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Abstract 

G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins 

with important functions in signal transduction and often serve as therapeutic drug targets. With 

the rapidly growing public data on three-dimensional (3D) structures of GPCRs and GPCR-ligand 

interactions, computational prediction of GPCR ligand binding becomes a practical option for high 

throughput screening and other experimental approaches during the beginning phases of ligand 

discovery. In this work, we set out to computationally uncover and understand the binding of a 

single ligand to GPCRs from several different families. We analyzed the sequences and 3D 

structures of GPCRs from various families that bind to the same ligand. To conduct the analysis, 

we used currently available tools as well as newly developed Python scripts. These include MEME 

for motif search, FATCAT for 3D structural comparison, P2Rank for pocket prediction, APoc for 

pocket comparison, and our own Python codes for computing overlap scores. Comparison of 3D 

GPCR structures that bind to the same ligand revealed local 3D structural similarities and the 

similar regions often overlap with locations of binding pockets. Using Apoc, these pockets were 

found to be similar based on backbone geometry and side-chain orientation, and they correlate 

positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the 

more likely a ligand binding to the pockets will interact with similar residues, have similar 

conformations, and produce similar binding affinities across the pockets. These findings can lead 

to improved protein function inference, drug repurposing, and drug toxicity prediction, which can, 

in turn, accelerate the development of new therapeutics. Furthermore, the computational workflow 

and program codes established for this analysis can be developed into a software pipeline for more 

extensive investigation of GPCR-ligand binding mechanisms. 
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Chapter 1: Introduction 

G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptors 

(membrane proteins) [Singh et al., 2019] and are encoded by more than 800 genes in the human 

genome [Zhang et al., 2015]. Over 50% of drugs approved by the United States Food and Drug 

Administration (FDA) target integral membrane proteins [Goodsell et al., 2019]. Most of these 

drug targets belong to four well-studied protein families (GPCRs: 30%; voltage-gated ion 

channels: 8%; ligand-gated ion channels: 7%; and transporters: 7%) [Goodsell et al., 2019]. 

GPCRs make up the bulk as they are involved in a various of physiological processes including 

vision, taste, smell, inflammation, cell recognition, pheromone signaling and more. 

GPCRs play an essential role in intracellular signaling. They are of clinical importance in 

many diseases, including cancer [Jo & Jung, 2016], which have crucial implications for tumor 

growth and metastasis [Lappano & Maggiolini, 2012]. Various molecules like hormones, lipids, 

peptides and neurotransmitters exert their biological effects by binding to GPCRs coupled to 

heterotrimeric G-proteins, which are highly specialized transducers capable of modulating various 

signaling pathways [Lappano & Maggiolini, 2012].  

Insel et al., (2018) used TaqMan qPCR arrays to quantify the mRNA expression of ∼340 

GPCRs and found that human chronic lymphocytic leukemia (CLL) cells, breast cancer cell lines, 

colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer-associated 

fibroblasts (CAFs), and PDAC tumors express 50 to over 100 GPCRs, including many orphan 

GPCRs that lack known physiologic agonists. These authors proposed that highly expressed 

GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in 

PDAC CAFs) may contribute to the malignant phenotype and could serve as biomarkers or 

potential novel therapeutic targets for cancer treatment. 
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Besides cancer, GPCRs are also involved in other diseases and their treatment. For 

example, GPCRs serve as targets for anabolic drugs in osteoporosis [Diepenhorst et al., 2018]. 

GPCRs have been implicated in the pathogenesis of Alzheimer’s disease (AD) and in multiple 

stages of the hydrolytic processing of the amyloid protein precursor (APP), a precursor protein 

involved in the formation of amyloid plaques in the brain of patients with AD  [Zhao et al., 2016]. 

Accumulated data have shown that GPCRs can bind to β-secretase (β-site APP cleaving enzyme 

1, BACE1) and γ-secretase, critical enzymes in the hydrolytic processing of APP [Zhao et al., 

2016]. Similarly, GPCRs are implicated in the pathophysiology of diverse neurodegenerative 

diseases which include frontotemporal dementia, vascular dementia, Parkinson’s disease, and 

Huntington’s disease [Huang et al., 2017]. 

Freudenberg et al. (2018) suggest that galanin, an endogenous ligand for the GPCR galanin 

receptor type 2 (GALR2), plays an essential role in epilepsy, confirming an earlier notion that 

galanin is a potential target in the treatment of epilepsy [Mazarati et al., 2001]. In particular, 

galanin depletion from the hippocampus may contribute to the maintenance of seizure activity 

[Clynen et al., 2014], and there may be genetic evidence showing that a galanin loss-of-function 

mutation leads to epilepsy in humans [Guipponi et al., 2014]. This is one of the examples indicating 

that understanding GPCRs ligand binding could have significant impacts on the modern medical 

field. 

1.1 GPCR STRUCTURAL CHARACTERISTICS  

All GPCRs have the same characteristic molecular structure consisting of an N-terminus, 

a cytoplasmic C-terminus along and seven hydrophobic transmembranes (7TM) domains 

connected by three intracellular and three extracellular loops (Figure 1).  
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Figure 1: G protein-coupled receptor without ligand [C. Vines, Personal Communication, 

November 7, 2020] 

Interesting insights into the impact of the three-dimensional (3D) structures of essential 

target proteins for new drug discovery (e.g. GPCR) have been revealed through open access to 

structural data [Goodsell et al., 2019]. These include GPCR ligand binding modes, G-protein 

binding mechanisms, structural similarity and diversity of  GPCR ligand recognition, GPCR 

functional states, and properties of a receptor structure competent for G-protein binding [Zhang et 

al., 2015].  

 
1.2 CLASSIFICATION OF GPCRS 

Several classification systems have been used to classify the superfamily of GPCR 

proteins. One of the most widely used systems is that of the International Union of Basic and 

Clinical Pharmacology (IUPHAR) [Horn et al., 2003], which divided GPCRs into six major 

classes, A (rhodopsin-like), B (secretin receptor family), C (metabotropic glutamate), D (fungal 

mating pheromone receptors), E (cyclic AMP receptors), and F (frizzled/smoothened) based on 

sequence homology and functional similarity.  

Another system of classification is the GRAFS system. The GRAFS system clusters 

GPCRs in five main families: Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin 

[Schiöth & Fredriksson, 2005]. The main difference between the IUPHAR system and the GRAFS 

system is that IUPHAR is designed to cover all GPCRs, in both vertebrates and invertebrates, 
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whereas GRAFS is designed for mammalian species. Table 1 shows of the number of GPCRs in 

each class of GPCRs stored in the GPCR-PEnDB [Begum et al., 2020]. 

GPCR-PEn (GPCR Prediction Ensemble) is a web server developed by our team which 

utilizes sequence similarity, transmembrane structure, and dipeptide composition to determine if a 

protein sequence is a GPCR (www.gpcr.utep.edu). It has a database component called GPCR-

PEnDB (GPCR Prediction Ensemble Database), and a searchable MySQL database of confirmed 

GPCRs and non-GPCRs [Begum et al., 2020]. Our team constructed it to allow users to access 

helpful information on GPCRs in various organisms conveniently and to compile reliable training 

and testing datasets for different combinations of computational tools [Begum et al., 2020].  

Table 1: Number of GPCR subfamilies, sub-subfamilies, subtypes, and sequences in the extended 

IUPHAR and GRAFS classification families [Begum et al., 2020]. 
 

IUPHAR GRAFS Subfamilies Sub-
subfamilies Subtypes No. of 

Sequences 
Class A Rhodopsin-like 11 61 287 2493 

Class B 
Adhesion-like 1 5 15 91 
Secretin-like 1 9 33 113 

Class C Glutamate-like 4 5 22 112 

Class D Fungal 
pheromone* 1 1 1 13 

Class E cAMP receptor* 1 1 1 11 
Class F Frizzled 1 1 11 82 

Class T2R** Taste2 receptor** 1 1 25 211 
*Not in the original GRAFS system 
**Not in the original IUPHAR or GRAFS system 

  
1.3 LIGANDS BINDING TO GPCRS 

GPCRs bind to G proteins inside and outside the cell to ligands such as ions, biogenic 

amines, peptides, hormones, growth factors, lipids and photons [Huang et al., 2017]. Figure 2 is 
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an example of a GPCR (Crystal Structure of mGluR5) 3D structure showing ligands (green) bound 

to it; however, there are some GPCRs for which no information about the ligands that bind to them 

is known yet [Gad & Balenga, 2020]. 

In this study, we obtained data on GPCR ligand interactions from three different public 

databases: BindingDB, GLASS, and IUPHAR. IUPHAR and BindingDB contain a collection of 

experimental protein-small molecule interactions and measured binding affinities, focusing chiefly 

on the interactions of proteins considered to be candidate drug-targets with ligands that are small, 

drug-like molecules [Gilson et al., 2016; Armstrong et al., 2020]. GLASS (GPCR-Ligand 

ASSociation) is considered to be the most comprehensive and up-to-date ligand association 

repository in the field and encompasses a broad range of GPCR-related pharmacological data, 

gathered from many data sources and PubMed literature mining [Chan et al., 2015]. 
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Figure 2: Crystal Structure of mGluR5 with ligands bound (green) to it, PDB ID: 6FFI  

[Sehnal et al., 2018; Christopher et al., 2018] 

  

1.4 RESEARCH OBJECTIVES 

The work aims to gain more insights into the sequence and structural features of GPCRs 

from different families that enable them to bind to the same ligand. Understanding how GPCRs 

bind to their ligands can help identify features that influence GPCR-ligand interactions, which in 

turn aids in fine-tuning of computational tools in selecting feature sets to predict GPCR-ligand 

binding. It can also provide information to help decide which computational tools to use. For 
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example, Seo et al. (2018) proposed a novel protein-ligand binding prediction method, which uses 

the local and global structure of a ligand and amino acid motif sequence of a GPCR. Their way 

infers hidden properties of good ligand-receptor binding encoded as a random forest classifier. 

Ciancetta et al. (2015) have shown that molecular dynamics can account for critical aspects such 

as a realistic microenvironment for GPCRs, the flexibility of GPCRs, and water molecule-

mediated interactions that could play an essential role in the binding of ligands that are ignored by 

molecular docking. The inherent flexibility of GPCRs allows them to function through molecular 

interactions, changing their structural conformations in response to the presence of other molecules 

or changes in the environment [Teilum et al., 2009]. 

Recently, a number of machine learning algorithms have been developed to predict GPCR 

ligand binding, e.g., random forest, convolutional neural network, deep neural network, decision 

tree and support vector machine [Seo et al., 2018;  Li et al., 2019; Raschka & Kaufman, 2020]. 

However, but they have been tested only on specific groups of GPCRs and none has focused on 

features that characterize the binding of a single ligand to multiple GPCR families.  

Given all the information described above, our goal is to learn more about the sequence 

and structural features of GPCRs from different families that allow them to bind the same ligand. 

In particular, we wanted to help answer these questions: 

1. Do the GPCRs that bind to the same ligand share any conserved sequence motifs? Are they 

locally similar in terms of their 3D structures? 

2. For GPCRs that bind to the same ligand, how similar are their binding pockets in sequence and 

structure? Which residues of the GPCR interact with which atoms of the ligand? 

3. Do ligands binding to human GPCRs from different families bind with the similar poses and 

affinities? 

In Chapter 2 of this dissertation, I will present a review of current GPCR-ligand binding 

prediction methods. This is followed by a description of my work in answering the questions asked 

above and exploring computational tools in Chapter 3, results in Chapter 4, and conclusions on my 
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research findings in Chapter 5. The materials in this dissertation have been published as a 

conference paper [Dankwah et al., 2021] and a journal paper [Dankwah et al., 2022]. 
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Chapter 2: Literature Review 

To investigate the posted research questions in Chapter 1, we have developed a 

computational workflow that encompasses several steps involving protein sequence motif search, 

protein structure comparison, protein-ligand binding, and docking, the details of which will be 

described later. In this chapter, we first review the available public databases from which we 

gathered the GPCR and ligand data and the existing computational approaches and algorithms to 

be applied in several specific steps of our analyses. 

 
2.1 GPCR AND LIGAND DATABASES 

In this subsection, we provide information about the source of the data set we collected 

throughout the study.  

 
2.1.1 UniProtKB/Swiss-Prot 

The Universal Protein Resource (UniProt) is a comprehensive resource for protein 

sequence and annotation data [Bateman, 2019]. The UniProt Knowledgebase (UniProtKB) is the 

database of UniProt. This is the central hub for collecting useful protein information with accurate, 

consistent, and rich annotation [Bateman, 2019]. Over 95% of UniProtKB  entries are derived from 

the coding sequences (CDS) translation, and submitted to the public nucleic acid databases, the 

EMBL-Bank/GenBank/DDBJ databases [Bateman, 2019]. Each entry contains mainly the amino 

acid sequence, protein name or description, taxonomic data and citation information [Bateman, 

2019]. As of September 30, 2022, this database has 226,771,949 sequence entries available 

through TrEMBL. We obtained data on the start and end of the regional sequence (the N-terminal, 

extracellular loops, intracellular loops, the seven helices, and the C-terminal) of the GPCRs. 
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2.1.2 RCSB PDB 

Protein Data Bank (PDB) is a single worldwide repository of information about the 3D 

structures of large biological molecules, including proteins and nucleic acids, which are found in 

all organisms including bacteria, yeast, plants, flies, other animals, and humans [Begum et al., 

2020]. The structures in the PDB archive range from tiny proteins and bits of DNA to complex 

molecular machines like the ribosome [Begum et al., 2020]. The archive is freely available to users 

and is updated weekly. Under the leadership of Helen M. Berman, the Research Collaboratory for 

Structural Bioinformatics (RCSB) became responsible for the management of the PDB in 1998. 

As of September 30, 2022, PDB contains 195,858 structures. 

 
2.1.3 BindingDB 

BindingDB is a publicly accessible experimental protein-small molecule interaction 

database of measured binding affinities, focusing chiefly on the interactions of proteins considered 

to be candidate drug targets with small, drug-like molecules ligands [Gilson et al., 2016]. 

BindingDB data entries are primarily derived from scientific articles and, increasingly, US patents 

[Gilson et al., 2016]. These data come from various measurement techniques, including enzyme 

inhibition and kinetics, isothermal titration calorimetry, NMR, radioligand, and competition assays 

[Gilson et al., 2016]. As of September 30, 2022, BindingDB contains 2.6M data for 1.1M 

Compounds and 8.9K Targets; of those, 1,154K data for 533K Compounds and 4.4K Targets were 

manually curated by BindingDB curators. 

 
2.1.4 IUPHAR/BPS 

The International Union of Basic and Clinical Pharmacology (IUPHAR) and the British 

Pharmacological Society (BPS) have jointly developed the Guide to PHARMACOLOGY which 

is an open-access, expert-curated database of molecular interactions between ligands and their 

targets [Armstrong et al., 2020]. It is intended as a “one-stop shop” portal for pharmacological 
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information. Its main aim is to provide a searchable database with quantitative data on drug targets 

and the prescription medicines and experimental drugs that act on them [Armstrong et al., 2020]. 

G protein-coupled receptors are one of the six primary pharmacological targets into which the 

Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic 

receptors, enzymes and transporters [Alexander et al., 2019]. This database contains 3,002 human 

targets, 1,611 of which with curated quantitative ligand interactions, 11,348 ligands, 8,396 of 

which have curated quantitative target interactions, 1,756 approved drugs, 1,052 with curated 

quantitative interactions, and many more, as of September 30, 2022. 

 
2.1.5 GLASS 

GLASS (GPCR-Ligand ASSociation) encompasses a wide breadth of GPCR-related 

pharmacological data, gathered from many data sources and PubMed literature mining [Chan et 

al., 2015]. This database contains 562,871 unique GPCR-ligand entries, 1,046,026 experimental 

data entries, 3,056 GPCR entries (of which 825 are human GPCR), and 342,539 ligand entries, as 

of September 30, 2022. 

 
2.1.6 GPCR-PEnDB 

 GPCR-PEnDB (GPCR Prediction Ensemble Database) is a searchable MySQL database of 

confirmed GPCRs and non-GPCRs [Begum et al., 2020]. GPCR-PEnDB currently contains 3129 

confirmed GPCR and 3575 non-GPCR sequences collected from the UniProtKB/Swiss-Prot 

protein database, encompassing over 1200 species [Begum et al., 2020]. The non-GPCR entries 

include transmembrane proteins for evaluating various prediction programs’ abilities to distinguish 

GPCRs from other transmembrane proteins [Begum et al., 2020]. Each protein is linked to 

information about its source organism, classification, sequence lengths and composition, and other 

derived sequence features [Begum et al., 2020]. 
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2.2 PROTEIN SEQUENCE MOTIF SEARCH  

GPCRs retain various functional domains within and between species to bind various 

ligands, activate G-proteins, and participate in signaling pathways [Nagarathnam et al., 2011]. 

Most members of the rhodopsin-like GPCR family (class A)  have several highly conserved motifs 

within their transmembrane domain (TMD), such as a DRY motif in TMD3 [Römpler et al., 2006]. 

Mutations in the DRY motif were found to increase the basal activity of mammalian orthologs of 

the chemoattractant receptor GPR33 in mouse and Gerbillinae species before the receptor was 

pseudogenized the Gerbillinae subfamily [Römpler et al., 2006]. The motif search algorithm 

searches for a set of similar subsequences in a group much longer sequences [Bailey et al., 2006]. 

One of the most commonly used tools to search for novel motifs in sets of biological sequences is 

MEME (Multiple EM for Motif Elicitation) [Bailey et al., 2006; Bailey et al., 2009; Bailey et al., 

2015]. MEME works by searching for repeated, un-gapped sequence patterns that occur in the 

DNA or protein sequences.  

 
2.3 PROTEIN-LIGAND BINDING AND DOCKING 

Proteins play essential roles in all cellular activities including: enzyme catalysis, 

maintenance of cellular defenses, metabolism and catabolism, signaling within and between cells, 

and maintaining the structural integrity of cells [Roche & McGuffin, 2016; Daniel B. Roche et al., 

2011; Roche et al., 2012; Roche et al., 2013]. The binding of ligands to proteins is essential for 

many vital processes in living organisms [Nguyen et al., 2017]. They are necessary for many 

proteins to function correctly [Kukol, 2014]. Interactions between proteins and ligands are 

necessary for signal transduction, immune response, and gene regulation [Fu et al., 2018]. Protein-

ligand interaction studies are important to understand the mechanisms of biological regulation and 

provide a theoretical basis for the design and discovery of new drug targets [Fu et al., 2018].  
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GPCRs play a very important role that involves binding to ligands and activating signal 

transduction pathways and cellular responses [Seo et al., 2018]. For example, galanin, an 

endogenous ligand for the GPCR galanin receptor type 2 (GALR2), plays an important role in 

epilepsy [Freudenberg et al., 2018; Mazarati et al., 2001]. In humans, the initial phase of human 

visual perception includes photon retention by four distinctive visual pigments [Srinivasan et al., 

2019]. These visual pigments include an apoprotein, opsin, that is covalently bound to the 

chromophore 11-cis-retinal (11CR), a vitamin A derivative that acts as an inverse agonist, locking 

the photoreceptor protein opsin into its inactive state [Srinivasan et al., 2019]. Similarly, inhaled 

selective b2-agonists (e.g., salbutamol, formoterol, indacaterol, etc.) are widely used in the 

treatment of obstructive airway diseases such as asthma [Matera et al., 2018]. These drugs bind to 

the b2-adrenoceptor (b2-AR) and cause the activation of certain G-proteins and subsequent 

generation of cyclic adenosine monophosphate (cAMP) in airway smooth muscle, resulting in 

bronchodilation [Matera et al., 2018]. Figure 3 shows a ligand (green) bound to a protein. 
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Figure 3: Docking of a small molecule (green) into the crystal structure of the beta-2 adrenergic 

G-protein coupled receptor (PDB: 3SN6, source: Wikipedia: 

https://en.wikipedia.org/wiki/Docking_(molecular)) 

2.3.1 Binding pocket prediction 

The protein-ligand interaction is essential for many proteins to perform their biological 

function [Kukol, 2014]. This interaction is generally specified with respect to the ligand involved 

and the site at which the interaction occurs [Kukol, 2014]. Detection of ligand binding sites is often 

the starting point for protein function identification and drug discovery [Brylinski & Skolnick, 

2008]. In order to gain insight into the interactions and thus into protein function and its influence 

on protein activity, efforts have been made to develop methods that can computationally predict 
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the ligand binding sites of proteins [Kukol, 2014]. Due to the site specificity of the ligand binding 

sites, these methods use one or more of the following types of properties to distinguish the binding 

site from other parts of the protein surface: evolutionary, geometric, energetic, and statistical 

[Kukol, 2014]. These methods have been categorized into the following: template-based, 

geometry-based, energy-based, propensity-based, combination-based, and others [Kukol, 2014]. 

 
2.3.1.1 Template-based method 

Template-based methods use homologous and/or similar structures with known binding 

sites [Kukol, 2014]. Protein sequences are homologous if they descend, usually with divergence 

from a common ancestral sequence [Lee et al., 2007]. Homologues can be divided into orthologues 

and paralogues [Lee et al., 2007]. Orthologues are found in different species and have been 

separated by a speciation event rather than by gene duplication [Lee et al., 2007]. Paralogues are 

the product of gene duplication within a species, but since gene duplication can occur before 

speciation, paralogues can also exist across species [Lee et al., 2007]. 

 The basic idea behind all template-based methods for predicting ligand binding sites is 

that proteins that share sequence homology are known to adopt similar 3D structures and typically 

perform similar biological functions [Lee et al., 2007]. First, we identify ligand-bound complex 

structures (to serve as a template for finding potential ligand-binding sites) that have sufficient 

sequence similarity to the target protein (the protein in which binding sites are to be predicted). 

Second, we overlay the target protein and identified templates, including information on known 

ligand-binding sites. Finally, a consensus ligand binding site can be revealed. Its characteristics as 

a putative ligand binding site for the target protein is evaluated by comparison to those of known 

ligand binding sites [Kukol, 2014]. There are several template-based methods. These include 

3DLigandSite [Wass et al., 2010;Wass & Sternberg, 2009], FINDSITE [Brylinski & Skolnick, 

2008; Skolnick & Brylinski, 2009], Firestar [López et al., 2007], I-TASSER [Zhang, 2007], 

ProBiS [Konc & Janežič, 2010], and IntFOLD [Daniel B. Roche et al., 2011].  
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These methods are similar in principle (i.e., they all use templates) but differ in 

implementation. For example, 3DLigandSite combined the use of the predicted structure of the 

targets with both residue conservation and localization of ligands bound to homologous structures 

[Wass et al., 2010;Wass & Sternberg, 2009] whereas FINDSITE is a method predicting ligand 

binding sites and functional annotation based on the similarity of binding sites between sets of 

weakly homologous template structures identified from threading [Brylinski & Skolnick, 2008; 

Skolnick & Brylinski, 2009].  

 
2.3.1.2 Geometry-based method 

Geometry-based methods focus on identifying pockets on the protein surface that can 

accommodate small ligand molecules by computing some types of geometric measurements. 

Statistically, studies of protein-ligand complex structures from the Protein Data Base have shown 

that small molecule ligands tend to bind to deflated regions of the protein surface, particularly its 

largest and/or deeper cavities [Kukol, 2014]. Typically, the first step in this category is to identify 

an empty space on the surface of the protein. The next step is to group the empty spaces to identify 

the largest pocket or cavity, which is often assigned as the best-predicted ligand binding site 

[Kukol, 2014]. LIGSITECSC [B. Huang & Schroeder, 2006], PocketPicker [Weisel et al., 2007], 

VICE [Tripathi & Kellogg, 2010], SCREEN [Nayal & Honig, 2006], POCASA [Yu et al., 2010], 

CASTp [Binkowski et al., 2003], MSPocket [Zhu & Pisabarro, 2011], and fpocket [Le et al., 2009] 

are all examples of geometry-based method. 

 
2.3.1.3 Energy-based method 

Energy-based methods aim to find patches on the protein surface that are favorable for 

ligand binding [Kukol, 2014]. For this purpose, a probe molecule is designed, and the interaction 

energy between the surrounding protein atoms and the probe is calculated [Kukol, 2014]. These 
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methods include SiteHound [Ghersi & Sanchez, 2009], Q-SiteFinder [Laurie & Jackson, 2005], 

Morita’s method [Morita et al., 2008], and FTSite [Ngan et al., 2012]. 

 
2.3.1.4 Propensity-based method 

The propensity-based method looks at the statistics of certain properties to determine their 

propensity to be at or associated with known ligand-binding sites [Kukol, 2014]. These methods 

often re-rank pockets predicted by other methods by finding statistically significant differences 

between the ligand binding site and the non-ligand binding site [Kukol, 2014]. Propensity-based 

methods include STP [Mehio et al., 2010], LISE [Xie & Hwang, 2012; Xie et al., 2013], and 

Hirayama’s method [Soga et al., 2007]. 

 
2.3.1.5 Combination-based and others 

These methods combine two or more methods to predict the ligand binding site. The idea 

is that, for example, geometry and energy are two distinct properties of ligand binding sites, and 

since different methods can complement or cancel each other out, it is not surprising that a 

combination of these methods can be successful in predicting ligand binding sites [Kukol, 2014]. 

Examples include ConCavity [Capra et al., 2009], MEDock [Chang et al., 2005], Thornton’s 

method [Gutteridge et al., 2003], MetaPocket 2.0 [Huang, 2009] and P2Rank [Krivák & Hoksza, 

2018]. MetaPocket 2.0 reports the consensus of the results of 8 different methods [Huang, 2009; 

Kukol, 2014]. The P2Rank algorithm is based on the classification of points evenly distributed on 

the protein’s Solvent Accessible Surface (SAS points). Initially, SAS points are described by a 

vector of Physico-chemical, geometric, and statistical properties computed from their local 

geometric neighborhood. A machine learning-based model then assigns a predicted ligandability 

score to each SAS point. Finally, the points with high predicted ligandability – ligand binding 

capacity, scores are clustered to form predicted ligand binding sites [Krivák & Hoksza, 2018]. 
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2.3.2 Binding pocket comparison  

Analyses of protein-ligand complexes deposited in the Protein Data Bank (PDB) have 

shown that most small organic molecules interact with specific pocket-shaped indentations on the 

surface of their target proteins [Govindaraj & Brylinski, 2018]. These surface regions are called 

binding sites or binding pockets [Govindaraj & Brylinski, 2018]. It is now well known that distant 

proteins can have comparable binding sites with the ability to recognize chemically similar ligands 

[Govindaraj & Brylinski, 2018]. Various computational tools have been developed to assess the 

similarity of binding sites in proteins. These include PocketMatch (a web server that generates a 

score, PMScore for a pair of pockets compared) [Yeturu & Chandra, 2008]; eF-seek and eF-site (a 

web server that searches for similar ligand binding sites) [Kinoshita et al., 2007; Kinoshita et al., 

2002]; Patch-Surfer: a web server that uses the 3 Dimensional Zernike Descriptor (3DZD) and 

Approximate Patch Position (APP) to describe the features of different patches of the protein 

pocket, then retrieves similar pockets in the pocket database based on the similarity of 3DZD and 

APP between patches of different pockets, to predict the binding ligand [Sael & Kihara, 2012]; 

and CavBase: uses graph theory and clique detection algorithms [Schmitt et al., 2002] to capture 

similarities between binding sites [Govindaraj & Brylinski, 2018].  

The alignment-based methods use tools like SiteEngine: a web server that recognizes 

regions on the surface of one protein that resembles a specific binding site of another [Shulman-

Peleg et al., 2005]; Alignment of Pockets (APoc): uses iterative dynamic programming and integer 

programming to determine the best alignment between two binding sites while taking secondary 

structure and fragment fitting into account [Gao & Skolnick, 2013]; SOIPPA (Sequence Order-

Independent Profile-Profile Alignment): an algorithm capable of detecting a priori local similarity 

between unknown binding sites and employing a scoring function that integrates geometric, 

evolutionary, and physical information into a unified framework [Xie & Bourne, 2008]; and 

Graph-based Local Structure Alignment (GLoSA): aligns protein local structures in a sequence-

independent manner and generates a GA-score, a size-independent quantity of structural similarity 
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for a given pair of local structures [H. S. Lee & Im, 2016, 2017]. GLoSA is a standalone program, 

whereas APoc has both a web server and a standalone version that can be used to compare multiple 

pockets in a single run.  

 
2.3.3 GPCR ligand binding prediction  

A major advance in the study of GPCRs as drug targets is the identification of ligands that 

bind to GPCRs [Seo et al., 2018]. Many biochemical or bioinformatic approaches have been 

proposed to identify drug binding to the receptor, with a focus on the calculation of protein-ligand 

binding affinity, which relies heavily on 3D structures of proteins or ligands [Seo et al., 2018]. 

Current computational databases contain a large number of molecules and are freely accessible, 

making computational ligand discovery a compelling alternative to high-throughput screening and 

other experimental approaches in the early stages of ligand discovery [Raschka & Kaufman, 2020].  

There are two main approaches to computational ligand discovery. These are the ligand-

based virtual screening and the structure-based virtual screening [Raschka & Kaufman, 2020]. 

Ligand-based virtual screening approaches focus on the structure and physicochemical properties 

of ligands in the absence of a receptor structure, while structure-based virtual screening requires 

knowledge of the receptor structure, such as molecular docking [Raschka & Kaufman, 2020]. 

Structure-based virtual screening uses scoring functions to identify favorable ligand candidates for 

the protein. These scoring functions fall into four classes: force field, empirical, knowledge-based, 

and machine learning-based [Raschka & Kaufman, 2020].  

In recent years, machine learning has improve both ligand-based virtual screening and 

structure-based virtual screening [Li et al., 2019; Raschka & Kaufman, 2020]. Techniques used 

include random forest, convolutional neural network, deep neural network, decision tree and 

support vector machine [Seo et al., 2018; Li et al., 2019; Raschka & Kaufman, 2020]. Some of 

these techniques are based on a set of descriptors derived from the proteins and ligands. Descriptors 

comprise the properties of atoms in  protein-ligand complexes [Hassan, 2018; Jiménez et al., 
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2017], ligand structures and sequences of GPCR amino acid motifs [Seo et al., 2018]. These 

descriptors include the following but are not limited to [Seo et al., 2018; Hassan, 2018; Jiménez et 

al., 2017]: 

• Hydrophobic: amino acid repels or fails to mix with water 

• Aromatic: an amino acid that includes an aromatic ring 

• Hydrogen bond acceptor: the amino acid of a hydrogen bond which does not supply 

the bridging (shared) hydrogen 

• Hydrogen bond donor: the amino acid of a hydrogen bond that does supply the 

bridging (shared) hydrogen 

• Positive ionizable (Gasteiger positive charge): ability to form ionic bonds and 

become positively charged 

• Negative ionizable (Gasteiger negative charge): ability to form ionic bonds and 

become negatively charged 

• Metallic (Mg, Zn, Mn, Ca, or Fe): the ability to bind to metals 

 

These descriptors are measured either on a scale or based on counts: thus, the number of 

amino acids that are hydrophobic, aromatic, hydrogen bond acceptor or donor etc. How many can 

bind to metal ions? 
 
 
2.3.4 Protein-ligand docking 

The goal of protein-ligand docking is to predict the position and conformation of a ligand 

when it binds to a protein receptor or an enzyme [Taylor et al., 2002; Forli et al., 2016]. Several 

protein-ligand docking applications are available, such as, AutoDock and AutoDock Vina [Morris 

et al., 2009; Trott & Olson, 2009], rDock [Ruiz-Carmona et al., 2014], Surflex [Spitzer & Jain, 

2012] and Glide [Friesner et al., 2004, 2006]. These applications calculate the location, geometry, 

and energy of ligands or peptides interacting with proteins. They have been used to couple GPCRs 
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to their associated ligands. There are some that are specific to GPCRs, such as, IPHoLD, an 

integrated protein homology model, ligand docking and protein design approach that models  

conformational selection and ligand binding modes with induced matching only in terms of 

homologous receptor structures [Feng et al., 2017]. Figure 4 shows an illustration of protein-ligand 

docking. 

 

 
 

Figure 4: Schematic illustration of docking a small molecule ligand (green) to a protein target 

(black) producing a stable complex (source: Wikipedia: 

https://en.wikipedia.org/wiki/Docking_(molecular)) 

 Structural similarities in binding poses between small molecules have been shown to be 

important in docking. RosettaLigandEnsemble (RLE) was developed based on structural 

similarities in binding poses among small molecules that bind to one binding pocket [Fu & Meiler, 

2018]. RLE has been found to generate more consistent docking results within a congeneric series 

and salvage failed docking of individual ligands [Fu & Meiler, 2018]. Malhotra & Karanicolas, 

(2017) showed that for the 14% of pairs of related ligands that are resolved in complex with the 

same partner protein, their mode of binding changes with chemical manipulation of the smaller 

ligand in the pair. They have shown that simple structure-based modeling is more effective for 
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identifying chemical substitutions that alter the binding mode for these pairs of ligands [Malhotra 

& Karanicolas, 2017]. Some ligand pairs change binding mode because the added substituent 

would irreconcilably conflict with the receptor in the original pose, whereas others change because 

the added substituent enables new, stronger interactions that are available only in a different pose 

[Malhotra & Karanicolas, 2017]. 

 
2.4 BINDING POCKET ELECTROSTATIC PROPERTIES 

The electrostatic properties of proteins are derived from the proportion and distribution of polar 

and charged residues [Sinha & Smith-Gill, 2002]. Polar and charged residues use electrostatic 

properties to form short-range interactions such as salt bridges and hydrogen bonds and defining 

the overall electrostatic environment in the protein [Sinha & Smith-Gill, 2002]. Short-range and 

long-range electrostatic interactions, along with other forces, provide guidance cues in molecular 

and macromolecular assembly [Vascon et al., 2020]. Charged and polar groups impart important 

properties to proteins through ion pairing, hydrogen bonding, and other less specific electrostatic 

interactions [Zhou & Pang, 2018]. Electrostatics plays an important role in defining the 

mechanisms of protein-protein complex formation, molecular recognition, thermal stability, 

conformational adaptability, and protein movement [Sinha & Smith-Gill, 2002]. For example, 

increased binding specificity and affinity involve optimization of electrostatics; high-affinity 

antibodies have higher and stronger electrostatic interactions with their antigens; the rigid parts of 

proteins have higher and stronger electrostatic interactions [Sinha & Smith-Gill, 2002].  

Using the R package Peptides [Daniel Osorio, 2021], we calculated Molecular Surface 

Weighted Holistic Invariant Molecular (MS-WHIM) scores (consisting of three values, x, y, and 

z) of the amino acids in each pocket [Bravi et al., 1997; Zaliani & Gancia, 1999]. MS-WHIM 
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scores are calculated using electrostatic potential properties derived from the 3D structure of the 

20 natural amino acids, as described in the references [Bravi et al., 1997; Zaliani & Gancia, 1999] 

To visualize the electrostatic properties, the electrostatic surface properties of the pockets were 

generated using the PyMOL plugins APBS and PDB2PQR [Jurrus et al., 2018]. 

 
2.5 PROTEIN STRUCTURAL COMPARISON 

Comparative analyzes of protein sequences and structures play a central role in 

understanding proteins and their functions [Hasegawa & Holm, 2009]. Assuming an evolutionary 

continuity of structure and function, describing the structural similarity relationships among 

protein structures permits scientists to deduce the functions of newly found proteins [Holm & 

Laakso, 2016]. Several protein structure comparison programs have been developed, such as CE 

[Shindyalov & Bourne, 1998], DALI [Holm & Sander, 1993], MultiProt [Shatsky et al., 2002], 

and FATCAT [Ye & Godzik, 2003; Ye & Godzik, 2004]. Some of these programs, for example, 

FATCAT, take flexibility and structural rearrangements of proteins into account. FATCAT 

optimizes alignment and minimizes the amount of rigid body motion (twists) about pivots (hinges) 

introduced into the reference protein [Ye & Godzik, 2003; Ye & Godzik, 2004]. FATCAT 

generates a structural similarity score (RMSD), sequence similarity, and identity score for each 

pair of GPCRs it compares. Figure 5 shows a flexible and a rigid structural alignment of GPCRs 

with PDB IDs 3PBL and 6CM4.  
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Figure 5: FATCAT Structural alignment of PDB: 3PBL and PDB: 6CM4 (Left: Flexible, right: 

Rigid) 
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Chapter 3: Materials and Methods 

In this chapter we first describe the construction of our datasets: GPCR ligand interaction 

and 3D structures. This is followed by a description of methods of motif search, 3D structural 

comparisons, binding pockets prediction and comparison, GPCR ligand docking, ligand binding 

pose and conformation, protein-ligand interaction, pockets, and 3D structural similarity, and 

pocket electrostatic properties. Appendix B contains detailed step-by-step instructions that one can 

follow to complete the analysis. Figure 6 shows the workflow of this study. Appendices C through 

G contain the Python and R codes developed for the various steps of the workflow. A copy is 

available at github.com/owusukd/GPCR_Ligand_Interaction. 

 

 
Figure 6: Workflow overview 

 
3.1 DATASET COLLECTION 

We compiled publicly available datasets on GPCR 3D structures and sequences for 

structural comparison, molecular docking, and sequence motif search. In addition, for the GPCR 
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sequences, we collected information on the beginning and end of their regional sequences (the N-

terminal, extracellular loops, intracellular loops, the seven trans-membrane helices, and the C-

terminal).  

Beginning with confirmed GPCRs in the GPCR-PEnDB database [Begum et al., 2020] 

information on GPCR ligand interactions was gathered, compiled, and restructured to aid 

computational analysis and to identify ligands that bind to GPCRs in three different IUPHAR 

[Armstrong et al., 2020] families.  

Data on interactions were gathered from IUPHAR, BindingDB [Gilson et al., 2016], and 

GLASS [Chan et al., 2015]. It also includes data on each ligand's SMILES (Simplified Molecular 

Input Line Entry Specification—a linear notation for describing chemical structures), affinity 

relations, InChIKey (International Chemical Identifier compact hashed code), potency, activity, 

inhibition, affinity, and action (i.e., agonist, full agonist, partial agonist, antagonist, inverse 

agonist, biased agonist, etc.).  

As positive controls for the various docking analyses (sections 4.5 & 4.6), 11 ligands that 

bind to a mix of GPCRs from the same family, different families, and non-GPCRs with protein-

ligand complexes on PDB (see Section 4.2: Table 5) were gathered. The 11 ligands were chosen 

to have GPCR representations from various IUPHAR families. However, due to a lack of GPCR 

ligand complexes on PDB, not all families had representations. 

 
3.1.1 Data Sources 

Five datasets have been collected and saved. Below is a description of the datasets: 

1. Research Collaboratory for Structural Bioinformatics Protein Data Bank (PDB) dataset 

contains available 3D structural data on GPCR. This includes GPCR PBD IDs as well as 

experimental structural factor data (this includes information about the atoms, coordinates of 

the atoms in space, etc., that makes up the 3D structure of the protein). 
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2. BindingDB dataset contains information on the ligands and the GPCRs they bind to. This 

information includes binding affinities, ligand molecular weight, and SMILES (Simplified 

Molecular Input Line Entry System).  

3. GLASS (GPCR-Ligand ASSociation) had data on the ligands that bind to GPCRs. These data 

include ligand IDs and binding affinities. 

4. IUPHAR/BPS dataset contained information on the actions of ligands on GPCRs, such as 

whether they are agonists, full agonists, partial agonists, antagonists, inverse agonist, biased 

agonists, neutral, positive, or negative. 

5. Finally, we obtained the confirmed GPCR sequences from GPCR-PEnDB (GPCR Prediction 

Ensemble Database; gpcr.utep.edu/database) and UniProtKB. In addition, we obtained data 

from UniProtKB on the beginning and end of the GPCRs' regional sequence (the N-terminal, 

extracellular loops, intracellular loops, seven helices, and C-terminus). 

The GPCR sequence data was saved as a single fasta file. We saved their PDB ID as a 

single csv file for the 3D structural data, and then their experimental data on their structural factors 

as a pdb file. A text file containing data on the beginning and end of the regional sequence was 

created. All other data was saved as a single csv file. 

 
3.1.2 Procedures for data acquisition 

We obtained a list of UniProt IDs of confirmed GPCRs from our database (originally from 

UniProtKB), GPCR-PEnDB, and using this list, and we searched PDB for each of them to see if 

there was a 3D structure for it, using the advanced search available on PDB. With the custom table 

option, we selected the PDB ID, experimental method, ligand ID, and Accession code(s) from the 

search results and downloaded the resulting csv file. We discovered that the column in the data for 

UniProt ID contained multiple UniProt IDs after performing some exploratory data analysis (on 

each column/variable). As a result, we took that column and cross-checked it against the list of 

confirmed GPCRs to eliminate any non-GPCRs from the list. After that, we crosschecked the 
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elimination result to see if there was a PDB entry for each of the UniProt IDs we discovered. 

Following confirmation of the result, we use the advanced search to search and download data on 

each at a time, avoiding the situation described above. We then downloaded information about 

their 3D structure. GPCR-PEnDB was used to obtain the protein sequences of the confirmed 

GPCRs (originally from UniProtKB). Also, data on the start and end of the regional sequence (the 

N-terminal, extracellular loops, intracellular loops, the seven helices, and the C-terminal) of the 

GPCRs were obtained from UniProtKB. 

To obtain data from BindingDB, we had to create an account with them to get access to the 

data. We searched for each of the confirmed GPCR on their site using the UniProt IDs of the 

GPCRs. After getting a hit, we had to enter our login credentials and security code generated by 

the site, each time we wanted to download data on the hit. The data came in a tsv (tab-separated 

values) file. 

In the case of IUPHAR/BPS, we navigated within their website to “download data and 

reports” through “downloads,” which was under “resources.” On the “download data and reports” 

page, we downloaded data on “complete ligand list”, and “all interaction data for ligands and 

targets,” which were listed under the subheading “Download data files”. In addition, the interaction 

data contained information on whether the ligand is an antagonist or an agonist.  

 
3.1.3 Exploratory data analysis and data restructuring 

After gathering all the necessary data mentioned above, we conducted exploratory data 

analysis on them. PDB IDs of GPCRs obtained from the PDB were cleaned to remove duplicates. 

Ligand data from BindingDB, IUPHAR/BPS, and GLASS were restructured to include all binding 

affinities, namely EC50, IC50, Ki, Kd, pKb, pEC50, pKi, pIC50, pKd, potency, activity (in %), 

and inhibition (in %) in a single column. The binding affinities were cleaned of relational symbols 

(>, etc.) and reorganized into a new column. We merged ligand data from BindingDB, 

IUPHAR/BPS, and GLASS based on GPCR IDs after restructuring. The resulting data was 
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duplicate-free and saved as a csv file. The exploratory data analysis and data restructuring were 

carried out using custom scripts I wrote in the R programming language (Appendix C.1 to C.5). 

 
3.2 MOTIF SEARCH 

During the exploratory data analysis, we discovered that some ligands bound to GPCRs 

from two or more distinct IUPHAR families. As a result, we decided to conduct a motif search 

across the GPCRs that these ligands bound to to see if any significant motifs traverse GPCRs 

IUPHAR families. We concentrated on ligands that bound to GPCRs from three different IUPHAR 

families. We searched for motifs using the Multiple Expression Motifs for Motif Elicitation 

(MEME) system. MEME searches for repeated, un-gapped sequence patterns in DNA or protein 

sequences provided by the user [Bailey et al., 2006; Bailey et al., 2009; Bailey et al., 2015]. In our 

motif search, we took three approaches: 

1. Perform a motif search on the entire sequence of the GPCRs. 

2. Perform a motif search on the regional sequence (the N-terminal, extracellular loops, 

intracellular loops, the seven helices, and the C-terminal) of the GPCRs. 

3. Perform a motif search on the modified regional sequence (that is start the regional 

sequence five amino acids before the actual start of the regional sequence and/or end the 

regional sequence five amino acids after the actual end of the regional sequence) of the 

GPCRs. 

To conduct these motif searches, we obtained the start and end of the regional sequence 

(the N-terminal, extracellular loops, intracellular loops, seven helices, and C-terminal) of the 

GPCRs from UniProt. These data were used to divide the GPCR sequence into different regions 

(N-terminal, extracellular loops, intracellular loops, seven helices, and C-terminus) using the R 

scripts and resulting sequence regions were saved as fasta files. After segmenting the sequences 

into regions, we used MEME to search for motifs. Motifs with an E-value < 0.1 were kept as 
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significant motifs. All sequence cutting and motif searches were carried out using R and shell 

scripts, respectively (Appendix D). 

 
3.3 STRUCTURAL COMPARISON 

In our quest to understand why some ligands bind to GPCRs of three distinct IUPHAR 

families, we decided to investigate whether there are some 3D structural similarities across 

different IUPHAR families that facilitate the binding. To achieve this, we performed pairwise 3D 

structural comparisons of the GPCRs bound to the same ligand and accessed the comparisons 

based on the  alignment’s RMSD (root mean square deviation) value of the alignment. The 

comparisons were made using Flexible structure AlignmenT by Chaining Aligned fragment pairs 

allowing Twists (FATCAT) [Ye & Godzik, 2003; Ye & Godzik, 2004]. FATCAT starts by 

identifying a list of AFPs (aligned fragment pairs)—a superposition of two continuous 

fragments—in the two proteins to be compared [Ye & Godzik, 2003; Ye & Godzik, 2004]. The 

FATCAT structure alignment is formulated as an AFP chaining process that allows for flexibility 

in connecting them, that is, introducing between two consecutive AFPs a rotation/translation 

(twist) if it results in a substantially better superposition of the structures [Ye & Godzik, 2003; Ye 

& Godzik, 2004].  

We made use of the stand-alone version of FATCAT, which is publicly available on 

GitHub (https://github.com/GodzikLab/FATCAT-dist). We performed a rigid FATCAT and a 

flexible FATCAT. The rigid FATCAT uses a rigid-body superposition to align the two structures, 

whereas the flexible FATCAT introduces ‘twists’ between different parts of the proteins, which 

are superimposed independently [Prlić et al., 2010; Ye & Godzik, 2004; Ye & Godzik, 2003]. We 

wrote Python code to map the sequence alignment from FATCAT to the GPCR structures under 

comparison in order to extract the portions of their 3D structures that were found to be structurally 

similar. These portions were used for further analysis (see Section 3.9). For GPCRs that had 

multiple structures deposited in PDB, we selected one of their PDB IDs with the longest protein 
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sequence of the GPCR. In other words, the one with a protein sequence length closer to the actual 

GPCR sequence length was chosen for 3D structural comparison.  The 3D structural comparisons 

were carried out using shell script and python codes (Appendix E.1). 

 
3.4 BINDING POCKET PREDICTION 

 Three-dimensional structures of the GPCRs under consideration were downloaded from 

PDB and cleaned of any unwanted molecules, including ligands not under study in this work and 

molecules used to aid the determination of the 3D structure of the GPCRs. If the binding site of 

the ligand is known, we compare it with the binding site or predicted pockets of the other GPCRs 

that bind to the same ligand. If the binding site of the ligand is unknown, we submit the cleaned 

3D structure to the P2Rank (version 2.2) stand-alone version for binding pocket prediction. None 

of the ligands had a known binding site for the GPCRs they interact with, so we submitted all the 

GPCRs they interact with to P2Rank. Results from P2Rank come in the form of a csv file 

containing the pocket number, pocket center in xyz-coordinates, and position IDs of the amino 

acids that form the pocket. As a result, we wrote a Python code (Appendix E.2.1.3) to extract the 

predicted pockets from the 3D structure of the GPCR using the position IDs from the pocket 

prediction results. Finally, all predicted binding pockets were considered for pocket comparison 

and for molecular docking. Binding pocket predictions were carried out using shell script 

(Appendix E.2.1.1 & E.2.1.2). 

 
3.5 BINDING POCKET COMPARISON 

 All binding pockets predicted by P2Rank for each of the GPCRs were compared against 

those of the GPCRs they share the same ligand with. The comparisons were performed using APoc 

[Teilum et al., 2009] which implements iterative dynamic programming and integer programming 

to calculate the optimal alignment between a pair of binding sites considering the secondary 

structure and fragment fitting. APoc provides a scoring function called the Pocket Similarity (PS)-
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score, which quantifies the pocket similarity between two given pockets based on their backbone 

geometry, the orientation of side chains, and chemical matching of aligned pocket residues [Teilum 

et al., 2009;Schmitt et al., 2002]. APoc can be applied to both experimentally determined and 

computationally predicted ligand binding sites [Shulman-Peleg et al., 2005]. The scoring function 

of APoc takes into consideration the chemical similarity of the aligned amino acids of the pockets 

in comparison [Shulman-Peleg et al., 2005]; as a result a separate chemical similarity score of the 

predicted binding residues of the pockets in contrast was not necessary. APoc was chosen over 

others for its good performance and ease of comparing multiple pockets in one run. Binding pocket 

comparisons were carried out using shell script and results were gathered using python code 

(Appendix E.2.2). 

 
3.6 GPCR LIGAND DOCKING 

Protein-ligand interactions are generally specific, in terms of the ligand involved, and the 

location the interaction takes place [Kukol, 2014]. As a result of the location specificity of the 

ligand binding sites, we decided to perform molecular docking between the ligands that bind to 

GPCRs of three distinct IUPHAR families to find out what they have in common at the binding 

sites and what binding residues they share at the binding sites. In so doing we downloaded 3D 

structures of these GPCRs from PDB and were prepared using a shell script. The preparation 

involved deleting any metal compounds and water molecules, deleting ligands, and adding and 

optimizing hydrogen bonds. We also added Gasteiger partial charges to the protein. The prepared 

protein was saved having the file extension pdbqt. Gasteiger partial charges are commonly referred 

to as net atomic charges that are used in molecular mechanics force fields to compute the 

electrostatic interaction energy [Kramer et al., 2014] 

We converted the SMILES (Simplified Molecular Input Line Entry System) of the ligands 

into 3D structures using Open Babel [O’Boyle et al., 2011] adding and optimizing hydrogen bonds. 
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We also added Gasteiger partial charges to the ligand and saved them as pdbqt files using Open 

Babel. 

The ligands were docked using AutoDock Vina [Trott & Olson, 2009] into all the predicted 

binding pockets for the GPCRs they are known to bind to. This was done because at the time of 

this study there were no known 3D complexes of the ligands bound to the GPCRs on PDB [Berman 

et al., 2002]; therefore, we had no information of where and how the ligand binds to the GPCRs. 

Six ligand modes (poses and conformations) were generated, and only the ligand mode with the 

most negative value for the binding affinities (i.e., strongest binding) were retained for further 

analysis. We assessed the correlation between the PS-scores provided by APoc and the absolute 

difference of the binding affinities. Note that the smaller this absolute difference, the more alike 

the two pockets are in terms of their binding strengths for the same ligand. A negative correlation 

would imply that the PS-score is a good predictor of similarity in binding affinities. 

 
3.7 LIGAND BINDING POSE AND CONFORMATION 

After docking the ligands to their respective GPCRs, we aligned the docked ligand 3D 

structures using the PyMOL structural alignment method align, “which” performs a sequence 

alignment followed by a structural superposition. This allowed us to assess the conformation of 

the docked ligands using the root mean squared deviation (RMSD) from the alignment. The 

Pearson correlation between the pocket similarity score (PS-Score) and the RMSD was assessed. 

The ligand poses were visually examined using PyMOL. 

To assess the reliability of the docking results of the study data, we aligned the ligands of 

the pairs of pockets as deposited on PDB and recorded the RMSD from the alignment, RMSDActual, 

of the control data. We then docked the same ligands into the same pockets as found on PDB and 

then aligned the ligands docked into the pairs of pockets of the control data. The RMSD from the 

alignment of the docked ligands were recorded as RMSDDocked. We assessed the reliability of the 
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docking results by measuring the difference between the two sets of RMSD data of the control 

data and the relationship between PS-scores and RMSDActual. 

 
3.8 PROTEIN LIGAND INTERACTION 

After the ligands have been docked into all the predicted binding pockets, we use LigPlot+ 

[Laskowski & Swindells, 2011] to determine which residues of the GPCRs interact with which 

atoms of the ligand. LigPlot+ generates schematic 2D representations of protein–ligand complexes 

with colored outputs, postscript files containing information on intermolecular interactions and 

their strengths, including hydrogen bonds, hydrophobic interactions, and atom accessibilities 

[Laskowski & Swindells, 2011]. LigPlot+ was used to ascertain the interaction of retinal with the 

lysine amino acid of rhodopsin as proposed by Malhotra & Karanicolas, (2017). This interaction 

was detected within a threshold of 5Å. Based on this, we chose hydrogen bonds detected within 5 

Å by LigPlot+. We gathered data on the number of same residues across the pockets we are 

comparing that interact with the ligand from the LigPlot+ results output. 

 
3.9 PREDICTED POCKET AND 3D STRUCTURAL SIMILARITY COMPARISON OVERLAP 

After the GPCRs that bind the same ligand have been compared based on their 3D structure, 

we compared the portions of the proteins that were similar from the pairwise 3D structure 

comparison (see Section 3.3) to their own predicted pockets. For example, let the 3D structures of 

the GPCR with PDB ID 3G04 be A, and that of the GPCR with PDB ID 7LCK be B. Let PA be the 

part of A that was found to be 3D structurally similar to B, likewise, PB be the part of B that was 

found to be 3D structurally similar to A. Let PK(A, i), i = 1, 2, …, m be the predicted pockets of A 

and PK(B, j), j = 1, 2, …, n be the predicted pockets of B. Each PK(A, i), i = 1, 2, …, m was compared 

with PA and each PK(B, j), j = 1, 2, …, n was compared with PB. An “overlap score” was calculated 

for each comparison using the formula below: 
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𝑆(",$),&	 =
𝑁(𝑎𝑎𝑃" ∩ 𝑎𝑎𝑃𝐾(",$))

𝑁(𝑎𝑎𝑃𝐾(",$))
, 

𝑆(&,()," =
𝑁(𝑎𝑎𝑃& ∩ 𝑎𝑎𝑃𝐾(&,())

𝑁(𝑎𝑎𝑃𝐾(&,())
, 

(1) 

where S(A, i),B is the overlap score for the 𝑖th pocket of A with PA when A is compared with 

B, S(B, j),A is the overlap score for the 𝑗th pocket of B with PB when B is compared with A.  In 

equation (1), aaPA, aaPB, aaPK(A,i), and aaPK(B,j)  respectively denote the sets of ordered positions of 

amino acids in PA, PB, aaPK(A,i), and aaPK(B,j), and N(•) represents the count of the amino acid 

positions. The code for the overlap scoring is included Appendix E.3. Overlap scores were 

calculated for both cases of using flexible 3D structural comparisons and rigid 3D structural 

comparisons (see Section 3.3). An average score for the flexible and the rigid cases were obtained 

for each pocket. The average scores were summed together for each pair of pockets compared 

using the formula below: 

𝑆(",$),(&,() = 𝑆(̅",$),& + 𝑆(̅&,(),", (2) 

where 𝑆(̅",$),& and 𝑆(̅&,()," are the average overlap score for the flexible and the rigid case of pocket 

PK(A,i) and  PK(B,j), and S(A,i), (B,j) is the sum of average overlap scores for the pair of pockets, PK(A, i) 

and PK(B, j), being compared. The summed average overlap scores obtained by Equation (2) were 

then analyzed to determine their Pearson correlation with the PS-scores. This was done to check 

if the parts of the proteins that are 3D structurally similar are also locations for pockets. 

 
3.10 POCKETS ELECTROSTATIC PROPERTIES 

We calculated Molecular Surface Weighted Holistic Invariant Molecular (MS-WHIM) 

scores (made up of three values, x, y, z) [Bravi et al., 1997; Zaliani & Gancia, 1999] of the amino 

acids of each of the pockets using the R package Peptides [Daniel Osorio, 2021]. MS-WHIM 

scores are obtained from electrostatic potential properties derived from the 3D structure of the 20 

natural amino acids as described in references [Bravi et al., 1997; Zaliani & Gancia, 1999]. We 

calculated the Chebyshev distance between the MS-WHIM scores of any two pockets under 

comparison. For example, let PK(A,i), i = 1, 2, …, m be the predicted pockets of GPCR A and PK(B,j), 
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j = 1, 2, …, n be the predicted pockets of GPCR B that are under comparison. For each pocket 

PK(A, i) and PK(B, j), we calculate MS-WHIM scores of the amino acids that form the pockets. These 

scores (𝑥, 𝑦, 𝑧))*(",$) and (𝑥, 𝑦, 𝑧))*(&,') for the pockets we are comparing were seen as points in 

the 3D-space, and the distance D between the two points was calculated using Chebyshev distance. 

𝐷 6(𝑥, 𝑦, 𝑧))*(",$) , (𝑥, 𝑦, 𝑧))*(&,')7 = max;<𝑥$ − 𝑥(<, <𝑦$ − 𝑦(<, <𝑧$ − 𝑧(<	?. (3) 

The Chebyshev distance was calculated for each pair of pockets under comparison. The distances 

were later used to determine the Pearson correlation between the PS-score and MS-WHIM. To 

visualize the electrostatic properties, electrostatic surface properties of the pockets were generated 

using APBS and PDB2PQR [Jurrus et al., 2018] plugins for PyMOL. 
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Chapter 4: Results and Discussion 

In this chapter we have the overall results on all the methods discussed above. 

 
4.1 CURRENTLY KNOWN 3D STRUCTURES OF GPCR 

Below are figures of the frequency distribution of the 3D structures we have collected. 

There were 817 atomic-level 3D GPCR structures related to 161 distinct GPCRs, of which 107, 

27, 16, 2, 0, 9, and 0 are in Class A, B, C, D, E, F, and T2R, respectively, on PDB (June 2022) 

(see Figure 7). There were no 3D structures for Class E, however, Class A GPCRs had the most 

3D structures on PDB. Figure 8 shows the frequency distribution by year. Generally, the number 

of 3D structures of GPCRs is increasing rapidly by the year. We have added links from GPCR-

PEnDB to the PDB structure files. 

 
Figure 7: Frequency distribution of GPCRs 3D structures in PDB classified by family 
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Figure 8:  Frequency distribution of new GPCR 3D structures added by year 

In GPCR-PEnDB we collected data on GPCR ligand interactions which was obtained from 

IUPHAR, BindingDB, and GLASS. The data contains a total of 1,061,462 GPCR ligand 

interactions with information on ligands and the binding affinities (Ki, Kd, IC50, EC50, pKB, pKi, 

pKd, pIC50, pEC50). In addition, it contains information on ligand’s SMILES (Simplified 

Molecular Input Line Entry Specification: a linear notation for describing chemical structures), 

affinity relations, and ligand’s InChIKey (International Chemical Identifier compact hashed code), 

potency, activity, inhibition, action (i.e., agonist, full agonist, partial agonist, antagonist, inverse 

agonist, biased agonist, neutral, positive, and negative).  

 
4.2 GPCR LIGAND BINDING 

Analysis on the GPCR-ligand binding data revealed that there are ligands that bind to 

human GPCRs of multiple IUPHAR families (Table 2). Table 2 shows over 16000 ligands 

interacting with human GPCR of two or more IUPHAR families. There were 11 ligands that binds 



39 

to human GPCRs of three different IUPHAR families (Table 3 & 4). These 11 ligands had 106 

interactions with human GPCRs, involving 69 unique GPCRs. Of the 69 unique GPCRs, 42 had 

entries in RCSB PDB. IUPHAR classify three of these ligands as synthetic organic based on their 

nature (Table 3). The remaining eight ligands had no entry and classification in IUPHAR. 

IUPHAR classify ligands as approved, WHO, synthetic organics, metabolites, natural products, 

endogenous peptides, inorganics etc. There were no RCSB PDB entries of GPCR-ligand 

interaction of the 11 ligands that bind to human GPCRs of three different IUPHAR families.  

Table 2: Frequency distribution of ligands by the number of distinct IUPHAR families they bind 
to. 

Number of 
distinct IUPHAR 

families 
Frequency 

1 98750 
2 16191 
3 11 

 
Table 3: List of the 11 ligands that bind to 3 different IUPHAR families 

Ligands InChIKey Abbreviation Compound Class 
XLWJPQQFJNGUPA-UHFFFAOYSA-N XLWJ Synthetic Organic 
DTZDSNQYNPNCPK-UHFFFAOYSA-N DTZD Synthetic Organic 
CLQVVBPDAXJGBV-UHFFFAOYSA-N CLQV Synthetic Organic 
AJLFQFYMLRXVHV-UHFFFAOYSA-N AJLF Not known 
IKSHHOBCJKJKOG-UHFFFAOYSA-N IKSH Not known 
FQUAFMNPXPXOJE-UHFFFAOYSA-N FQUA Not known 
MLQFOEOUNIRULR-UHFFFAOYSA-N MLQF Not known 
YKMSTUDOGGAEJH-UHFFFAOYSA-N YKMS Not known 

USZPQRMQYJIDII-UHFFFAOYSA-N USZP Not known 
BYBLEWFAAKGYCD-UHFFFAOYSA-N BYBL Not known 
NKOPNLUYOHOGFZ-UHFFFAOYSA-N NKOP Not known 

 

It should be noted that out of the 11 ligands, 3 were found to bind to a rather large number 

of GPCRs (e.g., ligand FQUA bound to 25 Class A, 6 Class B, and 2 Class C GPCRs), each of 
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Table 4: Ligands that binds to GPCRs of three IUPHAR families. 

Ligands 
InChI Key GPCR UniProt ID IUPHAR 

Family 

Number 
in each 
Family 

XLWJ 
O75899, Q9UBS5 C 2 

P16473, P21728, Q6W5P4 A 3 
P43220, Q03431 B 2 

DTZD 
P21728 A 1 
P43220 B 1 
Q14831 C 1 

CLQV 
P21453, Q6W5P4 A 2 

P43220 B 1 
Q14833 C 1 

AJLF 
P16473 A 1 
P43220 B 1 

Q9NYV8 T2R 1 

IKSH 
P16473 A 1 
Q03431 B 1 

Q9NYV8 T2R 1 

FQUA 

O14842, O14843, O15552, O43194, P07550, P08172, 
P11229, P14416, P18825, P24530, P25103, P28222, 
P28223, P28335, P29274, P32245, P35367, P35368, 

P35372, P37288, P41145, Q5NUL3, Q8IZ08, 
Q8TDU9, Q99788 

A 25 

P59536, P59551, Q9NYV7, Q9NYV8, Q9NYW1, 
Q9NYW5 T2R 6 

P47871, P48546 B 2 

MLQF 

O00222, P41594, Q13255, Q14416, Q14831, Q14832, 
Q14833 C 7 

Q03431 B 1 
Q6W5P4 A 1 

YKMS 
P14416, P21917, P35462 A 3 

P43220 B 1 
Q14416 C 1 

USZP 
P16473 A 1 
P43220 B 1 
P41594 C 1 

BYBL 

P08172, P08173, P08588, P08913, P0DMS8, P11229, 
P13945, P14416, P18089, P20309, P21452, P21554, 
P21728, P21917, P25021, P25100, P25103, P28223, 
P28335, P29274, P30542, P32245, P33032, P35372, 
P35462, P41143, P41145, P41595, P41968, P50052, 

P50406 

A 31 
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Ligands 
InChI Key GPCR UniProt ID IUPHAR 

Family 

Number 
in each 
Family 

O15303 C 1 
P43220 B 1 

NKOP 
P43220 B 1 
Q13255 C 1 
Q6W5P4 A 1 

 

which may have several binding pockets. Those three ligands were estimated to generate over 

30,000 binding pocket pairs in total. To reduce the number of pairwise pocket comparisons, we 

excluded the three ligands from this study and focused only on the remaining eight ligands for 

which a total of about 990 pocket pairs were compared to produce the results in Section 4.5 below. 

Also, we excluded these three ligands from analysis in Section 4.4 – 4.8.  Table 5 shows the list of 

ligands and the proteins they bind to in the control dataset. 

 

Table 5: List of Ligands and the Proteins they bind to for the Control Dataset 

Ligands PDB ID Proteins 
UniProt ID 

Protein 
PDB ID GPCR GPCR Class 

 0HK P08173 5DSG Yes A 
P11229 5CXV Yes A 

7LD P28223 6WGT Yes A 
P41595 5TVN Yes A 

7MA O43613 6TOD Yes A 
O43614 5WQC Yes A 

8NU P14416 6CM4 Yes A 
P28223 6A93 Yes A 

40F Q14416 4XAQ Yes C 
Q14832 4XAR Yes C 

89F P28222 5V54 Yes A 
P28223 6WH4 Yes A 

ADN P29274 2YDO Yes A 
P30542 6D9H Yes A 

GGL 
O00222 6BSZ Yes C 
Q14416 5CNI Yes C 
Q14832 5CNK Yes C 

GLU A0A173M0G2 5X2P Yes TR2 
E9P5T5 4IO2 No - 
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P41594 3LMK Yes A 
P42264 3S9E No - 
Q14416 7MTR Yes A 

SRO P08908 7E2Y Yes A 
P37231 3ADV No - 

Z99 

P41594 7FD9 Yes C 
Q13255 3KS9 Yes C 
Q14831 3MQ4 Yes C 
Q14832 7WI6 Yes C 

 
4.3 CONSERVED MOTIFS  

Upon the discovery that there are ligands that bind to human GPCRs of 3 different 

IUPHAR families, we set out to find why that happens. These led us to perform motif search on 

the sequences to determine whether there are some conserved motifs across different IUPHAR 

families. We performed this analysis on the full sequence, regions of the sequence (extracellular 

loops, intracellular loops, and the seven transmembrane helices), and modified regions of the 

sequence (i.e., adding 5 amino acids either at the beginning or at the end of the regional sequence 

or at both ends: this was done only to the extracellular loops). The regions of the GPCR sequences 

were labeled Ei, i = 1, 2, 3, 4: extracellular loops (N-terminal as E1); Ii, i = 1, 2, 3, 4: intracellular 

loops (C-terminal as I4); Hi, i = 1, 2, 3, 4, 5, 6, 7: transmembrane helices, and Full: full GPCR 

sequence. Below are the results of the motif search using the MEME system. A motif was deemed 

significant if E-value < 0.1. This cutoff was chosen to reduce the number of false positive whiles 

maintaining many hits. Since GPCRs are classified into families based on their sequence and 

function [Basith et al., 2018], we expected that only a few of the GPCRs under study would share 

conserved motifs, and that was the case in our analysis (19 significant motifs, Table 6 and Table 

11 in Appendix A). We found motifs that were significant across three IUPHAR families by the 

ligands. These motifs were of length as short as 5 amino acids and as long as 20 amino acids (Table 

6 and Table 11). Nevertheless, there were 13 significant motifs that were found across two 

IUPHAR families by the ligands. These are listed in Table 11 in Appendix A. 
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Table 6: Human conserved motifs of GPCR sequences across three IUPHAR families 

found by the MEME system. 
Ligands 
InChI 
Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

CLQV Full 
371 Q6W5P4 A 196 

GCWARWPDDGYW 4.40E-02 463 P43220 B 295 
912 Q14833 C 538 

FQUA 

Full 

380 P41145 A 65 

VLSLIFLVGILGNVLVIVVI 3.90E-38 

400 P35372 A 76 
373 Q99788 A 46 
471 P28223 A 80 
458 P28335 A 59 
412 P29274 A 12 
466 P08172 A 29 
462 P18825 A 57 
443 P14416 A 40 
494 Q8IZ08 A 109 
413 P07550 A 39 
520 P35368 A 51 
453 O43194 A 36 
374 Q8TDU9 A 45 
407 P25103 A 38 
418 P37288 A 57 
487 P35367 A 33 
442 P24530 A 107 
361 Q5NUL3 A 46 
332 P32245 A 50 
317 Q9NYV8 T2R 12 
318 P59551 T2R 23 
466 P48546 B 298 
460 P11229 A 31 
346 O14843 A 20 
312 Q9NYW1 T2R 12 
299 Q9NYW5 T2R 12 
307 P59536 T2R 12 
477 P47871 B 306 
390 P28222 A 55 
330 O15552 A 128 
291 Q9NYV7 T2R 136 

H1 

23 Q99788 A 46 

VYSLIFVVGILGNVLV 3.00E-32 

25 P35372 A 76 
21 O43194 A 36 
21 Q9NYV8 T2R 12 
20 O14843 A 20 
23 P08172 A 29 
21 O15552 A 13 
24 P37288 A 57 
25 P35368 A 51 
23 P35367 A 33 
21 Q5NUL3 A 46 
24 P07550 A 39 
25 P29274 A 12 
26 P28335 A 59 
25 P24530 A 107 
23 P14416 A 40 
23 P11229 A 31 
24 P28223 A 80 
25 P18825 A 57 
23 P25103 A 38 
23 O14842 A 11 
26 P32245 A 50 
23 Q9NYW1 T2R 12 
26 P28222 A 55 
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Ligands 
InChI 
Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

21 Q9NYW5 T2R 12 
21 P59536 T2R 12 
25 P47871 B 137 
21 Q8TDU9 A 45 
21 Q9NYV7 T2R 5 
28 P41145 A 65 

H2 

21 P08172 A 62 

JVSLALADLLVA 5.90E-47 

25 P32245 A 83 
24 P07550 A 72 
22 P28223 A 113 
24 P41145 A 98 
21 P11229 A 64 
21 P35367 A 66 
22 P35368 A 84 
20 O43194 A 72 
26 P28222 A 88 
26 P18825 A 90 
24 P29274 A 45 
23 O14842 A 45 
25 P35372 A 109 
21 Q8TDU9 A 80 
21 Q5NUL3 A 78 
26 P24530 A 140 
21 Q9NYV7 T2R 49 
21 P59536 T2R 48 
22 P37288 A 90 
21 O15552 A 48 
21 O14843 A 54 
22 P25103 A 71 
25 P47871 B 177 
20 P48546 B 173 
21 Q9NYW5 T2R 48 
22 Q99788 A 78 
21 P28335 A 92 
23 P14416 A 73 

MLQF E1 

559 P41594 C 176 

SPDLSDK 2.00E-02 

574 Q13255 C 189 
549 Q14416 C 169 
555 Q14833 C 183 
550 O00222 C 180 
556 Q14831 C 183 
162 Q03431 B 61 
554 Q14832 C 175 
52 Q6W5P4 A 43 

YKMS E2
* 

25 P14416 A 105 

WKFSRAVCD 2.80E-04 
26 P35462 A 101 
28 P21917 A 106 
36 P43220 B 208 
21 Q14416 C 630 

*We start the region 5 amino acids before and ended 5 amino acids after E2 

  
4.4 STRUCTURAL COMPARISON 

The presence of conserved motifs across the different IUPHAR families led to our decision 

to compare the 3D structures of the human GPCRs that bind to the same ligand. This was to 

ascertain whether there are 3D structural similarities either by regions of the GPCRs or the entire 
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GPCRs. We observed from the 3D structural comparison that comparisons are often done on the 

entire GPCRs structures if the GPCRs involved are from the same IUPHAR family, whereas 

regional comparisons are often done when the GPCRs involved are from different IUPHAR 

families. Table 7 shows the results of the 3D structural comparisons. We performed two types of 

comparisons:  

(i)  FATCAT-flexible (Flex in Table 7), which introduces 'twists' between different parts of 

the proteins which are superimposed independently, and   

(ii) FATCAT-rigid (Rigid in Table 7), which uses a rigid-body superposition to align the two 

structures).  

Here FATCAT refers to Flexible structure AlignmenT by Chaining Aligned fragment pairs 

allowing Twists [Ye & Godzik, 2003; Ye & Godzik, 2004]. 

 In the column “GPCR UniProt ID and IUPHAR Class” of Table 7, for example P16473.A, 

the characters before the “.” represents the Uniprot ID of the GPCR, whereas the character after 

the “.” represents the IUPHAR family. Similarly, in the column “PDB ID and Chain ID,”  for 

example 3G04.C, the characters before the “.” represent the PDB ID of the GPCR, whereas the 

character after the “.” represents the chain ID. The chain IDs were chosen based on the length of 

the sequence, i.e., the chain that have the longest sequence was chosen for the comparison.  

We observed that over 75% of the pairs compared in Table 7 have both flexible and rigid 

sequence similarities below 30%, implying they are unlikely to have similar structures. Even for 

the pair P35462.A and P14416.A with flexible and rigid sequence similarities as high as 88% and 

64%, respectively, their rigid RMSD is 9.63, again indicating that there are differences in their 

structures. The results in Table 7 suggest that two GPCRs, even when they are quite dissimilar in 

their sequences and structures, can bind to the same ligand. Some of the GPCRs that these ligands 

bind to have no 3D structures on PDB, and as a result those GPCRs were excluded from further 

analysis as in the case of AJLF, IKSH, and NKOP (Table 7).  
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Table 7: Pairwise structural comparison of human GPCR using FATCAT  

Ligand  GPCR UniProt ID and 
IUPHAR Class 

PDB ID and 
Chain ID 

RMSD (Å) Sequence Similarity (%) 
Flex Rigid Flex Rigid 

AJLF P16473.A, P43220.B 3G04.C, 7LCK.R 2.92 4.87 19 17 

DTZD 
P43220.B, Q14831.C 7LCK.R, 3MQ4.A 3.63 10.53  20  16  
P43220.B, P21728.A 7LCK.R, 7LJC.R 3.19 3.19 33 33 
Q14831.C, P21728.A 3MQ4.A, 7LJC.R 3.88 10.72 19 15 

CLQV 
P21453.A, P43220.B 3V2W.A, 7LCK.R 2.84 4.94  27 21  
P21453.A, Q14833.C 3V2W.A, 7E9H.A 3.99 4.51 24 25 
Q14833.C, P43220.B 7E9H.A, 7LCK.R 4.37 6.44 24 24 

IKSH P16473.A, Q03431.B 3G04.C, 6FJ3.A 2.98  4.66 18  22 
NKOP P43220.B, Q13255.C 7LCK.R, 3KS9.A 4.47  8.08  18 17 

USZP 
P16473.A, P43220.B 3G04.C, 7LCK.R 2.92 4.87 19 17 
P16473.A, P41594.C 3G04.C, 6N52.A 3.06  6.23  15 18  
P43220.B, P41594.C 7LCK.R, 6N52.A 3.83  9.67  25 20  

XLWJ 

P16473.A, P43220.B 3G04.C, 7LCK.R 2.92 4.87 19 17 
P16473.A, Q03431.B 3G04.C, 6FJ3.A 2.98  4.66 18  22 
P16473.A, P21728.A 3G04.C, 7LJC.R 3.81  3.81  23  23  
P43220.B, Q03431.B 7LCK.R, 6FJ3.A 2.53  3.85 45 50 
P43220.B, P21728.A 7LCK.R, 7LJC.R 3.19 3.19 33 33 
Q03431.B, P21728.A 6FJ3.A, 7LJC.R 3.86  3.03  27 30  
O75899.C, P16473.A 6W2X.B, 3G04.C 3.16 6.04  16  22  
O75899.C, P43220.B 6W2X.B, 7LCK.R 2.92  5.69  24 22 
O75899.C, Q03431.B 6W2X.B, 6FJ3.A 3.20 4.60  24  22  
O75899.C, P21728.A 6W2X.B, 7LJC.R 3.03  3.15  25  26  

YKMS 

P35462.A, Q14416.C 3PBL.A, 5KZN.A 5.38 11.06 17 17 
P35462.A, P21917.A 3PBL.A, 5WIV.A 1.96 3.95 52 53 
P35462.A, P14416.A 3PBL.A, 6CM4.A 2.15 9.63 88 64 
P35462.A, P43220.B 3PBL.A, 7LCK.R 6.28 4.44 17 21 
Q14416.C, P21917.A 5KZN.A, 5WIV.A 5.42 6.76 19 19 
Q14416.C, P14416.A 5KZN.A, 6CM4.A 5.23 14.95 17 25 
Q14416.C, P43220.B 5KZN.A, 7LCK.R 5.64 9.41 15 23 
P21917.A, P14416.A 5WIV.A, 6CM4.A 2.72 8.72 52 50 
P21917.A, P43220.B 5WIV.A, 7LCK.R 3.01 4.88 21 23 
P14416.A, P43220.B 6CM4.A, 7LCK.R 3.49 4.44 32 31 

 
4.5 BINDING POCKET COMPARISON AND GPCR LIGAND DOCKING RELATIONSHIP 

 Since there was no known complex of the 8 ligands bound to the GPCRs on PDB, we had 

to perform pocket comparison of all possible pairs of pockets; we decided to analyze the 

relationship between the pocket comparison similarity score, PS-score, and the absolute difference 

of the binding affinities when the ligand is docked into the pocket. Despite not having a ligand 
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bound to the GPCR complex on PDB, we observed that, on the average, PS-score over all pairs of 

pockets of GPCRs that bind the same ligand was 0.287 and above. This value is comparable to the 

PS-score of 0.284 obtained for the two retinal-binding sites in rhodopsin as mentioned earlier in 

the Chapter 1. Moreover, among the maximum PS-score values in Table 8, the lowest was 0.349, 

suggesting that the GPCRs binding to the same ligand would contain similar binding pockets with 

PS-score no less than 0.349. 

We also observed a significant negative correlation between the PS-score and the absolute 

difference of the binding affinities of the pockets in comparison (Table 9) for most of the ligands. 

These results suggest that similar binding pockets share similar binding affinity, thus increasing 

PS-score is associated with similar binding affinity. By extension, the binding pocket residues 

could be chemically similar.  

To verify these results, we used the small control dataset (Table 5) with known interactions 

and performed binding pocket predictions. The control dataset also showed a significant negative 

correlation (r = −0.4547, p-value = 0.01718) between the PS-score and the absolute difference of 

the binding affinities of the pairs of pockets across the ligands with a minimum PS-score of 0.114 

(Table 8).  

Table 8: Summary statistics for PS-scores for all possible pairs of pockets for each ligand. 

Ligand Min Mean STD Max 
Control Data 0.114 0.487 0.206 0.901 

AJLF 0.219 0.287 0.0374 0.372 
CLQV 0.212 0.326 0.0554 0.528 
DTZD 0.218 0.315 0.0498 0.466 
IKSH 0.228 0.291 0.0309 0.349 
NKOP 0.221 0.295 0.0375 0.369 
USZP 0.210 0.295 0.0557 0.500 
XLWJ 0.218 0.318 0.0570 0.508 
YKMS 0.209 0.334 0.0802 0.733 

 

 



48 

Table 9. Correlation between PS-score and absolute difference of the binding affinities. 

Ligand Correlation p-Value 
XLWJ −0.2776 1.29 × 10−7 

AJLF −0.7213 4.73 × 10−5 

NKOP −0.4732 6.23 × 10−3 

IKSH −0.3501 3.92 × 10−2 

DTZD −0.1947 4.55 × 10−2 

USZP −0.2056 7.68 × 10−2 

CLQV 0.1162 0.238 
YKMS 0.0318 0.609 

 
4.6 LIGAND BINDING POSE AND CONFORMATION 

Figure 9 shows a plot of the RMSDActual and RMSDDocked of the aligned 3D structures of the 

ligands as found in complex with the proteins deposited on PDB and when docked into the same 

binding site (see Section 3.7). We observe from Figure 9 that the two plots exhibit a similar pattern 

for the control dataset. Additionally, a paired sampled t-test on the RMSDActual and RMSDDocked 

revealed no significant difference in the mean RMSDActual (1.2414 ± 0.7654) and RMSDDocked 

(1.3900 ± 0.5060) (t = −1.5849, df = 26, p-value = 0.1251) for the control dataset. These results 

are good indications for the reliability of the docking results.  
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Figure 9: A plot of the RMSDActual and RMSDDocked pairs of the pockets. 

To study the ligands’ poses and conformations when binding to their target GPCRs, we 

chose the pocket pairs with the highest PS-scores, which are all greater than 0.28 (reference PS-

score of the two rhodopsin-retinal binding pockets). Generally, we observed varying poses and 

conformation across the pairs of pockets. A few representative examples were selected to 

demonstrate the differences in pose and in conformation after docking. The ligand AJLF binds 

with different poses to pocket 1 of 3G04 and pocket 5 of 7LCK (Figure 10A, B). However, they 

share very similar conformation (Figure 10C). Similar observations were made for the ligand 

CLQV (Figure 10D–G). Nevertheless, in the case of the ligand DTZD, there were noticeable 

differences in the bound conformations of the ligand for the three pockets (Figure 10K). Like in 

the case of AJLF and CLQV, DTZD binds to pocket 2 of 3MQ4, pocket 4 of 7LCK, and pocket 2 

of 7LJC with different poses (Figure 10H–J). However, the Pearson correlation analysis reveals a 

significant negative correlation (r = −0.0737, p-value = 0.02037) between the PS-score and the 

RMSD of the aligned docked ligands (see Section 3.7) across all pairs of pockets. Similar results 

were obtained for the control dataset, showing a significant negative correlation (r = −0.5437, p-

value = 0.0034) between the PS-score and the RMSDActual across all pairs of pockets. These results 
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indicate that the more similar the pockets are, the more likely the ligand conformation will be the 

same. 

 

Figure 10: Ligand binding poses and conformations across the different GPCRs binding pockets. 

 
4.7 PROTEIN LIGAND INTERACTION AND POCKET ELECTROSTATIC PROPERTIES 

We observed that the ligands tend to bind to similar pockets that share similar residues. 

The Pearson analysis reveals a significant positive correlation (r = 0.0649, p-value = 0.04135) 

between the PS-score and the number of same residues across all pairs of pockets that interact with 

the ligands. This suggests that the more similar the pockets are, the more likely a ligand binding 

to the pockets will interact with the same residues across the pockets. For example, the ligand 
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AJLF interacts with serine in pockets 1 and 5 of the GPCRs 3G04 and 7LCK, respectively, (Figure 

11A). 

 
3G04 pocket 1 

 
3G04 pocket 1 

 
7LCK pocket 5 

 
7LCK pocket 5 

(A) (B) 

Figure 11: (A) AJLF GPCR interaction in the pocket. (B) Pocket electrostatic properties with 

AJLF docked into the pocket. 

Generally, we observed that pockets that are similar are also similar in electrostatic properties 

(Figure 11B), thus increasing PS-score is associated with similar electrostatic properties. The 

Pearson correlation analysis within the studied ligands revealed mostly negative correlations 

between the PS-score and the distances obtained from the MS-WHIM scores of the compared 

pockets (see Section 3.10). Although only half of the correlations were statistically significant 
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(Table 10), this is an indication that similar pockets may be similar in electrostatic properties and 

should be further investigated with more ligand pairs in the future. 

Table 10: Correlation between PS-scores and Chebyshev distances of MS-WHIM scores for all 

compared pocket pairs by ligand. 

Ligand Correlation p-Value 
YKMS −0.1936 0.0016 

CLQV −0.2872 0.0029 

NKOP −0.4035 0.0219 

USZP −0.2411 0.0372 

AJLF −0.1964 0.3466 

XLWJ −0.0314 0.5588 

DTZD −0.0306 0.7552 
IKSH 0.0263 0.8805 

 
4.8 PREDICTED POCKET AND 3D STRUCTURAL SIMILARITY COMPARISON OVERLAP 

We found that some of the predicted pockets of the GPCRs overlap with portions of the 

GPCRs that were found to be similar from the pairwise 3D structure comparison (see Sections 3.3 

and 3.9).  

For example, the GPCRs with PDB IDs 3G04 and 7LCK that binds the ligand USZP (Table 

7) had portions of their 3D structure that were found to be similar (Figure 12, red parts) overlap 

with their predicted pockets (Figure 12, ligand USZP). The ligand USZP is docked into a predicted 

binding pocket of the GPCR. Red part of the GPCRs is where they are 3D structurally similar. We 

observed from Figure 12 that the position of the ligand USZP (which is docked into a binding 

pocket) overlaps with the red parts (the parts of the two GPCRs that was found to be 3D structurally 

similar).  
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3G04 7LCK 

 

Figure 12: 3D structure of 3G04 vs 7LCK in-bound with the ligand USZP. The ligand 

USZP is docked to a predicted binding pocket. Red part of the GPCRs is where they are 3D 

structurally similar. 

There is a significant positive correlation (r = 0.2921, p-value = 2.2 × 10−16) between the 

PS-score and the overlap scores across all pairs of pockets. This suggests that the more similar the 

pockets are, the more likely the pockets are found in a region where the two proteins are 

structurally similar in their 3D structures. 

 

 

 

 

 

 

 

 

USZP 
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Chapter 5: Conclusion and Future Work 

5.1 CONCLUSION  

We set out to computationally uncover and understand the binding of a single ligand to 

GPCRs from three different families. As expected, relatively few of such GPCRs of different 

families share conserved sequence motifs or global structural similarities. However, many share 

local 3D structural similarities and similar binding pockets. Moreover, the more similar the pockets 

are, the more likely their binding ligands will interact with the same residues across the pockets, 

with the same ligand conformation, and similar binding affinities across the pockets. In addition, 

the more similar the pockets are, the more likely the electrostatic properties of the pockets will be 

similar, and the more likely the pockets are found in a region where the two proteins are structurally 

similar in their 3D structures. These findings can be taken advantage of to further develop protein 

function inference, drug toxicity prediction, and discovery of unwanted cross reactivity to speed 

up the process of drug repurposing and new drug development. 

 
5.2 FUTURE RESEARCH AND PROPOSED APPROACHES 

 While the focus of this dissertation is on ligands that bind to GPCRs from three different 

IUPHAR families, it has several extensions. We can assess whether the discovered conserved 

motifs overlap with the predicted binding pockets of the ligands. This will help us determine 

whether the motifs are involved in the binding of the same ligand to the GPCRs of different 

IUPHAR families. 

Furthermore, we can expand on this work by clustering binding pockets of GPCRs based 

on pocket electrostatic properties, binding affinities, pocket sequence and structural features, and 

then ranking the pockets in each cluster based on their pairwise pocket comparison scores to 

identify the most likely pockets that can bind to the same ligand. 
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Finally, we should also extend our analysis to include the three ligands, namely BYBL, 

FQUA, and MLQF,  that bind to GPCRs from three different IUPHAR families but were excluded 

from our analysis to reduce the number of pairwise comparisons. These ligands were estimated to 

generate over 30,000 binding pocket pairs in total, which would increase the computational time 

exponentially. To complete our analysis within reasonable time, we had to omit the three ligands 

from this study. The issue of excessive computational time can be circumvented by parallelizing 

the work done in the sections of binding pocket prediction and comparison, structural comparison, 

protein ligand interaction, and predicted pocket and 3D structural similarity comparison overlap, 

all of which require substantial computing resources. Designing such a parallelization scheme is 

an interesting computational challenge, but successfully implementing it would allow us to also 

investigate the 16000+ ligands that bind to GPCRs from two different IUPHAR families. This 

will, in turn, help us obtain more complete and definitive answers to our central question of what 

makes GPCRs from different families bind to the same ligand. 
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Appendices 

APPENDIX A: TABLES 

Table 11: Human conserved motifs of GPCR sequences across two IUPHAR families found by 

the MEME system 

Ligands 
InChI Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

YKMS I4 

12 P14416 A 432 

EFRKAFLKILRC 2.10E-04 
14 P35462 A 389 

16 P21917 A 406 

59 P43220 B 427 

FQUA 
I2 

19 P41145 A 155 

DRYIAVAHPLKY 5.90E-78 

20 P35372 A 166 

21 P37288 A 148 

20 O43194 A 132 

21 P18825 A 148 

20 P28222 A 146 

21 P07550 A 130 

21 P14416 A 131 

20 P35367 A 124 

20 P08172 A 120 

20 P29274 A 101 

21 O15552 A 106 

20 P28335 A 151 

21 O14843 A 112 

20 P11229 A 122 

20 P28223 A 172 

20 P35368 A 142 

20 P32245 A 146 

19 Q99788 T2R 136 

20 O14842 A 103 

21 P24530 A 198 

23 Q5NUL3 A 135 

17 Q8TDU9 A 154 

19 P59551 T2R 111 

I4 12 P14416 A 433 FRRAFKKJLRC 1.20E-30 
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Ligands 
InChI Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

24 P08172 A 447 

17 P35367 A 475 

28 P32245 A 309 

19 P28222 A 376 

169 P35368 A 355 

109 O43194 A 351 

53 P24530 A 393 

84 P07550 A 332 

122 P29274 A 295 

87 P28335 A 375 

21 P18825 A 444 

87 P28223 A 387 

39 P11229 A 425 

28 Q9NYW1 T2R 289 

62 P35372 A 345 

99 P25103 A 312 

16 Q9NYW5 T2R 287 

47 P41145 A 337 

45 Q5NUL3 A 326 

67 O14843 A 283 

54 O15552 A 280 

22 P59536 T2R 290 

211 Q8IZ08 A 327 

35 Q9NYV8 T2R 287 

E2 

13 P41145 A 123 

RWPLGRVLC 4.80E-33 

11 P35372 A 134 

20 O14843 A 80 

13 P28222 A 114 

17 P08172 A 88 

17 Q8TDU9 A 106 

10 P18825 A 116 

16 P28223 A 140 

12 P24530 A 166 

22 O15552 A 74 

17 Q99788 A 104 
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Ligands 
InChI Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

17 P28335 A 119 

15 P14416 A 99 

15 O14842 A 71 

18 P35367 A 92 

11 P07550 A 98 

17 P11229 A 90 

14 Q5NUL3 A 103 

20 P25103 A 97 

22 Q9NYV7 T2R 71 

15 P37288 A 116 

H3 

25 P48546 B 224 

QYPIGANYAPLLVEG 1.50E-06 
24 P47871 B 232 

21 Q8IZ08 A 86 

22 O14842 A 80 

XLWJ 

E1 

162 Q03431 B 142 

GHVYRKCDANGSW 5.50E-02 116 P43220 B 98 

577 Q9UBS5 C 75 

I2 

20 Q6W5P4 A 145 

DRYHAITYPM 7.60E-02 
19 P21728 A 120 

20 P16473 A 518 

25 O75899 C 576 

H7 

21 Q6W5P4 A 322 

NSALNPIIYC 5.10E-02 

25 P21728 A 323 

21 P43220 B 394 

23 Q03431 B 451 

22 P16473 A 670 

NKOP Full 
463 P43220 B 211 

QHQWD 4.20E-02 
1194 Q13255 C 907 

USZP Full 
463 P43220 B 356 

QEWWZHRRQC 6.60E-01 
1212 P41594 C 37 

FQUA E4* 

22 P35367 A 452 

CKEACNETLREAKLF 5.50E-05 
25 P28335 A 337 

26 P28223 A 349 

23 P28222 A 340 
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Ligands 
InChI Key 

Sequence 
Region 

Length of 
Region 

GPCR 
UniProt ID 

IUPHAR 
Family 

Motif Starting 
Position in Full 

Sequence 
Motif E-value 

22 P47871 B 369 

25 P48546 B 361 

23 P18825 A 408 

24 P11229 A 391 

BYBL E3* 

35 P13945 A 185 

EARRCYNDPKCCDFASNMPY 2.40E-03 36 P08588 A 205 

25 P43220 B 286 

DTZD E1* 
561 Q14831 C 586 

WHLPWA 8.10E-01 
121 P43220 B 87 

*We start the region 5 amino acids before and ended 5 amino acids after E3, and E4. Ended 5 amino acids after E1 

 

APPENDIX B: PROCEDURE FOR WORKFLOW 

Files and codes in this procedure are publicly available at: 
Note: The Folders contain data on different set of ligands, this is the case because some of 
the processes were automated during analysis of the control dataset. Folders containing 
codes and some data are publicly available at github.com/owusukd/GPCR_Ligand_Interaction 
Note: Do this work sequentially from first page downwards. Also, make sure to change the 
working directory in all the codes appropriately.  
 
Data Collection 
Folder “Pipeline > GPCR_Ligand_Data” 

1. Data were downloaded from GLASS, BindingDB, and IUPHAR. 
• Sub-folder BindingDB 

- On the website of BIndingDB, we go to download, and on the download 
page, under “All data in BindingDB”, you download the zip tsv file with 
name “BindingDB_All_year-month-number.tsv.zip”. 

- After downloading, we then clean the tsv file using R code 
“BindingDB_Data_Cleaning.R”. 

• Sub-folder GLASS 
- On GLASS website (https://zhanggroup.org/GLASS/), we click on 

download and then download the “All interaction data in TSV format” 
data. 

- After downloading, we then clean the tsv file using R code 
“GLASS_Data_Cleaning.R”. 

• Sub-folder IUPHAR 
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- On IUPHAR website 
(https://www.guidetopharmacology.org/download.jsp), we downloaded 
the “all interaction data for ligands and targets” and “complete ligand list” 
tsv files. 

- We then merged the two data sets and cleaned it using the R code 
“IUPHAR_Data_Cleaning.R”. 

• GPCR-PEnDB 
- On the website (https://gpcr.utep.edu/advanced), we download data on 

GPCRs confirmed or predicted 
- Data is renamed as “GPCR_PEnDB.tsv” 
- The UniProt IDs are used to subset the combined data from GLASS, 

BindingDB, and IUPHAR to retain only GPCR-ligand interaction data. 
This is done when combining the data sets: next bullet point below 

• Combining Data sets 
- Data from GLASS, IUPHAR, BindingDB and GPCR-PEnDB were 

combined and restructured using the R code 
“Combine_GLASS_IUPHAR_BindingDB_Data.R” and create the file 
“Final_Data.tsv” 
 

2. GPCR sequence data were downloaded from GPCR-PEnDB 
Folder “Pipeline> GPCR_Sequence_Data” 

• On the website (https://gpcr.utep.edu/advanced), we download sequence data on 
GPCRs (confirmed or predicted)  

- For the GPRCs that bind the same ligand, we download their sequence 
data as one fasta file, e.g., “AJLFQFYMLRXVHV-UHFFFAOYSA-
N.fasta” 

 
3. Data on GPCR regional (N-terminal, extracellular loops, intracellular loops, the seven 

helices, and the C-terminal) positions     
Folder “Pipeline> GPCR_Sequence_Data” 

• We gathered data on the positions of the regions of the GPCRs from UniProt 
- That is the beginning and the ending of the regions 
- Eg. “AJLFQFYMLRXVHV-UHFFFAOYSA-N.txt” 

• Data on the regional positions (e.g., AJLFQFYMLRXVHV-UHFFFAOYSA-
N.txt)  were used to cut the GPCR sequences into the respective regions for motif 
search 

- We save the sequences of GPCRs in one fasta file e.g., 
“AJLFQFYMLRXVHV-UHFFFAOYSA-N.fasta” 

- We used the R code “cutSequencesIntoPieces*.R” 
o *: there are different versions of the code for different type of cut 

§ cutSequencesIntoPieces.R: for cutting the sequence into the 
different regions with no modifications including the N-
terminus label as E1 and C-terminus as C4 

§ cutSequencesIntoPieces_Ei.R: for cutting the sequences 
into the extracellular loops including the N-terminus label 
as E1 
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§ cutSequencesIntoPieces_Ei_add_5.R: for cutting the 
sequences into the modified extracellular loops by adding 5 
more amino acid either at the end, beginning or both ends 
including the N-terminus label as E1 
 

- We create the sub-folder e.g., “fasta_MEME” and sub-sub-folder e.g., 
“AJLFQFYMLRXVHV-UHFFFAOYSA-N” and copy the cut sequences 
into them e.g., “AJLFQFYMLRXVHV-UHFFFAOYSA-N_C1.txt” 

o Naming convention for the sub-folder e.g., “fasta_MEME” 
§ fasta_MEME: means motif search was done using default 

settings 
§ fasta_MEME_full: means motif search was done on the full 

sequence of the GPCRs  
§ fasta_MEME_3: means motif search was done setting the 

min length of the motif to be 3 
§ fasta_MEME_3_10_mot: motif search was done setting the 

min length of the motif to be 3 and retaining only 10 motifs 
§ fasta_MEME_add_5: motif search was done on the 

modified regions of the extracellular loops including the N-
terminus label as E1 

§ fasta_MEME_add_5_10_mot: motif search was done on 
the modified regions of the extracellular loops including the 
N-terminus label as E1, and retaining only 10 motifs 

§ fasta_MEME_E_i: means motif search was done on all the 
extracellular loops of all the GPCRs that bind the same 
ligand as one fasta file including the N-terminus label as E1 

§ fasta_MEME_E_i_10_mot: means motif search was done 
on all the extracellular loops of all the GPCRs that bind the 
same ligand as one fasta file including the N-terminus label 
as E1, and retaining only 10 motifs 

§ The running of the motif search is done below on these 
sequence files 

 
 

4. GPCR 3D data 
Folder “Pipeline >GPCR_3D_Data” 

• We obtain a list of UniProt IDs of GPCRs confirmed or predicted from GPCR-
PEnDB 

- gpcrpendb_results_1612200136.41.tsv: we saved the UniProt IDs as a 
separate file “GPCR_Pen.txt” 

• With this list (GPCR_Pen.txt) we searched PDB for each one of them if there 
exist a 3D structure for it, using the advance search available on PDB 

• From the search result, we selected PDB ID, experimental method, ligand ID, and 
Accession code(s) through the custom table option and downloaded the resulting 
csv file 

- Finding Unique GPCR_2021.csv 
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• Where multiple UniProt IDs are given in the data, we crosscheck if all the 
UniProt IDs are GPCRs and they have structures on PDB. 

- We used the code “rscbpdbscript.R” 
• We then download the 3D structures of the GPCRs  

- Where there are multiple 3D structures on PDB we download the one with 
the longest sequence in the structure on PDB. 

o To do this, we display the search results in sequence form on PDB 
and select the one with longer sequence in the 3D structure and 
then wee download that 3D structure. 

 
5. Ligand 3D structure 

We downloaded the ligand SMILES and 3D structure on this website: 
https://pubchem.ncbi.nlm.nih.gov by searching for the ligand using the ligand InChKey 
(this is part of the Combined data “Final_Data.tsv”) 
 
Folder “Pipeline > Ligands” 

• We downloaded the 3D structures of the ligands by searching for the ligands on 
google using the InChI Key of the ligands 

- The structures are converted to have the file extension .pdbqt using the 
appropriate script from the list below: 

o  mol2_to_pdbqt.sh 
o sdf_to_pdbqt.sh 

• For ligands with no available 3D structure to download, we converted the 
SMILES of the ligand into 3D structures using Open Babel 

- We copy and save the SMILES in a text file with the file extension .smi 
o E.g., AJLF.smi 

- We then used the script below to convert the smiles into a 3D structure 
o convert_ligand_smiles_into_3D.sh”  

 
 
Analysis on GPCR Ligand Data 
Folder “Pipeline > GPCR_Ligand_Data” 

6. We performed analysis on the combine data (IN PAGE 1) to determine ligands which 
bind GPCRs of different families.  

• We used the R code “Analysis_lig_mult_GPCR.R” in folder “Pipeline”  
 
Sequence Mofit Search 
Folder “Entire_work_organized > GPCR_Sequence_Data” 

7. For GPCRs that bind the same ligand: 
Sequence data needed for this section is under Data Collection above page 1 and 2: the 
full and the cut sequences 

- We save the sequences of the GPCRs in one fasta file 
- We performed a motif search on the full sequences of the GPCRs 
- We performed a motif search on the regional sequences of the GPCRs 
- We performed a motif search on a modified regional sequence of the GPCRs 
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o Modified: meaning we cut the regions adding 5 amino acids before the 
actual start of the regional sequence and/or end the regional sequence five 
amino acids after the actual end of the regional sequence where they are 
possible 

- Motifs that had E-value < 0.1 were retained as significant motifs (for the 
manuscript we only retained motifs that had E-value < 0.01)  

o We create a table of the ligands and the GPCRs they bind to and add the 
significant motifs as a column on the table manually (see Result Section of 
Dissertation under Motif Search and Appendix) 

- We used the scripts “run_meme*.sh” 
o *: there are different versions of the script running different MEME 
o Naming convention for the scripts 

§ run_meme.sh: means motif search was done using default settings 
§ run_meme_3.sh: means motif search was done setting the min 

length of the motif to be 3 
§ run_meme_3_10_mot.sh: motif search was done setting the min 

length of the motif to be 3 and retaining only 10 motifs 
§ run_meme_full.sh: means motif search was done on the full 

sequence of the GPCRs 
§ run_meme_add_5.sh: motif search was done on the modified 

regions of the extracellular loops including the N-terminus label as 
E1 

§ run_meme_add_5_10.sh: motif search was done on the modified 
regions of the extracellular loops including the N-terminus label as 
E1, and retaining only 10 motifs 

§ run_meme_E_i.sh: means motif search was done on all the 
extracellular loops of all the GPCRs that bind the same ligand as 
one fasta file including the N-terminus label as E1 

§ run_meme_E_i_10_mot.sh: means motif search was done on all 
the extracellular loops of all the GPCRs that bind the same ligand 
as one fasta file including the N-terminus label as E1, and retaining 
only 10 motifs 

 
Binding Pocket Prediction and Comparison 
Pockets are predicted before the pocket comparisons are done. 
Folder “Pipeline > Binding_pocket_prediction_and_comparison” 
 
Binding Pocket Prediction 

8. For the GPCRs that bind the same ligand: 
Folder “Pocket_Predictions” 
- If the binding site of the ligand is unknown: 

o First, we clean the GPCR PDB files 
§ We used "clean_PDB_files.sh" 

o We predict binding pockets for the GPCR (for GPCR files with file 
extension .pdb e.g., “0HK_P08173_A_5dsg.pdb”) 

§ We used p2rank_2.2 
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§ We used the code “run_P2rank.sh” 
o We extract the pockets from the GPCR PDB files e.g., 

0HK_P08173_A_5dsg_pkt_1.txt 
§ These files are copied to the sub-folder created for each of the 

ligands e.g., “0HK” under the folder “Pipeline > 
Binding_pocket_prediction_and_comparison > APoc”  

§ We used the code “get_pkt_AA_coordinates.py” to extract the 
pockets. The code requires the predicted pocket numbers. 

• This code also creates docking configuration files needed 
later for GPCR ligand docking 

• The docking configuration files e.g., 
“0HK_P08173_A_5dsg_config.txt” are copied into the 
folders created for each of the ligands under the folder 
“Pipeline > AutoDock_ligands_Proteins > Docked” e.g., 
“0HK” 
 

- If the binding site of the ligand is known, we only save the pocket (as in the case 
of the control data) 

o To do this: 
§ We predict binding pockets for the GPCR with the ligand in bound 

with it 
§ We then go to each of the ligand folder which contains the results 

for the pocket prediction and then go into the sub-folder 
“visualizations” and open the files with file extension .pml (e.g., 
0HK_P08173_A_5dsg.pdb.pml) with PyMol 

§ In the open PyMol window, we check which pocket contains the 
ligand and we note the pocket number 

• The pocket number is used in the code 
“get_pkt_AA_coordinates.py” to extract the pocket and 
create the docking configuration files needed later for 
GPCR ligand docking 

• The docking configuration files e.g., 
“0HK_P08173_A_5dsg_config.txt” are copied into the 
folders created for each of the ligands under the folder 
“Pipeline > AutoDock_ligands_Proteins > Docked” e.g., 
“0HK” 

 
Binding Pocket Comparison 

9. For the GPCRs that bind the same ligand: 
Folder “APoc” 
- We create folders for each of the ligands and copy the 3D structures of the 

GPCRs they bind to into it and also the pocket files for them e.g., 
“0HK_P08173_A_5dsg_pkt_1.txt” (from Binding Pocket Prediction above) 

- For the binding site of the ligand (whether known or predicted): 
o We add the pocket files of a GPCR to the GPCR’s 3D structure file  

§ We used the code “add_pkt_to_protein_file.py” to do that 
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o We perform a pairwise comparisons of the predicted binding pockets 
across the GPCRs 

§ We used the code “run_APoc.sh” to do that 
§ “run_APoc.sh” will produce result files e.g., 

“0HK_P08173_A_5dsg.pdb_vs_0HK_P11229_A_5cxv.pdb_pocke
t_compare_results.txt” 

o We then combine the results from the comparison 
§ We used the code “parse_bind_poc_comp_results.py” to do that 
§ “parse_bind_poc_comp_results.py” requires the result files e.g., 

“0HK_P08173_A_5dsg.pdb_vs_0HK_P11229_A_5cxv.pdb_pocke
t_compare_results.txt” 

§ “Combine_pocket_comp_results.tsv” will be generated as output 
 
3D Structural Comparison 
Folder “Pipeline > 3D_Comparison_Pocket_overlap_scores ” 

10. For GPCRs that bind the same ligand:  
Folder “3D_structural_comparison” 
- We create sub-folders for each of the ligands e.g., “0HK” and copy the cleaned 

3D structures of the GPCRs with file extension .pdb e.g., 
“0HK_P08173_A_5dsg.pdb” (from Binding Pocket Prediction above) they bind 
to into it 

- We performed pairwise 3D structural comparison of the GPCRs using FATCAT 
o This comparison is done both considering flexibility (allowing twist) and 

rigidity (not allowing twist) 
o We used the code “run_FATCAT.sh” and it does both flexible and rigid 

case 
o “run_FATCAT.sh” requires the 3D structures of the GPCRs e.g., 

“0HK_P08173_A_5dsg.pdb” 
o “run_FATCAT.sh” produces the alignment files with file extension .aln 

e.g., “0HK_P08173_A_5dsg_0HK_P11229_A_5cxv_flex.aln” 
- We saved the RMSD score from the comparison and also, we also save the 

superimposed parts of the GPCRs (that is, the parts of the two GPCRs under 
comparison which were found to be 3D structurally similar) in .pdb format  

o We used the code “get_superimposed_3D_parts.py” to get the RMSD and 
the superimposed parts 

o “get_superimposed_3D_parts.py” requires the alignment files 
o “get_superimposed_3D_parts.py” produces the files e.g., 

“0HK_P08173_A_5dsg_flex_with_0HK_P11229_A_5cxv.txt” in the 
ligand folder e.g., “0HK” and “3D_Similar_RMSD.tsv” in the folder 
“Pipeline > 3D_Comparison_Pocket_overlap_scores > 
3D_structural_comparison” 

 
 

11. Overlap score: 
Folder “Overlap_scores” 



83 

- We create sub-folders for each of the ligands e.g., “0HK” and copy the 
superimposed files e.g., 
“0HK_P08173_A_5dsg_flex_with_0HK_P11229_A_5cxv.txt” (from 3D 
structure comparison above) and the pocket files e.g., 
“0HK_P08173_A_5dsg_pkt_1.txt” (from Binding Pocket Prediction above) 
 

- After the superimposed parts of the GPCRs compared have been saved e.g., 
“0HK_P08173_A_5dsg_flex_with_0HK_P11229_A_5cxv.txt”  

o We used each to compare with the binding pocket(s) of their GPCRs e.g., 
“0HK_P08173_A_5dsg_pkt_1.txt” 

o A score is calculated for this comparison both for flexible case and the 
rigid case 

§ We used the code “scoring_code_control_data.py”  
o An average score is calculated for the flex and rigid cases for each GPCR 

We then sum the averages for a pair of GPCRs compared 
§ This is done at under Analysis of Results below 
§ We used the code “Combine_Result_Data_Analysis.R” in the 

folder “Pipeline” 
 
GPCR Ligand Docking 
Folder “Pipeline > AutoDock_ligands_Proteins” 

12. For GPCRs that bind the same ligand: 
- We create sub-folders for each of the ligands e.g., “0HK” and copy the docking 

configuration files e.g., “0HK_P08173_A_5dsg_config.txt” and the 3D 
structures of the GPCRs with file extension .pdbqt e.g., 
“0HK_P08173_A_5dsg.pdbqt” (all from Binding Pocket Prediction above) into 
it 

- We dock the ligands into the binding pocket(s) 
o We first prepare the GPCR pdb file using AutoDock MGL tools  

§ Kollman charges were added 
§ Charge Field was set to Kollman 
§ AD4 type was assigned, and the file was saved as a pdbqt file 
§ First three points are done during cleaning of the PDB files under 

Binding Pocket Prediction above 
o We used the .pdbqt files of the ligands for docking 

§ We copy the ligand folder “Pipeline > Ligands > 
Control_Data_Ligands” into the folder“Pipeline > 
AutoDock_ligands_Proteins” 

o We then dock the ligand into the pocket(s) of each GPCR using 
“run_vina.sh” 

§ “run_vina.sh” requires the .pdbqt files of the GPCRs and the 
ligands 

§ “run_vina.sh” produces the log files e.g., 
“0HK_P08173_A_5dsg_log.txt” which contains the docking 
results, and the docked ligand files e.g., 
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“0HK_P08173_A_5dsg_out.pdbqt” which contains the ligand in a 
docked pose and conformation 

§ The docked ligand files e.g., “0HK_P08173_A_5dsg_out.pdbqt” 
are copied into the “Pipeline > 
Ligand_Pose_Comformation_Docked” for Ligand Binding Pose 
and Conformation analysis below 

o The result from the docking e.g., “0HK_P08173_A_5dsg_log.txt” are 
gathered together  

§ We used the code “parse_dock_results.py” to do that 
§ “parse_dock_results.py” requires the docking log files which 

contains the docking results e.g., “0HK_P08173_A_5dsg_log.txt” 
§ “parse_dock_results.py” produces the file 

“AutoDock_vina_Results.tsv” under the folder “Pipeline > 
AutoDock_ligands_Proteins” 

 
Ligand Binding Pose and Conformation 
Folder “Pipeline > Ligand_Pose_Comformation_Docked” 

13. For GPCRs that bind the same ligand: 
- We compare the conformation of the ligands after docking for each pocket 

compared 
o We used the code “ligs_align_docked.py” 

§ "ligs_align_docked.py" requires the docked ligand files e.g., 
“0HK_P08173_A_5dsg_out.pdbqt” which contains the ligand in a 
docked pose and conformation 

§ "ligs_align_docked.py" produces the 
“Ligs_Align_Pkt_Docked.tsv” 

 
 
Pockets Electrostatic Properties 

14. For GPCRs that bind the same ligand: 
Folder “Pipeline > 3D_Comparison_Pocket_overlap_scores ” 
- We calculate electrostatic properties of each pair of pockets compared from each 

of the GPCRs compared 
o We first get the three letter code of the amino acids in the pockets using 

“get_AA_pkt.py” in the folder “3D_Comparison_Pocket_overlap_scores” 
§ “get_AA_pkt.py” requires pocket files e.g., 

“0HK_P08173_A_5dsg_pkt_1.txt” in the sub-folders of “Pipeline 
> 3D_Comparison_Pocket_overlap_scores > Overlap_scores” 

§ “get_AA_pkt.py” produces the file “AA_Pkt.xlsx” in the folder 
“Pipeline > 3D_Comparison_Pocket_overlap_scores” 
 

o We then used the code “Combine_Result_Data_Analysis.R” in the folder 
“Pipeline” to calculate the Molecular Surface Weighted Holistic Invariant 
Molecular (MS-WHIM) scores for each pockets compared  

§ This is done at under Analysis of Results below 
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- We then calculate Chebyshev distance between the MS-WHIM scores for each 
pair of pockets compared 

o We then used the code “Combine_Result_Data_Analysis.R” in the folder 
“Pipeline” 

§ This is done at under Analysis of Results below 
 
 
Protein Ligand Interaction 
Folder “Pipeline > Protein_Ligand_Interaction_Actual > Actual” 

15. For GPCRs that bind the same ligand:    
- We save the docked ligand and the GPCR 3D structure as one .pdb file 

o This is done by opening the docked ligand files e.g., 
“0HK_P08173_A_5dsg_out.pdbqt”, and the GPCR it was docked into 
e.g., “0HK_P08173_A_5dsg.pdbqt” in one PyMol window 

§ Then we export molecule as a PDB file e.g., 
“0HK_P08173_A_5dsg.pdb” 

o This is done for all the pocket(s) we docked the ligand into 
 

- We then run LigPlot+ to determine the amino acids of the GPCR that interacts 
with the ligand 

o First install LigPlot+ from https://www.ebi.ac.uk/thornton-
srv/software/LigPlus/download.html 
 

o Then we generate the interactions for all the pocket(s) we docked the 
ligand into 

o We save the three letter code of the amino acids involved in a hydrogen 
bond with the ligand for each pair of pockets compared in separate 
columns (see the file “Ligs_Protein_Interaction.xlsx”) 

o We used the code “Combine_Result_Data_Analysis.R” in the folder 
“Pipeline” to perform analysis on the number of same residues across the 
pockets we are comparing that interact with the ligand 

§ This is done at under Analysis of Results below 
 
Analysis of Results 

16. All the data generated from the running of the pockets comparison, ligand conformation 
analysis, docking results, and protein ligand interaction were combined for further 
analysis: some manually and some using the code “Combine_Result_Data_Analysis.R” 
in the folder “Pipeline” 

- We used the combined data of results to generate other features  
- We then performed Pearson correlation analysis between PS-score and other 

features 
- We used the code “Combine_Result_Data_Analysis.R” in the folder “Pipeline” 
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APPENDIX C: DATA COLLECTION AND ANALYSIS 

C.1: BindingDB Data 

bindingDb.all <- read.csv(file = "BindingDB_All.tsv", sep = '\t', 
                          fill = T, stringsAsFactors = F, header = T) 
 
colnames(bindingDb.all)  
# Columns to retain 
names(bindingDb.all)[c(42)] <- c("UniProt.ID.of.Target") 
bindingDb.all <- bindingDb.all[, c(2,4,9:12,27,28,33,39,42)] 
cond <- which(bindingDb.all$UniProt.ID.of.Target == "") 
if(length(cond) != 0){ 
  bindingDb.all <- bindingDb.all[-cond,]  
} 
 
names(bindingDb.all) <- c("Ligand.SMILES","Ligand.InChI.Key",                        
"Ki.nM","IC50.nM","Kd.nM","EC50.nM","Ligand.HET.ID.in.PDB",                    
"PDB.ID.for.Ligand.Target.Complex","DrugBank.ID.of.Ligand","PDB.ID.of.Target.
Chain","UniProt.ID.of.Target") 
 
write.table(bindingDb.all, sep = "\t", 
          file = 
"/Users/kwabena/Research/GPCR/Entire_work_organized/GPCR_Ligand_Data/BindingD
B/bindingDb.all.tsv", 
          row.names = FALSE) 
 
remove(list = ls(all.names = T)) 
 
C.2: GLASS Data 

glass.all <- read.csv(file = "interactions_total.tsv", sep = '\t', 
                          fill = T, stringsAsFactors = F, header = T) 
 
colnames(glass.all)  
# Columns to retain 
glass.all <- glass.all[, c(1:6)] 
cond <- which(glass.all$UniProt.ID == "") 
if(length(cond) != 0){ 
  glass.all <- glass.all[-cond,] 
} 
 
names(glass.all) <- c("UniProt.ID.of.Target","Ligand.InChI.Key","Parameter", 
                      "Value","Unit","Database.Source") 
 
write.table(glass.all, sep = "\t", 
          file = 
"/Users/kwabena/Research/GPCR/Entire_work_organized/GPCR_Ligand_Data/GLASS/gl
ass.all.tsv", 
          row.names = FALSE) 
 
remove(list = ls(all.names = T)) 
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C.3: IUPHAR Data 

interactions <- read.csv(file = "interactions.tsv", sep = '\t', fill = F, 
stringsAsFactors = F, 
                         header = T, skip = 1) 
colnames(interactions) 
if(colnames(interactions)[16] == "X.Ligand.ID"){ 
  names(interactions)[16] <- "Ligand.ID" 
} 
 
ligands <- read.csv(file = "ligands.tsv", sep = '\t',  
                    fill = F, stringsAsFactors = F, header = T, skip = 1) 
colnames(ligands) 
 
iuphar.all <- merge(interactions, ligands, by.x = "Ligand.ID", by.y = 
"Ligand.id") 
 
colnames(iuphar.all) 
 
iuphar.all <- iuphar.all[, c(6,29,30,31,32,55,56)] 
 
write.table(iuphar.all, sep = "\t", 
          file = 
"/Users/kwabena/Research/GPCR/Entire_work_organized/GPCR_Ligand_Data/IUPHAR/i
uphar.all.tsv", 
          row.names = F) 
 
remove(list = ls(all.names = T)) 
 

C.4: Combining BindingDB, GLASS, and IUPHAR Data Sets 

# get data 
GPCR_Pen <-read.csv("GPCR_PEnDB.tsv",header = T, fill=F, sep = "\t", skip = 
3, 
                    stringsAsFactors = F) 
GPCR_Pen1 <- GPCR_Pen[,c(1,11)] 
names(GPCR_Pen1) <- c("UniProt.ID.of.Target","Target.Common.name") 
 
GPCR_Pen <-as.data.frame(GPCR_Pen) 
colnames(GPCR_Pen) 
GPCR_Pen <- GPCR_Pen[,c(1,12)] 
names(GPCR_Pen) <- c("UniProt.ID.of.Target","IUPHAR.Class.of.Target") 
 
bindingDb.all <- read.csv(file = "bindingDb.all.tsv", sep = '\t',  
                          fill = T, stringsAsFactors = F, header = T) 
 
iuphar.all <- read.csv(file = "iuphar.all.tsv", sep = '\t', fill = F, 
stringsAsFactors = F, 
                       header = T) 
 
glassData <- read.csv(file = "glass.all.tsv", sep = '\t', fill = F, 
stringsAsFactors = F, 
                      header = T) 
 
colnames(bindingDb.all) 
colnames(iuphar.all) 



88 

colnames(glass.all) 
 
# check for the GPCRs 
cond <- bindingDb.all$UniProt.ID.of.Target %in% GPCR_Pen$UniProt.ID.of.Target 
sum(cond) 
bindingDb.all <- bindingDb.all[cond, ] 
 
cond <- glass.all$UniProt.ID.of.Target %in% GPCR_Pen$UniProt.ID.of.Target 
sum(cond) 
glass.all <- glass.all[cond, ] 
 
cond <- iuphar.all$Target.UniProt.ID %in% GPCR_Pen$UniProt.ID.of.Target 
sum(cond) 
iuphar.all <- iuphar.all[cond, ] 
names(iuphar.all)[c(1,6,7)] <- c("UniProt.ID.of.Target", "Ligand.SMILES", 
"Ligand.InChI.Key") 
 
colnames(bindingDb.all) 
colnames(iuphar.all) 
colnames(glass.all) 
 
# get them to have the same columns 
bindingDbNewNames <- 
c("Affinity.Units","Affinity.High","Affinity.Median","Affinity.Low", 
                       "Parameter","Value","Unit") 
bindingDb.all[, bindingDbNewNames] <- NA 
bindingDb.all[["Database.Source"]] <- "BindingDB" 
 
glassNewNames <- 
c("Ligand.SMILES","Ki.nM","IC50.nM","Kd.nM","EC50.nM","Ligand.HET.ID.in.PDB", 
                   
"PDB.ID.for.Ligand.Target.Complex","DrugBank.ID.of.Ligand","PDB.ID.of.Target.
Chain", 
                   
"Affinity.Units","Affinity.High","Affinity.Median","Affinity.Low") 
glass.all[, glassNewNames] <- NA 
glass.all[["Database.Source"]] <- "GLASS" 
 
iupharNewNames <- 
c("Ki.nM","IC50.nM","Kd.nM","EC50.nM","Ligand.HET.ID.in.PDB", 
                    
"PDB.ID.for.Ligand.Target.Complex","DrugBank.ID.of.Ligand","PDB.ID.of.Target.
Chain", 
                    "Parameter","Value","Unit") 
iuphar.all[, iupharNewNames] <- NA 
iuphar.all[["Database.Source"]] <- "IUPHAR" 
 
 
# check if they have same columns 
colnames(bindingDb.all) 
colnames(iuphar.all) 
colnames(glass.all) 
 
# get the columns in the same order 
ord_glass <- c(1,2,7,3,4,5,8,9,10,11,17,18,19,16,12,14,13,15,6) 
ord_iuphar <- c(1,7,6,16,17,18,8,9,10,11,3,4,5,2,12,14,13,15,19) 
ord_bindingDb <- c(11,2,1,16,17,18,3,4,5,6,13,14,15,12,7,9,8,10,19) 
bindingDb.all <- bindingDb.all[, ord_bindingDb ] 



89 

iuphar.all <- iuphar.all[, ord_iuphar] 
glass.all <- glass.all[, ord_glass] 
 
# append them together 
Final_Data <- rbind(iuphar.all, bindingDb.all) 
Final_Data <- rbind(Final_Data, glass.all) 
 
# check and keep only GPCR data 
cond <- Final_Data$UniProt.ID.of.Target == "" 
sum(cond) 
Final_Data <- Final_Data[!cond, ] 
 
cond <- Final_Data$UniProt.ID.of.Target %in% GPCR_Pen$UniProt.ID.of.Target 
sum(cond) 
Final_Data <- Final_Data[cond, ] 
 
# Checking for duplicates 
suppressPackageStartupMessages(library(dplyr)) 
Final_Data <- distinct(Final_Data) 
 
# ligands with no InChIKey 
cond <- Final_Data$Ligand.InChI.Key == "" 
sum(cond) 
Final_Data <- Final_Data[-cond, ] 
 
Final_Data <- merge(Final_Data, GPCR_Pen, by.x = "UniProt.ID.of.Target",  
                     by.y = "UniProt.ID.of.Target") 
cond <- Final_Data$IUPHAR.Class.of.Target =="" 
sum(cond) 
 
 
#############################################################################
########## 
# Restructure Final_Data set to have all affinity parameters on a ligand-GPCR 
on one row 
#############################################################################
########## 
 
# keep only Set 1: Top 7 highest (Ki, IC50, Potency, EC50, Inhibition, 
Activity, Kd, pKB, 
# pKi, pIC50, pKd, pEC50) parameter 
table(Final_Data$Parameter) 
table(Final_Data$Affinity.Units) 
table(Final_Data$Unit) 
 
## combine some the parameters 
# p[A50] = p[A]50 = pEC50  
cond <- (Final_Data$Parameter == "p[A50]")|(Final_Data$Parameter == 
"p[A]50")| 
  (Final_Data$Parameter == "pEC50") 
sum(cond, na.rm = T) 
Final_Data$Parameter[cond] <- "pEC50" 
# -Log KD = pKD 
cond <- (Final_Data$Parameter == "pKD")|(Final_Data$Parameter == "-Log KD") 
sum(cond, na.rm = T) 
Final_Data$Parameter[cond] <- "pKd" 
# pKi(uM) = pKi 
cond <- (Final_Data$Parameter == "pKi(uM)")|(Final_Data$Parameter == "pKi") 
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sum(cond, na.rm = T) 
Final_Data$Parameter[cond] <- "pKi" 
# pKB = PKb = PkB = pkB = pKb = -Log K B = -Log KB  
cond <- 
(Final_Data$Parameter=="pKb")|(Final_Data$Parameter=="pKB")|(Final_Data$Param
eter=="PKb")| 
  
(Final_Data$Parameter=="PkB")|(Final_Data$Parameter=="pkB")|(Final_Data$Param
eter == "-Log KB")| 
  (Final_Data$Parameter == "-Log K B") 
sum(cond, na.rm = T) 
Final_Data$Parameter[cond] <- "pKB" 
# Ki = KI_MICROM 
cond <- (Final_Data$Parameter == "KI_MICROM")|(Final_Data$Parameter == "Ki") 
sum(cond, na.rm = T) 
Final_Data$Parameter[cond] <- "Ki" 
 
# subset Final_Data for data from glass, iuphar, bindingdb 
cond <- Final_Data$Database.Source == "GLASS" 
sub.glass <- Final_Data[cond,] 
cond <- Final_Data$Database.Source == "IUPHAR" 
sub.iuphar <- Final_Data[cond,] 
cond <- Final_Data$Database.Source == "BindingDB" 
sub.bindingdb <- Final_Data[cond,] 
 
# remove duplicates in glass data, iuphar, and bindingdb 
sub.glass <- distinct(sub.glass) 
sub.iuphar <- distinct(sub.iuphar) 
sub.bindingdb <- distinct(sub.bindingdb) 
 
cond <- (sub.glass$Parameter == "Ki")|(sub.glass$Parameter == "IC50")| 
  (sub.glass$Parameter == "Potency")|(sub.glass$Parameter == "EC50")| 
  (sub.glass$Parameter == "Inhibition")|(sub.glass$Parameter == "Activity")| 
  (sub.glass$Parameter == "Kd")|(sub.glass$Parameter == "pKB")| 
  (sub.glass$Parameter == "pKi")|(sub.glass$Parameter == "pIC50")| 
  (sub.glass$Parameter == "pKd")|(sub.glass$Parameter == "pEC50") 
sum(cond, na.rm = T) 
sub.glass <- sub.glass[cond,] 
 
# keep units nM(Ki, Kd, IC50, EC50, Potency), %(Activity, Inhibition), -(pKB)  
table(sub.glass$Unit, sub.glass$Parameter) 
 
cond <- (sub.glass$Unit == "nM")|(sub.glass$Unit == "%")|(sub.glass$Unit == 
"-") 
sum(cond, na.rm = T) 
sub.glass <- sub.glass[cond,] 
 
# keep only pKi, pIC50, pKd, pEC50, pKB of Affinity.Units 
cond <- 
(sub.iuphar$Affinity.Units=="pKi")|(sub.iuphar$Affinity.Units=="pIC50")| 
  (sub.iuphar$Affinity.Units=="pKd")|(sub.iuphar$Affinity.Units=="pEC50")| 
  (sub.iuphar$Affinity.Units=="pKB") 
sum(cond, na.rm = T) 
sub.iuphar <- sub.iuphar[cond,] 
 
#### Glass 
colnames(Final_Data) 
table(sub.glass$Parameter) 
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table(sub.iuphar$Affinity.Units) 
table(sub.bindingdb) 
# create the variables Activity, Inhibition, Potency, pKB, pKi, pIC50, pEC50, 
pKd 
var.names <- 
c("Activity.%","Inhibition.%","Potency.nM","pKB","pKi","pIC50","pEC50","pKd") 
sub.glass[,var.names] <- NA 
colnames(sub.glass) 
 
var_indx <- c(21,22,23,7,8,10,9,24,27,25,26,28) 
parameters <- c("Activity", "Inhibition", "Potency", "Ki", "IC50", "EC50", 
"Kd", "pKB", 
                "pEC50", "pKi", "pIC50", "pKd") 
for (i in 1:length(parameters)){ 
  cond <- which((sub.glass$Parameter == parameters[i]), arr.ind = T) 
  sub.glass[cond,var_indx[i]] <- sub.glass$Value[cond] 
} 
 
#### IUPHAR 
sub.iuphar[,var.names] <- NA 
parameters <- c("pKB","pEC50","pIC50","pKd","pKi") 
colnames(sub.glass) 
 
var_indx <- c(24,27,26,28,25) 
for (i in 1:length(parameters)){ 
  cond <- which((sub.iuphar$Affinity.Units == parameters[i]), arr.ind = T) 
  sub.iuphar[cond,var_indx[i]] <- paste(sub.iuphar$Affinity.Low[cond], 
                                    sub.iuphar$Affinity.High[cond], sep = " - 
") 
} 
 
#### Bindingdb 
sub.bindingdb[,var.names] <- NA 
 
# Rearrange column 
Final_Data <- rbind(sub.bindingdb,sub.iuphar,sub.glass) 
Final_Data <- Final_Data[,-c(4,5,6,11,12,13,14)] 
colnames(Final_Data) 
var.nm <- c(1,11,13,2,3,9,8,4:7,14:20,10,12) 
Final_Data <- Final_Data[, var.nm] 
colnames(Final_Data) 
 
######### Separate operators from affinity values 
library(stringr) 
operator <- c("<" , ">", "=") 
Final_Data$Affinity_relation <- NA 
 
### Ki.nM do for "<" , ">", "=" 
for (op in operator) { 
  symb <- str_which(Final_Data$Ki.nM, op) 
  if (length(symb) >= 1){ 
    ki <- Final_Data$Ki.nM[symb] 
    ki <- unlist(ki) 
    ki_List <- strsplit(ki,split= op, fixed=T) 
     
    ki.val <- data.frame(stringsAsFactors = F) 
    for (q in 1:length(ki_List)) { 
      ki.val.list <- data.frame(val = ki_List[[q]][2], stringsAsFactors = F) 
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      ki.val <- rbind(ki.val, ki.val.list, stringsAsFactors = F) 
    } 
    ki.val <- as.vector(unlist(ki.val)) 
     
    Final_Data$Ki.nM[symb] <- ki.val 
    Final_Data$Affinity_relation[symb] <- op 
     
    rm(ki_List, ki.val, ki.val.list,symb,ki,q) 
  } 
} 
 
### Kd.nM do for "<" , ">", "=" 
for (op in operator) { 
  symb <- str_which(Final_Data$Kd.nM, op) 
  if (length(symb) >= 1){ 
    kd <- Final_Data$Kd.nM[symb] 
    kd <- unlist(kd) 
    kd_List <- strsplit(kd,split=op, fixed=T) 
     
    kd.val <- data.frame(stringsAsFactors = F) 
    for (q in 1:length(kd_List)) { 
      kd.val.list <- data.frame(val = kd_List[[q]][2], stringsAsFactors = F) 
      kd.val <- rbind(kd.val, kd.val.list, stringsAsFactors = F) 
    } 
    kd.val <- as.vector(unlist(kd.val)) 
     
    Final_Data$Kd.nM[symb] <- kd.val 
    Final_Data$Affinity_relation[symb] <- op 
     
    rm(kd_List, kd.val, kd.val.list,symb,kd,q) 
  } 
} 
 
### IC50.nM do for "<" , ">" 
for (op in operator) { 
  symb <- str_which(Final_Data$IC50.nM, op) 
  if (length(symb) >= 1){ 
    IC50 <- Final_Data$IC50.nM[symb] 
    IC50 <- unlist(IC50) 
    IC50_List <- strsplit(IC50,split= op, fixed=T) 
     
    IC50.val <- data.frame(stringsAsFactors = F) 
    for (q in 1:length(IC50_List)) { 
      IC50.val.list <- data.frame(val = IC50_List[[q]][2], stringsAsFactors = 
F) 
      IC50.val <- rbind(IC50.val, IC50.val.list, stringsAsFactors = F) 
    } 
    IC50.val <- as.vector(unlist(IC50.val)) 
     
    Final_Data$IC50.nM[symb] <- IC50.val 
    Final_Data$Affinity_relation[symb] <- op 
     
    rm(IC50_List, IC50.val, IC50.val.list,symb,IC50,q) 
  } 
} 
 
### EC50.nM do for "<" , ">", "=" 
for (op in operator) { 
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  symb <- str_which(Final_Data$EC50.nM, op) 
  if (length(symb) >= 1){ 
    EC50 <- Final_Data$EC50.nM[symb] 
    EC50 <- unlist(EC50) 
    EC50_List <- strsplit(EC50,split=op, fixed=T) 
     
    EC50.val <- data.frame(stringsAsFactors = F) 
    for (q in 1:length(EC50_List)) { 
      EC50.val.list <- data.frame(val = EC50_List[[q]][2], stringsAsFactors = 
F) 
      EC50.val <- rbind(EC50.val, EC50.val.list, stringsAsFactors = F) 
    } 
    EC50.val <- as.vector(unlist(EC50.val)) 
     
    Final_Data$EC50.nM[symb] <- EC50.val 
    Final_Data$Affinity_relation[symb] <- op 
     
    rm(EC50_List, EC50.val, EC50.val.list,symb,EC50,q) 
  } 
} 
 
# make some variables numeric 
Final_Data$Ki.nM <- as.numeric(Final_Data$Ki.nM) 
Final_Data$Kd.nM <- as.numeric(Final_Data$Kd.nM) 
Final_Data$IC50.nM <- as.numeric(Final_Data$IC50.nM) 
Final_Data$EC50.nM <- as.numeric(Final_Data$EC50.nM) 
 
cond <- is.na(Final_Data$Affinity_relation) 
sum(cond, na.rm = T) 
Final_Data$Affinity_relation[cond] <- "=" 
 
# Rearrange columns  
colnames(Final_Data) 
Final_Data <- Final_Data[,c(1:7,21,8:20)] 
 
Final_Data <- merge(Final_Data, GPCR_Pen1, by.x = "UniProt.ID.of.Target",  
                    by.y = "UniProt.ID.of.Target", suffixes = c("",".y")) 
Final_Data <- Final_Data[,c(1,22,2:21)] 
cond <- Final_Data$Ligand.InChI.Key == "" 
sum(cond, na.rm = T) 
Final_Data <- Final_Data[!cond,] 
 
# write data to tsv file 
write.table(Final_Data, sep = "\t", 
            file = 
"/Users/kwabena/Research/GPCR/Entire_work_organized/GPCR_Ligand_Data/Final_Da
ta.tsv", 
            row.names=FALSE) 
 
rm(list = ls()) 

 
C.5: Analysis of GPCR Ligand Interaction Data 

################################################################### 
# Get Ligands that bind to multiple GPCRs of different families 
################################################################### 
library(foreach) 
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library(doParallel) 
library(dplyr) 

 
 

Final_Data <- read.table(file = "Final_Data.tsv", sep = "\t", fill = F, 
stringsAsFactors = F,                       header = T) 
# Find unique ligands 
ligand_uniq <- as.vector(unique(Final_Data$Ligand.InChI.Key)) 
l.na <- which(is.na(ligand_uniq), arr.ind = T) 
if (sum(l.na) > 0){ 
  ligand_uniq <- ligand_uniq[-c(l.na)] 
} 

 
# Parallel approach to finding ligands that binds to GPCRs of multiple 
families 
# We save the data   
cores=detectCores() 
cl <- makeForkCluster(cores[1]-4) #not to overload the computer 
registerDoParallel(cl) 
 
ligand_mult_GPCR_fam <- foreach(i=1:length(ligand_uniq), .combine = rbind) 
%dopar% { 
  cond <- Final_Data$Ligand.InChI.Key == ligand_uniq[i] 
  if (sum(cond, na.rm = T) > 1){ 
    subs <- Final_Data[cond,c(1,2,4,5)] 
    subs <- distinct(subs) 
    len <- length(unique(subs$IUPHAR.Class.of.Target)) 
    if (len > 1){ 
      subs 
    } 
  }   
} 
stopCluster(cl) 
 
# write data to tsv file 
write.table(ligand_mult_GPCR_fam, sep = "\t", 
            file 
="/Users/kwabena/Research/GPCR/Entire_work_organized/ligand_mult_GPCR_fam_Dat
a.tsv", 
            row.names=FALSE) 
 
cond <- ligand_mult_GPCR_fam$Target.Common.name == "Human" 
sum(cond, na.rm = T) 
ligand_mult_GPCR_fam <- ligand_mult_GPCR_fam[cond,] 
ligand_uniq <- as.vector(unique(ligand_mult_GPCR_fam$Ligand.InChI.Key)) 
rm(cond) 
 
cores=detectCores() 
cl <- makeForkCluster(cores[1]-4) #not to overload the computer 
registerDoParallel(cl) 
 
ligand_mult_GPCR_fam_Human <- foreach(i=1:length(ligand_uniq), .combine= 
rbind) %dopar% { 
  cond <- ligand_mult_GPCR_fam$Ligand.InChI.Key == ligand_uniq[i] 
  if (sum(cond, na.rm = T) > 1){ 
    subs <- ligand_mult_GPCR_fam[cond,] 
    subs <- distinct(subs) 
    len <- length(unique(subs$IUPHAR.Class.of.Target)) 
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    if (len > 1){ 
      subs 
    } 
  }   
} 
 
stopCluster(cl) 
 
# write data to tsv file 
write.table(ligand_mult_GPCR_fam_Human, sep = "\t", 

            file = 
"/Users/kwabena/Research/GPCR/Entire_work_organized/ligand_mult_GPCR_fam_Huma
n_Data.tsv", 

            row.names=FALSE) 
 

rm(list = ls()) 
C.6: Ligand 3D Structures 

C.6.1: Convert from mol2 to pdbqt 

#! /bin/bash 
# convert files from .mol2 to .pdbqt 
for f in ./*.mol2; do 

b=`basename $f .mol2` 
echo Processing ligand $b 
obabel -i mol2 $f -o pdbqt -O $b.pdbqt -xh --partialcharge gasteiger 

done 
 
C.6.2: Convert from sdf to pdbqt 

#! /bin/bash 
# convert files from .mol2 to .pdbqt 
for f in ./*.sdf; do 
 b=`basename $f .sdf` 
 echo Processing ligand $b 
 obabel -i sdf $f -o pdbqt -O $b.pdbqt -xh --partialcharge gasteiger 
done 
 
C.6.3: Convert Ligand SMILES into 3D structures 

#! /bin/bash 
# convert ligand SMILES into 3D strucutres with .pdbqt extension 
for f in ./*.smi; do 
 b=`basename $f .smi` 
 echo Processing ligand $b 
 obabel -i smi $f -o pdbqt -O $b.pdbqt -m -xh --gen3d --partialcharge 
gasteiger 
done 

 
C.7: Frequency distribution of GPCRs 3D structures 

# get data 
GPCR_Pen <-read.csv("GPCR_Pen.txt",header = T, fill=TRUE, stringsAsFactors = 
F) 
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GPCR_Pen <-as.data.frame(GPCR_Pen) 
NROW(GPCR_Pen) 
 
# unique gpcr on pdb 
#rscbPDBgpcr <-read.csv("Finding_Unique_GPCR_PDB_ID_20220514.csv",header = T, 
fill=T, sep = ",", 
#                       stringsAsFactors = F, blank.lines.skip = F) 
rscbPDBgpcr21 <- read.csv("Finding_Unique_GPCR_2022.csv",header = T, fill=T, 
sep = ",",  
                          stringsAsFactors = F, blank.lines.skip = F, skip = 
1) 
cond <- which(rscbPDBgpcr21[, 1] == "") 
rscbPDBgpcr21 <- rscbPDBgpcr21[-cond,] 
rscbPDBgpcr <- rscbPDBgpcr21 
#cond <- which(rscbPDBgpcr[, 1] == "") 
#rscbPDBgpcr <- rscbPDBgpcr[-cond,] 
 
rscbPDBgpcr <- 
rscbPDBgpcr[,c("PDB.ID","Deposition.Date","Release.Date","Accession.Code.s.")
] 
colnames(rscbPDBgpcr) <- 
c("PDB.ID","Deposition.Date","Release.Date","Uniprot.ID") 
rscbPDBgpcr$Deposition.Date <- substring(rscbPDBgpcr$Deposition.Date, 1, 4) 
rscbPDBgpcr$Release.Date <- substring(rscbPDBgpcr$Release.Date, 1, 4) 
 
cond <- rscbPDBgpcr$Uniprot.ID %in% GPCR_Pen$ID 
rscbPDBgpcr <- rscbPDBgpcr[cond,] 
 
write.table(Uniprot_ID, file = "161 Unique GPCR.txt", sep = ",", row.names = 
F, quote = F) 
library(xlsx) 
write.xlsx(PDB_ID_Date, file = "PDB_ID_Date.xlsx",  
           sheetName = "Sheet1", col.names = TRUE, row.names = FALSE, append 
= FALSE) 
 
cond <- which(rscbPDBgpcr$Release.Date == "2021") 
PDB_ID_Date <- rscbPDBgpcr [-cond,] 
 
x <- barplot(table(rscbPDBgpcr), xaxt="n", col = "cyan", xlab = "Year", ylab 
= "Frequency") 
labs <- names(table(rscbPDBgpcr)) 
text(cex=1,x=x, y=-4.5, labs, xpd=T,srt=90) 
 
library(lattice) 
barchart(rscbPDBgpcr$Release.Date, ylab = "Frequency", xlab = "Year", 
horizontal = F) 
cumFreq <- ftable(rscbPDBgpcr$Release.Date) 
l <- as.data.frame(cumFreq) 
k <- cumsum(l$Freq) 
l$Freq <- k 
barchart(Freq ~ Var1, data = l, ylab = "Frequency", xlab = "Year", horizontal 
= F) 
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APPENDIX D: MOTIF SEARCH 

D.1: Cut Sequence into regions 

library(seqinr) 
ligID <- c("FQUAFMNPXPXOJE-UHFFFAOYSA-N","MLQFOEOUNIRULR-UHFFFAOYSA-
N","YKMSTUDOGGAEJH-UHFFFAOYSA-N", 
           "USZPQRMQYJIDII-UHFFFAOYSA-N","BYBLEWFAAKGYCD-UHFFFAOYSA-
N","NKOPNLUYOHOGFZ-UHFFFAOYSA-N", 
           "AJLFQFYMLRXVHV-UHFFFAOYSA-N","CLQVVBPDAXJGBV-UHFFFAOYSA-
N","DTZDSNQYNPNCPK-UHFFFAOYSA-N", 
           "IKSHHOBCJKJKOG-UHFFFAOYSA-N","XLWJPQQFJNGUPA-UHFFFAOYSA-N") 
 
num.ligID <- length(ligID) 
 
for (k in 1:num.ligID) { 
  # read the positions of the extracellular loops, helices, etc 
  filName <- paste(ligID[k],"txt", sep = ".") 
  positn <- read.table(file = filName, header = T, sep = "", stringsAsFactors 
= F) 
  # read the fasta file of the gpcrs 
  fastaName <- paste(ligID[k], "fasta", sep = ".") 
  fasta <- read.fasta(file = fastaName, seqtype = "AA", as.string = T, 
whole.header = F,  
                      strip.desc = F) 
  # get the number of gpcr in fasta file 
  num.seq <- (NROW(positn))/2 
   
  for (j in 3:NCOL(positn)) { 
    seq.fasta <- NULL 
    seq.ID <- c() 
     
    # row begin = i+(i-1), row end = i+((i+1)-1), i = 1:num.seq, rows = 
1:NROW(positn)  
    for (i in 1:num.seq) { 
      strt <- i+(i-1) 
      ends <- i+((i+1)-1) 
      seq.sub <- substring(fasta[[i]][1], positn[strt, j], positn[ends, j]) 
      seq.ID[i] <- attr(fasta[[i]], "name") 
      seq.list <- list(seq = seq.sub) 
      seq.fasta <- rbind(seq.fasta, seq.list) 
    } 
     
    # write fasta file 
    file.out <- paste(ligID[k], names(positn)[j], sep = "_") 
    file.out <- paste(file.out, "txt", sep = ".") 
    write.fasta(sequences = seq.fasta, names = seq.ID, file.out = file.out, 
open = "w",  
                nbchar = 60, as.string = T) 
  } 
} 
rm(list = ls()) 
 

D.2: Cut Sequence into Extracellular loops 

library(seqinr) 
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ligID <- c("FQUAFMNPXPXOJE-UHFFFAOYSA-N","MLQFOEOUNIRULR-UHFFFAOYSA-
N","YKMSTUDOGGAEJH-UHFFFAOYSA-N", 
           "USZPQRMQYJIDII-UHFFFAOYSA-N","BYBLEWFAAKGYCD-UHFFFAOYSA-
N","NKOPNLUYOHOGFZ-UHFFFAOYSA-N", 
           "AJLFQFYMLRXVHV-UHFFFAOYSA-N","CLQVVBPDAXJGBV-UHFFFAOYSA-
N","DTZDSNQYNPNCPK-UHFFFAOYSA-N", 
           "IKSHHOBCJKJKOG-UHFFFAOYSA-N","XLWJPQQFJNGUPA-UHFFFAOYSA-N") 
 
num.ligID <- length(ligID) 
 
for (k in 1:num.ligID) { 
  # read the positions of the extracellular loops, helices, etc 
  filName <- paste(ligID[k],"txt", sep = ".") 
  positn <- read.table(file = filName, header = T, sep = "", stringsAsFactors 
= F) 
  # read the fasta file of the gpcrs 
  fastaName <- paste(ligID[k], "fasta", sep = ".") 
  fasta <- read.fasta(file = fastaName, seqtype = "AA", as.string = T, 
whole.header = F,  
                      strip.desc = F) 
  # get the number of gpcr in fasta file 
  num.seq <- (NROW(positn))/2 
   
  Eis <- c(3, 7, 11, 15) # column numbers of the Ei's in the positions of the 
extracellular loops, helices, etc 
  seq.fasta <- NULL 
  seq.ID <- c()  
    
  for (j in Eis) { 
     
    # row begin = i+(i-1), row end = i+((i+1)-1), i = 1:num.seq, rows = 
1:NROW(positn)  
    for (i in 1:num.seq) { 
      beg <- i+(i-1) 
      end <- i+((i+1)-1) 
      strt <- positn[beg, j] 
      ends <- positn[end, j] 
     
      if (j == 3){ 
        Positn_strt <- strt 
      } else { 
          Positn_strt <- strt - 5 
      } 
      Positn_ends <- ends + 5 
      seq.sub <- substring(fasta[[i]][1], Positn_strt, Positn_ends) 
      seq.InID <- paste(attr(fasta[[i]], "name"), names(positn)[j], sep = "") 
      seq.ID <- c(seq.ID, seq.InID) 
      seq.list <- list(seq = seq.sub) 
      seq.fasta <- rbind(seq.fasta, seq.list) 
    } 
  } 
       
  # write fasta file 
  file.out <- paste(ligID[k], "E", sep = "_") 
  file.out <- paste(file.out, "txt", sep = ".") 
  write.fasta(sequences = seq.fasta, names = seq.ID, file.out = file.out, 
open = "w",  
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              nbchar = 60, as.string = T) 
} 
rm(list = ls()) 
 

D.3: Cut Sequence into Modified Extracellular loops 

library(seqinr) 
 
ligID <- c("FQUAFMNPXPXOJE-UHFFFAOYSA-N","MLQFOEOUNIRULR-UHFFFAOYSA-
N","YKMSTUDOGGAEJH-UHFFFAOYSA-N", 
           "USZPQRMQYJIDII-UHFFFAOYSA-N","BYBLEWFAAKGYCD-UHFFFAOYSA-
N","NKOPNLUYOHOGFZ-UHFFFAOYSA-N", 
           "AJLFQFYMLRXVHV-UHFFFAOYSA-N","CLQVVBPDAXJGBV-UHFFFAOYSA-
N","DTZDSNQYNPNCPK-UHFFFAOYSA-N", 
           "IKSHHOBCJKJKOG-UHFFFAOYSA-N","XLWJPQQFJNGUPA-UHFFFAOYSA-N") 
 
num.ligID <- length(ligID) 
 
for (k in 1:num.ligID) { 
  # read the positions of the extracellular loops, helices, etc 
  filName <- paste(ligID[k],"txt", sep = ".") 
  positn <- read.table(file = filName, header = T, sep = "", stringsAsFactors 
= F) 
  # read the fasta file of the gpcrs 
  fastaName <- paste(ligID[k], "fasta", sep = ".") 
  fasta <- read.fasta(file = fastaName, seqtype = "AA", as.string = T, 
whole.header = F,  
                      strip.desc = F) 
  # get the number of gpcr in fasta file 
  num.seq <- (NROW(positn))/2 
   
  Eis <- c(3, 7, 11, 15) # column numbers of the Ei's in the positions of the 
extracellular loops, helices, etc 
   
  for (j in Eis) { 
    seq.fasta <- NULL 
    seq.ID <- c() 
     
    # row begin = i+(i-1), row end = i+((i+1)-1), i = 1:num.seq, rows = 
1:NROW(positn)  
    for (i in 1:num.seq) { 
      beg <- i+(i-1) 
      end <- i+((i+1)-1) 
      strt <- positn[beg, j] 
      ends <- positn[end, j] 
     
      if (j == 3){ 
        Positn_strt <- strt 
      } else { 
          Positn_strt <- strt - 5 
      } 
      Positn_ends <- ends + 5 
      seq.sub <- substring(fasta[[i]][1], Positn_strt, Positn_ends) 
      seq.ID[i] <- attr(fasta[[i]], "name") 
      seq.list <- list(seq = seq.sub) 
      seq.fasta <- rbind(seq.fasta, seq.list) 
    } 
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    # write fasta file 
    file.out <- paste(ligID[k], names(positn)[j], sep = "_") 
    file.out <- paste(file.out, "txt", sep = ".") 
    write.fasta(sequences = seq.fasta, names = seq.ID, file.out = file.out, 
open = "w",  
                nbchar = 60, as.string = T) 
  } 
} 
rm(list = ls()) 
 

D.4: Run MEME 

#!/bin/bash 
 
for dir in ./fasta_MEME_full/*/ 
do 
 for file in $dir*.txt 
 do 
  meme $file -protein -oc ${file%.*} -nostatus -time 18000 -mod 
zoops -nmotifs 10 -minw 3 -maxw 20 
 done  
done 
 

 

 

APPENDIX E: ANALYSIS ON 3D STRUCTURES OF GPCRS 

E.1: 3D Structural Comparisons 

E.1.1: Running FATCAT 

#! /bin/bash 
# Run FATCAT 
source ~/.bashrc 
## source ~/.zshrc 
 
declare -a list=("0HK" "7LD" "7MA" "8NU" "40F" "89F" "ADN" "GGL" "GLU" "SRO" 
"Z99") 
declare -a indx 
declare -a num_prots 
num_prots[0]="0HK_P08173_A_5dsg.pdb;0HK_P11229_A_5cxv.pdb" 
num_prots[1]="7LD_P28223_A_6wgt.pdb;7LD_P41595_A_5tvn.pdb" 
num_prots[2]="7MA_O43613_A_6tod.pdb;7MA_O43614_A_5wqc.pdb" 
num_prots[3]="8NU_P14416_A_6cm4.pdb;8NU_P28223_A_6a93.pdb" 
num_prots[4]="40F_Q14416_C_4xaq.pdb;40F_Q14832_C_4xar.pdb" 
num_prots[5]="89F_P28222_A_5v54.pdb;89F_P28223_A_6wh4.pdb" 
num_prots[6]="ADN_P29274_A_2ydo.pdb;ADN_P30542_A_6d9h_R.pdb" 
num_prots[7]="GGL_O00222_C_6bsz.pdb;GGL_Q14416_C_5cni.pdb;GGL_Q14832_C_5cnk.p
db" 
num_prots[8]="GLU_A0A173M0G2_TR2_5x2p_A.pdb;GLU_E9P5T5_NOT_4io2_A.pdb;GLU_P41
594_C_3lmk_A.pdb;GLU_P42264_NOT_3s9e_A.pdb;GLU_Q14416_C_7mtr_A.pdb" 
num_prots[9]="SRO_P08908_A_7e2y_R.pdb;SRO_P37231_NOT_3adv_B.pdb" 
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num_prots[10]="Z99_P41594_C_7fd9_A.pdb;Z99_Q13255_C_3ks9_A.pdb;Z99_Q14831_C_3
mq4.pdb;Z99_Q14832_C_7wi6_A.pdb" 
 
declare -i i=0 
for dir in "${list[@]}"; do 
    cd ./$dir 
     
        #create an array out of the string separated by ; 
        IFS=";" read -r -a arr <<< "${num_prots[$i]}" 
         
        #get the length of the array arr 
        len=`expr ${#arr[@]} - 1` 
         
        #create all possible pairs of the indices of the protein and perform 
APoc# 
        set -- `seq 0 $len` 
        for a; do 
                shift 
                for b; do 
                        aa=`basename ${arr[$a]} .pdb` 
                        bb=`basename ${arr[$b]} .pdb` 
                        FATCAT -p1 ${arr[$a]} -p2 ${arr[$b]} -o 
${aa}_${bb}_flex -m 
                        FATCAT -p1 ${arr[$a]} -p2 ${arr[$b]} -o 
${aa}_${bb}_rigid -m -r 
                done 
        done 
    echo "Done with $dir"     
    i=`expr $i + 1` 
    cd ../ 
done 
 
E.1.2: Extract Superimposed 3D Part 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Aug  2 16:51:15 2022 
This code maps the 3D structural alignment of two proteins to their 
respective pdb files 
and extract the portions of the 3D structures that were found to be similar. 
The extracted portions are written to a pdb file. 
This is done both for flexible and rigid 3D structural comparisons. 
@author: kwabena 
""" 
 
import re 
import csv 
from itertools import combinations 
from Bio import SeqIO 
 
# set directory 
import os 
path = 
'/Users/kwabena/Research/GPCR/Entire_work_organized/3D_Comparison_Pocket_over
lap_scores/3D_structural_comparison' 
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protein = [["0HK_P08173_A_5dsg","0HK_P11229_A_5cxv"], 
["7LD_P28223_A_6wgt","7LD_P41595_A_5tvn"],  
           ["7MA_O43613_A_6tod","7MA_O43614_A_5wqc"], 
["8NU_P14416_A_6cm4","8NU_P28223_A_6a93"],  
           ["40F_Q14416_C_4xaq","40F_Q14832_C_4xar"], 
["89F_P28222_A_5v54","89F_P28223_A_6wh4"],  
           
["ADN_P29274_A_2ydo","ADN_P30542_A_6d9h_R"],["GGL_O00222_C_6bsz","GGL_Q14416_
C_5cni","GGL_Q14832_C_5cnk"],  
           
["GLU_A0A173M0G2_TR2_5x2p_A","GLU_E9P5T5_NOT_4io2_A","GLU_P41594_C_3lmk_A","G
LU_P42264_NOT_3s9e_A","GLU_Q14416_C_7mtr_A"],  
           ["SRO_P08908_A_7e2y_R","SRO_P37231_NOT_3adv_B"],  
           
["Z99_P41594_C_7fd9_A","Z99_Q13255_C_3ks9_A","Z99_Q14831_C_3mq4","Z99_Q14832_
C_7wi6_A"]] 
 
folder = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
columns = ['Ligand','Protein_Pair_1', 'Protein_Pair_2', '3D_RMSD_flex', 
'3D_RMSD_rigid', 'Aligned_Seq_Identity_flex',  
           'Aligned_Seq_Identity_rigid', 'Aligned_Seq_Similarity_flex', 
'Aligned_Seq_Similarity_rigid'] 
results_file = '3D_Similar_RMSD.tsv' 
 
# create a csv file with only column heads 
os.chdir(path) 
with open(results_file, "w") as outfile: 
    writer = csv.writer(outfile, delimiter = "\t") 
    writer.writerow(columns)  
#outfile.close() 
 
for indx, fold in enumerate(folder): 
    path_list = [path, fold] 
    paths = "/".join(path_list) 
    os.chdir(paths) 
     
    # create dict to hold the results 
    all_columns = {} 
    for i in range(len(columns)): 
        all_columns.setdefault(columns[i],[]) 
     
    length = len(protein[indx]) 
    comb = combinations(range(0,length), 2) 
     
    # loop over combinations of the pairs of protein pockets 
    for j in comb: 
        # Get the alignment file names and read them. Also read protein files 
         
        flex_aln_name = "_".join([(protein[indx])[j[0]], 
(protein[indx])[j[1]], 'flex.aln']) 
        rigid_aln_name = "_".join([(protein[indx])[j[0]], 
(protein[indx])[j[1]], 'rigid.aln']) 
         
        flex_aln = open(flex_aln_name, "r") 
        aln_similar_flex = flex_aln.readlines() 
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        rigid_aln = open(rigid_aln_name, "r")  
        aln_similar_rigid = rigid_aln.readlines() 
         
        prot_1 = [record.seq for record in 
SeqIO.parse(".".join([(protein[indx])[j[0]], 'pdb']), "pdb-atom")] 
        prot_1_seq = str(prot_1[0]).replace("X","") 
        prot_2 = [record.seq for record in 
SeqIO.parse(".".join([(protein[indx])[j[1]], 'pdb']), "pdb-atom")] 
        prot_2_seq = str(prot_2[0]).replace("X","")  
         
        prot_11 = open(".".join([(protein[indx])[j[0]], 'pdb']), "r") 
        prot_11_pdb = prot_11.read() 
        prot_22 = open(".".join([(protein[indx])[j[1]], 'pdb']), "r") 
        prot_22_pdb = prot_22.read() 
         
        # get the positions of the sequences in the pdb files 
        regex = r"[\sA-Z]\d{1,}(?=\s{4})" 
        position_prot_1 = re.finditer(regex, prot_11_pdb) 
        position_prot_2 = re.finditer(regex, prot_22_pdb) 
         
        position_prot_1_uniq = [] 
        for pos_prot_1 in position_prot_1: 
            pos_pt_1 = pos_prot_1.group() 
            pos_pt_1 = int(re.sub(r"\D","", pos_pt_1)) 
            if pos_pt_1 not in position_prot_1_uniq: 
                position_prot_1_uniq.append(pos_pt_1) 
         
        position_prot_2_uniq = [] 
        for pos_prot_2 in position_prot_2: 
            pos_pt_2 = pos_prot_2.group() 
            pos_pt_2 = int(re.sub(r"\D","", pos_pt_2)) 
            if pos_pt_2 not in position_prot_2_uniq: 
                position_prot_2_uniq.append(pos_pt_2) 
         
        # map the alignment to the pdb files and subset the pdb for the 
blocks of the alignment 
        position_chain_1_flex = []   
        position_chain_2_flex = []  
        position_chain_1_rigid = []   
        position_chain_2_rigid = []  
         
        prot_file_ = open(".".join([(protein[indx])[j[0]], 'pdb']), "r") 
        prot_file_1 = prot_file_.readlines() 
        prot_file__ = open(".".join([(protein[indx])[j[1]], 'pdb']), "r") 
        prot_file_2 = prot_file__.readlines() 
         
        # Flex 
        temp_flex_1 = position_prot_1_uniq[:] 
        temp_flex_2 = position_prot_2_uniq[:] 
        for ii, line_aln_flex in enumerate(aln_similar_flex): 
             
            if line_aln_flex[:7] == 'Chain 1': 
                line_aln_flex = line_aln_flex.split(" ") 
                ind_1 = position_prot_1_uniq.index(int(line_aln_flex[-2])) 
#the index of the 1st AA in aln in position_prot_1_uniq 
                indx__1 = [(i-14+ind_1) for i, ij in 
enumerate(line_aln_flex[-1].replace("\n", "")) if ij=='-'] 
                if len(indx__1) > 0:   
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                    for ind in indx__1: 
                            temp_flex_1.insert(ind, "-") 
                 
                block_indx_1 = [(i-14+ind_1) for i, ij in 
enumerate(aln_similar_flex[(ii+1)].replace("\n", "")) if ij!=' '] 
                if len(block_indx_1) > 0:   
                    for jj in block_indx_1: 
                        position_chain_1_flex.append(temp_flex_1[jj]) 
                    
            if line_aln_flex[:7] == 'Chain 2': 
                line_aln_flex = line_aln_flex.split(" ") 
                ind_2 = position_prot_2_uniq.index(int(line_aln_flex[-2])) 
#the index of the 1st AA in aln in position_prot_2_uniq 
                indx__2 = [(ik-14+ind_2) for ik, ji in 
enumerate(line_aln_flex[-1].replace("\n", "")) if ji=='-'] 
                if len(indx__2) > 0:   
                    for ind in indx__2: 
                        temp_flex_2.insert(ind, "-") 
                 
                block_indx_2 = [(ik-14+ind_2) for ik,ji in 
enumerate(aln_similar_flex[(ii-1)].replace("\n", "")) if ji!=' '] 
                if len(block_indx_2) > 0: 
                    for ki in block_indx_2: 
                        position_chain_2_flex.append(temp_flex_2[ki]) 
         
        #create file names 
        flex_1 = "_".join([(protein[indx])[j[0]], 'flex_with', 
(protein[indx])[j[1]]]) 
        flex_file_name_1 = ".".join([flex_1, "txt"]) 
         
        flex_2 = "_".join([(protein[indx])[j[1]], 'flex_with', 
(protein[indx])[j[0]]]) 
        flex_file_name_2 = ".".join([flex_2, "txt"]) 
         
        #write 3D file of the alignment 
        flex_file_1 = open(flex_file_name_1, "a+")  #protein 1 flex 
        for indxx in position_chain_1_flex: 
            if indxx != "-": 
                for lines in prot_file_1[:-1]: 
                    line = lines.split(" ") 
                    lin = ' '.join(line).split() 
                    len_lin = len(lin) 
                    if lin[0] == "ATOM": 
                        if len_lin == 12: 
                            if lin[5] == str(indxx): 
                                flex_file_1.write(lines) 
                        if len_lin == 11: 
                            lin_5 = re.sub(r"\D","", lin[4]) 
                            if lin_5 == str(indxx): 
                                flex_file_1.write(lines) 
                         
        flex_file_1.write("TER") # Important for PDB file 
        flex_file_1.close() 
         
        flex_file_2 = open(flex_file_name_2, "a+")    #protein 2 flex 
        for indxx in position_chain_2_flex: 
            if indxx != "-": 
                for lines in prot_file_2[:-1]: 
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                    line = lines.strip().split(" ") 
                    lin = ' '.join(line).split() 
                    len_lin = len(lin) 
                    if lin[0] == "ATOM": 
                        if len_lin == 12: 
                            if lin[5] == str(indxx): 
                                flex_file_2.write(lines) 
                        elif len_lin == 11: 
                            lin_5 = re.sub(r"\D","", lin[4]) 
                            if lin_5 == str(indxx): 
                                flex_file_2.write(lines) 
                         
        flex_file_2.write("TER") # Important for PDB file 
        flex_file_2.close() 
         
        # Rigid  
        temp_rigid_1 = position_prot_1_uniq[:] 
        temp_rigid_2 = position_prot_2_uniq[:] 
        for iii, line_aln_rigid in enumerate(aln_similar_rigid): 
             
            if line_aln_rigid[:7] == 'Chain 1': 
                line_aln_rigid = line_aln_rigid.split(" ") 
                ind_1 = position_prot_1_uniq.index(int(line_aln_rigid[-2])) 
#the index of the 1st AA in aln in position_prot_1_uniq 
                indx__1 = [(i-14+ind_1) for i, ij in 
enumerate(line_aln_rigid[-1].replace("\n", "")) if ij=='-'] 
                if len(indx__1) > 0: 
                    for ind in indx__1: 
                        temp_rigid_1.insert(ind, "-") 
                 
                block_indx_1 = [(jk-14+ind_1) for jk ,kj in 
enumerate(aln_similar_rigid[(iii+1)].replace("\n", "")) if kj!=' '] 
                if len(block_indx_1) > 0:  
                    for jjj in block_indx_1: 
                        position_chain_1_rigid.append(temp_rigid_1[jjj]) 
                   
            if line_aln_rigid[:7] == 'Chain 2': 
                line_aln_rigid = line_aln_rigid.split(" ") 
                ind_2 = position_prot_2_uniq.index(int(line_aln_rigid[-2])) 
#the index of the 1st AA in aln in position_prot_2_uniq 
                indx__2 = [(i-14+ind_2) for i, ij in 
enumerate(line_aln_rigid[-1].replace("\n", "")) if ij=='-'] 
                if len(indx__2) > 0: 
                    for ind in indx__2: 
                        temp_rigid_2.insert(ind, "-") 
                 
                block_indx_2 = [(kk-14+ind_2) for kk,ijk in 
enumerate(aln_similar_rigid[(iii-1)].replace("\n", "")) if ijk!=' '] 
                if len(block_indx_2) > 0: 
                    for kkk in block_indx_2: 
                        position_chain_2_rigid.append(temp_rigid_2[kkk])     
 
        rigid_1 = "_".join([(protein[indx])[j[0]], 'rigid_with', 
(protein[indx])[j[1]]]) 
        rigid_file_name_1 = ".".join([rigid_1, "txt"]) 
         
        rigid_2 = "_".join([(protein[indx])[j[1]], 'rigid_with', 
(protein[indx])[j[0]]]) 
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        rigid_file_name_2 = ".".join([rigid_2, "txt"]) 
       
        #write 3D file of the alignment 
        rigid_file_1 = open(rigid_file_name_1, "a+")  #protein 1 rigid 
        for indxx in position_chain_1_rigid: 
            if indxx != "-": 
                for lines in prot_file_1[:-1]: 
                    line = lines.strip().split(" ") 
                    lin = ' '.join(line).split() 
                    len_lin = len(lin) 
                    if lin[0] == "ATOM": 
                        if len_lin == 12: 
                            if lin[5] == str(indxx): 
                                rigid_file_1.write(lines) 
                        elif len_lin == 11: 
                            lin_5 = re.sub(r"\D","", lin[4]) 
                            if lin_5 == str(indxx): 
                                rigid_file_1.write(lines) 
                         
        rigid_file_1.write("TER") # Important for PDB file 
        rigid_file_1.close() 
         
        rigid_file_2 = open(rigid_file_name_2, "a+")    #protein 2 rigid 
        for indxx in position_chain_2_flex: 
            if indxx != "-": 
                for lines in prot_file_2[:-1]: 
                    line = lines.strip().split(" ") 
                    lin = ' '.join(line).split() 
                    len_lin = len(lin) 
                    if lin[0] == "ATOM": 
                        if len_lin == 12: 
                            if lin[5] == str(indxx): 
                                rigid_file_2.write(lines) 
                        elif len_lin == 11: 
                            lin_5 = re.sub(r"\D","", lin[4]) 
                            if lin_5 == str(indxx): 
                                rigid_file_2.write(lines) 
                         
        rigid_file_2.write("TER") # Important for PDB file 
        rigid_file_2.close() 
         
         
        # save results to dict created above 
        all_columns['Ligand'].append(fold) 
        all_columns['Protein_Pair_1'].append(".".join([(protein[indx])[j[0]], 
'pdb'])) 
        all_columns['Protein_Pair_2'].append(".".join([(protein[indx])[j[1]], 
'pdb'])) 
        all_columns['3D_RMSD_flex'].append(aln_similar_flex[1].split()[9]) 
        all_columns['3D_RMSD_rigid'].append(aln_similar_rigid[1].split()[9]) 
        
all_columns['Aligned_Seq_Identity_flex'].append(aln_similar_flex[2].split()[5
].replace("%","")) 
        
all_columns['Aligned_Seq_Identity_rigid'].append(aln_similar_rigid[2].split()
[5].replace("%","")) 
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all_columns['Aligned_Seq_Similarity_flex'].append(aln_similar_flex[2].split()
[7].replace("%","").replace("\n","")) 
        
all_columns['Aligned_Seq_Similarity_rigid'].append(aln_similar_rigid[2].split
()[7].replace("%","").replace("\n","")) 
         
    # change directory and write the RMSD results 
    os.chdir(path) 
    with open(results_file, "a+") as outfiles: 
        writer = csv.writer(outfiles, delimiter = "\t")         
        writer.writerows(zip(*[all_columns[key] for key in columns])) 
 
outfiles.close() 
 
E.2: Binding Pocket Prediction and Comparisons 

E.2.1: Binding Pocket Prediction 

E.2.1.1: Clean 3D Structures 
 
#! /bin/bash 
## this script removes unwanted lines in the pdb files to put them in the 
right 
## input format for P2Rank 
 
declare -a list=("0HK" "7LD" "7MA" "8NU" "40F" "89F" "97V" "ADN" "GGL" "GLU" 
"SRO" "Z99") 
 
for dir in "${list[@]}"; do 
    cd ./$dir 
     
    ## convert pdb files to txt files 
    for f in ./*.pdb; do 
        mv "$f" "${f%.*}.txt" 
    done 
 
    for file in ./*.txt; do 
        echo $file 
        b=`basename $file .txt` 
        grep ATOM $file > ${b}.pdb 
        obabel -i pdb ${b}.pdb -o pdbqt -O ${b}.pdbqt -xh --partialcharge 
gasteiger 
    done 
    rm *.txt 
     
    cd ../ 
done 
 
E.2.1.2: Run P2Rank 
 
#! /bin/bash 
# Run P2Rank 
 
declare -a list=("0HK" "7LD" "7MA" "8NU" "40F" "89F" "97V" "ADN" "GGL" "GLU" 
"SRO" "Z99") 
declare -a indx 
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declare -a num_prots 
num_prots[0]="0HK_P08173_A_5dsg.pdb;0HK_P11229_A_5cxv.pdb" 
num_prots[1]="7LD_P28223_A_6wgt.pdb;7LD_P41595_A_5tvn.pdb" 
num_prots[2]="7MA_O43613_A_6tod.pdb;7MA_O43614_A_5wqc.pdb" 
num_prots[3]="8NU_P14416_A_6cm4.pdb;8NU_P28223_A_6a93.pdb" 
num_prots[4]="40F_Q14416_C_4xaq.pdb;40F_Q14832_C_4xar.pdb" 
num_prots[5]="89F_P28222_A_5v54.pdb;89F_P28223_A_6wh4.pdb" 
num_prots[6]="97V_P43220_B_5vex.pdb;97V_P47871_B_5xf1.pdb" 
num_prots[7]="ADN_P29274_A_2ydo.pdb;ADN_P30542_A_6d9h_R.pdb" 
num_prots[8]="GGL_O00222_C_6bsz.pdb;GGL_Q14416_C_5cni.pdb;GGL_Q14832_C_5cnk.p
db" 
num_prots[9]="GLU_A0A173M0G2_TR2_5x2p_A.pdb;GLU_E9P5T5_NOT_4io2_A.pdb;GLU_P41
594_C_3lmk_A.pdb;GLU_P42264_NOT_3s9e_A.pdb;GLU_Q14416_C_7mtr_A.pdb" 
num_prots[10]="SRO_P08908_A_7e2y_R.pdb;SRO_P37231_NOT_3adv_B.pdb" 
num_prots[11]="Z99_P41594_C_7fd9_A.pdb;Z99_Q13255_C_3ks9_A.pdb;Z99_Q14831_C_3
mq4.pdb;Z99_Q14832_C_7wi6_A.pdb" 
 
declare -a prot_indx 
declare -i i=0 
declare -i j 
for dir in "${list[@]}"; do 
    cd ./$dir 
     
        IFS=";" read -r -a arr <<< "${num_prots[$i]}" 
         
        #get the length of the array arr 
        len=`expr ${#arr[@]} - 1` 
         
        #create all possible pairs of the indices of the protein and perform 
P2Rank 
        set -- `seq 0 $len` 
        for a; do 
            prank predict -o ./ -f ./${arr[$a]} -threads 8 
        done 
    i=`expr $i + 1` 
    cd ../ 
done 
 
E.2.1.3: Get 3D Structures of Predicted Pockets 
 
### 
# This code creates a PDB file of the pockets with .txt extension 
# it also create configuration files for AutoDock vina 
### 
 
# set directory 
import os 
path = '/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/Binding_pocket_prediction_and_comparison/Pocket
_Predictions' 
os.chdir(path) 
import csv 
 
protein = [["0HK_P08173_A_5dsg.pdb","0HK_P11229_A_5cxv.pdb"], 
["7LD_P28223_A_6wgt.pdb","7LD_P41595_A_5tvn.pdb"], 
["7MA_O43613_A_6tod.pdb","7MA_O43614_A_5wqc.pdb"],["8NU_P14416_A_6cm4.pdb","8
NU_P28223_A_6a93.pdb"],["40F_Q14416_C_4xaq.pdb","40F_Q14832_C_4xar.pdb"],["89
F_P28222_A_5v54.pdb","89F_P28223_A_6wh4.pdb"],["ADN_P29274_A_2ydo.pdb","ADN_P
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30542_A_6d9h_R.pdb"],["GGL_O00222_C_6bsz.pdb","GGL_Q14416_C_5cni.pdb","GGL_Q1
4832_C_5cnk.pdb"],["GLU_A0A173M0G2_TR2_5x2p_A.pdb","GLU_E9P5T5_NOT_4io2_A.pdb
","GLU_P41594_C_3lmk_A.pdb","GLU_P42264_NOT_3s9e_A.pdb","GLU_Q14416_C_7mtr_A.
pdb"],["SRO_P08908_A_7e2y_R.pdb","SRO_P37231_NOT_3adv_B.pdb"],["Z99_P41594_C_
7fd9_A.pdb","Z99_Q13255_C_3ks9_A.pdb","Z99_Q14831_C_3mq4.pdb","Z99_Q14832_C_7
wi6_A.pdb"]] 
 
pkt_row_num = [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0,1], 
[0,0,0,0,1], [0,0], [0,0,4,9]] 
folder = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
for ii, fold in enumerate(folder): 
    path_list = [path, fold] 
    paths = "/".join(path_list) 
    os.chdir(paths) 
    for jj, prot in enumerate(protein[ii]): 
        file_name = "_".join([prot, "predictions.csv"]) 
        file = open(file_name) 
        csv_file = file.readlines()[1:] 
        pkt_info = csv_file[pkt_row_num[ii][jj]].split(",") 
         
        #write docking configuration file 
        center_x = pkt_info[6].strip() 
        center_y = pkt_info[7].strip() 
        center_z = pkt_info[8].strip() 
        receptor_name = "".join([prot, "qt"]) 
        config_name = "_".join([prot.split(".")[0], "config.txt"]) 
        #write docking configuration file content and close file 
        config_file = open(config_name, "w") 
        config_file.write("receptor = %s\n\n" %receptor_name) 
        config_file.write("center_x = %s\n" %center_x) 
        config_file.write("center_y = %s\n" %center_y) 
        config_file.write("center_z = %s\n\n" %center_z) 
        config_file.write("size_x = 20\n") 
        config_file.write("size_y = 20\n") 
        config_file.write("size_z = 20\n\n") 
        config_file.write("num_modes = 1\n") 
        config_file.write("exhaustiveness = 9") 
        config_file.close() 
         
        #get pockets AA and write a txt file of the atoms coordinates 
        split_val = pkt_info[9].strip()[0:2]  # chain name eg A, B, C with _ 
eg A_, B_, C_ 
        AA_ind = pkt_info[9].split(split_val)[1:] # get the positions of the 
amino acids in pocket 
        AA_ind = list(map(int, AA_ind)) 
        AA_ind.sort() 
        AA_indx = list(map(str, AA_ind)) 
        prot_file_pdb = open(prot, "r") 
        prot_file = prot_file_pdb.readlines() 
        #create pocket file name 
        pkt_num = pkt_row_num[ii][jj] + 1 
        pkt_name = "_".join([prot.split(".")[0], "pkt", str(pkt_num)]) 
        pkt_file_name = ".".join([pkt_name, "txt"]) 
        #write pocket file 
        pkt_file = open(pkt_file_name, "a+") 
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        pkt_file.write("PKT        11    101    " + pkt_name + "\n") # 
Important for APoc 
        for indx in AA_indx: 
            for lines in prot_file[:-1]: 
                line = lines.split(" ") 
                lin = ' '.join(line).split() 
                if lin[0] == "ATOM": 
                    lin_5 = lin[5].split(split_val[0]) 
                    lin_5 = ' '.join(lin_5).split()[0] 
                    if lin_5 == indx: 
                        pkt_file.write(lines) 
        pkt_file.write("TER") # Important for PDB file 
        pkt_file.close() 
        prot_file_pdb.close() 
 
E.2.2: Binding Pocket Comparison 

E.2.2.1: Append Pocket 3D files to their Protein 3D file 
 
### 
# This python file is used to add the pocket file to the GPCR 3D structure 
file 
### 
 
# set directory 
import os 
path = '/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/Binding_pocket_prediction_and_comparison/APoc' 
os.chdir(path) 
 
protein = [["0HK_P08173_A_5dsg.pdb","0HK_P11229_A_5cxv.pdb"], 
["7LD_P28223_A_6wgt.pdb","7LD_P41595_A_5tvn.pdb"], 
["7MA_O43613_A_6tod.pdb","7MA_O43614_A_5wqc.pdb"],["8NU_P14416_A_6cm4.pdb","8
NU_P28223_A_6a93.pdb"],["40F_Q14416_C_4xaq.pdb","40F_Q14832_C_4xar.pdb"],["89
F_P28222_A_5v54.pdb","89F_P28223_A_6wh4.pdb"],["ADN_P29274_A_2ydo.pdb","ADN_P
30542_A_6d9h_R.pdb"],["GGL_O00222_C_6bsz.pdb","GGL_Q14416_C_5cni.pdb","GGL_Q1
4832_C_5cnk.pdb"],["GLU_A0A173M0G2_TR2_5x2p_A.pdb","GLU_E9P5T5_NOT_4io2_A.pdb
","GLU_P41594_C_3lmk_A.pdb","GLU_P42264_NOT_3s9e_A.pdb","GLU_Q14416_C_7mtr_A.
pdb"],["SRO_P08908_A_7e2y_R.pdb","SRO_P37231_NOT_3adv_B.pdb"],["Z99_P41594_C_
7fd9_A.pdb","Z99_Q13255_C_3ks9_A.pdb","Z99_Q14831_C_3mq4.pdb","Z99_Q14832_C_7
wi6_A.pdb"]] 
 
pkt_row_num = [[0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0,1], 
[0,0,0,0,1], [0,0], [0,0,4,9]] 
folder = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
for ii, fold in enumerate(folder): 
    path_list = [path, fold] 
    paths = "/".join(path_list) 
    os.chdir(paths) 
    for jj, prot in enumerate(protein[ii]): 
        file = open(prot, "a+") 
         
        # 
        pkt_num = pkt_row_num[ii][jj] + 1 
        pkt_name = "_".join([prot.split(".")[0], "pkt", str(pkt_num)]) 
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        pkt_file_name = ".".join([pkt_name, "txt"]) 
        pkt_file = open(pkt_file_name, "r") 
        pkt = pkt_file.read() 
        file.write(pkt) 
         
        pkt_file.close() 
        file.close() 
 
E.2.2.2: Run APoc 
 
#! /bin/bash 
# Run APoc 
 
declare -a list=("0HK" "7LD" "7MA" "8NU" "40F" "89F" "ADN" "GGL" "GLU" "SRO" 
"Z99") 
declare -a indx 
declare -a num_prots 
num_prots[0]="0HK_P08173_A_5dsg.pdb;0HK_P11229_A_5cxv.pdb" 
num_prots[1]="7LD_P28223_A_6wgt.pdb;7LD_P41595_A_5tvn.pdb" 
num_prots[2]="7MA_O43613_A_6tod.pdb;7MA_O43614_A_5wqc.pdb" 
num_prots[3]="8NU_P14416_A_6cm4.pdb;8NU_P28223_A_6a93.pdb" 
num_prots[4]="40F_Q14416_C_4xaq.pdb;40F_Q14832_C_4xar.pdb" 
num_prots[5]="89F_P28222_A_5v54.pdb;89F_P28223_A_6wh4.pdb" 
num_prots[6]="ADN_P29274_A_2ydo.pdb;ADN_P30542_A_6d9h_R.pdb" 
num_prots[7]="GGL_O00222_C_6bsz.pdb;GGL_Q14416_C_5cni.pdb;GGL_Q14832_C_5cnk.p
db" 
num_prots[8]="GLU_A0A173M0G2_TR2_5x2p_A.pdb;GLU_E9P5T5_NOT_4io2_A.pdb;GLU_P41
594_C_3lmk_A.pdb;GLU_P42264_NOT_3s9e_A.pdb;GLU_Q14416_C_7mtr_A.pdb" 
num_prots[9]="SRO_P08908_A_7e2y_R.pdb;SRO_P37231_NOT_3adv_B.pdb" 
num_prots[10]="Z99_P41594_C_7fd9_A.pdb;Z99_Q13255_C_3ks9_A.pdb;Z99_Q14831_C_3
mq4.pdb;Z99_Q14832_C_7wi6_A.pdb" 
 
declare -i i=0 
for dir in "${list[@]}"; do 
    cd ./$dir 
     
        #create an array out of the string separated by ; 
        IFS=";" read -r -a arr <<< "${num_prots[$i]}" 
         
        #get the length of the array arr 
        len=`expr ${#arr[@]} - 1` 
         
        #create all possible pairs of the indices of the protein and perform 
APoc 
        set -- `seq 0 $len` 
        for a; do 
                shift 
                for b; do 
                        /Users/kwabena/apoc/bin/apoc ${arr[$a]} ${arr[$b]} -
pvol 50 -plen 5 > ${arr[$a]}_vs_${arr[$b]}_pocket_compare_results.txt 
                done 
        done 
    i=`expr $i + 1` 
    cd ../ 
done 
 
E.2.2.3: Parse and Gather Pocket Comparison Results 
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### 
# This python file is used to parese APoc bindiing pockets comparison results 
text 
# files and write them to a csv file 
# This is done for all ligands at a time 
### 
 
from itertools import combinations 
import csv 
# set directory  
import os 
path = '/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/Binding_pocket_prediction_and_comparison/APoc' 
os.chdir(path) 
 
protein = [["0HK_P08173_A_5dsg.pdb","0HK_P11229_A_5cxv.pdb"], 
["7LD_P28223_A_6wgt.pdb","7LD_P41595_A_5tvn.pdb"], 
["7MA_O43613_A_6tod.pdb","7MA_O43614_A_5wqc.pdb"],["8NU_P14416_A_6cm4.pdb","8
NU_P28223_A_6a93.pdb"],["40F_Q14416_C_4xaq.pdb","40F_Q14832_C_4xar.pdb"],["89
F_P28222_A_5v54.pdb","89F_P28223_A_6wh4.pdb"],["ADN_P29274_A_2ydo.pdb","ADN_P
30542_A_6d9h_R.pdb"],["GGL_O00222_C_6bsz.pdb","GGL_Q14416_C_5cni.pdb","GGL_Q1
4832_C_5cnk.pdb"],["GLU_A0A173M0G2_TR2_5x2p_A.pdb","GLU_E9P5T5_NOT_4io2_A.pdb
","GLU_P41594_C_3lmk_A.pdb","GLU_P42264_NOT_3s9e_A.pdb","GLU_Q14416_C_7mtr_A.
pdb"],["SRO_P08908_A_7e2y_R.pdb","SRO_P37231_NOT_3adv_B.pdb"],["Z99_P41594_C_
7fd9_A.pdb","Z99_Q13255_C_3ks9_A.pdb","Z99_Q14831_C_3mq4.pdb","Z99_Q14832_C_7
wi6_A.pdb"]] 
 
folder = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
columns = ['Ligand_ID','pocket_1', 'pocket_2', 'PS_score', 'P_value'] 
out_results_file_name = 'Combine_pocket_comp_results.tsv' 
 
# create a csv file with only column heads 
with open(out_results_file_name, "w") as outfile: 
    writer = csv.writer(outfile, delimiter = "\t") 
    writer.writerow(columns) 
     
    all_columns = {} 
    for i in range(len(columns)): 
        all_columns.setdefault(columns[i],[]) 
         
    for indx, fold in enumerate(folder): 
        path_list = [path, fold] 
        paths = "/".join(path_list) 
        os.chdir(paths) 
         
        length = len(protein[indx]) 
        combs = combinations(range(0,length), 2) 
        for j in list(combs): 
            # Get the file names and read them j = (0, 1) 
            results_file_name = "_".join([(protein[indx])[j[0]], 'vs', 
(protein[indx])[j[1]], 'pocket_compare_results.txt']) 
            lines = [] 
            with open(results_file_name, "r") as Results: 
                for line in Results: 
                    if not line.isspace(): 
                        line = line.strip() 
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                        lines.append(line) 
            Results.close() 
                 
            # parse the text file and pick info needed 
            for num, line in enumerate(lines,1): 
                column = line.split() 
                if column[0] == ">>>>>>>>>>>>>>>>>>>>>>>>>": 
                    if column[1] == "Pocket": 
                        if lines[num] == "The number of values to be sorted 
is not positive.": 
                            continue 
                        all_columns['Ligand_ID'].append(fold) 
                        
all_columns['pocket_1'].append(lines[num].split()[7].split(':')[1]) 
                        
all_columns['pocket_2'].append(lines[1+num].split()[7].split(':')[1]) 
                        vals_1 = lines[2+num].split(',') 
                        
all_columns['PS_score'].append(vals_1[0].split('=')[1]) 
                        
all_columns['P_value'].append(vals_1[1].split('=')[1]) 
             
    #append the results to the tsv file 
    writer.writerows(zip(*[all_columns[key] for key in columns])) 
outfile.close() 

 
E.3: Pockets and 3D Superimposed Part Overlap Scores 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Feb  4 20:52:19 2022 
This code scores the overlap between the pockets of protein A and the part 
of the protein A which is similar to protein B. Same is done for protein B. 
This process is done both for flexible comaprison and rigid comparison of  
protein A and protein B. 
The code loop over each of the ligand folders, and the proteins in them and  
the number of pockets for each protein. 
Finally, it writes all the results as one file. 
@author: Kwabena Owusu Dankwah 
""" 
 
from itertools import permutations 
import os 
import re 
import csv 
path = '/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/3D_Comparison_Pocket_overlap_scores/Overlap_sco
res' 
os.chdir(path) 
 
protein = [["0HK_P08173_A_5dsg","0HK_P11229_A_5cxv"], 
["7LD_P28223_A_6wgt","7LD_P41595_A_5tvn"], 
           ["7MA_O43613_A_6tod","7MA_O43614_A_5wqc"], 
["8NU_P14416_A_6cm4","8NU_P28223_A_6a93"], 
           ["40F_Q14416_C_4xaq","40F_Q14832_C_4xar"], 
["89F_P28222_A_5v54","89F_P28223_A_6wh4"], 
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["ADN_P29274_A_2ydo","ADN_P30542_A_6d9h_R"],["GGL_O00222_C_6bsz","GGL_Q14416_
C_5cni","GGL_Q14832_C_5cnk"], 
           
["GLU_A0A173M0G2_TR2_5x2p_A","GLU_E9P5T5_NOT_4io2_A","GLU_P41594_C_3lmk_A","G
LU_P42264_NOT_3s9e_A","GLU_Q14416_C_7mtr_A"], 
           ["SRO_P08908_A_7e2y_R","SRO_P37231_NOT_3adv_B"], 
           
["Z99_P41594_C_7fd9_A","Z99_Q13255_C_3ks9_A","Z99_Q14831_C_3mq4","Z99_Q14832_
C_7wi6_A"]] 
 
folder = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
pkt_num = 
[[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,2,1],[1,1,1,1,2],[1,1],[1,5,1,1
0]] 
 
columns = ['ligand_ID', 'Proteins_Compared', 'Pocket', 
'P3D_similar_Coincide_pkt_flex', 'P3D_similar_Coincide_pkt_rigid'] 
 
def intersection_len(list1, list2): 
    list3 = [value for value in list1 if value in list2] 
    return len(list3) 
 
def score_overlap(position_pocket, position_p3d_similar): 
    len_pos_pkt = len(position_pocket) 
    len_intersect = intersection_len(position_pocket, position_p3d_similar) 
    score = len_intersect/len_pos_pkt 
    return score 
     
results_file = '3D_Similar_Overlap_Pkt.tsv' 
# create a csv file with only column heads 
with open(results_file, "w") as outfile: 
    writer = csv.writer(outfile, delimiter = "\t") 
    writer.writerow(columns) 
 
# loop over the ligand folders 
for indx, fold in enumerate(folder): 
    path_list = [path, fold] 
    paths = "/".join(path_list) 
    os.chdir(paths) 
     
    # create dict to hold the results 
    all_columns = {} 
    for i in range(len(columns)): 
        all_columns.setdefault(columns[i],[]) 
     
    length = len(protein[indx]) 
    perm = permutations(range(0,length), 2) 
     
    # loop over permutations of the pairs of protein pockets 
    for j in list(perm): 
        # Get the file names and read them 
        proteins_comped = "_".join([(protein[indx])[j[0]], 'with', 
(protein[indx])[j[1]]]) 
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        flex = "_".join([(protein[indx])[j[0]], 'flex_with', 
(protein[indx])[j[1]]]) 
        rigid = "_".join([(protein[indx])[j[0]], 'rigid_with', 
(protein[indx])[j[1]]]) 
        flex_file_name = ".".join([flex, "txt"]) 
        rigid_file_name = ".".join([rigid, "txt"]) 
         
        flex_file = open(flex_file_name) 
        d_similar_flex = flex_file.read() 
         
        rigid_file = open(rigid_file_name)  
        d_similar_rigid = rigid_file.read() 
         
        # get the unique positions 
        regex = r"[\sA-Z]\d{1,}(?=\s{4})" 
        position_flex = re.finditer(regex, d_similar_flex) 
        position_rigid = re.finditer(regex, d_similar_rigid) 
         
        position_flex_uniq = [] 
        for pos_flex in position_flex: 
            pos_fl = pos_flex.group() 
            pos_fl = int(re.sub(r"\D","", pos_fl)) 
            if pos_fl not in position_flex_uniq: 
                position_flex_uniq.append(pos_fl) 
         
        position_rigid_uniq = [] 
        for pos_rigid in position_rigid: 
            pos_ri = pos_rigid.group() 
            pos_ri = int(re.sub(r"\D","", pos_ri)) 
            if pos_ri not in position_rigid_uniq: 
                position_rigid_uniq.append(pos_ri) 
         
        # compare pockets to the portions of the proteins that are 3D 
structurally similar 
        pkt_name = "_".join([(protein[indx])[j[0]], 'pkt', 
str((pkt_num[indx])[j[0]])]) 
        pkt_file_name = ".".join([pkt_name, 'txt']) 
        pkt_file = open(pkt_file_name) 
        pkt = pkt_file.read() 
         
        position_pkt = re.finditer(regex, pkt) 
        position_pkt_uniq = [] 
        for pos_pkt in list(position_pkt)[2:]: 
            pos_pk = pos_pkt.group() 
            pos_pk = int(re.sub(r"\D","", pos_pk)) 
            if pos_pk not in position_pkt_uniq: 
                position_pkt_uniq.append(pos_pk) 
         
        # save results to dict created above 
        all_columns['ligand_ID'].append(fold) 
        all_columns['Proteins_Compared'].append(proteins_comped) 
        all_columns['Pocket'].append(pkt_name) 
        
all_columns['P3D_similar_Coincide_pkt_flex'].append(score_overlap(position_pk
t_uniq, position_flex_uniq)) 
        
all_columns['P3D_similar_Coincide_pkt_rigid'].append(score_overlap(position_p
kt_uniq, position_rigid_uniq)) 
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    # change directory and write the results 
    os.chdir(path) 
    with open(results_file, "a+") as outfiles: 
        writer = csv.writer(outfiles, delimiter = "\t")         
        writer.writerows(zip(*[all_columns[key] for key in columns])) 
outfiles.close() 
 

APPENDIX F: GPCR LIGAND DOCKING AND LIGAND POSE AND CONFORMATION 

F.1: Run AutoDock Vina 

#! /bin/bash 
# do not delete the line above 
 
# this code performs docking between one ligand and multiple proteins 
declare -a list=("0HK" "7LD" "7MA" "8NU" "40F" "89F" "ADN" "GGL" "GLU" "SRO" 
"Z99") 
 
declare -a num_prots 
num_prots[0]="0HK_P08173_A_5dsg.pdbqt;0HK_P11229_A_5cxv.pdbqt" 
num_prots[1]="7LD_P28223_A_6wgt.pdbqt;7LD_P41595_A_5tvn.pdbqt" 
num_prots[2]="7MA_O43613_A_6tod.pdbqt;7MA_O43614_A_5wqc.pdbqt" 
num_prots[3]="8NU_P14416_A_6cm4.pdbqt;8NU_P28223_A_6a93.pdbqt" 
num_prots[4]="40F_Q14416_C_4xaq.pdbqt;40F_Q14832_C_4xar.pdbqt" 
num_prots[5]="89F_P28222_A_5v54.pdbqt;89F_P28223_A_6wh4.pdbqt" 
num_prots[6]="ADN_P29274_A_2ydo.pdbqt;ADN_P30542_A_6d9h_R.pdbqt" 
num_prots[7]="GGL_O00222_C_6bsz.pdbqt;GGL_Q14416_C_5cni.pdbqt;GGL_Q14832_C_5c
nk.pdbqt" 
num_prots[8]="GLU_A0A173M0G2_TR2_5x2p_A.pdbqt;GLU_E9P5T5_NOT_4io2_A.pdbqt;GLU
_P41594_C_3lmk_A.pdbqt;GLU_P42264_NOT_3s9e_A.pdbqt;GLU_Q14416_C_7mtr_A.pdbqt" 
num_prots[9]="SRO_P08908_A_7e2y_R.pdbqt;SRO_P37231_NOT_3adv_B.pdbqt" 
num_prots[10]="Z99_P41594_C_7fd9_A.pdbqt;Z99_Q13255_C_3ks9_A.pdbqt;Z99_Q14831
_C_3mq4.pdbqt;Z99_Q14832_C_7wi6_A.pdbqt" 
 
i=0 
for dir in "${list[@]}"; do 
    cd ./$dir 
    IFS=";" read -r -a arr <<< "${num_prots[$i]}" 
    for prot in "${arr[@]}"; do  # in the ligand folder of ligands that bind 
to the protein 
        b=`basename $prot .pdbqt`      # separate the name from the file 
extension 
        echo Processing Protein $b and $dir  # print which protein is being 
worked on 
 
        vina --config ${b}_config.txt --ligand 
../Control_Data_Ligands/${dir}.pdbqt --out ${b}_out.pdbqt --log ${b}_log.txt 
 
    done 
    ((i=$i+1)) 
    cd ../ 
done 
 



117 

F.2: Parse and Gather Binding Affinities from Docking 

### 
# This python file is used to parese APoc bindiing pockets comparison results 
text 
# files and write them to a csv file 
# This is done for a single ligand at a time 
### 
 
import csv 
# set directory  
import os 
path = '/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/AutoDock_ligands_Proteins' 
os.chdir(path) 
 
input_file = [["0HK_P08173_A_5dsg","0HK_P11229_A_5cxv"], 
["7LD_P28223_A_6wgt","7LD_P41595_A_5tvn"], 
["7MA_O43613_A_6tod","7MA_O43614_A_5wqc"],["8NU_P14416_A_6cm4","8NU_P28223_A_
6a93"],["40F_Q14416_C_4xaq","40F_Q14832_C_4xar"],["89F_P28222_A_5v54","89F_P2
8223_A_6wh4"],["ADN_P29274_A_2ydo","ADN_P30542_A_6d9h_R"],["GGL_O00222_C_6bsz
","GGL_Q14416_C_5cni","GGL_Q14832_C_5cnk"],["GLU_A0A173M0G2_TR2_5x2p_A","GLU_
E9P5T5_NOT_4io2_A","GLU_P41594_C_3lmk_A","GLU_P42264_NOT_3s9e_A","GLU_Q14416_
C_7mtr_A"],["SRO_P08908_A_7e2y_R","SRO_P37231_NOT_3adv_B"],["Z99_P41594_C_7fd
9_A","Z99_Q13255_C_3ks9_A","Z99_Q14831_C_3mq4","Z99_Q14832_C_7wi6_A"]] 
 
ligand = ["0HK", "7LD", "7MA", "8NU", "40F", "89F", "ADN", "GGL", "GLU", 
"SRO", "Z99"] 
 
# define the APoc results text files to parse and the csv file to write to 
results_file = 'AutoDock_vina_Results.tsv' 
#counts = [[1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1,1], 
[1,1,1,1,1], [1,1], [1,1,1,1]] 
 
# function to parse results text file 
columns = ['Ligand_ID', 'Protein_ID', 'Affinity_kcal_mol'] 
 
 
# create a csv file with only column heads 
with open(results_file, "w") as outfile: 
    writer = csv.writer(outfile, delimiter = "\t") 
    writer.writerow(columns) 
     
    all_columns = {} 
    for i in range(len(columns)): 
        all_columns.setdefault(columns[i],[]) 
         
    for ii, file in enumerate(input_file): 
 
        paths = "/".join([path, str(ligand[ii])]) 
        os.chdir(paths) 
         
        # read text file 
        for log_file in file: 
             
            file_name = '.'.join(['_'.join([log_file, 'log']),'txt']) 
             
            with open(file_name, "r") as Results: 
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                for line in Results: 
                    if not line.isspace(): 
                        line = line.strip() 
                        column = line.split() 
                        if column[0] == "1": 
                            all_columns['Ligand_ID'].append(ligand[ii]) 
                            all_columns['Protein_ID'].append(log_file) 
                            
all_columns['Affinity_kcal_mol'].append(column[1]) 
            Results.close() 
             
    # append the results to the csv file 
    # zip() transpose the original data 
    writer.writerows(zip(*[all_columns[key] for key in columns])) 
outfile.close() 
 
F.3: Docked Ligand Conformation 

### 
# This python file is used to align one set of ligands with another set 
# in a pairwise manner 
# The RMSD from the alignment are written to a csv file 
# This is done for a single ligand at a time 
### 
 
import pymol 
from pymol import cmd 
# set directory 
import os 
os.chdir('/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control/Ligand_Pose_Comformation_Docked') 
import csv 
from itertools import combinations 
 
ligs = ["0HK","7LD","7MA","8NU","40F","89F","ADN","GGL","GLU","SRO","Z99"] 
protein = [["P08173_A_5dsg","P11229_A_5cxv"], 
["P28223_A_6wgt","P41595_A_5tvn"], 
["O43613_A_6tod","O43614_A_5wqc"],["P14416_A_6cm4","P28223_A_6a93"],["Q14416_
C_4xaq","Q14832_C_4xar"],["P28222_A_5v54","P28223_A_6wh4"],["P29274_A_2ydo","
P30542_A_6d9h_R"], 
["O00222_C_6bsz","Q14416_C_5cni","Q14832_C_5cnk"],["A0A173M0G2_TR2_5x2p_A","E
9P5T5_NOT_4io2_A","P41594_C_3lmk_A","P42264_NOT_3s9e_A","Q14416_C_7mtr_A"],["
P08908_A_7e2y_R","P37231_NOT_3adv_B"],["P41594_C_7fd9_A","Q13255_C_3ks9_A","Q
14831_C_3mq4","Q14832_C_7wi6_A"]] 
 
pkt_counts = 
[[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1,1],[1,1,1,1,1],[1,1],[1,1,1,1
]] 
columns = 
['Ligand_ID','Compared_Pocket_1','Compared_Pocket_2','Pkt_Ligs_Aligned_RMSD'] 
 
results_file = 'Ligs_Align_Pkt_Docked.tsv' 
with open(results_file, "w") as outfile: 
    writer = csv.writer(outfile, delimiter = "\t") 
    writer.writerow(columns) 
# loop over each folder 
for indx in range(0,len(pkt_counts)): 
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    # create columns for the csv file in a dictionary 
    all_columns = {} 
    for i in range(len(columns)): 
        all_columns.setdefault(columns[i],[]) 
    # 
    pkt_comb = combinations(enumerate(pkt_counts[indx]), 2) 
    # take each combination of the number of pockets 
    for j in list(pkt_comb): 
         
        lig_name1 = "_".join([ligs[indx], (protein[indx])[((j)[0])[0]], 
"out"]) 
        lig_pkt_name1 = ".".join([lig_name1, 'pdbqt']) 
         
        lig_name2 = "_".join([ligs[indx], (protein[indx])[((j)[1])[0]], 
"out"]) 
        lig_pkt_name2 = ".".join([lig_name2, 'pdbqt']) 
         
        # PyMol begins 
        cmd.load('%s'%(lig_pkt_name1)) 
        cmd.load('%s'%(lig_pkt_name2)) 
        object_list = cmd.get_names() 
         
        rmsd = cmd.align('%s'%(object_list[0]), '%s'%(object_list[1]), 
cycles=0, object=None, target_state=0,mobile_state=0) 
         
        # delete loaded ligands before start of the next comparison 
        cmd.delete('all') 
        # PyMol ends 
         
        compared_pkt_1 = (protein[indx])[((j)[0])[0]] 
        compared_pkt_2 = (protein[indx])[((j)[1])[0]] 
        all_columns['Ligand_ID'].append(ligs[indx]) 
        all_columns['Compared_Pocket_1'].append(compared_pkt_1) 
        all_columns['Compared_Pocket_2'].append(compared_pkt_2) 
        all_columns['Pkt_Ligs_Aligned_RMSD'].append(rmsd[0]) 
         
    with open(results_file, "a+") as outfiles: 
        writer = csv.writer(outfiles, delimiter = "\t") 
        writer.writerows(zip(*[all_columns[key] for key in columns])) 
outfiles.close() 
 
APPENDIX G: ANALYSIS OF RESULTS 

# Adding 3D similar Overlap Pocket and AA of Pocket 
# Read data and merges them  in a special  
# way that assigns the right value to the  
# right row and column 
#  
library(xlsx) 
library(readxl) 
library(tibble) 
 
# Read data 
# data files have the same naming format:  
# 1. for docking it is "ligang_name"_AutoDock_vina_Results.tsv 
# e.g. AJLF_AutoDock_vina_Results.tsv 
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# 2. for pocket it is "ligang_name"_APoc_Binding_pocket_comparison.tsv 
# e.g. AJLF_APoc_Binding_pocket_comparison.tsv 
 
ligand <- c("AJLF","CLQV","DTZD","IKSH","NKOP","USZP","XLWJ","YKMS") 
 
data_comb_final <- data.frame() 
 
for (lig in ligand) { 
  # Read docking results data 
  path_dock <- c("/Users/kwabena/Research/GPCR/AutoDock_ligands_GPCR")  
  path_dock <- paste(path_dock, lig, sep = '/') 
  file_dock <- paste(lig, c("AutoDock_vina_Results.tsv"), sep = '_') 
  setwd(path_dock) 
  data_dock <- read.table(file = file_dock, header = T, sep = "\t",  
                          stringsAsFactors = F) 
   
  # Read pocket comparison results data 
  path_pock <- c("/Users/kwabena/Research/GPCR/Binding_pocket_comparison") 
  path_pock <- paste(path_pock, lig, c("APoc"), sep = '/') 
  file_pock <- paste(lig, c("APoc_Binding_pocket_comparison.tsv"), sep = '_') 
  setwd(path_pock) 
  data_pock <- read.table(file = file_pock, header = T, sep = "\t",  
                          stringsAsFactors = F) 
   
  # add columns to data_pock for each ligand 
  data_pock <- add_column(data_pock, ligand_ID = lig, .before = "pocket_1" ) 
  data_pock <- add_column(data_pock, pocket_1_Affinity_kcal_mol = NA,  
                          .after = "pocket_1" ) 
  data_pock <- add_column(data_pock, pocket_2_Affinity_kcal_mol = NA,  
                          .after = "pocket_2" ) 
   
  # extract the affinities for each ligand and add it to data_pock 
  pocket_1_pdbID <- substr(data_pock[,2], 10, 13) 
  pocket_1_num <- as.numeric(substr(data_pock[,2], 22, 22)) 
  pocket_2_pdbID <- substr(data_pock[,4], 10, 13) 
  pocket_2_num <- as.numeric(substr(data_pock[,4], 22, 22)) 
  affinity_1 <- c() 
  affinity_2 <- c() 
  for (row in 1:NROW(data_pock)) { 
    cond1 <- (data_dock$protein_PDB_ID == pocket_1_pdbID[row] &  
                data_dock$pocket_number == pocket_1_num[row]) 
    affinity_1[row] <- data_dock[cond1,4] 
     
    cond2 <- (data_dock$protein_PDB_ID == pocket_2_pdbID[row] &  
                data_dock$pocket_number == pocket_2_num[row]) 
    affinity_2[row] <- data_dock[cond2,4] 
  } 
  # find the adsolute difference of the affinities of the two pockets 
  data_pock$abs_diff_aff_1_aff2 <- abs(affinity_1-affinity_2) 
  data_pock$pocket_1_Affinity_kcal_mol <- affinity_1 
  data_pock$pocket_2_Affinity_kcal_mol <- affinity_2 
   
  # combine data for all ligands 
  data_comb_final <- rbind(data_comb_final, data_pock) 
} 
 
setwd("/Users/kwabena/Research/GPCR/AutoDock_ligands_GPCR") 
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write.table(data_comb_final, file = 
"Combine_docking_pocket_comp_results_data.tsv", 
            sep = "\t", row.names = F) 
 
setwd("/Users/kwabena/Research/GPCR/AutoDock_ligands_GPCR") 
data_comb_final <- 
read.table("Combine_docking_pocket_comp_results_data.tsv",sep = "\t", 
                             stringsAsFactors = F) 
 
setwd("/Users/kwabena/Research/GPCR/3D_Similar_Coincide_Pkt") 
Similar_Coincide_Pkt <- read.table(file = "3D_Similar_Overlap_Pkt.csv", 
header = T,  
                                   sep = ",", stringsAsFactors = F) 
AA_Pkt <- read.table(file = "AA_Pkt.csv", header = T,  
                     sep = "\t", stringsAsFactors = F) 
 
setwd("/Users/kwabena/Research/GPCR/AutoDock_ligands_GPCR") 
Ligs_Align_Pkt <- read.table(file = "Ligs_Align_Pkt.csv", header = T,  
                             sep = "\t", stringsAsFactors = F) 
 
######## 3D similar Overlap Pocket  
for (lig in ligand) { 
  cond_data_comb <- which(data_comb_final$ligand_ID == lig) 
  cond_similar_coincide <- which(Similar_Coincide_Pkt$ligand_ID == lig) 
  for (i in cond_similar_coincide) { 
    for (j in cond_data_comb) { 
      if (substr(data_comb_final[j,2], 10, 13)== 
substr(Similar_Coincide_Pkt[i,2], 1, 4)){ 
        if (substr(data_comb_final[j,4], 10, 13)== 
substr(Similar_Coincide_Pkt[i,2], 11, 14)){ 
          if (substr(data_comb_final[j,2], 10, 13)== 
substr(Similar_Coincide_Pkt[i,3], 1, 4)){ 
            if (substr(data_comb_final[j,2], 22, 22)== 
substr(Similar_Coincide_Pkt[i,3], 10, 10)){ 
              data_comb_final[j,15] <- Similar_Coincide_Pkt[i,4] 
              data_comb_final[j,16] <- Similar_Coincide_Pkt[i,5] 
            } 
          } 
        } 
      } 
       
      if (substr(data_comb_final[j,2], 10, 13)== 
substr(Similar_Coincide_Pkt[i,2], 11, 14)){ 
        if (substr(data_comb_final[j,4], 10, 13)== 
substr(Similar_Coincide_Pkt[i,2], 1, 4)){ 
          if (substr(data_comb_final[j,4], 10, 13)== 
substr(Similar_Coincide_Pkt[i,3], 1, 4)){ 
            if (substr(data_comb_final[j,4], 22, 22)== 
substr(Similar_Coincide_Pkt[i,3], 10, 10)){ 
              data_comb_final[j,17] <- Similar_Coincide_Pkt[i,4] 
              data_comb_final[j,18] <- Similar_Coincide_Pkt[i,5] 
            } 
          } 
        } 
      } 
    } 
  } 
} 
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######## Alignment of ligands for each pockets compared 
for (lig in ligand) { 
  cond_data_comb <- which(data_comb_final$ligand_ID == lig) 
  cond_ligs_align <- which(Ligs_Align_Pkt$ligand_ID == lig) 
  for (i in cond_data_comb) { 
    for (j in cond_ligs_align) { 
      if (substr(data_comb_final[i,2], 10, 13)== substr(Ligs_Align_Pkt[j,2], 
1, 4)){ 
        if (substr(data_comb_final[i,2], 22, 22)== 
substr(Ligs_Align_Pkt[j,2], 6, 6)){ 
          if (substr(data_comb_final[i,4], 10, 13)== 
substr(Ligs_Align_Pkt[j,2], 8, 11)){ 
            if (substr(data_comb_final[i,4], 22, 22)== 
substr(Ligs_Align_Pkt[j,2], 13, 13)){ 
              data_comb_final$Pkt_ligs_align_rmsd[i] <- 
Ligs_Align_Pkt$RMSD[j] 
              break       
            } 
          } 
        } 
      } 
    } 
  } 
} 
 
######## AA of Pocket 
for (ligs in ligand) { 
  cond_data_comb_2 <- which(data_comb_final$ligand_ID == ligs) 
  cond_AA_Pkt <- which(AA_Pkt$ligand_ID == ligs) 
  for (s in cond_AA_Pkt) { 
    for (n in cond_data_comb_2) { 
       
      if (substr(data_comb_final[n,2], 10, 13) == AA_Pkt[s,2]){ 
        if (substr(data_comb_final[n,2], 22, 22) == AA_Pkt[s,3]){ 
          data_comb_final$GPCR_Resi_pkt_1[n] <- AA_Pkt[s,4] 
        } 
      } 
      if (substr(data_comb_final[n,4], 10, 13) == AA_Pkt[s,2]){ 
        if (substr(data_comb_final[n,4], 22, 22) == AA_Pkt[s,3]){ 
          data_comb_final$GPCR_Resi_pkt_2[n] <- AA_Pkt[s,4] 
        } 
      } 
       
    } 
  } 
} 
 
# Correlation analysis 
corr_table <- data.frame(row.names = F) 
for (i in 1:length(ligand)) { 
  cond <- which(data_comb_final$ligand_ID == ligand[i]) 
  data <- data_comb_final[cond,] 
  corr <- cor.test(data$PS_score, data$abs_diff_aff_1_aff2, 
                   alternative = c("two.sided"), method = c("pearson"),  
                   conf.level = 0.95) 
  corr_list <- list(Ligand = ligand[i],  
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Correlation_PS_score_abs_diff_aff1_aff2_pockets=as.vector(corr$estimate), 
                    P_value =corr$p.value) 
  corr_table <- rbind(corr_table, corr_list, stringsAsFactors = F) 
} 
 
setwd("/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control") 
data_control <- read_excel("Combined_Data.xlsx") 
 
colnames(data_control) 
 
######## Convert AA 3 letter code to 1 letter code 
AA <- 
c("ALA"="A","ARG"="R","ASN"="N","ASP"="D","CYS"="C","GLU"="E","GLN"="Q","GLY"
="G","HIS"="H", 
        
"ILE"="I","LEU"="L","LYS"="K","MET"="M","PHE"="F","PRO"="P","SER"="S","THR"="
T","TRP"="W", 
        "TYR"="Y","VAL"="V") 
data_control$Protein_AA_Interact_pkt_1 <- 
as.character(data_control$Protein_AA_Interact_pkt_1) 
data_control$Protein_AA_Interact_pkt_2 <- 
as.character(data_control$Protein_AA_Interact_pkt_2) 
data_control$Resi_pkt_1 <- as.character(data_control$Resi_pkt_1) 
data_control$Resi_pkt_2 <- as.character(data_control$Resi_pkt_2) 
 
for (k in 1:NROW(data_control)) { 
  ####### Begin: Residues that are involved in interaction  
  if (data_control$Protein_AA_Interact_pkt_1[k] != "-"){ 
    pkt_1 <- unlist(strsplit(data_control$Protein_AA_Interact_pkt_1[k], split 
= ",")) 
    pkt_1_seq = "" 
    for (l in 1:length(pkt_1)) { 
      pkt_1_seq <- paste0(pkt_1_seq, AA[toupper(pkt_1[l])]) 
    } 
    if (nchar(pkt_1_seq) == length(pkt_1)){ 
      data_control$AA_Interact_pkt_1[k] <- pkt_1_seq  
    } 
  }else{ 
    data_control$AA_Interact_pkt_1[k] <- "-" 
  } 
   
  if (data_control$Protein_AA_Interact_pkt_2[k] != "-"){ 
    pkt_2 <- unlist(strsplit(data_control$Protein_AA_Interact_pkt_2[k], split 
= ",")) 
    pkt_2_seq = "" 
    for (m in 1:length(pkt_2)) { 
      pkt_2_seq <- paste0(pkt_2_seq, AA[toupper(pkt_2[m])]) 
    } 
    if (nchar(pkt_2_seq) == length(pkt_2)){ 
      data_control$AA_Interact_pkt_2[k] <- pkt_2_seq 
    } 
  }else{ 
    data_control$AA_Interact_pkt_2[k] <- "-" 
  } 
  ####### End: Residues that are involved in interaction  
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  ####### Begin: Residues in the pocket 
  pkts_1 <- unlist(strsplit(data_control$Resi_pkt_1[k], split = ",")) 
  pkts_1_seq = "" 
  for (t in 1:length(pkts_1)) { 
    pkts_1_seq <- paste0(pkts_1_seq, AA[toupper(pkts_1[t])]) 
  } 
  if (nchar(pkts_1_seq) == length(pkts_1)){ 
    data_control$AA_pkt_1[k] <- pkts_1_seq  
     
  } 
   
  pkts_2 <- unlist(strsplit(data_control$Resi_pkt_2[k], split = ",")) 
  pkts_2_seq = "" 
  for (u in 1:length(pkts_2)) { 
    pkts_2_seq <- paste0(pkts_2_seq, AA[toupper(pkts_2[u])]) 
  } 
  if (nchar(pkts_2_seq) == length(pkts_2)){ 
    data_control$AA_pkt_2[k] <- pkts_2_seq 
  } 
  ####### End: Residues in the pocket  
} 
 
######## Create more features 
library(Peptides) 
for (v in 1:NROW(data_control)) { 
  ############################################### Pkt 1 
  seqs1 <- data_control$AA_pkt_1[v] 
   
  # MS-WHIM scores of a protein sequence: MS-WHIM scores were derived from 36  
  # electrostatic potential properties derived from the three- dimensional  
  # structure of the 20 natural amino acids 
  c = mswhimScores(seqs1)[[1]][c(1,2,3)] 
  data_control$Pkt_1_MSWHIM1[v] <- c[1]; data_control$Pkt_1_MSWHIM2[v] <- 
c[2];  
  data_control$Pkt_1_MSWHIM3[v] <- c[3];  
   
  ############################################### Pkt 2 
  seqs2 <- data_control$AA_pkt_2[v] 
   
  # MS-WHIM scores of a protein sequence: MS-WHIM scores were derived from 36  
  # electrostatic potential properties derived from the three- dimensional  
  # structure of the 20 natural amino acids 
  cc = mswhimScores(seqs2)[[1]][c(1,2,3)] 
  data_control$Pkt_2_MSWHIM1[v] <- cc[1]; data_control$Pkt_2_MSWHIM2[v] <- 
cc[2];  
  data_control$Pkt_2_MSWHIM3[v] <- cc[3];  
   
} 
 
# MSWHIM distance 
 
lf_dist_MSWHIM <- function(x,y){ 
  sum_abs_diff_mswhim <- max(abs(x[1]-y[1]), abs(x[2]-y[2]), abs(x[3]-y[3])) 
  sum_abs_diff_mswhim 
} 
 
colnames(data_control) 
for (h in 1:NROW(data_control)) { 
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  x <- unlist(as.vector(data_control[h,c(21,22,23)])) 
  y <- unlist(as.vector(data_control[h,c(24,25,26)])) 
  data_control$Lf_Dist_MSWHIM[h] <- lf_dist_MSWHIM(x,y) 
} 
 
# Affinity 
l1_dist_Affinity <- function(x,y){ 
  sum_abs_diff_Affinity <- abs(x-y) 
  sum_abs_diff_Affinity 
} 
 
colnames(data_control) 
for (h in 1:NROW(data_control)) { 
  x <- unlist(as.vector(data_control[h,c(15)])) 
  y <- unlist(as.vector(data_control[h,c(16)])) 
  data_control$L1_Dist_Affinity[h] <- l1_dist_Affinity(x,y) 
} 
 
 
# Num_Same_Resi_Interact 
for (s in 1:NROW(data_control)) { 
  string <- strsplit(c(data_control$Protein_AA_Interact_pkt_1[s], 
                       data_control$Protein_AA_Interact_pkt_2[s]), ",") 
  count_aa <- 0 
  if(length(string[[1]]) <= length(string[[2]])){ 
    for (t in string[[1]]) { 
      indx <- which(string[[2]] == t) 
      if (length(indx) >= 1){ 
        count_aa = count_aa + 1 
        string[[2]] <- string[[2]][-c(indx[1])] 
      } 
    } 
  }else{ 
    for (t in string[[2]]) { 
      indx <- which(string[[1]] == t) 
      if (length(indx) >= 1){ 
        count_aa = count_aa + 1 
        string[[1]] <- string[[1]][-c(indx[1])] 
      } 
    } 
  } 
  data_control$Num_Same_Resi_Interact[s] <- count_aa 
} 
 
# P3D_similar_Coincide_pkt 
data_control$Average_P3D_similar_Coincide_pkt_1 <- 
0.5*(data_control$P3D_similar_Coincide_pkt_1_flex +  
                                                         
data_control$P3D_similar_Coincide_pkt_1_rigid) 
data_control$Average_P3D_similar_Coincide_pkt_2 <- 
0.5*(data_control$P3D_similar_Coincide_pkt_2_flex +  
                                                          
data_control$P3D_similar_Coincide_pkt_2_rigid) 
 
data_control$Sum_P3D_similar_Coincide_pkts_pair <- 
(data_control$Average_P3D_similar_Coincide_pkt_1 +  
                                                      
data_control$Average_P3D_similar_Coincide_pkt_2) 
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######## Write data to excel 
library(xlsx) 
setwd("/Users/kwabena/Research/GPCR/Manuscript/MDPI 
biomolecules/New_Data_Control") 
write.table(data_control[,c(1:5,8,15,16,28)], file = 
"Control_Combined_Data.tsv",sep = "\t", 
            col.names = TRUE, row.names = FALSE, append = FALSE) 
 
######### Plot 
 
# Actual_pkt_ligs_aligned_RMSD vs Docked_pkt_ligs_aligned_RMSD 
plot(data_control$Actual_Pkt_Ligs_Aligned_RMSD, type="l",col="red",  
     ylab = "RMSD of Aligned Ligands in Pairs of Pockets", xlab = "Index of 
Pairs of Pockets") 
lines(data_control$Docked_Pkt_Ligs_Aligned_RMSD, col="blue", type = "l") 
legend(1, 3, legend=c("RMSD Acutal", "RMSD Docked"), 
       col=c("red", "blue"), lty=c(1,1), cex=0.8) 
 
######### Correlation Analysi 
# PS_score vs: 
# Actual_pkt_ligs_aligned_RMSD 
# Lf_Dist_MSWHIM 
# Num_Same_Resi_Interact 
# L1_Dist_Affinity 
# Sum_P3D_similar_Coincide_pkts_pair 
 
# PS_score 
mean(data_control$PS_score) 
sd(data_control$PS_score) 
min(data_control$PS_score) 
max(data_control$PS_score) 
 
 
# Actual_pkt_ligs_aligned_RMSD --- Negative and Significant 
corr <- cor.test(data_control$PS_score, 
data_control$Actual_Pkt_Ligs_Aligned_RMSD, 
                 conf.level = 0.95, alternative = c("two.sided"), method = 
c("pearson")) 
corr 
 
# Actual_pkt_ligs_aligned_RMSD vs Docked_pkt_ligs_aligned_RMSD --- 
Significant 
var.test(x=data_control$Actual_Pkt_Ligs_Aligned_RMSD, 
y=data_control$Docked_Pkt_Ligs_Aligned_RMSD, 
         alternative = "two.sided") 
t.test(x=data_control$Actual_Pkt_Ligs_Aligned_RMSD, 
y=data_control$Docked_Pkt_Ligs_Aligned_RMSD,  
       alternative = "two.sided", var.equal = F, paired = T) 
 
mean(data_control$Actual_Pkt_Ligs_Aligned_RMSD) 
sd(data_control$Actual_Pkt_Ligs_Aligned_RMSD) 
 
mean(data_control$Docked_Pkt_Ligs_Aligned_RMSD) 
sd(data_control$Docked_Pkt_Ligs_Aligned_RMSD) 
 
# L1_Dist_Affinity --- Negative and Significant 
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corr <- cor.test(data_control$PS_score, data_control$L1_Dist_Affinity, 
                 alternative = c("two.sided"), method = c("pearson"), 
conf.level = 0.95) 
corr 
 
# Ignore 
# Sum_P3D_similar_Coincide_pkts_pair --- Positive but Not Significant 
corr <- cor.test(data_control$PS_score, 
data_control$Sum_P3D_similar_Coincide_pkts_pair, 
                 alternative = c("two.sided"), method = c("pearson"), 
conf.level = 0.95) 
corr 
 
# Ignore 
# Lf_Dist_MSWHIM --- Negative and Significant 
corr <- cor.test(data_control$PS_score, data_control$Lf_Dist_MSWHIM, 
                 alternative = c("two.sided"), method = c("pearson"), 
conf.level = 0.95) 
corr 
 
# Ignore 
# Num_Same_Resi_Interact --- Positive but Not Significant 
corr <- cor.test(data_control$PS_score, data_control$Num_Same_Resi_Interact, 
                 alternative = c("two.sided"), method = c("pearson"), 
conf.level = 0.95) 
corr 
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