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Abstract

In many practical situations, we need to make a decision. In engineering, we need to decide

on the best design of a system, and, for existing systems – on the best control strategy.

In financial applications, we need to decide what is the best way to invest money. In

geosciences, we need to decide whether we should explore a possible mineral deposit – or

whether we should perform more experiments and measurements (and what exactly).

In some cases, we can compute the exact consequences of each decision – e.g., if we

are controlling a satellite. However, in many other cases, we do not know the exact conse-

quences. In such situations, we need to make a decision under uncertainty.

In many application areas, uncertainty is small – and can be made even smaller by

appropriate measurements. For example, when we control a self-driving car, if there is an

uncertainty about the locations and speeds of other objects on the road, we can install

more accurate sensors and get a better description of the driving environment.

However, there are applications when it is difficult or even impossible to decrease un-

certainty. One such area is anything related to human activities. Humans make individual

decisions based on their perceived value of different alternatives. The same alternative –

be it a movie or a computer – have drastically different value to different people, so it is

very difficult to predict their behavior. Such behavior affects economics and finance, so

in decision making in economics and finance, it is very important to take such decision

making under uncertainty into account.

Other areas where it is difficult to decrease uncertainty are geosciences and teaching.

In this dissertation, we analyze the general problem of decision making under uncertainty

and show how our results can be applied to geosciences and teaching – and, since all these

applications involve computing, how these results can be applied to computing.
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Chapter 1

Introduction

One of the main objective of science. One of the main objectives of science is to help

people make good decisions. Because of the ubiquity and importance of decision making,

it has been the subject of intensive research. This research can be roughly divided into two

categories:

• analysis of how a rational person should make a decision, and

• analysis of how people actually make decisions.

The main objective of this dissertation is to expand on both research categories, with the

ultimate objective of providing the corresponding practical recommendations.

Decision making under uncertainty. One of the major difficulties in decision making

is that usually, we do not have full information about the situation and about possible

consequences of our decisions. The larger this uncertainty, the more difficult it is to make

decisions.

Selecting case studies. Since the larger the uncertainty, the more difficult it is to make a

right decision, a natural case study for new decision making techniques are situations where

decisions are the most difficult – i.e., where there is the largest amount of uncertainty. In

most practical problems, even if we do not have the full information about the situation,

i.e., even if we do not know the values of some quantities, we can, in principle, measure these

values and get a better understanding of the situation. For example, while we often do not

have enough information about the weather – i.e., about the current values of temperature,

humidity, wind speeds etc. at different locations and different heights – we can, if needed,

measure these values and thus, decrease the uncertainty.
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There is, however, an application area where such measurements are not possible:

namely, geosciences. For example, oil companies would like to know whether it makes

sense to start digging an oil well at a prospective location. When we make this decision, we

do not have full information on what is happening at the corresponding depths, what is the

density there, what is the speed of sound at this level, what are other physical character-

istics. In principle, it is possible to perform direct measurements that can determine this

information – but this measurement would require, in effect, digging a deep well and plac-

ing instruments down below, while the whole purpose of this analysis is to decide whether

it is worth investing significant resources in this possible well in the first place. Because

of this, geosciences are among the most challenging areas for decision making. Because of

this, we have selected geosciences as the main case study for our results.

Another area where measurements are difficult is education. In education, we can gauge

the observable results of teaching but not the internal process that lead to more or less

successful teaching – just like in geosciences, we can measure the seismic waves reaching

the surface, but we cannot directly measure the processes leading to these waves.

Structure of the dissertation. In line with all this, this dissertation is organized as

follows.

Part I. In the first – introductory – part, we provide a brief reminder of decision theory –

a theory that explains how rational people should make decisions. The main ideas related

to (rational) individual decision making are described in Chapter 2. Chapter 3 covers the

general ideas behind (rational) group decision making. While the corresponding formulas

are known, this chapter already contains some new material – namely, we provide a new

simplified derivation of these formulas.

Finally, Chapter 4 explains how we can control group decision making by modifying

the proposed options. This chapter contains both an empirical dependence – and our

explanation of this dependence. This is the first chapter that contains completely new

results.

2



We then follow with other parts that contain completely new material.

Part II. First comes Part II, in which:

• we analyze how people actually make decisions – in general and, in particular, in

economy-related situations, and

• we explain why people’s actual decisions differ from recommendations of decision

theory.

This part covers all possible deviations of actual decisions from the ideal ones. In the ideal

case:

1. first, we find the exact value of each item in each alternative,

2. then, we combine these values into exact values of each alternative,

3. after that, we find future consequences of different actions, and preferences of other

people, and

4. finally, based on all this information, we select the optimal alternative.

In real life, human decision making deviates from the ideal on all these four stages.

1. On the first stage, we have to base our decisions on incomplete, approximate knowl-

edge:

• either because information leading to more accurate estimates are not available,

• or because, while this information is available, there is not enough time to process

this information.

In such case:

• Instead of coming up with the exact values of each item, people come up with

approximate estimates – i.e., in effect, bounds on possible values. As we show

3



in Chapter 5, this explains the empirical fact that people’s selling prices are

usually higher than their buying prices – the fact that seems to contradict the

basic economic ideas.

• Also, since the information is usually incomplete, different people come up with

different prices for the same item – which explains the constant buying and

selling, something that also seems to contradict the basic economic ideas; see

Chapter 6.

• Instead (or in lieu) of eliciting the accurate values, people make decisions based

on clusters containing the actual values – e.g., use the so-called 7± 2 approach;

see Chapters 7 and 8.

2. On the second stage, when people combine utility values, they use approximate pro-

cessing techniques; see, e.g., Chapter 9.

3. On the third stage, people use biased perceptions of the future time; see Chapter 10,

resulting in non-optimal solutions (Chapter 11). They also have a biased perception

of other people’s utility, which also leads to non-optimal solutions; see Chapter 12.

4. Finally, on the fourth stage, instead of going for an optimal solution, people use

approximately optimal solutions (Chapter 13) or even use heuristics instead of looking

for optimal or approximately optimal solutions (Chapter 14 and 15).

In most of these cases, there are known empirical formulas describing actual human be-

havior. In our analysis, we provide possible theoretical explanations for these formulas.

Part III. After this general description of human decision making, in Part III, we focus

on our main application area: geosciences. In geosciences, like in many other application

areas, we encounter two types of situations.

In some cases, we have a relatively small number of observations – only sufficiently

many to estimate the values of a few parameters of the model. In such cases, it is desirable

4



to come up with the most adequate few-parametric model. We analyze the corresponding

problem of selecting an optimal model on two examples:

• of spatial dependence (Chapter 16) and

• of temporal dependence (Chapter 17).

As an example of a temporal dependence problem, we consider one of the most challeng-

ing and the most important geophysical problems: the problem of earthquake prediction.

Specifically, we analyze the problem of selecting the most adequate probabilistic distribu-

tion of between-earthquakes time intervals.

In other cases, we already have many observations covering many locations and many

moments of time. In such cases, we can look for the best ways to extend this knowledge:

• to other spatial locations (Chapter 18) and

• to future moments of time (Chapter 19).

As an example of extending knowledge to future moments of time – i.e., prediction – we deal

with one of the least studied seismic phenomena: earthquakes triggering other earthquakes.

Part IV. In Part IV, we study applications to teaching. Our analysis cover all three related

major questions:

• what to teach (Chapters 20 and 21),

• how to teach (Chapter 22), and

• how to grade, i.e., how to gauge the results of teaching (Chapter 23).

Part V. Most of these and other applications involve intensive computing. In the final

Part V, we show that the above-analyzed ideas can be used in all aspects of computing:

• in analyzing the simplest (linear) models (Chapter 24),

5



• in analyzing more realistic non-linear models (Chapter 25), and even

• in exploring perspective approaches to computing (Chapter 26).

Appendix. In all these parts, several of our applications are based on common (or at least

similar) mathematical results. These results are summarized in a special mathematical

Appendix.

6



Chapter 2

(Rational) Individual Decision

Making: Main Ideas

What is traditional decision theory. Traditional decision theory (see, e.g., [65, 112,

129, 149, 170]) describes preferences of rational agents.

There are many aspects of rationality: e.g., if a rational agent prefers A to B and B to

C, then this agent should prefer A to C.

Comment. As we have mentioned in the Introduction, preferences of real agents are not

always rational in the above sense; see, e.g., [97, 128]. One of the main reasons for this

deviation from rationality is that our ability to process information and select an optimal

decision is bounded. However, in many cases, traditional decision theory still provides a

very good description of human behavior.

The notion of utility. To describe the preferences of a rational agent, decision theory

requires that we select two alternatives:

• a very bad one A− that is much worse than anything this agent will actually encounter,

and

• a very good one A+ that is much better than anything this agent will actually en-

counter.

For each value p from the interval [0, 1], we can then form a lottery L(p) in which:

• we get the very good alternative A+ with probability p and

• we get the very bad alternative A− with the remaining probability 1− p.

7



When the probability p is close to 1, this means that we are almost certainly getting a very

good deal. So, for any realistic option A, the corresponding lottery L(p) is better than A:

A < L(p).

Similarly, when the probability p is close to 0, this means that we are almost certainly

getting a very bad deal, so L(p) < A.

There should be a threshold u at which the preference L(p) < A corresponding to

smaller probabilities p is replaced by an opposite preference A < L(p). In other words, we

should have:

• L(p) < A for all p < u and

• A < L(p) for all p > u.

This threshold value is called the utility of the alternative A. It is usually denoted by u(A).

The above two conditions mean that, in a certain reasonable sense, the original alter-

native A is equivalent to the lottery L(u(A)) corresponding to the probability u(A). We

will denote this equivalence by A ≡ L(u(A)).

A rational agent should maximize utility. Of course, the larger the probability of

getting a very good outcome A+, the better. Thus, among several lotteries L(p), we should

select the one for which the probability p of getting the very good alternative A+ is the

largest.

Since each alternative A is equivalent to the corresponding lottery L(u(A)), this implies

that we should select the alternative with the largest possible value of utility.

Main conclusion of the traditional decision theory: a rational agent must max-

imize expected utility. In practice, we rarely know the consequences of each action. At

best, we know possible outcomes A1, . . . , An, and their probabilities p1, . . . , pn.

Since each alternative Ai is equivalent to a lottery L(u(Ai)) in which we get A+ with

probability u(Ai) and A− with the remaining probability 1 − u(Ai), the whole action is

therefore equivalent to the following two-stage lottery:
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• first, we select one of the n alternatives Ai with probability pi, and

• then, depending on which alternative Ai we selected on the first stage, we select A+

with probability u(Ai) and A− with the remaining probability 1− u(Ai).

As a result of this two-stage lottery, we get either the very good alternative A+ or the very

bad alternative A−. The probability u of getting A+ can be computed by using the formula

of complete probability: it is equal to

u = p1 · u(A1) + . . .+ pn · u(An).

One can see that this is exactly the formula for the expected value of the utility u(Ai).

Thus, the utility of each action to a person is equal to the expected value of utility.

So, according to the traditional decision theory, rational agents should select the alter-

native with the largest possible value of expected utility.

Utility is defined modulo linear transformations. The numerical value of utility

depends on the selection of the alternatives A− and A+. It can be shown that if we select a

different pair (A′−, A
′
+), then the corresponding utility u′(A) is related to the original utility

by a linear transformation u′(A) = a · u(A) + b for some a > 0 and b; see, e.g., [112, 149].

How utility is related to money. The dependence of utility of money is non-linear:

namely, utility u is proportional to the square root of the amount m of money u = c ·
√
m;

see [97] and references therein.

Comment. This empirical fact can be explained. For example, the non-linear character

of this dependence is explained, on a commonsense level, in [108], while the square root

formula can also be explained – but it requires more mathematical analysis; see, e.g., [128].

In the current dissertation, we simply take this fact as a given.

How to compare current and future gains: discounting. How can we compare

current and future gains? If we have an amount m of money now, then we can place it in

a bank and get the same amount plus interest, i.e., get the new amount m′
def
= (1 + i) ·m
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in a year, where i is the interest rate. Thus, the amount m′ in a year is equivalent to the

value m = q ·m′ now, where q
def
= 1/(1 + i). This reduction of future gains – to make them

comparable to current gains – is known as discounting.

Discounting: a more detailed description. An event – e.g., a good dinner – a year in

the past does not feel as pleasant to a person now as it may have felt a year ago. Similarly,

a not-so-pleasant event in the past – e.g., a painful inoculation – does not feel as bad now

as it felt a year ago, when it actually happened. Thus, the utility of an event changes with

time:

• positive utility decreases,

• negative utility increases,

and in both cases, the utility gets closer to its neutral value.

If u is the utility of a current event, how can we describe the utility f(u) of remembering

the same event that happened 1 year ago?

We can normalize the utility values by assuming that the status quo situation has utility

0. In this case, the starting point for measuring utility is fixed, and the only remaining

transformation is re-scaling u′ = a · u.

It is reasonable to require that the function f(u) is invariant with respect to such a

transformation, i.e., that:

• if we have v = f(u),

• then for each a, we should have v′ = f(u′), where we denoted v′ = a · v and u′ = a ·u.

Substituting the expressions for v′ and u′ into the formula v′ = f(u′), we conclude that

a · v = f(a · u), i.e., a · f(u) = f(a · u). Substituting u = 1 into this formula, we conclude

that f(a) = q · a, where we denoted q
def
= f(1). Since f(u) < u for u > 0, this would imply

that q < 1.

• So, an event with then-utility u that occurred 1 year ago has the utility q · u now.
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• Similarly, an event with utility u that happened 2 years ago is equivalent to q · u a

year ago, and thus, is equivalent to q · (q · u) = q2 · u now.

We can similarly conclude that an event with utility u that occurred t moments in the past

is equivalent to utility qt · u now.

Decision making under interval uncertainty. In real life, we rarely know the exact

consequences of each action. As a result, for each alternative A, instead of the exact value

of its utility, we often only know the bounds u(A) and u(A) on this unknown value. In

other words, all we know is the interval [u(A), u(A)] that contains the actual (unknown)

value u(A). How can we make a decision under this interval uncertainty?

In particular, for such an interval case, we need to be able to compare the interval-

valued alternative with lotteries L(p) for different values p. As a result of such comparison,

we will come up with a utility of this interval. So, to make recommendations on decision

under interval uncertainty, we need to be able to assign, to each interval [u, u], a single

utility value u(u, u) from this interval that describes this interval’s utility.

Since utility is defined modulo a linear transformation u→ u′ = a ·u+b, it is reasonable

to require that the corresponding function u(u, u) should also be invariant under such

transformations, i.e., that:

• if u = u(u, u),

• then u′ = u(u′, u′), where we denoted u′ = a · u+ b, u′ = a · u+ b, and u′ = a · u+ b.

It turns out that this invariance requirement implies that

u(u, u) = αH · u+ (1− αH) · u

for some αH ∈ [0, 1] [112, 149]. This formula was first proposed by a future Nobelist Leo

Hurwicz and is, thus, known as the Hurwicz optimism-pessimism criterion [91, 129].

Theoretically, we can have values αH = 0 and αH = 1. However, in practice, such values

do not happen:
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• αH = 1 would correspond to a person who only takes into account the best possible

outcome, completely ignoring the risk of possible worse situations;

• similarly, the value αH = 0 would correspond to a person who only takes into account

the worst possible outcome, completely ignoring the possibility of better outcomes.

In real life, we thus always have 0 < αH < 1.
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Chapter 3

(Rational) Group Decision Making:

General Formulas and a New

Simplified Derivation of These

Formulas

According to decision theory, if a group of people wants to select one of the alternatives in

which all of them get a better deal than in a status quo situation, then they should select

the alternative that maximizes the product of their utilities. This recommendation was

derived by Nobelist John Nash. In this chapter, we describe this idea, and we also provide

a new (simplified) derivation of this result, a derivation which is not only simpler – it also

does not require that the preference relation between different alternatives be linear.

Comment. The result of this chapter first appeared in [154].

3.1 (Rational) Group Decision Making: General For-

mulas

Practical problem. In many practical situations, a group of people needs to make a joint

decision. They can stay where they are – in the “status quo” state. However, they usually

have several alternatives in which each of them gets a better deal than in the status quo

state. Which of these alternatives should they select?
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Nash’s bargaining solution to this problem. To solve this problem, in 1950, Nobelist

John Nash formulated several reasonable conditions that the selection must satisfy [147].

He showed that the only way to satisfy all these conditions is to select the alternative that

maximizes the product of participants’ utilities – special functions that describe a person’s

preferences in decision theory; see, e.g., [65, 112, 129, 149, 170].

What we do in this chapter. In this chapter, we provide a new simplified derivation of

Nash’s bargaining solution, a derivation that is not only simpler – this derivation also uses

fewer assumptions: e.g., it does not assume that there is total (linear) pre-order between

different alternatives.

3.2 A New (Simplified) Explanation of Nash’s Bar-

gaining Solution

Let us describe the problem in precise terms. We consider a situation in which n

participants need to make a joint decision. In this situation. Each possible alternative can

be characterized by a tuple u = (u1, . . . , un) of the corresponding utility values. We only

consider alternatives in which ui > 0 for all i – otherwise why would the i-th person agree

to this alternative if he/she does not gain anything – or even lose something?

For some alternatives u and u′, the group prefers u′ to u. For example, if each person

gets more in alternative u′ than in u, then u′ is clearly better than u. We will denote this

preference by u < u′.

For some alternatives u and u′, the group may consider them equally good; we will

denote this by u ∼ u′. We also allow the possibility that for some pairs of alternatives u

and u′, the group cannot decide which of them is better. In other words, we do not assume

that the preference relation is total (linear).

The relations < and ∼ should satisfy natural transitivity conditions: e.g., if u′ is better

than u and u′′ is better than u′, then u′′ should be better than u. We will call such a pair
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of relations (<,∼) a preference relation; we will give a precise definition shortly.

We assume that the preference relation is fair in the sense that all participants are

treated equally. In particular, if we perform any permutation of the utilities, the alternative

should remain of the same quality to the group: e.g., (a, b) should be of the same quality

as (b, a): (a, b) ∼ (b, a).

Finally, since utility ui of each participants is determined modulo re-scaling ui → ci ·ui,

relative preference of two different alternatives should not change if we perform such a

re-scaling. Thus, we arrive at the following definitions.

Definition 3.1. Let A be a set; its elements will be called alternatives. By a preference

relation on the set A, we mean a pair of relations (<,∼) with the following properties:

• for each a, we have a ∼ a;

• for each a and b, if a ∼ b, then b ∼ a;

• for each a and b, if a ∼ b, then we cannot have a < b;

• for each a, b, and c, if a < b and b < c, then a < c;

• for each a, b, and c, if a < b and b ∼ c, then a < c;

• for each a, b, and c, if a ∼ b and b < c, then a < c;

• for each a, b, and c, if a ∼ b and b ∼ c, then a ∼ c.

Definition 3.2. Let A = IRn
+ be a set of all n-tuples u = (u1, . . . , un) on positive numbers,

and let (<,∼) be a preference relation on the set A.

• We say that the pre-order is monotonic if whenever we have ui < u′i for all i, then

we should have u < u′.

• We say that the pre-order is fair if for each permutation

π : {1, . . . , n} → {1, . . . , n}

and for each alternative u, we have (u1, . . . , un) ∼ (uπ(1), . . . , uπ(n)).
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• We say that the pre-order is scale-invariant if for every two alternatives u and u′ and

for each tuples (c1, . . . , cn) of positive numbers:

– if (u1, . . . , un) < (u′1, . . . , u
′
n) then

(c1 · u1, . . . , cn · un) < (c1 · u′1, . . . , cn · u′n);

– if (u1, . . . , un) ∼ (u′1, . . . , u
′
n) then

(c1 · u1, . . . , cn · un) ∼ (c1 · u′1, . . . , cn · u′n).

Proposition 3.1. There is one and only one monotonic fair scale-invariant preference

relation:

(u1, . . . , un) < (u′1, . . . , u
′
n)⇔

n∏
i=1

ui <
n∏
i=1

u′i;

(u1, . . . , un) ∼ (u′1, . . . , u
′
n)⇔

n∏
i=1

ui =
n∏
i=1

u′i.

Comments.

• So, we indeed have a new explanation for Nash’s bargaining solution.

• Actually, the above preference relation has a stronger property of strong monotonicity:

that if ui ≤ u′i for all i and ui < u′i for some i, then u < u′.

Proof. It is easy to check that the preference relation corresponding to Nash’s bargaining

solution is indeed monotonic, fair, and scale-invariant. So, to complete the proof, it is

sufficient to show that every monotonic, fair, and scale-invariant bargaining solution is

indeed described by the above formulas.

Indeed, due to symmetry, for all values u2, u3, . . . , un, we have

(1, u2, u3, . . . , un) ∼ (u2, 1, u3, . . . , un).
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For each value u1 > 0, we can use scale-invariance with c1 = u1 and c2 = . . . = cn = 1 and

conclude that

(u1, u2, u3, . . . , un) ∼ (u1 · u2, 1, u3, . . . , un).

So, we replace two values u1 and u2 with the product u1·u2 and 1 without losing equivalence.

Similarly, we can replace the two values u1 · u2 and u3 with the product (u1 · u2) · u3

and 1, so

(u1 · u2, 1, u3, u4, . . . , un) ∼ (u1 · u2 · u3, 1, 1, u4, . . . , un)

and thus, by transitivity – which is part of the definition of the preference relation – we get

(u1, u2, u3, u4, . . . , un) ∼ (u1 · u2 · u3, 1, 1, u4, . . . , un).

We can then similarly absorb u4, etc., until we get

(u1, . . . , un) = (u1 · . . . · un, 1, . . . , 1).

So all alternatives with the same value of the product u1 · . . . ·un are equivalent to the same

alternative

(u1 · . . . · un, 1 . . . , 1)

and are, thus, equivalent to each other.

Because of this property, each alternative

(p, 1, . . . , 1)

is equivalent to

( n
√
p, n
√
p, . . . , n

√
p ) .

When p < p′, then n
√
p < n
√
p′. So, due to monotonicity,

( n
√
p, n
√
p, . . . , n

√
p ) <

(
n
√
p′, n
√
p′, . . . , n

√
p′
)

and thus,

(p, 1, . . . , 1) < (p′, 1, . . . , 1).
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So, indeed, alternatives with the larger value of the product are better.

The proposition is proven.

Comment. In the previous text, we dismissed the possibility of alternatives with some

of the values 0. It turns out that this dismissal can also be justified on mathematical

grounds. Namely, let us show that in this case, no preference relation can satisfy all the

above requirements.

Proposition 3.2. On the set A = IRn
≥0 of all tuples with non-negative components, no

preference relation is strongly monotonic, fair, and scale-invariant.

Proof. Due to symmetry, (1, 0) ∼ (0, 1). By using c1 = 2 and c2 = 1, we conclude that

(2, 0) ∼ (0, 1), so by transitivity (1, 0) ∼ (2, 0), which contradicts to strong monotonicity.

The proposition is proven.

3.3 Taking Empathy into Account

Utility in the traditional economic models. In the traditional economic models, it is

usually assumed that a decision maker maximizes his/her gain (numerically expressed as

utility u), and this utility value describes the effect of this decision on this person at this

particular moment of time; see, e.g., [65, 112, 129, 149, 170].

Need to go beyond traditional models. In these models, person’s decisions are not

affected by gains (utilities) of others and/or by gains of the same person at future moments

of time. To some extent this is true, but one can easily find examples where gains of others

(and/or future gains of the same person) do affect our behavior.

Maybe a proverbial greedy capitalist would gladly earn an extra million by making his

workers work more and thus, get less utility, but in general, hardly anyone would prefer,

e.g., $101 to $100 if this increase is accompanied by someone’s severe suffering. Some people

spend all their money like there is no tomorrow and retire in poverty, but most people do

limit somewhat their current expenses to save for retirement. It is all a matter of degree.
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Some people are not empathetic enough, some do not save enough – but to some degree,

practically everyone is empathetic and practically everyone saves (at least something).

How to describe dependence on other’s utilities. Let u
(0)
i be approximate utilities

that come only from this person’s consumption. How can we describe the actual utilities ui

that take into account other people’s feelings – i.e., in precise terms, other people’s utilities?

A natural way is to add, to u
(0)
i , terms proportional to other people’s utilities, i.e., to

consider expressions of the type

ui = u
(0)
i +

∑
j 6=i

αij · uj, (3.1)

where each coefficient αij describes how the utility of the i-th person depends on the utility

of the j-th person; see, e.g., [14, 17, 18, 19, 69, 88, 149, 172, 173, 193].

This phenomenon is known by a polite term empathy, since for positive values αij, this

formula describes how people feel better if others around them are happier. However, from

the purely mathematical viewpoint, it is also possible to have negative values αij, when

someone’s happiness makes the other person unhappy. This is not just a mathematical

example, such things like jealousy and hatred are, unfortunately, quite real :-(
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Chapter 4

How We Can Control Group Decision

Making By Modifying the Proposed

Options

In summary, this chapter explains how we can control group decision making by modifying

the proposed options. This chapter contains both an empirical dependence – and our

explanation of this dependence. This is the first chapter that contains completely new

results.

Let us describe it in more detail. For each task, the larger the stimulus, the larger

proportion of people agree to perform this task. In many economic situations, it is im-

portant to know how much stimulus we need to offer so that a sufficient proportion of the

people will agree to perform the needed task. There is an empirical formula describing how

this proportion increases as we increase the amount of stimulus. However, this empirical

formula lacks a convincing theoretical explanation, as a result of which practitioners are

somewhat reluctant to use it. In this chapter, we provide a theoretical explanation for this

empirical formula, thus making it more reliable – and hence, more useable.

Comment. The results of this chapter first appeared in [34].

4.1 Formulation of the Problem

The larger the stimulus, the more people agree to do the task. In economics, we

need to entice people to perform certain tasks – whether it is planting crops or working in
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a factory or writing a software package. When the corresponding stimulus is too small, no

one will agree to perform the task. When the stimulus is very high, everyone will agree.

The proportion p of people who agree to perform a task will increase with the increase in

the stimulus s.

It is desirable to know the exact amount of stimulus. A company wants certain

tasks to be performed, so it has to use some stimulus. It is therefore desirable to find the

exact amount of stimulus needed:

• if the stimulus is too low, no one will volunteer,

• if it is very high, the tasks will be performed, but the company will lose too much

money.

How the amount of stimulus is usually determined now. In many cases, the selection

of the right stimulus is done mostly by trial and error. This is, e.g., how airline companies,

in an overbooked situation, ask for volunteers to give up their seats and fly the next day:

they increase the award offered to potential volunteers until they get enough volunteers.

Formulas are needed, and there are such formulas. Trial-and-error is a lengthy

process, difficult to predict. It is therefore desirable to have some analytical expressions

that would help us select the right amount of stimulus.

Such expressions exist; see, e.g., [99] and references therein. The most empirically

adequate expression is

p =
sq

sq + c
(4.1)

for some constants q and c.

This formula is purely empirical. One of the main limitation of this formula is that

is it purely empirical, it does not have a convincing theoretical explanation. Practitioners

are usually very suspicious of best-fit purely empirical formulas, they are reluctant so use

these formulas, they prefer formulas for which some theoretical explanation exists – since

purely empirical formulas often turn out to be wrong.
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And in economics and related areas, such later-wrong empirical formulas are ubiquitous:

• when a country has a boom, empirical formulas predict exponential growth forever;

• when, in the 1920s, the number of telephone operators started growing exponentially,

empirical formulas predicted that in a few decades, half of the population will be

telephone operators;

there are many examples like that.

It is thus desirable to come up with a theoretical explanation for empirical formulas.

What we do in this chapter. In this chapter, we provide a theoretical explanation for

the formula (4.1).

4.2 Main Idea and the Resulting Explanation

Let us reformulate the problem in terms of probabilities. In the above text, we

talked about proportion of people who take on the task. From the mathematical viewpoint,

a proportion is not something about which we know much.

But what is proportion? It is simply the probability that a randomly selected person

will take on the task. So, whatever we said about proportions can be reformulated in terms

of probabilities – and about probabilities, we know a lot!

Comment. Good news is that we do not even need to change the notation p, since both

words “proportion” and “probability” start with the same letter p.

What do we know about probabilities? One of the most widely used facts about

probabilities is that if we add new evidence E, the probability of each hypothesis Hi

changes according to the Bayes formula (see, e.g., [182]), from the original value p0(Hi) to

the new value

p(Hi |E) =
p0(Hi) · p(E |Hi)∑
j

p0(Hj) · p(E |Hj)
. (4.2)

In our case, we have two hypotheses:
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• the hypothesis H0 that the person will take on the task whose probability is p(H0),

and

• the hypothesis H1 that the person will not take on the task; its probability is equal

to p(H1) = 1− p(H0).

In this case, the general formula (4.2) takes the form

p(H0 |E) =
p0(H0) · p(E |H0)

p0(H0) · p(E |H0) + (1− p0(H0)) · p(E |H1)
=

p(H0) · p(E |H0)

p(H0) · (p(E |H0)− p(E |H1)) + p(E |H1)
.

In other words, the change of the probability from the previous value p = p0(H0) to the

new value p′ = p(H0 |E) is described by the formula

p′ =
p · p(E |H0)

p · (p(E |H0)− p(E |H1)) + p(E |H1)
. (4.3)

If we divide both the numerator and the denominator of the formula (4.3) by p(E |H1),

then we get the following expression:

p′ =

p · p(E |H0)

p(E |H1)

1 + p ·
(
p(E |H0)

p(E |H1)
− 1

) ,
i.e., the expression

p′ =
a · p

1 + (1− a) · p
, (4.4)

where we denoted

a
def
=
p(E |H0)

p(E |H1)
.

In other words, from the mathematical viewpoint, the change of the probability from the

previous value p to the new value p′ is thus described by a fractional-linear formula (4.4).

Here comes our idea. Our idea is that when we increase the stimulus, the resulting

change of the probability should follow the formula (4.4).
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How can we formalize this idea. What does it mean “increase the stimulus”? Intu-

itively, it means that we increase all the previous stimuli the same way.

What does that mean? If we simply add $10 to all the previous stimulus values, this

does not mean that we increases all the stimuli the same way. For example:

• if the previous stimulus was $5, this is a drastic 3-times increase, but

• if the previous stimulus was $1000, this is a barely noticeable 1% increase.

From the economic viewpoint, it makes more sense to increase all the previous stimulus

values proportionally; e.g.:

• increase all the values by 1%, or

• increase all the values by 10%, or

• increase all the values by a factor of three.

With such an increase, instead of previous stimulus value s, we get a new stimulus value

λ · s, where, e.g.:

• an over-the-board 1% increase means λ = 1.01,

• an over-the-board 10% increase means λ = 1.1, and

• an over-the-board 3-times increase means λ = 3.

In these terms, the main idea takes the following form.

Resulting formulation. We want to find an increasing function p(s) for which p(0) = 0,

p(s)→ 1 as s→∞, and for every λ > 0, there exists a(λ) for which, for all s, we have

p(λ · s) =
a(λ) · p(s)

1 + (a(λ)− 1) · p(s)
. (4.5)
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Our main result. Our main result is that every function p(s) satisfying the above condi-

tions has exactly the form (4.1), for some values q and c.

This is exactly what we wanted. Thus, we indeed have the desired justification of the

empirical formula (4.1).

4.3 Proof of the Main Result

Let us reformulate the formula (4.5) in terms of odds. For this proof, it is convenient

to reformulate probabilities p in terms of the odds, i.e., in terms of the ratio

o =
p

1− p
.

Let us first find the odds corresponding to the new probability p(λ·s). From the formula

(4.5), we get

1− p(λ · s) = 1− a(λ) · p(s)
1 + (a(λ)− 1) · p(s)

=

1 + a(λ) · p(s)− p(s)− a(λ) · p(s)
1 + (a(λ)− 1) · p(s)

=
1− p(s)

1 + (a(λ)− 1) · p(s)
. (4.6)

Dividing (4.5) by (4.6), we get

d(λ · s) =
p(λ · s)

1− p(λ · s)
=
a(λ) · p(s)
1− p(s)

= a(λ) · p(s)

1− p(s)
.

Since the ratio in the right-hand side is exactly the odds o(s) corresponding to the proba-

bility p(s), we thus conclude that

o(λ · s) = a(λ) · o(s). (4.7)

Now, we can use the known solution to the functional equation (4.7). According

to [2], every monotonic solution of the equation (4.7) has the form

o(s) = C · sq (4.8)
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for some values C and q.

The general proof of this statement is somewhat complicated, but it becomes very

straightforward if we make an additional natural assumption that the function p(s) is

differentiable. In this case, the ratio o(s) is also differentiable. Due to the equation (4.7),

the function a(λ) is equal to the ratio of two differentiable functions

a(λ) =
o(λ · s)
o(s)

and is, thus, also differentiable. Thus, we can differentiate both sides of the equation (4.7)

with respect to λ and get

s · o′(λ · s) = a′(λ) · o(s),

where, as usual, f ′(x) denotes the derivative. In particular, for λ = 1, we get s · o′(s) =

q · o(s), where we denoted q
def
= a′(1). In other words, we have

s · do
ds

= q · o.

We can separate the variables s and o if we divide both sides of the equation by s · o and

multiply both sides by ds, then we get

do

o
= q · ds

s
.

Integrating both sides, we get ln(o) = q · ln(s)+C0, where C0 is an integration constant. By

applying exp(x) to both sides, we then get o(s) = C · sq, where we denoted C
def
= exp(C0).

From the equality (4.8) to the desired formula (4.1). According to the formula

(4.8), we have

o(s) =
p(s)

1− p(s)
= C · sq.

By taking the inverse of both sides, we get

1− p(s)
p(s)

= 1− 1

p(s)
= C−1 · s−q,

thus
1

p(s)
= 1− C−1 · s−q
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and therefore,

p(s) =
1

1− C−1 · s−q
.

Multiplying both the numerator and the denominator by sq, we get

p(s) =
sq

sq − C−1
.

Probabilities are always smaller than or equal to 1, thus sq ≤ sq − C−1, i.e., C−1 < 0. If

we denote c
def
= −C−1, we will get the desired formula (4.1).

The main result is thus proven.
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Chapter 5

How People Actually Make

Decisions: The Fact That We Can

Only Have Approximate Estimates

Explains Why Buying and Selling

Prices Are Different

5.1 People’s Actual Decisions Often Differ from What

Decision Theory Recommends

In the previous chapters, we explained how ideal agents should make decisions. Namely:

• first, we find the exact value of each item in each alternative,

• then, we combine these values into exact values of each alternative,

• after that, we find future consequences of different actions, and preferences of other

people, and

• finally, based on all this information, we select the optimal alternative.

In many cases, real-life decisions deviate from these ideal recommendations. In this and

following chapters, we describe these deviations, and we explain why people’s actual deci-
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sions differ from the recommendations of decision theory. Let us start with the first stage

of decision making. In this stage, we have to base our decisions on incomplete, approximate

knowledge:

• either because information leading more accurate estimates are not available,

• or because, while this information is available, there is not enough time to process

this information.

In such case, instead of coming up with the exact values of each item, people come up with

approximate estimates – i.e., in effect, bounds on possible values.

In this chapter, we explain that this approximate character of estimates explains the

empirical fact that people’s selling prices are usually higher than their buying prices – the

fact that seems to contradict the basic economic ideas.

Comment. The results of this chapter first appeared in [33].

5.2 Buying and Selling Prices Are Different: a Phe-

nomenon and Its Current Quantitative Explana-

tions

Buying and selling prices are different: a phenomenon. According to the naive

understanding of economic behavior, we should decide, for ourselves, how much each object

is worth to us. This worth amount should be the largest amount that we should be willing

to pay if we are buying this object, and this same amount should be the smallest amount

for which we should agree to sell this object.

However, in many experiments, the price participants are willing to pay to buy a certain

item is different from the price they are willing to accept to part with this item. For example,

students are willing to pay $3 for a mug but require to be paid at least $7 to sell it back.
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In other words, people estimate the consequences of losing an object differently than the

consequences of gaining the same object; see, e.g., [97, 190] and references therein.

Current explanations of this phenomenon. The current explanation of this phe-

nomenon is based on the fact that people are not clear on the value of each object. Instead

of the exact monetary amount, at best, they have a range [u, u] of possible values of this

object’s worth; see, e.g., [72, 71].

Need for a more detailed analysis. While [72, 71] provide a qualitative explanation

for the loss aversion phenomenon, it is desirable to extend this to a quantitative analysis,

an analysis that takes into account known results about rational decision making under

interval uncertainty. This is what we do in this chapter.

5.3 A New (Hopefully, More Adequate) Quantitative

Explanation

Decision making under interval uncertainty: case of monetary values. How can

we make a decision if, instead of the exact value of an object, we only know the interval

[u, u] of possible values? In other words, what is the value u(u, u) that we are willing to

pay for this object?

Clearly, since we know that the object is worth at least u and at most u, this means

that the price u(u, u) that we are willing to pay should also be at least u and at most u:

u ≤ u(u, u) ≤ u. (5.1)

This property is known as boundedness.

Another reasonable requirement is that if we have two different objects, with values in

[u, u] and [v, v], then the price that we are willing to pay to buy both should be equal to

the prices that we pay for each of them. Let us describe this second requirement in precise

terms.
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When we get two objects together, the smallest possible value of our purchase is when

both objects are worth their smallest amounts u and v. In this case, the overall worth of

both objects is equal to the sum u+ v. Similarly, the largest possible value of our purchase

is when both objects are worth their largest amounts u and v. In this case, the overall

worth of both objects is equal to the sum u + v. Thus, for two objects sold together the

interval of possible worth values is [u + v, u, u + v]. So, the second requirement takes the

following form:

u(u+ v, u+ v) = u(u, u) + u(v, v). (5.2)

This property is known as additivity.

It turns out (see, e.g., [112]) that the only functions that satisfy both requirements (5.1)

and (5.2) are functions of the type

u(u, u) = αH · u+ (1− αH) · u, (5.3)

for some αH ∈ [0, 1]. This fact easily follows from the fact that all bounded additive

functions are linear; see, e.g., [3].

As we have mentioned in Chapter 2, the formula (5.3) was first proposed – for the case

of utilities – by a future Nobelist Leo Hurwicz and is thus known as Hurwicz optimism-

pessimism criterion [91, 129]. We have just shown that a similar formula can be used to

estimate monetary value under interval uncertainty.

Hurwicz criterion explains the difference between buy and sell prices. When we

buy an object whose worth is between u and u, the best possible gain is u and the worst

possible gain is u. Thus, according to the Hurwicz criterion, we should be willing to pay

the amount ub (b for buy) which is equal to

ub = αH · u+ (1− αH) · u. (5.4)

On the other hand, if we already own this object and we sell it, then our loss is between

−u and −u. The most optimistic estimate for our resulting state is −u and the most

31



pessimistic estimate is−u. In this case, according to the Hurwicz criterion, this is equivalent

to the value of

αH · (−u) + (1− αH) · (−u). (5.5)

Thus, to compensate for this loss, we need to get the amount us (s for sell) that, when

added to the value (5.5), will result in 0, i.e., the value

us = αH · u+ (1− αH) · u. (5.6)

We can see that, in general, the expressions for the buy ub and sell us prices are different.

Indeed, the only time when the prices are equal, i.e., when ub = us, is when

αH · u+ (1− αH) · u = αH · u+ (1− αH) · u.

Moving all the terms to the left-hand side and adding resulting coefficients at u and u, we

conclude that

(2αH − 1) · u− (2αH − 1) · u = 0,

i.e., (2αH − 1) · (u − u) = 0. Since we consider the case when we have uncertainty, i.e.,

when u 6= u, we thus conclude that 2αH − 1 = 0, i.e., that αH = 0.5.

So, only people with αH = 0.5 buy and sell at exactly the same price. For everyone else

– who is even slightly more optimistic or even slightly less optimistic than αH = 0.5 – the

buy and sell prices are different, and this is exactly what we observe.
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Chapter 6

How People Actually Make Decisions:

the “No Trade Theorem” Paradox

Another consequence of the fact that people have only approximate estimates of economics-

related quantities is that different people come up with different prices for the same item.

In this chapter, we show that this fact explains the so-called “no trade theorem” para-

dox, one of the main challenges in foundations of finance – that constant buying and selling

of stocks seem to contradict the traditional decision theory. Indeed, if an expert trader

wants to sell some stock, that means that this trader believes that this stock will go down;

however, the very fact that another expert trader is willing to buy it means that this other

expert believes that the stock will go up. The fact that equally good experts have different

beliefs should dissuade the first expert from selling – and thus, trades should be very rare.

However, in reality, trades are ubiquitous.

In this chapter, we show that a detailed application of decision theory solves this paradox

and explains how a trade can be beneficial to both seller and buyer. This application also

explains a known psychological fact – that depressed people are usually more risk-averse.

Comment. Results from this chapter first appeared in [30].

6.1 “No Trade Theorem” and Why It Is a Paradox

“No trade theorem” paradox. When a bank or a hedge fund wants to buy a stock,

this means that professionals running this financial institution believe that, in the future,

this stock will increase in price. This makes perfect sense until we realize that for this
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institution to be able to buy this stock, some other institution needs to be willing to sell it

at this price – which means that professionals running that other instutition must believe

that, in the future, this stock will decrease in price.

Stock market is not a game for amateurs, serious agents buying and selling stock are

smart experts who know what they are doing and who, in the past, have shown a good

intuition about future stock values. So, even when such an expert initially thinks that this

stock will increase in price, the very fact that this stock is available for sale means that

another expert has an exactly opposite belief. This should, in many cases, dissuade the

first expert from his or her original belief.

Similarly, an expert who is initially eager to sell, i.e., who initially believes that this

stock will decrease in price, should be dissuaded by the presence of similarly qualified

experts who are willing to buy, i.e., who believe that this stock will increase in price.

If we follow this logic, then very few agents will be trading stocks – but in reality, the

trading volume is very high, every second, a huge amount of stocks change hands. This

paradoxical behavior is known as a “no trade theorem”; see, e.g., [143, 190].

What we do in this chapter. In this chapter, we use decision making to show that in

reality, trading makes perfect sense if we take into account different risks associated with

different stocks.

Our explanation also explains another empirical phenomenon, a phenomenon from psy-

chology – that depressed people are more risk-averse.

6.2 Analysis of the Problem and the Resulting Expla-

nation of the “No Trade Theorem” Paradox

Towards formulation of the problem in precise terms. Let us assume that the

person originally had the amount M of money. This person is thinking of possibly buying

a stock which costs s.
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Let us also assume an ideal situation, in which everyone has the same information about

the future value of this stock, namely, everyone knows the probability distribution of its

next year’s gain. In particular, everyone knows the mean m′ and the standard deviation

σ′ of this future gain. After discounting, we get the mean m = q · m′ and the standard

deviation σ = q · σ′ of the equivalent current gain.

Let us also make a realistic assumption that the price s, the mean m, and the standard

deviation σ are much smaller than the current money amount M . In other words, we

assume that we are talking about a usual trade, not about extreme situations in which a

person gambles his or her whole fortune by investing it all in a seemingly attractive stock.

Analysis of the problem. Let us denote the difference between the actual (discounted)

value v of the stock and its mean value m by ∆v
def
= v − m. By definition of the mean,

we have m = E[v], where E[·] denoted the mean value. Thus, the mean value of ∆v is 0:

E[∆v] = 0.

The mean value of (∆v)2 is, by definition, equal to σ2: E [(∆v)2] = σ2.

In these terms, the (discounted) future gain is equal to v = m + ∆v. The discounted

future amount of money can be obtained if we take the original amount M , subtract the

cost s of the stock, and add the gained value v = m + ∆v; as a result, we get the value

M − s+m+ ∆v.

The utility is proportional to the square root of money. We can always select a unit of

utility so that utility will be exactly equal to the square root of money. In this case, the

original utility is u =
√
M , and the discounted future utility corresponding to buying a

stock is equal to u =
√
M − s+m+ ∆v.

As we have mentioned in the previous text, a rational person should select the alternative

with the largest possible value of expected utility E[u]. Thus, for the agent, it makes sense

to buy the stock if

E[u] = E
[√

M − s+m+ ∆v
]
>
√
M.

If we have a reverse inequality, then, as one can easily see, it is beneficial for this person to

sell this stock. So, to decide whether it is beneficial for a person to sell or buy the stock,
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we need to estimate the value E[u] = E
[√
M − s+m+ ∆v

]
of the expected utility.

Estimating the value of the expected utility. We assumed that the values m, s, and σ

are much smaller than M . Thus, the corresponding random value ∆v is also much smaller

than M . So, we can expand the expression
√
M − s+m+ ∆v in Taylor series in terms of

s, m, and ∆v, and keep only linear and quadratic terms in this expansion. As a result, we

get the following expression:

√
M − s+m+ ∆v =

√
M +

1

2
√
M
· (−s+m+ ∆v)− 1

4 ·M3/2
· (−s+m+ ∆v)2.

If we open the parentheses and take into account that E[∆v] = 0 and E [(∆v)2] = σ2, we

conclude that the expected utility of buying the stock is equal to

E[u] =
√
M +

1

2
√
M
· (m− s)− 1

4 ·M3/2
· ((m− s)2 + σ2).

Thus, this value is larger than the original utility
√
M if and only if E[u]−

√
M > 0, i.e.,

if and only if
1

2
√
M
· (m− s)− 1

4 ·M3/2
· ((m− s)2 + σ2) > 0.

Multiplying both sides by 4 ·M3/2, we get an equivalent inequality

2M · (m− s)− ((m− s)2 + σ2) > 0,

i.e., equivalently, 2M · (m− s) > ((m− s)2 + σ2) and

M > M0
def
=

(m− s)2 + σ2

2(m− s)
. (6.1)

This explains the “no trade theorem” paradox. For the same stock with the same

information about its future gains, whether it is beneficial to buy it or sell it depends on

the initial amount of money that a trader has:

• if the trader has a large amount of money M , then buying a stock whose expected

benefits m exceed the buying cost s makes perfect sense, even when the risk σ is

reasonably high;
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• on the other hand, if the trader has a not so large amount of money and the stock is

risky, then for this trader, it makes sense to sell this stock.

For this stock, for almost all traders (with a rare exception of a trader whose current

amount is exactly M0), it is either beneficial to buy (if M > M0) or to sell (if M < M0).

Thus, for the same stock, with the same information, we always have many traders for

whom it is beneficial to buy, and we have many traders for whom it is beneficial to sell.

This explains the ubiquity of trading.

6.3 Auxiliary Result: Decision Theory Explains Why

Depressed People Are More Risk-Averse

Empirical fact. It has been observed that depressed people are more risk-averse, i.e., they

are less willing to make decisions involving risks; see, e.g., [124, 146].

Our explanation. Each risky decision is described by the same formulas as a particular

case of buying-a-stock risky decision: we may gain something, we may lose something, all

we know is the probability distribution of the corresponding gains and losses.

Thus, to decide when it is beneficial to participate in a risky activity, we can use the

same formulas as above – the only difference is that instead of just money amount M and

the corresponding initial utility u0 =
√
M , we can take into account different things that

affect the person’s utility. In terms of utility u0, the inequality (6.1) – that describes when

it is beneficial for a person to engage in a risky behavior – takes the form

u2
0 > M0

def
=

(m− s)2 + σ2

2(m− s)
. (6.2)

This formula says that when the initial value of the utility u0 is small, risky behavior – with

large σ – is not beneficial. And this is exactly what depression means in decision-theoretic

terms: that a person is not very happy, i.e., that the corresponding utility value u0 is small.

Thus, our decision-theoretic analysis explains the above-mentioned psychological phe-

nomenon.
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Chapter 7

How People Actually Make

Decisions: Based on Clusters

Containing Actual Values

Instead of eliciting the accurate values, people make decisions based on clusters containing

the actual values. It is known that, in general, people classify objects into 5 to 9 clusters

– this is known as the 7 ± 2 law. In this chapter, we provide a possible simple geometric

explanation for this psychological feature.

Comment. The results of this chapter first appeared in [35].

7.1 Formulation of the Problem

Phenomenon. There is a known phenomenon in psychology called a 7± 2 law (see, e.g.,

[145, 174]), according to which each person can directly keep in mind only a certain number

of classes; depending on the person, this number ranges from 7−2 = 5 to 7+2 = 9 elements.

Why? A natural question is: why between 5 and 9? There have been some attempts

to explain this phenomenon (see, e.g., [195]), but they are rather complex and not very

intuitive.

In this chapter, we provide a possible geometric explanation for this phenomenon.
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7.2 A Possible Geometric Explanation

Main idea. The above phenomenon is about our biological nature, so it has to be explained

based on how it helped our ancestors survive. In order to survive in situations when there

are dangerous and skilled predators around, it is important, for each person, to be aware

of what is happening in the nearest vicinity.

Let us show that this natural idea indeed seems to explain the 7± 2 phenomenon.

Grid model. For simplicity, let us consider a simplified “grid” model of the environment,

when the whole area is divided into square-shaped cells. In this model, instead of listing

the exact spatial location of each object, we only describe in which cell this object is.

From this viewpoint, the space looks like this, with a person in the central cell marked

by an X:

�@

Awareness of nearest neighbors. For each person, it is vitally important to be aware of

what is happening in the neighboring cells – so as not to miss a tiger or another dangerous

predator nearby. From this viewpoint, it is important for a person standing in the middle

of the above configuration to be aware of what is happening not only in the cell containing

the person, but also in all the directly neighboring cells:

�@

�@

�@

�@

�@

This requires keeping track of exactly five cells.
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A better strategy. An even better strategy is to take into account not only directly

neighboring cells, but also cells which are attached to the cell-where-we-are even by a

single point – i.e., to take into account even the diagonally connected cells.

�@

�@

�@

�@

�@

�@ �@

�@ �@

This requires keeping track of exactly nine cells.

Conclusion. To survive in a harsh environment, our ancestors had to keep track of the

contents of between five and nine spatial cells. And this is exactly what we observe in the

7± 2 law – that we can keep track of between 7− 2 = 5 and 7 + 2 = 9 objects.

7.3 Auxiliary Observation: How All This Is Related

to Our Understanding of Directions

How do we describe directions? In principle, we could divide the 360 degrees into 3,

4, 5, 6 parts.

How we actually navigate is that we use four main directions: South (S), North (N),

East (E), and West (W).

This usual description of directions is related to the 5-neighboring-cells image.

Together with the option to stay in the same place and not to move anywhere, we get the

same 5-component picture as above:

�@

S

W

N

E
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A more detailed description of directions is related to the 9-neighboring-cells

image. A more detailed description of directions involves considering intermediate direc-

tions: Southwest (SW), Northwest (NW), Southeast (SE), and Northeast (NE). Together,

we get the same 9-component picture as above:

S

W

N

E

SW

NW

SE

NE

���

@@R

@@I

��	
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Chapter 8

How People Actually Make Decisions:

When Revolutions Succeed

A statistical analysis of hundreds of successful and unsuccessful revolution attempts led

historians to a very unexpected conclusion: that most attempts involving at least 3.5%

of the population succeeded, while most attempts that involved a smaller portion of the

population failed. In this chapter, we show that this unexpected threshold can be explained

based on the other two known rules of human behavior: the 80/20 rule (20% of the people

drink 80% of the beer) and 7 plus minus 2 law – described in the previous chapter –

according to which we naturally divide everything into 7 plus minus 2 classes.

Comment. Results from this chapter first appeared in [26].

8.1 Formulation of the Problem

Interesting empirical fact. Sometimes revolutions succeed, sometimes they don’t. Re-

searchers studying successful and unsuccessful revolutions usually go deep into each indi-

vidual case, providing specific social, economic, and other explanations for the past success

or failure.

A few years ago, researchers decided to analyze all successful and unsuccessful revolu-

tions as a whole. The results of this analysis – presented in [50] – are somewhat unexpected:

it turns out that there is a “magic” number of 3.5%:

• in the overwhelming majority of cases in which at least 3.5% of the population sup-

ported the revolution, this revolution won;
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• on the other hand, in the overwhelming majority of cases in which less than 3.5% of

the population supported the revolution attempt, this attempt failed.

This conclusion was very unexpected, since, contrary to what historians expected, the re-

sulting “3.5% rule” does not depend on a social or economic situation, does not depend

on the severity of the corresponding crisis, does not depend on the strategies of the revo-

lutionaries and of the defenders of the old regime.

How can we explain this empirical law?

What we do in this chapter. In this chapter, we provide an explanation for this law –

namely, we show that this law can be explained based on the other two well-known laws

of human behavior: the 80/20 rule and the 7 plus minus 2 law. In the following text, we

briefly recall these laws, and we explain how these laws imply the 3.5% rule.

8.2 80/20 Rule: Reminder

In most human activities, 80% of the results come from 20% of the participants; see, e.g.,

[77, 105]. For example:

• 20% of the people own 80% of all the world’s wealth;

• 20% of researchers publish 80% of all the papers;

• 20% of the people contribute 80% of all the charitable donations; etc.,

not to mention the most frequently cited fact that 20% of the people drink 80% of the beer

:-)

The usual explanation for this rule (see, e.g., [105] and references therein) is that the

distribution of each of the corresponding quantities – money, papers, beer, etc. – follows the

power law. To be more precise, if we sort people in decreasing order by the corresponding

quantity, then the portion q of this quantity owned by the part p of the population is equal
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to q = C · pα for some C and α. Since for p = 1 – when we consider the whole population

– this portion should be 1, we conclude that C = 1 and thus,

q = pα. (8.1)

8.3 How These Two Laws Explain the 3.5% Rule

The 80/20 rule describes a distribution of all possible quantities. In particular, it can be

applied to the distribution of influence. We can therefore conclude that 20% of the people

exert 80% of all the influence.

What about smaller portions than 20%? From the power law (8.1), we can make simple

conclusions about the resulting influence. For example, if we square both sides of the

formula (8.1), we conclude that q′ = (p′)α, where q′ = q2 and p′ = p2. In particular, if we

apply this conclusion to our original example of

• p = 20% = 0.2 and

• q = 80% = 0.8,

we conclude that the same property holds for

• p′ = p2 = 0.04 = 4% and

• q′ = q2 = 0.64 = 64%.

In other words, we come to a conclusion that if 4% of most active people act together, they

exhibit 64% of all possible influence.

If we get a slightly smaller group of people – e.g., a group closer to 3.5% in size – they

will still show about 60% of the overall influence.

What is so special about 60%? Why not 50% – a majority? The reason is very simple:

if we have slightly more than 50%, we may not notice that we have a majority – that is why

in close elections, when one side gets slightly more than 50% of the votes, there is often a
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bitter dispute in which both sides honestly and strongly believe that they have won. To

be convincing, the majority must be convincing to even the least discriminatory people –

i.e., the ones who divide everything into only 5 classes. For such persons to recognize the

majority, this majority needs to constitute the majority of his/her 5 classes – i.e., at least 3

classes out of 5. This 3 out of 5 is exactly 60% – so the fact that ≈ 3.5% of the most active

people have 60% of all the influence explains why this proportion of people is necessary for

the revolution to succeed.

In short, a revolution succeeds if the active people involved in it exert the overwhelming

majority of influence – overwhelming in the sense that even the least discriminatory people,

who divided everything into only 5 classes, realize that yes, this is indeed a majority opinion.

Thus, the 3.5% is indeed explained.
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Chapter 9

How People Actually Make Decisions:

How They Combine Utility Values

To make a decision, people need to estimate the value (utility) of each alternative. In

real life, alternatives are complex, they include several different items. So, to estimate the

value of an alternative, we need to estimate the value of each item, and then combine these

estimates into a single number characterizing the alternative as a whole. In the previous

chapters, we described how people estimate the value of each item. In this chapter, we will

analyze how they combine these values into a single alternative-wide value.

In the ideal case, they should, e.g., add the monetary value of each item. In practice,

however, their combination practices are different. These practices can be explained from

the viewpoint of common sense. For example, if we place a can of coke that weighs 0.35

kg into a car that weighs 1 ton = 1000 kg, what will be the resulting weight of the car?

Mathematics says 1000.35 kg, but common sense says 1 ton. In this chapter, we show that

this common sense answer can be explained by the Hurwicz optimism-pessimism criterion

of decision making under interval uncertainty.

Comment. This result was previously announced in [11].

9.1 Common Sense Addition

Suppose that we have two factors that affect the accuracy of a measuring instrument. One

factor leads to errors ±10% – meaning that the resulting error component can take any

value from −10% to +10%. The second factor leads to errors of ±0.1%. What is the overall
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error?

From the purely mathematical viewpoint, the largest possible error is 10.1%. However,

from the common sense viewpoint, an engineer would say: 10%.

A similar common sense addition occurs in other situations as well. For example, if we

have a car that weight 1 ton = 1000 kg, and we place a coke can that weighs 0.35 kg in the

car, what will be now the weight of the car? Mathematics says 1000.35 kg, but common

sense clearly says: still 1 ton.

How can we explain this common sense addition?

9.2 Towards Precise Formulation of the Problem

We know that the overall measurement error ∆x is equal to ∆x1 + ∆x2, where:

• the value ∆x1 can take all possible values from the interval [−∆1,∆1], and

• the value ∆x2 can take all possible values from the interval [−∆2,∆2].

What can we say about the largest possible value ∆ of the absolute value |∆| of the sum

∆x = ∆x1 + ∆x2?

Let us describe this problem in precise terms. For every pair (x1, x2):

• let π1(x1, x2) denote x1 and

• let π2(x1, x2) stand for x2.

Let ∆1 > 0 and ∆2 > 0 be two numbers. Without losing generality, we can assume

that

∆1 ≥ ∆2.

By S, let us denote the class of all possible sets

S ⊆ [−∆1,∆1]× [−∆2,∆2]
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for which

π1(S) = [−∆1,∆1] and π2(S) = [−∆2,∆2].

We are interested in the value

∆(S) = max{|∆x1 + ∆x2| : (∆x1,∆2) ∈ S}

corresponding to the actual (unknown) set S.

We do not know what is the actual set S, we only know that S ∈ S. For different sets

S ∈ S, we may get different values ∆(S). The only thing we know about ∆(S) is that

it belongs to the interval [∆,∆] formed by the smallest and the largest possible values of

∆(S) when S ∈ S:

∆ = min
S∈S

∆(S), ∆ = max
S∈S

∆(S).

Which value ∆ from this interval should we choose?

9.3 Hurwicz Optimism-Pessimism Criterion: Re-

minder

Situations when we do not know the value of a quantity, we only know the interval of

its possible values, are ubiquitous. In such situations, decision theory recommends using

Hurwicz optimism-pessimism criterion: selecting the value

α ·∆ + (1− α) ·∆

for some α ∈ [0, 1]. A usual recommendation is to use α = 0.5; see, e.g., [91, 112, 129].

Let us see what will be the result of applying this criterion to our problem.
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9.4 Analysis of the Problem and the Resulting Expla-

nation of Common Sense Addition

Computing ∆. For every set S ∈ S, from |∆x1| ≤ ∆1 and |∆x2| ≤ ∆2, we conclude that

|∆x1 + ∆x1| ≤ ∆1 + ∆2.

Thus always

∆(S) ≤ ∆1 + ∆2

and hence,

∆ = max ∆(S) ≤ ∆1 + ∆2.

On the other hand, for the set

S0 = {v, (∆2/∆1) · v) : v ∈ [−∆1,∆1]} ∈ S,

we have

∆x1 + ∆x2 = ∆x1 · (1 + ∆2/∆1).

Thus in this case, the largest possible value ∆(S0) of ∆x1 + ∆x2 is equal to

∆(S0) = ∆1 · (1 + ∆2/∆1) = ∆1 + ∆2.

So,

∆ = max ∆(S) ≥ ∆(S0) = ∆1 + ∆2.

Hence,

∆ = ∆1 + ∆2.

Computing ∆. For every S ∈ S, since

π1(S) = [−∆1,∆1],
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we have

∆1 ∈ π1(S).

Thus, there exists a pair

(∆1,∆x2) ∈ S

corresponding to

∆x1 = ∆1.

For this pair, we have

|∆x1 + ∆x2| ≥ |∆x1| − |∆x2| = ∆1 − |∆x2|.

Here, |∆x2| ≤ ∆2, so

|∆x1 + ∆x2| ≥ ∆1 −∆2.

Thus, for each set S ∈ S, the largest possible value ∆(S) of the expression

|∆x1 + ∆x2|

cannot be smaller than ∆1 −∆2:

∆(S) ≥ ∆1 −∆2.

Hence,

∆ = min
S∈S

∆(S) ≥ ∆1 −∆2.

On the other hand, for the set

S0 = {v,−(∆2/∆1) · v) : v ∈ [−∆1,∆1]} ∈ S,

we have

∆x1 + ∆x2 = ∆x1 · (1−∆2/∆1).

Thus in this case, the largest possible value ∆(S0) of ∆x1 + ∆x2 is equal to

∆(S0) = ∆1 · (1−∆2/∆1) = ∆1 −∆2.
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So,

∆ = min
S∈S

∆(S) ≥ ∆(S0) = ∆1 −∆2.

Thus,

∆ ≤ ∆1 −∆2.

Hence,

∆ = ∆1 −∆2.

Let us apply Hurwicz optimism-pessimism criterion. So, if we apply Hurwicz

optimism-pessimism criterion with α = 0.5 to the interval

[∆,∆] = [∆1 −∆2,∆1 + ∆2],

we end up with the value

∆ = 0.5 ·∆ + 0.5 ·∆ = ∆1.

For example, for ∆1 = 10% and ∆2 = 0.1%, we get ∆ = 10% – in full accordance with

common sense. In other words, Hurwicz criterion explains the above-described common-

sense addition.
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Chapter 10

How People Actually Make

Decisions: Biased Perception of Time

To make a proper decision, people need to also take into account future consequences of

different alternatives. It turns out that they usually underestimate time passed since distant

events, and overestimate time passed since recent events. There are several explanations for

this “telescoping effect”, but most current explanations utilize specific features of human

memory and/or human perception. We show that the telescoping effect can be explained

on a much basic level of decision theory, without the need to invoke any specific ways we

perceive and process time.

Comment. Results from this chapter first appeared in [31].

10.1 Formulation of the Problem

Telescoping effect. It is known that when people estimate how long ago past events

happened, their estimates are usually biased (see, e.g., [54, 94, 186]):

• for recent events, people usually overestimate how much time has passed since this

event;

• on the other hand, for events in the more distant past, people usually underestimate

how much time has passed since the event.

This phenomenon is called telescoping effect since the bias in perceiving long-ago past

events is similar to what happens when we look at the celestial objects via a telescope: all
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the objects appear closer than when you look at them with a naked eye.

How can this effect be explained. There are many explanations for the telescoping

effect [54, 94, 186], but most current explanations utilize specific features of human memory

and/or human perception.

What we do in this chapter. In this chapter, we show that the telescoping effect can be

explained on a much basic level of decision theory, without the need to invoke any specific

ways we perceive and process time.

10.2 How Decision Theory Can Explain the Telescop-

ing Effect

People’s perceptions are imprecise. In the ideal situation, an event of utility u0 that

occurred t moments in the past should be equivalent to exactly the utility u = qt · u0 now.

In practice, however, people’s perceptions are imprecise.

Let us describe this imprecision: first approximation. Let us denote by ε the

accuracy of people’s perception. Then, for an event with actual utility u, the perceived

utility can differ by ε, i.e., it can take any value from the corresponding interval [u−ε, u+ε].

In particular, our perceived utility u of the past event can take any value from the interval

[qt · u0 − ε, qt · u0 + ε].

How we perceive events form the distant past. The above interval can be somewhat

narrowed down if we take into account that for a positive event, with utility u0 > 0, the

perception cannot be negative, while the value qt ·u0−ε is negative for large t. Thus, when

qt · u0− ε < 0, i.e., when t > T0
def
=

ln(u0/ε)

| ln(q)|
, the lower bound of the interval is 0, and thus,

the interval has the form

[u, u] = [0, qt · u0 + ε].

Based on Hurwicz’s optimism-pessimism criterion, this interval is equivalent to the value

αH · (qt ·u0 + ε). How does this translate into a perceived time? For any time tp, the utility
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of the event tp moments in the past is equal to qtp · u0. Thus, the perceived time tp can

be found from the condition that the utility αH · (qt + ε) is equal to qtp · u0. This equality

αH · (qt · u0 + ε) = qtp · u0 implies that

tp =
ln((αH · (qt · u0 + ε))/u0)

ln(q)
.

In particular, when t tends to infinity, we have qt → 0 and thus, the perceived time tends

to a finite constant
ln((αH · ε)/u0)

ln(q)
.

Thus, for large t we indeed have tp � t, which is exactly what we observe in the

telescoping effect for events from the distant past.

How we perceive very recent events. For recent events, the interval

[qt · u0 − ε, qt · u0 + ε]

can also be somewhat narrowed down if we take into account that the perceived utility of

a past event cannot exceed its utility now, i.e., the value u0. Thus, when qt · u0 + ε > u0,

i.e., when qt > 1− ε/u0 and thus, t < t0
def
=

ln(1− u0/ε)

ln(q)
, the upper bound of the interval

is u0, and thus, the interval has the form

[u, u] = [qt · u0 − ε, u0].

Based on Hurwicz’s optimism-pessimism criterion, this interval is equivalent to the value

αH · u0 + (1 − αH) · (qt · u0 − ε). Similarly to the distant-past case, the perceived time tp

can be found from the condition that the above value is equal to qtp · u0, i.e., that

αH · u0 + (1− αH) · (qt − ε) = qtp · u0.

This implies that

tp =
ln(αH + (1− αH) · (qt − ε/u0))

ln(q)
.
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In particular, when t tends to 0, we have qt → 1 and thus, the perceived time tp tends to

a finite positive constant
ln(αH + (1− αH) · (1− ε/u0))

ln(q)
.

Thus, for small t, we indeed have tp � t, which is exactly what we observe in the

telescoping effect for recent events.
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Chapter 11

How People Actually Make Decisions:

Biased Perception of Future Time

Leads to Non-Optimal Decisions

In general, biased perception of time leads decision makers to non-optimal solutions. One

of the possible cases of such behavior is the case of temptation. In this chapter, we show

that temptation can be explained by decision theory. We hope that this explanation will

eventually lead to an accurate prediction of these phenomenon.

Comment. The results of this chapter first appeared in [29].

What is temptation. A popular book [189] by a Nobelist Richard H. Thaler starts the

chapter on temptation (Chapter 2) with a simple example: a group of friends are given a

big bowl of nuts before dinner. As they eat more and more nuts, they realize that if they

continue, they will have no appetite for the incoming tasty dinner, so they decided to put

away the bowl.

All this sounds reasonable, until we start analyzing it from the economic viewpoint.

From this viewpoint, the more options we have, the better, so how come the elimination of

one of the options made everyone happier?

This is just one example; for other examples and for a general analysis of this phe-

nomenon, see, e.g., [43, 67, 79, 121, 138, 161, 188, 187, 189].

What if we take discounting into account. Let us try to resolve this puzzle by taking

discounting into account. Let us denote the overall amount of food that a person can eat
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in the evening by a (e.g., by a grams), the utility for eating one gram of nuts by n, the

utility of eating one gram of dinner by d, the discounting coefficient from dinner to now by

q+, and the amount of nuts that we eat now by x. The variable x can take any value from

the interval [0, a].

In terms of these notations, when we eat x grams of nuts and a − x grams of actual

dinner, then, taking into account discounting, the overall utility now is equal to

n · x+ q+ · d · (a− x). (11.1)

According to the usual decision making idea, we want to select the amount x for which

this utility is the largest. But the expression (11.1) is linear in x, so its largest value on

the interval [0, a] is attained at one of the endpoints of this interval, i.e., either for x = 0

or for x = a. In the first case, we do not eat any nuts at all, in the second case, we only

eat nuts and do not eat any dinner. This may be mathematically reasonable, but this is

not how people behave! How can we explain how people actually behave?

Taking into account that at different moments of time, people have different

preferences. In the previous text, we assumed that the only way a person takes into

account future events is by discounting. This would make sense if the same person at

different moment of time has the same preferences. In reality, people’s preferences change.

To some extent, the same person at different moments of time is a kind of a different person.

So, a proper way to take that into account is to realize that when a person makes decision,

he or she needs to find a compromise between his/her today’s interests and his/her interests

at other moments of time.

This situation is similar to situation of joint decisions making, when several people with

somewhat different interests try to come up with a group decision – the only difference

is that different people can decide not to cooperate at all, while here, “agents” (i.e., the

same person at different moments of time) are “joined at the hip” – decisions by one of

them affect another one. Thus, to properly describe decision making, we need to view

the problem as a problem of group decision making – group decision making by agents
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representing the same person at different moments of time.

According to decision theory, a group decision of several cooperating agents should be

maximizing the product of their utilities. This is known as Nash’s bargaining solution; see,

e.g., [129, 147, 154]. So, in our case, a person making a decision should be maximizing the

product of the utilities at different moments of time.

Let us show, on the above example, that this indeed helps us avoid the above un-realistic

prediction that we should have x = 0 or x = a.

How this idea help. Let us consider the simplest case of two moments of time: the

original moment of time when we are eating (or not eating) nuts, and the future moment of

time when we will be eating dinner. In the original moment of time, the utility is described

by the formula (11.1). Similarly, at the next moment of time, the utility is described by

a formula q− · n · x + d · (a − x), for an appropriate discounting coefficient q−. Thus, the

correct value x is the one that maximizes the product

(n · x+ q+ · d · (a− x)) · (q− · n · x+ d · (a− x)).

This function is quadratic, and, in contrast to linear functions, the maximum of a quadratic

function on an interval is not necessarily attained at one of the interval’s endpoints.

Let us illustrate it on a simplified example where computations are easy: a = 1, n = 1,

d = 2, and q+ = q− = 0.25. In this case, we maximize the function

(x+ 0.5 · (1− x)) · (0.25 · x+ 2 · (1− x)) = (0.5 · x+ 0.5) · (2− 1.75 · x).

Differentiating this expression with respect to x and equating the derivative to 0 leads to

0.5 · (2− 1.75 · x) + (0.5 · x+ 0.5) · (−1.75) = 0,

i.e., to 0.125 = 1.75 · x and

x =
0.125

1.75
=

1/8

7/4
=

1

14
≈ 0.07.

The values a, n, etc., were kind of random, but the resulting proportion of nuts snack in

the food – about 7% – is quite reasonable.
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Comment. So why is everyone happy that the temptation was taken away? Because this

allowed everyone not to violate their social contract – in this case, a social contract (as

described by Nash’s bargaining solution) between a person now and the same person in the

future.
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Chapter 12

How People Actually Make

Decisions: They Have Biased

Perception of Other People’s Utility

In the idealized description of decision making, people have a perfect knowledge of each

other’s utility. In practice, however, their perceptions are biased. In this chapter, we provide

an explanation for this bias and show that this explains the phenomenon of reciprocity –

which seems to contradict the idealized decision making recommendations.

Comment. Results of this chapter first appeared in [29].

What is reciprocity. Usually, people have reasonably fixed attitude to others: they feel

empathy towards members of their family, members of their tribe, usually citizens of their

country – and may be consistently negative towards their country’s competitors. However,

in addition to these consistent feelings, they also have widely fluctuating attitudes towards

people with whom they work – or at least with whom they are teamed up in a experiment

set up by a behavioral economics researcher.

It turns out that while it is difficult to predict how these attitudes will evolve – even in

what direction they will evolve, positive or negative – there is a general phenomenon that

people are nice to those who treat them nicely and negative to those who treat them badly.

In terms of the coefficients αij it means that:

• if αji is positive, then we expect αij to be positive too, and

• if αji is negative, then we expect αij to be negative too;
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see, e.g., [168, 190].

This reciprocity phenomenon is intuitively clear – this is, after all, a natural human

behavior – but how can we explain it in economic terms?

Let us formulate the problem in precise terms. To explain the reciprocity phe-

nomenon, let us consider the simplest case of formula (3.1), when we have only two people.

In this case, the formula (3.1) for these two people takes the following form:

u1 = u
(0)
1 + α12 · u2; (12.1)

u2 = u
(0)
2 + α21 · u1. (12.2)

Since each person tries to maximize his/her utility, a natural question is as follows:

• suppose that Person 1 knows the attitude α21 of Person 2 towards him/her;

• what value α12 describing his/her attitude should Person 1 select to maximize his/her

utility u1?

Analysis of the problem. If we replace, in the right-hand side of the equality (12.1), the

value u2 with the right-hand side of the expression (12.2), we get

u1 = u
(0)
1 + α12 · u(0)

2 + α12 · α21 · u1.

If we move all the terms containing u1 into the left-hand side, we get

u1 · (1− α12 · α21) = u
(0)
1 + α12 · u(0)

2 ,

hence

u1 =
u

(0)
1 + α12 · u(0)

2

1− α12 · α21

. (12.3)

This expression can take infinite value – i.e., as large a value as possible – if we take the

value

α12 =
1

α21

, (12.4)
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for which the denominator is 0. We can make it positive – and as large as possible – if we

take α12 close to the inverse 1/α21, so that the difference 1 − α12 · α21 will not be exactly

0, but be close to 0, with the same sign as the expression u
(0)
1 + α12 · u(0)

2 .

This explains reciprocity. Indeed, according to the formula (12.4):

• if α21 is positive, then the selected value α12 is also positive, and

• if α21 is negative, then the selected value α12 is also negative.
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Chapter 13

How People Actual Decisions: They

Select Approximately Optimal

Alternatives

According to the ideal decision recommendations, when presented with several choices

with different expected equivalent monetary gain, we should select the alternative with the

largest gain. In practice, instead, we make a random choice, with probability decreasing

with the gain – so that it is possible that we will select second highest and even third

highest value. Specifically, we use the so-called softmax formula. Interestingly, the same

formula is used in deep learning – and its use increases the learning efficiency.

This formula assumes that we know the exact value of the expected gain for each

alternative. In practice, we usually know this gain only with some certainty. For example,

often, we only know the lower bound f and the upper bound f on the expected gain, i.e.,

we only know that the actual gain f is somewhere in the interval
[
f, f

]
. In this chapter,

we show how to extend softmax and the resulting choice formulas to interval uncertainty.

Comment. The results of this chapter first appeared in [119].

13.1 People Use Softmax Instead of Optimization

How people actually make decisions? If a person needs to select between several alter-

natives a1, . . . , an, and this person knows the exact monetary values f1, . . . , fn associated

with each alternative, then we expect this person to always select the alternative with the
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largest possible monetary value – actual or equivalent. We also expect that if we present

the person with the exact same set of alternatives several times in a row, this person will

always make the same decision – of selecting the best alternative.

Interestingly, this is not how most people make decisions. It turns out that we make

decisions probabilistically: instead of always selecting the best alternative, we select each

alternative ai with probability pi described by the formula

pi =
exp(k · fi)
n∑
j=1

exp(k · fj)
, (13.1)

for some k > 0.

In other words, in most cases, we usually indeed select the alternative with the higher

monetary value, but with some probability, we will also select the next highest, with some

smaller probability, the next next highest, etc.

This fact was discovered by an economist D. McFadden – who received a Nobel Prize

in Economics for this discovery; see, e.g., [139, 140, 194].

Why: a qualitative explanation. A reader who is not familiar with numerical meth-

ods may expect that if we want to reach the global maximum, we should always select

the alternative with the largest estimate of expected gain. This idea was indeed tried in

numerical methods – but it does not work well: instead of finding the best alternative, the

optimizing algorithm would sometimes get stuck in a local maximum of the corresponding

objective function.

In numerical analysis, a usual way to get out of a local minimum is to perform some

random change. This is, e.g., the main idea behind simulated annealing. Crudely speaking,

it means that we do not always follow the smallest – or the largest – value of the corre-

sponding objective function, we can follow the next smallest (largest), next next smallest,

etc. – with some probability.

Similar phenomenon occurs in deep learning. At present, the most efficient machine

learning technique is deep learning (see, e.g., [78, 114]), in particular, reinforcement deep
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learning [185], where, in addition to processing available information, the system also (if

needed) automatically decides which additional information to request – and if an experi-

mental setup is automated, to produce.

For selecting the appropriate piece of information, the system estimates, for each possi-

ble alternative, how much information this particular alternative will bring. For the same

reason as before, the best optimization result happens when we add randomness.

Softmax: how randomness is currently added. Of course, the actual maximum

should be selected with the highest probability, the next value with lower probability,

etc. In other words, if we want to maximize some objective function f(a), and we have

alternatives a1, . . . , an for which this function has values f1
def
= f(a1), . . . , fn

def
= f(an), then

the probability pi of selecting the i-th alternative should be increasing with fi, i.e., we

should have pi ∼ F (fi) for some increasing function F (z), i.e., pi = c · F (fi), for some

constant c.

We should always select one of the alternatives, so these probabilities should add up

to 1:
n∑
j=1

pj = 1. From this condition, we conclude that c ·
n∑
j=1

F (fj) = 1. Thus, c =

1

/(
n∑
j=1

F (fj)

)
and so,

pi =
F (fi)
n∑
j=1

F (fj)
. (13.2)

Which function F (z) should we choose? In deep learning – a technique that requires so

many computations that it cannot exist without high performance computing – computa-

tion speed is a must. It is also a must in human decision making, since we often need to

make decisions fast, and our computational abilities are much slower than computers’.

Thus, the function F (z) should be fast to compute – which means, in practice, that

it should be one of the basic functions for which we have already gained an experience of

how to compute it fast. There are a few such functions: arithmetic functions, the power

function, trigonometric functions, logarithm, exponential function, etc.

The selected function should be increasing, and it should return non-negative results
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for all real values z (positive or negative) – otherwise, we will end up with meaningless

negative probability. Among basic functions, only one function has this property – the

exponential function F (z) = exp(k · z) for some k > 0. For this function, the probability

pi takes the form (13.1). This expression is known as the softmax formula.

13.2 Problem: Need to Generalize Softmax to the

Case of Interval Uncertainty

When we apply the softmax formula, we only take into account the corresponding estimates

f1, . . . , fn. However, in practice, we do not just have these estimates, we often have some

idea of how accurate is each estimate. Some estimates may be more accurate, some may

be less accurate. It is desirable to take this information about uncertainty into account.

For example, we may know the upper bound ∆i on the absolute value

|fi − f act
i | (13.3)

of the difference between the estimate fi and the (unknown) actual value f act
i of the objec-

tive function. In this case, the only information that we have about the actual value f act
i

is that this value is located in the interval [fi −∆i, fi + ∆i].

How to take this interval information into account when computing the corresponding

probabilities pi? This is the problem that we study in this chapter – and for which we

provide a reasonable solution.

13.3 How to Generalize: the Proposed Solution

Discussion. Let A denote the class of all possible alternatives. We would like, given any

finite set of alternatives A ⊆ A and a specific alternative a ∈ A, to describe the probability

p(a |A) that out of all the alternatives from the set A, the alternative a will be selected.
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Once we know these probabilities, we can then compute, for each set B ⊆ A, the

probability p(B |A) that one of the alternatives from the set B will be selected as p(B |A) =∑
b∈B

p(b |A). In particular, we have p(a |A) = p({a} |A).

A natural requirement related to these conditional probabilities is that if we have A ⊆

B ⊆ C, then we can view the selection of A from C as either a direct selection, or as first

selecting B, and then selecting A out of B. The resulting probability should be the same,

so we must have p(A |C) = p(A |B) · p(B |C). Thus, we arrive at the following definition.

Definition 13.1. Let A be a set. Its elements will be called alternatives. By a choice

function, we mean a function p(a |A) that assigns to each pair 〈A, a〉 of a finite set A ⊆ A

and an element a ∈ A a number from the interval (0, 1] in such a way that the following

two conditions are satisfied:

• for every set A, we have
∑
a∈A

p(a |A) = 1, and

• whenever A ⊆ B ⊆ C, we have p(A |C) = p(A |B) · p(B |C), where

p(B |A)
def
=
∑
b∈B

p(b |A). (13.4)

Proposition 13.1. For each set A, the following two conditions are equivalent to each

other:

• the function p(a |A) is a choice function, and

• there exists a function v : A → IR+ that assigns a positive number to each alternative

a ∈ A such that

p(a |A) =
v(a)∑

b∈A
v(b)

. (13.5)

Proof. It is easy to check that for every function v, the expression (13.5) indeed defines

a choice function. So, to complete the proof, it is sufficient to prove that every choice

function has the form (13.5).
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Indeed, let p(a |A) be a choice function. Let us pick any a0 ∈ A, and let us define a

function v as

v(a)
def
=

p(a | {a, a0})
p(a0 | {a, a0})

. (13.6)

In particular, for a = a0, both probabilities p(a | {a, a0}) and p(a0 | {a, a0}) are equal to 1,

so the ratio v(a0) is also equal to 1. Let us show that the choice function has the form

(16.5) for this function v.

By definition of v(a), for each a, we have p(a | {a, a0}) = v(a) · p(a0 | {a, a0}).

By definition of a choice function, for each set A containing a0, we have p(a |A) =

p(a | {a, a0}) · p({a, a0} |A) and p(a0 |A) = p(a0 | {a, a0}) · p({a, a0} |A). Dividing the first

equality by the second one, we get

p(a |A)

p(a0 |A)
=

p(a | {a, a0})
p(a0 | {a, a0})

. (13.7)

By definition of v(a), this means that

p(a |A)

p(a0 |A)
= v(a). (13.8)

Similarly, for each b ∈ A, we have

p(b |A)

p(a0 |A)
= v(b). (13.9)

Dividing (13.8) by (13.9), we conclude that for each set A containing a0, we have

p(a |A)

p(b |A)
=
v(a)

v(b)
. (13.10)

Let us now consider a set B that contains a and b but that does not necessarily contain

a0. Then, by definition of a choice function, we have

p(a |B) = p(a | {a, b}) · p({a, b} |B) (13.11)

and

p(b |B) = p(b | {a, b}) · p({a, b} |B). (13.12)
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Dividing (13.11) by (13.12), we conclude that

p(a |B)

p(b |B)
=
p(a | {a, b})
p(b | {a, b})

. (13.13)

The right-hand side of this equality does not depend on the set B. So the left-hand side,

i.e., the ratio
p(a |B)

p(b |B)
(13.14)

also does not depend on the set B. In particular, for the sets B that contain a0, this ratio

– according to the formula (13.10) – is equal to v(a)/v(b). Thus, the same equality (13.10)

holds for all sets A – not necessarily containing the element a0.

From the formula (13.10), we conclude that

p(a |A)

v(a)
=
p(b |A)

v(b)
. (13.15)

In other words, for all elements a ∈ A, the ratio

p(a |A)

v(a)
(13.13)

is the same. Let us denote this ratio by cA; then, for each a ∈ A, we have:

p(a |A) = cA · v(a). (13.17)

From
∑
b∈A

p(b |A) = 1, we can now conclude that: cA ·
∑
b∈A

v(b) = 1, thus

cA =
1∑

b∈A
v(b)

. (13.18)

Substituting this expression (13.18) into the formula (13.17), we get the desired expression

(13.5).

The proposition is proven.

Comment. This proof is similar to the proofs from [109, 130].

Discussion. As we have mentioned earlier, a choice is rarely a stand-alone event. Usually,

we make several choices – and often, at the same time. Let us consider a simple situation.

Suppose that we need to make two independent choices:
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• in the first choice, we must select one of the alternatives a1, . . . , an, and

• in the second choice, we must select one of the alternatives b1, . . . , bm.

We can view this as two separate selection processes. In this case, in the first process, we

select each alternative ai with probability v(ai)

/(
n∑
k=1

v(ak)

)
and, in the second process,

we select each alternative bj with probability v(bj)

/(
m∑̀
=1

v(b`)

)
. Since the two processes

are independent, for each pair 〈ai, bj〉, the probability of selecting this pair is equal to the

product of the corresponding probabilities:

v(ai)
n∑
k=1

v(ak)
· v(bj)
m∑̀
=1

v(b`)
. (13.19)

Alternatively, we can view the whole two-stage selection as a single selection process, in

which we select a pair 〈ai, bj〉 of alternatives out of all n ·m possible pairs. In this case, the

probability of selecting a pair is equal to

v(〈ai, bj〉)
n∑
k=1

m∑̀
=1

v(〈ak, b`〉)
. (13.20)

The probability of selecting a pair should be the same in both cases, so the values (13.19)

and (13.20) must be equal to each other. This equality limits possible functions v(a).

Indeed, if all we know about each alternative a is the interval
[
f(a), f(a)

]
of possible

values of the equivalent monetary gain, then the value v should depend only on this in-

formation, i.e., we should have v(a) = V
(
f(a), f(a)

)
for some function V (x, y). Which

functions V (x, y) guarantee the above equality?

To answer this question, let us analyze how the gain corresponding to selecting a pair

〈ai, bj〉 is related to the gains corresponding to individual selections of ai and bj. Suppose

that for the alternative ai, our gain fi
def
= f(ai) can take any value from the interval[

f
i
, f i

]
def
=
[
f(ai), f(ai)

]
, and for the alternative bj, our gain gj

def
= f(bj) can take any

value from the interval
[
g
j
, gj

]
def
=
[
f(bj), f(bj)

]
. These selections are assumed to be

70



independent. This means that we can have all possible combinations of values fi ∈
[
f
i
, f i

]
and gj ∈

[
g
j
, gj

]
.

The smallest possible value of the overall gain fi+gj is when both gains are the smallest.

In this case, the overall gain is f
i
+ g

j
. The largest possible value of the overall gain fi + gj

is when both gains are the largest. In this case, the overall gain is f i + gj. Thus, the

interval of possible values of the overall gain is

[
f(〈ai, bj〉), f(〈ai, bj〉)

]
=
[
f
i
+ g

j
, f i + gj

]
. (13.21)

In these terms, the requirement that the expressions (13.19) and (13.20) coincide takes the

following form:

Definition 13.2. We say that a function V : IR× IR→ IR+ is consistent if for every two

sequences of intervals
[
f

1
, f 1

]
, . . . ,

[
f
n
, fn

]
, and

[
g

1
, g1

]
, . . . ,

[
g
m
, gm

]
, for every i and

j, we have

V
(
f
i
, f i

)
n∑
k=1

V
(
f
k
, fk

) · V
(
g
j
, gj

)
m∑̀
=1

V
(
g
`
, g`

) =
V
(
f
i
+ g

j
, f i + gj

)
n∑
k=1

m∑̀
=1

V
(
f
k

+ g
`
, fk + g`

) . (13.22)

Monotonicity. Another reasonable requirement is that the larger the expected gain, the

more probable that the corresponding alternative is selected.

The notion of “larger” is easy when gains are exact, but for intervals, we can provide

the following definition.

Definition 13.3. We say that an interval A is smaller than or equal to an interval B (and

denote it by A ≤ B) if the following two conditions hold:

• for every element a ∈ A, there is an element b ∈ B for which a ≤ b, and

• for every element b ∈ B, there is an element a ∈ A for which a ≤ b.

Proposition 13.2. [a, a] ≤
[
b, b
]
⇔ (a ≤ b& a ≤ b).
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Proof is straightforward.

Definition 13.4. We say that a function V : IR× IR→ IR+ is monotonic if for every two

intervals [a, a] and
[
b, b
]
, if [a, a] ≤

[
b, b
]

then V (a, a) ≤ V
(
b, b
)
.

Proposition 13.3. For each function V : IR× IR→ IR+, the following two conditions are

equivalent to each other:

• the function V is consistent and monotonic;

• the function V
(
f, f

)
has the form

V
(
f, f

)
= C · exp

(
k ·
(
αH · f + (1− αH) · f

))
(13.23)

for some values C > 0, k > 0, and αH ∈ [0, 1].

Conclusion. Thus, if we have n alternatives a1, . . . , an, and for each alternative ai, we

know the interval
[
f
i
, f i

]
of possible values of the gain, we should select each alternative i

with the probability

pi =
exp

(
k ·
(
αH · f i + (1− αH) · f

i

))
n∑
j=1

exp
(
k ·
(
αH · f j + (1− αH) · f

j

)) . (13.24)

So, we have extended the softmax/McFadden’s discrete choice formula to the case of interval

uncertainty.

Comment 1. Proposition 13.2 justifies the formula (13.24). It should be mentioned that the

formula (13.24) coincides with what we would have obtained from the original McFadden’s

formula if, instead of the exact gain fi, we substitute into this original formula, the expres-

sion fi = αH · f i + (1−αH) · f
i

for some αH ∈ [0, 1]. This expression was first proposed by

a future Nobelist Leo Hurwicz and is thus known as Hurwicz optimism-pessimism criterion

[91, 112, 113, 129].

Comment 2. For the case when we know the exact values of the gain, i.e., when we have a

degenerate interval [f, f ], we get a new justification for the original McFadden’s formula.
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Comment 3. Similar ideas can be used to extend softmax and McFadden’s formula to other

types of uncertainty. As one can see from the proof, by taking logarithm of V , we reduce

the consistency condition to additivity, and additive functions are known; see, e.g., [113].

For example, for probabilities, the equivalent gain is the expected value – since, due to large

numbers theorem, the sum of many independent copies of a random variable is practically

a deterministic number. Similarly, a class of probability distributions is equivalent to the

interval of mean values corresponding to different distributions, and specific formulas are

known for the fuzzy case.

Proof of Proposition 13.3. It is easy to check that the function (13.24) is consistent

and monotonic. So, to complete the proof, it is sufficient to prove that every consistent

monotonic function has the desired form.

Indeed, let us assume that the function V is consistent and monotonic. Then, due to

consistency, it satisfies the formula (13.22). Taking logarithm of both sides of the formula

(13.22), we conclude that for the auxiliary function u(a, a)
def
= ln(V (a, a)), for every two

intervals [a, a] and
[
b, b
]
, we have

u(a, a) + u
(
b, b
)

= u
(
a+ b, a+ b

)
+ c (13.25)

for an appropriate constant c. Thus, for U(a, a)
def
= u(a, a) − c, substituting u(a, a) =

U(a, a) + c into the formula (13.25), we conclude that

U(a, a) + U
(
b, b
)

= U
(
a+ b, a+ b

)
, (13.26)

i.e., that the function U is additive. Similarly to [113], we can use the general classification

of additive locally bounded functions (and every monotonic function is locally bounded)

from [3] to conclude that U(a, a) = k1 · a+ k2 · a. Monotonicity with respect to changes in

a and a imply that k1 ≥ 0 and k2 ≥ 0. Thus, for

V (a, a) = exp(u(a, a)) = exp(U(a, a) + c) = exp(c) · exp(U(a, a)), (13.27)

we get the desired formula, with C = exp(c), k = k1 + k2 and αH = k1/(k1 + k2).
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The proposition is proven.

This may lead to a further improvement of deep learning. Currently, one of the

most promising Artificial Intelligence techniques is deep learning. The successes of using

deep learning are spectacular – from winning over human champions in Go (a very complex

game that until recently resisted computer efforts) to efficient algorithms for self-driving

cars. All these successes require a large amount of computations on high performance

computers.

While deep learning has been very successful, there is a lot of room for improvement.

For example, the existing deep learning algorithms implicitly assume that all the input

data are exact, while in reality, data comes from measurements and measurement are never

absolutely accurate. The simplest situation is when we know the upper bound ∆ on the

measurement error. In this case, based on the measurement result x̃, the only thing that

we can conclude about the actual value x is that x is in the interval [x̃−∆, x̃+ ∆]. In

this chapter, we have shown how computing softmax – one of the important steps in deep

learning algorithms – can be naturally extended to the case of such interval uncertainty.

The resulting formulas are almost as simple as the original ones, so their implementation

will take about the same time on the same high performance computers.
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Chapter 14

How People Actually Make

Decisions: Using Heuristics. I

In some cases, instead of looking for an optimal solution, people use some heuristic ideas

– with the hope that these ideas will lead to reasonable quality decisions. In this chapter

and in the following chapter, we will give two examples of such heuristic ideas, and we will

provide a justification for these ideas.

In particular, in this section, we analyze the heuristic ideas of using the Maximum En-

tropy approach for selecting an investment portfolio. The traditional Markowitz approach

to portfolio optimization assumes that we know the means, variances, and covariances of

the return rates of all the financial instruments. In some practical situations, however,

we do not have enough information to determine the variances and covariances, we only

know the means. To provide a reasonable portfolio allocation for such cases, researchers

proposed a heuristic maximum entropy approach. In this chapter, we provide an economic

justification for this heuristic idea.

Comment. Results from this chapter first appeared in [32].

14.1 Formulation of the Problem

Portfolio optimization: general problem. What is the best way to invest money?

Usually, there are several possible financial instruments; let us denote the number of avail-

able financial instruments by n. The questions is then: what portion wi of the overall

money amount should we allocate to each instrument i? Of course, these portions must be
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non-negative and add up to one:
n∑
i=1

wi = 1. (14.1)

The corresponding tuple w = (w1, . . . , wn) is known as an investment portfolio, or simply

portfolio, for short.

Case of complete knowledge: Markowitz solution. If we place money in a bank, we

get a guaranteed interest, with a given rate of return r. However, for most other financial

instruments i, the rate of return ri is not fixed, it changes (e.g., fluctuates) year after

year. For each values of instrument returns, the corresponding portfolio return r is equal

to r =
n∑
i=1

wi · ri.

In many practical situations, we know, from experience, the probabilistic distributions

of the corresponding rates of return. Based on this past experience, for each instrument

i, we can estimate the expected rate of return µi = E[ri] and the corresponding standard

deviation σi =
√
E[(ri − µi)2]. We can also estimate, for each pair of financial instruments

i and j, the covariance

cik
def
= E[(ri − µi) · (rj − µj)].

By using this information, for each possible portfolio w = (w1, . . . , wn), we can compute

the expected return

µ = E[r] =
n∑
i=1

wi · µi (14.2)

and the corresponding variance

σ2 =
n∑
i=1

w2
i · σ2

i +
n∑
i=1

n∑
j=1

cij · wi · wj. (14.3)

The larger the expected rate of return µ we want, the largest the risk that we have to take,

and thus, the larger the variance. It is therefore reasonable, given the desired expected

rate of return µ, to find the portfolio that minimizes the variance, i.e., that minimizes the

expression (14.3) under the constraints (14.1) and (14.2).

This problem was first considered by the future Nobelist Markowitz, who proposed an

explicit solution to this problem; see, e.g., [135]. Namely, the Lagrange multiplier method
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enables to reduce this constraint optimization problem to the following unconstrained op-

timization problem: minimize the expression

n∑
i=1

w2
i · σ2

i +
n∑
i=1

n∑
j=1

cij · wi · wj + λ1 ·

(
n∑
i=1

wi − 1

)
+

λ2 ·

(
n∑
i=1

wi · µi − µ

)
, (14.4)

where λ1 and λ2 are Lagrange multipliers that need to be determined from the conditions

(14.1) and (14.2).

Differentiating the expression (14.4) by the unknowns wi, we get the following system

of linear equations:

2σi · wi + 2
∑
j 6=i

cij · wj + λ1 + λ2 · µi = 0. (14.5)

Thus,

wi = λ1 · w(1)
i + λ2 · w(2)

i , (14.6)

where w
(j)
i are solutions to the following systems of linear equations

2σi · wi + 2
∑
j 6=i

cij · wj = −1 (14.7)

and

2σi · wi + 2
∑
j 6=i

cij · wj = −µi. (14.8)

Substituting the expression (14.6) into the equations (14.1) and (14.2), we get a system

two linear equations for two unknowns λ1 and λ2. From this system, we can easily find the

coefficients λi and thus, the desired portfolio (14.6).

Case of complete information: modifications of Markowitz solution. Some re-

searchers argue that variance may be not the best way to describe the intuitive notion

of risk. Instead, they propose to use other statistical characteristics, e.g., the quantile qα

corresponding to a certain small probability α – i.e., a value for which the probability that

the returns are very low (r ≤ qα) is equal to α.

77



Instead of the original Markowitz problem, we thus have a problem of maximizing qα – or

another characteristic – under the given expected return µ. Computationally, the resulting

constraint optimization problems are no longer quadratic and thus, more complex to solve,

but they are still well formulated and thus, solvable.

Case of partial information: formulation of the general problem. In many practical

situations, we only have partial information about the probabilities of different rates of

return ri.

For example, in some cases, we know the expected returns µi, but we do not have

any information about the standard deviations and covariances. What portfolio should we

select in such situations?

Maximum Entropy approach: reminder. Situations in which we only have partial

information about the probabilities – and thus, several different probability distributions

are consistent with the available information – such situations are ubiquitous.

Usually, some of the consistent distributions are more precise, some are more uncertain.

We do not want to pretend that we know more than we actually do, so in such situations of

uncertainty, a natural idea is to select a distribution which has the largest possible degree

of uncertainty. A reasonable way to describe the uncertainty of a probability distribution

with the probability density ρ(x) is by its entropy

S = −
∫
ρ(x) · ln(ρ(x)) dx. (14.9)

So, we select the distribution whose entropy is the largest; see, e.g., [95].

In many cases, this Maximum Entropy approach makes perfect sense. For example, if

the only information that we have about a probability distribution is that it is located on

an interval [x, x], then out of all possible distributions, the Maximum Entropy approach

selects the uniform distribution ρ(x) = const on this interval. This makes perfect sense –

if we do not have any reason to believe that one of the values from the interval is more

probable than other values, then it makes sense to assume that all the values from this

interval are equally probable, which is exactly ρ(x) = const.
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In situations when we know marginal distributions of each of the variables, but we do not

have any information about the dependence between these variables, the Maximum Entropy

approach concludes that these variables are independent. This also makes perfect sense: if

we have no reason to believe that the variables are positively or negatively correlated, it

makes sense to assume that they are not correlated at all.

If all we know is the mean and the standard deviation, then the Maximum Entropy

approach leads to the normal (Gaussian) distribution – which is in good accordance with

the fact that such distributions are indeed ubiquitous.

So, in situations when we only have a partial information about the probabilities of

different return values, it makes sense to select, out of all possible probability distribu-

tions, the one with the largest entropy, and then use this selected distribution to find the

corresponding portfolio.

Problem: Maximum Entropy approach is not applicable to the case when only

know µi. In many practical situations, the Maximum Entropy approach leads to reasonable

results. However, it is not applicable to the situation when we only know the expected rates

of return µi.

This impossibility can be illustrated already on the case when we have a single finan-

cial instrument. Its rate of return r1 can take any value, positive or negative, the only

information that we have about the corresponding probability distribution ρ(x) is that

µ1 =

∫
x · ρ(x) dx (14.10)

and, of course, that ρ(x) is a probability distribution, i.e., that∫
ρ(x) dx = 1. (14.11)

The constraint optimization problem of maximizing the entropy (14.9) under the con-

straints (14.10) and (14.11) can be reduced to the following unconstrained optimization

problem: maximize

−
∫
ρ(x) · ln(ρ(x)) dx+ λ1 ·

(∫
x · ρ(x) dx− µ1

)
+ λ2 ·

(∫
ρ(x) dx− 1

)
. (14.12)
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Differentiating the expression (14.12) with respect to the unknown ρ(x) and equating the

derivative to 0, we get

− ln(ρ(x))− 1 + λ1 · x+ λ2 = 0,

hence

ln(ρ(x)) = (λ2 − 1) + λ1 · x

and ρ(x) = C · exp(λ1 · x), where C = exp(λ2− 1). The problem is that the integral of this

exponential function over the real line is always infinite, we cannot get it to be equal to 1

– which means that it is not possible to attain the maximum, entropy can be as large as

we want.

So how do we select a portfolio in such a situation?

A heuristic idea. In the situation in which we only know the means µi, we cannot

use the Maximum Entropy approach to find the most appropriate probability distribution.

However, here, the portions wi – since they add up to 1 – can also be viewed as kind of

probabilities. It therefore makes sense to look for a portfolio for which the corresponding

entropy

−
n∑
i=1

wi · ln(wi) (14.13)

attains the largest possible value under the constraints (14.1) and (14.2); see, e.g., [1, 16,

181, 203, 207, 208].

This heuristic idea sometimes leads to reasonable results. Here, entropy can be viewed

as a measure of diversity. Thus, the idea to bring more diversity to one’s portfolio makes

perfect sense. However, there is a problem.

Remaining problem. The problem is that while the weights wi do add up to one, they

are not probabilities. So, in contrast to the probabilistic case, where the Maximum Entropy

approach has many justifications, for the weights, there does not seem to be any reasonable

justification. It is therefore desirable to either justify this heuristic method – or provide a

justified alternative.
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What we do in this chapter. In this chapter, we provide a justification for the Maximum

Entropy approach. We also show that a similar idea can be applied to a slightly more

complex – and more realistic – case, when we only know bounds µ
i

and µi on the values

µi.

14.2 Case When We Only Know the Expected Rates

of Return µi: Economic Justification of the Max-

imum Entropy Approach

General definition. We want, given n expected return rates µ1, . . . , µn, to generate the

weights w1 = fn1(µ1, . . . , µn), . . . , wn = fnn(µ1, . . . , µn) depending on µi for which the sum

of the weights is equal to 1.

Definition 14.1. By a portfolio allocation scheme, we mean a family of functions

fni(µ1, . . . , µn) 6= 0 of non-negative variables µi, where n is arbitrary integer larger than 1,

and i = 1, 2, . . . , n, such that for all n and for all µi ≥ 0, we have

n∑
i=1

fni(µ1, . . . , µn) = 1.

Symmetry. Of course, the portfolio allocation should not depend on the order in which

we list the instrument.

Definition 14.2. We say that a portfolio allocation scheme is symmetric if for each n, for

each µ1, . . . , µn, for each i ≤ n, and for each permutation π : {1, . . . , n} → {1, . . . , n}, we

have

fni(µ1, . . . , µn) = fn,π(i)(µπ(1), . . . , µπ(n)).

81



Pairwise comparison. If we only have two financial instruments (n = 2) with expected

rates µ1 and µ2, then we assign weights w1 and w2 = 1−w1 depending on the known values

µ1 and µ2: w1 = f21(µ1, µ2) and w2 = f14(µ1, µ2).

In the general case, if we have n instruments including these two, then the amount

fn1(µ1, . . . , µn) + fn2(µ1, . . . , µn) is allocated for these two instruments. Once this amount

is decided on, we should divide it optimally between these two instruments. The optimal

division means that the first instrument gets the portion f21(w1, w2) of this overall amount,

so we must have

fn1(µ1, µ2, . . .) = f21(µ1, µ2) · (fn1(µ1, . . . , µn) + fn2(µ1, . . . , µn)). (14.14)

Thus, we arrive at the following definition.

Definition 14.3. We say that a portfolio allocation scheme is consistent if for every n > 2

and for all i 6= j, we have

fni(µ1, . . . , µn) = f21(µi, µj) · (fni(µ1, . . . , µn) + fnj(µ1, . . . , µn)). (14.15)

Proposition 14.1. A portfolio allocation scheme is symmetric and consistent if and only

if there exists a function f(µ) ≥ 0 for which

fni(µ1, . . . , µn) =
f(µi)
n∑
j=1

f(µj)
. (14.16)

Proof. It is easy to check that the formula (14.16) describes a symmetric and consistent

portfolio allocation scheme. So, to complete the proof, it is sufficient to show that every

symmetric and consistent portfolio allocation scheme has the form (14.16).

Indeed, let us assume that the portfolio allocation scheme satisfies the formula (14.15).

If we write the formulas (14.15) for i and j and then divide the i-formula by the j-formula,

we get the following equality:

fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
= Φ(µi, µj)

def
=
f21(µi, µj)

f21(µj, µi)
. (14.17)
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Due to symmetry, f14(µi, µj) = f21(µj, µi), so we have

Φ(µi, µj) =
f21(µi, µj)

f21(µj, µi)
(14.18)

and

Φ(µj, µi) =
f21(µj, µi)

f21(µi, µj)
, (14.19)

thus

Φ(µj, µi) =
1

Φ(µi, µj)
. (14.20)

Now, for each i, j, and k, we have

fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
=
fni(µ1, . . . , µn)

fnk(µ1, . . . , µn)
· fnk(µ1, . . . , µn)

fnj(µ1, . . . , µn)
,

thus

Φ(µi, µj) = Φ(µi, µk) · Φ(µk, µj).

In particular, for µk = 1, we have

Φ(µi, µj) = Φ(µi, 1) · Φ(1, µj). (14.21)

Due to (14.20), this means that

Φ(µi, µj) =
Φ(µi, 1)

Φ(µj, 1)
, (14.14)

i.e.,

Φ(µi, µj) =
f(µi)

f(µj)
, (14.23)

where we denoted f(µ)
def
= F (µ, 1). Substituting this expression (14.23) into the formula

(14.17) and taking j = 1, we conclude that

fni(µ1, . . . , µn)

fn1(µ1, . . . , µn)
=
f(µi)

f(µ1)
, (14.24)

i.e.,

fni(µ1, . . . , µn) = C · f(µi), (14.25)
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where we denoted

C
def
=
fn1(µ1, . . . , µn)

f(µ1)
.

From the condition that the values fnj corresponding to j = 1, . . . , n should add up to

1, we conclude that C ·
n∑
j=1

f(µj) = 1, hence

C =
1∑

j=1

f(µj)

and thus, the expression (14.25) takes exactly the desired form.

The proposition is proven.

Monotonicity. If all we know about each financial instruments is their expected rate of

return, then it is reasonable to assume that the larger the expected rate of return, the better

the instrument. It is therefore reasonable to require that the larger the rate of return, the

larger portion of the original amount should be invested in this instrument.

Definition 14.4. We say that a portfolio allocation scheme is monotonic if for each n and

each µi, if µi ≥ µj, then fni(µ1, . . . , µn) ≥ fnj(µ1, . . . , µn).

One can easily check that a symmetric and consistent portfolio allocation scheme is

monotonic if and only if the corresponding function f(µ) is non-decreasing.

Shift-invariance. Suppose that, in addition to the return from the investment, a person

also get some additional fixed income, which when divided by the amount of money to be

invested, translates into the rate r0. This situation can be described in two different ways:

• we can consider r0 separately from the investment; in this case, we should allocate,

to each financial instrument i, the portion fi(µ1, . . . , µn);

• alternatively, we can combine both incomes into one and say that for each instrument

i, we will get the expected rate of return µi + r0; in this case, to each financial

instrument i, we allocate a portion fi(µ1 + r0, . . . , µn + r0).
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Clearly, this is the same situation described in two different ways, so the portfolio allocation

should not depend on how exactly we represent the same situation. Thus, we arrive at the

following definition.

Definition 14.5. We say that a portfolio allocation scheme is shift-invariant if for all n,

for all µ1, . . . , µn, for all i, and for all r0, we have

fni(µ1, . . . , µn) = fni(µ1 + r0, . . . , µn + r0).

Proposition 14.2. For each portfolio allocation scheme, the following two conditions are

equivalent to each other:

• the scheme is symmetric, consistent, monotonic, and shift-invariant, and

• the scheme has the form

fni(µ1, . . . , µn) =
exp(β · µi)
n∑
j=1

exp(β · µj)
. (14.26)

for some β ≥ 0.

Proof. It is clear that the scheme (14.26) has all the desired properties. Vice versa, let us

assume that a scheme has all the desired properties. Then, from shift-invariance, for each

i and j, we get
fni(µ1, . . . , µn)

fnj(µ1, . . . , µn)
=
fni(µ1 + r0, . . . , µn + r0)

fnj(µ1 + r0, . . . , µn + r0)
. (14.27)

Substituting the formula (14.16), we conclude that

f(µi)

f(µj)
=
f(µi + r0)

f(µj + r0)
, (14.28)

which implies that
f(µi + r0)

f(µi)
=
f(µj + r0)

f(µj)
. (14.29)
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The left-hand side of this equality does not depend on µj, the right-hand side does not

depend on µi. Thus, the ratio depends only on r0. Let us denote this ratio by R(r0). Then,

we get f(µ+ r0) = R(r0) · f(µ).

It is known (see, e.g., [3]) that every non-decreasing solution to this functional equation

has the form const · exp(β · µ) for some β ≥ 0. The proposition is proven.

Main result. Now, we are ready to formulate our main result – an economic justification

of the above heuristic method.

Proposition 14.3. Let µ be the desired expected return rate, and assume that we only

consider allocation schemes providing this expected return rate, i.e., schemes for which

n∑
i=1

µi · wi =
n∑
i=1

µi · fni(µ1, . . . , µn) = µ. (14.30)

Then, the following two conditions on a portfolio allocation schemes are equivalent to each

other:

• the scheme is symmetric, consistent, monotonic, and shift-invariant, and

• the scheme has the largest possible entropy −
n∑
i=1

wi · ln(wi) among all the schemes

with the given expected return rate.

Proof. Maximizing entropy under the constraints
∑
wi · µi = µ0 and

∑
wi = 1 is, due to

Lagrange multiplier method, equivalent to maximizing the expression

−
n∑
i=1

wi · ln(wi) + λ1 ·

(
n∑
i=1

wi · µi − µ

)
+ λ2 ·

(
n∑
i=1

wi − 1

)
. (14.31)

Differentiating this expression by wi and equating the derivative to 0, we conclude that

− ln(wi)− 1 + λ1 · µ1 + λ2 = 0, (14.32)

i.e., that

wi = const · exp(λ1 · µi).
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This is exactly the expression (14.26) which, as we have proved in Proposition 14.2, is indeed

equivalent to symmetry, consistency, monotonicity, and shift-invariance. The proposition

is proven.

Discussion. What we proved, in effect, is that maximizing diversity is a great idea, be

it diversity when distributing money between financial instrument, or – when the state

invests in its citizens – when we allocate the budget between cities, between districts,

between ethnic groups, or when a company is investing in its future by hiring people of

different backgrounds.

14.3 Case When We Only Know the Intervals Con-

taining the Actual (Unknown) Expected Return

Rates

Description of the case. Let us now consider an even more realistic case, when we take

into account that the expected rates of return µi are only approximately known. To be

precise, we assume that for each i, we only know the interval [µ
i
, µi] containing the actual

(unknown) expected return rates µi. How should we then distribute the investments?

Definition 14.6. By an interval-based portfolio allocation scheme, we mean a family of

functions fni(µ1
, µ1 . . . , µn, µn) 6= 0 of non-negative variables µi, where n is an arbitrary

integer larger than 1, and i = 1, 2, . . . , n, such that for all n and for all 0 ≤ µ
i
≤ µi, we

have
n∑
i=1

fni(µ1
, µ1, . . . , µn, µn) = 1.

Definition 14.7. We say that an interval-based portfolio allocation scheme is symmetric

if for each n, for each µ
1
, µ1, . . . , µn, µn, for each i ≤ n, and for each permutation π :

{1, . . . , n} → {1, . . . , n}, we have

fni(µ1
, µ1 . . . , µn, µn) = fn,π(i)(µπ(1)

, µπ(1), . . . , µπ(n)
, µπ(n)).
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Definition 14.8. We say that an interval-based portfolio allocation scheme is consistent

if for every n > 2 and for all i 6= j, we have

fni(µ1
, µ1, . . . , µn, µn) =

f21(µ
i
, µi, µj, µj) · (fni(µ1

, µ1, . . . , µn, µn) + fnj(µ1
, µ1, . . . , µn, µn)).

Proposition 14.4. An interval-based portfolio allocation scheme is symmetric and consis-

tent if and only if there exists a function f(µ, µ) ≥ 0 for which

fni(µ1
, µ1, . . . , µn, µn) =

f(µ
i
, µi)

n∑
j=1

f(µ
j
, µj)

.

Proof is similar to the proof of Proposition 14.1.

Definition 14.9. We say that an interval-based portfolio allocation scheme is monotonic

if for each n and each µ
i

and µi, if µ
i
≥ µ

j
and µi ≥ µj, then

fni(µ1
, µ1, . . . , µn, µn) ≥ fnj(µ1

, µ1, . . . , µn, µn).

One can easily check that a symmetric and consistent portfolio allocation scheme is

monotonic if and only if the corresponding function f(µ, µ) is non-decreasing in both vari-

ables.

Additivity. Let us assume that in year 1, we have instruments with bounds µ
i

and µi,

and in year 2, we have a different set of instruments, with bounds µ′
j

and µ′j. Then, we can

view this situation in two different ways:

• we can view it as two different portfolio allocations, with allocations wi in the first

year and independently, allocations w′j in the second year; since these two years are

treated independently, the portion of money that goes into the i-th instrument in the
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first year and in the j-th instrument in the second year can be simply computed as a

product wi · w′j of the corresponding portions;

• alternatively, we can consider portfolio allocation as a 2-year problem, with n · m

possible options, so that for each option (i, j), the expected return is the sum µi +µ′j

of the corresponding expected returns; since µi is in the interval [µ
i
, µi] and µ′j is in

the interval [µ′
j
, µ′j], the sum µi + µ′j can take all the values from µ

i
+ µ′

i
to µi + µ′j.

It is reasonable to require that the resulting portfolio allocation not depend on how exactly

we represent this situation.

Definition 14.10. An interval-based portfolio allocation scheme is called additive if for

every n and m, for all values µ
i
, µi, µ

′
i
, and µ′i, and for every i and j, we have

fn·m,i,j(µ1
+ µ′

1
, µ1 + µ′1, µ1

+ µ′
2
, µ1 + µ′2, . . . , µn + µ′

m
, µn + µ′m) =

fni(µ1
, µ1, . . . , µn, µn) · fmj(µ′1, µ

′
1, . . . , µ

′
n
, µ′n).

Proposition 14.5. A symmetric and consistent interval-based portfolio allocation scheme

is additive if and only if the corresponding function f(u, u) has the form

f(u, u) = exp(β · u+ β · u)

for some β ≥ 0 and β ≥ 0.

Proof. In terms of the function f(u, u), additivity takes the form

f(u+ u′, u+ u′) = C · f(u, u) · f(u′, u′).

For F
def
= ln(f), this equation has the form

F (u+ u′, u+ u′) = c+ F (u, u) + F (u′, u′),

where c
def
= ln(C). For G

def
= F + c, we have

G(u+ u′, u+ u′) = G(u, u) +G(u′, u′).
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According to [3], the only monotonic solution to this equation is a linear function. Thus,

the function f = exp(F ) = exp(G − c) = exp(−c) · exp(G) has the desired form. The

proposition is proven.

Relation to Hurwicz approach to decision making under interval uncertainty.

The above formula has the form exp(β · (αH · u + (1 − αH) · u)), where β
def
= β + β and

αH
def
= β/β.

Thus, it is equivalent to using the non-interval formula with

u = αH · u+ (1− αH) · u.

This is exactly the utility equivalent to an interval proposed by a Nobelist Leo Hurwicz;

see, e.g., [91, 112, 129].

Relation to maximum entropy. This formula corresponds to maximizing entropy under

the constraint that the expected value of the Hurwicz combination u = αH ·u+ (1−αH) ·u

takes a given value.
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Chapter 15

How People Actually Make

Decisions: Using Heuristics. II

In this chapter, we provide a justification for yet another heuristic that people use when

making economic decision: the so-called anchoring effect. According to the traditional eco-

nomics, the price that a person is willing to pay for an item should be uniquely determined

by the value that this person will get from this item, it should not depend, e.g., on the

asking price proposed by the seller. In reality, the price that a person is willing to pay

does depend on the asking price; this is known as the anchoring effect. In this chapter, we

provide a natural justification for the empirical formula that describes this effect.

Comment. Results from this chapter first appeared in [36].

15.1 Formulation of the Problem

What is anchoring effect? Traditional economics assumes that people know the exact

value of each possible item, and this value determines the price that they are willing to pay

for this item.

The reality is more complicated. In many practical situations, people are uncertain

about the value of an item – and thus, uncertain about the price they are willing to pay

for this item. This happens, e.g., when hunting for a house.

Interestingly, in many such situations, the price that the customer is willing to pay is

affected by the asking price:

• if the asking price is higher, the customer is willing to pay a higher price, but
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• if the asking price is lower, the price that the customer is willing to pay is also lower.

This phenomenon is known as the anchoring effect: just like a stationary ship may move a

little bit, but cannot move too far away from its anchor, similarly, a customer stays closer

to the asking price – which thus acts as a kind of an anchor; see, e.g., [97], Chapter 11, and

references therein.

Comment. The anchoring effect may sound somewhat irrational, but it makes some sense:

• If the owner lists his/her house at an unexpectedly high price, then maybe there are

some positive features of the house of which the customer is not aware. After all, the

owner does want to sell his/her house, so he/she would not just list an outrageously

high price without any reason.

• Similarly, if the owner lists his/her house at an unexpectedly low price, then maybe

there are some drawbacks of the house or of its location of which the customer is not

aware. After all, the owner does want to get his/her money back when selling his/her

house, so he/she would not just list an outrageously low price without any reason.

A formula that describes the anchoring effect. Let p0 be the price that the customer

would suggest in the absence of an anchor. Of course, if the asking price a0 is the same

value a = p0, there is no reason for the customer to change the price p that he/she is willing

to pay for this item, i.e., this price should still be equal to p0.

It turns out that each anchoring situation can be described by a coefficient α ∈ [0, 1]

which is called an anchoring index. The idea is that if we consider two different asking

prices a′ 6= a′′, then the difference p′ − p′′ between the resulting customer’s prices should

be equal to α · (a′ − a′′).

This idea – in combination with the fact that p = p0 when a = p0 – enables us to come

up with the formula describing the anchoring effect. Indeed, for anchor a, the difference

p− p0 between:

• the price p corresponding to the asking price a and
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• the price p0 corresponding to the asking price p0

should be equal to α · (a−p0). Since p−p0 = α · (a−p0), we thus have p = p0 +α · (a−p0),

i.e., equivalently,

p = (1− α) · p0 + α · a. (15.1)

First natural question: how can we explain this empirical formula?

What are the values of the anchoring index. It turns out that in different situations,

we observe different values of the anchoring index.

When people are not sure about their original opinion, the anchoring index is usually

close to 0.5:

• For a regular person buying a house, this index is equal to 0.48 ≈ 0.5; see, e.g., [97,

158].

• For people living in a polluted city, when asked what living costs they would accept

to move to an environmentally clean area, the anchoring index was also close to 0.5;

see, e.g., [97].

For other situations, when a decision maker in more confident in his/her original opinion,

we can get indices between 0.25 and 0.5:

• For a real estate agent buying a house, this index is equal to 0.41; see, e.g., [97, 158].

• For a somewhat similar situation of charity donations, this index is equal to 0.30; see,

e.g., [93, 97].

Second natural question: how can we explain these values?

What we do in this chapter. In this chapter, we try our best to answer both questions.

Specifically:

• we provide a formal explanation for the formula (15.1), and
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• we provide a somewhat less formal explanation for the empirically observed values of

the anchoring index.

To make our explanations more convincing, we have tried to make the corresponding math-

ematics as simple as possible.

15.2 Formal Explanation of the Anchoring Formula

What we want. We want to have a function that, given two numbers:

• the price p0 that the customer is willing to pay in a situation in which the seller has

not yet proposed any asking price, and

• the actual asking price a,

produces the price p(p0, a) that the customer is willing to pay for this item after receiving

the asking price a.

First natural property. As we have mentioned, if a = p0, then we should have p(p0, a) =

p(p0, p0) = p0.

Second natural property. Small changes in p0 and a should not lead to drastic changes

in the resulting price. In mathematical terms, this means that the function p(p0, a) should

be continuous.

Third natural property. Intuitively, the change from p0 to p should be in the direction

to the anchor, i.e.:

• if a < p0, we should have p(p0, a) ≤ p0, and

• if p0 < a, we should have p0 ≤ p(p0, a).

Fourth natural property. Also, intuitively, when the changed value p(p0, a) moves in

the direction of the asking price a, it should not exceed a, i.e.:
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• if a < p0, we should have a ≤ p(p0, a), and

• if p0 < a, we should have p(p0, a) ≤ a.

Comment. The first three property can be summarized by saying that for all p0 and a, the

price p(p0, a) should always be in between the original price p0 and the asking price a.

Fourth natural property: additivity. Suppose that we have two different situations –

e.g., a customer is buying two houses, a house to live in and a smaller country house for

vacationing. Suppose that:

• for the first item, the original price was p′0 and the asking price is a′, and

• for the second item, the original price was p′′0 and the asking price is a′′.

Then, the price of the first item is p(p′0, a
′), the price of the second item is p(p′′0, a

′′), thus

the overall price of both items is

p(p′0, a
′) + p(p′′0, a

′′). (15.2)

Alternatively, instead of considering the two items separately, we can view them as a

single combined item, with the original price p′0 + p′′0 and the asking price a′ + a′′. From

this viewpoint, the resulting overall price of both items is

p(p′0 + p′′0, a
′ + a′′). (15.3)

Since (15.2) and (15.3) correspond to the exact same situation, it is reasonable to require

that these two overall prices should coincide, i.e., that we should have

p(p′0, a
′) + p(p′′0, a

′′) = p(p′0 + p′′0, a
′ + a′′). (15.4)

Now, we are ready to formulate and prove our main result.

Definition 15.1. A continuous function p : IR+
0 × IR+

0 → IR+
0 that transforms two non-

negative numbers p0 and a into a non-negative number p(p0, a) is called an anchoring func-

tion if it satisfies the following two properties:
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• for all p0 and a, the value p(p0, a) should always be in between p0 and a, and

• for all possible values p′0, p′′0, a′, and a′′, we should have

p(p′0, a
′) + p(p′′0, a

′′) = p(p′0 + p′′0, a
′ + a′′).

Proposition 15.1. A function p(p0, a) is an anchoring function if and only if it has the

form

p(p0, a) = (1− α) · p0 + α · a

for some α ∈ [0, 1].

Comment. This proposition justifies the empirical expression (15.1) for the anchoring effect.

Proof. It is easy to see that every function of the type (15.1) satisfies both conditions of

Definition 15.1 and is, thus, an anchoring function. So, to complete the proof, it is sufficient

to prove that every anchoring function – i.e., every function that satisfies both conditions

from Definition 15.1 – indeed has the form (15.1).

Indeed, let us assume that the function p(p0, a) satisfies both conditions. Then, due to

additivity, for each p0 and a, we have

p(p0, a) = p(p0, 0) + p(0, a). (15.5)

Thus, to find the desired function of two variables, it is sufficient to consider two functions

of one variable: p1(p0)
def
= p(p0, 0) and p2(a)

def
= p(0, a).

Due the same additivity property, each of these functions is itself additive:

p(p′0 + p′′0, 0) = p(p′0, 0) + p(p′′0, 0)

and

p(0, a′ + a′′) = p(0, a′) + p(0, a′′).

In other word, both functions p1(x) and p2(x) are additive in the sense that for each of

them, we always have pi(x
′ + x′′) = pi(x

′) + pi(x
′′).
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Since the function p(p0, a) is continuous, both functions pi(x) are continuous as well.

Let us show that every continuous additive function is linear, i.e., has the form pi(x) = ci ·x

for some ci.

Indeed, let us denote ci
def
= pi(1). Due to additivity, since

1

n
+ . . .+

1

n
(n times) = 1,

we have

pi

(
1

n

)
+ . . .+ pi

(
1

n

)
(n times) = pi(1) = ci,

i.e.,

n · pi
(

1

n

)
= ci

and thus,

pi

(
1

n

)
= ci ·

1

n
.

Similar, due to additivity, since for every m and n, we have

1

n
+ . . .+

1

n
(m times) =

m

n
,

we have

pi

(
1

n

)
+ . . .+ pi

(
1

n

)
(m times) = pi

(m
n

)
.

The left-hand side of this formula is equal to

m · pi
(

1

n

)
= m ·

(
ci ·

1

n

)
= ci ·

m

n
.

Thus, for every m and n, we have

pi

(m
n

)
= ci ·

m

n
.

The property pi(x) = ci · x therefore holds for every rational number, and since each real

number x can be viewed as a limit of its more and more accurate rational approximations

xn (x = limxn), and the function pi(x) is continuous, we thus conclude, in the limit, that

pi(x) = ci · x for all non-negative numbers x.
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Thus, p(p0, 0) = p1(p0) = c1 · p0, p(0, a) = p2(a) = c2 · a, and the formula (15.5) takes

the form

p(p0, a) = c1 · p0 + c2 · a. (15.6)

For p0 = a, the requirement that p(p0, a) is between p0 and a implies that p(p0, a) = p0.

For p0 = a, the formula (15.6) means that c1 · p0 + c2 · p0 = p0, thus that c1 + c2 = 1 and

c1 = 1− c2. So, we get the desired formula (1) with c2 = α.

To complete the proof, we need to show that 0 ≤ α ≤ 1. Indeed, for p0 = 0 and a = 1,

the value p(0, 1) must be between 0 and 1. Due to the formula (15.1), this value is equal

to (1− c2) · 0 + c2 · 1 = c2. Thus, c2 ∈ [0, 1].

The proposition is proven.

15.3 Explaining the Numerical Values of the Anchor-

ing Index

First case. Let us first consider the case when the decision maker is not sure which is more

important: his/her a priori guess – as reflected by the original value p0 – or the additional

information as described by the asking price a. In this case, in principle, the value α can

take any value from the interval [0, 1].

To make a decision, we need to select one value α0 from this interval. Let us consider

the discrete approximation with accuracy
1

N
for some large N . In this approximation, we

only need to consider values

0,
1

N
,

2

N
, . . . ,

N − 1

N
, 1,

for some large N . If we list all possible values, we get a tuple(
0,

1

N
,

2

N
, . . . ,

N − 1

N
, 1

)
.

We want to select a single tuple α0, i.e., in other words, we want to replace the original tuple

with a tuple (α0, . . . , α0). It is reasonable to select the value α0 for which the replacing

98



tuple is the closest to the original tuple, i.e., for which the distance√
(α0 − 0)2 +

(
α0 −

1

N

)2

+

(
α0 −

2

N

)2

+ . . .+

(
α0 −

N − 1

N

)2

+ (α0 − 1)2

attains its smallest possible value. Minimizing the distance is equivalent to minimizing its

square

(α0 − 0)2 +

(
α0 −

1

N

)2

+

(
α0 −

2

N

)2

+ . . .+

(
α0 −

N − 1

N

)2

+ (α0 − 1)2 .

Differentiating this expression with respect to α0 and equating the derivative to 0, we

conclude that

2 (α0 − 0) + 2

(
α0 −

1

N

)
+ 2

(
α0 −

2

N

)
+ . . .+ 2

(
α0 −

N − 1

N

)
+ 2 (α0 − 1) = 0.

If we divide both sides by 2 and move the terms not containing α0 to the right-hand side,

we conclude that

(N + 1) · α0 = 0 +
1

N
+

2

N
+ . . .+

N − 1

N
+ 1,

i.e., that

(N + 1) · α0 =
1 + 2 + . . .+ (N − 1) +N

N
,

thus

α0 =
1 + 2 + . . .+ (N − 1) +N

N · (N + 1)
.

It is known that 1 + 2 + . . .+N =
N · (N + 1)

2
, thus

α0 = 0.5.

This is exactly the value used when the decision maker is not confident in his/her original

estimate.

Second case. What if the decision maker has more confidence in his/her original estimate

than in the anchor? In this case, the weight 1 − α corresponding to the original estimate

must be larger than the weight α corresponding to the anchor. The inequality 1 − α > α

means that α < 0.5.
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Similarly to the above case, we can consider all possible values between 0 and 0.5, and

select a single value α0 which is, on average, the closest to all these values. Similar to above

calculations, we can conclude that the best value is

α = 0.25.

Correspondingly, intermediate cases when the decision maker’s confidence in his original

opinion is somewhat larger, can be described by values α between the two above values 0.5

and 0.25. This explains why these intermediate values occur in such situations.
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Chapter 16

Applications to Geosciences:

Few-Parametric Spatial Models and

How They Explain Bhutan

Landscape Anomaly

Now that we have finished our general analysis of human decision making, let us move to our

main application area: geosciences. In geosciences, like in many other application areas, we

encounter two types of situations. In some cases, we have a small number of observations;

in this case, it is important to extract as much information from these observations as

possible. In other cases, we have a large number of observations – in such cases, we need

to be able to process all this data in reasonable time.

Let us start with the cases when we have a relatively small number of observations. In

such cases, there are only sufficiently many to estimate the values of a few parameters of

the model. In such cases, it is desirable to come up with the most adequate few-parametric

model. We analyze the corresponding problem of select an optimal model on two examples:

• of spatial dependence (in this chapter) and

• of temporal dependence (in the next chapter).

Let us explain a specific problem related to spatial dependence – and how it is related

to economic decision making. Economies of countries located in seismic zones are strongly

effected by this seismicity. If we underestimate the seismic activity, then a reasonably
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routine earthquake can severely damage the existing structures and thus, lead to huge eco-

nomic losses. On the other hand, if we overestimate the seismic activity, we waste a lot of

resources on unnecessarily fortifying all the buildings – and this too harms the economies.

From this viewpoint, it is desirable to have estimations of regional seismic activities which

are as accurate as possible. Current predictions are mostly based on the standard geo-

physical understanding of earthquakes as being largely caused by the movement of tectonic

plates and terranes. This understanding works in most areas, but in Bhutan area of the

Himalayas region, there seems to be a landscape anomaly. As a result, for this region, we

have less confidence in the accuracy of seismic predictions based on the standard under-

standing and thus, have to use higher seismic thresholds in construction. In this chapter,

we find the optimal description of landscape-describing elevation profiles, and we use this

description to show that the seeming anomaly is actually in perfect agreement with the

standard understanding of the seismic activity. Our conclusion is that it is safe to apply,

in this region, estimates based on the standard understanding and thus, avoid unnecessary

expenses caused by an increased threshold.

Comment. Results from this chapter first appeared in [152].

16.1 Formulation of the Problem

Seismicity affects economy. In highly seismic areas like the Himalayas, economy is

affected by our knowledge of possible seismicity.

Protection against possible earthquakes is very costly. If we have only a vague idea

about possible seismic events – i.e., if we can potentially expect high-energy earthquakes

at all possible locations – then, every time we build a house or a factory, we need to spend

a lot of money on making it protected against such events – with little money left for any

other development project.

On the other hand, if we can reasonably accurately localize potential hazards, then we

can concentrate our building efforts mostly in safer zones. This will require less investment
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in earthquake protection and thus, leave more money for other development projects.

Thus, the economy of a highly seismic zone is directly affected by our understanding of

the corresponding seismic processes.

Bhutan landscape anomaly. In general, modern geophysics has a reasonably good

understanding of seismic processes and seismic zones. Specifically, the current understand-

ing is that seismicity is usually caused by mutual movement of tectonic plates and their

parts (terranes), and it is mostly concentrated on the borderline between two or more such

plates or terranes. In general, while we still cannot predict the exact timing of earth-

quakes, geoscientists can reasonably well predict the size of a future earthquake based on

the corresponding geophysical models.

Researchers and practitioners are reasonably confident in these predictions – at least

for locations whose geophysics is well understood by the traditional geophysical models.

However, there are locations where observed phenomena are different from what we

usually expect. In such cases, there are reasonable doubts in seismicity estimates produced

by the traditional techniques – and thus, it is reasonable to be cautious and use higher

strengths of potential earthquakes when building in these locations, which invokes signif-

icant additional expenses. For such domains, it is therefore desirable to come up with a

better understanding of the observed geophysical phenomena – thus hopefully allowing us

to make more accurate predictions and hence, save money (which is now wasted on possibly

too-heavy earthquake protection) for other important activities.

One such areas in the vicinity of the Himalayan country of Bhutan, where the landscape

profile is drastically different from the profiles of other Himalayan areas such as areas of

Nepal. In general, a landscape can be described in numerical terms if we take a line

orthogonal to the prevailing rivers (which are usually the lowest points on the landscape)

and plot the elevation as a function of the distance from the corresponding river. The

shape of the landscape (elevation) profile in Bhutan is visually drastically different from

the landscape profile in Nepal; see, e.g., [4]. Namely, in most of the Himalayas – and, in

general, in the most of the world – the corresponding curve is first convex (corresponding to
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the river valley), and then becomes concave – which corresponds to the mountain peaks. In

contrast, in Bhutan, the profile turns concave very fast, way before we reach the mountain

peaks area.

As of now, there are no good well-accepted explanations for this phenomenon – which

makes it an anomaly. To be more precise, we know that the geophysics of the Bhutan area

is somewhat different: in Nepal (like in most areas in the world), the advancing tectonic

plate in orthogonal to the border of the mountain range, while in Bhutan, the plate pushes

the range at an angle. However, it is not clear how this can explain the above phenomenon.

This leads us to the following questions.

Questions. The first question is: can we explain the Bhutan anomaly within the existing

geophysical paradigm? If we can do, this would mean that this anomaly is not an obstacle

to applying this paradigm, and thus, that the estimates of future seismic activity obtained

within this paradigm can be safely applied – without the need to make expensive extra

precautions.

A related question is related to the fact that while we use convexity and concavity

to describe elevation profiles, the only reason for using these two properties is because

these are the basic properties that we learn in math. Is there any geophysical meaning in

convexity vs. concavity?

What we do in this chapter. In this chapter, we provide answers to both questions:

we explain why convexity and concavity are adequate ways to describe elevation profiles,

and we explain how the at-an-angle pressure in the Bhutan area leads to the observed

convex-followed-by-concave phenomenon.

To answer these questions, we first formulate the problem of adequately describing

elevation profiles as an optimization problem. Then, we solve this problem, and use the

solution to answer the above two questions.
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16.2 What Is the Optimal Description of Elevation

Profiles

How can we describe elevation profiles? An elevation profile results from the joint

effect of many different physical processes, from movement of tectonic plates to erosion.

These process are largely independent from each other: e.g., erosion works the same way

whether we have the landscape on the sea level or the same landscape which the geological

processes raised to some elevation. Because of this independence, the observed profile

f(x) can be reasonably well represented as the sum of profiles corresponding to different

processes:

f(x) = f1(x) + . . .+ fn(x).

Different profile-changing processes may have different intensity. So, to describe the

effect of the i-th process, instead of a fixed function fi(x), it is more appropriate to use the

correspondingly re-scaled term Ci · fi(x), where the coefficients Ci describe the intensity of

the i-th process, so that

f(x) = C1 · f1(x) + . . .+ Cn · fn(x).

Due to erosion, discontinuities in the elevation profiles are usually smoothed out, so we

can safely assume that the corresponding functions fi(x) are smooth (differentiable).

For such families, the problem of selecting the optimal description was formulated and

solved in the Appendix. The result was that the optimal approximating family is the family

of polynomials.

105



16.3 Why Convexity and Concavity Are Important in

Elevation Profiles: An Explanation Based on the

Optimality Result

Discussion. The above result provides us, for different n, with families of approximations

to the elevation profiles. Let us start with the simplest possible approximation.

For n = 1, we get the class of constant functions – no landscape at all. For n = 2,

we get a class of linear functions – no mountains, no ravines, just a flat inclined surface.

So, the only non-trivial description of a landscape starts with n = 3, i.e., with quadratic

functions.

We want to provide a qualitative classification of all such possible elevation functions.

It is reasonable to say that the two elevation functions are equivalent if they differ only by

re-scaling and shift of x and y:

Definition 16.1. We say that two quadratic functions f(x) and g(x) are equivalent if for

some values λx > 0, λy > 0, x0, and y0, we have

g(x) = λy · f(λx · x+ x0) + y0

for all x.

Proposition 16.1. Every non-linear quadratic function is equivalent either to x2 or to

−x2.

Discussion. Thus, in this approximation, we have, in effect, two shapes: the shape

corresponding to x2 (convex) and the shape corresponding to −x2 (concave). This result

explains why our visual classification into convex and concave shapes makes perfect sense.

Proof. Every non-linear quadratic function g(x) has the form

g(x) = a0 + a1 · x+ a2 · x2,
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for some a2 6= 0.

If a2 > 0, then this function can be represented as

a2 ·
(
x+

a1

2a2

)2

+

(
a0 −

a2
1

4a2

)
,

i.e., can be represented in the desired form, with f(x) = x2, λx = 1, λy = a2, x0 =
a1

2a2

,

and y0 = a0 −
a2

1

4a2

.

If a2 < 0, then this function can be represented as

|a2| ·

(
−
(
x+

a1

2a2

)2
)

+

(
a0 −

a2
1

4a2

)
,

i.e., can be represented in the desired form, with f(x) = −x2, λx = 1, λy = |a2|, x0 =
a1

2a2

,

and y0 = a0 −
a2

1

4a2

.

The proposition is proven.

16.4 Bhutan Anomaly Explained

Discussion. In the previous text, we have shown that the optimal description of an

elevation profiles is by polynomials of a fixed degree.

In the first approximation, a landscape profile can be described by a quadratic function.

To get a more accurate description, let us also consider cubic terms, i.e., let us consider

profiles of the type

f(x) = a0 + a1 · x+ a2 · x2 + a3 · x3. (16.1)

As a starting point x = 0 for the elevation profile, it makes sense to select the lowest (or

the highest) point. In both cases, according to calculus, the first derivative of the elevation

profile is equal to 0 at this point: f ′(0) = 0. Substituting the above expression for f(x)

into this formula, we conclude that a1 = 0 and thus,

f(x) = a0 + a2 · x2 + a3 · x3. (16.2)
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Let us analyze how this approximation works for the above two cases: the case of Nepal

and the case of Bhutan.

Case of Nepal. In the case of Nepal, the forces compressing the upper plate are orthogonal

to the line of contact. This means that in this case, the forces do not change if we change

left to right and right to left.

Since the whole mountain range was created by this force, it is reasonable to conclude

that the corresponding elevation profile is also invariant with respect to swapping left and

right, i.e., with respect to the transformation x→ −x:

f(x) = f(−x). (16.3)

Substituting the cubic expression (16.2) for the profile f(x) into this formula, we con-

clude that a3 = 0. Thus, in this case, the elevation profile is quadratic even in this next

approximation – and is, therefore, either convex or concave.

Case of Bhutan. In the case of Bhutan, the force is applied at an angle. Here, there is

no symmetry with respect to x → −x, so, in general, we have a3 6= 0. Thus, the second

derivative – that describes whether a function is locally convex (when this second derivative

is positive) or locally concave (when the derivative is negative) – becomes a linear function

6a3 · x+ 2a2, with a3 6= 0.

A non-constant linear function always changes signs – this explains why in the case of

Bhutan, convexity follows by concavity.

16.5 Auxiliary Question: How to Best Locate an In-

flection Point

Practical problem. Many geophysical ideas are applicable only to valley-type convex

domains or only to mountain-type concave domains. So, to apply these ideas to a real-life

landscape, it is necessary to divide the whole landscape into convex and concave zones.
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What is the best way to do it? In other words, what is the best way to locate an inflection

point, i.e., the point at which local convexity changes to local concavity?

First idea: a straightforward least squares approach. The first natural idea –

motivated by the above analysis – is to approximate the actual elevation profile by a cubic

function (16.1). The corresponding coefficients c0, c1, c2, and c3 can be obtained, e.g., by

applying the least squares method to the corresponding system of linear equations

yi ≈ c0 + c1 · xi + c2 · x2
i + c3 · x3

i ,

where xi is the i-th location and yi is the i-th elevation.

The least squares method minimizes the sum∑
i

(yi − (c0 + c1 · xi + c2 · x2
i + c3 · x3

i ))
2.

Differentiating this expression with respect to each of the unknowns cj and equating all

four derivatives to 0, we get an easy-to-solve system of four linear equations with four

unknowns.

Once we find the characteristics, we then estimate the location of the inflection point

as the value at which the second derivative is equal to 0, i.e., the value xinfl = − c2

3c3

.

Second idea: a model-free least squares approach. Instead of restricting ourselves

to a cubic approximation, we can consider general convex functions. For a function f(x)

defined by its values y1 = f(x1), y2 = f(x2), . . . , on a equally spaced grid

x1, x2 = x1 + ∆x, x3 = x1 + 2∆x, . . . , xN ,

convexity is equivalent to the sequence of inequalities

yi ≤
yi−1 + yi+1

2
. (16.4)

For each set of actual profile points ỹi, we can therefore find the closest convex profile

by looking for the values yi that minimize the mean square error (MSE)

1

N
·
∑
i

(ỹi − yi)2
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under the constraints (16.4). The minimized expression is a convex function of the un-

knowns yi, and each constraint – and thus, their intersection – defines a convex set. Thus,

we can find the corresponding minimum by using a known algorithm for convex optimiza-

tion (= minimizing a convex function on a convex domain); see, e.g., [157, 164, 175].

By applying this algorithm to actually convex profiles, we can find the largest and thus,

the corresponding MSE. Let us denote the largest of such values by M . Then, to find an

inflection point, we can consider larger and larger fragments of the original series f(x1),

f(x2), . . . , until we reach a point at which the corresponding MSE exceeds M . This is the

desired inflection point.

We can speed up this algorithm if instead of slowly increasing the size of the still-convex

fragment, we use bisection. Specifically, we always keep two values p and p such that the

fragment until p is convex (within accuracy M), while the fragment up to the point p is

not convex within the given accuracy.

In the beginning, we first apply our criterion to the whole list of N values. If the result

is M -close to convex, we consider the profile convex – no inflection point here. If the result

is not M -convex, then we take p = 1 and p = N .

Once we have two values p < p, we then take a midpoint m
def
=
p+ p

2
. If the segment up

to this midpoint is M -convex, then we replace p with m. If this segment is not M -convex,

we replace p with m.

In both case, we get a new interval [p, p] whose width decreased by a factor of two. We

started with width N . Thus, in log2(N) steps, this size decreases to N/2log2(N) = N/N = 1,

i.e., we get the exact location of the inflection point.

Comment. Other algorithms for detecting inflection points are described, e.g., in [96, 134].
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Chapter 17

Applications to Geosciences:

Few-Parametric Temporal Models

and How They Explain Gamma

Distribution of Seismic Inter-Event

Times

In this chapter, we consider the problem of selecting an optimal model of few-parametric

temporal dependence. As a case study, we take a problem related to one of the most

challenging – and the least successful so far – aspects of geosciences: namely, a problem

related to earthquake prediction.

Specifically, it is known that the distribution of seismic inter-event times is well described

by the Gamma distribution. Recently, this fact has been used to successfully predict major

seismic events. In this chapter, we explain that the Gamma distribution of seismic inter-

event times can be naturally derived from the first principles.

Comment. Results from this chapter first appeared in [40].
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17.1 Formulation of the Problem

Gamma distribution of seismic inter-event times: empirical fact. Detailed analysis

of the seismic inter-event times t – i.e., of times between the two consequent seismic events

occurring in the same area – shows that these times are distributed according to the Gamma

distribution, with probability density

ρ(t) = C · tγ−1 · exp(µ · t), (17.1)

for appropriate values γ, µ, and C; see, e.g., [53, 83].

Lately, there has been a renewed interest in this seemingly very technical result, since a

recent chapter [196] has shown that the value of the parameter µ can be used to predict a

major seismic event based on the preceding foreshocks. Specifically, it turns out that more

than 70% of major seismic events in Southern California could be predicted some time in

advance – with an average of about two weeks in advance.

Why gamma distribution? This interest raises a natural question: why the inter-

event times follow gamma distribution? In this chapter, we provide a possible theoretical

explanation for this empirical fact.

17.2 Our Explanation

Maximum entropy: general idea. In our explanation, we will use Laplace’s Indeter-

minacy Principle, which is also known as the maximum entropy approach; see, e.g., [95].

The simplest case of this approach is when we have n alternatives, and we have no reasons

to believe that one of them is more probable. In this case, a reasonable idea is to consider

these alternatives to be equally probable, i.e., to assign, to each of these n alternatives, the

same probability p1 = . . . = pn. Since the probabilities should add to 1, i.e.,
n∑
i=1

pi = 1, we

thus get pi = 1/n.

In this case, we did not introduce any new degree of certainty into the situation that

was not there before – as would have happened, e.g., if we selected a higher probability for
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one of the alternatives. In other words, out of all possible probability distributions, i.e.,

out of all possible tuples (p1, . . . , pn) for which
n∑
i=1

pi = 1, we selected the only one with the

largest possible uncertainty.

In general, it is known that uncertainty can be described by the entropy S, which in

the case of finitely many alternatives has the form S = −
n∑
i=1

pi · ln(pi), and in the case

of a continuous random variable with probability density ρ(x), for which sum becomes an

integral, a similar form

S = −
∫
ρ(x) · ln(ρ(x)) dx. (17.2)

Maximum entropy: examples. If the only information that we have about a probabil-

ity distribution is that it is located somewhere on the given interval [a, b], then the only

constraint on the corresponding probability density function is that the overall probability

over this interval is 1, i.e., that ∫ b

a

ρ(x) dx = 1. (17.3)

So, to apply the maximum entropy approach, we need to maximize the objective function

(17.2) under the constraint (17.3). The usual way of solving such constraint optimization

problem is to apply Lagrange multiplier method that reduces the original constraint opti-

mization problem to an appropriate unconstrained optimization problem. In this case, this

new problem means maximizing the expression

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

(∫ b

a

ρ(x) dx− 1

)
, (17.4)

where the parameter λ – known as Lagrange multiplier – needs to be determined from the

condition that the solution to this optimization problem satisfies the constraint (17.3).

For this problem, the unknowns are the values ρ(x) corresponding to different x. Dif-

ferentiating the expression (17.4) with respect to ρ(x) and equating the derivative to 0, we

get the following equation:

− ln(ρ(x))− 1 + λ = 0.
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(Strictly speaking, we need to use variational differentiation, since the unknown is a func-

tion.) The above equation implies that ln(ρ(x)) = λ− 1, and thus, that ρ(x) = const. So,

we get a uniform distribution – in full accordance with the original idea that, since we do

not have any reasons to believe that some points on this interval are more probable than

others, we consider all these points to be equally probable.

If, in addition to the range [a, b], we also know the mean value∫ b

a

x · ρ(x) dx = m (17.5)

of the corresponding random variable, then we need to maximize the entropy (17.2) under

two constraints (17.3) and (17.5). In this case, the Lagrange multiplier method leads to

the unconstrained optimization problem of maximizing the following expression:

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

(∫ b

a

ρ(x) dx− 1

)
+ λ1 ·

(∫ b

a

x · ρ(x) dx−m
)
. (17.6)

Differentiating this expression with respect to ρ(x) and equating the derivative to 0, we get

the following equation:

− ln(ρ(x))− 1 + λ+ λ1 · x = 0,

hence ln(ρ(x)) = (λ−1) +λ1 ·x and so, we get a (restricted) Laplace distribution, with the

probability density ρ(x) = C · exp(µ · x), where we denoted C
def
= exp(λ− 1) and µ

def
= λ1.

Comment. It is worth mentioning that if, in addition to the mean value, we also know the

second moment of the corresponding random variable, then similar arguments lead us to

a conclusion that the corresponding distribution is Gaussian. This conclusion is in good

accordance with the ubiquity of Gaussian distributions.

What are the reasonable quantities in our problem. We are interested in the

probability distribution of the inter-event time t. Based on the observations, we can find

the mean inter-event time, so it makes sense to assume that we know the mean value of

this time.

Usual (astronomical) time vs. internal time: general idea. This mean value is

estimated if we use the usual (astronomical) time t, as measured, e.g., by rotation of the
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Earth around its axis and around the Sun. However, it is known that many processes

also have their own “internal” time – based on the corresponding internal cycles. For

example, we can measure the biological time of an animal (or a person) by such natural

cyclic activities as breathing or heartbeat. Usually, breathing and heart rate are more or

less constant, but, e.g., during sleep, they slow down – as most other biological processes

slow down. On the other hand, in stressful situations, e.g., when the animal’s life is in

danger, all the biological processes speed up – including breathing and heart rate. To

adequately describe how different biological characteristics change with time, it makes

sense to consider not only how they change in astronomical time, but also how they change

in the corresponding internal time – measured not by number of Earth’s rotations around

the sun, but rather in terms of number of heartbeats. An even more drastic slowdown

occurs when an animal hibernates. In general, the system’s internal time can be sometimes

slower than astronomical time, and sometimes faster.

Usual (astronomical) time vs. internal time: case of seismic events. In our prob-

lem, there is a similar phenomenon: usually, seismic events are reasonably rare. However,

the observations indicate that the frequency with which foreshocks appear increases when

we get closer to a major seismic event. In such situation, the corresponding seismic pro-

cesses speed up, so we can say that the internal time speeds up. In general, an internal

time is often a more adequate description of the system’s changes than astronomical time.

It is therefore reasonable to supplement the mean value of the inter-event time measured in

astronomical time by the mean value of the inter-event time measured in the corresponding

internal time.

How internal time depends on astronomical time: general idea. To describe this

idea in precise terms, we need to know how this internal time τ depends on the astronomical

time. As we have mentioned, the usual astronomical time is measured by natural cycles,

i.e., by processes which are periodic in terms of the time t. So, to find the expression for

internal time, we need to analyze what cycles naturally appear in the studied system – and
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then define internal time in terms of these cycles.

To describe the system’s dynamics means to describe how the corresponding physical

quantities x(t) change with time t. In principle, in different physical situations, we can

have different functions x(t). In principle, to describe a general function, we need to have

infinitely many parameters – e.g., we need to describe the values of this function at different

moments of time. In practice, however, we can only have finitely many parameters. So, it

is reasonable to consider finite-parametric families of functions. The simplest – and most

natural – is to select some basic functions e1(t), . . . , en(t), and to consider all possible linear

combinations of these functions, i.e., all possible functions of the type

x(t) = C1 · e1(t) + . . .+ Cn · en(t), (17.6)

where C1, . . . , Cn are the corresponding parameters. This is indeed what is done in many

situations: sometimes, we approximate the dynamics by polynomials – linear combina-

tions of powers tk, sometimes we use linear combinations of sinusoids, sometimes linear

combinations of exponential functions, etc.

How internal time depends on astronomical time: case of seismic events. The

quality of this approximation depends on how adequate the corresponding basis functions

are for the corresponding physical process. Let us analyze which families are appropriate

for our specific problem: analysis of foreshocks preceding a major seismic event. In this

analysis, we can use the fact that, in general, to transform a physical quantity into a

numerical value, we need to select a starting point and a measuring unit. If we select a

different starting point and/or a different measuring unit (e.g., minutes instead of seconds),

we will get different numerical values for the same quantity.

For the inter-event times, the starting point is fixed: it is 0, the case when the next

seismic events follows immediately after the previous one. So, the only remaining change

is the change of a measuring unit. If we replace the original time unit with a one which is

r times smaller, then all numerical values are multiplied by r, i.e., instead of the original

value t, we get a new value tnew = r · t. For example, if we replace minutes by seconds, then
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the numerical values of all time intervals are multiplied by 60, so that, e.g., 2.5 minutes

becomes 60 · 2.5 = 150 seconds.

Some seismic processes are faster, some are slower. This means that, in effect, they

differ by this slower-to-faster or faster-to-slower transformations t→ r · t. We would like to

have a general description that would fit all these cases. In other words, we would like to

make sure that the class (17.6) remains the same after this “re-scaling”, i.e., that for each

i and for each r, the re-scaled function ei(r · t) belongs to the same class (17.6). In other

words, we require that for each i and r, there exists values Cij(r) for which

ei(r · t) = Ci1(r) · e1(t) + . . .+ Cin(r) · en(t). (17.7)

Let us solve the resulting systems of equations. Seismic waves may be changing fast

but, in general, they are still smooth. It is therefore reasonable to consider only smooth

functions ei(t). If we pick n different values t1, . . . , tn, then, for each r and for each i, we

get a system of n linear equations for determining n unknowns Ci1(r), . . . , Cin(r):

ei(r · t1) = Ci1(r) · e1(t1) + . . .+ Cin(r) · en(t1);

. . .

ei(r · tn) = Ci1(r) · e1(tn) + . . .+ Cin(r) · en(tn).

Due to Cramer’s rule, each component Cij(r) of the solution to this system of linear equa-

tions is a ratio of two determinants and is thus, a smooth function of the corresponding

coefficients ei(r · tj) and ei(tj). Since the function ei(t) is differentiable, we conclude that

the functions Cij(r) are also differentiable.

Since all the functions ei(t) and Cij(r) are differentiable, we can differentiate both sides

of the formula (17.7) with respect to r and get:

e′i(r · t) · t = C ′i1(r) · e1(t) + . . .+ C ′in(r) · en(t),
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where for each function f , the expression f ′, as usual, denotes the derivative. In particular,

for r = 1, we get

e′i(t) · t = ci1 · e1(t) + . . .+ cin · en(t),

where we denoted cij
def
= C ′ij(1). For the auxiliary variable T = ln(t) for which t = exp(T ),

we have dT =
dt

t
, hence

dei(t)

dt
· t =

dei(t)

dT
. So, for the auxiliary functions Ei(T )

def
=

ei(exp(T )), we get

E ′i(T ) = ci1 · E1(T ) + . . .+ cin · En(T ).

So, for the functions Ei(T ), we get a system of linear differential equations with constant

coefficients. It is well known that a general solution to such a system is a linear combination

of the expressions T k ·exp(a ·T ) · sin(ω ·T +ϕ) for some natural number k and real numbers

a, ω, and ϕ. Thus, each function ei(t) = Ei(ln(t)) is a linear combination of the expressions

(ln(t))k · exp(a · ln(t)) · sin(ω · ln(t) + ϕ) = (ln(t))k · ta · sin(ω · ln(t) + ϕ). (17.8)

So, the general expression (17.6) is also a linear combination of such functions.

The periodic part of this expression is a sine or cosine function of ln(t), so we can

conclude that for seismic processes, the internal time τ is proportional to the logarithm

ln(t) of the astronomic time: τ = c · ln(t) for some constant c.

This explains the ubiquity of Gamma distributions. Indeed, suppose that we know

the mean values mt and mτ of the astronomical time t and the mean value of the internal

time τ = c · ln(t). This means that the corresponding probability density function ρ(t), in

addition to the usual constraint
∫
ρ(t) dt, also satisfies the constraints∫

t · ρ(t) dt = mt

and ∫
c · ln(t) · ρ(t) dt = mτ .

Out of all possible distributions satisfying these three inequalities, we want to select the

one that maximizes entropy

−
∫
ρ(t) · ln(ρ(t)) dt.
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To solve the resulting constraint optimization problem, we can apply the Lagrange multi-

plier method and reduce it to the unconstrained optimization problem of maximizing the

expression:

−
∫
ρ(t) · ln(ρ(t)) dt+ λ ·

(∫
ρ(t) dt− 1

)
+

λt ·
(∫

t · ρ(t) dt−mt

)
+ λτ ·

(∫
c · ln(t) · ρ(t) dt−mτ

)
,

for some values λ, λt, and λτ . Differentiating both sides with respect to each unknown

ρ(t), we conclude that

− ln(ρ(t))− 1 + λ+ λt · t+ λτ · c · ln(t) = 0,

i.e., that

ln(ρ(t)) = (λ− 1) + λ · t+ (λτ · c) · ln(t).

Exponentiating both sides, we get the desired Gamma distribution form (17.1).

ρ(t) = C · τ γ−1 · exp(µ · t),

with C = exp(λ − 1), γ = λτ · c + 1, and µ = λt. Thus, we have indeed explained the

ubiquity of the Gamma distribution.

119



Chapter 18

Applications to Geosciences:

Scale-Invariance Explains the

Empirical Success of Inverse Distance

Weighting and of Dual Inverse

Distance Weighting in Geosciences

Let us now consider the cases when we have a large number of observations and mea-

surement results. Since we have many observations that cover many possible situations, a

natural idea is to use these observations to predict what will happen in other cases. We

can do it on a purely mathematical level – by simply interpolating the known observations,

or we can also take into account the corresponding physics and related causality relation.

In this chapter, we analyze the interpolation scenarios; in the following two chapters, we

analyze how to take causality into account.

In general, once we measure the values of a physical quantity at certain spatial locations,

we need to interpolate these values to estimate the value of this quantity at other locations

x. In geosciences, one of the most widely used interpolation techniques is inverse distance

weighting, when we combine the available measurement results with the weights inverse

proportional to some power of the distance from x to the measurement location. This

empirical formula works well when measurement locations are uniformly distributed, but

it leads to biased estimates otherwise. To decrease this bias, researchers recently proposed
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a more complex dual inverse distance weighting technique. In this chapter, we provide

a theoretical explanation both for the inverse distance weighting and for the dual inverse

distance weighting. Specifically, we show that if we use the general fuzzy ideas to formally

describe the desired property of the interpolation procedure, then physically natural scale-

invariance requirement select only these two distance weighting techniques.

Comment. Results from this chapter first appeared in [38].

18.1 Formulation of the Problem

Need for interpolation of spatial data. In many practical situations, we are interested

in the value of a certain physical quantity at different spatial locations. For example, in

geosciences, we may be interested in how elevation and depths of different geological layers

depend on the spatial location. In environmental sciences, we may be interested in the

concentration of different substances in the atmosphere at different locations. etc.

In principle, at each location, we can measure – directly or indirectly – the value of

the corresponding quantity. However, we can only perform the measurement at a finite

number of locations. Since we are interested in the values of the quantity at all possible

locations, we need to estimate these values based on the measurement results – i.e., we

need to interpolate and extrapolate the spatial data.

In precise terms: we know the values qi = q(xi) of the quantity of interest q at several

locations xi, i = 1, 2, . . . , n. Based on this information, we would like to estimate the value

q(x) of this quantity at a given location x.

Inverse distance weighting. A reasonable estimate q for q(x) is a weighted average of

the known values q(xi): q =
n∑
i=1

wi · qi, with
n∑
i=1

wi = 1. Naturally, the closer is the point x

to the point xi, the larger should be the weight wi – and if the distance d(x, xi) is large,

then the value q(xi) should not affect our estimate at all. So, the weight wi with which we

take the value qi should decrease with the distance.

Empirically, it turns out that the best interpolation is attained when we take the weight
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proportional to some negative power of the distance: wi ∼ (d(x, xi))
−p for some p > 0. Since

the weights have to add up to 1, we thus get

wi =
(d(x, xi))

−p

n∑
j=1

(d(x, xj))−p
.

This method – known as inverse distance weighting – is one of most widely used spatial

interpolation methods; see, e.g., [49, 51, 84, 126, 127, 180].

First challenge: why inverse distance weighting? In general, the fact that some

algorithm is empirically the best means that we tried many other algorithms, and this

particular algorithm worked better than everything else we tried. In practice, we cannot

try all possible algorithms, we can only try finitely many different algorithms. So, in

principle, there could be an algorithm that we did not try and that will work better than

the one which is currently empirically the best.

To be absolutely sure that the empirically found algorithm is the best, it is thus not

enough to perform more testing: we need to have some theoretical explanation of this algo-

rithm’s superiority. Because of this, every time we have some empirically best alternative,

it is desirable to come up with a theoretical explanation of why this alternative is indeed

the best – and if such an explanation cannot be found, maybe this alternative is actually

not the best?

Thus, the empirical success of inverse distance weighting prompts a natural question:

is this indeed the best method? This is the first challenge that we will deal with in this

paper.

Limitations of inverse distance weighting. While the inverse distance weighting

method is empirically the best among different distance-dependence interpolation tech-

niques, it has limitations; see, e.g., [125].

Specifically, it works well when we have a reasonably uniformly distributed spatial data.

The problem is that in many practical cases, we have more measurements in some areas

and fewer in others. For example, when we measure meteorological quantities such as
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temperature, humidity, wind speed, we usually have plenty of sensors (and thus, plenty of

measurement results) in cities and other densely populated areas, but much fewer measure-

ments in not so densely populated areas – e.g., in the deserts.

Let us provide a simple example explaining why this may lead to a problem. Suppose

that we have two locations A and B at which we perform measurements:

• Location A is densely populated, so we have two measurement results qA and qA′ from

this area.

• Location B is a desert, so we have only one measurement result qB from this location.

Since locations A and A′ are very close, the corresponding values are also very close, so we

can safely assume that they are equal: qA = qA′ . Suppose that we want to use these three

measurement results to predict the value of the quantity x at a midpoint C between the

locations A and B.

Since C is exactly in the middle between A and B, when estimating qC , intuitively, we

should combine the values qA and qB with equal weights, i.e., take qC =
qA + qB

2
. From

the commonsense viewpoint, it should not matter whether we made a single measurement

at the location A or we made two different measurements.

However, this is not what we get if we apply the inverse distance weighting. Indeed,

in this case, since all the distance are equal d(A,C) = d(A′, C) = d(B,C), the inverse

distance weighting leads to

qC =
qA + qA′ + qB

3
=

2

3
· qA +

1

3
· qB.

Dual inverse distance weighting: an empirically efficient way to overcome this

limitation. To overcome the above limitation, a recent paper [125] proposed a new method

called dual inverse distance weighting, a method that is empirically better than all previ-

ously proposed attempts to overcome this limitation.
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In this method, instead of simply using the weight wi ∼ (d(x, xi))
−p depending on the

distance, we also give more weight to the points which are more distant from others –

and less weight to points which are close to others, by using a formula wi ∼ (d(x, xi))
−p ·(∑

j 6=i
(d(xi, xj))

p2

)
, for some p2 > 0.

Let us show, on an example, that this idea indeed helps overcome the above limitation.

Indeed, in the above example of extrapolating from the three points A ≈ A′ and B to

the midpoint C between A and B (for which d(A,C) = d(B,C)), we have d(A,A′) ≈ 0

and d(A,B) ≈ d(A′, B). Thus, we get the following expressions for the additional factors

fi =
∑
j 6=i

(d(xi, xj))
p2 :

fA = (d(A,A′))p2 + (d(A,B))p2 ≈ (d(A,B))p2 ,

fA′ = (d(A′, A))p2 + (d(A′, B))p2 ≈ (d(A,B))p2 ,

and

fB = (d(B,A))p2 + (d(B,A′))p2 ≈ 2(d(A,B))p2 .

So, the weights wA and wA′ with which we take the values qA and qA′ are proportional to

wA ≈ wA′ ∼ (d(A,C))−p · fA ≈ (d(A,C))−p · (d(A,B))p2 ,

while

wB ≈ wB ∼ (d(B,C))−p · f2 ≈ (d(A,C))−p · 2(d(A,B))p2 .

The weight wB is thus twice larger than the weights wA and wA′ : wB = 2wA = 2wA′ . So

the interpolated value of qC is equal to

qC =
wA · qA + wA′ · qA′ + wB · qB

wA + wA′ + wB
=
wA · qA + wA · qA′ + 2wA · qA

wA + wA′ + 2wA
.

Dividing both numerator and denominator by 2wA and taking into account that qA′ = qA,

we conclude that qC =
qA + qB

2
, i.e., exactly the value that we wanted.

Second challenge: why dual inverse distance weighting? In view of the above, it

is also desirable to come up with a theoretical explanation for the dual inverse weighting

method as well. This is the second challenge that we take on in this paper.
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18.2 What Is Scale Invariance and How It Ex-

plains the Empirical Success of Inverse Distance

Weighting

What is scale invariance. When we process the values of physical quantities, we process

real numbers. It is important to take into account, however, that the numerical value of

each quantity depends on the measuring unit. For example, suppose that we measure the

distance in kilometers and get a numerical value d such as 2 km. Alternatively, we could

use meters instead of kilometers. In this case, the exact same distance will be described by

a different number: 2000 m.

In general, if we replace the original measuring unit with a new one which is λ times

smaller, all numerical values will be multiplied by λ, i.e., instead of the original numerical

value x, we will get a new numerical value λ · x.

Scale-invariance means, in our case, that the result of interpolation should not change if

we simply change the measuring unit. Let us analyze how this natural requirement affects

interpolation.

General case of distance-dependent interpolation. Let us consider the general case,

when the further the point, the smaller the weight, i.e., in precise terms, when the weight

wi is proportional to f(d(x, xi)) for some decreasing function f(z): wi ∼ f(d(x, xi)). Since

the weights should add up to 1, we conclude that

wi =
f(d(x, xi))∑
j

f(d(x, xj))
, (18.1)

and thus, our estimate q for q(x) should take the form

q =
n∑
i=1

f(d(x, xi))∑
j

f(d(x, xj))
· qi. (18.2)

In this case, scale-invariance means that for each λ > 0, if we replace all the numerical

distance values d(x, xi) with “re-scaled’ values λ · d(x, xi), then we should get the exact

125



same interpolation result, i.e., that for all possible values of qi and d(x, xi), we should have

n∑
i=1

f(λ · d(x, xi))∑
j

f(λ · d(x, xj))
· qi =

n∑
i=1

f(d(x, xi))∑
j

f(d(x, xj))
· qi. (18.3)

Scale-invariance leads to inverse distance weighting. Let us show that the require-

ment (18.3) indeed leads to inverse distance weighting.

Indeed, let us consider the case when we have only two measurement results:

• at the point x1, we got the value q1 = 1, and

• at point x2, we got the value q2 = 0.

Then, for any point x, if we use the original distance values d1
def
= d(x, x1) and d2

def
= d(x, x2),

the interpolated value q at this point will have the form

q =
f(d1)

f(d1) + f(d2)
.

On the other hand, if we use a λ times smaller measuring unit, then the extrapolation

formula leads to the values
f(λ · d1)

f(λ · d1) + f(λ · d2)
.

The requirement that the interpolation value does not change if we simply change the

measuring unit implies that these two expression must coincide, i.e., that we must have:

f(λ · d1)

f(λ · d1) + f(λ · d2)
=

f(d1)

f(d1) + f(d2)
. (18.4)

If we take the inverse of both sides of this formula, i.e., flip the numerator and denominator

in both sides, we get
f(λ · d1) + f(λ · d2)

f(λ · d1)
=
f(d1) + f(d2)

f(d1)
. (18.5)

Subtracting number 1 from both sides, we get a simplified expression

f(λ · d2)

f(λ · d1)
=
f(d2)

f(d1)
. (18.6)
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If we divide both sides by f(d2) and multiply by f(λ · d1), we get the equivalent equality

in which variables d1 and d2 are separated:

f(λ · d2)

f(d2)
=
f(λ · d1)

f(d1)
. (18.7)

The left-hand side of this formula does not depend on d1; thus, the right-hand side does

not depend on d1 either, it must thus depend only on λ. Let us denote this right-hand side

by c(λ). Then, from
f(λ · d1)

f(d1)
= c(λ), we conclude that

f(λ · d1) = c(λ) · f(d1) (18.8)

for all possible values of λ > 0 and d1.

It is known that for decreasing functions f(z), the only solutions to the functional

equation (18.8) are functions f(z) = c · z−p for some p > 0; see, e.g., [2]. For this function

f(z), the extrapolated value has the form
∑
fi · qi, with

fi =
c · (d(x, xi))

−p

n∑
j=1

c · (d(x, xj))−p
.

If we divide both numerator and denominator by c, we get exactly the inverse distance

weighting formula.

Thus, scale-invariance indeed leads to inverse distance weighting.

Comment. For smooth function f(x), the above result about solutions of the functional

equation can be easily derived. Indeed, differentiating both sides of the equality (8) by λ

and taking λ = 1, we get

f ′(d1) · d1 = α · f(d1),

where we denoted α
def
= c′(1), i.e., we have

df

dd1

= α · f.

If we divide both sides by f and multiply by dd1, we separate d1 and f :
df

f
= α · dd1

d1

.

Integrating both sides, we get ln(f) = α · ln(d1) + C, where C is the integration constant.
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Applying exp(z) to both sides and taking into account that exp(ln(f)) = f and

exp(α · ln(d1) + C) = exp(α · ln(d1)) · exp(C) = exp(C) · (exp(ln(d1))α = exp(C) · dα1 ,

we get f(d1) = c · dα1 , where we denoted c
def
= exp(C). Since the function f(z) is decreasing,

we should have α < 0, i.e., α = −p for some p > 0. The statement is proven.

18.3 Scale Invariance and Fuzzy Techniques Explain

Dual Inverse Distance Weighting

What we want: informal description. In the previous section, when computing the

estimate q for the value q(x) of the desired quantity at a location x, we used, in effect, the

weighted average of the measurements results qi, with the weights decreasing as the distance

d(x, xi) increases – i.e., in more precise terms, with weights proportional to f(d(x, xi)) for

some decreasing function f(z). In this case, scale-invariance implies that f(z) = z−p for

some p > 0.

As we have mentioned in Section 1, we need to also give more weight to measurements

at locations xi which are far away from other location – and, correspondingly, less weight

to measurements at locations which are close to other locations. In terms of weights, we

would like to multiply the previous weights f(d(x, xi)) = (d(x, xi))
−p by an additional

factor fi depending on how far away is location xi from other locations. The further away

the location xi from other locations, the higher the factor fi shall be. In other words, the

factor fi should be larger or smaller depending on our degree of confidence in the following

statement:

d(xi, x1) is large and d(xi, x2) is large and . . . d(xi, xn) is large.

Let us use fuzzy techniques to translate this informal statements into precise

terms. To translate the above informal statement into precise terms, a reasonable idea
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is to use fuzzy techniques – techniques specifically designed for such a translation; see,

e.g., [15, 103, 142, 153, 159, 204]. In this technique, to each basic statement – like “d is

large” – we assign a degree to which, according to the expert, this statement is true. This

degree is usually denoted by µ(d). In terms of these notations:

• the degree to which d(xi, x1) is large is equal to µ(d(xi, x1));

• the degree to which d(xi, x2) is large is equal to µ(d(xi, x2)); etc.

To estimate the degree to which the above “and”-statement is satisfied, fuzzy techniques

suggest that we combine the above degrees by using an appropriate “and”-operation (=

t-norm) f&(a, b)). Thus, we get the following degree:

f&(µ(d(xi, x1)), µ(d(xi, x2)), . . . , µ(d(xi, xi−1)), µ(d(xi, xi+1)), . . . , µ(d(xi, xn))).

It is known – see, e.g., [151] – that for any “and”-operation and for any ε > 0, there exists an

ε-close “and”-operation of the type f&(a, b) = g−1(g(a)+g(b)) for some monotonic function

g(a), where g−1(a) denotes the inverse function (i.e., the function for which g−1(a) = b if

and only if g(b) = a). Since the approximation error ε can be arbitrarily small, for all

practical purposes, we can safely assume that the actual “and”-operation has this g-based

form. Substituting this expression for the “and”-operation into the above formula, we

conclude that fi should monotonically depend on the expression

g−1(g(µ(d(xi, x1))) + . . .+ g(µ(d(xi, xn)))).

Since the function g−1 is monotonic, this means that fi is a monotonic function of the

expression

G(d(xi, x1)) + . . .+G(d(xi, xn))),

where we denoted G(d)
def
= g(µ(d)). In other words, we conclude that

fi = F (G(d(xi, x1)) + . . .+G(d(xi, xn))) (18.9)

for some monotonic function F (z).
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So, we get an estimate

q =
n∑
i=1

fi · (d(x, xi))
−p · qi

n∑
j=1

fj · (d(x, xj))−p
, (18.10)

where the factors fi are described by the formula (18.9).

Let us recall the motivation for the factors fi. As we have mentioned earlier, the

main motivation for introducing the factors fi is to make sure that for the midpoint C

between A and B, we will have the estimate
qA + qB

2
, even if we perform two (or more)

measurements at the point A. Let us analyze for which functions F (z) and G(z) this

requirement is satisfied.

For the purpose of this analysis, let us consider the case when we have m measurement

locations A1, . . . , Am in the close vicinity of the location A and one measurement result at

location B. Let d denote the distance d(A,B) between the locations A and B. For all the

measurement locations A1, . . . , Am, and B, the distance to the point C is the same – equal

to d/2. Thus, in this case, the factors (d(x, xi))
−p in the formula (18.10) are all equal to

each other. So, we can divide both the numerator and the denominator by the formula

(18.10) by this common factor, and get a simplified expression

q =
n∑
i=1

fi · qi
n∑
j=1

fj

.

Since for the points A1, . . . , Am we have the same measurement results qi (we will denote

them by qA), and the same factors fi (we will denote them by fA), we get

q =
m · fA · qA + fB · qB

m · fA + fB
. (18.11)

We want to make sure that this value is equal to the arithmetic average
qA + qB

2
. Thus,

the coefficient at qA in the formula (18.11) should be equal to 1/2:

m · fA
m · fA + fB

=
1

2
.
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If we multiply both side by their denominators and subtract m · fA from both sides, we get

m · fA = fB. Due to the formula (18.9), this means

m · F (G(d) + (m− 1) ·G(0)) = F (m ·G(d)). (18.12)

In the limit d = 0, this formula becomesm·F (m·G(0)) = F (m·G(0)), thus F (m·G(0)) =

0. Since the function F (z) is monotonic, we cannot have G(0) 6= 0, since then we would

have F (z) = 0 for all z. Thus, G(0) = 0, F (G(0)) = F (0) = 0, and the formula (18.12)

takes the form F (m ·G(d)) = m ·F (G(d)). This is true for any value z = G(d), so we have

F (m · z) = m · F (z) for all m and z.

• In particular, for z = 1, we get F (m) = c ·m, where c
def
= F (1).

• For z = 1/m, we then have F (1) = c = m · F (1/m), hence

F (1/m) = c · (1/m).

• Similarly, we get F (p/q) = F (p · (1/q)) = p · F (1/q) = p · (c · (1/q)) = c · (p/q). So,

for all rational values z = p/q, we get F (z) = c · z.

Since the function F (z) is monotonic, the formula F (z) = c · z is true for all values z.

Dividing both the numerator and the denominator by the coefficient c, we conclude that

q =
n∑
i=1

Fi · (d(x, xi))
−p · qi

n∑
j=1

Fj · (d(x, xj))−p
, (18.13)

where we denoted

Fi
def
= G(d(xi, x1)) + . . .+G(d(xi, xn)). (18.14)

Let us now use scale-invariance. We want to make sure that the estimate (18.13) does

not change after re-scaling d(x, y)→ d′(x, y) = λ ·d(x, y), i.e., that the same value q should

be also equal to

q =
n∑
i=1

F ′i · (d′(x, xi))−p · qi
n∑
j=1

F ′j · (d′(x, xj))−p
, (18.15)
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where

F ′i = G(d′(xi, x1)) + . . .+G(d′(xi, xn)). (18.16)

Here, (d′(x, xi))
−p = λ−p · (d(x, xi))

−p. Dividing both the numerator and the denominator

of the right-hand side of the formula (18.15) by λ−p, we get a simplified expression

q =
n∑
i=1

F ′i · (d(x, xi))
−p · qi

n∑
j=1

F ′j · (d(x, xj))−p
. (18.17)

The two expressions (18.13) and (18.17) are linear in qi. Thus, their equality implies

that coefficients at each qi must be the same. In particular, this means that the ratios of

the coefficients at q1 and q2 must be equal, i.e., we must have

F1 · (d(x, x1))−p

F2 · (d(x, x2))−p
=
F ′1 · (d(x, x1))−p

F ′2 · (d(x, x2))−p
,

i.e.,
F1

F2

=
F ′1
F ′2
.

For the case when we have three points with d(x1, x2) = d(x1, x3) = d and d(x2, x3) = D,

due to the formula (18.14), this means that

2G(d))

G(d) +G(D)
=

2G(λ · d))

G(λ · d) +G(λ ·D)
.

Inverting both sides, multiplying both sides by 2 and subtracting 1 from both sides, we

conclude that
G(D)

G(d)
=
G(λ ·D)

G(λ · d)

for all λ, d, and D. We already know – from the first proof – that this implies that

G(d) = c · dp2 for some c and p2, and that, by dividing both numerator and denominator

by c, we can get c = 1.

Thus, we indeed get a justification for the dual inverse distance weighting.
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Chapter 19

Applications to Geosciences:

Dynamic Triggering of Earthquakes

In the previous chapter, we analyzed the best ways to extend our knowledge to other spatial

locations. In this chapter, we analyze how to extend it to the future moments of time. As

an example of extending knowledge to future moments of time – i.e., prediction – we deal

with one of the least studied seismic phenomena: earthquakes triggering other earthquakes.

There are two empirical phenomena associated with this triggering, these phenomena

are related to the orientation of the triggering wave and to the distance from the original

earthquake.

First, it is known that seismic waves from a remote earthquake can trigger a small local

earthquake. Recent analysis has shown that this triggering occurs mostly when the direction

of the incoming wave is orthogonal to the direction of the local fault, some triggerings occur

when these directions are parallel, and very few triggerings occur when the angle between

these two directions is different from 0 and 90 degrees. In the first part of this chapter, we

propose a symmetry-based geometric explanation for this unexpected observation.

The second phenomenon is that while some of the triggered earthquakes are strong

themselves, strong triggered earthquakes only happen within a reasonably small distance

(less than 1000 km) from the original earthquake. Even catastrophic earthquakes do not

trigger any strong earthquakes beyond this distance. In the second part of this chapter, we

provide a possible geometric explanation for this phenomenon.

Comment. Results from this chapter first appeared in [21] and [39].
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19.1 Formulation of the First Problem

Dynamic triggering of earthquakes: a phenomenon. When a seismic wave from an

earthquake hits a distant fault – completely unrelated to the fault involved in the original

earthquake – this sometimes triggers a minor earthquake and/or other seismic activity

at the distant fault’s location – either almost immediately, or after some delay; see, e.g.,

[7, 8, 9, 68, 86, 87, 98, 160, 177, 179, 200] and references therein.

Somewhat unexpected feature of dynamic triggering. Interestingly, it turned out

that triggering strongly depends on the angle between the direction of the incoming wave

and the direction of the fault; see, e.g., [9, 80]. The vast majority of triggerings occur when

these direction are (almost) orthogonal to each other. There is another spike of triggerings

– mush smaller one – when the direction of the incoming wave is practically parallel to the

direction of the fault. Very few triggerings occur when the angle is different from 0 and

from 90 degrees.

Why this happens is not clear.

What we do in this chapter. In this chapter, we provide a symmetry-based geometric

explanation for the above feature of dynamic triggering.

19.2 Symmetry-Based Geometric Explanation

Let us use symmetries. In physics, symmetries – in particular, geometric symmetries

– are an important tool that helps analyze and explain many physical phenomena; see,

e.g., [64, 191]. In view of this, let us consider geometric symmetries related to dynamic

triggering of earthquakes.

Symmetries: no-faults case. In an area without faults, all physical properties are the

same at different locations and at different directions. So, if we shift in any direction, or

rotate, the situation remains the same. In addition to these continuous symmetries, we can

also consider discrete symmetries:
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• reflections over any line and

• reflections in any point.

Also, many physical properties do not change if we re-scale the area, i.e., change the

original coordinates (x, y) by re-scaled values (λ · x, λ · y), for some λ > 0.

Which symmetries remain in the presence of the fault? Locally, most faults are

straight lines.

Thus, when there is a fault, the resulting configuration is no longer invariant with respect

to all the above geometric transformations. For example, there is no longer invariance with

respect to rotations, since rotating the configuration will also rotate the direction of the

fault – and thus, make the configuration different.

The only remaining symmetries are:

• shifts in the direction of the fault x→ x+ a;

• reflection over the fault line;

• reflections over any line orthogonal to the fault; and

• scalings (x, y)→ (λ · x, λ · y) and reflections in any point on the fault.

This configuration and its symmetries are described in the picture below:

• shifts in the direction of the fault are marked by a horizontal one-directional arrow;

• reflection over the fault line is marked by a vertical bi-directions arrow;

• a line orthogonal to the fault is marked as ia dashed line, and the reflection over this

line is marked by a horizontal bi-directions arrow; and

• scalings and the reflection in a point on the fault are marked by a slanted bi-directional

arrow.
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Symmetry matching and resonance: general reminder. To describe how symmetries

influence the physical effect, let us consider a simple example: a pendulum with period T .

The periodicity of a pendulum means that if we shift the time by T , i.e., consider a moment

t + T instead of the original moment t, the state of the pendulum will remain the same.

Similarly, the pendulum remains invariant if we shift all the moments by time k · T , for

some integer k.

If we perturb the pendulum at random moments of time, it will be affected, but overall,

not much: randomly applied pushes will cancel each other, and the overall effect will be

small. The largest possible effect can be obtained if we apply perturbations that have the

exact same symmetry – i.e., if at the same moment of time during each period, we apply

the exact same small push. This is how the kids play on the swings.

For the pendulum and other time-shifting situations, this phenomenon is called a reso-

nance, but the same phenomenon occurs in other situations as well, when symmetries are

not necessarily related to time: e.g., the largest effect of a wave on a crystal is when the

wave’s spatial symmetry is correlated with the symmetry of the crystal.

If some symmetries are preserved, we still get some effect: e.g., we can still affect the

swings if we push at every other cycle (thus keeping it only invariant with respect to shifts

by 2T ), or at every third cycle, etc.

In all these cases, the more symmetries are preserved, the larger the effect; see, e.g.,

[64, 191].

Symmetries of a configuration involving a seismic wave. From this viewpoint, let

us consider the dynamic triggering of earthquakes. The seismic wave generated by a remote
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earthquake usually lasts for a short time. So, at any given moment of time, what we see is

the front line corresponding to the current location of the seismic wave. Locally this line

is also a straight line.

The triggering happens when the seismic wave affects the fault, i.e., when the two lines

intersect. Thus, from the geometric viewpoint, we need to consider a configuration in which

we have two intersecting lines:

• the line corresponding to the fault, and

• the line corresponding to the current position of the seismic wave.

As we have mentioned, the more symmetries are preserved in comparison with the original

configuration in which there is only the fault (and no seismic waves), the stronger will be

the effect (in this case, the triggering effect). So, to find out which configurations of the

two lines lead to a larger effect, we need to describe the symmetries of the resulting two-line

configuration.

A simple geometric analysis shows that the symmetries of the two-line configuration

depend on the angle between the two lines. Namely, depending on the angle, we have three

different cases that we will describe one by one.

Case when the two lines coincide. The first case is when the front line of the seismic

wave coincides with the fault line at some point. Since the front line is orthogonal to the

direction of the seismic wave, this case corresponds to the case when the direction of the

seismic wave is orthogonal to the fault. In this case, the two-line configuration simply

coincides with the fault-only configuration. Thus, in this case, all the symmetries of the

fault-only configuration are preserved.

This is thus the case when the largest number of symmetries are preserved – thus, the

case when we expect the strongest triggering effect. This is indeed what we observe.

Case when the two linear are orthogonal. The front line of a seismic wave orthogonal

when the direction of the seismic wave is parallel to the direction of the fault.
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In this case, we no longer have invariance with respect to shifts in the direction of the

fault. However, we still have invariance with respect to:

• scaling (x, y)→ (λ · x, λ · y),

• a reflection in an intersection point (x, y)→ (−x,−y), and

• reflections over each of the two lines.
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Remaining case when the two lines are neither parallel not orthogonal. In this

case, the only remaining symmetries are:

• scalings and

• reflection in an intersection point (x, y)→ (−x,−y).

We no longer have invariance with respect to reflection over any line.
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Conclusion. Our analysis shows that:

• the largest number of symmetries are preserved when the direction of the seismic

wave is orthogonal to the fault;
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• somewhat fewer symmetries are preserved when the direction of the seismic wave is

parallel to the fault;

• and in other configurations, we have the smallest number of preserved symmetries.

In line with the above general physical analysis, we expect that:

• the most triggering effects will happen when the seismic wave is orthogonal to the

fault;

• somewhat fewer triggering effects will occur when the seismic wave is parallel to the

fault; and

• the smallest number of triggering effects will occur when the seismic wave is neither

parallel not orthogonal to the fault.

This is exactly what we observe. Thus, the symmetry-based geometric analysis indeed

explains the observed relative frequency of dynamic triggering of earthquakes at different

angles.

19.3 A Possible Qualitative Physical Explanation

General idea. What are the possible physical explanations for the observed phenomenon?

To answer this question, let us consider a general problem: how do you break some object?

Usually, there are two ways to break an object:

• You can apply, to this object, a strong force for a short period of time. This happens,

e.g., when a cup falls down on a hard floor and breaks.

• Alternatively, you can apply some force for a sufficiently long time. This is what

happens to structures under stress: they eventually start to crumble.
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The first type of breaking is most assured: a rare china cup can withstand a fall. The

second type of breaking is not guaranteed: many old building stand for hundreds of years

without breaking down, but it still occurs – some buildings do eventually collapse if they

are not well maintained.

Analysis of the problem. From this viewpoint, to describe when an incoming seismic

wave is most probable to trigger an earthquake, we should look at two situations:

• a situation when the time during which the energy of the incoming seismic wave

affects the fault is the shortest; in this case, the energy per unit time will be the

largest – this will lead to most triggerings, and

• a situation when the time during which the incoming seismic wave affects the fault

is the longest – this will also lead to some triggerings.

The wavefront of the incoming seismic wave from a remote earthquake is practically

flat. Let us denote:

• the fault length by L,

• the speed of the incoming seismic wave by v,

• the angle between the direction of the wave and the fault by α, and

• the time during which this wave affects the fault by t.

The wavefront is orthogonal to the direction in which the wave comes, so the angle between

the wavefront and the fault is 90− α. Let us consider the moment when the seismic wave

first hits one of the sides of the fault. Let us denote this point by A, and the other side of

the fault by B. Eventually, the wavefront will hit the point B as well. We can trace this

hit by placing a line from B to the current position of the wavefront along the direction

of the incoming wave. Let us denote the point where this line intersects with the current

wavefront by C; this point marks the part of the seismic wave that, in time t, will hit the
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point B on the fault. The wave travels with speed v, so the distance BC is equal to v · t.

In the right triangle ACB, the angle ∠BAC is equal to 90−α, thus ∠ABC = α, and thus,

by definition of cosine, v · t = L · cos(α). Hence, the interaction time is equal to

t =
L · cos(α)

v
.
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Resulting explanation. This time is the smallest when cos(α) is the smallest, i.e., when

α is close to 90 degrees (when the cosine is 0). This is indeed when we observe most

triggerings.

The interaction time t is the largest when the cosine takes the largest value, i.e., when

the angle α is close to 0 (when the cosine is 1). This is indeed when we observe the second

(smaller) peak of triggerings.

So, indeed, we seem to have – at least on a qualitative level – a possible physical

explanation for the observed phenomenon.

Remaining problem. So far, both the symmetry-based geometric analysis and the phys-

ical analysis provide us only with a qualitative explanation of the observed phenomenon.

It is desirable to transform this qualitative explanation into a quantitative one – e.g., to be

able to predict which proportion of triggerings occurs at different angles.
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19.4 Formulation of the Second Problem

Triggered earthquakes: original expectations. It is known that seismic waves from

a large earthquake can trigger earthquakes at some distance from the original quake; see,

e.g., [42, 75, 76, 85, 89, 100, 199, 201]. At first glance, it seems reasonable to conclude that

the stronger the original earthquake, the stronger will be the triggered earthquakes, so that

catastrophic earthquakes will trigger strong earthquakes even far away from the original

location.

Unexpected empirical fact. Somewhat surprisingly, it turned out that no matter how

strong the original earthquake, strong triggered earthquakes are limited to an about 1000

km distance from the original event. At larger distances, the triggered (secondary) earth-

quakes are all low-magnitude, with magnitude M < 5 on Richter scale; see, e.g., [166].

Why? At present, there is no convincing explanation for this empirical fact.

In this chapter, we provide a possible geometric explanation for the observed phe-

nomenon.

19.5 Geometric Explanation

Main idea. Our explanation is based on a very natural idea: that if we have a phenomenon

which is symmetric – i.e., invariant with respect to some reasonable transformation – then

the effects of this phenomenon will also be invariant with respect to the same transforma-

tion. For example, if we have a plank placed, in a symmetric way, over a fence – so that we

have the exact same length to the left and to the right of the fence, and we apply similar

forces to the left and right ends of this plank, we expect it to curve the same way to the

left and to the right of the fence.

What are reasonable transformations here? All related physical processes do not

change if we simply shift from one place to another and/or rotate the corresponding config-
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uration by some angle. If we describe each point x by its coordinates xi, then a shift means

that each coordinate xi is replaced by a shifted value x′i = xi + ai, and rotation means that

we replace the original coordinates xi with rotated ones x′i =
n∑
j=1

rij · xj for an appropriate

rotation matrix rij.

In addition, many physical processes – like electromagnetic or gravitational forces –

do not have a fixed spatial scale. If we scale down or scale up, we get the same physical

phenomenon (of course, we need to be careful when scaling down or scaling up). This

is how, e.g., airplanes were tested before computer simulations were possible: you test a

scaled-down model of a plane in a wind tunnel, and it provides a very accurate description

of what will happen to the actual airplane. So, to shift and rotation, it is reasonable to

add scaling xi → λ · xi, for an appropriate value λ.

What is the symmetry of the propagating seismic wave? In a reasonable first

approximation, the seismic waves propagates equally in all directions with approximately

the same speed. So, in this approximation, at any given moment of time, the locations

reached by a wave form a circle with radius r equal to the propagation speed times the

time from the original earthquake.

When we are close to the earthquake location, we can easily see that the set of all these

locations is not a straight line segment, it is a curved part of a circle. However, as we get

further and further away from the original earthquake location, this curving becomes less

and less visible – just like we easily notice the curvature of a ball, but it is difficult to notice

the curvature of an Earth surface; for most experiments, it is safe to assume that locally,

the Earth is flat (and this is what people believed for a long time, until more sophisticated

measurements showed that it is not flat). So:

• in places close to the original earthquake, the set of locations affected by the incoming

seismic wave can be approximated as a circle’s arc – a local part of a circle, while

• in places far away from the original earthquake, the set of locations affected by the

incoming seismic wave can be well approximated by a straight line segment.
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It is important to emphasize that the difference between these two situations depends only

on the distance to the original earthquake location, it does not depend on the strength of

the earthquake – it is the same for very weak and for very strong earthquakes.

What is the effect of these two different symmetries? Out of all possible symmetries

– shifts, rotations, and scalings – a circle is only invariant with respect to all possible

rotations around its center. Thus, we expect the effect of the resulting seismic wave to be

also invariant with respect to such rotations. Thus, the area A affected by the incoming

wave should also be similarly invariant. This means that with each point a, this area must

contain the whole circle. As a result, this area consists of one or several such circles. From

the viewpoint of this invariance, it could be that the affected area is limited to the circle

itself – in which case the area is small, and its effect is small. It can also be that the area

includes many concentric circles – in which case the affected area may be significant, and

its effect may be significant.

On the other hand, a straight line has different symmetries: it is invariant with respect

to shifts along this line and arbitrary scalings. Thus, it is reasonable to conclude that the

area effected by such almost-straight-line seismic wave is also invariant with respect to the

same symmetries. This implies that this area is limited to the line itself: otherwise, if the

area A had at least one point outside the line, then:

• by shifting along the original line, we can form a whole line parallel to the original

line, and then

• by applying different scalings, we would get all the lines parallel to the original line

– no matter what distance, and thus, we will get the whole plane, while the affected

area has to be bounded.

Thus, in such situations, the effect of the seismic wave is limited to the line itself – i.e., in

effect, to a narrow area around this line – and will, thus, be reasonably weak.

This indeed explains the absence of remotely triggered large earthquakes. In-

deed, for locations close to the earthquake, the resulting phenomenon is (approximately)
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invariant with respect to rotations – and thus, its effect should be similarly invariant. This

leaves open the possibility that a large area will be affected and thus, that the resulting ef-

fect will be strong – which explains why in a small vicinity, it is possible to have a triggered

large earthquake.

On the other hand, in remote locations, location far away from the original earthquake,

the resulting phenomenon is invariant with respect to shifts and scalings – and thus, its

effect should be similarly invariant. As a result, only a very small area is affected – which

explains why, no matter how strong the original earthquake, it never triggers a large earth-

quake in such remote locations.

Comments.

• It should be mentioned that our analysis is about the geometric shape of the area

affected by the seismic wave, not about the physical properties of the seismic wave

itself. From the physical viewpoint, at each sensor location, the seismic wave can

definitely be treated as a planar wave already at much shorter distances from the

original earthquake than 1000 km. However, if instead of limiting ourselves to a

location of a single sensor, we consider the whole area affected by the seismic wave

– which may include many seismic sensors – then, at distance below 1000 km, we

can no longer ignore the fact that the front of the incoming wave is curved. (At

larger distances from the earthquake, even at such macro-level, the curvature can be

ignored.)

• It should also be mentioned that what we propose is a simple qualitative explanation of

the observed phenomenon. To be able to explain it quantitatively – e.g., to understand

why 1000 km and not any other distance is an appropriate threshold, and why exactly

the Richter scale M = 5 is the right threshold – we probably need to supplement our

simplified geometric analysis with a detailed physical analysis of the corresponding

phenomena.
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Chapter 20

Applications to Teaching: How Can

We Explain Different Number

Systems?

In this and following chapters, we study applications to teaching. In this chapter and in

the next chapter, we show how general decision making techniques can help us decide on

what to teach. In Chapter 22, we will analyze how to teach. And finally, in Chapter 23, we

will analyze how to grade, i.e., how to gauge the results of teaching.

Specifically, in this chapter, we will analyze how to explain different number systems.

At present, we mostly use decimal (base-10) number system, but in the past, many other

systems were used: base-20, base-60 – which is still reflected in how we divide an hour into

minutes and a minute into seconds – and many others. There is a known explanation for

the base-60 system: 60 is the smallest number that can be divided by 2, by 3, by 4, by 5,

and by 6. Because of this, e.g., half an hour, one-third of an hour, all the way to one-sixth

of an hour all correspond to a whole number of minutes. In this chapter, we show that a

similar idea can explain all historical number systems, if, instead of requiring that the base

divides all numbers from 2 to some value, we require that the base divides all but one (or

all but two) of such numbers.

Comment. Results from this chapter first appeared in [27].
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20.1 Formulation of the Problem

A problem. Nowadays, everyone use a decimal (base-10) system for representing integers

– of course, with the exception of computers which use a binary (base-2) system. However,

in the past, many cultures used different number systems; see, e.g., [12, 82, 92, 104, 118,

131, 133, 156, 165, 176, 178, 206]. Some of these systems have been in use until reasonably

recently (and are still somewhat used in colloquial speech, e.g., when we count in dozens).

Other systems are only known directly from historical records or from indirect sources –

such as linguistics.

An interesting question is: why some number systems (i.e., some bases) were used and

some similar bases were not used?

Case when an explanation is known. One of the known reasons for selecting a base

comes from base-60 system B = 60 used by the ancient Babylonians; see, e.g., [41, 107, 110].

We still have a trace of that system – which was widely used throughout the ancient world

– in our division of the hour into 60 minutes and a minute into 60 seconds.

A natural explanation for the use of this system is that it makes it easy to divide by

small numbers: namely, when we divide 60 by 2, 3, 4, 5, and 6, we still get an integer.

Thus, if we divide the hours into 60 minutes as we do, 1/2, 1/3, 1/4, 1/5, and 1/6 of the

hour are all represented by a whole number of minutes – which makes it much easier for

people to handle. And one can easily show that 60 is the smallest integer which is divisible

by 2, 3, 4, 5, and 6.

Our idea. Let us use this explanation for the base-60 system as a sample, and see what

we can get if make a similar assumption of divisibility, but for fewer numbers, or with all

numbers but one or but two.

It turns out that many historically used number systems can indeed be explained this

way.
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20.2 Which Bases Appear If We Consider Divisibility

by All Small Numbers from 1 to Some k

Let us consider which bases appear if we consider divisibility by all small natural numbers

– i.e., by all natural numbers from 1 to some small number k. We will consider this for all

values k from 1 to 7, and we will explain why we do not go further.

Case when k = 2. In this case, the smallest number divisible by 2 is the number 2 itself,

so we get the binary (base-2) system B = 2 used by computers.

Some cultures used powers of 2 as the base – e.g., B = 4 or B = 8 (see, e.g., [12]). This,

in effect, is the same as using the original binary system – since, e.g., the fact that we have

a special word for a hundred 100 = 102 does not mean that we use a base-100 system.

Case when k = 3. The smallest number divisible by 2 and 3 is B = 6. The base-6 number

system has indeed been used, by the Morehead-Maro language of Southern New Guinea;

see, e.g., [122, 162].

Case when k = 4. The smallest number divisible by 2, 3, and 4 is B = 12. The base-12

number system has been used in many cultures; see, e.g., [41, 131, 176], and the use of

dozens in many languages is an indication of this system’s ubiquity.

Case when k = 5. The smallest number divisible by 2, 3, 4, and 5 is B = 60, the familiar

Babylonian base. Since this number is also divisible by 6, the case k = 6 leads to the exact

same base and thus, does not need to be considered separately.

Case when k = 7. The smallest number which is divisible by 2, 3, 4, 5, 6, and 7 is

B = 420. This number looks too big to serve as the base of a number system, so we will

not consider it. The same applies to larger values k > 7.

Thus, in this chapter, we only consider values k ≤ 6.
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20.3 What If We Can Skip One Number

What happens if we consider bases which are divisible not by all, but by all-but-one numbers

from 1 to k?

Of course, if we skip the number k itself, this is simply equivalent to being divisible by

all the small numbers from 1 to k − 1 – and we have already analyzed all such cases. So,

it makes sense to skip a number which is smaller than k.

Let us analyze all the previous cases k = 1, . . . , 6 from this viewpoint.

Case when k = 2. In this case, there is nothing to skip, so we still get a binary system.

Case when k = 3. In this case, the only number that we can skip is the number 2. The

smallest integer divisible by 3 is the number 3 itself, so we get the ternary (base-3) system

B = 3; see, e.g., [104].

There is some evidence that people also used powers of 3, such as 9; see, e.g., [111, 165]

Case when k = 4. For k = 4, in principle, we could skip 2 or we could skip 3. Skipping 2

makes no sense, since if the base is divisible by 4, it is of course also divisible by 2 as well.

Thus, the only number that we can meaningfully skip is the number 3. In this case, the

smallest number which is divisible by the remaining numbers 2 and 4 is the number 4. As

we have mentioned, the base-4 system is, in effect, the same as binary system – one digit of

the base-4 system contains two binary digits, just like to more familiar base-8 and base-16

system, one digit corresponds to 3 or 4 binary digits.

Case when k = 5. In this case, we can skip 2, 3, or 4.

• Skipping 2 does not make sense, since then 4 remains, and, as we have mentioned

earlier, if the base is divisible by 4, it is divisible by 2 as well.

• Skipping 3 leads to B = 20, the smallest number divisible by 2, 4, and 5. Base-20

numbers have indeed been actively used, e.g., by the Mayan civilization; see, e.g.,
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[41, 82, 92, 107, 110]. In Romance languages still 20 is described in a different way

than 30, 40, and other similar numbers.

• Skipping 4 leads to B = 30, the smallest number divisible by 2, 3, and 5. This seems

to be the only case when the corresponding number system was not used by anyone.

Case when k = 6. In this case, in principle, we can skip 2, 3, 4, and 5. Skipping 2 or 3

does not make sense, since any number divisible by 6 is also divisible by 2 and 3. So, we

get meaningful examples, we only consider skipping 4 or 5.

• If we skip 4, we get the same un-used base B = 30 that we have obtained for k = 5.

• If we skip 5, then the smallest number divisible by 2, 3, 4, and 6 is the base B = 12

which we already discussed earlier.

20.4 What If We Can Skip Two Numbers

What happens if we consider bases which are divisible by all-but-two numbers from 1 to

k? Of course, to describe new bases, we need to only consider skipped numbers which are

smaller than k.

Cases when k = 2 or k = 3. In these cases, we do not have two intermediate numbers to

skip.

Case when k = 4. In this case, we skip both intermediate numbers 2 and 3 and consider

only divisibility by 4. The smallest number divisible by 4 is the number 4 itself, and we

have already considered base-4 numbers.

Case when k = 5. In this case, we have three intermediate numbers: 2, 3, and 4. In

principle, we can form three pairs of skipped numbers: (2, 3), (2, 4), and (3, 4). Skipping

the first pair makes no sense, since then 4 still remains, and if the base is divisible by 4,

then it is automatically divisible by 2 as well. Thus, we have only two remaining options:
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• We can skip 2 and 4. In this case, the smallest number divisible by the two remaining

numbers 3 and 5 is B = 15. Historically, there is no direct evidence of base-15

systems, but there is an indirect evidence: e.g., Russia used to have 15-kopeck coins,

a very unusual nomination.

• We can skip 3 and 4. In this case, the smallest number divisible by the two remaining

numbers 2 and 5 is B = 10. This is our usual decimal system.

Case when k = 6. In this case, we have four intermediate values 2, 3, 4, and 5. Skipping

2 or 3 makes no sense: if the base is divisible by 6, it is automatically divisible by 2 and 3.

Thus, the only pair of values that we can skip is 4 and 5. In this case, the smallest number

divisible by 2, 3, and 6 is the value B = 6, which we have already considered earlier.

20.5 What If We Can Skip Three or More Numbers

What if we skip three numbers? What happens if we consider bases which are divisible

but by all-but-three numbers from 1 to k? Of course, to describe new bases, we need to

only consider skipped numbers which are smaller than k.

Cases when k = 2, k = 3, or k = 4. In these cases, we do not have three intermediate

numbers to skip.

Case when k = 5. In this case, skipping all three intermediate numbers 2, 3, and 4 leave

us with B = 5. The base-5 system has actually been used; see, e.g., [82].

Case when k = 6. In this case, we have four intermediate numbers, so skipping 3 of them

means that we keep only one. It does not add to the list of bases if we keep 2 or 3, since

then the smallest number divisible by 6 and by one of them is still 6 – and we have already

considered base-6 systems. Thus, the only options are keeping 4 and keeping 5.

If we keep 4, then the smallest number divisible by 4 and 6 is B = 12 – our usual

counting with dozens, which we have already considered.
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If we keep 5, then the smallest number divisible by 5 and 6 is B = 30, which we have

also already considered.

What if we skip more than three intermediate numbers. The only numbers k ≤ 6

that have more than three intermediate numbers are k = 5 and k = 6.

For k = 5, skipping more than three intermediate numbers means skipping all fours of

them, so the resulting base is B = 5, which we already considered.

For k = 6, for which there are five intermediate numbers, skipping more than three

means either skipping all of them – in which case we have B = 6 – or keeping one of the

intermediate numbers. Keeping 2 or 3 still leaves us with B = 6, keeping 4 leads to B = 12,

and keeping the number 5 leads to B = 30. All these bases have already been considered.
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Chapter 21

Applications to Teaching: Teaching

Optimization

In the Appendix, we show that it is reasonable to approximate functions by polynomials.

In particular, it makes sense to consider polynomial objective functions. It is therefore

important to teach decision makers how to analyze such functions.

In general, people feel more comfortable with rational numbers than with irrational

ones. Thus, when teaching the beginning of calculus, it is desirable to have examples

of simple problems for which both zeros and extrema points are rational. Recently, an

algorithm was proposed for generating cubic polynomials with this property. However,

from the computational viewpoint, the existing algorithm is not the most efficient one: in

addition to applying explicit formulas, it also uses trial-and-error exhaustive search. In

this chapter, we describe a new computationally efficient algorithm for generating all such

polynomials: namely, an algorithm that uses only explicit formulas.

Comment. Results from this chapter first appeared in [25]. The abstracts related to this

result appeared in [23, 24].

21.1 Formulation of the Problem

Need for nice calculus-related examples. After students learn the basics of calculus,

they practice in using the calculus tools to graph different functions y = f(x). Specifically,

• they find the roots (zeros), i.e., the values where f(x) = 0,
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• they find the extreme points, i.e., the values where the derivative is equal to 0,

• they find out whether the function is increasing or decreasing between different ex-

treme points – by checking the signs of the corresponding derivatives,

and they use this information – plus the values of f(x) at several points x – to graph the

corresponding function.

For this practice, students need examples for which they can compute both the zeros

and the extreme points.

Cubic polynomials: the simplest case when such an analysis makes sense. The

simplest possible functions are polynomials. For linear functions, the derivative is constant,

so there are no extreme point. For quadratic functions, there is an extreme point, but,

after studying quadratic equations, students already know how to graph the corresponding

function, when it decreases, when it increases. So, for quadratic polynomials, there is no

need to use calculus.

The simplest case when calculus tools are needed is the case of cubic polynomials.

To make the materials simpler for students, it is desirable to limit ourselves to

rational roots. Students are much more comfortable with rational numbers than with

irrational ones. Thus, to make the corresponding example easier for students, it is desirable

to start with examples in which all the coefficients, all the zeros, and all the extreme points

of a cubic polynomial are rational.

Good news is that when we know that the roots are rational, it is (relatively) easy to find

these roots. Indeed, to find rational roots, we can use the Rational Root Theorem, according

to which for each rational root x = p/q (where p and q do not have any common divisors)

of a polynomial an · xn + an−1 · xn−1 + . . .+ a0 with integer coefficients a0, . . . , an−1, an, the

numerator p is a factor of a0, and the denominator q is a factor of an; see, e.g., [144].

Thus, to find all the rational roots of a polynomial, it is sufficient:

• to list all factors p of the coefficient a0,
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• to list all factors q of the coefficient an, and then

• to check, for each pair (p, q) of the values from the two lists, whether the ratio p/q is

a root.

How can we find polynomials for which both zeros and extreme points are rational?

What is known. An algorithm for generating such polynomials was proposed in [5, 6].

This algorithm, however, is not the most efficient one: for each tuple of the corresponding

parameter values, it uses exhaustive trial-and-error search to produce the corresponding

nice cubic polynomial.

What we do in this chapter. In this chapter, we produce an efficient algorithm for

producing nice polynomials. Namely, we propose simple computational formulas with the

following properties:

• for each tuple of the corresponding parameters, these formulas produce coefficients

of a cubic polynomial for which all zeros and extreme points are rational, and

• every cubic polynomial with this property can be generated by applying these formu-

las to an appropriate tuple of parameters.

Thus, for each tuple of parameters, our algorithm requires the same constant number of

elementary computational steps (i.e., elementary arithmetic operations) – in contrast with

the existing algorithm, in which the number of elementary steps, in general, grows with

the values of the parameters.

21.2 Analysis of the Problem

Let us first simplify the problem. A general cubic polynomial with rational coefficients

has the form

a ·X3 + b ·X2 + c ·X + d. (21.1)
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We consider the case when this is a truly cubic polynomial, i.e., when a 6= 0.

Roots and extreme points of a function do not change if we simply divide all its values

by the same constant a. Thus, instead of considering the original polynomial (21.1) with

four parameters a, b, c, and d, it is sufficient to consider the following polynomial with only

three parameters:

X3 + p ·X2 + q ·X + r, (21.2)

where

p
def
=

b

a
, q

def
=

c

a
, r

def
=
d

a
. (21.3)

When the coefficients a, b, c, and d of the original polynomial (21.1) were rational, the

coefficients of the new polynomial (21.2) are rational as well; vice versa, if we have a poly-

nomial (21.2) with rational coefficients, then, for any rational a, we can have a polynomial

(21.1) with rational coefficients b = a ·p, c = a · q, and d = a ·r. Thus, to find cubic polyno-

mials with rational coefficients, rational roots, and rational extreme points, it is sufficient

to consider polynomials of type (21.2).

We can simplify the problem even further if we replace the original variable X with the

new variable

x
def
= X +

p

3
(21.4)

for which

X = x− p

3
. (21.5)

Substituting this expression for X into the formula (21.2), we get(
x− p

3

)3

+ p ·
(
x− p

3

)2

+ q ·
(
x− p

3

)
+ r =

x3 − 3 · p
3
· x2 + 3 ·

(p
3

)2

· x−
(p

3

)3

+ p · x2−

2 · p · p
3
· x+ p ·

(p
3

)2

+ q · x− q · p
3

+ r =

x3 + α · x+ β, (21.6)
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where

α = q − p2

3
(21.7)

and

β = r − p · q
3

+
2p3

27
. (21.8)

The roots and extreme points of the new polynomial (21.6) are obtained from the roots

and extremes of the original polynomial (21.2) by shifting by a rational number p/3, so they

are all rational for the polynomial (21.6) if and only if they are rational for the polynomial

(21.2).

Describing in terms of roots. Let r1, r2, and r3 denote rational roots of the polynomial

(21.6). Then, we have

x3 + α · x+ β = (x− r1) · (x− r2) · (x− r3) =

x3 − (r1 + r2 + r3) · x2 + (r1 · r2 + r2 · r3 + r1 · r3) · x− r1 · r2 · r3. (21.9)

By equating the coefficients at x2, x, and 1 at both sides, we conclude that

r1 + r2 + r3 = 0, (21.10)

α = r1 · r2 + r2 · r3 + r1 · r3, (21.11)

and

β = −r1 · r2 · r3. (21.13)

From (21.10), we conclude that

r3 = −(r1 + r2). (21.14)

Substituting the expression (21.14) into the formulas (21.11) and (21.13), we conclude that

α = r1 · r2 − r2 · (r1 + r2)− r1 · (r1 + r2) = −(r2
1 + r1 · r2 + r2

2) (21.15)

and

β = r1 · r2 · (r1 + r2). (21.16)
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Now the polynomial (21.6) takes the following form:

x3 − (r2
1 + r1 · r2 + r2

2) · x+ r1 · r2 · (r1 + r2). (21.17)

Using the fact that the extreme points should also be rational. Let us now use

the fact that the extreme points should also be rational. Let x0 denote an extreme point,

i.e., a point at which the derivative of the polynomial (21.17) is equal to 0. Differentiating

the expression (21.17) and equating the derivative to 0, we get

3x2
0 − (r2

1 + r1 · r2 + r2
2) = 0. (21.18)

The expression in parentheses can be equivalently described as

3

4
· (r1 + r2)2 +

1

4
· (r1 − r2)2 = 3y2 + z2, (21.19)

where we denoted

y
def
=
r1 + r2

2
and z

def
=
r1 − r2

2
. (21.20)

Substituting this expression (21.20) into the formula (21.18), we arrive at the following

homogeneous quadratic relation with integer coefficients between the rational numbers x0,

y, and z:

3x2
0 − 3y2 − z2 = 0. (21.21)

If we divide both sides of equation (21.21) by y2, we get a new equation

3X2
0 − 3− Z2 = 0, (21.22)

where we denoted X0
def
=

x0

y
and Z

def
=

z

y
. When x0, y, and z are rational, then X0 and Z

are also rational numbers. Vice versa, when X0 and Z form a rational-valued solution of

the equation (21.22), then, for any rational number y, by multiplying both sides of equation

(21.22) by y2, we can get a solution x0 = y ·X0, y, and z = y · Z of the equation (21.21).

Thus, to find all rational solutions of the equation (21.21), it is sufficient to find all rational

solutions of a simplified equation (21.22).

158



The simplest solution and the resulting “nice” polynomials. One of the solution

of equation (21.22) is easy to find: namely, when X0 = −1, the equation (21.22) takes the

form Z2 = 0, i.e., Z = 0.

This means that for every y, the values x0 = −y, y and z = 0 solve the equation (21.21).

The formulas (21.20) enable us to reconstruct r1 and r2 from y and z as

r1 = y + z and r2 = y − z. (21.23)

In our case, this means r1 = r2 = y. Thus, due to (21.15) and (21.16), we have a polynomial

x3 + α · x+ β with α = −3y2 and β = 2y3.

By applying a shift by a rational number s, i.e., by replacing x with x = X + s, we

transform a “nice” polynomial x3 + α · x+ β into a new “nice” polynomial

(X + s)3 + α · (X + s) + β = X3 + 3s ·X2 + (3s2 + α) ·X + (s3 + β + α · s),

i.e., a polynomial (21.2) with p = 3s, q = 3s2 + α, and r = s3 + β. Finally, by multiplying

this polynomial by a rational number a, we get the following family of “nice” polynomials:

b = 3a · s, c = a · (3s2 + α), d = a · (s3 + β + α · s). (21.24)

In our case, with α = −3y2 and β = 2y3, we get

b = 3a · s, c = a · (3s2 − 3y2), d = a · (s3 + 2y3 − 3y2 · s). (21.24a)

Using the general algorithm for finding all rational solutions to a quadratic

equation. To find all rational solutions of the equation (21.21), we will use a general

algorithm for finding all rational solutions of a homogeneous quadratic equation with integer

coefficients; see, e.g., [183].

We have already found a solution of the equation (21.22) corresponding to X0 = −1.

For this value X0, the equation (21.22) has only one solution (−1, 0), for which X0 = −1

and Z = 0. Every other solution (X0, Z) can be connected to this simple solution (−1, 0)
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by a straight line. A general equation of a straight line passing through the point (−1, 0)

is

Z = t · (X0 + 1). (21.25)

When X0 and Z are rational, the ratio t =
Z

X0 + 1
is also rational.

Substituting the expression (21.25) into the equation (21.22), we get

3X2
0 − 3− t2 · (X0 + 1)2 = 0,

i.e.,

3 · (X2
0 − 1)− t2 · (X0 + 1)2 = 0. (21.26)

Since we consider the case when X0 6= −1, we thus have X0 + 1 6= 0. So, we can divide

both sides of the equation (21.26) by X0 + 1 and thus, get the following equation:

3 · (X0 − 1)− t2 · (X0 + 1) = 0.

From this equation, we can describe X0 in terms of t: (3− t2) ·X0 = 3 + t2, hence

X0 =
3 + t2

3− t2
. (21.27)

Substituting this expression for X0 into the formula (21.25), we conclude that

Z =
6t

3− t2
. (21.28)

Towards a general description of all “nice” polynomials. For every rational y, we

can now take x0 = y ·X0, y, and

z = y · Z =
6yt

3− t2
. (21.29)

Based on y and z, we can compute r1 and r2 by using the formulas (21.23).

We can now use the values r1 and r2 from (21.23) and the formulas (21.15) and (21.16)

to compute α and β. Since here, r1 + r2 = 2y, we get

α = r1 · r2 − (r1 + r2)2 = (y + z) · (y − z)− (2y)2 = y2 − z2 − 4y2 = −3y2 − z2 (21.30)
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and

β = r1 · r2 · (r1 + r2) = (y2 − z2) · (2y) = 2y · (y2 − z2). (21.31)

Substituting these expressions for α and β into the formula (21.24), we get the formulas

for computing the coefficients of the corresponding “nice” cubic polynomial:

b = 3a · s; (21.32)

c = a · (3s2 + α) = a · (3s2 − 3y2 − z2); (21.33)

d = a · (s3 + β + α · s) = a · (s3 + 2y · (y2 − z2)− (3y2 + z2) · s). (21.34)

Thus, we arrive at the following algorithm for computing all possible “nice” cubic polyno-

mials.

21.3 Resulting Algorithm

Here is an algorithm for computing all “nice” cubic polynomials, i.e., all cubic polynomials

with rational coefficients for which all three roots and both extreme points are rational.

In this algorithm, we use four arbitrary rational numbers t, y, s, and a. Based on these

numbers, we first compute

z =
6yt

3− t2
. (21.29a)

Then, we compute the coefficients b, c, and d of the resulting “nice” polynomial (the value

a we already know):

b = 3a · s; (21.32)

c = a · (3s2 − 3y2 − z2); (21.33a)

d = a · (s3 + 2y · (y2 − z2)− (3y2 + z2) · s). (21.34a)

These expressions cover almost all “nice” polynomials, with the exception of one family

of such polynomials, which is described by the formula

b = 3a · s, c = a · (3s2 − 3y2), d = a · (s3 + 2y3 − 3y2 · s). (21.24a)
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Chapter 22

Applications to Teaching: Why

Immediate Repetition Is Good for

Short-Time Learning Results but

Bad For Long-Time Learning:

Explanation Based on Decision

Theory

In this chapter, we apply decision making under uncertainty to decide how to teach. Specif-

ically, it is well known that repetition enhances learning; the question is: when is a good

time for this repetition? Several experiments have shown that immediate repetition of the

topic leads to better performance on the resulting test than a repetition after some time.

Recent experiments showed, however, that while immediate repetition leads to better re-

sults on the test, it leads to much worse performance in the long term, i.e., several years

after the material have been studied. In this chapter, we use decision theory to provide a

possible explanation for this unexpected phenomenon.

Comment. Results from this chapter first appeared in [37].
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22.1 Formulation of the Problem: How to Explain

Recent Observations Comparing Long-Term Re-

sults of Immediate and Delayed Repetition

Repetitions are important for learning. A natural idea to make students better

understand and better learn the material is to repeat this material – the more times we

repeat, the better the learning results.

This repetition can be explicit – e.g., when we go over the material once again before

the test. This repetition can ne implicit – e.g., when we give the students a scheduled quiz

on the topic, so that they repeat the material themselves when preparing for this quiz.

When should we repeat? The number of repetitions is limited by the available time.

Once the number of repetitions is fixed, it is necessary to decide when should we have a

repetition:

• shall we have it immediately after the students have studied the material, or

• shall we have it after some time after this studying, i.e., after we have studied some-

thing else.

What was the recommendation until recently. Experiments have shown that repeat-

ing the material almost immediately after the corresponding topic was first studied – e.g.,

by giving a quiz on this topic – enhances the knowledge of this topic that the students

have after the class as a whole. This enhancement was much larger than when a similar

quiz – reinforcing the students’ knowledge – was given after a certain period of time after

studying the topic.

New data seems to promote the opposite recommendation. This idea has been

successfully used by many instructors. However, a recent series of experiments has made

many researchers doubting this widely spread strategy. Specifically, these experiments show

that (see, e.g., [63] and references therein):
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• while immediate repetition indeed enhances the amount of short-term (e.g., semester-

wide) learning more than a later repetition,

• from the viewpoint of long-term learning – what the student will be able to recall in a

few years (when he or she will start using this knowledge to solve real-life problems)

– the result is opposite: delayed repetitions lead to much better long-term learning

than the currently-fashionable immediate ones.

Why? The above empirical result is somewhat unexpected, so how can we explain it? We

have partially explained the advantages of interleaving – a time interval between the study

and the repetition – from the general geometric approach; see, e.g., [110, 123]. However,

this explanation does not cover the difference between short-term and long-term memories.

So how can we explain this observed phenomenon? We can simply follow the newer

recommendations, kind of arguing that human psychology is difficult, has many weird

features, so we should trust whatever the specialists tell us. This may sound reasonable

at first glance, but the fact that we have followed this path in the past and came up with

what seems now to be wrong recommendation – this fact encourages us to take a pause,

and first try to understand the observed phenomenon, and only follow it if it makes sense.

This is exactly the purpose of this chapter: to provide a reasonable explanation for the

observed phenomenon.

22.2 Main Idea Behind Our Explanation: Using De-

cision Theory

Main idea: using decision theory. Our memory is limited in size. We cannot memorize

everything that is happening to us. Thus, our brain needs to decide what to store in a

short-term memory, what to store in a long-term memory, and what not to store at all.

How can we make this decision? There is a whole area of research called decision theory

that describes how we make decisions – or, to be more precise, how a rational person should
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make decisions.

Usually, this theory is applied to conscientious decisions, i.e., decisions that we make

after some deliberations. However, it is reasonable to apply it also to decisions that we

make on subconscious level – e.g., to decisions on what to remember and what not to

remember: indeed, these decisions should also be made rationally.

Let us apply this to learning. If we learn the material, we spend some resources on

storing it in memory. If we do not learn the material, we may lose some utility next time

when this material will be needed. So, whether we store the material in memory depends

on for which of the two possible actions – to learn or not to learn – utility is larger (or

equivalently, losses are smaller). Let us describe this idea in detail.

22.3 So When Do We Learn: Analysis of the Problem

and the Resulting Explanation

Notations. To formalize the above idea, let us introduce some notations.

• Let m denote the losses (= negative utility) needed to store a piece of material in the

corresponding memory (short-term or long-term).

• Let L denote losses that occur when we need this material but do not have it in our

memory.

• Finally, let p denote our estimate of the probability that this material will be needed

in the corresponding time interval (short-term time interval for short-term memory

or long-term time interval for long-term memory).

If we learn, we have loss m. If we do not learn, then the expected loss is equal to p · L.

We learn the material if the second loss of larger, i.e., if p · L > m, i.e., equivalently, if

p > m/L.
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Comment. Sometimes, students underestimate the usefulness of the studied material, i.e.,

underestimate the value L. In this case, L is low, so the ratio m/L is high, and for most

probability estimates p, learning does not make sense. This unfortunate situation can be

easily repaired if we explain, to the students, how important this knowledge can be – and

thus, make sure that they estimate the potential loss L correctly.

Discussion. For different pieces of the studied material, we have different ratios m/L.

These ratios do not depend on the learning technique. As we will show later, the estimated

probability p may differ for different learning techniques. So, if one technique consistently

leads to higher values p, this means that, in general, that for more pieces of material we

will have p > m/L and thus, more pieces of material will be learned. So, to compare two

different learning techniques, we need to compare the corresponding probability estimates

p.

Let us formulate the problem of estimating the corresponding probability p in precise

terms.

Towards a precise formulation of the probability estimation problem. In the

absence of other information, to estimate the probability that this material will be needed

in the future, the only information that our brain can use is that there were two moments

of time at which we needed this material in the past:

• the moment t1 when the material was first studied, and

• the moment t2 when the material was repeated.

In the immediate repetition case, the moment t2 was close to t1, so the difference t2 − t1
was small. In the delayed repetition case, the difference t2 − t1 is larger.

Based on this information, the brain has to estimate the probability that there will be

another moment of time during some future time interval. How can we do that?

Let us first consider a deterministic version of this problem. Before we start solving

the actual probability-related problem, let us consider the following simplified deterministic

version of this problem:

166



• we know the times t1 < t2 when the material was needed;

• we need to predict the next time t3 when the material will be needed.

We can reformulate this problem in more general terms:

• we observed some event at moments t1 and t2 > t1;

• based on this information, we want to predict the moment t3 at which the same event

will be observed again.

In other words, we need to have a function t3 = F (t1, t2) > t2 that produces the desired

estimate.

What are the reasonable properties of this prediction function? The numerical

value of the moment of time depends on what unit we use to measure time – e.g., hours,

days, or months. It also depends on what starting point we choose for measuring time. We

can measure it from Year 0 or – following Muslim or Buddhist calendars – from some other

date.

If we replace the original measuring unit with the new one which is a times smaller, then

all numerical values will multiply by a: t → t′ = a · t. For example, if we replace seconds

with milliseconds, all numerical values will multiply by 1000, so, e.g., 2 sec will become

2000 msec. Similarly, if we replace the original starting point with the new one which is b

units earlier, then the value b will be added to all numerical values: t → t′ = t + b. It is

reasonable to require that the resulting prediction t3 not depend on the choice of the unit

and on the choice of the starting point. Thus, we arrive at the following definitions.

Definition 22.1. We say that a function F (t1, t2) is scale-invariant if for every t1, t2, t3,

and a > 0, if t3 = F (t1, t2), then for t′i = a · ti, we get t′2 = F (t′1, t
′
2).

Definition 22.2. We say that a function F (t1, t2) is shift-invariant if for every t1, t2, t3,

and b, if t3 = F (t1, t2), then for t′i = ti + b, we get t′2 = F (t′1, t
′
2).

Proposition 22.1. A function F (t1, t2) > t2 is scale- and shift-invariant if and only if it

has the form F (t1, t2) = t2 + α · (t2 − t1) for some α > 0.
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Proof. Let us denote α
def
= F (−1, 0). Since F (t1, t2) > t2, we have α > 0. Let t1 < t2,

then, due to scale-invariance with a = t2 − t1 > 0, the equality F (−1, 0) = α implies that

F (t1 − t2, 0) = α · (t2 − t1). Now, shift-invariance with b = t2 implies that F (t1, t2) =

t2 + α · (t2 − t1). The proposition is proven.

Discussion. Many physical processes are reversible: if we have a sequence of three events

occurring at moments t1 < t2 < t3, then we can also have a sequence of events at times

−t3 < −t2 < −t1. It is therefore reasonable to require that:

• if our prediction works for the first sequence, i.e., if, based on t1 and t2, we predict

t3,

• then our prediction should work for the second sequence as well, i.e. based on −t3
and −t2, we should predict the moment −t1.

Let us describe this requirement in precise terms.

Definition 22.3. We say that a function F (t1, t2) is reversible if for every t1, t2. and t3,

the equality F (t1, t2) = t3 implies that F (−t3,−t2) = −t1.

Proposition 22.2. The only scale- and shift-invariant reversible function F (t1, t2) is the

function F (t1, t2) = t2 + (t2 − t1).

Comment. In other words, if we encounter two events separated by the time interval t2−t1,

then the natural prediction is that the next such event will happen after exactly the same

time interval.

Proof. In view of Proposition 22.1, all we need to do is to show that for a reversible

function we have α = 1. Indeed, for t1 = −1 and t2 = 0, we get t3 = α. Then, due

to Proposition 22.1, we have F (−t3,−t2) = F (−α, 0) = 0 + α · (0 − (−α)) = α2. The

requirement that this value should be equal to −t1 = 1 implies that α2 = 1, i.e., due to the

fact that α > 0, that α = 1. The proposition is proven.

From simplified deterministic case to the desired probabilistic case. In practice,

we cannot predict the actual time t3 of the next occurrence, we can only predict the
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probability of different times t3. Usually, the corresponding uncertainty is caused by a

joint effect of many different independent factors. It is known that in such situations, the

resulting probability distribution is close to Gaussian – this is the essence of the Central

Limit Theorem which explains the ubiquity of Gaussian distributions; see, e.g., [182]. It is

therefore reasonable to conclude that the distribution for t3 is Gaussian, with some mean

µ and standard deviation σ.

There is a minor problem with this conclusion; namely:

• Gaussian distribution has non-zero probability density for all possible real values,

while

• we want to have only values t3 > t2.

This can be taken into account if we recall that in practice, values outside a certain kσ-

interval [µ−k ·σ, µ+k ·σ] have so little probability that they are considered to be impossible.

Depending on how low we want this probability to be, we can take k = 3, or k = 6, or

some other value k. So, it is reasonable to assume that the lower endpoint of this interval

corresponds to t2, i.e., that µ− k · σ = t2. Hence, for given t1 and t2, once we know µ, we

can determine σ. Thus, to find the corresponding distribution, it is sufficient to find the

corresponding value µ.

As this mean value µ, it is reasonable to take the result of the deterministic prediction,

i.e., µ = t2 + (t2 − t1). In this case, from the above formula relating µ and σ, we conclude

that σ = (t2 − t1)/k.

Finally, an explanation. Now we are ready to explain the observed phenomenon.

In the case of immediate repetition, when the difference t2 − t1 is small, most of the

probability – close to 1 – is located is the small vicinity of t1, namely in the kσ interval

which now takes the form [t2, t2 + 2(t2 − t1)]. Thus, in this case, we have:

• (almost highest possible) probability p ≈ 1 that the next occurrence will happen in

the short-term time interval and
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• close to 0 probability that it will happen in the long-term time interval.

Not surprisingly, in this case, we get:

• a better short-term learning than for other learning strategies, but

• we get much worse long-term learning.

In contrast, in the case of delayed repetition, when the difference t2 − t1 is large, the

interval [t2, t+ 2(t2 − t1)] of possible values t3 spreads over long-term times as well. Thus,

here:

• the probability p to be in the short-time interval is smaller than the value ≈ 1

corresponding to immediate repetition, but

• the probability to be in the long-term interval is larger that the value ≈ 0 correspond-

ing to immediate repetition.

As a result, for this learning strategy:

• we get worse short-term learning but

• we get much better long-term learning,

exactly as empirically observed.
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Chapter 23

Applications to Teaching: How to

Assign Grades to Tasks so as to

Maximize Student Efforts

In this chapter, we use decision making under uncertainty to decide which grading system

leads to the most effective teaching. Specifically, in some classes, students want to get a

desired passing grade (e.g., C or B) by spending the smallest amount of effort. In such

situations, it is reasonable for the instructor to assign the grades for different tasks in such

a way that the resulting overall student’s effort is the largest possible. In this chapter,

we show that to achieve this goal, we need to assign, to each task, the number of points

proportional to the efforts needed for this task.

Comment. Results from this chapter first appeared in [22].

23.1 Formulation of the Problem

In some cases, students try to minimize their efforts. In the ideal world, students

should apply the maximal effort when studying for all their classes. In reality, students

usually have a limited amount of time. As a result, while they concentrate their efforts

on their major classes, they limit their efforts in other classes to a necessary minimum –

usually, the minimum effort needed to get a passing grade in this class.

This phenomenon is especially frequent when students take required classes outside

their major discipline – e.g., when engineering students take required humanity classes or
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when biology majors take math and/or computing classes which are not directly related to

their discipline.

How can instructors increase the students’ efforts in these classes. For classes in

which students minimize their efforts, instructors try to maximize the student efforts – to

make sure that even with the current attitude, the students learn as much of the topic as

possible. Since all these students care about is their overall grade for this class, the only

thing that the instructor controls is which proportion of the grade goes for each task. How

can we assign these grades so as to maximize the student efforts?

Towards a precise formulation of the problem. The overall grade for the classes is

usually computed as a weighted average of grades for different tasks, i.e., in effect, as the

sum of partial grades given for each task. The ideal case – usually described by I = 100

points – corresponds to the case when the student gets the maximum possible number of

points for each of the tasks.

Let n denote the total number of tasks, and let mi denote the maximum number of

points that a student can get for each task. Then, we have I =
n∑
i=1

mi. Let ei denote the

amount of effort (e.g., measured by the time of intensive study) that a student needs to get

the maximum number of point mi in the i-th task, and let E =
n∑
i=1

ei denote the overall

effort needed to get a perfect grade mi on all the tasks – and thus, the perfect grade I for

the class.

As we have mentioned, the students do not always apply the maximum effort in study-

ing. Let ai be the actual effort that the student applies to the i-th task – e.g., into studying

the i-th part of the material. (A student may be studying more than needed, but we only

count the time that the student studies for the corresponding task.) Since the effort ei

already provides a perfect mastery of the i-th task, we assume that ai ≤ ei.

In the first approximation, it is reasonable to assume that the number of points gained

by the student is proportional to the student’s effort. If the student applies the maximal

effort ei, this student will get mi points. Thus, in general, for each effort ai, the resulting
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number of points gi is equal to gi = ai ·
mi

ei
. The student wants to minimize the overall effort

n∑
i=1

ai under the constraints that the overall number of points is greater than or equal to

the passing value g0:
n∑
i=1

ai ·
mi

ei
≥ g0. Thus, we arrive at the following precise formalization

of the problem.

Precise formulation of the problem. Let us assume that we are given values I,

e1, . . . , en, and g0. For each tuple m = (m1, . . . ,mn) for which
n∑
i=1

mi = I, let E(m) de-

note the value
n∑
i=1

ai corresponding to the solution to the following constraint optimization

problem:
n∑
i=1

ai → min
a1,...,an

(23.1)

under the constraints

0 ≤ ai ≤ ei (23.2)

and
n∑
i=1

ai ·
mi

ei
≥ g0. (23.3)

Our goal is to select a tuple m for which the corresponding overall effort E(m) is the largest

possible:

E(m)→ max
m

. (23.4)

Comment. This problem is an example of a bilevel optimization problem, in which on the

top level, we select the parameters of the objective functions so that the solution to the

resulting low-level optimization problem will optimize an appropriate high-level objective

function; see, e.g., [56].

In our case, the low level optimization is performed by a student, who is trying to

minimize his/her efforts under the constraint that his overall number of points is at least

g0. The grades mi for each task are parameters in this student’s optimization problem.

The instructor – top-level optimizer – would like to select these parameters in such a way

that the resulting overall student’s effort is as large as possible.
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23.2 Solution to the Problem

Description of the solution. As we show in this section, the optimal solution is to assign

grades mi proportional to the effort, i.e., to have

mi =
I

E
· ei. (23.5)

Proof. For the above assignment, we have
mi

ei
=

I

E
, so for all possible actual efforts ai, the

resulting grade is equal to
n∑
i=1

mi

ei
· ai =

I

E
·

n∑
i=1

ai and is, thus, proportional to the overall

effort A =
n∑
i=1

ai. The student wants to minimize the overall effort under the condition

that this grade is at least g0. The corresponding constraint
I

E
· A ≥ g0 is equivalent to

A ≥ g0 ·
E

I
. Thus, the smallest possible value E(m) of the overall effort A is equal to

E(m) = g0 ·
E

I
. (23.6)

Let us prove that for any other grade assignment m′ 6= m, we have

E(m′) < E(m) = g0 ·
E

I
.

Indeed, the assignment m is characterized by the fact that for this assignment, the ratio
mi

ei
is constant. Since m′ 6= m, for this new assignment, the ratio

m′i
ei

is not constant, it

takes at least two different values for some i.

If we had
m′i
ei
≤ I

E
for all i, then, since m′ 6= m, we should have

m′j
ej

<
I

E
for some

j. In this case, we have m′i ≤ ei ·
I

E
for all i and m′j < ej ·

I

E
for some j. By adding all

these inequalities, we get
n∑
i=1

m′i < E · I
E

= I, which contradicts the fact that for each grade

assignment, we should have
n∑
i=1

m′i = I. Thus, this case is impossible, and we have at least

one index i for which
m′i
ei

>
I

E
. Let us denote one of these indices by k, then

m′k
ek

>
I

E
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and m′k > ek ·
I

E
. If we subtract this inequality from the equality I = E · I

E
, then we

get I −m′k < (E − ek) ·
I

E
, hence

I −m′k
E − ek

<
I

E
. From this inequality and the inequality

m′k
ek

<
I

E
, we conclude that

I −m′k
E − ek

<
m′k
ek

. Taking the inverse of both sides, we conclude

that
ek
m′k

<
E − ek
I −m′k

,

thus

ek < m′k ·
E − ek
I −m′k

. (23.7)

For each ε > 0 and δ > 0, let the student spend a little bit more effort on the k-th

assignment than in the proportional assignment, i.e., ak =
(g0

I
+ ε
)
· ek, while for all other

tasks i 6= k, the student will spend a little less effort ai =
(g0

I
− δ
)
· ei. Under the grade

assignment m′, the student’s grade g will be equal to

g =
(g0

I
+ ε
)
·m′k +

∑
i 6=k

(g0

I
− δ
)
·m′i.

Opening parentheses, combining terms proportional to
g0

I
, and taking into account that

mk +
∑
i 6=k

m′i = I and thus
∑
i 6=k

m′i = I −m′k, we conclude that

g =
g0

I
· I + ε ·m′k − δ · (M −m′k) = g0 + ε ·m′k − δ · (M −m′k).

We can get g = g0 if we select δ in such a way that ε ·m′k − δ · (M −m′k) = 0. Then,

δ = ε · m′k
I −m′k

. (23.8)

For this selection of δ, the student’s overall effort is equal to

A =
n∑
i=1

ai = ak +
∑
i 6=k

ai =
(g0

I
+ ε
)
· ek +

∑
i 6=k

(g0

I
− δ
)
· ei.

Opening the parentheses, combining terms proportional to
g0

I
, and taking into account

that ek +
∑
i 6=k

ei = E and thus
∑
i 6=k

ei = E − ek, we conclude that

A = g0 ·
E

I
+ ε · ek − δ · (E − ek).
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According to the formula (23.4), the first term in the right-hand side is exactly E(m) for

the above grade assignment m. Substituting the expression (23.8) for δ into this formula,

we conclude that

A = E(m) + ε ·
(
ek −

m′k
I −m′k

· (E − ek)
)
.

Due to (23.7), we have A < E(m). By definition, E(m′) is the smallest possible effort the

student needs to spend to get g0, thus E(m′) ≤ A and hence,

E(m′) < E(m).

The optimality of the grade assignment m is thus proven.
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Chapter 24

Applications to Computing: Why

Geometric Progression in Selecting

the LASSO Parameter

Most of the applications involve intensive computing. In this and the following chapters,

we will show that the ideas of decision making under uncertainty can be used in all aspects

of computing. In this chapter, we show that they can be used in analyzing the simplest

(linear) models. In the next Chapter 25, we will show that these ideas can help in analyzing

non-linear models. Finally, in Chapter 26, we show that these ideas can be useful in the

analysis of perspective approaches to computing.

This chapter deals with linear models. For such models, in situations when we know

which inputs are relevant, the least squares method is often the best way to solve linear

regression problems. However, in many practical situations, we do not know beforehand

which inputs are relevant and which are not. In such situations, a 1-parameter modification

of the least squares method known as LASSO leads to more adequate results. To use

LASSO, we need to determine the value of the LASSO parameter that best fits the given

data. In practice, this parameter is determined by trying all the values from some discrete

set. It has been empirically shown that this selection works the best if we try values from

a geometric progression. In this chapter, we provide a theoretical explanation for this

empirical fact.

Comment. Results from this chapter first appeared in [120].
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24.1 Formulation of the Problem

Need for regression. In many real-life situations, we know that the quantity y is uniquely

determined by the quantities x1, . . . , xn, but we do not know the exact formula for this

dependence. For example, in physics, we know that the aerodynamic resistance increases

with the body’s velocity, but we often do not know how exactly. In economics, we may

know that a change in tax rate influences the economic growth, but we often do not know

how exactly.

In all such cases, we need to find the dependence y = f(x1, . . . , xn) between several quan-

tities based on the available data, i.e., based on the previous observations (xk1, . . . , xkn, yk)

in each of which we know both the values xki of the input quantities xi and the value yk of

the output quantity y. In statistics, determining the dependence from the data is known

as regression.

Need for linear regression. In most cases, the desired dependence is smooth – and

usually, it can even be expanded in Taylor series; see, e.g., [64, 191]. In many practical

situations, the range of the input variables is small, i.e., we have xi ≈ x
(0)
i for some values

x
(0)
i . In such situations, after we expand the desired dependence in Taylor series, we can

safely ignore terms which are quadratic or of higher order with respect to the differences

xi − x(0)
i and only keep terms which are linear in terms of these differences:

y = f(x1, . . . , xn) = c0 +
n∑
i=1

ai ·
(
xi − x(0)

i

)
,

where c0
def
= f

(
x

(0)
1 , . . . , x

(0)
n

)
and ai

def
=

∂f

∂xi |xi=x(0)i

. This expression can be simplified into a

general linear expression:

y = a0 +
n∑
i=1

ai · xi, (24.1)

where a0
def
= c0 −

n∑
i=1

ai · x(0)
i .

In practice, measurements are never absolutely precise, so when we plug in the actually
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measured values xki and yi, we will only get an approximate equality:

yk ≈ a0 +
m∑
i=1

ai · xki. (24.2)

Thus, the problem of finding the desired dependence can be reformulated as follows:

• given the values yk and xki,

• find the coefficients ai for which the property (24.2) holds for all k.

The usual least squares approach. We want each left-hand side yk of the approximate

equality (24.2) to be close to the corresponding right-hand side. In other words, we want

the tuple (y1, . . . , yK) consisting of all the left-hand sides to be close to a similar tuple

formed by the right-sides (
m∑
i=1

ai · x1i, . . . ,
m∑
i=1

ai · xKi

)
.

It is reasonable to select the values ai for which the distance between these two tuples is

the smallest possible. Minimizing the distance is equivalent to minimizing the square of

this distance, i.e., the expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

. (24.3)

This minimization is known as the Least Squares method. This is the most widely used

method for processing data. The corresponding values ai can be easily found if we differ-

entiate the quadratic expression (24.3) with respect to each of the unknowns ai and then

equate the corresponding linear expressions to 0. Then, we get an easy-to-solve system of

linear equations.

Comment. The above heuristic idea becomes well-justified when we consider the case

when the measurement errors are normally distributed with 0 mean and the same standard

deviation σ. This indeed happens in many situations when the measuring instrument’s

bias has been carefully eliminated, and most major sources of measurement errors have
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been removed. In such situations, the resulting measurement error is a joint effect of many

similarly small error components. For such joint effects, the Central Limit Theorem states

that the resulting distribution is close to Gaussian (= normal); see, e.g., [182]. Once we

know the probability distributions, a natural idea is to select the most probable values ai,

i.e., the values for which the probability to observe the values yk is the largest. For normal

distributions, this idea leads exactly to the least squares method.

Need to go beyond least squares. When we know that all the inputs xi are essential to

predict the value y of the desired quantity, the least squares method works reasonably well.

The problem is that in practice, we often do not know which inputs xi are relevant and

which are not. As a result, to be on the safe side, we include as many inputs as possible,

perfectly understanding that many of them will turn out to be irrelevant.

If all the measurements were exact, this would not be a problem: for irrelevant inputs

xi, we would get ai = 0, and the resulting formula would be the desired one. However,

because of the measurement errors, we do not get exactly 0s. Moreover, the more such

irrelevant variables we add, the more non-zero “noise” terms ai · xi we will have, and the

larger will be their sum – negatively affecting the accuracy of the formula (24.3) and thus,

of the resulting desired (non-zero) coefficients ai.

LASSO method. Since we know that many coefficients will be 0, a natural idea is, instead

of considering all possible tuples a
def
= (a0, a1, . . . , an), to only consider tuples for which a

bounded number of coefficients is 0, i.e., for which ‖a‖0 ≤ B for some constant b, where

‖a‖0 (known as the `0-norm) denotes the number of non-zero coefficients in a tuple.

The problem with this natural idea is that the resulting optimization problem becomes

NP-hard, which means, crudely speaking, that no feasible algorithm is possible that would

always solve all the instances of this problem. A usual way to solve such problem is by

replacing the `0-norm with an `1-norm
n∑
i=0

|ai| which is convex and for which, therefore, the

optimization problem is easier to solve. So, instead of solving the problem of unconditionally

minimizing the expression (24.3), we minimize this expression under the constraint
n∑
i=0

|ai| ≤
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B for some constant B. This minimum can be attained when we have strict inequality or

when the constraint becomes an equality. If the constraint is a strict inequality, then

we have a local minimum of (24.3), which, for quadratic functions, is exactly the global

minimum that we try to avoid. Thus, to avoid using least squares, we must consider the

case when the constraint becomes an equality
n∑
i=0

|ai| = B.

According to the Lagrange multiplier method, minimizing a function under an equality-

type constraint is equivalent, for an appropriate value of a parameter λ, to unconstrained

minimization of the linear combination of the original objective function and the constraint,

i.e., to minimizing the expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ λ ·
n∑
i=0

|ai|. (24.4)

This minimization is known as the Least Absolute Shrinkage and Selection Operator method

– LASSO method, for short; see, e.g., [81, 192].

How the LASSO parameter λ is selected: main idea. The success of the LASSO

method depends on what value λ we select. When λ is close to 0, we retain all the problems

of the usual least squares method. When λ is too large, the λ-term dominates, so we select

the values ai = 0, which do not provide any good description of the desired dependence.

In different situations, different values λ will work best. The more irrelevant inputs we

have, the more important it is to deviate form the least squares, and thus, the larger the

parameter λ – that describes this deviation – should be. We rarely know beforehand which

inputs are relevant – this is the whole problem – so we do now know beforehand what value

λ we should use. The best value λ needs to be decided based on the data.

A usual way of testing any dependence is by randomly dividing the data into a (larger)

training set and a (smaller) testing set. We use the training set to find the value of the

desired parameters (in our case, the parameters ai), and then we use the testing set to

gauge how good is the model. As usual with the methods using randomization, to get more

reliable results, we can repeat this procedure several times, and make sure that the results

are good for all cases,
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In precise terms, we select several training subsets S1, . . . , Sm ⊆ {1, . . . , K}. For each

of these subsets Sj, we find the values aij(λ) that minimize the functional

∑
k∈Sj

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ λ ·
n∑
i=0

|ai|. (24.5)

We can then compute the overall inaccuracy, as

∆(λ)
def
=

m∑
j=1

∑
k 6∈Sj

(
yk −

(
aj0(λ) +

m∑
i=1

aji(λ) · xki

))2
 . (24.6)

We then select the value λ for which the corresponding inaccuracy is the smallest possible.

How the LASSO parameter λ is selected: details. In the ideal world, we should

be able to try all possible real values λ. However, there are infinitely many real numbers,

and in practice, we can only test finitely many of them. Which set of values λ should we

choose?

It turned out that empirically, the best results are obtained of we use the values λ that

form a geometric progression λn = c0 · qn. Of course, a geometric progression also has

infinitely many values, but we do not need to test all of them: usually, as λ increases from

0, the value ∆(λ) first decreases then increases again, so it is enough to catch a moment

when this value starts increasing.

Natural question and what we do in this chapter. A natural question is: why

geometric progression works best? In this chapter, we provide a theoretical explanation for

this empirical fact.

24.2 Our Result

What do we want? At first glance, the answer to this question is straightforward: we

want to select a discrete set of values, i.e., a set

S = {. . . < λn < λn+1 < . . .}.
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However, a deeper analysis shows that the answer is not so simple. Indeed, what we are

interested in is the dependence between the quantities y and xi. However, what we have to

deal with is not the quantities themselves, but their numerical values, and the numerical

values depend on what unit we choose for measuring these quantities. For example:

• a person who is 1.7 m high is also 170 cm high,

• an April 2020 price of 2 US dollars is the same as the price of 2 · 23500 = 47000

Vietnam Dong, etc.

In most cases, the choice of the units is rather arbitrary. It is therefore reasonable to require

that the results of data processing – when converted to original units – should not depend

on which units we originally used. And hereby lies a problem. Suppose that we keep the

same units for xi but change a measuring unit for y to a one which is α times smaller. In

this case, the new numerical values of y become α times larger: y → y′ = α ·y. To properly

capture these new values, we need to increase the original values ai by the same factor,

i.e., replace the values ai with the new values a′i = α · ai. In terms of these new values, the

minimized expression (24.4) takes the form

K∑
k=1

(
y′k −

(
a′0 +

m∑
i=1

a′i · xki

))2

+ λ ·
n∑
i=0

|a′i|,

i.e., taking into account that y′k = α · yk and a′i = α · ai, the form

α2 ·
K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ α · λ ·
n∑
i=0

|ai|.

Minimizing an expression is the same as minimizing α−2 times this expression, i.e., the

modified expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ α−1 · λ ·
n∑
i=0

|ai|.

This new expression is similar to the original minimized expression (24.4), but with a new

value of the LASSO parameter λ′ = α−1 · λ.
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What this says is that when we change the measuring units, the values of λ are also

re-scaled – i.e., multiplied by a constant. What was the set {λn} in the old units becomes

the re-scaled set {α−1 · λn} in the new units. Since this is, in effect, the same set but

corresponding to different measuring units, we cannot say that one of these sets is better

than the other, they clearly have the same quality.

So, we cannot choose a single set S, we must choose a family of sets {c · S}c, where the

notation c · S means {c · λ : λ ∈ S}.

Natural uniqueness requirement. Eventually, we need to select some set S. As we

have just explained, we cannot select one set a priori, since with every set S, a set c ·S also

has the same quality. To fix a unique set, we can, e.g., fix one of the values λ ∈ S. Let us

require that with this fixture, we will be end up with a unique optimal set S. This means,

in particular, that, if we select a real number λ ∈ S, then the only set c · S that contains

this number will be the same set S.

Let us describe this requirement in precise terms.

Definition 24.1. By a discrete set, we mean a subset S of the set IR+ of all positive real

numbers for which, for every λ ∈ S, there exists an ε > 0 such that for every other element

λ′ ∈ S, we have |λ− λ′| > ε.

Comment. For such sets, for each element λ, if there are larger elements, then there is the

“next” element – i.e., the smallest element which is larger than λ. Similarly, if there are

smaller elements, then there exists the “previous” element – i.e., the largest element which

is smaller than λ. Thus, such sets have the form {. . . < λn−1 < λn < λn+1 < . . .}

Notation. For each set S and for each number c > 0, by c · S, we mean the set

{c · λ : λ ∈ S}.

Definition 24.2. We say that a discrete set S is —em uniquely determined if for every

λ ∈ S and c > 0, if λ ∈ c · S, then c · S = S.
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Proposition 24.1. A set S is uniquely determined if and only if it is a geometric progres-

sion, i.e., if and only if it has the form

S = {c0 · qn : n = . . . ,−2,−1, 0, 1, 2, . . .}

for some c0 and q.

Discussion. This results explains why geometric progression is used to select the LASSO

parameter λ.

Proof. It is easy to prove that every geometric progression is uniquely determined. Indeed,

if for λ = c0 · qn, we have λ ∈ c · S, this means that λ = c · c0 · qm for some m, i.e.,

c0 · qn = c · c0 · qm. Dividing both sides by c0 · qm, we conclude that c = qn−m for some

integer n−m. Let us show that in this case, c · S = S. Indeed, each element x of the set

c ·S has the form x = c · c0 · qk for some integer k. Substituting c = qn−m into this formula,

we conclude that x = c0 · qk+(n−m), i.e., that x ∈ S. Similarly, we can prove that if x ∈ S,

then x ∈ c · S.

Vice versa, let us assume that the set S is uniquely determined. Let us pick any element

λ ∈ S and denote it by λ0. The next element we will denote by λ1, the next to next by λ2,

etc. Similarly, the element previous to λ0 will be denoted by λ−1, previous to previous by

λ−2, etc. Thus,

S = {. . . , λ−2, λ−1, λ0, λ1, λ2, . . .}.

Clearly, λ1 ∈ S, and for q
def
= λ1/λ0, we have λ1 ∈ q · S – since λ1 = (λ1/λ0) · λ0 = q · λ0

for λ0 ∈ S. Since the set S is uniquely determined, this implies that q · S = S. Since

S = {. . . , λ−2, λ−1, λ0, λ1, λ2, . . .},

we have

q · S = {. . . , q · λ−2, q · λ−1, q · λ0, q · λ1, q · λ2, . . .}.

The sets S and q · S coincide. We know that q · λ0 = λ1. Thus, the element next to q · λ0

in the set q · S – i.e., the element q · λ1 – must be equal to the element which is next to

185



λ1 in the set S, i.e., to the element λ2: λ2 = q · λ1. For next to next elements, we get

λ3 = q · λ2 and, in general, we get λn+1 = q · λn for all n – which is exactly the definition

of a geometric progression.

The proposition is proven.

Comment. Similar arguments can explain why in machine learning methods such as deep

learning (see, e.g., [78]) – which usually use the gradient method xi+1 = xi − λi ·
∂J

∂xi
to

find the minimum of an appropriate objective function J , empirically the best strategy for

selecting λi also follows approximately a geometric progression: e.g., some algorithms use:

• λi = 0.1 for the first ten iterations,

• λi = 0.01 for the next ten iterations,

• λi = 0.001 for the next ten iterations, etc.

Indeed, in this case, similarly, re-scaling of J is equivalent to re-scaling of λ, and thus, we

need to have a family of sequences {c · λi} corresponding to different c > 0. A natural

uniqueness requirement – as we have shown – leads to the geometric progression.
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Chapter 25

Why Deep Learning Is More Efficient

than Support Vector Machines, and

How It Is Related to Sparsity

Techniques in Signal Processing

In the previous chapter, we showed how ideas of decision making under uncertainty can

be applied to the case of linear dependence. In this chapter, we analyze a general case

of possible non-linear dependence. Using computers to find such a generic dependence

is what constitutes machine learning. Several decades ago, traditional neural networks

were the most efficient machine learning technique. Then it turned out that, in general, a

different technique called support vector machines is more efficient. Reasonably recently,

a new technique called deep learning has been shown to be the most efficient one. These

are empirical observations, but how we explain them – thus making the corresponding

conclusions more reliable? In this chapter, we provide a possible theoretical explanation

for the above-described empirical comparisons. This explanation enables us to explain yet

another empirical fact – that sparsity techniques turned out to be very efficient in signal

processing.

Comment. Results from this chapter first appeared in [28].
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25.1 Problem Formulation

Main objectives of science and engineering. We want to make our lives better, we

want to select actions and designs that will make us happier, we want to improve the world

so as to increase our happiness level. To do that, we need to know what is the current

state of the world, and what changes will occur if we perform different actions. Crudely

speaking, learning the state of the world and learning what changes will happen is the main

objective of science, while using this knowledge to come up with the best actions and best

designs is the main objective of engineering.

Need for machine learning. In some cases, we already know how the world operates:

e.g., we know that the movement of the celestial bodies is well described by Newton’s

equations – it is described so well that we can predict, e.g., Solar eclipses centuries ahead.

In many other cases, however, we do not have such a good knowledge, we need to extract

the corresponding laws of nature from the observations.

In general, prediction means that we can predict the future value y of the physical

quantity of interest based on the current and past values x1, . . . , xn of related quantities.

To be able to do that, we need to have an algorithm that, given the values x1, . . . , xn,

computes a reasonable estimate for the desired future value y.

In the past, designing such algorithms was done by geniuses – Newton described how

to predict the motion of celestial bodies, Einstein provided more accurate algorithms,

Schroedinger, in effect, described how to predict probabilities of different states of the

quantum system, etc. This still largely remains the domain of geniuses, Nobel prizes are

awarded every year for these discoveries. However, now that the computers have become

very efficient, they are often used to help. This use of computers is known as machine

learning: when we know, in several cases c = 1, . . . , C, which values y(c) corresponded to

appropriate values x
(c)
1 , . . . , x

(c)
n , and we want to find an algorithm f(x1, . . . , xn) for which,

for all these cases c, we have y(c) ≈ f(x
(c)
1 , . . . , x

(c)
n ).

The value y may be tomorrow’s temperature in a given area, it may be a binary (0-1)
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variable deciding whether a given email is legitimate or a spam (or whether, e.g., the given

image is an image of a cat).

Machine learning: a brief history. One of the first successful general machine learning

techniques was the technique of neural networks; see, e.g., [20]. In this technique, we look

for algorithms of the type

f(x1, . . . , xn) =
K∑
k=1

Wk · s

(
n∑
i=1

wki · xi − wk0

)
−W0,

for some non-linear function s(z) called an activation function, and for some values wki

and Wk knows as weights. As the function s(z), researchers usually selected the so-called

sigmoid function

s(z) =
1

1 + exp(−z)
.

This algorithm emulates a 3-layer network of biological neurons – the main cells provid-

ing data processing in our brains. In the first layer, we have input neurons that read the

inputs x1, . . . , xn. In the second layer – called a hidden layer – we have K neurons each of

which first generates a linear combination

zk =
n∑
i=1

wki · xi − wk0

of the input signals, and then applies an appropriate nonlinear function s(z) to this com-

bination, resulting in a signal yk = s(zk). The processing by biological neurons is well

described by the sigmoid activation function – this is the reason why this function was se-

lected for artificial neural networks in the first place. After that, in the final output layer,

the signals yk from the neurons in the hidden layer are combined into a linear combination
K∑
k=1

Wk · yk −W0 which is returned as the output.

A special efficient algorithm – known as backpropagation – was developed to train the

corresponding neural network, i.e., to find the values of the weights that provide the best

fit for the observation results x
(c)
1 , . . . , x

(c)
n , y(c).

Support Vector Machines: a brief description. Later, in many practical problems, a

different technique became more efficient: the technique of Support Vector Machines; see,
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e.g., [184] and references therein. Let us explain this technique on the example of a binary

classification problem, i.e., a problem in which we need to classify all objects (or events)

into one of two classes, based on the values x1, . . . , xn of the corresponding parameters –

i.e., in which the desired output y has only two possible values.

In general, if, based on the values x1, . . . , xn we can uniquely determine to which of the

two classes this object belongs, this means that the set of all possible values of the tuple

x = (x1, . . . , xn) is divided into two non-intersecting sets S1 and S2 corresponding to each

of the two classes.

We can therefore come up with a continuous function f(x1, . . . , xn) such that f(x) ≥ 0

for x ∈ S1 and f(x) ≤ 0 for x ∈ S2. As an example of such a function, we can take

f(x) = d(x, S2) − d(x, S1), where the distance d(x, S) between a point x and the set S is

defined as the distance from x to the closest point of S, i.e., as inf
s∈S

d(x, s). Clearly, if x ∈ S,

then d(x, s) = 0 for s = x thus d(x, S) = 0.

• For points x ∈ S1, we have d(x, S1) = 0 but usually d(x, S2) > 0, thus f(x) =

d(x, S2)− d(x, S1) > 0.

• On the other hand, for points x ∈ S2, we have

d(x, S2) = 0

while, in general, d(x, S1) > 0, thus

f(x) = d(x, S2)− d(x, S1) < 0.

In some simple cases, there exists a linear function

f(x1, . . . , xn) = a0 +
n∑
i=1

ai · xi

that separates the two classes. In this case, there exist efficient algorithms for finding

the corresponding coefficients ai – for example, we can use linear programming (see, e.g.,

[52, 198]) to find the values ai for which:
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• a0 +
n∑
i=1

ai · xi > 0 for all known tuples x ∈ S1, and

• a0 +
n∑
i=1

ai · xi < 0 for all known tuples x ∈ S2.

In many practical situations, however, such a linear separation is not possible. In such

situations, we can take into account the known fact that any continuous function on a

bounded domain (and for practical problems, there are always bounds on the values of all

the quantities) can be approximated, with any given accuracy, by a polynomial. Thus,

with any given accuracy, we can separate the two classes by checking whether the f -

approximating polynomial

Pf (x) = a0 +
n∑
i=1

ai · xi +
n∑
i=1

n∑
j=1

aij · xi · xj + . . .

is positive or negative.

In other words, if we perform a non-linear mapping of each original n-dimensional point

x = (x1, . . . , xn) into a higher-dimensional point

X = (X1, . . . , Xn, X11, X12, . . . , Xnn, . . .) =

(x1, . . . , xn, x
2
1, x1 · x2, . . . , x

2
n, . . .),

then in this higher-dimensional space, the separating function becomes linear:

Pf (X) = a0 +
n∑
i=1

ai ·Xi +
n∑
i=1

n∑
j=1

aij ·Xij + . . . ,

and we know how to effectively find a linear separation.

Instead of polynomials, we can use another basis e1(x), e2(x), . . . , to approximate a

general separating function as

a1 · e1(x) + a2 · e2(x) + . . .

The name of this technique comes from the fact that when solving the corresponding

linear programming problem, we can safely ignore many of the samples and concentrate
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only on the vectors X which are close to the boundary between the two sets – if we get

linear separation for such support vectors, we will automatically get separation for other

vectors X as well.

This possibility to decrease the number of iterations enables us to come up with algo-

rithms for the SVM approach which are more efficient than general linear programming

algorithms – and many other ideas and tricks help make the resulting algorithms even

faster.

Deep learning: a brief description. Lately, the most efficient machine learning tool is

deep learning; see, e.g., [78]. Deep learning is a version of a neural network, but the main

difference is that instead of a large number of neurons in a hidden layer, we have multiple

layers with a relatively small number of neurons in each of them.

Similarly to the traditional neural networks, we start with the inputs x1, . . . , xn. These

inputs serve as inputs x
(0)
i to the neurons in the first later. On each layer k, each neuron

takes, as inputs, outputs x
(k−1)
i from the previous layer and returns the value

x
(k)
j = sk

(∑
i

w
(k)
ij · x

(k−1)
i

)
− w(k)

0j .

For most layers, instead of the sigmoid, it turns out to be more efficient to use a piece-wise

linear function sk(x) = max(x, 0) which is:

• equal to 0 for x < 0 and

• equal to x for x > 0.

In the last layer, sometimes, the sigmoid is used.

There are also layers in which inputs are divided into groups, and we combine inputs

from each group into a single value – e.g., by taking the maximum of the corresponding

values.

In addition to the general backpropagation idea, several other techniques are used to

speed up the corresponding computations – e.g., instead of using all the neurons in training,
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one of the techniques is to only use, on each iteration, some of the neurons and then

combine the results by applying an appropriate combination functions (which turns out to

be geometric mean).

Natural questions. So far, we have described what happened: support vector machines

turned out to be more efficient in machine learning, and deep learning is, in general, more

efficient than support vector machines. A natural question is: why? How can we the-

oretically explain these empirical facts – thus increasing our trust in the corresponding

conclusions?

What we do in this chapter. In general deep learning is more efficient than the tradi-

tional neural networks; see, e.g., [13, 114, 115]. In this chapter, we extend these explanations

to the comparison between support vector machines and neural networks.

The resulting explanation will help us understand yet another empirical fact – the

empirical efficiency of sparse techniques in signal processing.

25.2 Support Vector Machines Vs. Neural Networks

This empirical comparison is the easiest to explain. Indeed, to train a traditional neural

network on the given cases x
(c)
1 , . . . , x

(c)
n , y(c), we need to find the weights Wk and wki for

which

y(c) ≈
K∑
k=1

Wk · s

(
n∑
i=1

wki · x(c)
i − wk0

)
−W0.

Here, the activation function s(z) is non-linear, so we have a system of non-linear equations

for finding the corresponding weights Wk and wki. In general, solving a system of nonlinear

equations is NP-hard even for quadratic equations; see, e.g., [117, 163].

In contrast, for support vector machines, to find the corresponding coefficients ai, it

is sufficient to solve a linear programming problem – and this can be done in feasible

time. This explains why support vector machines are more efficient than traditional neural

networks.
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25.3 Support Vector Machines Vs. Deep Learning

At first glance, the above explanation should work for the comparison between support

vector machines and deep networks: in the first case, we have a feasible algorithm, while

in the second case, we have an NP-hard problem that may require very long (exponential)

time.

However, this is only at first glance. Namely:

• the above comparison assumes that all the inputs x1, . . . , xn are independent – in the

sense of functional dependency, i.e., that none of them can be described in terms of

one another.

• In reality, most inputs are dependent in this sense.

This is especially clear in many engineering and scientific applications, where we use the

results of measuring appropriate quantities at different moments of time as inputs for

prediction, and we know that these quantities are usually not independent – they satisfy

some differential equations. As a result, we do not need to use all n inputs. If there are

m � n independent ones, this means that it is sufficient to use only m of the inputs –

or, alternatively, m different combinations of inputs, as long as these combinations are

independent (and, in general, they are); see, e.g., [116].

And this is exactly what is happening in a deep neural network. Indeed, in the tradi-

tional neural network, in which we have many neurons in the processing (hidden) layer –

we can have as many neurons as inputs (or even more). In contrast, in the deep neural

networks, the number of neurons in each layer is limited. In particular, the number of

neurons in the first processing layer is, in general, much smaller than the number of inputs.

And all the resulting computations are based only on the outputs x
(1)
k of the neurons from

this first layer. Thus, in effect, the desired quantity y is computed not based on all n

inputs, but based only on m combinations – where m is the number of neurons in the first

processing layer.
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The empirical fact – that, in spite of this limitation, deep neural networks seem to

provide a universal approximation to all kinds of actual dependencies – is an indication

that, inputs are usually dependent on each other.

This dependence explains why, empirically, deep neural networks work better than

support vector machines – deep networks implicitly take into account this dependency, while

support vector machines do not take any advantage of this dependency. As a result, deep

networks need fewer parameters than would be needed if they would consider n functionally

independent inputs. Hence, during the same time, they can perform more processing and

thus, get more accurate predictions.

Comment. In this chapter, we provide a possible theoretical explanation for the fact that

support vector machines are, on average, more efficient than traditional neural networks

but less efficient than deep learning. To make our theoretical explanations more convincing,

it is desirable to have additional experimental data supporting these explanations.

25.4 Sparsity Techniques: an Explanation of Their Ef-

ficiency

What are sparsity techniques. The above explanations help us explain another em-

pirical fact: that in many applications of signal and image processing, sparsity techniques

have been very effective. Specifically, usually, in signal processing, we represent the sig-

nal x(t) by the coefficients ai of its expansion in the appropriate basis e1(t), e2(t), etc.:

x(t) ≈
n∑
i=1

ai · ei(t);

• in Fourier analysis, we use the basic of sines and cosines;

• in wavelet analysis, we use wavelets as the basis, etc.

Similarly, in image processing, we represent an image I(x) by the coefficients of its

expansion over some basis.
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It turns out that in many practical problems, we can select the basis ei(t) in such a way

that for most actual signals, the corresponding representation becomes sparse in the sense

that most of the corresponding coefficients ai are zeros. This phenomenon leads to very

efficient algorithms for signal and image processing; see, e.g., [10, 45, 44, 46, 47, 57, 58, 60,

61, 62, 66, 132, 141, 148, 167, 197, 202]. However, while empirically successful, from the

theoretical viewpoint, this phenomenon largely remains a mystery: why can we find such

a basis? Some preliminary explanations are provided in the papers [48, 59], but additional

explanations are definitely desirable.

Our new explanation. The shape of the actual signal x(t) depends on many different

phenomena. So, in general, we can say that

x(t) = F (t, c1, . . . , cN)

for some function F , where c1, . . . , cN are numerical values characterizing all these phe-

nomena.

Usual signal processing algorithms implicitly assume that we can have all possible com-

binations of these values ci. However, as we have mentioned, in reality, the corresponding

phenomena are dependent on each other. As a result, there is a functional dependence

between the corresponding values ci. Only few of them m � N are truly independent,

others can be determined based on these few ones.

If we denote the corresponding m independent values by b1, . . . , bm, then the above

description takes the form

xi(t) = G(t, b1, . . . , bm)

for an appropriate function G.

It is known that any continuous function – in particular, our function G – can be

approximated by piecewise linear functions. If we use this approximation instead of the

original function G, then we conclude that the domain of possible values of the tuples

(b1, . . . , bm) is divided into a small number of sub-domains D1, . . . , Dp on each of which Dj

196



the dependence of xi(t) on the values bi is linear, i.e., has the form

xi(t) =
m∑
k=1

bk · ejk(t),

for some functions ejk(t).

So, if we take all m · p the functions ejk(t) corresponding to different subdomains as

the basis, we conclude that on each subdomain, each signal can be described by no more

than m� p ·m non-zero coefficients – this is exactly the phenomenon that we observe and

utilize in sparsity techniques.
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Chapter 26

Representing Functions in Quantum

and Reversible Computing

In the previous two chapters, we showed how ideas of decision making under uncertainty

can be applied to the current data processing algorithms. However, for many practical

problems, the existing algorithms take too long a time. It is therefore necessary to explore

the possibility of faster computations. One such perspective possibility is the use of quan-

tum computing. There are many existing algorithms for quantum computing, but, as we

show in this chapter, they often do not provide an adequate representation of generic func-

tions – and objective functions corresponding to decision making under uncertainty can be

very complex. In this chapter, we show how to come up with more adequate representation

of generic functions in quantum computing.

Comment. Results from this chapter first appeared in [73].

26.1 Formulation of the Problem

Need for faster computing. While computers are very fast, in many practical problems,

we need even faster computations. For example, we can, in principle, with high accuracy

predict in which direction a deadly tornado will turn in the next 15 minutes, but this

computation requires hours even on the most efficient high performance computers – too

late for the resulting prediction to be of any use.

Faster computations means smaller processing units. One of the main limitations

on physical processes is the fact that, according to modern physics, all processes cannot
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move faster than the speed of light. For a laptop of size ≈ 30 cm, this means that it takes

at least 1 nanosecond (10−9 sec) for a signal to move from one side of the laptop to the

other. During this time, even the cheapest laptops perform several operations. Thus, to

speed up computations, we need to further decrease the size of the computer – and thus,

further decrease the size of its memory units and processing units.

Need for quantum computing. Already the size of a memory cell in a computer is

compatible with the size of a molecule. If we decrease the computer cells even more, they

will consist of a few dozen molecules. Thus, to describe the behavior of such cells, we will

need to take into account the physical laws that describe such micro-objects – i.e., the laws

of quantum physics.

Quantum computing means reversible computing. For macro-objects, we can ob-

serve irreversible processes: e.g., if we drop a china cup on a hard floor, it will break into

pieces, and no physical process can combine these pieces back into the original whole cup.

However, on the micro-level, all the equations are reversible. This is true for Newton’s

equations that describe the non-quantum motion of particles and bodies, this is true for

Schroedinger’s equation that takes into account quantum effects that describes this notion;

see, e.g., [64, 191].

Thus, in quantum computing, all elementary operations must be reversible.

Reversible computing beyond quantum. Reversible computing is also needed for

different reasons. Even at the present level of micro-miniaturization, theoretically, we

could place more memory cells and processing cells into the same small volume if, instead

of the current 2-D stacking of these cells into a planar chip, we could stack them in 3-D.

For example, if we have a Terabyte of memory, i.e., 1012 cells in a 2-D arrangement,

this means 106 × 106. If we could get a third dimension, we would be able to place 106 ×

106 × 106 = 1018 cells in the same volume – million times more than now.

The reason why we cannot do it is that already modern computers emit a large amount

of heat. Even with an intensive inside-computer cooling, a working laptop warms up so
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much that it is possible to be burned if you keep it in your lap. If instead of a single 2-D

layer, we have several 2-D layers forming a 3-D structure, the amount of heat will increase

so much that the computer will simply melt.

What causes this heat? One of the reasons may be design flaws. Some part of this

heat may be decreased by an appropriate engineering design. However, there is also a

fundamental reason for this heat: Second Law of Thermodynamics, according to which,

every time we have an irreversible process, heat is radiated, in the amount T · S, where S

is the entropy – i.e., in this case, the number of bits in information loss; see, e.g., [64, 191].

Basic logic operations (that underlie all computations) are irreversible. For example, when

a& b is false, it could be that both a and b were false, it could be that one of them was

false. Thus, the usual “and”-operation (a, b)→ a& b is not reversible.

So, to decrease the amount of heat, a natural idea is to use only reversible operations.

How operations are made reversible now? At present, in quantum (and reversible)

computing, a bit-valued function y = f(x1, . . . , xn) is transformed into the following re-

versible operation:

Tf : (x1, . . . , xn, x0)→ (x1, . . . , xn, x0 ⊕ f(x1, . . . , xn)),

where x0 is an auxiliary bit-valued variable, and ⊕ denotes “exclusive or”, i.e., addition

modulo 2; see, e.g., [155].

It is easy to see that the above operation is indeed reversible: indeed, if we apply it

twice, we get the same input back:

Tf (Tf (x1, . . . , xn, x0)) = Tf (x1, . . . , xn, x0 ⊕ f(x1, . . . , xn)) =

(x1, . . . , xn, x0 ⊕ f(x1, . . . , xn)⊕ f(x1, . . . , xn)).

For addition modulo 2, a⊕ a = 0 for all a, so indeed

x0 ⊕ f(x1, . . . , xn)⊕ f(x1, . . . , xn) = x0 ⊕ (f(x1, . . . , xn)⊕ f(x1, . . . , xn)) = x0

and thus,

Tf (Tf (x1, . . . , xn, x0)) = (x1, . . . , xn, x0).
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Limitations of the current reversible representation of functions. The main lim-

itation of the above representation is related to the fact that we rarely write algorithms

“from scratch”, we usually use existing algorithms as building blocks.

For example, when we write a program for performing operations involving sines and

cosines (e.g., a program for Fourier Transform), we do not write a new code for sines

and cosines from scratch, we use standard algorithms for computing these trigonometric

functions – algorithms contained in the corresponding compiler. Similarly, if in the process

of solving a complex system of nonlinear equations, we need to solve an auxiliary system

of linear equations, we usually do not write our own code for this task – we use existing

efficient linear-system packages. In mathematical terms, we form the desired function as a

composition of several existing functions.

From this viewpoint, if we want to make a complex algorithm – that consists of several

moduli – reversible, it is desirable to be able to transform the reversible versions of these

moduli into a reversible version of the whole algorithm. In other words, it is desirable to

generate a reversible version of each function so that composition of functions would be

transformed into composition. Unfortunately, this is not the case with with the existing

scheme described above. Indeed, even in the simple case when we consider the composition

f(f(x1)) of the same function f(x1) of one variable, by applying the above transformation

twice, we get – as we have shown – the same input x1 back, and not the desired value

f(f(x1)).

Thus, if we use the currently used methodology to design a reversible version of a

modularized algorithm, we cannot use the modular stricture, we have, in effect, to rewrite

the algorithm from scratch. This is not a very efficient idea.

Resulting challenge, and what we do in this chapter. The above limitation shows

that there is a need to come up with a different way of making a function reversible, a

way that would transform composition into composition. This way, we will have a more
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efficient way of making computations reversible.

This is exactly what we do in this chapter.

26.2 Analysis of the Problem and the Resulting Rec-

ommendation

Simplest case: description. Let us start with the simplest case of numerical algorithms,

when we have a single real-valued input x and a single real-valued output y. Let us denote

the corresponding transformation by f(x).

In general, this transformation is not reversible. So, to make it reversible, we need to

consider an auxiliary input variable u – and, correspondingly, an auxiliary output variable

v which depends, in general, on x and u: v = vf (x, u). The resulting transformation

(x, u)→ (f(x), vf (x, u)) should be reversible.

How to make sure that composition is transformed into composition. Let us fix

some value of the auxiliary variable u that we will use, e.g., the value u = 0. We want to

make sure that when x = 0, then in the resulting pair (y, v), the second value v is also 0,

i.e., that vf (x, 0) = 0. This way, (x, 0) is transformed into (x′, 0) = (f(x), 0). So, if after

this, we apply the reversible analogue of g(x), we get (g(x′), 0) = (g(f(x)), 0).

What does “reversible” mean here? In the computer, real numbers are represented

with some accuracy ε. Because of this, there are finitely many possible computer represen-

tations of real numbers.

Reversibility means that inputs and outputs are in 1-1 correspondence, and thus, for

each 2-D region r, its image after the transformation (x, u)→ (y, v) should contain exactly

as many pairs as the original region r.

Each pair (x, u) of computer-representable real numbers takes the area of ε2 in the

(x, u)-plane. In each region of this plane, the number of possible computer-representable

numbers is therefore proportional of the area of this region. Thus, reversibility means that
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the transformation (x, u)→ (f(x), v(x, u)) should preserve the area.

From calculus, it is known that, in general, under a transformation

(x1, . . . , xn)→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

the n-dimensional volume is multiplied by the determinant of the matrix with elements
∂fi
∂xj

. Thus, reversibility means that this determinant should be equal to 1.

Let us go back to our simple case. For the transformation (x, u) → (f(x), vf (x, u)),

the matrix of the partial derivatives has the formf ′(x) 0
∂vf
∂x

∂vf
∂u

 ,

where, as usual, f ′(x) denoted the derivative. Thus, equating the determinant of this

matrix to 1 leads to the following formula

f ′(x) · ∂vf
∂u

= 1,

from which we conclude that
∂vf
∂u

=
1

f ′(x)
.

Thus,

vf (x, U) = vf (x, 0) +

∫ U

0

∂vf
∂u

du = vf (x, 0) +

∫ U

0

1

f ′(x)
du =

vf (x, 0) +
U

f ′(x)
.

We know that vf (x, 0) = 0, thus we have

vf (x, u) =
u

f ′(x)
,

and the transformation takes the form

(x, u)→
(
f(x),

u

f ′(x)

)
.

Examples.
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• For f(x) = exp(x), we have f ′(x) = exp(x) and thus, the reversible analogue is

(x, u)→ (exp(x), u · exp(−x)).

• For f(x) = ln(x), we have f ′(x) = 1/x and thus, the reversible analogue is (x, u) →

(x, u · x).

Comment. The above formula cannot be directly applied when f ′(x) = 0. In this case,

since anyway, we consider all the numbers modulo the “machine zero” ε – the smallest

positive number representable in a computer – we can replace f ′(x) with the machine zero.

General case. Similarly, if we have a general transformation

(x1, . . . , xn)→ f(x1, . . . , xn)
def
= (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

we want to add an auxiliary variable u and consider a transformation

(x1, . . . , xn, u)→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), vf (x1, . . . , xn, u)).

To make sure that composition is preserved, we should take vf (x1, . . . , xn, 0) = 0. Thus,

from the requirement that the volume is preserved, we conclude that

vf (x1, . . . , xn, u) =
u

det

∥∥∥∥ ∂fi∂xj

∥∥∥∥ .

Resulting recommendation. To make the transformation

(x1, . . . , xn)→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

reversible, we should consider the the following mapping:

(x1, . . . , xn, u)→

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn),
u

det

∥∥∥∥ ∂fi∂xj

∥∥∥∥
 .
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26.3 Discussion

Need to consider floating-point numbers. In the previous text, we considered only

fixed-point real numbers, for which the approximation accuracy ε – the upper bound on

the difference between the actual number and its computer representation – is the same for

all possible values xi.

In some computations, however, we need to use floating-point numbers, in which instead

of directly representing each number as a binary fraction, we, crudely speaking, represent

its logarithm: e.g., in the decimal case, 1 000 000 000 is represented as 109, where 9 is

the decimal logarithm of the original number. In this case, we represent all these loga-

rithms with the same accuracy ε. In this case, the volume should be preserved for the

transformation of logarithms ln(xi) into logarithms ln(fj), for which

∂ ln(fi)

∂ ln(xj)
=
xj
fi
· ∂fi
∂xj

.

In this case, formulas similar to the 1-D case imply that the resulting reversible version has

the form

(x1, . . . , xn, u)→

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn),
u

det

∥∥∥∥xjfi · ∂fi∂xj

∥∥∥∥
 .

In some cases, the input is a fixed-point number while the output is a floating point

number; this happens, e.g., for f(x) = exp(x) when the input x is sufficiently large. In this

case, we need to consider the dependence of ln(f) of x.

Case of functions of two variables. If we are interested in a single function of two

variables f(x1, x2), then it makes sense not to add an extra input, only an extra output,

i.e., to consider a mapping (x1, x2) → (f(x1, x2), g(x1, x2)), for an appropriate function

g(x1, x2).

The condition that the volume is preserved under this transformation means that

∂f

∂x1

· ∂g
∂x2

− ∂f

∂x2

· ∂g
∂x1

= 1.
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For example, for f(x1, x2) = x1 + x2, we get the condition

∂g

∂x2

− ∂g

∂x1

= 1.

This expression can be simplified if, instead of the original variables x1 and x2, we use new

variables u1 = x1 − x2 and u2 = x1 + x2 for which x1 =
u1 + u2

2
and x2 =

u2 − u1

2
. In

terms of the new variables, the original function g(x1, x2) has the form

G(u1, u2) = f

(
u1 + u2

2
,
u2 − u1

2

)
.

For this new function,
∂G

∂u1

=
1

2
· ∂g
∂x1

− 1

2
· ∂g
∂x2

= −1

2
.

Thus,

G(u1, u2) = −1

2
· u1 + C(u2)

for some function C(u2), i.e., substituting the expressions for ui,

g(x1, x2) =
x2 − x1

2
+ C(x1 + x2).

So, to make addition reversible, we may want to have subtraction – the operation inverse

to addition; this makes intuitive sense.

Similarly, for f(x1, x2) = x1 · x2, we get the condition

x2 ·
∂g

∂x2

− x1 ·
∂g

∂x1

= 1.

This expression can be simplified if we realize that xi ·
∂f

∂xi
=

∂f

∂Xi

, where we denoted

Xi
def
= ln(xi). In these terms, we have

∂g

∂X2

− ∂g

∂X1

= 1,

and thus, as in the sum example, we get

g(X1, X2) =
X2 −X1

2
+ C(X1 +X2).
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Thus, we get

g(x1, x2) =
ln(x2)− ln(x1)

2
+ C(ln(x1) + ln(x2)),

i.e.,

f(x1, x2) =
1

2
· ln
(
x2

x1

)
+ C(x1 · x2).

So, to make multiplication reversible, we need to add a (function of) division – the operation

inverse to multiplication. This also makes common sense.
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Appendix A

Appendix: What Is the Optimal

Approximating Family

Several of our applications are based on common (or at least similar) mathematical results.

These results are summarized in this special mathematical Appendix.

Comment. Results from this chapter first appeared in [152].

Need for approximations. In many practical situations, we need to find a good de-

scription of the observed data. In a computer, we can only store finitely many parameters.

So, it is reasonable to consider finite-parametric approximation families, i.e., families that

depend on finitely many parameters C1, . . . , Cn.

Need to consider families that linearly depend on the parameters. From the

computational viewpoint, the easiest case is when the dependence on the parameters is

linear, i.e., when the family has the form

f(x) = C1 · f1(x) + . . .+ Cn · fn(x)

for some functions f1(x), . . . , fn(x). In this case, to find the values of the parameters Ci

based on the known observations x
(k)
1 , . . . , x

(k)
n , y(k), it is sufficient to solve a system of linear

equations

y(k) = C1 · f1(x(k)) + . . .+ Cn · fn(x(k)).

For solving systems of linear equations, there are efficient algorithms.

In principle, we can consider more complex dependencies – e.g., quadratic ones:

f(x) =
∑
i

Ci · fi(x) +
∑
i,j

Ci · Cj · fij(x).
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However, in this case, to find the values of the corresponding parameters, we would need

to solve systems of quadratic equations – and this is known to be NP-hard; see, e.g., [164].

Thus, unless P=NP (which most computer scientists believe to be impossible), no general

feasible algorithm is possible for solving such systems.

Since we want to have efficient algorithms, it is reasonable to restrict ourselves to

approximating families in which the dependence on the parameters is linear.

Observations are usually smooth. Sensors usually smooth the observed processes,

so what we observe is usually smooth. So, we can safely assume that the corresponding

functions fi(x) are smooth (differentiable).

Thus, we arrive at the following definition.

Definition A.1. Let n be a positive integer. By an approximating family, we mean a

family of functions

{C1 · f1(x) + . . .+ Cn · fn(x)}C1,...,Cn , (A.1)

where the functions f1(x), . . . , fn(x) are fixed differentiable functions, and C1, . . . , Cn are

arbitrary real numbers.

From this viewpoint, selecting a description means selecting n functions f1(x), . . . ,

fn(x).

Towards the optimal description. Which description is the best? To answer this

question, we need to be able to decide, for each two families of functions F and F ′, whether

the first family is better (we will denote it by F ′ < F ) or the second family is better

(F < F ′), or both families have the same quality (we will denote it by F ∼ F ′). Clearly,

if F is worse than F ′ and F ′ is worse than F ′′, then F should be worse than F ′′. So, we

arrive at the following definition.

Definition A.2. Let n be a positive number. By an optimality criterion, we mean the pair

of relations (<,∼) on the set S of all possible n-dimensional approximating families that

satisfies the following conditions:
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• for every pair F, F ′ ∈ S, we have one and only one of the following options: either

F ′ < F or F < F ′ or F ∼ F ′;

• for every F , F ′, and F ′′, if F < F ′ and F ′ < F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F < F ′ and F ′ ∼ F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F ∼ F ′ and F ′ < F ′′, then F < F ′′;

• for every F , F ′, and F ′′, if F ∼ F ′ and F ′ ∼ F ′′, then F ∼ F ′′;

• for every F and F ′, if F ∼ F ′, then F ′ ∼ F .

Definition A.A. Let (<,∼) be an optimality criterion. We say that a family F is optimal

with respect to this optimality criterion if for every other family F ′, we have either F ′ < F

or F ′ ∼ F .

We want to use an appropriate optimality criterion to select a family. If a criterion

selected several different families as equally good, then we can use this non-uniqueness to

optimize something else. For example, if we have several different families that provide an

equally good approximation, then, from all these optimal families, we can select, e.g., the

family which is the easiest to compute. This additional selection is, in effect, equivalent

to replacing the original optimality criterion with the new one <new, according to which

F <new F
′ if:

• either F < F ′ according to the original criterion,

• or F ∼ F ′ and F ′ is easier to compute (in some formal sense, e.g., in terms of the

computation time).

If the new criterion still selects several families as equally optimal, we can again modify

it, etc. – until we end up with a final criterion for which there is exactly one optimal family.
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Definition A.4. We say that an optimality criterion is final if it has exactly one optimal

family.

As a starting point for measuring x, we can take different locations. If we select a

different location which is x0 units before the current one, then each new location x is

identical to the old location x′ = x + x0. So, the same profile approximation that in the

new units has the form f(x) in the old units has the form f(x + x0). The relative quality

of different profiles approximations should not change if we simply change the starting

location. Thus, we arrive at the following definitions.

Definition A.5. For each family F as described by the formula (A.1) and for each x0, by

a shift Sx0(F ), we mean a family

{C1 · (Sx0f1)(x) + . . .+ Cn · (Sx0fn)(x)},

where (Sx0fi)(x)
def
= fi(x+ x0).

Definition A.6. We say that an optimality criterion is shift-invariant if for every F , F ′,

and x0, the following two properties hold:

• if F < F ′, then Sx0(F ) < Sx0(F
′);

• if F ∼ F ′, then Sx0(F ) ∼ Sx0(F
′).

Similarly, nothing should change if we simply change the measuring unit for x – e.g.,

use miles instead of kilometers. If we replace the original measuring unit by a one which is

λ times larger, then the new value x is identical to the old value x′ = λ · x. So, the same

profile approximation that in the new units has the form f(x) in the old units has the form

f(λ · x). The relative quality of different profiles approximations should not change if we

simply change the measuring unit. Thus, we arrive at the following definitions.

Definition A.7. For each family F as described by the formula (A.1) and for each λ > 0,

by a rescaling Rλ(F ), we mean a family

{C1 · (Rλf1)(x) + . . .+ Cn · (Rλfn)(x)},
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where (Rλfi)(x)
def
= fi(λ · x).

Definition A.8. We say that an optimality criterion is scale-invariant if for every F , F ′,

and λ > 0, the following two properties hold:

• if F < F ′, then Rλ(F ) < Rλ(F
′);

• if F ∼ F ′, then Rλ(F ) ∼ Rλ(F
′).

Proposition A.1. For every n and for every final shift- and scale-invariant optimality

criterion, the optimal family Fopt consists of polynomials of order ≤ n− 1.

Comment. This result is similar to results from [150].

Proof.

1◦. Let us first prove that the optimal family is shift- and scale-invariant, i.e., that

Sx0(Fopt) = Rλ(Fopt) = Fopt for all x0 and λ.

Let us first prove shift-invariance of Fopt. Since Fopt is optimal, for every family F , we

have F < Fopt or F ∼ Fopt. In particular, this is true for the family S−x0(F ), i.e., either

S−x0(F ) < Fopt or S−x0(F ) ∼ Fopt. Since the optimality criterion is shift-invariant, this

implies that either Sx0(S−x0(F )) < Sx0(Fopt) or Sx0(S−x0(F )) ∼ Sx0(Fopt). However, as

one can easily check, we have Sx0(S−x0(F )) = F . Thus, for every family F , we have either

F < Sx0(Fopt) or F ∼ Sx0(Fopt). By definition of optimality, this means that the family

Sx0(Fopt) is also optimal.

Since the optimality criterion is final, there is only one optimal family, hence Sx0(Fopt) =

Fopt. Shift-invariance is proven.

Scale-invariance is proven similarly, by taking into account that for every F and every

λ, either R1/λ(F ) < Fopt or R1/λ(F ) ∼ Fopt. So, by applying the scaling Rλ to both sides

of these relations, we conclude that Rλ(Fopt) is also optimal and thus, Rλ(Fopt) = Fopt.

2◦. Shift-invariance means that every element of the family Sx0(Fopt) also belongs to the

same family Fopt. Let fi(x) denote the functions whose linear combinations (A.1) form the
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family Fopt. Then, in particular, invariance means that for every i, the shifted function

fi(x+ x0) is a linear combination of functions fj(x):

f1(x+ x0) = C11(x0) · f1(x) + . . .+ C1n(x0) · fn(x);

. . . (A.2)

fn(x+ x0) = Cn1(x0) · f1(x) + . . .+ Cnn(x0) · fn(x),

for some coefficients Cij depending on x0.

For each i, we can take n different values x1, . . . , xn of x and get a system of n linear

equations with n unknowns Ci1(x0), . . . , Cin(x0):

fi(x1 + x0) = Ci1(x0) · f1(x1) + . . .+ Cin(x0) · fn(x1);

. . .

fi(xn + x0) = Ci1(x0) · f1(xn) + . . .+ Cin(x0) · fn(xn).

By Cramer’s rule, the solutions Cij(x0) to this system can be represented as a ratio of two

polynomials in terms of fi(·). Since the functions fi(x) are smooth, this implies that the

functions Cij(x0) are also differentiable functions of x0.

Thus, we can differentiate both sides of (A.2) by x0 and take x0 = 0. As a result, we

get a system of linear differential equations with constant coefficients:

f ′1(x) = c11 · f1(x) + . . .+ c1n · fn(x);

. . . (A.3)

f ′n(x) = cn1 · f1(x) + . . .+ cnn · fn(x),

where we denoted cij
def
= C ′ij(0).

The general solution to such a system is well-known (see, e.g., [90, 150]): it is a linear

combination of terms of the type exp(λi · x) and xk · exp(λi · x), where λi are eigenvalues

of the matrix (cij), and k ≤ n− 1 is a positive integer corresponding to the case when we

have a multiple eigenvalue.
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3◦. Similarly, scale-invariance means that every element of the family Rλ(Fopt) also belongs

to Fopt. In particular, this means that for every i, the re-scaled function fi(λ ·x) is a linear

combination of functions fj(x):

f1(λ · x) = C11(λ) · f1(x) + . . .+ C1n(λ) · fn(x);

. . . (A.4)

fn(λ · x) = Cn1(λ) · f1(x) + . . .+ Cnn(λ) · fn(x),

for some coefficients Cij depending on λ.

For each i, we can take n different values x1, . . . , xn of x and get a system of n linear

equations with n unknowns Ci1(λ), . . . , Cin(λ):

fi(λ · x1) = Ci1(λ) · f1(x1) + . . .+ Cin(λ) · fn(x1);

. . .

fi(λ · xn) = Ci1(λ) · f1(xn) + . . .+ Cin(λ) · fn(xn).

By Cramer’s rule, the solutions Cij(λ) to this system can be represented as a ratio of two

polynomials in terms of fi(·). Since the functions fi(x) are smooth, this implies that the

functions Cij(λ) are also differentiable functions of λ.

Thus, we can differentiate both sides of (A.4) by λ and take λ = 1. As a result, we get

the following system of linear differential equations:

x · f ′1(x) = c11 · f1(x) + . . .+ c1n · fn(x);

. . . (A.5)

x · f ′n(x) = cn1 · f1(x) + . . .+ cnn · fn(x),

where we denoted cij
def
= C ′ij(1).

Here, for each i, we have

x · f ′i(x) = x · dfi
dx

=
dfi
dx/x

.
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Since dx/x = d(ln(x)), we thus conclude that for the new variable X = ln(x) (for which

x = exp(X)) and for the corresponding functions Fi(X) = fi(exp(X)), we get the system

of linear differential equations with constant coefficients:

F ′1(X) = c11 · F1(X) + . . .+ c1n · Fn(X);

. . . (A.6)

F ′n(x) = cn1 · F1(X) + . . .+ cnn · Fn(X).

Hence, similarly to the previous subsection, we conclude that each solution of this system

is a linear combination of terms of the type exp(λi ·X) and

Xk · exp(λi ·X).

Substituting X = ln(x) into this formula, we conclude that each function fi(x) = Fi(ln(x))

is a linear combination of functions exp(λi · ln(x)) and

lnk(x) · exp(λi · ln(x)).

Here, exp(λi · ln(x)) = (exp(ln(x))λi = xλi .

Thus, each function fi(x) is a linear combination of functions xλi and

lnk(x) · xλi .

4◦. Our functions fi(x) are both shift-invariant and scale-invariant. Thus, each of them has

to be both of form described at the end of Part 2 of this proof and of the form described

at the end of Part 3. So, out of terms from Part 2, we cannot have exponential terms with

non-zero λi – since these terms cannot be expressed in Part-3 form. Thus, the only possible

terms are terms xk with k ≤ n− 1.

So, each function fi(x) is a linear combination of such terms – and is, thus, a polynomial

of order ≤ n− 1. The proposition is proven.
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