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Abstract

Holographic cameras show potential as a sensor to monitor oil spills. Holographic cameras

record the light interference from particles in a volume of space, producing an image called

a hologram. Processing these holograms is known as hologram reconstruction. It pro-

duces a representation of particles located in three-dimensional space. These cameras can

record precise shapes and sizes of particles in a volume of water. However, it is very time-

consuming and resource-intensive to process the images. Most algorithms that perform

particle analysis require the hologram reconstruction step. The well-documented hybrid

method is one such algorithm. Machine learning is one possible technique that shows po-

tential for avoiding the costly hologram reconstruction altogether while extracting particle

statistics. We tested two different machine learning models, U-Net with a resnet34 back-

bone and YOLOv5, and compared their performance. We collected a dataset of real-world

hologram images of oil particles. We then trained our machine learning models on this

real-world data with hybrid method derived labels. We used average precision and average

recall to compare model performance. Compared to the hybrid method, we demonstrated

a processing time reduction of 99%. YOLOv5 with GPU acceleration proved to be the su-

perior model in all metrics. Machine learning is a promising technique for processing these

hologram images rapidly. This allows quick-response agencies such as oil spill response

teams the ability to use holographic cameras to assess oil spills.
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Chapter 1

Introduction

The general perception of an oil spill in the ocean is viewed as a continuous rainbow sheen

floating on the surface of the water. This view however oversimplifies what is occurring

below the surface of the ocean. Mechanical forces of an oil spill blowout and chemical

dispersants cause oil to take on the form of tiny droplets underwater [1]. These droplets

can range anywhere in the nanometer to micrometer range. This makes them very difficult

to track and analyze due to their small size and distribution in the ocean. This makes

monitoring an oil spill a significantly difficult task. Analyzing oil droplets is part of an

assessment of an oil spill [2]. An emerging practice is to use autonomous underwater

vehicles, as shown in figure 1.1a, to assess oil spills underwater. This allows quick-response

teams to assess the state of the spill quickly and safely. These vehicles can stay underwater

for weeks and report readings from the attached sensors in real-time. Scientists often

utilize a whole suite of sensors to locate and analyze these droplets. The sensors include

flourometers, water quality sondes, and water samplers [2]. The holographic camera sensor

shows great promise as a tool to analyze oil droplets.

Holographic cameras, particularly in-line holographic cameras, have a laser emitter

aligned with a lens-less camera tuned to the wavelength of the laser. Figure 1.1b shows

what a holographic camera typically looks like. Particles in the volume between the laser

emitter and the camera collide with the light and the light is scattered. Instead of capturing

the object itself, the camera records the scattered light in the form of a diffraction pattern.

Figure 1.3a depicts this process. We can then direct a laser with the same power and

wavelength as the recording laser at the pattern. This pattern will then diffract the light

as it passes through it. If we place a background in the path of the beam, we can adjust
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(a) (b)

Figure 1.1: (a) Holographic camera mounted in front of an autonomous underwater vehicle

designed for monitoring oil spills. (b) Holographic camera mounted in a metal harness.
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the distance away from the diffraction pattern in such a way that the diffracted light will

recreate the shape and size of the particle. The distance between the pattern and the

reconstructed particle is the same as the distance the particle was from the camera. Figure

1.3b depicts this process.

Originally this was done with laser experiments. However, modern-day computing

power affords the ability to computationally simulate this process. This is known as recon-

structing the hologram through numerical propagation [3]. When the hologram images are

processed, scientists can analyze a three-dimensional reconstruction of the volume of par-

ticles between the laser and the camera. This reconstruction process produces images that

represent slices of different planar locations in the original captured volume. By moving

through these slices, we can see diffraction patterns converging until we reach the slice of

the particles’ placement in the volume. Figure 1.2 provides a visual example of different

reconstructed slices. This reconstruction not only captures the three-dimensional location

of a particle but also accurately captures its shape and size [4].

This sensor demonstrates several useful features for analyzing oil droplets. Due to the

speed of the imaging system, the images contain very few motion artifacts for moving

objects. A single image records data that can rebuild particle statistics in a volume of

water. Because of this, it is not necessary to focus the camera on a single focal plane before

data capture. We can focus the image after capturing the data and we can analyze several

particles in one image.

Holographic cameras have a major disadvantage: difficulty in analyzing the images.

The reconstruction process is time-consuming and computationally expensive. Because the

reconstruction is a 3D representation, conventional computer vision techniques will not

work unless adapted specifically for holography. Holographic machine learning techniques

have made great strides in the field of computer vision. Many machine learning applications

for holographic images produced successful results [5, 6]. Researchers have demonstrated

that machine learning can circumvent the need to perform the costly reconstruction process.

In this work, we applied deep learning to holographic imaging to rapidly analyze oil

3



(a) (b) (c)

Figure 1.2: (a). Raw hologram. This is what is recorded on the camera, or at a depth of

0 mm from the camera. (b). A reconstruction slice of the hologram at depth 23 mm from

the camera. (c). A reconstruction slice of the hologram at depth 85 mm from the camera.

In each slice, particles that were diffraction patterns in the other slices come into focus.

particles in the images. We focused primarily on statistics of interest to oil spill assessment,

particularly particle count and particle size. The value of this project is a rapid method

to extract data from hologram images. Oil response teams can use this method to rapidly

monitor oil spills in the ocean using holographic cameras.
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(a) Hologram recording using in-line holography. A particle is a distance pz away from

the camera. The particle collides with the light and the camera records the resulting

diffraction pattern. The camera records a hologram.

(b) Optical hologram reconstruction. A laser with the same characteristics as the record-

ing laser is shown through the diffraction pattern on the hologram. A film plate in the

direction of the beam, when positioned at the correct depth, will record a reconstruction

of the particle that created the diffraction pattern. This correct depth is the distance

pz away from the diffraction pattern.

Figure 1.3: Recording and reconstructing a hologram optically. While digital holography

can perform both processes numerically, the concepts remain the same.

5



Chapter 2

Related Work

2.1 Algorithm for Reconstructing Holograms

Figure 2.1: Reference geometry of hologram reconstruction.

In this section, we will use figure 2.1 as a reference for geometry. Diffraction patterns

in the hologram image produce all the information necessary to recreate a 3D volume of

particles. Each diffraction pattern in the hologram represents a particle between the laser

and the camera. Reconstructing the particles involves calculating how light is diffracting

through the patterns. In the early days of optical holography research, researchers would

develop the diffraction patterns on film and pass the laser through the film to view the

reconstruction [7].

Currently, digital holography performs this process computationally using light models.
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One of the first articles on calculating this process numerically is [8], where they list the

equations they used to model the reconstruction. The way light diffraction is modeled

depends on the size ratio between the distance of the camera and the wavelength of the light

[4,9]. Referencing figure 2.2, holographic cameras can operate in the Rayleigh-Sommerfeld

& Fresnel-Kirchoff or Fresnel (near field) regime. This is due to the much greater distance

between the camera and the laser when compared to the laser’s wavelength. In this regime,

the diffraction of the light is calculated with the Rayleigh-Sommerfeld diffraction equation:

U(x′, y′) =
1

iλ

∫ ∫
b(x, y)

exp(ikr)

r
dxdy

where:

r =
√
(x− x′)2 + (y − y′)2 + z2

k =
2π

λ

In this equation b(x, y) is the diffraction pattern, λ is the wavelength of the laser, i is the

imaginary unit, and k is the wavenumber. Note that because this equation computes a

complex amplitude, we will be able to calculate both the amplitude and phase of light.

We can take two routes of calculations in order to simplify the computation. One route

is to assume z the distance between the hologram and diffraction plane is large compared

to (x− x′) and (y − y′). When this is the case we can use the Fresnel approximation.

However, we shall use the second route for reasons that will be explained below. We

may consider the Rayleigh-Sommerfeld diffraction formula as:

U(x′, y′) =

∫ ∫
b(x, y)g(x, y, x′, y′)dxdy

where:

g(x, y, x′, y′) =
1

iλ

exp ik
√
z2 + (x− x′)2 + (y − y′)2√

z2 + (x− x′)2 + (y − y′)2

We can write the function g(x, y, x′, y′) as the form g(x−x′, y−y′). From here we see that:

U(x′, y′) =

∫ ∫
b(x, y)g(x− x′, y − y′)dxdy = b(x, y)⊛ g(x, y)

7



U(x′, y′) is a convolution, denoted by ⊛, of functions b and g. Using the Fast Fourier

Transform we can calculate this convolution as a product in the frequency domain. Then

we can use the reverse Fast Fourier Transform to calculate the diffraction of the light:

U(x′, y′) = F−1(F(b) ∗ F(g))

There is a distinct advantage to using this method of calculation as opposed to the

Fresnel approximation. While processing at similar times, this route guarantees each re-

constructed slice will maintain the same resolution per pixel as the raw hologram image [10].

This is a very important utility for measuring particles as they appear in the reconstructed

slices. We can use this process to reconstruct image slices at determined intervals that

correspond to a set of planes between the laser and the camera. From here on we shall

refer to this set of reconstructed images as the stack, and each image as a slice.

Figure 2.2: Diffraction Regimes. The farther light travels from the aperture, the more light

can be modeled as a scalar rather than a spherical wave vector.

Another method exists to recreate the 3D volume that the hologram captures. This

method is the inverse-problem approach. Just as we can model light diffraction using the

light regime models, we can also model light interference from particle clouds. The inverse-

problem approach models the holographic camera setup and seeks to find a set of particle

locations and particle sizes that optimize the similarity to the raw hologram [11]. This

method offers a faster approximation since the hologram does not have to be reconstructed.
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It is also not biased toward particles near the edge of the hologram. These particles may

have their diffraction patterns cut off on the edge of the hologram, making the hologram

reconstruction less accurate. The limitation of this method is that the execution time now

scales with the number of particles in the hologram image. The experiments conducted

in [11] demonstrate approximately 7 minutes per particle.

2.2 Non-Machine Learning Methods to Analyze Par-

ticles

One of the very first applications for holography imaging was particle analysis [12]. One

early method uses the minimum pixel intensity of the reconstructed slices to find the slice

with the particle in focus [9]. The experiment involved synthetic holograms with a single

particle. The team used minimum pixel intensity to find the slice with the particle in

focus. Then they used a threshold to extract the particle and measured the diameter of the

particle. They were able to calculate the diameter of the particle in the synthetic hologram

with a precision of 2 significant figures. This work proved the ability to measure particles

with holographic cameras. However, many of the experiments only involved analyzing a

single particle in the hologram image. Measuring oil particles with a holographic camera

often means recording many particles.

Later research included methods that involved measuring and analyzing the sharpness of

particle edges and developing a sharpness criterion. This method maximizes the sharpness

of the image. In [13], the authors tested several edge sharpness quantifying algorithms

to analyze the volume of red blood cells. The researchers placed the red blood cells on

a glass slide. This represented a single-plane target where all the red blood cells were in

focus. The algorithms found the slice with the best sharpness. The sharpest slice had all

the particles in focus. They then compared the output from each depth algorithm and

used a bandpass filter on the image intensity to segment the red blood cells based on a set

9



threshold. The best algorithm had an uncertainty value of tracking a red blood cells ±0.3

µm in the x,y location and with an uncertainty of ± 2.4 µm. Unlike the previous method

in [9], these experiments involved holograms that captured multiple objects. While the red

blood cells all existed in a single plane of reconstruction, the experiments demonstrated

that holography imaging is useful for analyzing a collection of objects.

Most hologram analysis methods require reconstructing the hologram. Hologram recon-

struction is the only way to visibly see the particles encoded in the hologram. [14] presented

a method to perform particle analysis without hologram reconstruction. Trading precision

for quick analysis, the authors demonstrated a method to measure the mean diameter of

particles based solely on the raw hologram image. The method focused on the diffraction

patterns on the hologram and how the particle data is encoded. The center of the pattern

is the center of a particle, the frequency modulation of the concentric rings encodes the

depth of the particle, and the amplitude modulation is correlated to a distance-to-diameter

ratio. On synthetic holograms, this method was able to estimate particle mean diameter

with an absolute error of less than 5 µm.

Gao and Guildenbecher et. al [15–17] introduced the hybrid method, named as such

because it combines concepts from the two previous techniques. The hybrid method is an

algorithm designed to segment particle clouds in a hologram image. First, the algorithms

reconstruct the hologram. Then as in [9], the algorithm builds a minimum intensity map

between each slice on the stack. Then as in [13] the algorithm uses an edge sharpness

criterion based on Sobel edge detection. The algorithm uses the edge sharpness criterion

to test a range of thresholds applied to the minimum intensity map. The threshold that

maintains the sharpest edges produces a binary particle mask. The algorithm also outputs

a depth map that estimates the depth of each particle in the particle mask. When tested

on synthetic holograms, the hybrid method detected approximately 90% of the particles

in a hologram, with an error percentage less than 1% in both location and depth. An

experiment with real-world holograms proved that the hybrid method outperformed other

methods, demonstrating the hybrid method’s robustness towards noise. Gao et. al later

10



improved the hybrid method by using a depth map to differentiate occluding particles in

the particle mask. A downside for this algorithm is the high computational expense, taking

several minutes and large amounts of memory to run on a single hologram. This makes it

impractical to use this method with a holographic camera as a quick response sensor.

2.3 Machine Learning Methods to Analyze Particles

In recent years there have been several successful applications of machine learning in the

realm of particle analysis in holographic imaging. Schneider et. al [5] demonstrated one

of the first applications of neural networks to holography. This experiment focused on a

single coated particle in a hologram. A coated particle has an inner diameter and an outer

translucent diameter. A simple densely connected model received this raw hologram and

predicted the particle size. The pixels of a raw hologram was the input. The outputs

were the particle’s outer diameter and inner diameter. Although a very simple model for

a computer vision problem by modern standards, this model was able to predict particle

diameters with a root mean square error of 4.4. Schneider proved that neural networks can

provide accurate predictions while also avoiding the costly reconstruction process.

Shimobaba et. al [18] developed a model to predict the 3D location and size of a

particle distribution. The team designed a U-Net model with 256x256 hologram patches

as the input and three map outputs: x-y location map, depth map, and size map. The

team trained the model on a dataset of synthetic hologram images. To test the model’s

robustness against background noise, all the images included Gaussian noise. The results

showed that the model predicted location with an average error of approximately 0.3, depth

of approximately 3.5, and size of approximately 4.0. It took approximately 0.3 seconds to

process a hologram image.

Shao et. al [19] used a deep neural network, a U-Net, to analyze particle distributions.

The inputs for the network were a raw hologram, a slice, and a minimum intensity map

similar to that used in the hybrid method [16]. The outputs were a particle size map and

11



an x-y location map. This model required each slice of a stack to predict all the particles in

the hologram. The team’s workflow required the costly reconstruction process when using

the model. This workflow had slower execution time but higher precision. Trained and

tested on synthetic holograms, the model had a 91% detection rate and an x-y positional

error less than a particle’s diameter. The experiments included a test with spherical and

elliptical particles that produced similar results. This showed that this model was not

limited to spherical particles only. A test with real-world hologram images demonstrated

a detection rate of 95% and a depth error of less than a particle diameter.

Valadares et. al [20] used a U-Net and an auto-encoder neural network to segment

spherical particles in simulated hologram images. The input for both models was a single

reconstructed slice. The team generated these synthetic holograms and added a background

of a real-world hologram with no particles. This added realistic noise. The U-Net outper-

formed the auto-encoder with the best network having an object error of 4.75%. This work

used the inverse-problem approach to generate masks for real data. The masks provided a

way to visually compare the models’ predictions with real-world hologram images. The au-

thors concluded that while the machine learning approach was not as accurate as currently

established methods, it could be used as a quick estimation.

[21] tested a holographic camera as a real-time sensor. They constructed a small

autonomous underwater vehicle with a holographic camera. For rapid data extraction from

the camera, they trained a simple convolutional neural network with raw hologram input

and air bubble concentration output. The experiment demonstrated the robot mapping air

bubble concentration in real-time in a laboratory experiment and a field experiment in a

lake. This work shows the applicability of holographic imaging and machine learning as a

quick response system.

Currently, there has been interest in object detection models for holographic imag-

ing. [22] showcased a YOLO network’s performance in detecting particles in raw holograms.

They used the OSNet architecture. The team generated synthetic holograms. They modi-

fied the loss function of the network to include depth information. The model learned the

12



full 3D coordinates of a particle. The model had a 98% recall and 99% precision on the

simulated dataset.
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Chapter 3

Approach to Speed Up Hologram

Analysis

3.1 Data

An important aspect of any machine learning approach is a large and varied dataset. This

dataset should closely represent real-world data. To this end, we set up experiments to

collect holographic images with oil droplets. We used a Seascan Inc. holographic camera

for the experiments. This camera captures a 1.12 cm by 1.12 cm by 15.9 cm column of

water. The images produced are 2048x2048 pixels with a resolution of 5.5 µm per pixel.

We established two experimental setups. Figure 3.1 shows these two experimental setups.

(a) (b)

Figure 3.1: (a) Small-scale experiment (b) Large-scale experiment

First we established a small-scale experiment designed to quickly generate holograms

of oil droplets. We submerged the sensor underwater with a magnetic stirrer. We then
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injected oil close to the stirrer using a syringe. The stirrer broke down the oil into oil

droplets that the camera then recorded. We used MC20 oil for these experiments with

datasets of varying concentrations of oil droplets.

Our second experiment was a large-scale experiment where we generated datasets with

varied oil types and experimented with dispersant chemicals. We submerged the holo-

graphic camera in a circulating flume that simulated underwater currents. We injected

MC20, ANS, and Hoops oil into the flume and collected holograms of the oil droplets. We

experimented with corexit, a chemical used as an oil dispersant. We injected the dispersant

at a ratio of 1:20 dispersant to oil. Dispersant causes oil to break down further, thus the

oil droplets become smaller [1].

3.2 Machine Learning Model

The most computationally expensive component of processing a hologram image is the 3D

reconstruction process. Table 3.1 shows the execution time for the different components of

the hybrid method. This is a required component for most hologram processing techniques.

We investigated a technique to remove the reconstruction process. We trained a machine

learning model to learn a relationship between the diffraction patterns and a particle’s size

and location. This was done with the goal to speed up the hologram analysis process by

completely circumventing the reconstruction process. We investigated the following two

models:

Table 3.1: Hybrid method execution time breakdown

Hybrid Method Component Execution Time Percentage

Reconstruction 44%

Minimum Intensity Map 1%

Edge Map 15 %

Optimal Edge Threshold Search 40%
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3.2.1 U-Net

Several publications demonstrated the application of U-Net models to hologram images

with impressive results [5, 6, 19, 20]. U-Nets are commonly used for object segmentation

tasks. U-Net can learn how to predict a particle segmentation map, making it possible to

perform particle analysis on these predicted maps. This is a simple translation from the

hybrid method since the hybrid method also outputs a particle segmentation map.

Machine learning models require an equation known as a loss function. This loss function

is the primary metric that a machine learning model uses to learn. When the model

is converging, the loss function should decrease in value. This usually signifies better

predictions. The Dice Loss is a common loss function in medical deep-learning segmentation

problems [23]. This loss function is well suited in problems where the background pixels

outnumber the pixels of the object of interest. We chose the Dice Loss because of the

class imbalance between the background pixel class and the particle pixel class. We used a

resnet34 architecture as the backbone. We used the Segmentation Models python library

with TensorFlow to implement this model [24].

Dice loss =
2|X ∩ Y |
|X|+ |Y |

3.2.2 YOLO

Although not as common as the U-Net model, YOLO models also demonstrate utility for

hologram image analysis [22, 25]. YOLO models are object localization models. They

classify the objects in an image and draw a bounding box at the location of the object.

This model can localize particles in the raw hologram image. After such, we can use the

bounding box for particle analysis. The number of bounding boxes represents the number

of particles in the image. We can use the size of the bounding box to estimate the size of

the particle. This is a unique application of YOLO models. These models are designed to

detect objects in an image. However, the particles themselves do not show up in the raw
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hologram image. Due to this, the model will predict the size and location of the particle

solely based on the diffraction patterns.

We used a YOLOv5 model with YOLOv5x pretrained weights. We used the default

loss function for YOLOv5, Binary Cross-Entropy with Logits Loss (BCElogit). The Binary

Cross-Entropy Loss Function is commonly used for classification. This function is then

combined with a logit function:

BCElogit = − 1

N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi))

Where y is the label, p(y) is the predicted probability of a specific class, and N is the

number of samples in a batch size.

3.3 Label Generation

Machine learning models require a label corresponding to the data. This label determines

what the model should learn from the data. It would have taken a significant amount

of effort to manually label oil particles by hand. Instead, we collected particle statistics

automatically using the hybrid method. Figure 3.2 outlines the hybrid method. This

method produced a particle mask that we used to train the U-Net model. Figure 3.3

shows an example of a particle mask resulting from the hybrid method. We used connected

components on the hybrid method mask to then calculate the diameter and location of

each particle in the mask. We formatted the bounding boxes from the output of connected

components to train the YOLO network. While the hybrid method also calculates the

depth of the particles, we ignored these values. Our interest was to locate the particles on

the raw hologram for counting rather than finding the exact 3D location in the volume.

There was a disadvantage to the label generation workflow. Our method of labeling

the data was not 100% accurate in both locating particles and extracting the size of the

particles. Many related experiments used synthetic holograms for training and testing. This

was a simpler method for generating holograms and ground truth labels. Our workflow used
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the hybrid method, which [15] showed a 90% particle detection rate in most cases. We used

a large quantity of labeled data in order to mitigate the fact that the labels were not 100%

accurate.

Figure 3.2: Hybrid method

(a) (b)

Figure 3.3: (a) Raw hologram image (b) Resulting segmentation label from hybrid method
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3.4 Preprocessing

The input of the model was a raw hologram image. The original size of the images were

1024x1024 pixels. This size was too large to load into GPU memory efficiently. Initially

we experimented with downsampling the images to 254x254. As noted in figure 3.4, down-

sampling the images lost the details necessary to reconstruct the smaller particles. The

model’s predictions were low in fidelity.

Instead of downsampling the images, we cropped the images. Similar to [18], we elected

to crop the images into smaller 512x512 portions. For the U-Net model, we chose to crop

these images with a 50% overlap. After predicting each cropped image, we stitched the

images together. We averaged the overlapped regions between cropped images. We set a

threshold where any pixel value at or above 0.5 is a 1, and any value less than 0.5 is a 0.

The purpose of the overlap is to allow the model more opportunities to predict particles

where the diffraction patterns may be cut off at the edges of a cropped image. Overlapping

the cropped images created a higher chance that an image would contain the majority of

a diffraction pattern.

For the YOLO model, we used the python package slicing aided hyper inference (sahi) to

create these cropped images [26]. We cropped the images into 512x512 sections with a 20%

overlap. We overlapped the images to give the model a greater opportunity of predicting

particles located between two cropped images in case one image contained more of the

diffraction pattern than the other. Figure 3.5 outlines the preprocessing and postprocessing

in our label generation and training workflow.
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(a) Label particle mask (b) U-Net predicted particle mask

Figure 3.4: Prediction fidelity lost when downsampling the images.
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Figure 3.5: Data Processing Workflow
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Chapter 4

Results

Our initial goal was to test how effectively a machine learning model can learn the rela-

tionship between a raw hologram and the particles’ shape and size. We generated 256x256

synthetic holograms with various concentrations of perfectly spherical oil droplets. Each

hologram ranged from 0-25 particles with sizes ranging from 0.5-1.5 µm. We used a Mie

scattering theory model to generate the holograms. We designed a convolutional neural

network with 4 convolutional layers and 3 dense layers. Our label was the sum of the oil

volume in each image. This is the total summation of the volume of each oil particle in

a hologram. We chose oil volume as a metric to combine both size and particle quantity

into a single value. Both the number of oil particles and the size of each particle had to

be correctly predicted to generate the correct volume of oil. Our model had a root mean

square error of 0.0344 on a test set. Figure 4.1 shows the results of the experiment. We

demonstrated that the model was able to learn a relationship between particle shape and

size based solely on raw synthetic holograms. We were unable to train the model suc-

cessfully with the real-world dataset. The resulting model erroneously predicted the same

volume for each hologram. We attributed this to the larger size and noise of real-world

holograms.

Ultimately, we trained the U-Net and YOLO models on a GPU-accelerated server.

The server employed a 24 GB RTX-3090 GPU, 128 GB of RAM, and an AMD 48-core

threadripper CPU. The U-Net trained for 64 epochs. After 64 epochs, the loss on the

validation set stopped decreasing. This took 22 hours. The YOLO model trained for 124

epochs. After 124 epochs, the loss on the validation set stopped decreasing. This took 48

hours.

22



Figure 4.1: Results of the convolutional neural network experiment.

The output of the U-Net prediction is the particle mask. We applied connected com-

ponents to extract bounding boxes from this particle mask. We used the bounding boxes

to compare the U-Net with the YOLO model.

We split our dataset into 3 parts. We used 60% of the images for training (training

set), 10% for validating the models during training (validation set), and 30% for testing

the model performance after training (test set). We kept the model from the epoch with

the best performance on the validation set. The model’s performance metrics reported in

this chapter are on the test set.

The metrics we used to assess the models are based on the Common Objects in Context

(COCO) dataset evaluation metrics [27, 28]. These metrics are one of the most common

metrics for object detection models. We used average precision (AP) and average recall

(AR). Precision measures how often a prediction is a correct prediction. Recall measures

how often a model made a detection when an object was present. Both of these metrics

use intersection over union (IOU) to measure if a bounding box is a correct prediction or

not. IOU above a determined threshold is considered a correct prediction. Precision and

recall range between 0 and 1. Average precision is calculated as the averaged precision at
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each recall r:

IoU =
Area of Overlap

Area of Union

True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

AP =
1

11

∑
rϵ{0,0.1...,1}

precision(r)

Average recall is double the area under the graph if recall is plotted with respect to

IOU threshold, o:

AR = 2

∫ 1

0.5

recall(o) do

There is an inherent drawback to using hybrid method derived labels. Figure 4.2 shows

an occasion in which the hybrid method failed. This occurred because the hologram is

oversaturated with oil particles. This created a lot of background noise and made the

diffraction patterns difficult to process. The models’ predictions may even outperform

the hybrid label. However, because we are using the hybrid method as labels, the models’

evaluation will still be negatively impacted as they do not coincide with the hybrid method.

We manually checked and removed samples such as these from the dataset. We used a large

dataset to mitigate these errors. However, these errors will always occur to some degree

in the dataset. Figure 4.5 shows an occasion where the machine learning models detected

particles that the hybrid method did not detect.

The performance of both models is displayed in table 4.1. The YOLO network out-

performed the U-Net in every metric. Comparing each model at AP@IoU={.75} and
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(a) Raw hologram (b) Hybrid method label

(c) U-Net mask prediction (d) YOLO prediction

Figure 4.2: Failed hybrid method label and the models’ performance on the hologram

AP@IoU={.5}, there is a significant drop in AP. This shows that much of the loss in AP

is due to inaccurate bounding box placements. While YOLO may be fairly accurate at

detecting true positives, the model struggles to accurately measure the size of particles to a

high degree. AR represents the model’s ability to accurately count the number of particles.

Table 4.2 illustrates the execution time difference between the different methods. Be-

cause machine learning models are optimized for GPU processing, we recorded both with

and without GPU acceleration. Both networks show drastic improvement in processing

time. The YOLO model with GPU acceleration proved to be the fastest model. YOLO
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Table 4.1: Model performance on a test set. Recall is averaged from the calculations when

IoU threshold is set between 0.50 to 0.95. AP@IoU=0.75 and AP@IoU=0.5 is average

precision at threshold 0.75 and 0.50 respectively.

AP@IoU={0.75} AP@IoU={0.50} AR@IoU={0.5:0.9}

Resnet34 U-Net 0.049 0.299 0.283

YOLOv5 0.418 0.717 0.516

Table 4.2: Time performance compared to the hybrid method

Hologram processing time (s) Time saved % from hybrid method

Hybrid method 165 0

Resnet34 U-Net (GPU) 3 98.2

Resnet34 U-Net (CPU) 5 97.0

YOLOv5 (GPU) 0.652 99.6

YOLOv5 (CPU) 370 -124

model without GPU acceleration was much slower than the hybrid method, with over a

100% increase in execution time.

Figure 4.4 shows an example image from the test set. We overlayed the connected

components bounding boxes onto the raw image for the U-Net prediction.
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(a) Hybrid method generated particle mask

label

(b) U-Net predicted particle mask

Figure 4.3: U-Net predicted particle mask comparison
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(a) Hybrid Method

(b) U-Net

(c) YOLO

Figure 4.4: Example image from the test set.
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(a) Hybrid Method (b) U-Net (c) YOLO

Figure 4.5: U-Net and YOLO detected particles that the hybrid method label did not

detect
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Chapter 5

Conclusion

Holographic sensors can record particles in a volume space without any need to adjust

a focal plane. The hologram images preserve the particles’ size and shape. With some

processing, this data can be analyzed. We demonstrated a viable strategy to quickly

process these images with the aid of machine learning. We tested two different approaches:

instance segmentation with U-Net, and object localization with YOLO. The YOLO model

outperformed the U-Net in every way. It had better AP and AR while also executing faster

than the U-Net. The runtimes of both models are a significant improvement over the hybrid

method. These methods show the potential for the holographic sensor to become a quick

response sensor to assess oil spills in the ocean.
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5.1 Future Work

Kukhtarev et. al [29], demonstrated that the diffraction patterns record the reflection

coefficients. We can use the reflection coefficients to classify particles in a hologram image.

Future work can extend the YOLO approach to classify other particles such as sand and

air bubbles to avoid misclassifying these particles as oil particles.

When a particle occluded another particle, both models struggled to correctly separate

the two particles. The hybrid method had a similar issue that was addressed in [17]. The

updated algorithm used a depth map for each pixel belonging to a particle. The algorithm

differentiated occluded particles based on the depth map. Both models can benefit from a

similar technique. This depth information can be another input to the models. The models

will use this information to separate partially occluded particles.

Combining the methods may produce better results. For example, we can use the

machine learning model on the hologram image. We can use the hybrid method locally on

the bounding boxes. The hybrid method will execute faster because it will reconstruct a

smaller portion of the image. We will be able to use the precision of the hybrid method

with a quicker execution time.

The labels were not 100% accurate because they were hybrid method derived. This

created some uncertainty both during training and during validation that we mitigated by

using a large dataset. Figure 4.2 suggests that a flatfield correction on the raw hologram

images would improve the performance of the hybrid method and the machine learning

models. This is due to the light intensity difference between the center and the corner of

the image. One method would require collecting a few hologram images, averaging the

holograms, then subtracting the holograms with this averaged image. It would also be

beneficial to decrease the pixel variance found in a single hologram. We can do this by

sampling a section in the center and in the corner of multiple holograms and dividing the

holograms by this difference.
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[4] M. Adams, T. M. Kreis, and W. P. Jüptner, “Particle size and position measurement

with digital holography,” in Optical Inspection and Micromeasurements II. Society

of Photo-Optical Instrumentation Engineers, 1997, vol. 3098, pp. 234–240.

[5] B. Schneider, J. Dambre, and P. Bienstman, “Fast particle characterization using

digital holography and neural networks,” Applied Optics, vol. 55, pp. 133–139, 2016.

[6] Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imag-

ing,” Light: Science & Applications, vol. 8, p. 85, 2019.

[7] Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry

(hpiv) system,” Experiments in Fluids, vol. 29, no. 2, pp. 184–197, Aug 2000.
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