per year. The main factors contributing to 

excessive water use are increasing demand in industry, municipal and domestic use, economic 

development, shifting consumption patterns, and population growth. 
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Figure 1: Global water withdrawals 1900-2010 (United Nations, 2021) 

 

Population growth is a crucial driver for water scarcity. The increase in population drives 

increasing water demand for different human uses. These trends imply challenges for agriculture, 

the increase in food demand resulting from increased population, and socioeconomic development. 

Climate change intensifies the challenges by affecting rainfall patterns and the risk of extreme 

weather events. Climate change is likely to increase the frequency of rainfalls, causing droughts 

and affecting agriculture’s soil moisture, and less surface and groundwater will be available, 

alongside increased variability in floods will increase socioeconomic losses. 

The intense interaction between the multiple drivers that affect water resources will 

represent a challenge for agriculture. Water, food, and energy are three basic sources essential to 

maintaining life and socio-economic development. Agriculture is the foundation for food security 

and is the most significant water resource user influencing energy security.  The agriculture sector 

is one of the largest water users globally. It accounts for nearly 70% of global freshwater 
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withdrawals, according to FAO (2017). Cities and industries compete with agriculture for water 

sources, producing alarming levels of stress and pollution in the water sources by the increasing 

numbers of countries and populations. The global population is expected to increase to more than 

9 billion people by 2050, and the demand for food is expected to increase by more than 60%. Most 

of the population increase will occur in urban areas of low-income countries, and food insecurity 

will be found in these households and areas with depleted natural resources. 

Moreover, the global population increase is a significant driver for climate change, which 

shifts weather patterns that endanger our food production. Climate change can significantly 

influence the water cycle and increase water treatment costs. The flow of water in surface systems 

that affect recharge and discharge rates from aquifers can affect the availability and quality of 

surface and groundwater due to climate variability.  
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1.1 Problem statement 

The main challenges the agriculture sector faces are adapting to the impacts of climate 

change and water scarcity to develop food production systems that can efficiently feed the growing 

population in the following years. Water scarcity occurs when the water supply does not meet 

water demand. According to FAO (2017), by using the appropriate technologies and investments, 

the possibility exists of having sufficient freshwater resources for agriculture to meet the demand 

requirements by 2050.  

Moreover, inefficient and uncoordinated water use depletes aquifers and reduces river 

flows, which means that to meet the growing population's food requirements, irrigated food 

production is expected to increase by more than 50 percent. In addition, low-cost, reliable, and 

efficient irrigation systems are required to support water conservation practices, mitigate 

environmental impacts, and improve food production. Water and energy are essential for irrigation 

and are significant resources that provide economic, social development, and environmental 

integrity.  Consequently, there is a need to identify sustainable irrigation management practices.  

In addition, the improvement of agricultural productivity with the depletion of water 

resources is being addressed globally. Optimizing agriculture productivity depends on the 

integration and interaction of various factors, the appropriate selection of irrigation systems and 

strategies considering water availability, climate variability, soil and crop characteristics, and 

energy, economic, and environmental aspects. Environmental managers worldwide are asked to 

achieve the best possible outcome with limited sources. Therefore, methods that can tradeoff and 

balance competing objectives are essential. The most common decision-making approach is based 

upon accumulated experience to make complex decisions. The decision space is complex, and this 

situation requires decision-support tools (Horne et al., 2016).  
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1.2 Watershed management optimization 

Computer simulations have become an indispensable tool for solving problems where 

different activities try to achieve specific objectives or optimize things such as profit, time, yield, 

and quality. Mathematical optimization is the study of these activities, and there are different 

mathematical tools and efficient algorithms that can solve complex problems. For instance, 

managing a watershed for land use can become difficult for decision-makers. Different parameters 

and management practices can be assessed to provide the best results. Assuming that the goal for 

the decision maker is to provide maximum crop yield with minimum water usage can represent an 

infinite number of management practices or configurations that can be explored, and computer 

simulation models are the best way to accomplish it.  For instance, if multiple management 

practices can be evaluated in multiple fields, the number of combination that exists can be infinite, 

and evaluating them and obtaining the optimal setting that provides the best results in terms of 

crop yield and water usage cannot be found without computer simulation 

Hydrologic simulation models are used as water balance and crop estimator and have been 

widely used in agriculture irrigation systems and management practices. This simulation model 

provides and understanding of what is happening in the watershed by having the ability to evaluate 

different management practices. Irrigation systems can reduce water usage; however, their 

selection and spatial placement for land use can be troublesome at the watershed scale. For that 

reason, multiple objective optimizations have emerged as a solution to solve many real-life 

problems. In many situations, more than one objective needs to be optimized simultaneously. 

Different evolutionary algorithms can simultaneously optimize conflicting objectives and develop 

a Pareto-optimal front that decision-makers can use to explore the trade-off between optimal 

solutions. In addition, integrating a hydrologic simulation model and optimization method can be 
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a powerful tool to reduce water usage and costs in the agriculture sector while maximizing crop 

yields. 
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1.3 Goals and Objectives 

The agricultural sector must adapt to the impacts of climate change and water scarcity to 

improve food production systems to feed the growing population with limited water resources. 

This research focuses on developing a robust and open-source optimal natural resource 

management tool that improves management practices for agricultural irrigation systems, land use, 

and the environment at the watershed scale. To achieve this goal, the following objectives are 

being considered: 

 

Objective 1: Integrate a Multiple Objective Evolutionary Algorithm (MOEA) to identify 

the optimal spatial placement of Land-Use and irrigation systems, considering maximizing 

crop yields while minimizing water usage. 

 

Objective 2: Develop an Irrigation System Assessment framework to quantify energy cost 

and consumption in agriculture irrigation water from different water sources.  

 

Objective 3: Integrate the Soil Water Assessment Tool (SWAT) hydrological model and 

the Irrigation System Assessment framework with the MOEA.  

 

Objective 4: Develop a Graphical User Interface (GUI) integrating the irrigation systems 

framework to enhance the capabilities of SWAT-MEA, which can be used to evaluate any 

SWAT project, and multiple agricultural irrigation systems and execute the MOEA. 
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Chapter 2: Literature Review 

In recent years, the development of irrigation systems has proven beneficial to mitigate 

water usage and energy consumption. Systems such as drip and sprinkler irrigation demonstrate 

that pressurized systems perform better than traditional irrigation systems concerning water usage 

and crop yield, such as furrow irrigation. In addition, there have been advances in technology that 

has proven to be beneficial in promoting our understanding of natural resources. Technologies 

include the development of hydrologic simulation models, optimization tools, and frameworks that 

can optimize management operations to alleviate the decision-making process. These tools allow 

us to understand the water cycle and identify what is happening in the watershed by uncertain 

climate change conditions and different anthropogenic activities, allowing us to develop 

management operations to mitigate the negative impacts of the different activities. The following 

sections provide a literature review on different irrigation systems and their applications and some 

articles related to understanding water, energy, and agriculture interrelationships. 

Additionally, a literature review on hydrological simulation models, focusing primarily on 

the Soil Water Assessment Tool (SWAT), is reviewed to identify research gaps and the state of 

irrigation systems optimization. Lastly, there have been several assessments where SWAT has 

been integrated with other models and optimization tools to improve different climate change 

scenarios, and these areas are described in the following sections. It is important to note that the 

various studies had several objectives, and this review attempted to categorize them regarding the 

primary goal.  
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2.1 Pressurized Irrigation Systems 

The oldest form of irrigation is surface irrigation, which allows water to move across the 

soil surface of agricultural lands by gravity. However, throughout history, the earth’s climate has 

changed, causing uncertainty regarding the future direction of surface and groundwater irrigation. 

On-farm water pumping uses 23-48% of the energy for crop production (Tarjuero et al., 2015).  

The energy used by pumping water generates significant greenhouse gas emissions that can 

accelerate climate change. Climate change uncertainties are responsible for the development of 

irrigation techniques for successfully growing crops across the world. Irrigation is a controlled 

application of water to agricultural crops. Recent studies have identified the importance of the 

different irrigation systems and why it is critical to managing them efficiently to minimize energy 

consumption and water usage. For instance, irrigation dependent on groundwater is one of the most 

energy-consuming irrigation methods. Chen et al. (2019) proposed an energy consumption model 

for groundwater irrigation systems in North China Plain, one of the largest energy consumption 

areas. The study suggests that replacing irrigation methods like surface irrigation with sprinkler 

and drip irrigation and cropping system practices can reduce energy consumption for irrigation. 

Other alternatives to reduce energy consumption have been explored, such as reducing working 

pressures at the sprinkler nozzles resulting in energy reduction due to low pumping requirements. 

Zapata et al. (2018) analyzed the irrigation performance of three irrigation treatments with 

different pressures; a standard brass impact sprinkler with an operating pressure of 300kPa, a 

standard brass impact sprinkler with an operating pressure of 200 kPa, and a plastic impact pressure 

of an operating pressure of 200 kPa. The study suggested that there are no differences in the grain 

yield due to the maize canopy portioning reducing the difference in the irrigation performance 
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indexes among the different pressure treatments. It also suggested that using low-pressure sprinkler 

irrigation aids energy consumption and maintains water usage and crop yield. 

Furthermore, sprinkler irrigation is one of the most common irrigation systems used 

worldwide due to the ease of adaptation to different soils and topography, and it can irrigate almost 

all annual crops. In 2010, the percentage of sprinkler irrigation in farms was 23.9% in Portugal, 

nearly 15% in Spain, 39.4% in Italy, and Greece had 29.4% (Silva, 2017). Albaji et al. (2015) 

conducted a study in an area of about 15,000 hectares considering different topography 

characteristics, such as soil properties, slope, depth, salinity, drainage, and calcium carbonate 

content. The study compared different irrigation systems and suggested that sprinkler and drip 

irrigation systems improve land productivity due to being more efficient than surface irrigation 

methods. The comparison revealed that sprinkler irrigation was more effective and efficient in this 

land area compared to drip irrigation and surface irrigation methods. This is primarily due to the 

different soil and land characteristics parameters that make certain irrigation systems more suitable 

than others for specific land characteristics. 

In addition, the modernization and optimization of irrigation systems can alleviate water 

scarcity. The concept of modernization has evolved in recent decades; initially, it was limited to 

only physical structures and equipment installation, but nowadays, it has been established as a 

transformation of irrigation management practices to improve resource utilization and the services 

provided to the farmers.  Irrigation management offers a better returned compared to the 

improvement of irrigation structures. The challenge in irrigation systems may not be the 

development of new irrigation technology but rather the reduction of technical efficiency 

differences, yield, and water productivity. This was noticeable in northern Spain, with traditional 

surface irrigation systems showing approximately 50% efficiency, while a pressurized system with 



11 

a good design and management can reach approximately 90% efficiency (Playán and Mateos, 

2006). Correspondingly, Tarjuero et al. (2015) identified the main technical aspects of irrigation 

modernization and management that lead to improved water and energy. To improve water and 

energy use efficiency, the most common approach being used globally is replacing open channel, 

gravity-based systems with pressurized distribution networks and switching from surface irrigation 

systems with more efficient pressurized systems, such as sprinkler and drip systems. In addition, 

the review suggests that applying irrigation on average can increase by six times the primary crop 

yields generating a gross margin four times the profit of rainfed crops.  Peng et al. (2019) 

developed a water demand prediction model to optimize irrigation networks to determine the 

optimal network structure to reduce irrigation energy consumption. This study selects three types 

of drip irrigation networks: comb-shaped, fish bone-shaped, and H-shaped. The results suggested 

that for flat regions, the H-shaped pipe network was best to improve irrigation efficiency due to 

the uniformity of the velocity and pressure at the outlet. 

Lastly, sprinkler irrigation systems have been integrated with different management 

practices to mitigate energy consumption and water usage. For instance, Nasseri (2019) presented 

a study to analyze the combination of sprinkler irrigation and conservation tillage for wheat 

production. The study compared conventional tillage and surface irrigation with conservation 

tillage and sprinkler irrigation using energy indices and economic analysis. The study identified 

3.2 MJ of energy consumption to produce 1 kg of wheat grain using conservation tillage and 

sprinkler irrigation compared to 7.2 MJ of energy consumption using conventional tillage and 

surface irrigation. It suggested that conservation tillage with sprinkler irrigation performed better 

under all energy indices. Aside from land-use management operations, irrigation scheduling is 

another management operation that has been used, for instance, Mitchel-McCallister et al. (2020) 
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evaluated the impact of irrigation timing on the yield and economic profitability, and the study 

suggests that there is a need for new management strategies to sustain the profitability of the 

producer. 

 

2.2 Irrigation Optimization Frameworks  

In recent years, optimization has proven essential to the decision-making of optimal design, 

planning, and operation of water resource systems. Different approaches consider irrigation 

optimization frameworks. These frameworks do not integrate SWAT but provide insights into 

modeling techniques and considerations in irrigation optimization. Primarily non-linear 

optimization has proven to be more suitable for solving complex problems that arise in water 

resource systems management. Elshaikh et al. (2018) reviewed the different concepts, frameworks, 

and methodologies that have been applied to assess irrigation performance evaluation. The study 

suggested that the main methods considered to evaluate irrigation performance are fuzzy set 

theory, direct measurements for indicators, remote sensing, and analytic hierarchy process. Direct 

measurement for indicators mainly focusses on measuring the performance of direct irrigation 

water elements. Fuzzy set theory is used to deal with uncertainty in different situations where 

information is incomplete or imprecise. The analysis hierarchy process is a multi-criteria decision-

making technique that decomposes a problem into a hierarchy where each level is composed of 

specific elements. Remote sensing technique is used to provide satellite data to improve the 

diagnosis under data scarcity. Other studies consider a hierarchical approach to develop an 

economic objective optimization model to plan water allocation in deficit agricultural water 

resources systems (Reca et al., 2001). The model suggests three independent optimization sub-

problems with different resolution levels crop, irrigation district, and the whole basin. In the first 
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level, each crop's optimum production function is identified, considering irrigation timing to 

maximize crop yields. The second level considers land water and irrigation water allocation to 

generate economic functions in respect to each irrigation area. Lastly, the third level optimizes 

water allocation taking into account the economic function of each irrigated area. The article 

suggested that non-linear optimization techniques are suitable for solving water allocation 

problems compared to linear techniques. 

Similarly, Singh (2014) provided a review that reveals a preference for conjunctive 

simulation and optimization models for solving integrated use management. The simultaneous use 

of surface water and groundwater for irrigation is referred as conjunctive use, and the purpose is 

to increase crop yield, supply reliability, and water efficiency. Various programming optimization 

models have been developed in this area, from linear programming models that cannot handle 

nonlinear problems to genetic algorithms that have been identified as valuable tools for complex 

problems, yielding better results than traditional optimization techniques. Jiang et al. (2019) 

developed an optimization and coordination model with multiple-objectives to optimize irrigation 

water allocation in multi-stage pumping water irrigation systems. The model was solved based on 

the decomposition coordination method and considered energy and minimum water requirement 

as two objectives, and different periods are considered for water allocation and operation. The 

study suggests that the model could improve the balance of water supply among the different 

subsystems. Li et al. (2019) provided a stochastic modeling framework to address economic and 

environmental objectives that is capable of providing policy makers with the ability to determine 

policy options among water, energy, and land resources. 

In that respect, different studies incorporate different parameters to optimize and obtain the 

best cultivation conditions. Mahmoodi et al. (2020) explored the effects of irrigation interval and 
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water salinity of different parameters (crop yield, evotranspiration, water use efficiency, shoot dry 

weight, root dry weight, fruit diameter length, plant height, and root length) of eggplant cultivation. 

Multivariate models were developed to estimate responses, and surface methodology was used to 

determine the function for optimum desirability, which was then used to determine the optimum 

region by overlaying the parameter. A simultaneous optimization for all the parameters was 

performed in order to obtain the best conditions of cultivation using the desirability function. The 

different interactions of the factors suggested that water interval and water salinity could 

potentially increase crop yield, minimize water use, and reduce soil salinity in the environment. 

Likewise, to maximize the irrigation usage of water efficiently, Jiang et al. (2016) proposes a two-

level optimization model combining the agro-hydrological model established with eleven 

subsystems and applying irrigation water usage to optimize under five water supply scenarios. 

 

2.3 Soil Water Assessment Tool for Irrigation and Optimization 

The Soil Water Assessment Tool (SWAT) has been used in several studies in order to 

assess the impact of irrigation and crop yield. There is a need to incorporate a hydrological model 

and irrigation systems that can simulate irrigation management strategies. Hydrologic modeling is 

developed for estimating, predicting, and managing water distribution as a function of various 

parameters that describe soil and watershed characteristics. The commonly required inputs include 

atmospheric data, and the model parameters include topographic relief, geomorphology, and soil 

and vegetation properties. There have been many attempts to improve water productivity and 

minimize water utilization. Controlling schemes for irrigation and drainage are widely adopted 

practices for agricultural water management. Acceptable schemes for irrigation and drainage, aside 

from providing proper moisture conditions that favor crop growth, need also to minimize water 



15 

consumption and transfer. Xi and Cui (2011) focus on paddy rice areas, provide a simulation of 

the hydrological processes, and introduce an irrigation scheme and drainage process that considers 

three critical water depths. 

Changing irrigation systems from surface to pressurize is another alternative; however, 

there is a need to evaluate these systems with the use of a hydrological model prior to making them 

operational. Ahmadzadeh et al. (2016) use the SWAT model to evaluate the impacts of shifting 

from surface irrigation to pressurized systems of the Zarrineh Rud River in Iran. The study suggests 

that pressurized irrigation reduces water use, compared to surface irrigation, by about 165 

MCM/yr. In another study, Ashraf Vaghefi et al. (2017) analyzed the water productivity of 

irrigated maize and wheat by using the SWAT-MODSIM model. SWAT was used to model 

irrigation demands of agricultural regions using dynamic irrigation and MODSIM for water 

allocation, and the study found that high yield is not dependent on higher water consumption. In 

China, paddy rice is a major food crop that consumes large amounts of water for irrigation. Wu et 

al. (2019) use SWAT to simulate the hydrological processes of a basin and propose a new method 

for calculating agricultural irrigation water consumption from different water sources.  Similarly, 

Zou et al. (2018) utilized SWAT at a regional scale to improve the conventional method for 

estimating the irrigation water demand of regional crops, and Uniyal et al. (2019) estimated water 

balance at different scales. 

Furthermore, integrating the SWAT model and multiple objective algorithms has been used 

widely for managing a broad range of water-related issues. Panagopoulos et al. (2012) developed 

a Decision Support Tool in MATLAB to assess the different irrigation scheduling programs and 

determine their optimal placement in The Ali Efenti catchment. SWAT is utilized to simulate the 

water balance and crop yield. The model was set up by testing seven alternative irrigation 
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scheduling programs in SWAT to evaluate the impact on the hydrological response unit and crop 

yields, and the irrigation amounts and crop yield reduction were stored in a database. Non-

dominated Sorted Genetic Algorithm (NSGA-II) was used to optimize total water usage and crop 

yield objectives. The study suggested that the decision support tool accelerated the optimization 

process. Campos et al. (2020) also use NSGA II primarily due to its faster convergence. Thomas 

et al. (2021) develop a genetic algorithm optimization framework for the Bargi reservoir system 

incorporating the SWAT model to identify the impact of climate change in future climate 

scenarios. The objective function is to minimize failures in meeting domestic, irrigation, and 

hydropower demands. The optimization framework uses a Nondominated Sorting Genetic 

Algorithm II (NSGA II) to obtain a set of optimal operation policies and suggests that the 

simulation-optimization approach with integrated reservoir operations is suited to address low and 

high flows related to drought and rainfalls. 

Lastly, Panagopoulos et al. (2014) developed a decision support tool with the capability to 

optimally locate irrigation best management practices. The basin’s hydrology was simulated using 

the SWAT model to represent the effect of four different irrigation water management practices 

deficit irrigation, conveyance improvement, precision agriculture, and wastewater reuse. The 

model uses an economic function that uses the unit costs of the best management practices and 

stores the output data in a database that incorporates gross irrigation water amounts, costs for all 

hydrological response units, and the best management practice implemented on them. The model 

then implements a genetic algorithm to identify the optimal combinations of irrigation best 

management practices regarding the total water abstraction and the cost of implementation 

according to the SWAT model simulation. Udias et al. (2018) explore management strategies by 

developing an optimization framework to identify cost-effective irrigation strategies. The 
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framework considers crop water requirements, the impact of irrigation changes on crop yield, and 

the economic model. SWAT is linked with the economic model through R software. 

 

2.4 Soil Water Assessment Tool for Nonpoint sources (NPS) Pollution and Optimization 

In the past decades, the understanding of nitrogen (N) and phosphorous (P) distribution 

within the agricultural system and the impacts it produces has grown significantly. Nutrients such 

as nitrogen, phosphate, and potash are absorbed by crops and are essential to their production. 

When applied in excess, the nutrients can get lost to the environment, leaching into groundwater 

and runoff into surface water, which may result in water quality degradation. Huang et al. (2017) 

determine pollution prevention guidelines using the SWAT model to estimate phosphorous effects 

and identify the effects on long-term land and soil variations. Water pollution due to a collection 

of land use activities is referred to as diffuse pollution. Anthropogenic activities may have a direct 

or indirect impact on diffuse pollution, causing a significant threat to water resources. Agricultural 

diffuse sources, such as excessive use of fertilizer and pesticides, are leached and transported from 

agricultural activities (Rocha et al., 2015). Climate change variability causing high rainfalls, 

droughts, and the excessive use of natural resources have made ecosystems vulnerable to soil 

erosion. Soil nutrient loss and sediment can occur through soil erosion. It is important to 

understand the processes and sources of diffuse pollution in order to reduce soil and water 

degradation. Bossa et al. (2012) use the SWAT model to simulate the dynamics of sediments, 

nitrates, and organic nutrient runoff to investigate the impacts of crop and fertilizer patterns on 

crop yield. SWAT is employed to simulate nutrient loadings under different scenarios.  

In addition, other studies have mentioned the importance of identifying optimal 

management practices to mitigate nonpoint source pollution. Dai et al. (2018) developed the 
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SWAT-based fuzzy credibility chance-constrained programming (SFCCP) method to determine 

optimal best management practices configurations for nonpoint source pollution (NPS) control. 

Chen et al. (2016) introduce a Markov algorithm in order to ease the optimal design of best 

management practices related to water quality mitigation from nonpoint source pollution. The 

Markov algorithm serves as an intermediary for SWAT to quantify water quality. The proposed 

framework is tested to minimize nitrogen (N) and phosphorous (P) with an NSGA-II algorithm to 

optimize the best management scenarios. Panagopoulos et al. (2012) develop a decision support 

tool by combining a non-point source (NPS) pollution estimator, SWAT model, and a genetic 

algorithm that serves to optimize the best management practices. SWAT was used to estimate 

nitrates nitrogen and total phosphorous losses from the different HRUs. The outputs were used to 

create a database, which was then introduced into MATLAB R2007 GA tool box, NSGA-II, to 

identify the optimal configuration of management practices. 

 

2.5 Soil Water Assessment Tool Performance and Improvements and Optimization 

SWAT has proven effective in quantifying the impacts of different management practices, 

land use scenarios, and various climate change scenarios. Government agencies and policy makers 

also adopt it, and in the past 30 years, it has undergone many improvements. For instance, SWAT+ 

is a reconstructed version of SWAT, and its contribution is noticeable in the improved spatial 

objects, along with having available new functionalities for aquifers. Models are constantly 

improved, and that is the case for SWAT+, Wu et al. (2020) coupled the Integrated Parameter 

Estimation and Uncertainty Analysis Tool (IPEAT) to develop calibration guidelines for SWAT+. 

The reservoir function of SWAT+ coupled with the calibration tool provides a sensitivity analysis 
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of the reservoir parameters to identify the interactions between the reservoir parameters and the 

hydrologic process.  

There is an increase in groundwater demand in regions with semi-arid climatic conditions, 

and this is causing regions that experience droughts to over-exploit the groundwater resource. 

There is a need for tools that can assess watershed resources in order to limit the negative climate 

change impacts. Perrin et al. (2012) integrated surface water and groundwater resources of a semi-

arid watershed. In this study, calibration is based on surface reservoir storage and recharge derived 

from groundwater balance, suggesting that a properly calibrated model can provide spatial 

variability in the water fluxes. In many parts of the world, groundwater quantity and quality have 

suffered severe degradation, and water levels have decreased. Abbaspour et al. (2015) use SWAT 

to simulate the hydrological model of Europe. The model employs SUFI-2 for calibration and 

produces a protocol for calibrating large-scale models. There have been many advances in 

collecting datasets from the Earth’s surface and from satellite observations that enhance our 

understanding of the water cycle. This information allows us to improve our assessments of water 

circulation and can be used to assess different scenarios, but it does not guarantee robust models. 

Therefore, scientists encourage using model assessments by integrating different metrics into the 

models. However, in order to represent the hydrological system properly, calibration should 

consider equifinality, model inadequacy, and constraint inadequacy (Triana et al., 2019). 

Hernandez-Suares et al. (2021) developed the Unified Non-dominated Sorting Genetic Algorithm 

III (U-NSGA-III) by incorporating routines constraining the performance of Ecological Relevant 

Hydrological Indices (ERHIs) and an evolutionary algorithm. The study was implemented in an 

agriculture-dominated watershed and developed calibration strategies to produce a balance 
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representation of ecologically relevant hydrological indices and suggests that performance-based 

calibration is preferred. 

In the event of assimilating remotely sensed surface soil moisture data, a major concern is 

using surface observations to update profile soil moisture. In order to improve streamflow 

simulations, Patil and Ramsankanran (2017) integrated Soil Moisture Salinity (SMOS) level 3 (L3) 

retrievals into SWAT hydrological model to improve the soil layer in the SWAT model, thus 

obtaining better streamflow forecasts. Dumedah and Coulibaly (2013) introduce SWAT and 

NSGA-II to develop a framework for addressing data assimilation to estimate stream flow and soil 

moisture. Herman et al. (2015) couple the SWAT model, Stream Health Predictor (ANFIS), 

Hydrologic Index Tool (HIT), and a genetic algorithm to examine stream health and costs. 

Similarly, Tan and Yang (2020) provide streamflow simulation in SWAT. The simulation takes 

into account the distance between rainfall and streamflow stations and explores the effect of 

missing rainfall data in different periods. Hunink et al. (2012) introduce a new methodology, Green 

water and Blue water assessment (GBAT), making use of SWAT and different databases in order 

to quantify the effects on management practices from upstream and downstream areas. To do this, 

the model analyzes the impacts of streamflow concerning green and blue water. 

 SWAT integration with different models has improved different parameters of the 

hydrological model. For instance, Senent-Aparicio et al. (2021) proposed the integration of the 

SWAT model and QGIS Water Ecosystem Tool (QWET). QWET simulates the vertical 

distribution of temperature and evaporation by incorporating SWAT simulated flows, and it can 

be an effective tool for estimating different components of the water balance. Qi et al. (2021), 

building on previous concept models, introduces the SWAT-HB model by coupling terrestrial and 

aquatic thermal processes in order to estimate stream water temperatures. The temperature of 
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different terrestrial components, such as surface runoff, lateral flow, and base flow, are considered 

to assess the thermal processes that influence it, as well as the heat balance of water. The new 

model was then compared to other models and suggested that in regards to seasonal comparison, 

the improvement in estimating terrestrial water temperatures provided significant results in spring 

and winter. Liu et al. (2020) propose the long–term BMP optimization method (LBMP-OM) by 

integrating the SWAT model with an economic model and MOSFLA to optimize best management 

practice configuration. This method consists of two parts, the first one being the best management 

practices optimization for maintenance and replacement strategies and the second optimizing the 

best management practices configuration. 

 

2.6 Soil Water Assessment Tool with Climate Change impacts 

Climate change is a key hydrological problem. In research, assessing different climate 

change scenarios has become a standard practice for analyzing its effect on hydrological systems. 

Understanding climate change and the impacts it has on agriculture can help develop management 

measures for future events. To address possible climate change impacts, Global Climate Models 

(GCMs) are sources that can be used for futuristic and current parameters. Global Climate models 

(GCMs) and General Circulation Models (GCMs) are sometimes used interchangeably and 

provide future climate projections. In different articles, GCMs are integrated into SWAT and are 

used to simulate the future response of the climate system concerning anthropogenic activities. 

Climate models present the advantage of performing multiple simulations to provide possible 

future climate variables.  Pandey et al. (2021) presented an integrated modeling approaching using 

SWAT and GCMs to investigate the hydrological sensitivity of the basin in different climate 

scenarios. To narrow uncertainty in the simulation, MIROC5, CNRM-CM5, MPI-ESM-LR, 
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GFDL-ESM2G, and IPSL-CM5A-MR are used to estimate the water balance components. General 

Circulation Models (GCMs) datasets have been applied in hydrological models for long-term 

hydro-climatic assessments. It becomes challenging to determine the best GCM source for data 

input due to their unique assumptions, structure, and parameters. Yuan et al. (2020) provide a new 

approach for selecting the optimal climate model by evaluating SWAT simulations driven by 

selected GCMs. These methods can be beneficial for studies that rely on using GCM outputs. 

Climate change can affect water quality and quantity and can lead to flooding. In this study, 

Giri and Abropta (2020) investigate the climate change impact potential by utilizing surface runoff, 

sediment yield, and phosphorous to assess the vulnerability of climate change. On the other hand, 

Veettil 2020 simulated the streamflow pattern in the SWAT model and included statistical models 

in order to quantify the influence of climate change and different variables associated with 

hydrological drought. The Standardize runoff index was used to quantify the hydrological drought. 

The study suggests that catchment variables are more significant in triggering hydrological 

drought. 

The classification of freshwater resources, blue, green, and gray, can be important in 

addressing water security. The Blue water footprint evaluates the volume of surface and 

groundwater consumed from blue water sources corresponding to a production process. Green 

water footprint relates to using green water sources; for instance, evapotranspiration is usually 

significant in agriculture and forestry processes. Veetill and Mishra (2016) applied a framework 

to evaluate the spatial variability of Green and Blue water to quantify water security. The study 

included climate and anthropogenic factors and suggests that it can aid decision-makers in 

understanding the status of water availability. The water footprint is an indicator of freshwater use, 

and this index can be used to quantify water consumption in the entire production supply chain. 
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Luna et al. (2018) established a method for measuring crop production water footprints 

using SWAT, where the green water footprint is the volume of precipitation consumed during the 

crop growth period, and the blue water footprint is the volume from surface or groundwater 

consumed during that period. The study suggests these models can aid the agricultural water 

management sector in managing and allocating water resources. Blue water accounts for roughly 

one-third of the total freshwater availability, and green water for tw0-thirds of the total freshwater. 

Du and Merwade (2018) use SWAT to simulate hydrological fluxes and asses blue water and green 

water dynamics in the Ohio River Basin. The study suggests that increased precipitation and 

reforestation are dominant indicators of climate change and land use. Liang et al. (2020) presented 

a study using SWAT to simulate blue water and green water scarcity under different climate and 

land use change scenarios. The study suggests that blue and green water indexes are important in 

identifying hotspots in water stress areas. The study identifies that blue water scarcity is mainly 

affected by precipitation and population, while green water scarcity is caused by agriculture and 

urban land. 

 

2.7 The Water-Food-Energy Nexus  

Nexus thinking is a way of thinking that considers and understands water, food, and energy 

interrelationships. Agriculture is the foundation for food security and influences energy security 

due to the high usage of water resources. Consequently, integrated management is essential in the 

water-food-energy nexus for sustainable agriculture. Considering that food production can 

generate economic benefits as a result of coordinated management of water, energy, and land 

resources, but in order to benefit economically, the production process requires water, pesticides, 

and land fertilizers that generate greenhouse gas emissions and non-point source pollution 



24 

impacting the environment (Li et al., 2019). Namany et al. (2019) provide a review from 2010 to 

2019 on the energy-water-food nexus about dynamic decision-making, focusing on mathematical 

optimization, agent-based modeling, and game theory. The review identified 53 articles, and only 

40 were used, and suggested that multiple objective optimizations have great potential to identify 

solutions for problems with conflicting objectives due to the ability to generate useful results based 

on the optimization perspective but lack feasibility from the stakeholder point of view. The 

relationship between water, food, and energy can be seen in irrigated agricultural systems. Food 

production depends on water availability, and food production consumes water and energy. The 

relationship between water and energy exists in the use of energy for water pumping in most areas 

that require the use of irrigation systems. Therefore, Kahil et al. (2019) suggested that a cross-

sectoral multi-scale nexus approach can help to identify solutions to water scarcity problems and 

prevent trade-offs between sectors. 

There are different studies that analyze the interdependency of water and energy. For 

instance, Hamiche et al. (2016) provided a review to understand the interdependency between 

water and electricity and suggested that a comprehensive understanding of the water-energy nexus 

is essential to understand the dimensions of the nexus. Water scarcity is of major concern for 

developed and developing countries. Espinosa-Tason et al. (2020) explored the water-energy 

nexus in Spain's irrigated agriculture by estimating the water consumed and abstracted as well as 

the energy required to supply water for agriculture.  The study identified an increase in annual 

water abstraction by 1.02% and an annual increase in energy consumption by 3.4%. The study 

suggested that the ratio of water to energy is primarily due to the incorporation of pressurized 

systems to fight water scarcity. Drip irrigation is one of the most common methods to irrigate 
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tomatoes, and Yahyoui et al. (2017) present an autonomous off-grid system for irrigation to 

correctly handle energy and water requirements.  
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Chapter 3: Soil Water Assessment Tool 

The Soil Water Assessment Tool (SWAT) was developed by the United States Department 

of Agriculture (USDA) Agricultural Research Service (ARS) and is a continuation of roughly 30 

years of modeling experience. SWAT is a robust interdisciplinary watershed-modeling tool 

acknowledged internationally and can be evident in the little over 2000-peered review publications 

found when using the acronym “SWAT” in July 2015 (Francesconi et al. 2016). The model has 

undergone continuous review and expansion since its development, making it useful for different 

U.S. federal and state agencies, such as the USDA within the Conservation Effects Assessment 

Project (CEAP). Additionally, it was accepted as a software package for the U.S. Environmental 

Protection Agency (USEPA) Better Assessment Science Integrating Point and Nonpoint Sources 

(BASINS) (Gassman et al. 2007). 

SWAT is a physically based river basin scale continuous-time model that operates on a 

daily time step and is used to predict the impact of management on water, agricultural chemical 

yields, and waste materials in watersheds. The model can execute continuous simulations over 

extended periods of time and is computationally efficient. In order to develop a simulation, there 

are different data inputs required, such as weather and hydrology data, soil temperature and 

properties, plant growth factors, and land management (Gassman et al. 2007).  

In SWAT, a watershed is divided into multiple sub-watersheds, which are then divided into 

unique soil/land use characteristics called hydrological response units (HRUs). Sub-basins are the 

first level of subdivision and occupy the geographic position, and partitioning the watershed into 

subbasins, this will allow the user to reference spatially different areas of the watershed to one 

another (Neitsch et al., 2011). Sub-basins will contain at least one HRU, the main channel or reach 

a secondary channel, and a pond or wetland may be defined, respectively. In the sub-basin, the 



27 

land area may be divided into hydrological response units (HRUs), which are segments of a sub-

basin that contain homogeneous unique attributes such as land use, management practices, and soil 

properties. HRUs are the total area in the sub-basin with unique attributes; it is not equivalent to a 

field and may be dispersed throughout the sub-basin. It is not practical to simulate individual fields; 

for that reason, the HRU areas are allocated together by similar soil and land use areas to form one 

single response unit to simplify SWAT simulations. The water balance of each HRU is represented 

by four storage volumes: snow, soil profile, shallow aquifer, and deep aquifer. Flow generation, 

sediment yield, and pollutant loadings are summed across all HRUs in a sub-watershed, and the 

resulting loads are then routed through channels, ponds, and reservoirs to the watershed.  

Water balance is the driving force in everything that happens in the watershed, regardless 

of the type of problem simulated in SWAT. Hydrology simulation of the watershed can be divided 

into land phase division and water or routing phase. The land phase of the hydrologic cycle is 

responsible for managing the amount of water, nutrients, sediments, and pesticide loadings to each 

subbasin’s main channel (Figure 2). The second phase, the water or routing phase, handles the 

movement of water, nutrients, sediment, and pesticides through the watershed’s channel network 

to the outlet (Neitsch et al., 2011).  
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Figure 2: Schematic representation of the hydrologic cycle (Neitsch et al., 2011). 

 

 

3.1 Land Phase of the Hydrologic Cycle 

The watershed is subdivided, and this enables the model to reflect evapotranspiration 

differences for the various crops and soils available in the model. Total runoff for the watershed is 

routed and predicted separately for each HRU. This causes an increase in accuracy and enables a 

better description of the water balance. The hydrologic cycle simulated in swat for water balance 

is calculated as follows: 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1
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where 𝑆𝑊𝑡 is the final soil water content, and the initial soil water content is defined by 𝑆𝑊0. 

The amount of precipitation on day 𝑖 is defined by 𝑅𝑑𝑎𝑦. The amount of surface runoff on day 𝑖 

by  𝑄𝑠𝑢𝑟𝑓. The amount of transpiration on day 𝑖 defined by  𝐸𝑎. The amount of water entering the 

vadose zone from the soil profile on day 𝑖 defined by 𝑤𝑠𝑒𝑒𝑝 and 𝑄𝑔𝑤 is the return flow amounts 

on day 𝑖, respectively. 

 

3.2 Irrigation 

SWAT allows the user to select two irrigation options: a manual scheduling application or 

an automatic irrigation application. The user also has the option to select irrigation water from five 

types of water sources: reach, reservoir, shallow aquifer, deep aquifer, or a source not specified 

outside the watershed. The model needs to know the location of the water source; for instance, in 

a shallow or deep aquifer, the location is specified by the reach number or subbasin number where 

the source is located. If the water source is a reservoir, the reservoir number needs to be used to 

specify the location. If the water source for irrigation is a reach, the user will need to input other 

parameters in order to prevent the reach flow from reaching zero as a result of irrigation water 

removal. Ultimately, SWAT will determine the amount of water available in the source for any 

given irrigation event (Neitsch et al., 2011). 

 

3.2.1 Manual Irrigation 

The irrigation amount (mm) is defined as the amount of water applied that reaches the soil, 

and the user has the option to specify the schedule by date or heat units in the manual application. 

The efficiency factor (min 0 max 100) accounts for losses starting from the source to the soil, and 

this includes conveyance and evaporative losses. In the manual application, a surface runoff ratio 
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(min 0 max 1) of a fraction of water applied leaves the field as runoff, and the remaining water 

infiltrates into the soil. (Neitsch et al., 2011).  Table 1 identifies the variables found in the manual 

irrigation operation line: 

 

Table 1: Input variables for manual operation irrigation (Neitsch et al., 2011) 

Variables Name Definition Input File 

Variables in irrigation operation line:   

MONTH/DAY or HUSC Timing of irrigation operation .mgt 

MGT_OP Operation code. MGT_OP=2 irrigation operation .mgt 

IRR_AMT Depth of irrigation water applied on GRU (mm) .mgt 

IRR_EFM Irrigation efficiency for manual operation (0-1) .mgt 

IRR_SQ Irrigation surface runoff ratio for manual operation (0-1) .mgt 

 

 

3.2.2 Auto-Irrigation 

The auto application of irrigation can be triggered in two ways: water stress threshold or 

soil water deficit threshold.  The water stress threshold is a fraction of potential plant growth.  The 

water stress factor ranges from 0.0 to 1.0, where 0.0 indicates that there is no growth of the plant 

and 1.0 indicate there is no reduction of plant growth due to the water stress. It is usually set 

between 0.90 and 0.95 Arnold et al. (2013). Water stress is simulated by comparing actual and 

potential plant transpiration: 

𝑤𝑠𝑡𝑟𝑠 = 1 −
𝐸𝑡,𝑎𝑐𝑡

𝐸𝑡
= 1 −

𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝

𝐸𝑡
 

where 𝑤𝑠𝑡𝑟𝑠 is the water stress for a given day, 𝐸𝑡,𝑎𝑐𝑡 is the actual amount of transpiration, 𝐸𝑡 is 

the maximum plant transpiration on a given day, and the plant water uptake is defined by  

𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝 (mm H20). Potential plant growth is modeled by the simulation of the leaf area, light 

interception, and conversion of intercepted light into biomass under the assumption that a plant 
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specifies the efficiency use of radiation. If plant stress falls below the water stress threshold, the 

model automatically applies the user-defined maximum water application. Similarly, soil water 

deficit triggers irrigation application when the soil water in the profile falls below field capacity 

by more than the soil water deficit threshold (Neitsch et al., 2011). Table 2 represents the variables 

found in the auto-irrigation operation line: 

 

Table 2: Input variables for Auto Irrigation Operation (Neitsch et al., 2011) 

Variables Name Definition Input File 

Variables in auto-irrigation operation line:  
 

MONTH/DAY or HUSC Initialization of auto-irrigation .mgt 

MGT_OP Operation code. MGT_OP=10for auto- irrigation .mgt 

WSTRS_ID Auto-irrigation trigger (WSTRS_ID = 0 for plant water stress 

trigger; WSTRS_ID = 1 for soil water deficit trigger  

.mgt 

AUTO_WSTR Water stress that triggers irrigation .mgt 

IRR-EFF Irrigation efficiency for manual operation (0-1) .mgt 

IRR_SQ Irrigation surface runoff ratio for manual operation (0-1) .mgt 

 

 

 

3.2.3 Water stress identifier 

Automatic irrigation can be triggered by plant water demand or by soil water demand 

(Neitsch et al., 2011). If the water stress is based on soil water deficit, the water threshold is the 

soil water deficit below field capacity (mm H2O). When the water content of the soil profile falls 

below the water content at field capacity and water stress threshold, the model automatically 

applies water to HRU, and if there is enough water from the irrigation source, water will be added 

to the soil until reaching field capacity. 
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3.2.3.1 Water Uptake  

Water uptake is a function of the amount of water required by the plant for transpiration, 

𝐸𝑡, and the amount of water available in the soil, 𝑆𝑊 (Neitsch et al., 2011). In order to calculate 

the water uptake, the potential water uptake from the soil surface to any depth is estimated: 

𝑤𝑢𝑝,𝑧 =
𝐸𝑡

[1 − exp(−𝛽𝑤)]
∙ ⌊1 − exp (−𝛽𝑤 ∙

𝑧

𝑧𝑟𝑜𝑜𝑡
)⌋  

Where 𝑤𝑢𝑝,𝑧 is the potential water uptake from the soil surface to 𝑧, specified depth and 𝛽𝑤 is the 

water usage distribution parameter, and 𝑧𝑟𝑜𝑜𝑡 is the depth of root development in the soil (mm). 

The actual water amount uptake is then calculated once the potential water uptake is modified for 

soil conditions. Actual water uptake is calculated as follows: 

𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝,𝑙𝑦 = 𝑚𝑖𝑛[𝑤𝑢𝑝,𝑙𝑦
𝑛 (𝑆𝑊𝑙𝑦 − 𝑊𝑃𝑙𝑦)] 

Where 𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝,𝑙𝑦 is the actual water uptake for layer 𝑙𝑦, the amount of water in the soil layer on 

a given day is denoted by 𝑆𝑊𝑙𝑦, and water content layer 𝑙𝑦 at wilting point by 𝑊𝑃𝑙𝑦. The total 

daily water uptake is then calculated as follows: 

 

𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝 = ∑ 𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝,𝑙𝑦

𝑛

𝑙𝑦=1

 

 

The total plant water uptake is also the actual amount of transpiration that occurs on a day: 

𝐸𝑡,𝑎𝑐𝑡 = 𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝 

Where 𝐸𝑡,𝑎𝑐𝑡 is the actual amount of transpiration (mm H2O) and 𝑤𝑎𝑐𝑡𝑢𝑎𝑙𝑢𝑝 is the plant water 

uptake total for the day (mm H2O). 
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3.2.3.2 Soil water Content  

The soil water content 𝑆𝑊𝑡 can be defined by the following equation (Neitsch et al., 

2011): 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 

Where the initial soil water content is defined by 𝑆𝑊0, amount of precipitation on day 𝑖 is 

defined by 𝑅𝑑𝑎𝑦, amount of surface runoff on day 𝑖 by  𝑄𝑠𝑢𝑟𝑓, amount of transpiration on day 𝑖 

defined by  𝐸𝑎, percolation and bypass flow amounts exiting the soil profile bottom on day 𝑖 

defined by 𝑤𝑠𝑒𝑒𝑝 and 𝑄𝑔𝑤 𝑡 is the return flow amounts on day 𝑖. 

 

3.3 Water Sources 

The water applied to the HRUs is retrieved from five water sources: reach, reservoir, 

shallow aquifer, deep aquifer, or a source not specified outside the watershed. The model also 

contains the option for no irrigation, and the source outside the watershed is assumed to divert 

from an unlimited source (Arnold et al., 2013); additionally, the model requires the location of the 

water source.  

 

3.3.1 Reach water balance 

The reach water storage and the end of the time step are calculated as follows (Neitsch et 

al., 2011): 

𝑉𝑠𝑡𝑜𝑟𝑒𝑑,2 = 𝑉𝑠𝑡𝑜𝑟𝑒𝑑,1 + 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 − 𝑡𝑙𝑜𝑠𝑠 − 𝐸𝑐ℎ + 𝑑𝑖𝑣 + 𝑉𝑏𝑛𝑘 

Where  𝑉𝑠𝑡𝑜𝑟𝑒𝑑,2 represents the volume of water in the reach at the end of the time step (m3 H2O). 

The volume at the beginning of the time step is represented by 𝑉𝑠𝑡𝑜𝑟𝑒𝑑,1, (m3 H2O).    𝑉𝑖𝑛 is the 
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volume of water flowing into the reach during the time step (m3 H2O).  𝑉𝑜𝑢𝑡 represents the volume 

of water flowing out of the reach during the time step (m3 H2O). The volume of water lost from 

the reach due to transmission through the bed (m3 H2O) is defined by 𝑡𝑙𝑜𝑠𝑠. 𝐸𝑐ℎ defines the reach 

evaporation for the day (m3 H2O). 𝑑𝑖𝑣 is the volume of water added or removed from the reach 

through diversions (m3 H2O), and 𝑉𝑏𝑛𝑘 defines the water added volume to the reach by bank 

storage return flow.   

 

3.3.2 Reservoir water balance 

The reservoir water storage at the end of the day is calculated as follows (Neitsch et al., 

2011): 

𝑉 = 𝑉𝑠𝑡𝑜𝑟𝑒𝑑 + 𝑉𝑓𝑙𝑜𝑤𝑖𝑛 − 𝑉𝑓𝑙𝑜𝑤𝑜𝑢𝑡 + 𝑉𝑝𝑐𝑝 − 𝑉𝑒𝑣𝑎𝑝 + 𝑉𝑠𝑒𝑒𝑝 

Where 𝑉 is the water volume in the impoundment at the end of the day (m3 H2O),  𝑉𝑠𝑡𝑜𝑟𝑒𝑑 water 

volume stored at the beginning of the day in the water body (m3 H2O),  𝑉𝑓𝑙𝑜𝑤𝑖𝑛 is the water volume 

that enters the body of water during the day (m3 H2O), 𝑉𝑓𝑙𝑜𝑤𝑜𝑢𝑡 is the water volume that flows out 

of the body of water during the day (m3 H2O), 𝑉𝑝𝑐𝑝 is the precipitation volume that falls on the 

water body during the day (m3 H2O), 𝑉𝑒𝑣𝑎𝑝 is the water volume removed from the body water due 

to evaporation during the day (m3 H2O), and 𝑉𝑠𝑒𝑒𝑝 is the water volume lost by seepage from the 

body of water (m3 H2O). 

 

3.3.3 Shallow Aquifer 

The shallow aquifer’s water balance is calculated as follows (Neitsch et al., 2011): 

𝑎𝑞𝑠ℎ,𝑖 = 𝑎𝑞𝑠ℎ,𝑖−1 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ − 𝑄𝑔𝑤 − 𝑤𝑟𝑒𝑣𝑎𝑝 − 𝑤𝑝𝑢𝑚𝑝,𝑠ℎ 
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Where 𝑎𝑞𝑠ℎ,𝑖 is the amount of water stored in the shallow aquifer on day 𝑖 (mm H2O), the amount 

of water stored in the shallow aquifer on day 𝑖 − 1 (mm H2O) is denoted by  𝑎𝑞𝑠ℎ,𝑖−1, the recharge 

amount entering the shallow aquifer on day 𝑖 (mm H2O) is denoted by 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ, the ground water 

flow/base flow entering the main channel on 𝑖 (mm H2O) is denoted by 𝑄𝑔𝑤, the water amount 

moving into the soil zone due to water deficiencies on day 𝑖 (mm H2O) is denoted by 𝑤𝑟𝑒𝑣𝑎𝑝, and    

𝑤𝑝𝑢𝑚𝑝,𝑠ℎ defines the amount of water removed from the aquifer by pumping on day 𝑖 (mm H2O). 

 

3.3.4 Deep Aquifer 

The deep aquifer’s water balance is calculated as follows (Neitsch et al., 2011): 

𝑎𝑞𝑑𝑝,𝑖 = 𝑎𝑞𝑑𝑝,𝑖−1 + 𝑤𝑑𝑒𝑒𝑝 − 𝑤𝑝𝑢𝑚𝑝,𝑑𝑝 

Where the amount of water stored in the deep aquifer on day 𝑖 (mm H2O) is denoted by 𝑎𝑞𝑑𝑝,𝑖 , 

the water amount stored in the deep aquifer on day 𝑖 − 1 (mm H2O) is denoted by 𝑎𝑞𝑑𝑝,𝑖−1, the 

percolating water amount from the shallow aquifer into the deep aquifer on day 𝑖 (mm H2O) is 

denoted by 𝑤𝑑𝑒𝑒𝑝, and 𝑤𝑝𝑢𝑚𝑝,𝑑𝑝 is the water amount removed from the deep aquifer by pumping 

on day 𝑖 (mm H2O)  
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Chapter 4: Optimization Methods  

Optimization can be found everywhere, in transportation networks, engineering design, 

business planning, and even in our daily lives when we have multiple tasks to complete in a certain 

amount of time. In these activities, the goal is to achieve certain objectives by optimizing 

something; it can be profit, distance, time, and quality. Optimization can be defined as a procedure 

for finding feasible solutions to a problem until no better solution can be found. The problems can 

be maximization or minimization problems, and the solutions are labeled good or bad in terms of 

their objective. When the optimization of a problem involves only one objective function, finding 

the optimal solution is called single-objective optimization. In single-objective optimization, many 

local optimal solutions may exist in the search space, and single-objective optimization aims to 

find the global optimum solution. An acceptable solution is one with the best objective function 

value (Deb, 2001). In general, a single-objective optimization problem is mathematically written 

as follows: 

Minimize/Maximize 𝑓(𝑥)                             

                                           Subject to 

𝑔𝑗(𝑥) ≤ 0,            𝑗 = 1,2, … , 𝐽 

ℎ𝑘(𝑥) = 0,            𝑘 = 1,2, … , 𝐾 

𝑥ℎ
𝑙 ≤ 𝑥ℎ ≤ 𝑥ℎ

𝑢,     ℎ = 1,2, … , 𝐻 

Where, 𝑓(𝑥) is the objective function to be minimized or maximized, 𝑔𝑗(𝑥)  is the jth inequality 

constraint, 𝐽 is the total number of inequality constraint functions, ℎ𝑘(𝑥) is the kth equality 

constraint, 𝐾 is the total number of equality constraints; x is the design variables vector, 𝐻 is the 

total number of design variables, and  𝑥ℎ
𝑙 and 𝑥ℎ

𝑢 are the lower and upper bounds of the ℎth design 

variables 𝑥ℎ, respectively. 
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Most real-world problems involve more than one conflicting objective that needs to be 

optimized simultaneously. When the optimization of a problem involves more than one objective 

function, each objective has its own optimal solution, and finding the set of one or more optimal 

solutions is called multiple objective optimization. In multiple objective optimization, a single 

solution cannot be entitled as an optimal solution; instead, it identifies the set of trade-off optimal 

solutions. The different solutions can provide trade-offs among different objectives that require a 

compromise between the objectives preventing one from selecting a solution that is optimal for 

only one objective. Therefore, in multiple objective optimization, by taking into account all the 

objectives, an attempt to identify the set of trade-off optimal solutions is imperative. Having 

obtained the set of all possible solutions, the dilemma is now what solution one must choose. The 

user can use higher-level qualitative considerations to make a choice, but it can result in a biased 

search. However, in the absence of any information, all Pareto optimal solutions are equally 

important.  To identify an ideal approach, the importance now lies in identifying as many possible 

Pareto-optimal solutions to a problem. Therefore, this suggests that there are two goals in multiple 

objective optimization (Deb, 2001): 

1. To find the set of solutions as close as possible to the Pareto-optimal front. 

2. To find a set of solutions as diverse as possible. 

The first goal is essential in any optimization assignment. It is important for the solutions to 

converge as close as possible to the true optimal solutions to guarantee their near-optimality 

properties. The second goal is specific to multiple objective optimization. In addition to being 

converged close to the Pareto-optimal front, the solutions need to be sparsely spaced in the Pareto-

optimal region. The diversity in this set of solutions provides a confident good set of trade-off 
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solutions among the objectives. Figure 3 provides a representation of the procedure in multiple 

objective optimization. 

 

Figure 3: Schematic of a Multiple Objective Optimization Procedure 

 

In multiple objective optimization, there are two goals that are to some extent orthogonal 

to each other, and since both goals are important, an efficient algorithm must comply with both 

goals. Accomplishing one goal does not mean that the other goal will be met because of these dual 

tasks; multiple objective optimizations are more troublesome than single objective optimization.  

In general, a multiple objective optimization problem can be mathematically written as follows: 

Minimize/Maximize 𝑓𝑖(𝑥)        for 𝑖 = 1,2, … , 𝑛 

                                           Subject to 

𝑔𝑗(𝑥) ≤ 0,            𝑗 = 1,2, … , 𝐽 

ℎ𝑘(𝑥) = 0,            𝑘 = 1,2, … , 𝐾 

𝑥ℎ
𝑙 ≤ 𝑥ℎ ≤ 𝑥ℎ

𝑢,     ℎ = 1,2, … , 𝐻 

Where 𝑛 is the total number of objective functions to be minimized or maximized, and the 

parameter 𝑥 is the design variables vector that has 𝐻 design variables. The resulting set of solutions 

to a multiple objective optimization problem is called the non-dominated set. The non-dominated 
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set can be achieved by making a pair-wise comparison and identifying those solutions that 

dominate other solutions and those solutions that are non-dominated with respect to each other. 

The non-dominated set of the entire feasible region is called the Pareto-optimal set (Figure 4). 

Without loss of generality, let us consider a minimization and maximization problem with vectors 

a and b. In a minimization problem 𝑓𝑖(a) dominates 𝑓𝑖(b) when, 𝑓𝑖(a) ≤ 𝑓𝑖(𝑏) for all 𝑖 and 𝑓𝑖(a) <

𝑓𝑖(𝑏) for at least one 𝑖. In a maximization problem 𝑓𝑖(a) dominates 𝑓𝑖(b) when, 𝑓𝑖(a) ≥ 𝑓𝑖(𝑏) for 

all 𝑖 and 𝑓𝑖(a) > 𝑓𝑖(𝑏) for at least one 𝑖.  

 

Figure 4: Pareto Optimal Set Visualization 

 

 

4.1 Single Objective Optimization Methods 

There are different ways to deal with multiple objective problems. The following 

methodologies are used as an extension or generalization of linear programming to handle multiple 

conflicting objectives. The methods combine the objective functions into an overall aggregated 

single objective function that identifies one single optimal solution. 
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4.1.1 Weighted Sum or Scalarization Technique 

The weighted sum method is one of the most common approaches that deal with multiple 

objective optimization. The method converts multiple objective problems into a single objective 

problem by the weighted sum  𝐹(𝑥) of all objectives. In more detail, the weighted sum method 

can be expressed as follow (Augusto et al., 2012): 

Minimize:           𝐹(𝑥) =     ∑ 𝑤𝑖𝑓𝑖
𝑠(𝑋)

𝑘

𝑖=1

 

                                  Subject to: 

𝑋 ∈ 𝑆 

𝑤𝑖 ≥ 0,   𝐹(𝑥) =     ∑ 𝑤𝑖 = 1

𝑘

𝑖=1

 

 

Where 𝑘 represents the total number of objectives 𝑖, and the decision-maker preferences are 

expressed by the weights  𝑤𝑖. 

The main advantages of this method are based on the simplicity of treating multiple 

objective problems like a single objective problem by the aggregation of the objectives and the 

incorporation of the decision-maker priorities through the weights. The main disadvantage of the 

method is choosing the best weighting coefficients. There is an area of research dedicated to 

generating and deciding the best possible weights since it can be a cumbersome task. 

 

4.1.2 Goal Programming 

Charnes and Cooper (1977) develop a preference-based approach that requires input from 

the decision maker to set goals for all the objectives. This method was developed for linear models 

and was one of the earliest techniques designed to approach multiple objective optimization 
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problems. The targets or goals the decision maker incorporates into the model are added as 

additional constraints. The objective function then minimizes the absolute deviations from the 

goals or targets the decision maker chose for the objectives. Afterward, the model separates the 

values into two parts, positive and negative. Positive parts represent achievement, meaning the 

goal has been reached, and negative parts represent underachievement. The basic structure for 

Goal programming can be formulated as follows: 

Minimize:    ∑ 𝑤𝑖(𝑑𝑖
+ + 𝑑𝑖

−)

𝑘

𝑖=1

 

                                               Subject to: 

𝑓𝑖(𝑋) + 𝑑𝑖
+ + 𝑑𝑖

− = 𝑏𝑖 ,       𝑖 = 1,2, … , 𝑘    

𝑑𝑖
+ ≥ 0,  𝑑𝑖

−  ≥ 0        𝑖 = 1,2, … , 𝑘 

𝑑𝑖
+𝑑𝑖

− = 0            𝑖 = 1,2, … , 𝑘 

𝑤𝑖 ≥ 0 

𝑋 ∈ 𝑆 

Where 𝑏𝑖 represents the goals for all the objectives 𝑓𝑖. Negative values or underachievement 

denoted by deviation 𝑑𝑖
− and positive values (achievement) denoted by deviation 𝑑𝑖

+. The decision-

maker then assigns  𝑤𝑖 to define achievement goal levels. 

The main advantage of goal programming is the ability to handle large-scale problems, and 

it can produce a large number of alternatives. The main disadvantage of this method is the ability 

to weight coefficients and that the Pareto optimal solutions are not guaranteed to be obtained. 

 

4.1.3 Multi Attribute Utility Theory 

Utility refers to the satisfaction provided to the decision-maker by the objective function 

or attribute. In this case, the method expresses decisions between alternatives where the 
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consequences are distinguished by multiple attributes. Concerning multiple attribute utility, the 

total utility of the solution is a scalar on the scale between 0 and 1, where 0 represents the worst 

preference or no utility and 1 represents the best. The utility function can be expressed as follows: 

𝑈(𝑋) = ∑ 𝑈𝑖(𝑋𝑖)

𝑘

𝑖=1

,      𝑖 = 1,2, … , 𝑘 

 

Where utility expresses the satisfaction of each attribute, the result is a rank evaluation order of 

the possible alternatives of the decision maker's preference. The overall utility function, after the 

decision-maker assigns the weights to the attributes, can be expressed as follows (Regier and 

Peacock, 2017). 

𝑈(𝑋) = ∑ 𝑤𝑖𝑈𝑖(𝑋𝑖)

𝑘

𝑖=1

,         𝑖 = 1,2, … , 𝑘 

 

Where 𝑤𝑖  is the scaling constant such that  ∑ 𝑤𝑖 = 1𝑘
𝑖=2 .  Multi-attribute utility theory’s major 

advantages are that it allows the user to incorporate its preferences, considers uncertainty, and uses 

deterministic and stochastic decision environments. On the other hand, this method is extremely 

data-intensive, as it requires data at every step of the procedure; this suggests that the decision-

maker can be subjective when incorporating its preferences, which also serves as a major 

disadvantage. 

 

4.1.4 ℇ- Constraint  

The epsilon-constrained method overcomes some of the convexity problems of the 

weighed sum techniques. This technique is based upon selecting a primary objective and bounding 

other objectives with a separate 𝜀 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (Coello et al., 2007). In this method, the decision 
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maker selects one objective out of n objectives that need to be minimized; the reminder objectives 

are then constrained to a target range; if maximization, the objectives are equal or less than a target 

value; if minimization, the objectives are equal or larger that a target value. For instance, problems 

are subdivided into two problems, 𝑃1(𝜀2) and 𝑃2(𝜀1) when evaluating bi-objective problems, this 

can be represented in a general structure as follow: 

min 𝑓1( )𝑥
→  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∈ 𝑋 𝑥
→  , 𝑓2( )𝑥

→  ≤∈2 

and 

min 𝑓2( )𝑥
→  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∈ 𝑋 𝑥
→  , 𝑓1( )𝑥

→  ≤∈1 

In contrast with other aggregating methods, the epsilon-constrained method can identify 

non-inferior solutions on a convex boundary; however, using hard constraints is inadequate for 

representing real design objectives. The above mentioned methods are suitable when there is no 

conflict among the objectives and a single optimal solution exists; however, if there are multiple 

objectives in conflict, more than one solution exists, and multiple objective optimization is best 

suited to represent the tradeoffs among the objectives. Therefore, methods that identify the Pareto-

optimal are best suited when conflict exists among the objectives. 

   

 

4.2 Multiple Objective Evolutionary Algorithm Methods 

Generally, there are two types of stochastic algorithms: heuristic and metaheuristic. 

Heuristic algorithms attempt to find acceptable solutions to problems by trial and error. 

Metaheuristic tend to perform better than heuristics and has two major components: intensification 
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and diversification, or exploitation by exploration. The purpose of these components is to generate 

a diverse set of solutions to explore the search space and to focus on the search in the local region 

by exploiting the information that a current good solution is found in this local region. The 

combination of the two components usually ensures that global optimality is achieved.  

Figuratively speaking, let us assume that identifying the optimal solution to a problem is 

the same as a treasure hunt. For the most part, the most likely scenario is that we will start randomly 

searching from place to place, trying to identify any clues that would lead us to the treasure. 

Certainly, we can do this search alone or ask a group of people to help us look for the treasure and 

share information about the places they have searched and any clues they found (population-based 

search algorithms). This random search is one of the main characteristics of modern search 

algorithms. If the search area is very large and there is a time limit, we may not be able to find any 

clues or the treasure, but if there is no time limit and we can cover the whole search area, it is 

possible to find the treasure or in terms of optimization the global optimal solution. Generally 

speaking, optimization algorithms can be classified into two categories: deterministic algorithms 

and stochastic algorithms. Deterministic algorithms follow a repeatable procedure that will always 

produce the same result regardless of which day of the week the simulation runs. On the other 

hand, stochastic algorithms always have some randomness, and the results will always be different 

each time the simulation is run. Though it is important to note that the final results may not be very 

far apart from each other, due to the randomness incorporated, the paths taken to achieve that final 

solution are not exactly repeatable. 

In addition, there have been developments in evolutionary algorithms since the 1960s, and 

in recent decades, they have become very popular for solving combinatorial optimization 

problems. The term evolutionary algorithm (EA) stands for a class of stochastic optimization 
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methods that simulate the process of natural evolution. The following sections will discuss 

evolutionary algorithms and the different structures of various MOEAs. 

 

4.2.1 Generic Multiple Objective Evolutionary Algorithm 

Evolutionary algorithms are generally characterized by maintaining a set of candidate 

solutions that undergo a selection process that is usually manipulated by recombination and 

mutation generic operators. The solution is called individuals, and the set of solutions is called the 

population. The basic structure of an evolutionary algorithm can be represented as follow (Zitzler, 

1999):  

Input: N (population size) 

           T (maximum number of generations  

 PC (Crossover probability) 

 pm (mutation rate) 

Output: A (nondominated set) 

Step 1: Initialization: Set P0 = ∅ and t= 0. For i=1,…,N do 

a) Choose i ∈ I according to some probability distribution 

b) Set P0 = P0 + {i}. 

Step 2: Fitness assignment: For each individual i ∈ Pt determine the encoded decision vector  

x = m(i) as well as the objective vector y = f (x) and calculate the scalar fitness value F(i). 

Step 3: Selection: Set P’= ∅. For i = 1,..., N do  

a) Select one individual i ∈ Pt according to a given scheme and based on its fitness value 

F(i). 

b) Set P’ = P’ + {i}. 

The temporary population P’ is called the mating pool. 

Step 4: Recombination: Set P’’ = ∅. For i = 1,..., 
𝑁

2
 do  

a) Choose two individuals i, j ∈ P’ and remove them from P’.  

b) Recombine i and j. The resulting children are k, l ∈ I.  

c) Add k, l to P’’ with probability pc. Otherwise, add i, j to P’’. 

Step 5: Mutation: Set P’’’ = ∅. For each individual i ∈ P’’ do  

a) Mutate i with mutation rate pm. The resulting individual is j ∈ I.  

b) b) Set P’’’ = P’’’ + {j}.  

Step 6: Termination: Set Pt+1 = P’’’ and t = t + 1. If t ≥ T or another stopping criterion is satisfied, 

then set A = p(m(Pt)) else, go to Step 2. 
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An extensive number of diverse evolutionary algorithm methods exist and generally differ mainly 

in the fitness evaluation phase. These methods can be categorized as Pareto-based non-elitist 

approaches (MOGA, NPGA, NSGA,…) and Pareto-based elitist approaches. There are many 

method variations, but a few will be discussed in the following sections. 

 

4.2.2 Multiple Objective Genetic Algorithm (MOGA) 

Fonseca and Fleming (1993) introduced multiple Objective Genetic Algorithms as a 

variation of Goldberg’s technique called MOGA. This method uses Pareto ranking,  and fitness 

sharing is performed by niching. It is a non-elitist method where the rank of the individual 

corresponds to the number of times it is dominated by other chromosomes. The basic structure for 

MOGA can be represented by the following pseudo code (Coello et al., 2007): 

 

1: procedure MOGA(𝒩′, g, fj(x𝑘)) ⪧ 𝒩′ members evolved g generations to solve fk(x) 

2: Initialize population ℙ′ 
3: Evaluate Objectives Values 
4: Assign Rank Based on Pareto dominance 
5: Compute Niche Count 
6: Assign Linear Scaled Fitness 
7: Shared Fitness 
8: for 𝑖 =1 to 𝑔 do 
9:       Selection via Stochastic Universal Sampling 
10:       Single Point Crossover 
11:               Mutation 
12:       Evaluate Objective Values 
13:       Assign Rank Based on Pareto Dominance 
14:       Compute Niche Count 
15:       Assign Linear Scaled Fitness 
16:       Shared Fitness 
17: end for 
18:  end procedure 
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This method's advantage is that it is a simple extension of a single objective genetic algorithm, 

while some disadvantages are that convergence is usually slow, and in regards to the fitness 

sharing, there can be problems related to the niche size parameter. 

 

4.2.3 Niched-Pareto Genetic Algorithm (NPGA) 

Horn et al. (1994) proposed the Niched-Pareto Genetic Algorithm based on Pareto 

dominance ranking and fitness sharing. The algorithm does not limit the comparison to two 

individuals; rather, a number of individuals in the population, usually ten, is used to determine the 

dominance count. In this case, when there is a tie, meaning that the individuals are either dominated 

or non-dominated, and the fitness sharing decides the result. The basic structure for NPGA can be 

represented by the following pseudo code (Coello et al., 2007): 

 

1: Procedure NPGA (𝒩, 𝑔, 𝑓𝑘(𝑥))       ⊳ 𝒩′ members evolved 𝑔 generations to solve 

       𝑓𝑘(𝑥) 
2: Initialize Population 𝑃 
3:  Evaluate Objective Value 
4:  for 𝑖 =1 to 𝑔 do 
5:        Specialized Binary Tournament Selection 
6:        Begin 
7:   if Only Candidate 1 dominated then 
8:         Select Candidate 2 
9:   else if Only Candidate 2 dominated then 
10:         Select Candidate 1 
11:   else if Both are Dominated or Nondominated then 
12:         Perform specialized fitness sharing 
13:         Return Candidate with lower niche count 
14:         end if 
15:        End 
16:        Single Point Crossover 
17:        Mutation 
18:       Evaluate Objective Values 
19:  end for 
20: end procedure 
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This approach applies Pareto selection to a segment of the population at each run rather 

than the entire population. Therefore, this suggests that its main strengths are that it is very fast 

and produces good non-dominated fronts, but its main weakness is that it requires a good choice 

of the size of the tournament selection to perform well. In the area of groundwater and pollution 

emissions, NPGA can be implemented. For instance, Erickson et al. (2002) apply an optimization 

algorithm to a ground water quality management challenge dealing with pump-and-treat (PAT) 

remediation. The framework uses the Niched-Pareto Genetic Algorithm, and the main objectives 

are to minimize remedial design cost and contaminant mass remaining. Mayer and Endres (2007) 

develop a framework to identify the optimal groundwater contaminant source removal design and 

remediation plume strategies. The optimization problem is solved using NPGA. Grandinetti et al. 

(2007) implemented an NPGA multiple objective optimization approach to reduce pollutant 

emissions in the manufacturing industry and costs, specifically industrial wood painting. 

 

4.2.4 Nondominated Sorting Genetic Algorithm (NSGA) 

Srinivas and Deb (1994) introduced NSGA as a variation to Goldberg’s approach. This 

method is yet another modification to the ranking procedure; ranking is based on non-domination 

sorting and fitness sharing by niching. In this method, all the non-dominated individuals are 

classified into one category where the fitness value is proportional to the size of the population. 

The main advantage is that it converges fast, while a drawback is that there are problems related 

to the niche size parameter. The basic structure of NSGA can be represented by the following 

pseudo code (Coello et al., 2007): 
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1: procedure NSGA-I(𝒩′, g, fj(x𝑘)) ⪧ 𝒩′ members evolved g generations to solve fk(x) 

2: Initialize population ℙ′ 
3: Evaluate Objectives Values 
4: Assign Rank Based on Pareto dominance in Each Wave 
5: Compute Niche Count 
6: Assign Shared Fitness 
7: for 𝑖 =1 to 𝑔 do 
8:       Selection via Stochastic Universal Sampling 
9.       Single Point Crossover 
10.               Mutation 
11:       Evaluate Objective Values 
12.       Assign Rank Based on Pareto dominance in each Waver            
13:       Compute Niche Count  
14:       Assign Shared Fitness 
15: end for 
16: end procedure  

 

 

4.2.5 Nondominated Sorting Genetic Algorithm II(NSGA-II) 

Deb et al. (2002) proposed the NSGA-II method to eliminate weaknesses of the NSGA 

method. The main weaknesses associated with NSGA are the high computational complexity of 

non-dominated sorting, lack of elitism, and the need for specifying the sharing parameter of 

NSGA. NSGA-II method creates a population of competing individuals and ranks and sorts the 

individuals. Evolutionary operations are applied to create a new set of offspring.  A new selection 

process is introduced, crowding distance (representing the neighboring density of a solution), to 

maintain a diverse front by keeping the population diverse; it helps the algorithm explore the 

fitness landscape. The basic structure of NSGA-II can be represented by the following pseudo code 

(Coello et al., 2007): 
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1: procedure NSGA-II(𝒩′, g, fk(x𝑘)) ⪧ 𝒩′ members evolved g generations to solve fk(x) 
2: Initialize population ℙ′ 
3: Generate random population – size 𝒩′ 
4: Evaluate Objectives Values 
5: Assign Rank (level) based on Pareto-sort 
6: Generate Child Population  
7:    Binary Tournament Selection 
8:    Recombination and Mutation 
9: for 𝑖 =1 to 𝑔 do 
10:       for each Parent and Child in Population do 
11.  Assing Rank (level) based on Pareto – sort 
12.  Generate sets of nondominated vectors along PFknown 
13.  Loop (inside) by adding solutions to next generation starting form the first 
front     

until 𝒩′ individuals found determine Crowding distance between points on 
each front 

14: end for 
15: Select points (elitist) on the lower front (with lower rank) and are outside a  
      crowding distance 
16:       Create next generation; 
17:  Binary Tournament selection; 
18:  Recombination and Mutation; 
19: end for 
20: end procedure  

 

This method is currently used in most MOEA comparisons and has been used as the 

foundation for many algorithm designs. It can be suggested that the main strengths of NSGA-II 

are a fast non-dominated sorting approach, fast, crowded distance estimation, and simple crowded 

comparison operator. There are different authors who integrate NSGA-II with different models 

and based on the literature provided in this work (refer to chapter 2), in terms of Hydrology, it can 

be suggested that NSGA-II is the preferred method to be used with SWAT for design development, 

more specifically the optimizer found in MATLAB Toolbox. 
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4.2.6 Strength Pareto Evolutionary Algorithm (SPEA) 

Zitzler and Thiele (1998) proposed the Strength Pareto Evolutionary algorithm (SPEA) 

using a mixture of established techniques and new techniques to find Pareto-optimal solutions in 

parallel.  The algorithm combines Pareto-optimal storage, dominance, and clustering techniques 

into a single algorithm. The fitness of an individual is based on the external Pareto set only. The 

solutions stored in the external Pareto participate in the selection. A new Pareto based niching 

method is introduced; this method preserves diversity in the population and does not require a 

distance parameter. The basic structure can be represented by the following pseudo code (Coello 

et al., 2007) 

1:   procedure SPEA(𝒩′, g, fk(x))  
2: Initialize Population ℙ′  
3:  Create empty external set 𝔼′( ⎸𝔼′⎹ < ⎹  ℙ′ ⎸)  
4:  for 𝑖 =1 to 𝑔 do 
5:       𝔼′ = 𝔼′ ∪  𝒩𝔇( ℙ′)  ⪧ Copy members evaluating to be nondominated of P to E 
6:       𝔼′ =  𝒩𝔇(E) ⪧ Keep only member evaluating to nondominated vectors in E 
7:       Prune 𝔼′ (using clustering) if max capacity of 𝔼′is exceeded 
8:       ∀i∈ℙ′ Evaluate (ℙ′

𝑖)  ⪧ Evaluate fitness for all members of 𝔼′ and ℙ′ 
9:       ∀i∈𝔼′ Evaluate (𝔼′

𝑖) 

10:       ℳ𝒫 ⟵ 𝒯( ℙ′  ∪ 𝔼′)  ⪧ Use binary tournament selection with 
11:     ⪧ replacement to select individuals from ℙ′ + 𝔼′  
12:     ⪧ (multiset union) until the mating pool is full 
13:        Apply crossover and mutation on ℳ𝒫 
14:  end for 
15:  end procedure 
 

The method is different from other MOES in that instead of solving the diversity problem by fitness 

sharing, and it relies on Pareto-dominance to maintain multiple stable niches. In literature, Wang 

et al. (2009) describe the pump scheduling optimization problem, which was solved using different 

MOEAS. The study suggested that even though there is a difference in parameters that affect each 
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algorithm, the overall performance in SPEA is better and is a more suited alternative for the pump-

scheduling problem. 

 

4.2.7 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

There is also a revised version of SPEA called SPEA2 introduced by Zitzler et al. (2002). 

This method is developed to avoid a tie in the fitness metric. The main differences are the method 

introduces a finite grained fitness metric, and this takes into account the number of individuals that 

dominate each individual for each individual; the method uses the nearest neighbor technique to 

guide the search more efficiently and includes a method that preserves boundary solutions. The 

basic structure can be represented as follow (Coello et al., 2007): 

1:   procedure SPEA2 (𝒩′, g, fk(x))  
2: Initialize Population ℙ′  
3:  Create empty external set 𝔼′ 
4:  for 𝑖 =1 to 𝑔 do 
5:       Compute fitness of each individual in ℙ′ and 𝔼′ 
6:      Copy all individual evaluating to nondominated vectors ℙ′ and 𝔼′ to 𝔼′ 
7:       Use the truncation operator to remove elements from E when the capacity of the 

file has       
     been extended 

8:      If the capacity of 𝔼′ has not been exceeded then use dominated individuals in ℙ′ 
to fill 𝔼′ 
9:      Perform binary tournament selection with replacement to fill the mating pool 
10:      Apply crossover and mutation to the mating pool      
11:  end for 
12:  end procedure 
 

There are different authors that integrate SPEA2 into their models. For instance, Zhang et al. 

(2012) improved the calibration of SWAT; they introduced a multi-core aware multi-objective 

optimization tool using SPEA2 and SWAT. Muleta and Nicklow (2002) introduce a decision 

support system integrating SWAT and SPEA2 to control the environmental impacts of non-point 

source pollution that result from erosion.  
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Chapter 5: Methodology 

This research focuses on developing an irrigation system assessment framework that 

optimizes energy consumption and energy cost per acre. This model integrates SWAT hydrologic 

model and the irrigation assessment framework with the multiple objective evolutionary algorithm 

to identify the optimal spatial placement of Land-Use and irrigation systems. A Graphical User 

interface (GUI) is developed to allow the user to identify and evaluate multiple management 

practices.  The integration of these models will identify the tradeoff, balance competing objectives, 

and improve the decision-making process. Furthermore, this framework will further extend 

previous works developed by Cram et al. (2022) and Moriasi et al. (2022) by assessing agriculture 

irrigation water systems introduced in each management practice and evaluating energy cost per 

acre and energy consumption per acre. The model will simulate different management practices to 

predict the water balance and crop yield and to identify the different events occurring in the 

watershed. Additionally, the management practices scenarios are further evaluated with a multiple 

objective evolutionary algorithm (Taboada et al., 2008) to identify the optimal management 

practices spatial configuration within the watershed for the conflicting objectives. 

 

5.1 Optimization Framework 

The proposed optimization framework in figure 5 displays the flow diagram for integrating 

SWAT, irrigation systems, and the MOEA. The framework allows the user the flexibility to 

simulate many different management practices from different SWAT simulations and integrates 

irrigation systems into the current management practice that are then optimized. The optimization 

framework requires an initial SWAT simulation, and there are different parameters that the 

simulation needs. For instance, the user can incorporate a digital elevation model, soil 
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characteristics, land use, different agricultural management data (in this section, auto-irrigation is 

set up for the model), watershed data, climate data, and other additional data needed by the user 

can also be incorporated to the SWAT model. Once there is an initial SWAT simulation, the 

proposed tool uses that information and allows the user to explore several management practices; 

this step repeats several times depending on the number of management practices that will be 

evaluated. Afterward, the framework integrates different irrigation systems into the model, 

expanding the initial management practice, and after this step, the database is populated with the 

different management practices and irrigation systems. The last step is to evaluate the management 

practices created using a multiple objective evolutionary algorithm. The next sections will provide 

a detail explanation of the optimization framework. 

 

 

Figure 5: Optimization Framework 
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5.2 SWAT-MEA 

The initial stages of SWAT-MEA were introduced by Cram (2019), allowing users to 

evaluate different management practices. The initial SWAT simulation required for SWAT-MEA 

produces management files that provide different characteristics for each HRU, for instance, land 

use, management operations, and the parameters. SWAT-MEA overwrites the management files 

for each management practice and re-executes SWAT to assess each management practice. Once 

the management practices are evaluated, an optimization algorithm identifies the optimal 

placement and land use for the HRUs. The tool does not account for irrigation systems in the 

management practices scenarios. 

 

5.3 Management Practices 

The model initializes with creating a simulation in SWAT. The SWAT model, depending 

on the user’s knowledge and preferences, needs different information and layers such as a digital 

elevation model, soil layer, land use layer, climate data, watershed data, or any other that will 

further predict the watershed’s water balance and crop yields. The output files that result from the 

simulation are integrated into the developed tool to assess different management practices. The 

structure of SWAT-MEA was maintained for the new tool, but the source code was updated to 

account for different irrigation systems. The steps are as follows: 

• The user will add the directory name of the folder that has the management files 

because the tool needs to be able to read the management files from the initial SWAT 

simulation. The results will appear in this folder as well. 

• The user then adds the SWAT parameters: the number of HRUS in the simulation and 

the executable version (.exe) of the simulation. 

• The next step is to select the HRUs that will be included in the optimization. 
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• The next step is selecting the parameters the user wishes to maximize and minimize.  

• The next step is to create the operation schedule with the different operations for the 

management practice Figure 6. The available operations are: plant/begin growing 

season, irrigation, fertilizer application, pesticide application, harvest and kill, tillage, 

harvest only, kill/end of growing season, grazing, Auto-irrigation, auto-fertilization, 

street sweeping, release/impound, continuous fertilization, continuous pesticide, burn, 

skip to beginning of the year.  

 

 

Figure 6: Operation Schedule Graphical User Interface 

 

o When the user selects the Auto-irrigation operation in Figure 7, the irrigation is 

applied to an HRU from one of five types of water sources. The parameters that 

the user defines are as follows: 

▪ Water Stress Identifier 
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• Plant water demand 

• Soil water content 

▪ Auto Irrigation Sources 

• No irrigation 

• Divert water from reach 

• Divert water from reservoir 

• Divert water from shallow aquifer 

• Divert water from deep aquifer 

• Divert water from unlimited source outside watershed 

▪ Amount of irrigation water applied each time auto irrigation is triggered 

(mm):   Min 0 Max 100 

▪ Water stress threshold that triggers irrigation: Min 0.0 Max 1.0 

▪ Irrigation efficiency (fraction): Min 0.0 Max 1.0 

▪ Surface runoff ratio: Min 0.0 Max 1.0 

▪ Irrigation source location: Min 1 Max is the number of subbasins 

o Once the user applies the auto-irrigation parameters, the user now has the option 

to include irrigation systems in the management practice. If the user adds an 

irrigation system, the next step is selecting the “Add Irrigation System” button.  
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Figure 7: Auto-Irrigation Parameters Graphical User Interface 

 

o In this step (Figure 8), the user will be able to add information related to the 

irrigation system that is used for evaluation in that management practice; the 

mathematical approach for this part is described in the next section. The 

parameters for the irrigation system being evaluated are as follow: 

▪ Irrigation Working Pressure 

▪ Pressure Loss due to Friction 

▪ Pump Efficiency 

▪ Motor Efficiency 

▪ Drive Efficiency 

▪ Useful Life 
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▪ Depth to Groundwater per year for the time step, this parameter will 

automatically show the number of years in the simulation and will 

require information for the depth to groundwater per year, staring  on 

the first year of the simulation until the last year of the simulation 

▪ Cost of kWh per year for the time step, this parameter will automatically 

show the number of years in the simulation and will require information 

related to the cost of kWh per year, starting on the first year of the 

simulation until the last year of the simulation 

 

 

 

Figure 8: Irrigation System Parameters Graphical User Interface 
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• Once the operation schedule for the management practice is complete and the auto-

irrigation system parameters are complete, the user will then select the ”ok” button in 

the operation schedule window.  

• The simulation requires at least two management practices due to being a multiple 

objective optimization algorithm. Therefore, a new window will appear, asking the user 

to add more management practices or not.  

• After selecting the option to add more management practices, the operation schedule 

window will appear again. This process repeats for several management practices 

defined by the user, starting from the operation schedule window to the window that 

asks the user to add more management practices or not. The flow chart diagram of this 

process is in Figure 9, the auto irrigation process is part of the operation schedule, but 

when selected, it will open a new window where the irrigation system can be added, 

and the rank values were added when considering rank objective, which is a recent 

modification to the initial SWAT-MEA. 
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Figure 9: Optimization Framework Flow Chart 
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5.3.1 Output Files 

The initial SWAT simulation produces different files related to the simulation, which can 

be found in the TxtInOut. The files are needed to execute the management practices in the 

optimization tool, and it contains information related to land use, management operations, and 

different parameters for the simulation. The tool overwrites the management files for each 

management practice, and once evaluated, the simulation produces two files that contain the 

information used for the objectives of this study.  

• Output.std: This file (Figure 10) is used to extract the amount of crop yield (kg/ha) 

for every HRU for the number of years that the simulation. It is also used to extract 

the area ( km2 ) of each HRU in the simulation, and the area is a variable used to 

evaluate energy consumption and cost. 
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Figure 10: output.std file example 

 

• Output.hru: The irrigation applied changes every time step for each HRU; the depth 

to groundwater and cost of kWh varies annually; therefore, to evaluate energy 

consumption and energy cost, the tool will extract the irrigation values that will be 

used from the output.hru file (Figure 11 ) every time the management scenario is 

executed. 
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Figure 11: output.hru file example 
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5.4 Multiple Land Use management practices and irrigation systems evaluation 

The information simulated in the previous section will be used to evaluate energy 

consumption and energy cost. In this step, the management practices can increase by incorporating 

different irrigation systems to evaluate each management practice. To execute this process, each 

management practice output.hru and output.std file will be used to extract the irrigation 

applied, 𝐼𝑟𝑟 in feet, for each HRU for the time period and the HRU area, 𝐻𝑅𝑈𝑎𝑟𝑒𝑎 in acres, that 

will be used to estimate the 𝑉𝑜𝑙𝑢𝑚𝑒 (𝑎𝑐𝑟𝑒 ∙ 𝑓𝑒𝑒𝑡) and the energy required and costs during the 

time period. The average annual energy cost function is expressed in equation (1) as follows: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 = (
𝐴𝐸𝑐𝑜𝑠𝑡

𝐻𝑅𝑈𝑎𝑟𝑒𝑎
)                                                    (1) 

Where 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 represents the average annual energy cost per acre (kWh/acre), 𝐴𝐸𝑐𝑜𝑠𝑡 

represents the annual energy cost per year ($), and the area (acres) for each HRU is represented 

by 𝐻𝑅𝑈𝑎𝑟𝑒𝑎. Different sources for generating electricity can cause a significant difference in the 

cost of energy required for the different irrigation systems. The annual energy cost function is 

expressed in equation (2) as follows: 

𝐴𝐸𝑐𝑜𝑠𝑡 = 𝐴𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∙ 𝐾𝑐𝑜𝑠𝑡                                                  (2) 

Where annual energy cost is a function of the energy required (kWh) per year represented by 

𝐴𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, and 𝐾𝑐𝑜𝑠𝑡 represents the cost per kilowatt-hour ($/kWh). The annual energy required 

per year is expressed in equation (3) as follows: 

𝐴𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑚𝑝𝑒𝑑 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒                                          (3) 

Where the annual energy required/used per year (kWh/year) is represented by 𝐴𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 and 

depends directly on the volume pumped, the irrigation system, and the efficiency of the pump, 

motor, and drive source. Energy consumption is represented by  𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑚𝑝𝑒𝑑  and the 
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𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐼𝑟𝑟 ∙ 𝐻𝑅𝑈𝑎𝑟𝑒𝑎. The estimation of energy consumption is related to the total pressure 

head used by each system and is expressed in equation (4) as follows: 

𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑚𝑝𝑒𝑑 = (
𝑇𝐻(1.023)

𝜇𝑝𝑢𝑚𝑝∙𝜇𝑚𝑜𝑡𝑜𝑟∙𝜇𝑑𝑟𝑖𝑣𝑒
)                                            (4) 

Where the energy pumped in kWh per acre⸱ft is represented by 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑢𝑚𝑝𝑒𝑑, and is a   function 

of total pressure head (feet), 𝑇𝐻, the pump efficiency factor is represented 𝜇𝑝𝑢𝑚𝑝, the motor 

efficiency factor 𝜇𝑚𝑜𝑡𝑜𝑟, and the drive efficiency factor 𝜇𝑑𝑟𝑖𝑣𝑒. The total pressure head required to 

pump and apply water is expressed in equation (5) as follows: 

𝑇𝐻 = 𝐿𝑖𝑓𝑡 + 𝑂𝑃 + 𝑓𝑙𝑜𝑠𝑠𝑒𝑠                                                     (5) 

 

Where the total pressure head is the sum of the 𝐿𝑖𝑓𝑡 that represents the depth to groundwater (feet), 

the operating pressure (feet) represented by 𝑂𝑃 for the different irrigation systems; drip irrigation 

ranges from 10 PSI -20 PSI,  and sprinkler ranges from 25 PSI to 40 PSI. The friction losses related 

to the irrigation system is expressed by ƒ𝐿𝑜𝑠𝑠𝑒𝑠 are in which 20% of pressure losses are typically 

added to the head of the systems to guarantee uniformity (Daccache et al., 2014). 

Furthermore, depending on the irrigation system, there is an initial estimated capital cost 

per acre over its useful life. Equation (6) provides the total cost of the irrigation system as follows: 

𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑠𝑡 + 𝐼𝑠𝑦𝑠𝑡𝑒𝑚                                             (6) 

Where the total cost is represented by 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 and is a function of the average energy cost per 

acre for each year and the capital cost per acre ($/acre) of the irrigation system is represented by 

𝐼𝑠𝑦𝑠𝑡𝑒𝑚. This evaluation will be accomplished for each management practice and will serve to 

create the database with management practices that consider different irrigation systems.  
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5.5 Database  

The previous sections explained the process of evaluating different management practices. 

The optimization tool was used to create different management scenarios; it needed an initial 

SWAT simulation, input from the user, and integrated different irrigation systems into the 

management practices. Every time the tool executes a management practice, the output results in 

a uniform matrix with the objectives to be maximized and minimized, which serves to populate 

the database. Internally the database is populated as follows (Figure 12): 

• The matrix/table is uniform, and it is saved in a matrix variable where the size (a x 

b x c) represents the following: 

a. Contains three rows where the first row provides the management practice 

being evaluated and the following rows the objectives used for the optimization 

b. Provides the number of columns related to the number of HRUs in the 

simulation 

c. Provides the number of tables for each management practice that is being 

evaluated 

 

Figure 12: Management Practices in Database 
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• The management practice table (Figure 13) that populates the database is encoded 

as the chromosome that will be used in the multiple objective evolutionary 

algorithm, the chromosome and steps for the optimization algorithm will be 

explained in the following section.  

 

 

 

 

 

 

 

 

Figure 13: Management Practices and the Objectives 

 

 

• The tables show a matrix of 4x25 where the first row is used to identify what 

management practice is being evaluated. The next rows identify the different 

objectives that are maximized or minimized. The number of columns is used to 

identify the HRU for the simulation; in the figure above, there are 25 HRUs. These 

tables populate the database, it can have many different management practices, but 

the evolutionary algorithm requires at least two for the optimization. 
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5.6 Multiple Objective Evolutionary Algorithm (MOEA) 

Finding the solution to a problem where several objectives need to be simultaneously 

optimized may be a difficult task to achieve. There is conflict among the objectives in multiple 

objective problems, and the search space is highly complex. The MOEA has two main goals in 

terms of the Pareto-front, to achieve proximity and diversity. Proximity means finding solutions 

that are close as possible to the Pareto-optimal front, and diversity refers to finding solutions spread 

over the Pareto-optimal front that differ in their objective values as much as possible. The 

following sections provide an explanation of the procedure used in identifying Pareto-optimal 

solutions. 

 

5.6.1 Chromosome Encoding 

In the previous sections, the evaluated objectives were introduced into the database as a 

4x25 table representing the chromosome for the problem. The encoding of the chromosome is the 

first step when solving the problem, and the chromosome structure depends entirely on the 

problem. The chromosome, in some way, should contain information about the solution it 

represents. Some important vocabulary: 

• Gene: A single encoding cell that represents a characteristic of the solution. In this 

scenario, each gene contains information related to the HRU and the objectives 

being evaluated 

• Chromosome: A string of “genes” that represents a solution. In this scenario, the 

chromosome represents the management practice. 

• Population: The number of “chromosomes” available to test: In this scenario, the 

population represents the multiple management practices to evaluate. 
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There are different encoding methods to represent the chromosome: 

• Binary encoding: This is the most common method for encoding. The chromosome 

is represented by a binary string of 1s and 0s, and each gene of the chromosome 

represents a characteristic of the problem. 

• Permutation encoding: This method of encoding is mostly used in problems that 

require a certain order. The chromosome uses integer values that represent a 

position in a sequence. 

• Value encoding: This method of encoding is usually used in complicated problems 

where binary encoding cannot be used to fully represent the problem. The 

chromosome uses a string of values: integer, real number, or even a character. It is 

useful for some problems, but specific crossover or mutation techniques will 

occasionally need to be developed for these chromosomes.  

In this study, value encoding is used to represent the chromosome. For instance, for a 

scenario that has management practices where one objective is to maximize and two objectives 

minimize, the management practice represents the chromosome and the genes of the HRUs. In 

Figure 14, there are 25 HRUs in the simulation; the first row corresponds to the management 

practice evaluated with its respective objective values for the HRU, where the second row 

corresponds to the objective being maximized, the third row corresponds to the objective being 

minimize, and the fourth row to the objective being minimize. The chromosome can increase or 

decrease the number of objectives depending on what the user wishes to evaluate in the 

optimization tool, but at least two objectives are needed. 
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Figure 14: Chromosome encoding 

 

 This evolutionary algorithm is computer-based and mimics mechanisms of evolution as 

key elements in their design and implementation. Therefore, the chromosomes will combine to 

generate new chromosomes (possible solutions, new individuals, children). 

 

5.6.2 Initialization 

After defining the chromosome encoding, the first step of the algorithm is to generate a 

pseudo-random predefine number of individuals as an initial set of solutions to explore. The user 

defines the parameter for the initial random population of 𝑛 chromosomes. This initial 

population initiates the exploration of the search space, and depending on the size of this 

population, the time it takes the algorithm to generate the Pareto-optimal set will be influenced. 

In order to do this step, the chromosomes created for the management practices will mix until 

generating the initial random population defined by the user. Figure 15 represents this process as 

follows: 
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Figure 15: Initial population 

 

5.6.3 Dominance Count 

The algorithm seeks to achieve the simultaneous optimization of all the objectives. Thus 

the individuals in the population are evaluated by the number of objective functions and then 

assessed by the Pareto dominance criterion. The concept of Pareto dominance serves to identify 

the number of solutions dominated by each individual. To this extent, the dominance count 

operation eliminates solutions that are dominated in all the objectives regarding other solutions, 

the solutions that are non-dominated in at least one objective will be used in the next generation to 

generate new individuals. The purpose of this step is to achieve proximity to the Pareto-optimal 

front. 

 

5.6.4 Fitness Evaluation 

It can be suggested that the multiple objective evolutionary algorithm seeks to achieve two 

goals: Proximity represents the closeness to the Pareto front and to maintain population diversity. 

Distance-based metric and dominance-count metric evaluate these goals as follow: 
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• Fitness metric 1: Distance-based f
1
(i), to maintain diversity, higher fitness is given to 

individuals that are farther away from other solutions in the Pareto front. The following 

steps are used: 

1. Normalization of the objectives is used to avoid unit discrepancies as follows: 

𝑓𝑖(𝑥) − 𝑓𝑖
𝑚𝑖𝑛

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
 

Where, 𝑓𝑖(𝑥) represents the value in the non-dominated set, 𝑓𝑖
𝑚𝑖𝑛 represents the 

smallest value in the non-dominated, and 𝑓𝑖
𝑚𝑎𝑥 represents the largest value in the 

non-dominated set 

2. Evaluate using Euclidean distance between each solution to the rest of the solutions. 

Non-dominated solutions whit the highest distance are given higher fitness values 

to achieve diversity. 

• Fitness metric 2: Dominance count-based, f
2
(i) is used to approximate the true Pareto front 

by selecting more dominating individuals. 

• Aggregated Fitness Metric: Aggregates the two fitness metrics and assigns equal weights 

to each fitness metric in an attempt to achieve proximity and diversity. 

 

5.6.5 Selection 

The selection operator intends to improve the average quality of the population by giving 

higher-quality solutions a higher probability of survival. Elitism is used to ensure that a subset of 

the best-fitted individuals survives in each iteration into the next generation. The aggregated fitness 

metric determines the fitness of an individual. Tournament selection is used by randomly selecting 

two individuals, and the most fitted of the two goes into the next generation. This process continues 
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until the defined elitism percentage is reached. The most fitted individuals that go into the next 

generation will be used to produce new individuals. 

 

5.6.6 Crossover 

The primary purpose of the crossover operator is to provide genetic material from the 

previous generation to the subsequent generation. After the selection of the fittest individuals that 

go into the next generation is accomplished, the selected individual will undergo this process to 

generate a new population of individuals. Random single-point crossover is used to generate the 

new individuals that were not selected by elitism in the previous step. The first segment of genes 

of parent one joins the second segment of genes of parent two, and the first segment of parent two 

joins the second segment of parent one. Figure 16 serves as a representation of how crossover 

works for the respective management practice. 

 

 
Figure 16: Crossover visualization 
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5.6.7 Mutation 

The main purpose of the mutation operator is to introduce a certain amount of randomness 

to the search. This operator is used in the new offspring produced in the previous step; the purpose 

of this step is to keep the population evolving and avoid falling into local optimum. Single point 

mutation is used on a small percentage of the new offspring. Figure 17 represents the mutation 

process where a gene in the chromosome of the individual created undergoes the mutation process 

by interchanging genes with another individual. 

 

 

Figure 17: Mutation example 

 

5.6.8 Termination 

The process of generating new solutions is performed until the stopping criteria are met. 

The algorithm stops until it reaches a predetermined number of generations; the user defines the 

number of generations for the stopping criteria. There are other ways to determine the stopping 

criteria; for instance, a threshold can be used to detect when the algorithm has reached a steady 

state, meaning that it is no longer evolving. 
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5.7 SWAT and MATLAB interactions 

The previous sections provided a detail description of how the optimization tool works. It 

explained the different files that are needed from the initial SWAT simulation and how the 

simulation is set up in the graphical user interface. Figure 18 provides a summary diagram of the 

interactions between SWAT and MATLAB, which are the tools used for the irrigation 

optimization tool. In general, there are different sources (few mentioned in the diagram) with 

information related to soil layer, landuse, digital elevation model and weather data that the user 

can use to create the initial SWAT simulation that is needed. Depending on the quality of the 

information different climate change scenarios can be simulated in SWAT to explore conditions 

that can affect the water cycle in order to design watershed management scenarios that can mitigate 

these impacts. In SWAT the user has to make different management decisions related to the 

sources of the information and the different agricultural parameters. 

 

Figure 18: Irrigation Optimization Tool interactions 



77 

Furthermore, MATLAB is used to code the graphical user interface to create the 

management practices from the output files provided by the SWAT simulation. The tool includes 

the addition of different irrigation systems to extend the management practices scenarios and a 

multiple objective evolutionary algorithm is coded to provide the optimal placement for the 

management practices. In the optimization tool, there are management decision that need to be 

made such as the parameters for the optimization algorithm, depending on the parameters chosen 

the Pareto-optimal set and the time to generate it will be affected due to the complexity of the 

search space. Lastly, once all the factors are integrated in the irrigation optimization tool the user 

can start developing different management scenarios to identify the best possible outcome for the 

scenario. 
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Chapter 6: Case Studies 

This chapter presents different case studies applying the developed irrigation systems 

optimization framework. The case studies were located in a watershed located in central 

Oklahoma. The optimization framework runs in a desktop computer with Intel® Xeon® CPU E3-

1231 V3 @ 3.40GHz processor and 16 GB of RAM. The optimization framework demonstrates 

the flexibility to simulate different management practices, using an initial SWAT simulation and 

optimizing different objectives with the integrated MOES. Additionally, it provides the optimal 

configuration of the recommended management practice that could be used in the watershed’s 

hydrological response unit. 

 

6.1 Irrigation Systems Overview 

Irrigation can be defined as the agricultural process of applying controlled water amounts 

to land to assist in crop production. Irrigation improves agricultural crop growth and landscape 

maintenance and produces new vegetation growth in dry areas and during dry periods where 

rainfall is less than average. This suggests that the main goal of irrigation systems is to provide the 

crops with suitable amounts of water at the proper time. Proper irrigation will alter the entire 

growth process, from seedling preparation to crop yield and quality. Irrigation systems involve the 

equipment that is required to provide water to the crops, and there are many factors that need to be 

taken into account when considering an irrigation system. Farmers need to be mindful of water 

availability, the application efficiency of the system, the depth or lift from which the water is 

pumped, the pressure needed to operate the system, energy sources, energy costs, and system costs. 

Application efficiency is the percentage of water used by a crop and varies among systems due to 

differences in design, maintenance, management, and environmental factors such as soil types and 
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climatic conditions. The 2018 Irrigation and water management census of agriculture found an 

increase of one percent of farms since 2013 in the United States used irrigation at some point 

during the year, and U.S. total water applied (acre-feet) decreased by 5.8% from 2013, 

respectively. There are various methods of irrigation, and they vary in how water is supplied: 

• Surface irrigation is the oldest and most common method for crop irrigation (USDA, NRCS 

2012), and there are different configurations that can be classified as basin irrigation, 

border irrigation, furrow irrigation, and wild flooding. These systems can be useful when 

water is sufficient but has a considerable water loss. 

• Sprinkler irrigation applies water in the form of a spray formed from the flow of water 

under pressure over small nozzles or openings (USDA, NRCS 2016). These systems are 

suitable for most crops and adaptable to nearly all soils due to their wide range of discharge 

capacities. The pressure is usually obtained by pumping, and they can be divided into two 

categories, periodic-move, and fixed systems. In periodic movement systems, the 

sprinklers move in either a circular or a straight path. In fixed systems, the sprinklers 

remain in a fixed position. There are various types of irrigation systems, such as center 

pivots, side-rolls, and traveling sprinklers, to name a few. These types of systems are 

beneficial for controlling water application rates, amounts, and timings that reduce water 

loss.  

• Microirrigation systems apply water in frequent application of small quantities of water on 

or below the soil surface as drops or miniature sprays over emitters along a water delivery 

line. Most emitters operate at low pressures ranging from 3 to 20 psi (USDA, NRCS 2013). 

The types of systems include drip irrigation, subsurface drip irrigation, bubbler, jet mist, 

and spray systems, to name a few. These systems are designed to apply water directly to 
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the soil and allow more efficient infiltration. Several factors affect the selection of the 

irrigation type, such as system cost, soil type, climatic conditions, water quality, and 

pumping costs. They are initially expensive to purchase, but their potential for increased 

yield allows the user to recover in a short amount of time. 

 

6.1.1 Operating pressure and Costs 

Operating pressure affects pumping costs, where higher-pressure systems make irrigation 

more expensive compared to low-pressure systems. Depending on the system use and the advances 

in technology, there are different operating pressures in pounds of pressure per inch of water (psi) 

that can be designed. In Amosson et al. (2011), five different irrigation systems were studied with 

different operating pressures. Furrow systems usually have an operating pressure of 10psi, low 

elevation spray application (LESA) of 15psi, Low Energy Precision Application (LEPA) of 15psi, 

Mid-elevation spray application (MESA) of 25psi and Subsurface drip irrigation SDI) of 15psi. 

Additionally, the Economic Research Service provides data on the shares for higher-efficiency 

low-pressure sprinkler irrigation for systems less than 30psi.  

Furthermore, the gross investment for each quarter section system varies depending on the 

irrigation system. In the same study, the investment costs for the systems were identified as 

$208.56/acre for furrow systems, $1,200/acre for subsurface drip irrigation systems, and $556/acre 

for quarter-mile center pivot irrigation systems (Amosson et al., 2011). In Stubbs (2016), capital 

and operational costs can influence agricultural producers' adoption of irrigation technologies not 

necessarily for water conservation but for potential economic gains. Additionally, it identified 

major irrigation technologies used in the United Sated in 2013, where 122,000 farms use pressure 

systems and 85,000 farms use gravity systems. The estimated costs for select irrigation 

technologies found in this report are as follow: Low-Flow Micro Sprinklers $2,800/acre, Sub-
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Surface Drip can range from $1,200/acre to $1,800/acre, Surface Drip $860/acre, Linear Move 

Tower $850/acre, Center Pivot can range from $340/acre to $620/acre, and Furrow $210/acre. 

 

6.2 Watershed Description 

The study area used in this simulation is the Fort Cobb Reservoir Watershed, located in 

central Oklahoma (Figure 19). The model requires Geographic Information System data layers, 

elevation model, soil layer, and land use data in order to create the model using the ArcSWAT 

interface. The simulation based on the data layers used delineated the watershed into 71 sub-basins, 

901 hydrological response units (HRUs), and covers an area of about 804.07 km2 for more details 

about the model inputs. Please refer to Moriasi et al. (2022) for model calibration and validation. 

 

 

Figure 19: Fort Cobb Reservoir Experimental Watershed (FCREW) (Moriasi et al., 2022) 
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6.2.1 Groundwater Level Monitoring Well Data 

The Fort Cobb Reservoir Experimental Watershed has several groundwater level wells that 

are monitored by The Oklahoma Water Resources Board (OWRB), and the annual average data is 

available for public use. Micronet and Mesonet stations provide the data for the study. Micronet 

stations are a network of automated weather stations designed to improve atmospheric monitoring. 

Mesonet stations are a network of environmental monitoring stations that measure the environment 

at the size and duration of mesoscale weather events. Figure 20 provides information on the wells' 

location and the data sources. 

 

 

Figure 20: Groundwater Level Monitoring Wells 
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The ORWB provides hourly groundwater depth data from six different wells located at the 

Agricultural Research Service (ARS) Micronet stations. The Mesonet stations for this study are 

located on the FortCobb Reservoir dam and provide well depth data from the FortCobb (FTCB). 

Additionally, daily groundwater depth data for wells located near Eakly, OK, and Alfalfa, OK, can 

be found in the U.S. Geological Service (USGS). The period for the simulation is from January 

1994 to December 2016, and Table 3 provides the annual average groundwater level data with the 

minimum and maximum groundwater depth levels, respectively. 

 

Table 3: Forth Cobb reservoir Watershed Depth to Groundwater data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 
Average GW Level Data (m) 

Min Average Max 

1994 10.4 17.7 29.5 

1995 10.1 18.0 29.4 

1996 9.9 17.7 29.2 

1997 10.3 17.6 28.9 

1998 6.1 22.0 44.0 

1999 6.5 22.3 43.5 

2000 7.5 22.0 43.0 

2001 6.3 22.2 42.7 

2002 7.2 22.1 42.2 

2003 6.4 21.9 41.9 

2004 11.3 23.4 41.7 

2005 11.2 23.1 41.5 

2006 10.8 22.1 41.4 

2007 11.3 22.2 41.3 

2008 9.4 21.4 41.2 

2009 8.0 21.0 40.6 

2010 13.3 19.4 29.2 

2011 13.8 20.2 29.6 

2012 15.5 21.1 30.1 

2013 16.9 21.6 30.5 

2014 18.5 21.8 28.0 

2015 19.0 21.2 26.3 

2016 18.1 20.6 25.6 
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6.2.2 Electricity Average Prices 

The U.S. Energy Information Administration (EIA) is responsible for collecting, analyzing, 

and publicizing energy information and promoting understanding of energy, and understanding its 

interaction with the economy and environment. Table 4 provides information on the cost of a 

kilowatt-hour in Oklahoma from 1994 to 2016. The kilowatt-hour cost is provided for the 

residential, commercial, and industrial sectors, respectively. 

 

Table 4: Oklahoma cost of a kilowatt-hour  

Year 
Average Price (Cents/kilowatt-hour) 

Residential Commercial Industrial 

1994 7.03 6.09 4.07 

1995 6.82 5.78 3.75 

1996 6.71 5.80 3.78 

1997 6.63 5.73 3.63 

1998 6.57 5.66 3.65 

1999 6.60 5.58 3.60 

2000 7.03 6.14 4.09 

2001 7.27 6.35 4.29 

2002 6.73 5.75 3.81 

2003 7.47 6.38 4.59 

2004 7.72 6.55 4.76 

2005 7.95 7.00 5.11 

2006 8.55 7.34 5.46 

2007 8.58 7.33 5.41 

2008 9.09 7.88 5.90 

2009 8.49 6.76 4.82 

2010 9.14 7.45 5.35 

2011 9.47 7.60 5.46 

2012 9.51 7.32 5.09 

2013 9.67 7.77 5.49 

2014 10.03 8.09 5.85 

2015 10.14 7.68 5.35 

2016 10.20 7.66 5.02 
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6.3 Management Practices 

The management files used in the study produce information that is unique to the land use 

and management operation for each HRU. The optimization framework proposed will overwrite 

the initial files to re-execute SWAT for each management practice, and then the irrigation systems 

evaluation will be integrated to assess energy consumption and energy costs. In Moriasi et al. 

(2022), there are five crop management files, with the operation schedule for each. Considering 

that the Auto-irrigation operation is used to apply irrigation to the HRU for the simulation period 

and to evaluate the different irrigation systems, in this study, the operation schedules that require 

only Auto-irrigation will be used to evaluate the optimal placement of the management practice. 

The operation schedule for soybean, peanuts, and grain sorghum crop management systems is used 

in the following tables (Table 5-10), where Auto-irrigation operation drip and sprinkler irrigation 

are used. 

 

Table 5: Soybeans with Drip Irrigation System Operation Schedule 

Month Day SWAT Operation Name Description 

June 1 Tillage operation Zerotill 

June 5 Tillage operation Zerotill 

June 10 Pesticide application Metolachlor 

June 10 Pesticide application Pendimethalin 

June 15 Plant or begin growing season Soybeans 

June 15 Fertilizer application 00-15-00 

June 20 Auto-irrigation initialization Drip Irrigation 

July 1 Tillage operation Zerotill 

July 10 Pesticide application Glyphosate 

November 1 Harvest-and-kill operation  

November 15 Tillage operation Zerotill 

  Skip-a-year operation  

 

 

 



86 

Table 6: Soybeans with Sprinkler Irrigation System Operation Schedule 

 

 

 

 

 

 

 

 

Table 7: Peanuts with Drip Irrigation System Operation Schedule 

Month Day SWAT Operation Name Description 

April 16 Fertilizer application 18-46-00 

April 17 Tillage operation Zerotill 

April 18 Tillage operation Zerotill 

April 19 Tillage operation Zerotill 

April 19 Plant or begin growing season Peanuts 

April 20 Auto-irrigation initialization Drip Irrigation 

October 15 Harvest-and-kill operation  

October 18 Tillage operation Zerotill 

  Skip-a-year operation  

 

 

Table 8: Peanuts with Sprinkler Irrigation System Operation Schedule 

Month Day SWAT Operation Name Description 

April 16 Fertilizer application 18-46-00 

April 17 Tillage operation Zerotill 

April 18 Tillage operation Zerotill 

April 19 Tillage operation Zerotill 

April 19 Plant or begin growing season Peanuts 

April 20 Auto-irrigation initialization Sprinkler Irrigation 

October 15 Harvest-and-kill operation  

October 18 Tillage operation Zerotill 

  Skip-a-year operation  

 

Month Day SWAT Operation Name Description 

June 1 Tillage operation Zerotill 

June 5 Tillage operation Zerotill 

June 10 Pesticide application Metolachlor 

June 10 Pesticide application Pendimethalin 

June 15 Plant or begin growing season Soybeans 

June 15 Fertilizer application 00-15-00 

June 20 Auto-irrigation initialization Sprinkler 

July 1 Tillage operation Zerotill 

July 10 Pesticide application Glyphosate 

November 1 Harvest-and-kill operation  

November 15 Tillage operation Zerotill 

  Skip-a-year operation  
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Table 9: Grain Sorghum with Drip Irrigation System Operation Schedule 

Month Day SWAT Operation Name Description 

May 27 Fertilizer application 46-00-00 

May 28 Pesticide application Alachlor 

May 28 Tillage operation Zerotill 

May 28 Tillage operation Zerotill 

June 1 Plant or begin growing season Grain Sorghum 

June 20 Auto-irrigation initialization Drip Irrigation 

October 15 Harvest-and-kill operation  

October 18 Tillage operation Zerotill 

October 20 Tillage operation Zerotill 

  Skip-a-year operation  

 

 

Table 10: Grain Sorghum with Sprinkler Irrigation System Operation Schedule 

Month Day SWAT Operation Name Description 

May 27 Fertilizer application 46-00-00 

May 28 Pesticide application Alachlor 

May 28 Tillage operation Zerotill 

May 28 Tillage operation Zerotill 

June 1 Plant or begin growing season Grain Sorghum 

June 20 Auto-irrigation initialization Sprinkler Irrigation 

October 15 Harvest-and-kill operation  

October 18 Tillage operation Zerotill 

October 20 Tillage operation Zerotill 

  Skip-a-year operation  

 

 

 

6.4 Case Study 1: Optimization of Yield and Irrigation Energy Cost 

This study evaluates yield (kg/ha) and irrigation energy cost ($/ha) in six different 

management scenarios. Thus the objective functions are to Maximize Yield and Minimize Energy 

Cost. This section will use the management operation schedules provided in the previous section. 

Table 11 provides the values for the parameters used in the management practices. 
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Table 11: Irrigation Systems for Case Study 1 

Parameters Drip Sprinkler 

Irrigation Working Pressure 20 (PSI) 35 (PSI) 

Pressure loss due to Friction 20% 20% 

Pump Efficiency 90% 80% 

Motor Efficiency 90% 90% 

Drive Efficiency 90% 90% 

Results ha ha 

 

The management practices that will be evaluated in this scenario are in Table 12. In this 

table, the first column, management code, represents the management schedule operation 

evaluated in the optimization framework. The second column represents the crop operation 

schedule defined in section 6.3. The third column represents the irrigation system used for the crop 

operation schedule. The parameters for each irrigation system used in this scenario can be found 

in the previous table, where the irrigation working pressure for drip is 20 PSI and for sprinkler 35 

(PSI). 

 

Table 12: Management Practices for Case Study 1 

Management Code Crop Operation Schedule Irrigation System 

1 Soybeans  Drip 

2 Soybeans Sprinkler 

3 Peanuts Drip 

4 Peanuts Sprinkler 

5 Grain Sorghum Drip 

6 Grain Sorghum Sprinkler 

 

The watershed has 901 HRUs and a 22-year period. The objectives for this scenario are to 

maximize crop yield and minimize energy costs. The plant/begin growing season operation 

generates the growth for the specific plant in all HRUs; soybeans, peanuts, and grain sorghum will 

be used in these operations. The Pesticide application used for Metolachlor is 2.2 kg/ha, 

Pendimethalin 0.8 kg/ha, Glyphosate 1.12 kg/ha, and Alachlor 2 kg/ha. The fertilizer application 
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used for 00-15-00 is 140 kg/ha, 18-46-00 124 kg/ha, and 46-00-00 40 kg/ha. The plant stress 

demand for all the scenarios is 90% of the potential. 

The MOEA executes an initial population of 1,000 individuals to begin searching the space 

and a stopping criterion of 1,000 generations. Elitism is 25% with a crossover of 75%, and since 

we want a small percentage of randomness in the model, a mutation of 1% is used, respectively. 

The optimal solution found with the given settings is displayed in Table 13. Based on the HRUs 

where a crop has grown, an average of 6614.420 kg/ha of crop yield is produced on the watershed, 

and an average energy cost of $120.171 per ha was found, respectively. Additionally, the optimal 

solution table provides the configuration of what management practice is recommended to be used. 

For instance, in the table in HRU 1 to 3, there is no crop production because that HRU is not 

suitable for production. On the other hand, for HRU 4, management practice four is recommended 

to be implemented, which represents growing peanuts and using a sprinkler irrigation system, and 

for HRU 5, management practice five is recommended, which represents growing grain sorghum 

and using drip irrigation. 
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Table 13: Optimal Solution for Case Study 1 

HRU 
Management 

Practice 

Yield 

(kg/ha) 
Energy Cost/ha 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 4 15646.2 164.2650107 

5 6 136.7 63.20074837 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 0 0 

11 0 0 0 

12 0 0 0 

13 0 0 0 

14 0 0 0 

15 0 0 0 

16 2 2007.2 103.2875936 

17 2 2000.7 122.6210292 

18 5 135.9 43.35553899 

19 5 238.8 68.89648074 

20 5 618.1 62.71027762 

21 6 638.3 111.9666443 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

901 3 16224.5 141.4620379 

Average 6614.420 120.171 

 

 

The MOEA identified that the Pareto-Optimal set has 23 non-dominated solutions. In 

Figure 21, the normalized values are graphed, where objective 1 is the maximization of crop yield 

and objective 2 is the minimization of energy cost. Ultimately, one solution needs to be chosen 

from the Pareto-optimal set, and considering that we have maximization and minimization 

objectives, the ideal point is found at (1,0). Thus the solution closest to this point is defined by the 

red mark. 
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Figure 21: Two-dimensional view Yield vs Energy Cost 

 

Furthermore, the solution closest to the ideal point is suggested for implementation in the 

watershed for case study 1. The spatial location of the different management practices for the 

optimal conditions is represented in Figure 22.  
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Figure 22: Case Study 1 Optimal Solution Distribution in the Watershed 

 

 

6.4 Case Study 2: Optimization of Yield, TP, TN, SYLD, and Irrigation Energy Cost 

This study aims to evaluate crop yield ranking, Total Nitrogen (TN) kg/ha, Total 

Phosphorous (TP) kg/ha, Sediment yield (SYLD) metric tons/ha, and irrigation energy costs 

($/acre) in six different management scenarios. Thus, the objective functions are to Maximize Crop 

Yield Ranking, Minimize TN, Minimize TP, and Minimize Energy Cost. The management 
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operation schedules provided in section 6.2 will be used for this scenario. Table 14 provides the 

values for the parameters that will be used in the management practices. Figures 23 and 24 provide 

a visualization of how the parameters are set in the developed graphical user interface. It is 

important to note that the values in the cost of the irrigation system and useful life are set to zero. 

This does not mean that the irrigation system cost is zero; it simply means that those costs are not 

taken into account for this study.  

 

Table 14: Irrigation Systems for Case Study 2 

Parameters Drip Sprinkler 

Irrigation Working Pressure 20 (PSI) 35 (PSI) 

Pressure loss due to Friction 20% 20% 

Pump Efficiency 90% 80% 

Motor Efficiency 90% 90% 

Drive Efficiency 90% 90% 

Results acres acres 

 

 

 

Figure 23: Graphical User Interface for Drip Irrigation System 
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Figure 24: Graphical User Interface for Sprinkler Irrigation System 

 

The management practices that are evaluated in this scenario are in Table 15. As in this 

previous case study, the first column represents the management schedule operation evaluated in 

the optimization framework. The second column represents the crop operation schedule, and the 

third column represents the irrigation system used for the crop operation schedule. The parameters 

for each irrigation system used in this scenario can be found in the previous figures. 

 

Table 15: Management Practices for Case Study 2 

Management Code Crop Operation Schedule Irrigation System 

1 Soybeans  Drip 

2 Soybeans Sprinkler 

3 Peanuts Drip 

4 Peanuts Sprinkler 

5 Grain Sorghum Drip 

6 Grain Sorghum Sprinkler 
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The watershed has 901 HRUs and a 22-year period, and this scenario has five objectives 

that need to simultaneously optimize. The Pesticide application used for this scenario is the same 

as in case study 2, for Metochlor 2.2 kg/ha, Pendimethalin 0.8 kg/ha, Glyphosate 1.12 kg/ha, and 

for Alachlor 2 kg/ha. The fertilizer application stays the same; for 00-15-00 is 140 kg/ha; for 18-

46-00, 124 kg/ha; and for 46-00-00, 40 kg/ha. The plant stress demand for all the scenarios is 90% 

of the potential.  

The MOEA executes an initial population of 500 individuals; the stopping criterion is 500 

generations. Elitism is 25% with a crossover of 75%, and a mutation of 1% is used, respectively. 

The optimal solution found with the given settings is displayed in Table 16, and based on the HRUs 

where a crop was grown, the most often crop yield rank was 3, and the least was rank 4. An average 

TN of 74.75 kg/ha was found, TP averaged 34.34 kg/ ha, SYLD averaged 21.17 metric tons/ha, 

and an average energy cost of $52.29 per acre was found. Additionally, the optimal solution table 

provides the configuration of what management practice is recommended for every HRU. 
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Table 16: Optimal Solution for Case Study 2 

 

HRU 
Management 

Practice 
Yield Rank TotalN TotalP SYLDt/ha EnergyCost/acre 

1 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 

4 3 15646.20 5 193.99 50.36 9.39 44.32 

5 5 136.70 0 4.90 25.35 28.58 17.06 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 

16 5 619.50 0 6.81 22.29 17.46 25.38 

17 1 2000.70 3 35.94 37.52 36.50 33.11 

18 2 2032.30 3 35.07 28.98 22.17 28.59 

19 1 2031.80 3 35.41 29.80 18.97 38.14 

20 2 2007.20 3 34.87 29.39 15.88 41.80 

21 2 1999.70 3 36.03 38.19 37.91 49.34         

901 3 16224.5 5 211.955 85.865 21.914 57.24771    
Average 74.75 34.34 21.17 52.29 

 

The MOEA identified 85 non-dominated solutions in the Pareto-Optimal set, and in Figure 

25, the normalized values are graphed. Ultimately, one solution needs to be chosen from the 

Pareto-optimal set, and considering that we have five objectives: maximization, minimization, 

minimization, minimization, and minimization, the ideal point is found at (1,0, 0, 0, 0). Thus the 

solution closest to this point is defined by the red mark. 
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Figure 25: Bi-Dimensional View of Five Objectives 

 

Furthermore, the solution closest to the ideal point is suggested for implementation in the 

watershed for case study 2. The spatial location of the different management practices for the 

optimal conditions is represented in Figure 26. 
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Figure 26: Case Study 2 Optimal Solution Distribution in the Watershed 
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6.5 Case Study 3: Optimization of Yield, Irrigation Energy Cost, and Total Cost 

The aim of this study is to evaluate crop yield (kg/ha), irrigation energy cost ($/acre), and 

total cost ($/acre) in six different management scenarios. Thus, the objective functions are to 

Maximize Crop Yield Ranking, Minimize TP, Minimize TP, Minimize Energy Cost and Minimize 

Total cost. The management operation schedules provided in section 6.13 will be used for this 

scenario. Table 17 provides the values for the parameters that will be used in the management 

practices. Figures 27 and 28 provide a visualization of how the parameters are set in the developed 

graphical user interface. It is important to note that the values in the cost of the irrigation system 

represent an estimate of the cost of the equipment for the irrigation section, based on what was 

identified in studies mentioned in previous sections and the useful life for the systems. These 

values will change depending on the irrigation system configuration the user decides to explore.  

 

Table 17: Irrigation Systems for Case Study 3 

Parameters Drip Sprinkler 

Irrigation Working Pressure 15 (PSI) 25 (PSI) 

Pressure loss due to Friction 20% 20% 

Pump Efficiency 90% 80% 

Motor Efficiency 90% 90% 

Drive Efficiency 90% 90% 

Cost of System 1200 560 

Useful Life 25 25 

Results acres acres 
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Figure 27: Graphical User Interface for Sprinkler Irrigation System 

 

 

Figure 28: Graphical User Interface for Drip Irrigation System 
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The management practices that are evaluated in this scenario are in Table 18. As in this 

previous case study, the first column represents the management schedule operation that was 

evaluated in the optimization framework. The second column represents the crop operation 

schedule, and the third column represents the irrigation system being used for the crop operation 

schedule. The parameters for each irrigation system used in this scenario can be found in the 

previous figures. 

 

Table 18: Management Practices for Case Study 3 

Management Code Crop Operation Schedule Irrigation System 

1 Soybeans  Drip 

2 Soybeans Sprinkler 

3 Peanuts Drip 

4 Peanuts Sprinkler 

5 Grain Sorghum Drip 

6 Grain Sorghum Sprinkler 

 

 

The watershed has 901 HRUs and a 22-year period, and this scenario has three objectives 

that are optimized simultaneously. The Pesticide application used for this scenario is the same as 

in case study 2, for Metochlor 2.2 kg/ha, Pendimethalin 0.8 kg/ha, Glyphosate 1.12 kg/ha, and for 

Alachlor 2 kg/ha. The fertilizer application stays the same; for 00-15-00 is 140 kg/ha; for 18-46-

00, 124 kg/ha; and for 46-00-00, 40 kg/ha. The plant stress demand for all the scenarios is 90% of 

the potential.  

The MOEA begins searching the space with an initial population of 500 individuals, and 

the stopping criterion is 500 generations. Elitism is 25%, with a crossover of 75%, and a mutation 

of 1% is used, respectively. The optimal solution found with the given settings is displayed in 

Table 19, and based on the HRUs where a crop was grown, the study found an average yield of 
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6260.47 kg/ha, an average energy cost of $41.91 per acre, and an average total cost of $77.40 per 

acre was found. Additionally, the optimal solution table provides the configuration of what 

management practice is recommended to be used in every HRU. 

 

Table 19: Optimal Solution for Case Study 3 

HRU 
Management 

Practice 
Yield (kg/ha) 

Energy 

Cost/acre 

Total 

cost/acre 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 3 15646.20 39.40 87.40 

5 4 15646.20 55.40 77.80 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 6 619.50 31.71 54.11 

17 3 15699.80 49.47 97.47 

18 3 15957.70 38.13 86.13 

19 5 238.80 24.80 72.80 

20 6 618.10 31.71 54.11 

21 6 638.30 37.78 60.18 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

901 5 619.10 28.17 76.17 

 Average 6260.47 41.91 77.40 

 

 

The MOEA identified 149 non-dominated solutions in the Pareto-Optimal set, and in 

Figure 29, the normalized values are graphed. Ultimately, one solution needs to be chosen from 

the Pareto-optimal set, and considering that we have three: maximization, minimization, and 
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minimization, the ideal point is found at (1,0, 0). Thus the solution closest to this point is defined 

by the red mark. 

 

 

 

Figure 29: Bi-dimensional view of three objectives 

 

Furthermore, the solution closest to the ideal point is suggested for implementation in the 

watershed for case study 3. The spatial location of the different management practices for the 

optimal conditions is represented in Figure 30. 
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Figure 30: Case Study 3 Optimal Solution Distribution in the Watershed 
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6.6 Results and Discussion 

The case studies provided possible solutions for managing the 901 HRUs in the watershed. 

The Pareto-optimal set identifies all the possible solutions of the study, represented by the blue 

color, while the red color represents the suggested solution due to its closeness to the ideal point. 

The results from the irrigation optimization framework in terms of irrigation energy costs and total 

costs are aligned with several studies. For instance, in Oklahoma, the Oklahoma Water Resource 

Board (2011) found that groundwater levels declined, causing an increase in water pumping costs. 

The study found that in 2008 the average irrigation pumping costs in Oklahoma averaged about 

$74 per acre. Many irrigated farms rely on pumps for water distribution regardless of the water 

source. Taghvaeian and Mehata (2020) found that in Oklahoma average cost of irrigation water is 

about $42 per acre for groundwater and $18 per acre for surface water irrigation. 

Additionally, Schaible and Ailery (2012) reported that in 2008 the Western States averaged 

about $76 per acre for irrigated agriculture when pumping from wells; however, total variable 

costs can vary depending on the water source. Wichelns (2010) found that the average cost of off-

farm source irrigation in the U.S. in 2003 ranged from $12-$213 per hectare to a national average 

of $104 per hectare. Heimlich (2003) reported that the average costs of irrigation water in 1998 

varied depending on the source groundwater ranges from $2-$69 per acre, and off-farm sources 

for all the states can range from $2-$175 per acre respectively. 
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Chapter 7: Conclusions and Future Research 

7.1 Conclusions 

Water scarcity has worsened in the last decades in many parts of the world due to the large 

increase in water withdrawals, population growth, and climate change. Cities and industries 

compete with the agricultural sector for water sources, and this is causing alarming levels of 

pollution by the increasing population. At the same time, food demand is expected to increase, and 

agricultural production is required to increase to keep up with the demand, with irrigated 

agriculture playing a major role. The decrease in natural resources and food demand emphasizes 

the need to increase water productivity. 

The main challenge that the agriculture sector faces is adapting to the impacts of climate 

change and water scarcity to develop food production systems that can efficiently feed the growing 

population in the following years. To meet production demands, it is important to develop new 

strategies that optimize agriculture productivity that is dependent on the integration and interaction 

of various factors, on the appropriate selection of irrigation systems and strategies taking into 

account water availability, climate variability, soil and crop characteristics, energy, economic, and 

environmental aspects. 

In order to achieve the best possible outcome with limited natural resources, this research 

proposes an irrigation system assessment framework to identify the optimal spatial placement of 

land use and irrigation systems to reduce tradeoffs between conflicting objectives in irrigated 

agriculture. The Soil Water Assessment Tool (SWAT) is a hydrologic simulation model used as a 

water balance and crop estimator to quantify energy cost and energy consumption in agriculture 

irrigation water from different water sources.  The hydrological model incorporates a multiple 

objective evolutionary algorithm (MOEA) considering the maximization of crop yield and 
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minimization of energy cost and consumption to develop a Pareto-optimal front that decision-

makers can use to explore the trade-off between optimal solutions. 

In chapter two, an extensive literature review was included. The review explored different 

areas related to pressurized irrigation systems and irrigation optimization frameworks to identify 

how irrigation systems have progressed through time and the implementation and assessments of 

different areas of study. The review also provided different assessments of the SWAT model, and 

the articles were divided into different categories, and in most articles, more than one category was 

addressed. The literature review suggested that when SWAT is coupled with an optimization 

framework, NSGA-II from MATLAB Toolbox is very popular among researchers. In addition, 

when assessing irrigation in SWAT, schedule irrigation and deficit irrigation are mostly used, and 

the review suggested that there is a need to include different irrigation systems for evaluation. 

In chapter three, an overview of SWAT is included. This chapter summarizes the land 

phase of the hydrological cycle to provide an understanding of its functionality. A description of 

the Auto-irrigation function in SWAT is provided because the irrigation optimization framework 

developed in this work uses the Auto-irrigation option. The different water sources in SWAT are 

described, and the water stress identifiers as well, to provide an overview of how SWAT works 

when adding irrigation. 

Chapter four attempts to provide a general description of single and multiple objective 

optimization and addresses the Pareto-optimal front. A few popular methods for single objective 

optimization are provided, suggesting that when there is more than one conflicting objective 

different methods should be used. In addition, a few popular methods for multiple objective 

evolutionary algorithms are described along with their application in different SWAT assessments. 

These methods suggested that evolutionary algorithms are suited for multiple objective 
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optimization when there is more than one conflicting objective and that there are many diverse 

evolutionary algorithm methods that generally differ mainly in the fitness evaluation phase. 

In chapter five, the proposed irrigation optimization framework is introduced. An initial 

SWAT simulation is needed, and this simulation is then used in the graphical user interface. The 

user then starts creating the operation schedule; when the auto-irrigation option is selected, a new 

window will appear, allowing the user to add irrigation systems to be used for the evaluation. Since 

this is a multiple objective optimization framework, the tool requires more than one management 

practice. This chapter explains how the database is created and gives an overview of the MOEA 

used, from the chromosome encoding to the different processes of dominance count, selection, 

crossover, mutation, and termination. The MOEA will provide the optimal configuration of the 

suggested management practice to be implemented for each HRU. 

Chapter six provides different case studies. The first case study had two objectives 

maximization of yield and minimization of energy cost per acre, and this study was used to identify 

the relations between crop yield and energy cost per hectare and to compare drip and sprinkler 

irrigation systems. The second study explores five different objectives: max crop yield ranks, min 

TN, min TP, min sediment yield, and min energy cost; there are different output results that SWAT 

provides, and in most studies, pollution is included in the studies. In this case, total nitrogen, total 

phosphorous, and sediment yield objectives were included to assess the spatial placement of the 

management practices when more objectives need to be simultaneously optimized. The last study 

explores three objectives max crop yield, min energy cost, and min total cost. Depending on the 

irrigation system used, there are differences in energy and system costs. For instance, a drip 

irrigation system needs a higher initial investment than a sprinkler irrigation system. However, 

when comparing irrigation energy cost per acre, drip irrigation costs less than sprinkler irrigation. 
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Therefore, this scenario adds the total cost objective, which is a function of irrigation energy cost 

and initial investment cost, to provide a further understanding of the selection of irrigation systems. 

Furthermore, the most important thing to note is that this model requires an initial SWAT 

simulation and the knowledge from the decision-maker to design and explore different 

management scenarios. The quality of the SWAT simulation based on the setup in terms of the 

layers used, watershed data, and climate data will affect the results of the framework. In addition, 

based on the results, irrigation and sprinkler irrigation energy costs are aligned with several studies, 

and this can suggest that the tool can be useful to alleviate the decision-making process to identify 

the optimal spatial placement of land-use and irrigation systems. Although, it is important to 

mention that a variety of different irrigation systems work best in different regions with different 

pressure and efficiencies parameters that can be used for evaluation. One recommendation for the 

decision maker is to identify the farmers in the area and develop a survey of the different 

management practices and irrigation systems used to simulate better management practices that be 

more representative of the area to provide better results. 

Lastly, the main contribution of this work is the proposed irrigation optimization 

framework that further expands recent developments by incorporating irrigation systems into the 

management practice scenarios. SWAT was used as a water balance, and crop estimator and energy 

consumption were evaluated based on the outputs. SWAT was then coupled with a multiple 

objective optimization algorithm, and a graphical user interface was developed to allow the user 

to create multiple management scenarios and evaluate multiple irrigation systems.  
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7.2 Future Research 

In recent years, there have been many developments regarding SWAT; from the literature, 

many studies have integrated SWAT with different models to improve the assessment or 

representation of hydrology in watershed management scenarios. With the development of the 

irrigation optimization framework and the user-friendly tool developed in this study, there is room 

to improve it, similar to what the research community has done with SWAT. New watershed 

simulations are needed to fully grasp the extent of this framework. 

 The next step is to make this tool an executable, but plenty of work needs to be done related 

to usability. To some extent, it is user-friendly, but there are ways to improve its usage; for 

instance, currently, the process of entering management scenarios has to be done every time the 

user decides to add a new management practice. The management scenario is not saved after 

completion, and only the output results are saved in a folder. In the event that the user decides to 

explore the same management practice at another time, the user will need to write or create the 

management practice again. To improve the ease of having to repeat steps, something that can be 

done is to save the management practices parameters in an archive and provide an option to add 

them. This does not affect the tool's functionality; it simply saves time when creating management 

scenarios. 

Currently, energy in kWh is being evaluated in this study. The next step to expand the study 

is to translate energy into carbon emissions and quantify the environmental impact of the irrigation 

system used. A life cycle assessment from cradle to gate can be performed to assess the impacts 

of different materials irrigation systems are built from. For instance, different plastic materials 

provide higher emissions than others, which can affect the irrigation system selection if the 

environmental impact objective is considered in the study. This assessment will consider the raw 
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material extraction phase to the production phase to better quantify environmental impacts. There 

are tools with extensive databases that support life cycle assessments, such as GaBi Software and 

Simapro. Overall, this study can be further expanded by incorporating an environmental impact 

objective considering a life cycle assessment of different irrigation systems and the electricity 

emissions. 

Furthermore, there are different SWAT simulations, and the proposed tool may need to be 

modified to account for the different parameters of the simulation. It will be interesting to work 

with different SWAT simulation models to understand the capabilities of the tool and expand it, 

as in Moriasi et al. (2022), where the user wanted to add a new objective, the ranks to prioritize 

based on the range of crop yields. Lastly, an irrigation system calculator that designs the system 

based on the user’s preferences can be added to the tool in the distant future. Different online 

calculators are available that assist irrigation system installers in quantifying parts and quantities 

of the materials needed for the project. Like many other tools, these calculators are not exact but 

provide the user a better understanding of the costs associated with the design of the irrigation 

system and save them time. 
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