
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2022-12-01

Optimized Learning Using Fuzzy-Inference-Assisted Algorithms Optimized Learning Using Fuzzy-Inference-Assisted Algorithms

For Deep Learning For Deep Learning

Miroslava Barua
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Barua, Miroslava, "Optimized Learning Using Fuzzy-Inference-Assisted Algorithms For Deep Learning"
(2022). Open Access Theses & Dissertations. 3651.
https://scholarworks.utep.edu/open_etd/3651

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3651?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

OPTIMIZED LEARNING USING FUZZY-INFERENCE-ASSISTED ALGORITHMS FOR

DEEP LEARNING

MIROSLAVA BARUA OLIVO

Doctoral Program in Electrical and Computer Engineering

APPROVED:

Patricia A. Nava, Ph.D., Chair

Miguel Velez-Reyes, Ph.D.

Robert C. Roberts, Ph.D.

Fernando R. Jiménez Arévalo, Ph.D.

Stephen L. Crites, Jr., Ph.D.
Dean of the Graduate School

Copyright ©

by

Miroslava Barúa Olivo

2022

DEDICATION

To my parents, my family, my friends and my advisor

for their love, unconditional support, endless help,

infinite kindness, for being a constant source of inspiration

and serving as the guiding light in my life.

And to everyone that cherishes being a lifelong learner:

remember that everyone should have the opportunity

to transform their life through learning

… even machines.

Let’s keep on learning!

OPTIMIZED LEARNING USING FUZZY-INFERENCE-ASSISTED ALGORITHMS FOR

DEEP LEARNING

by

MIROSLAVA BARUA OLIVO, MSEE, BSEE

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

THE UNIVERSITY OF TEXAS AT EL PASO

December 2022

v

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to everyone that has been part of this journey;

you are too many to mention, but please know that because of your support, encouragement and

your help we have together finally arrived to the completion of this dissertation!

I would like to thank my parents, with all my heart, for being an example of what love is

capable of doing for others, for their constant support, and for helping me grow spiritually to firmly

believe that we never walk alone because God is always with us. Thank you to my twin sister

Maru, for helping me with absolutely anything I need, for always leading the way, for being the

voice of reason to my crazy ideas, and for showing me that together we are ready to face anything

that comes our way. Thank you to Aydé for joining me in this ride from the start, for constantly

cheering for me, for always inspiring me with your kind and generous heart and encouraging to

keep going. Thank you to Anel and Diana for always being there for me, for your unconditional

support and for helping me believe we can chase our wildest dreams. Thank you to Virginia for

sharing this journey with me and for all the encouragement.

My sincerest gratitude to my dissertation committee members Dr. Miguel Velez-Reyes,

Dr. Robert Roberts and Dr. Fernando Jiménez Arévalo for your participation; your time; your

advice; your kind words of encouragement; for being an inspiring example of dedication, hard

work and service; and for genuinely supporting all students, including me. Thank you so much.

I am profoundly grateful to Dr. Patricia A. Nava for being my mentor, advisor, teacher,

role model and friend. Thank you for fulfilling each role with the utmost dedication and for being

an inspiration by how you carry yourself professionally and personally. You are an example I will

always try to follow. Thank you for your endless support, for your constant help, for your

encouragement and for always believing in me, even when I didn’t. I will never find enough words

to thank you for all that you do for me. It has been a privilege, a pleasure and an honor to work

under your guidance.

Thank you to all, but most importantly, thank you to God for all these blessings.

vi

ABSTRACT

For years, researchers in Artificial Intelligence (AI) and Deep Learning (DL) observed that

performance of a Deep Learning Network (DLN) could be improved by using larger and larger

datasets coupled with complex network architectures. Although these strategies yield remarkable

results, they have limits, dictated by data quantity and quality, rising costs by the increased

computational power, or, more frequently, by long training times on networks that are very large.

Training DLN requires laborious work involving multiple layers of densely connected

neurons, updates to millions of network parameters, while potentially iterating thousands of times

through millions of entries in a big dataset. Reducing DLN training time is an important challenge

to address and it is the goal of this research. This study provides innovations at the learning

algorithm level to improve the efficiency of the training process; specifically, it optimizes the

Backpropagation (BP) algorithm by using fuzzy-inference assisted learning to reduce the number

of required operations completed during the training phase while at the same time maintaining

performance accuracy. The created two-phase fuzzy inference system is integrated into the BP

algorithm to provide decision support, and when appropriate, utilize a speed-up technique of

skipping training operations. The results for the proposed model trained with benchmark datasets

show remarkable savings of up to 82%, effectively reducing the execution time and accomplishing

the desired speedup, at times reaching convergence 600 epochs earlier than baseline case which

provides considerable extra savings and optimizes training even further. Remarkably, FIL-BP

model reaches same level of system error minimization as the traditional implementation; it

achieves same high classification accuracy, and it improves generalization capability by averting

unnecessary weight updates that result from overtraining. The speed-up of the training process

provides savings that increase as the complexity, size, and challenge of the dataset increases.

vii

TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENT ...v

ABSTRACT ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES ...x

LIST OF ILLUSTRATIONS ... xi

CHAPTER 1: INTRODUCTION ..1

1.1 Problem Statement ..1

1.2 Research Purpose ..2

1.3 Dissertation Outline ..3

CHAPTER 2: BACKGROUND ..4

2.1 Artificial Intelligence ..4

2.1.1 Hardware changes to improve AI performance ..6

2.1.2 Making improvements on the data ..9

2.1.3 Learning algorithm changes to improve AI performance11

2.2 Neural Networks ...14

2.2.1 Architectures ...18

2.2.2 Training or Learning Algorithm ...20

2.2.3 Activation Function ..22

2.3 Fuzzy Logic ..24

2.3.1 Components of a FL inference system..25

2.3.2 Designing a Fuzzy System ..28

CHAPTER 3: LITERATURE REVIEW ...32

CHAPTER 4: IMPLEMENTATION ..35

4.1 Design choices for neural networks ..35

4.1.1 Architecture...36

4.1.2 Activation Function ..37

viii

4.1.3 Datasets ...38

4.2 Backpropagation Algorithm..39

4.3 Integration of fuzzy-inference learning into the BP algorithm47

4.4 Integration of components into a C program ..56

CHAPTER 5: RESULTS ...59

5.1 Small-scale Database: Classic XOR problem ...59

5.2 Well-behaved Medium-size Database – Iris Classification Problem65

5.3 Badly-behaved Large-size Database – Connectionist Bench (Vowel recognition)
Classification Problem ...77

CHAPTER 6: CONCLUSION ..86

6.1 Review of results obtained ..87

6.2 Conclusion ..88

6.2.1 Comparing Performance While Training for the XOR Problem89

6.2.2 Comparing Performance While Training for the IRIS Problem89

6.2.3 Comparing performance while training for the vowel problem90

6.3 Recommendations and future work ..91

REFERENCES ..93

APPENDIX A: Program Code: ...96

APPENDIX B: XOR Dataset Training Performance ..123

APPENDIX C: Iris Dataset Training Performance ...125

APPENDIX D: Connectionist Bench (Vowel Recognition) Training Performance127

VITA ..129

ix

LIST OF TABLES

Table 4.1: Rule Base Fuzzy Matrix .. 54
Table 5.1: XOR dataset ... 60
Table 5.2: XOR training performance at = (0.4, 0.8) ... 64
Table 5.3: Summary of training with XOR dataset .. 65
Table 5.4: Iris Data Characteristics ... 66
Table 5.5: Summary of training results for iris database .. 77
Table 5.6: Summary of training results for vowel database ... 85
Table 6.1: Performance comparison for Trad-BP and FIL-BP ... 88

x

LIST OF FIGURES

Figure 2.1: Evolution of Artificial Intelligence and Associated Subfields [Fal21] 4
Figure 2.2: A biological neuron vs the mathematical model of an artificial neuron [Wil19]. 16
Figure 2.3: Neurons arranged into multilayers to form a simple NN and a DNN [Tch17]. 18
Figure 2.4: Different types of NN architectures [Tch17]. .. 19
Figure 2.5: Taxonomy of intelligent systems [Sch02] .. 24
Figure 2.6: Membership functions for Temperature ... 26
Figure 2.7: Membership functions for Speed ... 27
Figure 4.1: Basic building blocks for a simple CNN [Kar16] .. 36
Figure 4.2: Architecture for Feedforward Multi-layer NN with three layers 37
Figure 4.3: Binary Sigmoid Function, Range (0, 1) ... 38
Figure 4.4: Phases of the Backpropagation Algorithm ... 41
Figure 4.5: Gradient descent moving along the error surface ... 43
Figure 4.6: Example showing how FISin1 changes during training procedure 50
Figure 4.7: Example showing how FISin2 changes during training procedure 51
Figure 4.8: Membership functions for FISin1 .. 51
Figure 4.9: Membership functions for FISin2 .. 52
Figure 4.10: Membership functions for ST... 52
Figure 4.11 Illustration of the major processes of the fuzzy inference system 57
Figure 5.1: Visualization of XOR Problem .. 60
Figure 5.2: System error after training with XOR dataset .. 63
Figure 5.3: Classification accuracy for the XOR testing dataset .. 63
Figure 5.4: Epochs required to complete training with XOR database .. 64
Figure 5.6: Number of BP Function Calls, during training with the iris dataset 69
Figure 5.7: Percentage of BP function calls skipped, training with the iris dataset 70
Figure 5.8: System error of Trad-BP and FIL-BP after completing training................................ 71
Figure 5.9: Classification of Trad-BP and FIL-BP for iris database .. 72
Figure 5.10: System error reduction by Trad-BP for = (0.7, 0.2) .. 73
Figure 5.11: System error reduction by Trad-BP for = (0.7, 0.2) .. 73
Figure 5.12: System error reduction by Trad-BP and FIL-BP for = (0.7, 0.2) 74
Figure 5.13: Percentage of iris database skipped by FIL-BP for = (0.7, 0.2) 74
Figure 5.14: Number of BP function calls during different training sessions 75
Figure 5.15: Final system error during different training sessions ... 76
Figure 5.16: Classification after completing different training sessions 76
Figure 5.17: Savings provided by FIL-BP when training with vowel dataset 79
Figure 5.18: Percentage of BP function calls skipped by FIL-BP when
training with the vowel dataset ... 80
Figure 5.19: System error for Trad-BP and FIL-BP after completing training 81
Figure 5.20: Classification accuracy for Trad-BP and FIL-BP .. 82
Figure 5.21: Number of BP function calls during different training sessions 83
Figure 5.22: Percentage of BP function calls skipped during different training sessions 83
Figure 5.23: Final system error during different training sessions ... 84
Figure 5.24: Classification after completing different training sessions 84
Figure 6.1: FIL-BP skips up to 89% of the data vectors in the dataset... 91

xi

LIST OF ILLUSTRATIONS

Illustration 2.1 How ML and DL achieve feature extraction [Kau20] ... 5
Illustration 2.2: Training time of ResNet-50 on Google’s Cloud TPU pods [Lar19]. 7
Illustration 2.3 AI progression through the years [Sch19] .. 11
Illustration 2.4: Example of a classification problem [Tch17]. .. 21
Illustration 2.5: Example of a clustering problem [Tch17]... 22
Illustration 2.6: Fuzzification of input values into degrees of membership 28
Illustration 2.7: Different fuzzy membership functions .. 28
Illustration 2.8: Overlap between fuzzy sets ... 29
Illustration 2.9: Steps of a Fuzzy Inference System [Rus20].. 30
Illustration 4.1: Flow of program code that implements Trad-BP and FIL-BP model 58

1

CHAPTER 1: INTRODUCTION

1.1 PROBLEM STATEMENT

Exciting applications of Artificial Intelligence (AI) and Deep Learning (DL) that have

achieved great results are usually implemented on high-performance Deep Learning Networks

(DLN) that are enabled by scale, as well as the continuous improvements in the large datasets, the

complex architectures, and the efficiency of powerful training algorithms.

In the last twenty years, digitization of human activity through the use of computers, mobile

applications, inexpensive sensors, and other digital devices gave rise to the collection of large

datasets typically referred to as big data. Researchers observed that better network performance

could be achieved by leveraging the size of the datasets coupled with larger and larger networks,

capable of handling the scale of the data with their increased computational power implemented

in dense pipelined or parallel systems. Although these strategies yielded remarkable results, they

have limits, dictated by data quantity and quality, or, more frequently, by long training times on

networks that are very large.

Training a network requires laborious work, involving multiple layers of densely connected

neurons, updates to numerous network parameters, while potentially iterating thousands of times

through millions of entries in a big dataset. Some applications are not able to afford long training

sessions which, depending on the problem and implementation, might take undesirable amounts

of time to complete. Another reason for seeking faster training is to enhance the iterative AI

innovation cycle and its productivity. New implementation ideas are constantly emerging and they

need to be tested to evaluate their performance and, when necessary, go back and make

modifications to the details and train again. But when the experiment results take too long to

2

obtain, this hinders productivity and it makes it less likely to discover if such idea fits an

application.

Making progress in trying to reduce DLN training time is an important challenge to address

and it is the goal of many studies, including this one. Researchers in academia, government, and

industry along with big tech companies such as Google, IBM, Amazon, Nvidia, Intel, Qualcomm,

Facebook, and Microsoft have invested a lot of resources in optimizing DLNs. Previous

optimization studies and techniques have focused on network architectural implementations using

GPUs, CPU accelerators and other expensive specialized hardware designed for training

computations. However, optimization could also happen at the learning algorithm level,

consequently working in algorithm innovations is a promising scheme to help networks train

faster.

1.2 RESEARCH PURPOSE

The goal of this study is to modify the learning process used in DLNs by inserting an intelligent

agent in order to speed up the network. Specifically, this research proposes to optimize the

Backpropagation (BP) algorithm by using fuzzy-inference assisted learning to reduce the number

of required operations completed during the training phase while at the same time maintaining

performance accuracy.

The contributions of this work are the development of a framework to implement a feedforward

multilayer network trained with both the traditional and modified BP models. For the modified

model, a two-phase fuzzy inference system was created and integrated into the BP algorithm to

provide decision support, and when appropriate, utilize a speed-up technique of skipping training

operations.

3

The performance of the network under both training models will be evaluated by using three

databases that are different in size and complexity. The resulting savings given by the amount of

training operations skipped and the accuracy of the modified model will be compared to the

traditional BP implementation in order to determine the benefits of the speed-up strategy.

1.3 DISSERTATION OUTLINE

The next chapters present the research work in the following manner. Chapter 2 provides

the necessary background information on AI and the different strategies that can be used to

improve performance; an explanation of how neural networks were developed, how they work,

and how they are designed; and a description of fuzzy logic, its components, and how to design a

fuzzy inference system. Chapter 3 offers the literature review that explores the previous work in

this research area to show the trends and results that have been used to optimize training of DLNs.

Chapter 4 presents the implementation details including the design choices made for the baseline

and modified models; an in-depth explanation of how the BP algorithm works; the strategy used

to insert the fuzzy inference assistance into the traditional algorithm; and an overview of the

integration of all of these components into program code. Chapter 5 provides the results obtained

after training the network with three different databases under the two learning models and a

comparison of their respective performance. Chapter 6 offers the conclusions reached and

suggested recommendations for future work that can enhance performance and increase the

benefits of using the proposed model

4

CHAPTER 2: BACKGROUND

2.1 ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is the overarching term used to encompass the subfields of Machine

Learning (ML), Neural Networks (NN) and Deep Learning (DL) as shown in Figure 2.1 below.

Although people sometimes use these terms interchangeably, it is important to understand the

differences between them.

Figure 2.1: Evolution of Artificial Intelligence and Associated Subfields [Fal21]

AI is not a new term, it was first used in the field back in 1956 when a researcher named

John McCarthy coined the term Artificial Intelligence to refer to the science and engineering of

making computing systems that use datasets, iterative processing and intelligent algorithms to

perform tasks usually reserved for human intelligence including reasoning, interacting, and making

decisions.

ML uses more advanced algorithms to give computers the ability to learn from data,

without being explicitly programmed to do so, and make informed decisions about what is learned.

5

ML can accomplish tasks such as playing chess or giving users a personalized recommendation in

ecommerce sites or streaming services.

Artificial NN are ML systems inspired by biological neural networks (a.k.a. the brain).

They use multiple computational models called neurons which are connected in layers to learn the

relationships between inputs and outputs and extract abstract features from the data in a

hierarchical fashion. The next major section of this chapter describes how NNs work.

DL use very large NNs with multiple layers to create what is called Deep Neural Networks

(DNN) or Deep Learning Networks (DLN). The word deep refers to NN structures (with three or

more hidden layers as opposed to single hidden layers of shallow networks) that can learn from

vast amounts of data to make intelligent decisions on its own. DL is the most human-like artificial

intelligence that we have today. The attractiveness of DL is the ability to automatically learn or

extract the features from datasets without using traditional methods.

Illustration 2.1: How ML and DL achieve feature extraction [Kau20]

In essence, to build an AI system we need three items: code + hardware + data

 the code implements the architecture of the model and the learning algorithm

 the hardware provides the platform for the code to run and perform all the required

computations

6

 the data is used by the system to extract information and learn.

When a system is not performing to a desired standard, AI researchers focus on making

improvements to one of those three items, as discussed in detail in the following sections.

2.1.1 Hardware changes to improve AI performance

Some researchers and developers make changes to the AI system implementation hardware

by either introducing more units to increase the computational power and benefit from

parallelization of tasks or by using hardware accelerators to handle the size of the model/data more

efficiently. Traditionally CPUs are used for small models, small datasets or in applications that

require the flexibility of dynamic programming such as those in space exploration. Depending on

the application implementation, some researchers rely on the advantage of replacing CPUs with

chips more suitable for parallelization tasks such as FPGAs and GPUs, and for larger

implementations it is typical to use AI specific platforms such as TPUs and cloud services.

FPGAs allow algorithms to be downloaded into the hardware multiple times so they

provide reconfigurable flexibility at low power consumption. They are typically used for large

datasets and large models in applications that require intensive computations and efficiency in

performance-per-watt. Some companies such as Microsoft use FPGAs to accelerate AI processes

for its cloud service Azure and it has been predicted that in the next year about a third of the AI

cloud service providers will use FPGAs to accelerate its nodes.

GPUs were originally created for quick response in image and video processing of large

amounts of data typically found in video games, but they have been extensively and successfully

used in AI applications that have medium to large models and/or datasets. Due to higher demand

7

and suitability for AI, companies such as Nvidia, Qualcomm and AMD have made many

improvements on GPU performance and reduced the cost of each unit.

Larger applications benefit from the use of highly efficient ASICS specifically made to

accelerate AI processes such as the Tensor Processing Unit (TPUs) which was developed by

Google and tailored to use TensorFlow. TPUs have high throughput of low precision arithmetic

and are usually used in clusters of thousands of units available via AI cloud services.

Cloud services are for quick model training and deployment of high accuracy systems that

require training from datasets with millions of labeled examples and when cost of using the

services doesn’t become an issue for the user. Systems such as Amazon’s Machine Learning

Services, Microsoft’s Azure Machine Learning, Google Cloud and IBM’s Watson’s Machine

Learning rely on supercomputers with thousands of units that provide high computing power in

nods or pods. Cloud services allows researchers and developers to rent “slices” of such machines

at variable costs according to the resources used and the time consumed. For instance, a standard

ResNet-50 image classification model that has over 50 layers and over 23 million trainable

parameters using the ImageNet dataset can be trained by a single Google TPU pod in around 302

minutes, but it takes 11.3 minutes in a version 2 pod and only 7.1 minutes in a v3 pod [Lar19].

Illustration 2.2: Training time of ResNet-50 on Google’s Cloud TPU pods [Lar19].

The cost to train an AI system is on the rise. For instance, a system that requires ten days

of training on Google Cloud platform at a cost of $2.28 per hour will cost over $300,000. This cost

can become stratospheric even for Google’s subsidiary DeepMind that reportedly spent $35

8

million to train an AI system to learn to play the game of AlphaGo, but when the same company

wanted to train a model to play StarCraft, they had to abandon their efforts because training cost

would have been too high to be feasible [Wig21].

The cost of developing, implementing and maintaining a custom AI system in a cloud

service varies on different factors such as platform, size and quality of data combined with

complexity of the system and the required accuracy. Training state-of-the-art AI systems have

increasingly large costs that are feasible only to a few large companies and government agencies

and can leave behind the startup companies, academics and students that might not be able to

afford such services. For instance, training an AI language model called Megatron Turing Natural

Language Generation with 530 billion parameters to provide reading comprehension and natural

language interfaces came at a cost of millions of dollars [Wig21]. A general video/speech analysis

for telemedicine can cost around $36-56 thousand, intelligent recommendation engine between

$20 – 35 thousand [Klu22]. By 2030, AI could contribute up to $15.7 trillion to the global

economy.

AI Cloud services also come with environmental costs because training systems consumes

increasingly large amounts of energy. For example, when Google used thousands of core

processors to run a system that was capable of detecting cats on YouTube videos, these large

amounts of processors consumed so much energy that it needed to be liquid-cooled. The University

of Massachusetts reported, in a 2019 paper [Ho19], that the training effort for a large language

model emitted five times more carbon dioxide than an average vehicle over its entire lifetime.

9

2.1.2 Making improvements on the data

Sometimes researchers try to improve AI system performance by focusing on how to

systematically change the data by either collecting larger amounts of examples, or doing data

preparation by cleaning/pre-processing the data (on the inputs or labels) so it results in a higher

quality data set. In fact, much of the progress in the last decades has been driven by using very

large benchmark datasets.

Dr. Fei Fei Li is a pioneer and one of the world’s leading experts on computer vision who

is also a leading voice regarding ethical issues in AI. In 2003, she started her research at Princeton

and continued at Stanford. Dr. Li had the intuition that, in order to help AI systems be able to

“see,” these systems first needed to have a very large (very deep) and high-quality database for

training. By 2009 she had built two seminal databases that unleashed the power of large data:

Caltech 101 and ImageNet [Lab21].

For Dr. Li, the idea of increasing the amount of data being provided to train AI systems

was analogous to the way living organisms learn how to make sense of their environment. In other

words, nobody tells an individual how to see, they are, rather, exposed to many images in the real

world captured by their eyes and these serve as examples. Just like hearing is not the same as

listening, taking many pictures does not help the individual to see. Seeing begins in the eyes but

making sense of what its seen occurs in the brain. It took many years and more than 50,000 workers

around 167 countries to collect, sort, and clean the nearly one billion candidate images to give life

to ImageNet’s impressive 15 million images, each one labeled in English and categorized into

22,000 classes. The full database was completely open and it is still available to the worldwide

research community for free. ImageNet became the gold standard for machines to recognize

images and be able to categorize different objects.

10

In addition to the database, an annual ImageNet Large Scale Visual Recognition Challenge

was opened which has since consistently gathered the most state-of-the-art AI computer vision

system solutions where teams showcase all their innovations. It was in 2018 when Alex

Krizhevsky and Geoffrey Hinton won the competition by using a Convolutional Neural Network

(CNN) architecture implemented on powerful GPUs and paired with this massive database to

achieve a margin of error ten percentage points lower than any previous system [Kri17]. Their

system is known as AlexNet and it became one of the most influential implementations in

computer vision, in fact, many mark this milestone event as the start of the deep learning

revolution.

Countless research teams followed the same recipe and obtained impressive results by

using huge amounts of data combined with increasingly larger networks implementing the winning

architecture. Very often, developers would improve the performance of a system by just adding

larger amounts of training data or increasing the computational power. It is not unusual to hear

that researchers spend more time collecting data than working on their models. It is not surprising

to realize that continuing this strategy can only work up to a point, but eventually the system will

be faced with physical and feasibility limits: you either run out of data or the added elements to

the network will increase the number of parameters, becoming so large that it will take too long to

train. It is not possible to continue to increase the computing power and the database size at the

same rate as before, undoubtedly there will be a slowdown in advances and innovation. Therefore,

now is the time for researchers to focus on improving the algorithms used by these solutions.

11

2.1.3 Learning algorithm changes to improve AI performance

Another important strategy to improve performance of AI systems is to hold the data and

the hardware configuration fixed and make efforts to improve the learning process by making

changes on the learning algorithm itself. The algorithm that has been most successful in DL

applications is called Backpropagation (BP) algorithm. As mentioned in the previous section,

CNNs have become the predominant type of neural network for image recognition and

classification. These networks are trained using unsupervised learning with BP algorithm. The

following chapter presents the literature review which goes over the trends and strategies that have

been used to optimize NN training process. The implementation chapter goes over how the

learning algorithms work, specifically BP. Please refer to both of those chapters for a detailed

explanation of how modifications to the learning algorithm have improved the performance of AI

systems.

As one can imagine, AI has progressed and evolved through the years enjoying periods of

high activity (referred as revolutions) and survived years of lost confidence (called winters).

Illustration 2.3: AI progression through the years [Sch19]

Due to the high demand of DL solutions in areas such as edge computing, the Internet of

Things (IoT) and the continuous growth in research studies, one can certainly predict that we are

not on the verge of another winter period. In fact, almost daily news reports arise on the next great

12

AI system application, and the results big AI cloud services provides in diverse areas such as

medicine, military, government, transportation, commerce, manufacturing, travel and

entertainment, just to name a few.

The AI field continues to grow towards the goals of taking the systems to the next level.

Current thought is that there are three stages of AI that can be envisioned for the current and future

capabilities of AI. Our current AI systems are referred as having Artificial Narrow Intelligence

(ANI) because they are specialized in one area and are designed to perform a single task. In the

next stage of intelligence, we will have Artificial General Intelligence (AGI), which refers to

computers that are as smart as humans across many tasks. The following stage is labeled as

Artificial Super Intelligence (ASI) in which machines can experience consciousness and their

intellect is much smarter than humans in practically every field.

AI innovation is also pushing boundaries to provide small-scale local solutions to

applications that have little or no connection to the internet in devices such as cameras that can

identify a person entering an area; drones and robots that need to react to what they face in their

environment; on-board systems that allow autonomous vehicles to make quick decisions; and on-

device portable solutions that provide secure facial or object recognition without data having to

leave the device. Doing on-device training provides plenty of advantages including generalization

opportunities and data privacy protection. This point is illustrated, for instance, by thinking of how

to improve a vehicle’s self-driving system. Just as people can enhance their development through

continuous education, an AI system could greatly benefit, in the same way, from continuing to

train by using real-world driver behavior data from the environment. If we think about

collaborative learning (analogous to study groups), a centralized self-driving model could be

trained on decentralized data by distributing the learning task to many independent vehicles. In

13

other words, by deploying the training model into many vehicles, each device can use its own

environment real-world data to learn from, and after going through several thousand of examples

and iterations, can send the results back so they can be combined to create a better model. When

the updated model is ready, it can be deployed again to other several vehicles to test it with new

independent data and continue the training cycle. This collaborative learning strategy could be

used not just for vehicles, but on any other implementation that would benefit from learning from

multiple sources and at the same time keeping the data locally to maintain privacy. This could be

achieved by deploying it via smartphones, tablets, smart wearables, or recruiting multiple entities

for hard-to-collect data such as hospitals, earthquake monitoring centers, power plants or even

space-related missions.

Keeping the training data locally on the device helps maintain data privacy and allows real-

time processing so learning actually becomes easier if it is kept in the same place where training

is actually occurring, rather than sending data back to a server (think about Alexa, Siri and other

personal assistants that send data back and forth, which can disrupt user experience). In order for

this to occur, the training and validation steps need to happen on the individual devices; this can

be enabled by optimizing the training algorithms.

In closing, the common goal in AI is to take part in human-like decision-making roles

within a wide range of activities. The purpose of creating these intelligent systems is not to replace

humans, but rather to assist, enhance, augment, and provide insights to their human counterparts.

For example, intelligent systems are being used in the field of medicine to help doctors and nurses

by providing extra pairs of tireless eyes to help them diagnose and take care of patients. A machine

can be used to go over thousands or millions of examples and be able to extract information to

make a decision. This approach would be very tiresome or overwhelming for the human

14

counterpart who might not be able to obtain a clear perception of the crucial information contained

in those images. The expectation is that we will not only use these machines for their

intelligence, but that we will also be able to collaborate with them in ways we perhaps haven’t

even imagined.

2.2 Neural Networks

The goal of neural networks is to achieve artificial intelligence by creating an information-

processing system inspired by the way the human brain works.

From neuroscience we know that the structure of the brain involves many neurons

interconnected in a loose, flexible, overlapping manner that allow the parallel processing needed

for multitasking. The brain is made of approximately 100-billion neurons that have the ability to

gather and transmit electrochemical signals (or brain waves) from one to another over long

distances, communicating information about emotions and everything that it’s seen, heard, tasted,

touched, and smelled. Each biological neuron has three basic parts [Fre01]: the body of the neuron

is called soma and it is where all the inputs are added or combined and when the summation of

this signals is strong enough, the neuron will fire a response that is sent via the axon. The axon is

a long projection that provides the transportation of the electrochemical signal towards

neighboring neurons which are interconnected with each other neurons via nerve endings called

dendrites. Neurons get connected where an axon meets a dendrite, and there exists a gap called

synaptic gap or synapse that converts the activity from the axon into electrochemical effects that

inhibit or excite activity in the connected neurons. If a neuron receives or ‘sums’ enough excitatory

input signals that together are larger than the inhibitory input, the neuron will send a spike of

15

electrical activity of its own. This chain reaction is potentially transmitted through millions of

cells.

It is important to understand that in the brain, learning occurs by changing the effectiveness

of the synapses so that the influence of one neuron on another changes accordingly. With increased

brain activity, certain patterns of connection are strengthened, making each connection easier to

create next time [Chu01]; this is how memory develops. Memory is not just the number of neurons

used, but also the number of connections between all neurons.

Neuroscientists, psychologists, and even philosophers believe that the organization and

connectivity of the brain holds all of the knowledge as a function of the connections existing among

the neurons and the strength of those connections. The structure of the interconnection of neurons

is flexible and allows continuous modification during the brain’s lifetime. This ability to adapt to

new information allows the brain to function even when faced with new unpredictable

environments.

The brain structure is very complex because each of its hundred billion neurons can connect

with as many as ten thousand neighbors creating about 1,000 trillion synaptic connections which

are very hard to replicate. The complex wiring system of the brain easily surpasses the complexity

of even the most advanced supercomputers. Artificial networks use the brain as a guideline taking

key points and looking at the functionality to produce models that try to resemble their basic

operation.

An artificial neural network is a mathematical model composed of a large number of

processing elements called neurons. These neurons are highly interconnected to create a parallel

distributed information processing structure. The model of the artificial neuron and its connections

has the following features [Fau94]:

16

 The information processing elements (neuron) receive many signals and sums all the

weighted inputs.

 Signals may be modified at the receiving synapse by a weight. This modification

typically multiplies the signal being transmitted.

 Sufficient input causes the neuron to transmit a single output via links.

 Information processing is local and memory is distributed (Long-term memory resides

in neuron’s synapses or weights; short term memory corresponds to the signals sent by

the neurons).

 A synapse’s strength (weight value) may be modified by experience.

 Fault tolerance and ability to retrain in case of small damage.

The following Figure depicts a biological neuron on the left and the corresponding model

for an artificial neuron on the right. The similarities between them are very straightforward to

appreciate.

Figure 2.2: A biological neuron vs the mathematical model of an artificial neuron [Wil19].

In NN, each neuron is connected to other neurons via unidirectional signal channels called

links, each with an associated weight (Wlink-i) representing the information being used to solve the

17

problem. Inside the model of the artificial neuron there is an internal state or activation function,

where the inputs received are processed. The neuron’s function takes the weighted sum of the input

signals and applies an operation to this value (function is usually nonlinear) which yields an output

and “fires” only if the threshold level is met or passed.

The first artificial neuron model was designed in 1943, by neurophysiologist Warren

McCulloch and logician Walter Pitts [Mcc43]. They connected many neurons into what is referred

as a neural network. The neurons were developed as binary devices: output equal to 1 signifies

that the neuron fired, an output equal to 0 means the neuron did not fire. This is summarized by

the following equation:

1, if

n

i
ii xw

1
 (2.1)

0, if

n

i
ii xw

1
 (2.2)

where:

 y is the output value of the neuron,
 w is the value of the connecting weight,
 x is the input value, and
 θ is the threshold value.

The McCulloch-Pitts model continued to evolve and some of its shortcomings were

addressed in updated models. For example, the problem with the McCulloch-Pitts model is that it

provides no adaptation, and therefore has no ability to learn. In 1958, Frank Rosenblatt presented

a solution to this problem with the adaptive perceptron that fires based on a binary step function

with a fixed threshold.

y =

18

To create a NN, a large number of neurons need to be connected together to form a working

system. Designers must determine three important characteristics for their network: the type of

architecture they want for their connections, the chosen learning or training algorithm and the

activation function that the neuron will use to produce a response. Each of these characteristics are

discussed next.

2.2.1 Architectures

The arrangement of the connections is referred as the architecture of the network and it can

take different forms based on their corresponding purpose. There are too many architecture types

to cover them all, but the most commonly used in NN arranges the neurons into multiple layers

starting with all the input neurons lined up in an input layer, followed by the hidden layer(s) and

finishing with an output layer. The Figure below shows a simple or shallow network with a single

hidden layer and a DLNN showing its depth with four hidden layers.

Figure 2.3: Neurons arranged into multilayers to form a simple NN and a DNN [Tch17].

Multilayer topologies are complex enough to be able to solve more difficult problems that a

single-layer network can’t solve. Typically having more hidden layers also means having more

19

computational power to complete laborious tasks required for training and evaluating the full

network.

After arranging the neurons into layers, the interconnection pattern between the neurons will

determine the type of architecture for the network.

If neurons are connected in a way that allows signals to flow from the input layer towards the

output layer (from left to right) it is called a feed-forward network. If every neuron receives a

connection link from every other neuron in the previous layer, the network is fully interconnected.

If there are closed loops between neurons, either with itself or with a previous layer’s neuron, it

becomes a feedback or recurrent network. If they have convolutional and pooling layers, they are

called convolutional NN. All the architectures mentioned are shown in the Figure 2.4 below.

Figure 2.4: Different types of NN architectures [Tch17].

Feed-forward nets associate inputs with outputs; hence they are extensively used in pattern

recognition. Feedback nets are very powerful for memory applications, but get extremely

complicated quickly, due to the numerous interconnections. CNNs are used for image

classification, image processing, video analysis and natural language processing tasks.

In a feed-forward multi-layer neural network, the connecting set of weights between the input

and hidden layers determine when each hidden neuron is active. Therefore, the modification of

these weights changes how the hidden neuron represents the input being received.

20

2.2.2 Training or Learning Algorithm

Once the network architecture is established, the next step is to determine the learning rule.

Humans can learn in different ways by using exploration, sensation, moving from one experience

to another, making mistakes and relying on repetition until an objective is achieved, finding

patterns and making associations, or learning based on examples together with feedback from a

teacher. Just like humans, DNNs use different training algorithms or learning rules to achieve their

knowledge. Please note that the terms training and learning refer to the same process and are used

interchangeably. DNN systems usually go through big datasets composed of thousands or millions

of data samples divided into training and testing portions.

NNs have the ability of processing inputs to obtain an output; if the given response does

not yield the desired result, the neuron’s weights can be corrected during the learning or training

process. This correction generally occurs by sequentially applying input values to the NN while

making weight adjustments according to the expected output until the network converges or a

minimal error is achieved. Modification of these weights as a function of ‘experience’ implies the

use of a learning (training) rule. The knowledge obtained is stored in a weight matrix.

The type of training that a network uses depends on the type of problem to be solved. The

training or learning algorithm provides a series of steps to be followed in a particular order. There

are three major approaches to training or learning are [Jan97]:

 Supervised learning: This type of learning is characterized by datasets that have a

known target output. A sequence of the training patterns is passed through the network

and the expected output is also given. The external “teacher” checks the system’s

21

response and compares it against the expected target. If the responses don’t match, the

weights are modified accordingly. In this manner, the net is trained to respond

correctly. The goal is to obtain a set of weights that minimize the error. Learning occurs

by adjusting the weights based on the training algorithm and following the learning

rule. These weights are the coefficients of the hyperplane that is the decision surface

that is used to distinguish between one class from another. Paradigms of supervised

learning include Hebbian learning, delta rule and backpropagation algorithm and are

usually applied to classification problems.

Illustration 2.4: Example of a classification problem [Tch17].

 Unsupervised learning: It is characterized by using dataset that only have inputs but no

target output is provided, hence there is no “teacher” involved; the network iterates

until it has its own output representation. This is also known as self-organization. The

network is not given any knowledge about the expected output and it is trained to

discover structures in the presented inputs. Paradigms of unsupervised learning include

Kohonen self-organizing maps and competitive learning and they are usually applied

to clustering problems.

22

Illustration 2.5: Example of a clustering problem [Tch17].

 Reinforcement: The network is not provided with explicit output; instead, it is

periodically given performance indicators, therefore, training uses trial and error.

Neurons are given data samples and produce a solution and respond to feedback. If the

network isn't responding as desired, the weights are changed by a random amount. No

explicit teacher exists; the learning comes from lesson failures.

2.2.3 Activation Function

 The response of a NN depends on the weights and activation function of each neuron. The

basic operation of a neuron takes the weighted sum of the inputs and processes this number with

the activation function to determine if the neuron will fire or not. There are three basic types of

activation functions [Fau94]. The identity or linear function, where the output activity is

proportional to the total weighted output. This can be expressed by the following equation:

f(x) = x, for all x. (2.3)

23

The second type is the threshold or binary step function, where the output is set at one of

two levels, depending on whether the total input is greater than or less than some threshold value:

 (2.4)

 (2.5)

The third type is sigmoid (S-shaped curves) function, where the output varies continuously

as the input changes. The binary sigmoid function is especially useful in backpropagation networks

because the simple relationship between the value of the function at a point and the value of the

derivative at that point reduces the computational burden during training. This function and its

derivative are expressed by the following equations:

)exp(1

1
)(

x
xf

 (2.6)

)](1[)()(' xfxfxf (2.7)

Unlike the multitasking brain, NNs are trained for a specific application and are able to

“learn” and generalize from data, like humans do from experience. In theory, a neural network is

capable of learning any mathematical function given a training dataset that is sufficient in size

and quality.

24

Although there are many learning algorithms and diverse architectures, in our

implementation we will investigate the backpropagation algorithm in great detail and will use a

feed-forward multi-layer NN for our architecture. Backpropagation is still the most commonly

used algorithm for learning and our chosen architecture is used extensively in DNN systems.

2.3 Fuzzy Logic

Lofti Zadeh is a professor in electrical engineering and computer science who felt that

classical two-valued logic (yes/no) was too precise for many complex real-world problems and did

not capture the different range of possibilities between yes and no that humans use for decision

making. Hence, he generalized classic logic theory to develop Fuzzy Logic (FL), with the purpose

of dealing with uncertainty. The FL method achieves machine intelligence by offering a method

of representation and reasoning for complex human knowledge that is imprecise by nature. The

following figure depicts the taxonomy of intelligent systems and the relations between AI, ANN

and FL related to intelligent technology.

Figure 2.5: Taxonomy of intelligent systems [Sch02]

FL is a technology that enables designers to incorporate and implement intelligent control

strategies based on human knowledge. Instead of relying on sharp boundaries, the control is based

in fuzzy rules or heuristics. Some argue that FL is a clever disguise of probability theory, but

25

probability measures the likelihood of an event before the actual outcome is known while FL

measures the degree to which an outcome belongs to a category that doesn’t have a well-defined

sharp boundary. For example, FL control is used in video recordings that use fuzzy logic-based

image stabilization to determine if a particular image is a function of movement in the camera or

is a result of movement of objects in the field of view.

There is a wide range of areas where successful fuzzy rule-based inference systems have

been applied such as in control systems, system modeling and in industrial applications like

consumer products, robotics, manufacturing, process control, medical imaging and financial

trading to name a few.

2.3.1 Components of a FL inference system

FL is based on four important components: fuzzy sets, linguistic variables, possibility

distribution, and fuzzy rules.

Unlike crisp classical sets where an element is either in the set or not (represented by value

1 or 0 respectively), fuzzy sets have smooth boundaries defined by membership functions (µ) that

take values in the interval [0,1]. In other words, classic theory relies on sharp boundaries that

require a particular threshold but in a fuzzy set membership is a matter of degree which allows for

partial membership.

 A membership function for a fuzzy set “A” on the universe U is defined by:

µA : U [0,1] (2.8)

This quantifies the degree of membership of the element in U to the fuzzy set A. A membership

function should provide a gradual transition from regions completely outside the set to regions

completely in the set. The degree of membership in a set is expressed by a value between zero

26

and one, where zero means it is entirely not in the set and 1 means it is completely in the set.

Any number between zero and one award a partial degree of membership in the set.

Membership functions are graphs or curves that provide a gradual transition from regions

completely outside a set to regions completely in the set, hence allowing a partial degree of

membership and providing a convenient way to map input space to output space. There are

different types, distinguished by the shape of the curve (triangular, trapezoidal, gaussian, bell-

shaped and sigmoidal). The x-axis of the curve represents the universe and the y-axis represents

the degree of membership.

Fuzzy sets are also associated with linguistically meaningful terms (such as cool, warm,

hot, tall, short, fast, slow, etc.) that make it easier for human experts to express their knowledge

using linguistic variables (such as temperature, size, speed). Assigning a fuzzy set to a linguistic

variable constrains the value of the variable to a matter of degree called possibility. A value can

be described qualitatively by a linguistic term and quantitatively by the corresponding membership

function. Because the meaning of a term depends on context, fuzzy sets are always defined in

context to avoid misunderstandings.

The following figures show the graphical representation for a temperature controller

example that uses Temperature as the input and Fan Speed as the output. Figure 2.6 shows the set

of triangular membership functions described by linguistic terms COLD, WARM and HOT.

Figure 2.6: Membership functions for Temperature

27

Figure 2.7 corresponds to the output where it shows the fuzzy sets for the membership

functions denoted by terms SLOW, MEDIUM and FAST.

Figure 2.7: Membership functions for Speed

In FL, the basic unit for capturing knowledge is represented by fuzzy if-then rules (or fuzzy

rules for short). A fuzzy rule has two components called antecedent and consequent. The

antecedent is the if -part of the rule that describes an elastic condition that can be satisfied to a

degree. The consequent is the then-part of the rule which is the conclusion that can be drawn when

the condition holds. In other words, the output or the action that results from an antecedent being

true corresponds to a strength reflecting the degree to which the antecedent is true.

In the previous example we could create a set of rules to determine the behavior of a

controller such as:

If HOT then FAST

If WARM then MEDIUM

If COLD then SLOW

A fuzzy based system is constructed so that the generated output changes in a continuous

manner regardless if the input crosses set borders.

28

2.3.2 Designing a Fuzzy System

Designing a fuzzy rule-based inference system requires the completion of three major steps

to obtain a conclusion and make a decision.

The first step to complete is fuzzy matching or fuzzification of the input to calculate the

degree to which input data matches the conditions of the fuzzy rules. This requires the calculation

of the degree of membership by using functions to map each system input into one or more degrees

of membership.

Illustration 2.6: Fuzzification of input values into degrees of membership

Typically, membership functions are triangular or trapezoidal because they are effective

and efficient to use.

Illustration 2.7: Different fuzzy membership functions

The fuzzy sets must expand to cover all the x-axis and the rule of thumb is that there should

be an overlap of about 25% between sets.

29

Illustration 2.8: Overlap between fuzzy sets

The second step is to complete the fuzzy rule-based inference or rule evaluation. In other

words, the degrees of membership calculated in the previous step correspond directly to the “if”

side of a rule containing the conditions (antecedent) and the “then” side that contains the

consequence. To produce a conclusion two methods could be used: clipping method cuts off the

top of the membership functions whose value is higher than the matching degree, or use the scaling

method that scales down the membership function in proportion to the matching degree.

Very often when an input to the system triggers multiple fuzzy rules so the results need to

be combined. When a rule has one or more antecedents, each will have a degree-of-truth or

membership value assigned according to the fuzzification results. When this happens, rule

evaluation consists in computing the resulting action of each rule (or the fuzzy output) based on

the antecedent values.

Typically, a minimum function is used so the strength of the rule is assigned to the value

of the weakest or least true antecedent. When more than one rule applies to the same specific

action, it is common to use a maximum function to assign the strongest (or most-true) consequence.

With this action the inferred conclusions from all fuzzy rules and overlapping conditions are

combined into a final conclusion.

30

 To understand this step, it is effective to think of a panel of experts, where each panel

member stands for a fuzzy rule. Each expert will determine a result and a confidence measure

between zero and one to say to what degree the fuzzy rule is satisfied. To come up with a combined

resulting action, the responses will be weighted by a confidence measure.

Finally, if it is necessary, the fuzzy conclusion can be defuzzified to obtain a crisp

conclusion. This is needed to understand the meaning of a fuzzy action and also to resolve conflicts

between competing actions. Defuzzication resolves vagueness and conflicting issues.

There are two techniques to obtain the defuzzified value: calculate the Mean of Maximum

(MOM) by calculating the average of all variable values with maximum membership degrees; or

calculate the Center of Gravity (COG) or centroid method to calculate the weighted average of a

fuzzy set. For our implemented system we selected the COG defuzzification method.

Illustration 2.9: Steps of a Fuzzy Inference System [Rus20].

Because of certain similarities between neural networks and fuzzy logic, researchers

investigate ways to combine the two technologies. Such combinations have led to research studies

using different levels of integration ranging from internal interaction creating fuzzy neurons,

31

providing changes in the processing mechanism itself, or as an external fuzzy supervisor.

Examples of this will be presented in the next chapter.

32

CHAPTER 3: LITERATURE REVIEW

According to the latest Artificial Intelligence Index Report, the past 20 years have recorded

a dramatic growth in research and development efforts, commercial applications, publications and

dissemination activities in the increasingly complex and competitive field of AI [Hai21]. The

number of AI journal publications grew by 34.5% in a single year (2019-2020); the number of

academic-corporate co-authored publications in the US exploded in the last five years, and the

number of patents has seen a big jump in the last three years. State-of-the-art AI technologies show

the progress made in many subfields of AI, including the industrialization of computer vision for

object recognition and medical image analysis; the rapid emergence of systems using Natural

Language Processing (NLP) used in search engines and virtual assistants; the adoption of ML to

make significant breakthroughs in healthcare and biology, and combined efforts to accelerate

COVID related drug discovery and help with diagnostics during the pandemic.

 Such successful results in many instances come at the cost of long training times specially

in systems using large datasets and big networks [Cir12, He15]. Although BP is the standard and

highly effective algorithm used in DLN, it can suffer from slow training. That is why companies

and researchers in diverse fields are investing large amounts of resources to train their systems at

a faster rate than ever before. This is important because the faster you can train a system, the more

quickly you can evaluate it and update it [Hai21].

Researchers have shown successful reduction in DLN training time by using different

approaches: changes in the hardware, preprocessing of the data, optimizing the learning rate or

momentum parameters, using different activation functions to simplify operations, or changes in

the weight updating procedure.

33

 Some examples of studies related to computing power show improvements by increasing the

number of accelerators used—from a couple of hundred to more than four thousand—to cut the

training time from several minutes to just seconds [Mlp20]. Other authors report reduced training

times by implementing convolutional neural networks using mid-range FPGAs while still

maintaining same performance as when implemented on high end GPUs [Ovt15, Lin15]. Other

authors indicate they achieved 15 to 30 times faster training times for MLP and CNN networks

implemented on a TPU located in a datacenter [Jou17]. The downside of this approach is the

increased cost due to complex architectures, expensive technology, or relying on computational

power provided by cloud services.

Some studies focus on increasing or decreasing the learning rate parameter to avoid getting

stuck (e.g., oscillating on local minima) and slow down convergence by using adaptive techniques

to estimate the optimal value of the learning rate [Kol19]. Others use error curve changes to modify

the learning rate causing also an improvement in accuracy [Ami18]. Another study achieved

training time improvement by adapting a global learning rate based on the error measured during

validation [Duf07]. The disadvantage of estimating the learning rate at each iteration of the

gradient descent is that it can be computationally expensive and require added memory.

 Some researchers have used fuzzy techniques to improve the BP performance by using

fuzzy-based activation functions to reduce the number of epochs and the number of neurons

[Kar04]. Others use fuzzy control systems to adjust the learning rate, depending on the shape of

the error surface, and improve training time dramatically [Ara92]. The use of an adaptive fuzzy

approach to control the learning parameters, based on RMS of error surface, obtained a 30%

reduction of training time [Ras12]. Additionally, a fuzzy-controlled delta rule can be used to adjust

the network weights, according to a parallel coordinate descent method whose parameters are

34

fuzzy-controlled [Lip94]. Other authors indicate that a network can be trained with a local error

signal, using layer-wise loss instead of a global loss function to obtain a system with more

biological plausibility [Nok19]. The use of a fuzzy weight adjustment to generalize the BP

algorithm in a triple network ensemble [Gax12] has also provided promising results. Using fuzzy

logic offers an interesting alternative when sharp boundaries are undesirable, and when dealing

with uncertainty.

The proposed research aims at optimizing the learning process used in DLNs, while at the same

time maintaining performance accuracy. Specifically, a two-phase fuzzy inference system will be

used to modify the Backpropagation (BP) algorithm. A fuzzy decision support system, utilizing a

cost function will be created to choose when a fuzzy inference system, composed of learning rules

should be invoked, and the process of updating the neuronal weights carried out. If the decision

support system determines that this process should be skipped, it will typically be when the

network is performing “well enough” and updating the weights will not yield a substantial benefit.

The traditional algorithms calculate error, and proceed with updating the weights, regardless

of the error magnitude. That is, traditional algorithms have the error margin set to zero, or close to

zero. The problem with this traditional view is that the weights would be updated, even if

completing this process will cause minimal change in network, which will ultimately have

negligible impact on the overall performance. This study aims at providing optimization by

inserting an intelligent agent that will make decisions based on the current performance of the

network with the goal of reducing the number of required operations during the training phase by

avoiding unnecessary weight modifications and, thereby, speedup the network.

35

CHAPTER 4: IMPLEMENTATION

After reviewing the trends and strategies that have been used in previous studies, this

chapter will cover the details and necessary steps taken towards the implementation of the

proposed research idea of inserting an intelligent agent within the training processes used in DL.

This agent will infer a decision based on the performance of the network. Specifically, a two-phase

fuzzy inference system will be integrated into the backpropagation algorithm to serve as a decision

support system, with the aim of speeding up the training process while at the same time

maintaining good classification accuracy.

The next sections of this chapter present first, the design choices for the baseline network

and the network that will use fuzzy-inference assisted learning; second, a careful analysis of the

traditional backpropagation algorithm along with the proposed modifications; and third, how all

of these components are integrated into a working model for subsequent implementation in code.

4.1 DESIGN CHOICES FOR NEURAL NETWORKS

There is a need to create two networks to be able to evaluate the performance of the

proposed model. The first network is identified as Trad-BP and it is considered the baseline

network because it uses the traditional implementation of the backpropagation algorithm during

training. The second network implements the proposed model and it is identified as FIL-BP

because its training will be assisted by Fuzzy Inference Learning for the backpropagation

algorithm.

 Before the proposed model could be implemented into a program, extensive research was

completed, in order to understand the training processes, the key attributes, and parameters that

can be optimized to impact the learning algorithm.

36

4.1.1 Architecture

As described in chapter two, there are many types of networks used to solve different types

of problems in DL.

 One of the most popular is the CNN, and different versions are used extensively to classify

images, cluster them into classes, and perform object recognition for computer vision systems. To

do this, CNNs use an architecture that enables the processing of the inputs through many layers of

convolution, pooling, and classification operations.

The architecture of a typical CNN is depicted in Figure 4.1. The core structure in the

classification process is a fully connected multi-layer network trained using the backpropagation

algorithm. Thus, work on improving learning in a multi-layer feedforward network will also

impact other DLNN network architectures, such as the CNN.

Figure 4.1: Basic building blocks for a simple CNN [Kar16]

The chosen architecture for both networks in this study consists of a feedforward multi-

layer neural network with three layers: input, hidden and output as shown in Figure 4.2.

37

Figure 4.2: Architecture for Feedforward Multi-layer NN with three layers

Each processing neuron has the corresponding number of inputs to accommodate the input

vector dependent on the size of the database being used. In addition, each processing neuron

receives an extra input of +1 from the ‘bias neuron’.

4.1.2 Activation Function

The activation function for the neurons is the binary sigmoid function and it is chosen

because it is continuous, differentiable, monotonically increasing, and its derivative is easy to

compute, which reduces the computational burden during training. This function, which has a

range of (0, 1), and its derivative are expressed by the following equations:

 (4.1)

 (4.2)

)exp(1

1
)(1 x

xf

)](1[)()(' 111 xfxfxf

38

The binary sigmoid function activation function is illustrated in Figure 4.3

Figure 4.3: Binary Sigmoid Function, Range (0, 1)

4.1.3 Datasets

DLNNs use benchmark datasets in order to evaluate the performance of the learning

algorithms. The University of California at Irvine (UCI) provides a Machine Learning Repository

hosted by the Center for Machine Learning and Intelligent Systems. This repository is a collection

of more than 622 databases that are extensively used by the machine learning community for

empirical analysis of machine learning algorithms. Students, educators and researchers all over the

world have free access to these datasets [Dua19].

For this study, the following three benchmark datasets were selected for testing the

networks in classic classification problems:

 The first one is the XOR dataset. It corresponds to a simple but important

classification problem characterized by a small well-defined dataset of four

patterns.

 The second one is the Iris dataset. It is perhaps the best-known database to be found

in pattern recognition literature. It is based on a classic research paper by Fisher

[Fis36] which has been referenced since 1936. It contains 150 patterns divided into

3 different classes.

0.5

x 0

1

f(x

39

 The third one is the Connectionist Bench (Vowel recognition) dataset. It contains

990 records across 11 classes. It is a complex data consisting of a three-

dimensional array composed of utterances collected from several speakers. The

objective is to achieve speaker independent recognition of the eleven steady state

vowels of British English.

In classification problems with databases that have a known target output, the most

common supervised learning algorithm used is backpropagation.

4.2 BACKPROPAGATION ALGORITHM

Backpropagation algorithm is the standard, most popular, and most effective learning

method for training Deep Neural Networks, and is the algorithm used for training the networks in

this study. Therefore, this section explains in detail how the algorithm has evolved and the basics

of how it works.

One could think of the backpropagation network as an evolved version of the perceptron

with multiple layers, different threshold functions, and a more robust and efficient learning rule.

The first learning rule was designed in 1949 by Hebb, was refined by Rochester, Holland,

Haibt and Duda in 1956 and by Kohonen and Anderson in 1972. The extended Hebb learning rule

for modifying the weight values of a network is given by:

 yixoldiwnewiw)()((4.3)

In 1958, Frank Rossenblatt introduced the adaptive perceptron neural network consisting

of 3 layers and it was designed to learn to associate a given input to a random output unit. The

perceptron learning rule is more powerful than the additive Hebb rule because its iterative learning

procedure adjusts the weights when system response is incorrect, such that the system will

40

converge to the correct weights if in fact a solution exists. The proof is based on classical logic in

abstract mathematics, and is known as the “Convergence Theorem.” [Rud76]

The perceptron learning rule incorporates the use of the learning rate (parameter and it

updates the weights according to the following equations:

 If input output,
wi(new) = wi(old) + txi (4.4)

 Else

wi(new) = wi(old) (4.5)

Widrow and Hoff developed the delta learning rule by 1960. The delta rule changes weights

of the neural connections in order to minimize the difference between the net input to the output

unit, y_in, and the target value t resulting in the least mean square error. The aim is to minimize

the error over all training patterns [Fau94]. The delta rule for a single output unit adjusting the ith

weight is given by:

 ii xinytw)_((4.6)

The delta learning rule led to improved generalization capabilities and it served as

precursor to the backpropagation rule used in multilayer networks.

David Rumelhart and David Parker refined the backpropagation (BP) algorithm which

compares the result that was obtained by the network with the result that was expected. It uses the

gradient descent method to minimize the total squared error with the aim of training a network to

be able to respond correctly to given input patterns used for training and be able to give a

41

reasonable response to new input patterns that are similar, but not identical, to those used in

training [Fau94]. This capability is known as generalization.

With the help of the BP algorithm, the hidden neurons are free to construct their own

representation of the input information. The connecting set of weights between the input and

hidden layers determine when each hidden neuron is active; therefore, the modification of these

weights affects how the hidden neuron represents the input being received.

Training a network with the BP algorithm requires the execution of two major phases as

illustrated in Figure 4.4:

1. The feedforward propagation phase: each of the input training patterns of the

training set are passed or propagated through the network, from the input layer

towards the output layer, to obtain the response of the network.

2. Backpropagation phase: based on the network’s response, the associated error is

calculated and the corresponding adjustment of the weights is backpropagated to

adjust all the weights.

Figure 4.4: Phases of the Backpropagation Algorithm

42

After training is completed, the response of the network is obtained by completing only the

steps in the feedforward phase. This occurs when evaluating the network with a test dataset or

when the system is deployed to be used as a classification system.

While training, the weights of each neuron are adjusted so the error between the expected

output and the calculated output is reduced. This process requires the computation of the error

derivative of the weights. In other words, the network must calculate how the error changes as

each weight is increased or decreased by the calculated amount. The process of training is typically

repeated for hundreds or thousands of times as the entire training dataset cycles through the

network in what is referred to as one epoch.

The mathematical basis for the backpropagation algorithm is the optimization technique

known as gradient descent. The gradient of a function gives the direction in which the function

increases most rapidly; the negative of the gradient gives the direction in which the function

decreases most rapidly [Fau94]. For the NN being used, the function is the error and the variables

are the weights of the net.

In other words; since the function is the error, the goal is to minimize such function by

following the steepest descent. By changing the values of the weights, the error surface is followed,

trying to reach the smallest error (ideally zero).

Some key factors that influence the performance of the backpropagation network are worth

mentioning. The initial weights of the neurons should be small, non-zero random values because

if they are too large, the network may get stuck at a local minimum, and be prevented from

learning.

The learning rate is also involved in the learning process. Usually, a large value of

yields a faster convergence, but increases the possibility of overshooting, and potentially missing

43

the solution (weights). A smaller value will decrease the possibility of overshoot, but will slow

down the convergence [Au98]. To solve this problem, a momentum term is incorporated so that

the new change in the weights is dependent on the previous change. Momentum can accelerate the

convergence of the backpropagation learning rule, while enhancing the stability of the learning

process [Au98].

The learning rate determines the ‘length’ of the error gradient vector (purple arrow in

Figure 4.5). If is too large (vector is too long) it risks overshooting the target (global minima)

by oscillating. To avoid this, the momentum term is added. If traveling in the right direction,

will contribute to the movement (by making the vector even larger); but if moving in the wrong

direction, it will help correct the movement in the opposite direction (by making it shorter).

Determining the optimum values for learning rate and momentum is accomplished through

trial and error. The effect that these key terms have on the learning process is illustrated in Figure

4.5 below.

Figure 4.5: Gradient descent moving along the error surface

gradient
descent

local
min

local &
global min

Error
surface

44

Now the complete backpropagation training algorithm steps can be summarized as follows:

The neural network has N input terminals, M neurons in a single hidden layer and R

neurons in the output layer. There are P pairs of training data:

)},(),...,,(),,{(2211 pp txtxtx , where

 .P,,2,1),1Rx(),1Nx(iisis ii tx (4.7)

Note that xaug-p denotes the augmented vector, defined as

Ppfor
p

paug ,,2,1,
1

 x

x (4.8)

k denotes the training step (iteration) and p denotes the current training pattern within the training

cycle.

Step 1: 0 < < 1.0 and EMAX are chosen.

Step 2: Weights are initialized to small random values.

 For the output layer, Wout=[wij], where Wout is of size R x (M+1) (4.9)

For the hidden layer, Whid=[wij], where Whid is of size M x (N+1) (4.10)

k1, p1, E 0 (4.11)

Step 3: The training cycle begins here. Input xaug-p is presented and output computed

during a forward pass:

yi f (whid-i xaug-p) for i=1,2,…,M (4.12)

Oi f (wout-i yi) for i=1,2,…,R (4.13)

 where whid-i is a row vector (specifically, the ith row of Whid), and

 wout-i is a row vector (specifically, the ith row of Wout).

45

Step 4: Error and ’s are computed:

E ½ (tj-oj)2 +E (4.14)

For the output layer,

 out-j = ej f ’(vj) (4.15)

 = (tj – oj)oj(1- oj) for j=1,2,…,R (4.16)

 (for the binary sigmoid function)

For the hidden layer,

 hid-j = ()oj(1- oj) for j=1,2,…,M (4.17)

(for the binary sigmoid function)

Step 5: Weights are updated:

 For the output layer,

wout-j wout-j + out-j y for j=1,2,…,R (4.18)

For the hidden layer,

whid-j whid-j + hid-j xaug-p for j=1,2,…,M (4.19)

Step 6: If p < P,

 then p p +1, k k +1, and go to Step 3. (4.20)

 Otherwise, go to Step 7.

kall

kjkout w

46

Step 7: The training cycle (epoch) is completed.

 If E EMAX (4.21)

 then terminate the training session and output weights, k, and E.

 Otherwise,

 E 0, p 1, (4.22)

and enter a new training cycle by going to Step 3.

It is important to note the following:

 The forward phase constitutes the completion of all the operations listed in

equations 4.12, 4.13 and 4.14. To be concise, in the next chapter during the analysis

of the results, this set of operations is referred to as completing a forward function

call.

 The backpropagation phase constitutes the completion of all the operations listed

in equations 4.15 through 4.19 as described above. Similarly, for brevity when

analyzing the results, this set of operations is referred to as completing a BP

function call.

Steps three, four and five will be repeated in a cycle as the network processes every single

pattern in the training dataset. When all the patterns in the dataset have been processed (an epoch

has been completed), Step 7 is executed to check if the training session can be terminated due to

system convergence. If the tolerable error (EMAX) threshold has not been reached, a new epoch is

started and the cycle of steps three, four and five begins again until the system converges or until

the maximum number of epochs has been reached (training stopping condition). It is not unusual

for a training session to require thousands of epochs before a system can converge.

47

In addition, the optimum learning rate and momentum parameters are typically determined

by trial and error. This means that a whole new training session is required for each new setting of

the learning parameters.

When considering that DL applications usually use datasets with millions of records being

processed by complex architectures consisting of multiple layers, multiple neurons and millions

of trainable parameters that need to be updated, it is easy to understand why they suffer from slow

training. For example, when training the AlexNet CNN—composed of 8 layers with more than 60

million parameters and using a training set of 14 million images classified into 20,000 categories—

each training session required between five to six days to complete.

The aim of this research study is to optimize the training procedure by speeding up the

process through the use of the proposed model which, with the help of an intelligent agent, searches

for opportunities and determines when the backpropagation phase can be skipped and thereby

effectively eliminating the need to calculate derivatives of the error for each neuron in the output

and hidden layer, as well as eliminating the need to update each of the corresponding weights

accordingly.

The next section describes the design of the intelligent agent that uses a fuzzy inference

system to assist in the learning process. Please be aware that the backpropagation training steps

described here will be referenced when mentioning the modifications made by the proposed model.

4.3 INTEGRATION OF FUZZY-INFERENCE LEARNING INTO THE BP ALGORITHM

As described in chapter two, fuzzy logic is a powerful, yet straightforward, intelligent

technique that incorporates and implements human knowledge and strategies into solving

problems in the areas of control and decision making.

48

The power of fuzzy-based systems is that they have the ability to reach conclusions and

generate corresponding actions in a way similar to humans. Instead of relying on sharp boundaries,

the control in a fuzzy engine is based on fuzzy rules or heuristics that use imprecise data.

For this study, a two-phase fuzzy inference system (FIS) will be designed and inserted

within the BP algorithm for two purposes. First, it serves as a decision support system in making

the determination of when it is appropriate for the network to interrupt the training steps and skip

the backpropagation phase, to avoid the process of updating the neuronal weights. Second, it will

provide control of the skipping parameter itself by evoking the learning rules and inferring the

corresponding action based on the current performance of the network. If the decision support

system determines that the backpropagation phase should be skipped, it will be when the network

is performing “well enough” and updating the weights will not yield a substantial benefit.

Recall that the traditional algorithm calculates the error, and proceeds with updating the

weights, regardless of the error magnitude. The problem with this traditional implementation is

that the weights are updated, even if completing this process causes minimal change in the

network, which will ultimately have negligible impact on the overall performance.

The FIL-BP network will take advantage of the inferred conclusions provided by the

intelligent agent to effectively and efficiently reduce the number of BP function calls completed

during the training procedure and, thereby, speedup the network training process.

The first level of integration of the fuzzy agent with the BP training algorithm comes at the

end of the forward phase. As each pattern in the training dataset completes the forward pass

through the network, the respective total local error (ej) gets accumulated while executing the

operation given by Equation 4.14. The total local error across all output units is:

 ej = ½ (tj-oj)2 + ej (4.23)

49

The fuzzy system will take this value, compare it to a skipping threshold () and will only

allow the training process to continue for that particular pattern if the total squared error is greater

than the threshold level:

 > ej (4.24)

In other words, if the network’s response to a particular pattern causes a total error to be

greater than the skipping threshold, it means the network must learn from that pattern, therefore it

should proceed with the backpropagation phase to make adjustments to the weights accordingly.

Initially, the skipping threshold is set equal to the network tolerance used to determine

when the system converges. The logic here is that if a pattern already meets the network’s tolerable

error, there is no need to modify the weights to reduce this local error even further, hence, that

particular pattern doesn’t need to contribute in the adjustment of the network’s current knowledge

(contained in the values of the weights).

The second integration comes at the end of each epoch and before the BP algorithm

determines if the training session should be terminated (refer to Equation 4.21). At the end of each

epoch, the mean square error (MSE) of the current epoch (EpMSE) at time t is stored:

 EpMSE (t) = E (4.25)

 At this point, the fuzzy inference system will control the skipping threshold based on the

current performance of the network. In other words, the EpMSE(t) will serve as the first input to the

fuzzy inference system (FIS), as given by

 FISin1= EpMSE(t) (4.26)

50

The second input to the FIS will be the Change in the system Error (CE) which is calculated

by the difference between the values of the system error during the current epoch and the system

error at the previous epoch as given by:

CE = EpMSE (t) – EpMSE (t-1) (4.27)

FISin2 = CE (4.28)

 At this point, FISin1 and FISin2 will go through the fuzzification process where the fuzzy

agent will calculate the degree of membership of each input by referencing the corresponding

trapezoidal membership functions. These functions are designed and tuned based on careful

analysis of the general behavior of the error and the change in error inputs. Figures 4.6 and 4.7

show some examples (in a zoomed-in view) of how FISin1 and FISin2 can change during training.

Figure 4.6: Example showing how FISin1 changes during training procedure

51

Figure 4.7: Example showing how FISin2 changes during training procedure

The designed membership functions are illustrated in Figure 4.8 and Figure 4.9

respectively. The fuzzy sets used are SM (small), MD (medium), LG (large) and XL (extra-large).

Figure 4.8: Membership functions for FISin1

52

Figure 4.9: Membership functions for FISin2

Figure 4.10 shows the designed output membership functions for controlling the Skip-

Threshold (ST). The fuzzy sets are ZE (zero), DS (decrease small) and DB (decrease big)

Figure 4.10: Membership functions for ST

As explained in Chapter two, the fuzzification process will calculate the degree of

membership by using these functions to map each system input into one or more degrees of

membership. Once this is completed, the rules in the rule base are evaluated by combining degrees

of membership to form output strengths.

53

The designed rules for the system use the linguistic terms described for the fuzzy sets. The

complete rule base is listed here:

Rule 1: If (MSE is SM) and (CE is SM) then (ST is DB)

Rule 2: If (MSE is SM) and (CE is MD) then (ST is DS)

Rule 3: If (MSE is SM) and (CE is LG) then (ST is ZE)

Rule 4: If (MSE is SM) and (CE is XL) then (ST is ZE)

Rule 5: If (MSE is MD) and (CE is SM) then (ST is DS)

Rule 6: If (MSE is MD) and (CE is MD) then (ST is ZE)

Rule 7: If (MSE is MD) and (CE is LG) then (ST is ZE)

Rule 8: If (MSE is MD) and (CE is XL) then (ST is ZE)

Rule 9: If (MSE is LG) and (CE is SM) then (ST is ZE)

Rule 10: If (MSE is LG) and (CE is MD) then (ST is ZE)

Rule 11: If (MSE is LG) and (CE is LG) then (ST is ZE)

Rule 12: If (MSE is LG) and (CE is XL) then (ST is DS)

Rule 13: If (MSE is XL) and (CE is SM) then (ST is ZE)

Rule 14: If (MSE is XL) and (CE is MD) then (ST is ZE)

Rule 15: If (MSE is XL) and (CE is LG) then (ST is DS)

Rule 16: If (MSE is XL) and (CE is XL) then (ST is DB)

These rules are summarized on the fuzzy matrix show on Table 4.1 below.

54

Table 4.1: Rule Base Fuzzy Matrix

Depending on the values of the inputs, the system might trigger multiple fuzzy rules so the

results are combined by using a minimum function so the strength of the rule is assigned to the

value of the weakest or least true antecedent.

When more than one rule applies to the same specific output action, the system uses a

maximum function to assign the strongest (or most-true) consequence. With this action, the

inferred conclusions from all fuzzy rules and overlapping conditions are combined into a final

conclusion, illustrated by the following example.

Suppose the following conditions exist: Rule 1: if A & B then Z & X and also Rule 2: if

C & D then Z & Y

Strength of Rule 1 = min (A, B) (4.29)

Strength of Rule 2 = min (C, D) (4.30)

X= strength of Rule 1 (4.31)

Y = strength of Rule 2 (4.32)

Z = max (Strength of Rule 1, Strength of Rule 2) (4.33)

ST

SM MD LG XL

SM DB DS ZE ZE

MD DS ZE ZE ZE

LG ZE ZE ZE DS

XL ZE ZE DS DB

M
SE

CE

55

 = max (min (A, B), min (C, D) (4.34)

Finally, the fuzzy conclusion is defuzzified using the center of gravity method which

consists of several steps.

First, a centroid point on the x-axis is determined for each output membership function.

 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑎 +
ௗି

ଶ
 (4.35)

where a and d are the end points of the trapezoid functions.

After this, the membership functions are limited in height by the applied rule strength, and

the areas of the membership functions are calculated:

 𝐴𝑟𝑒𝑎 = ℎ
௦ା௧

ଶ
 (4.36)

where h is the corresponding strength.

At this point, the defuzzified output is derived from the weighted average of the x-axis

centroid points and the computed areas, with the areas serving as the weights:

𝐷𝑒𝑓𝑓𝑢𝑧𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
∑ 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑎𝑟𝑒𝑎 ∗ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

∑ 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑟𝑒𝑎𝑠

 (4.37)

The resulting value is the crisp value that will be used to reduce ST.

56

4.4 INTEGRATION OF COMPONENTS INTO A C PROGRAM

Although there are existing tools that allow the user to implement DLN and fuzzy

inference systems by specifying the corresponding parameters, for this study, those options did

not provide the flexibility required to modify the training algorithm by embedding the fuzzy

agent within the BP algorithm itself to control the decision making and when necessary, interrupt

the training processes when such action is inferred. Using the tools available would have

required to modify the framework’s source code in order to implement the interface and achieve

the actions of the proposed model. Therefore, the framework for this study was completely

designed and created using the C programming language. Both the Trad-BP and FIL-BP

networks are implemented by the developed program.

 The baseline version of the program has a main function that sequentially makes several

secondary function calls to perform the different phases of the backpropagation algorithm. The

basic code is modified to additionally incorporate the intelligent agent that will infer a decision

based on the performance of the network. As illustrated on Figure 4.11, the fuzzy inference

system completes three major function calls for fuzzification of inputs, evaluation of the rules

and defuzzification of the output which controls the value that determines when to execute the

backpropagation function call, or when to skip it.

57

Figure 4.11 Illustration of the major processes of the fuzzy inference system

 These tasks are preceded by an initialization routine that sets up the data structures used

for the input and output membership functions; obtains the definition of the membership function

variable sets; and sets up the rule base for the decision-making process.

The flow of the program code that implements the proposed model can be observed in

Illustration 4.1. The listing of the program code is presented in Appendix A.

58

Illustration 4.1: Flow of program code that implements Trad-BP and FIL-BP model

59

CHAPTER 5: RESULTS

To evaluate the performance of the proposed algorithm, this chapter presents the results

obtained after training the two networks described in the previous chapter. The network that

utilizes the traditional backpropagation algorithm is referred as Trad-BP and the network that uses

the proposed fuzzy-inference assisted learning modification to the backpropagation algorithm is

referred as FIL-BP.

The strategy is to utilize three different databases with different levels of complexity, each

more complex than the previous one. This will show the effectiveness of the proposed model

versus the traditional implementation when each faces problems of different characteristics and

posing diverse challenges. Each type of problem is discussed in the next sections.

5.1 SMALL-SCALE DATABASE: CLASSIC XOR PROBLEM

 The XOR (exclusive or) problem is a simple but important problem that any network must

solve in order to show the ability to successfully classify between two well-defined non-linearly-

separable classes. This problem is typically selected as the first case in any study, due to its

simplicity, minimal inputs, well-defined classes, and small data set size.

In this classic problem, the database consists of four training input/output patterns

representing the response of the XOR function for two binary inputs (true is represented with a

one, and false is represented with a zero). The behavior of the XOR function is easily captured by

the following description: if only one of the two input values is “true”, then the output is “true”; in

all other cases, the output is false. Table 5.1 summarizes these four cases in binary notation and it

serves as the representation of the full training dataset used by the two networks.

60

Table 5.1: XOR dataset
A B XOR (A, B)
0 0 0
0 1 1
1 0 1
1 1 0

With only four training patterns, this dataset poses a non-linearly separable problem

because the solution requires two planes in order to separate between the two classes. This can be

visualized in Figure 5.1.

Figure 5.1: Visualization of XOR Problem

The response of the network is explained as follows: if the output neuron fires, it

means that the response to the given pattern is true, and if it doesn’t fire it means the response

is false.

Both networks are implemented using the same architecture which consists of two input

neurons, two hidden neurons, and one output neuron. The networks are trained using the BP

algorithm under different values for the learning rate () and momentum () parameters.

As mentioned on chapter 4, the weight parameters for the neurons collectively hold the

knowledge of the network. These weights can’t be calculated using analytical methods, weights

(1,0)

(1,1)

(0,0)

(0,1)

61

are found using the training algorithm. The BP algorithm follows the error function to change the

values of the weights by repeatedly using gradient descent to take steps towards reaching the

smallest error. The challenge is that the solution space can have many local and global minima;

for this reason, and parameters are added to help optimize this search for the solution.

Gradient descent updates the values of the weights by finding the derivative of the error

function with respect to the weights. The derivative is the update or the change to be made on

the weight parameters, and because this derivative term is being multiplied by the learning

ratethe size of the step or the amount of change in the weights is controlled by . Therefore, the

value of the has an effect on how quickly or slowly a network learns about the problem.

Choosing a proper can be difficult [Ben12]. When is too small, training is not only

slower, but it may also lead to becoming stuck at a local minimum. When is too large, it risks

overshooting the target as gradient descent can inadvertently increase the training error rather

than decrease it. This obviously hinders convergence and can cause the loss function to oscillate

around the minimum or even diverge. In the worst case, the weight updates become too large

which may cause weights to explode (overflow).

In addition to is added to the calculation of the update by multiplying the value of

the previous weight. If traveling in the right direction, will contribute to the movement; but if

moving in the wrong direction, it will help correct the movement in the opposite direction. In

other words, increases the update for those dimensions whose gradients point in the same

directions and reduces updates for dimensions whose gradients change directions. As a result,

faster convergence and reduced oscillation can be achieved.

62

Choosing the values of and parameters is not straightforward and their optimum values

are usually found by trial and error. For the networks used here, these values are dynamically

changed before the start of a new training session according to the (set described by equation

5.1:

 (5.1)

The duration of each training session is set to have a maximum number of iterations

equal to 5,000 epochs. Duration can be less if the system converges to an accumulated system

error that is under the 0.01 tolerance.

Because the XOR dataset consists of only the four essential training patterns, the

instinctual expectation is that the FIL-BP network will have very little chance to find and

skip a pattern that doesn’t intrinsically contribute towards reaching the solution. This

behavior is confirmed by the parallel results when comparing both networks.

For all of the combinations of the learning rate and momentum parameters, both

Trad-BP and FIL-BP networks have the same performance. Figure 5.2 shows that both

networks reach the same minimum system error, converging below the error tolerance on

almost all the cases. Because the performance of both networks is identical, the graph uses

two different colors and visual representations of the data in order to avoid confusion about

which data point belongs to which network’s performance.

)8.0,8.0()2.0,8.0()1.0,8.0(

)1.0,2.0(

)8.0,1.0()2.0,1.0()1.0,1.0(

),(

63

Figure 5.2: System error after training with XOR dataset

For the XOR problem, the training set is identical to the testing set. It is expected that

the system will have a perfect classification accuracy. This is confirmed for all the parameter

settings that yield to convergence. Figure 5.3 shows the identical 100% classification

accuracy of both systems. In this graph, again, two different visual representations of the

data are used, in order to clarify the different networks’ values and facilitate comparison.

Figure 5.3: Classification accuracy for the XOR testing dataset

64

Figure 5.4 shows that both networks required the same number of epochs under all

of the possible combinations of the learning parameters. Notice that the fastest training

occurred at = (0.8, 0.8) when both systems converged after 192 epochs.

Figure 5.4: Epochs required to complete training with XOR database

There is only one small difference in terms of shortening the training effort between both

networks. There was only one occasion when the FIL-BP network was actually able to avoid doing

the backpropagation of two training patterns during the 453 epochs completed. Although this

doesn’t constitute a major savings when comparing both systems, Trad-BP makes 1812 BP

function calls while FIL-BP provides a savings of only two by making 1810 function calls. Table

5.2 summarizes the performance of both networks when this occurs at = (0.4, 0.8).

Table 5.2: XOR training performance at = (0.4, 0.8)

LEARNING
RATE

MOMENTUM

Epochs
completed

System
Error
(MSE)

FORWARD
PHASE
(# of

function
calls)

BACKWARD
PHASE

(# of BP
function

calls)

SAVINGS in BP
(# of BP

function calls
skipped)

SAVINGS
PERCENTAGE

(% of BP
skipped)

HITS
Classification
Accuracy (%)

Trad-BP 0.4 0.8 453 0.00982 1812 1812 0 0 4 100
FIL-BP 0.4 0.8 453 0.00982 1812 1810 2 0.110375276 4 100

65

Although the savings might not be significant to consider the use of FIL-BP as beneficial

in this case, it is important to highlight that even when skipping some patterns, neither the

minimization of the error nor the generalization are impacted. In other words, both networks’

performances are identical as they both reach the same minimum system error, and both have the

same classification accuracy.

Table 5.3 provides a summary of the performance of both networks while training with the

XOR dataset across all combinations of the learning parameter and momentum parameters.

Table 5.3: Summary of training with XOR dataset

The complete table showing the comparison between both networks for each of the training

settings is found in Appendix B.

5.2 WELL-BEHAVED MEDIUM-SIZE DATABASE – IRIS CLASSIFICATION PROBLEM

The iris classification problem utilizes one of the best-known databases used in pattern

recognition literature since it was collected by R. A. Fisher [Fis36]. It is a standard benchmark

problem for testing different classification methods [Hua02]; therefore, it is used as a second, more

complex testbench in assessing the performance of both Trad-BP and FIL-BP networks.

EPOCHS
completed

FORWARD
PHASE
(# of

function
calls)

BACKWARD
PHASE

(# of BP
function

calls)

SAVINGS in
BP

(# of BP
function

calls
skipped)

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

MAX 5000 20,000 20,000 0 0 0.069264 4 100
MIN 192 768 768 0 0 0.009758 2 50
AVG 1342.89 5,372 5,372 0 0 0.011162 3.94 98.44
MAX 5000 20,000 20,000 2 0.110 0.069264 4 100
MIN 192 768 768 0 0 0.009758 2 50
AVG 1342.89 5,372 5,372 0.03 0.00 0.011162 3.94 98.44

TRAINING (Dataset size= 4) PERFORMANCE EVALUATION (Dataset size= 4)

Trad-BP

FIL-BP

66

 This problem consists of classifying three classes of iris plants based on four flower

attributes. The data set was obtained from the University of California at Irvine (UCI) Machine

Learning Repository [Dua19].

The database contains 150 mixed patterns: 50 Iris-Setosa, 50 Iris-Versicolor and 50 Iris-

Virginica (see Figure 5.5).

Figure 5.5: Three Classes: Iris-Setosa, Iris Versicolor and Iris-Virginica

Each pattern has 4 flower attribute values: sepal length, sepal width, petal length, and petal

width. The general characteristics of the database are summarized in Table 5.4.

Table 5.4: Iris Data Characteristics
 MIN MAX Average

Sepal length 4.3 7.9 5.84
 width 2 4.4 3.05

Petal length 1 6.9 3.76
 width 0.1 2.5 1.2

Both networks are implemented using the same architecture which consists of four input

neurons, four hidden neurons, and three output neurons. As in the previous testbench, the networks

are trained by dynamically changing the different values for the learning rate () and momentum

() parameters before the start of each new training session according to the (set described

by equation 5.1.

67

The duration of each training session is set to have a maximum number of iterations of

5,000 epochs. Duration can, of course, be less if the system converges to an accumulated system

error that is under the 0.01 tolerance prior to the epoch limit.

The iris database is considered “well-behaved” by experts in the field because the training

set has excellent and equal representation of all the three classes, and the attributes are inherently

so meaningful that most networks with this data set typically obtain high classification rates. One

of the classes is linearly separable from the other two, but the other two classes are not linearly

separable from each other.

 Among the three problems being used for this study, this database can be considered

medium in size. The total size of this database is 150 records distributed equally among the three

classes (50 patterns for each category). The training set has 90 samples and the testing set has 60

samples.

To provide a better perspective of the performance of the FIL-BP network, the analysis

begins with the savings achieved, compared to the Trad-BP, while training across all the learning

rate and momentum combinations.

As described in Chapter 4, each network goes through a forward phase and a backwards

phase while training. The Trad-BP always completes the same amount of forward function calls

(during propagation) as BP functions calls (during backpropagation), effectively providing zero

savings. This is because each pattern is passed forwards and backwards throughout the duration of

the training, as per the original learning algorithm, with no efficiency, i.e., opportunity of skipping.

For instance, when Trad-BP takes 5,000 epochs for training, each of the 90 patterns in the

training set are passed forward 5,000 times and backwards 5,000 times. This means that there are

68

450,000 forward function calls and another 450,000 BP function calls (90 patterns times 5,000

epochs equal 450,000 function calls for each phase) for a total of 900,000 functions calls by the

end of each training session (a new training session is initiated for each of the 64 learning rate and

momentum combinations).

 The efficiency of the proposed model is calculated by comparing the number of BP

function calls it would have made (explicitly given by the actual number of forward calls required

by the number of epochs completed) to the number of BP function calls skipped by the FIL-BP

network. Thus, this figure is referred to as “savings” in the following paragraph, since the work is

saved by skipping function calls.

Since the savings come from the backwards phase only, Figure 5.6 shows the total number

of BP functions calls made by each of the networks while training. When comparing one network

to the other, it becomes apparent that the FIL-BP completes a considerably smaller number of

function calls under every single combination of the learning rate and momentum parameters,

providing a substantial amount of savings.

A complementary visualization of these results is presented in Figure 5.7. In this graph the

y-axis shows the percentage of BP function calls skipped by each network. Notice Trad-BP

network provides zero percent of savings as it never skips backpropagation of any pattern during

training. FIL-BP provides savings throughout the settings, reaching an astonishing maximum of

up to 83% of BP functions skipped.

Given the large number of patterns skipped during training, it is crucial to analyze the

impact this has on the network’s performance, determined by the system error and generalization

capacity during evaluation.

69

Figure 5.6: Number of BP Function Calls, during training with the iris dataset

70

Figure 5.7: Percentage of BP function calls skipped, training with the iris dataset

71

Surprisingly, when comparing the final system error of FIL-BP to that obtained by Trad-

BP, the performance of one almost mirrors the other, being very similar in most cases. In most

cases, the performance difference between the two systems is insignificantly small, sometimes

even favoring the use of the FIL-BP. There are a few instances where the difference is much larger,

but occurs in only a few cases, with both of the networks showing at least once instance of

outperforming the other. Figure 5.8 shows the comparison of the minimized system error achieved

by both networks.

Figure 5.8: System error of Trad-BP and FIL-BP after completing training

Remarkably, the FIL-BP network does not suffer any negative impact on its classification

accuracy by being more efficient in its training. Figure 5.9 show the classification accuracy of both

networks across all learning parameter combinations. Both networks produce almost the mirror

image of each other, with FIL-BP having better on some occasions. There are a few instances with

a much larger difference, but it occurs in favor of both networks at different points.

72

Figure 5.9: Classification of Trad-BP and FIL-BP for iris database

To take a closer look at the results provided by FIL-BP, the following figures compare the

training process of both networks as they converged under the = (0.7, 0.2) parameters. Figure

5.10 and 5.11 show how, during training, the Trad-BP and FIL-BP networks iteratively reduced

the system error.

An interesting artifact is observed in Figure 5.10, approximately around epoch 1000, and

highlighted by an arrow: the Trad-BP model appears to be momentarily stuck at a possible local

minimum. Figure 5.11 demonstrates that this situation seems to be completely avoided by the FIL-

BP.

Leftward pointing arrows have been added to Figures 5.10 and 5.11, to show when both

systems reach the same initially stabilizing error, inching closer to convergence. FIL-BP reaches

that milestone by epoch 3400, while the Trad-BP requires 3143 epochs to begin stabilization.

Although the Trad-BP reaches the milestone first, the FIL-BP converges faster!

73

Figure 5.10: System error reduction by Trad-BP for = (0.7, 0.2)

Figure 5.11: System error reduction by Trad-BP for = (0.7, 0.2)

Figure 5.12 superimposes the error reduction of both networks on the same graph. This

shows that FIL-BP converges to the 0.01 tolerable error mark much sooner. While Trad-BP

reaches convergence by epoch 4842, FIL-BP converges and stops the training by epoch 4188, a

difference of 654 epochs. This shows a savings already, if number of epochs was the metric. (It

74

can be shown that number of epochs is a good metric, as each epoch is related to execution time,

so the savings in epochs is directly proportional to greater efficiency in execution time of the

training phase.) The charts on the next pages will show the numerical savings in terms of BP

function calls skipped for = (0.7, 0.2) and other combinations.

Figure 5.12: System error reduction by Trad-BP and FIL-BP for = (0.7, 0.2)

Figure 5.13: Percentage of iris database skipped by FIL-BP for = (0.7, 0.2)

75

Figure 5.13 shows the percentage of the database that is skipped while training for =

(0.7, 0.2). Notice it reaches points when it skips 95% of the database!

To complete the comparative analysis of the savings FIL-BP provides for the iris dataset,

five instances where either network reached convergence were selected. The next figures show the

comparison for training sessions under the following pairs of learning parameters: = {(0.4,

0.6), (0.5, 0.1), (0.6,0.3), (0.7,0.2) and (0.7,0.3)}.

Figure 5.14 shows visually and numerically the number of BP calls made by both networks

while training. In every instance, FIL-BP requires a smaller number of calls, which means the

system will provide the corresponding savings on execution time during training.

 Figure 5.14: Number of BP function calls during different training sessions

Figure 5.15 shows there is no negative impact on the final system error due to the skipped

patterns. The dotted red line points out the 0.01 error mark (convergence point). Notice the

difference in magnitude for the biggest error in pair = (0.5, 0.1) could be considered

acceptable given the savings of 82% this same setting provides.

76

Figure 5.15: Final system error during different training sessions

Finally, for all of these instances, the classification of both systems is exactly the same. In

other words, even though FIL-BP skipped many patterns, it did not affect its ability to generalize

with the same accuracy as Trad-BP. These results are show in Figure 5.16.

Figure 5.16: Classification after completing different training sessions

77

In an attempt to summarize the overall satisfactory performance of FIL-BP over Trad-BP,

the maximum, minimum and average values of each category across the 64 rows corresponding to

each learning parameter combinations is listed on Table 5.5. The complete table showing the

comparison between both networks for each of the learning parameters used while training with

the iris database is found in Appendix C.

Table 5.5: Summary of training results for iris database

5.3 BADLY-BEHAVED LARGE-SIZE DATABASE – CONNECTIONIST BENCH (VOWEL

RECOGNITION) CLASSIFICATION PROBLEM

 The objective of this classification problem is to be able to recognize the eleven steady

state vowels of the British English independent of the speaker utterance. The sounds are for the

following eleven words: hid, hId, hEd, hAd, hYd, had, hOd, hod, hUd, hud, hed.

The database was collected from 15 different speakers, each saying each of the eleven state

vowels six times. The training set has 528 samples, while the testing set has 462 samples which

combine into a database of 990 records. As with the previous problem, the database was also

obtained from the University of California at Irvine (UCI) Machine Learning Repository [Dua19].

EPOCHS
completed

FORWARD
PHASE
(# of

function
calls)

BACKWARD
PHASE

(# of BP
function

calls)

SAVINGS in BP
(# of BP

function calls
skipped)

SAVINGS
PERCENTAG
E (%

of BP
skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

MAX 5000 450,000 450,000 0 0 0.355858 59 98.333333
MIN 3691 332,190 332,190 0 0 0.01 0 0
AVG 4961.73 446,556 446,556 0 0 0.054089 49.14 81.90

MAX 5000 450,000 443,884 372,760 82.836 0.386947 59 98.333333
MIN 4188 376,920 77,240 6,116 1.359111 0.01 0 0
AVG 4977.08 447,937 224,083 223,854 49.94 0.058380 47.45 79.09

TRAINING (Dataset size= 90) PERFORMANCE EVALUATION (Dataset size= 60)

Trad-BP

FIL-BP

78

 It is important to highlight that this database, collected by Tony Robinson for his

dissertation research, falls into a type of classification problem that he, himself, describes as

impossible. The goal here is to maximize a less than perfect performance. It should also be noted

that this data set is recognized in the historical literature as “badly behaved” due to the relatively

low performance that most systems achieve with this data.

Both networks are implemented using the same architecture which consists in this case of

10 input neurons, 10 hidden neurons, and 11 output neurons. As in the previous problem, the

networks are trained by dynamically changing the different values for the learning rate () and

momentum () parameters before the start of each new training session according to the (set

described by equation 5.1.

The duration of each training session is set to have a maximum number of iterations, equal

to 5,000 epochs. This duration could be less if the system actually converges to an accumulated

system error that is under the 0.01 tolerance. It should be noted that due to the complexity of the

database, the system doesn’t converge under these settings. Classification performance would

probably benefit from a much higher number of training epochs, larger architecture, and greater

computational power. However, the purpose of this study is to use the database under this

manageable setting to show the benefits and efficiency that FIS-BP provides, over a traditional

BP network, when facing a complex problem.

Under this setup, training for 5,000 epochs with a training dataset of 528 patterns requires

the Trad-BP system to pass each pattern 2,640,000 times forward, and another 2,640,000 times

backwards for a total of 5,280,000 function calls by the end of each of the 64 training sessions

which combine to a total of 337,920,000 functions calls if no skipping is implemented.

79

Figure 5.17 shows the total number of BP functions calls made by each of the networks

while training. Notice that Trad-BP executes 2,640,000 BP function calls for each of the 64

learning rate and momentum combinations. Even for a complex problem such as this one, FIL-BP

completes a considerably smaller number of function calls under every single combination of the

learning rate and momentum parameters providing a substantial amount of savings.

Figure 5.17: Savings provided by FIL-BP when training with vowel dataset

The complementary visualization of these results, depicting savings in percentages, is

presented in Figure 5.18. In this graph, the y-axis shows the percentage of BP function calls

skipped by each network. Notice Trad-BP network provides zero percent of savings as it never

skips backpropagation of any pattern during training. FIL-BP provides extensive savings

throughout the settings, reaching an incredible maximum of up to 76% of BP functions skipped.

80

Figure 5.18: Percentage of BP function calls skipped by FIL-BP when

training with the vowel dataset

While analyzing the impact of such high efficiency (i.e. skipping BP calls), one should

consider what effect this might have on the system error and generalization capability during

evaluation. It is very exciting to report that, again, there is no significative difference, in either

metric, between the Trad-BP and FIL-BP models.

Figure 5.19 shows the error reduction achieved by both networks. Notice the behavior of

FIL-BP network again very closely follows that of the Trad-BP which used 100% of the training

dataset every time. Remarkably, there are many instances where FIL-BP achieves a better system

error reduction than Trad-BP. This might indicate that the FIL-BP doesn’t over-train, hence

avoiding overfitting.

81

Figure 5.19: System error for Trad-BP and FIL-BP after completing training

FIL-BP doesn’t suffer any negative impact on its classification accuracy either. Figure 5.20

shows the classification accuracy of both networks across all learning parameter combinations is

very similar and, in some instances, FIL-BP has a better classification rate.

On average, FIL-BP is almost one percent better in its classification effort which seems to

confirm the notion that, to a certain degree, the chance of overfitting is diminished.

82

Figure 5.20: Classification accuracy for Trad-BP and FIL-BP

To continue the comparative analysis of the savings FIL-BP provides for the vowel dataset,

the four instances showing best performances were selected. The next figures show the comparison

for training sessions under the following pairs of learning parameters: = {(0.3, 0.7), (0.5, 0.2),

(0.5,0.3), and (0.5,0.4)}.

Figure 5.21 and 5.22 show, respectively, the number of BP calls executed and the

percentage of calls skipped while training. In every instance, the savings provided by FIL-BP is

substantial.

83

Figure 5.21: Number of BP function calls during different training sessions

Figure 5.22: Percentage of BP function calls skipped during different training sessions

Figure 5.23 shows the system error difference between both networks. Notice the

convergence level is included, but none of the networks under the current settings was able to

achieve it.

84

Figure 5.23: Final system error during different training sessions

 Finally, Figure 5:24 shows that from all the training sessions, FIL-BP achieves the highest

accuracy of all with a rate of 48.92%

Figure 5.24: Classification after completing different training sessions

85

Lastly, in an attempt to summarize and highlight the satisfactory performance of FIL-BP

over Trad-BP, the maximum, minimum and average values of each category across the 64 rows

corresponding to each learning parameter combinations is listed on Table 5.6. Please note the

complete table showing the comparison between both networks for each of the learning parameters

used while training with the vowel database is found in Appendix D.

Table 5.6: Summary of training results for vowel database

Notice on the table that FIL-BP is better on every category evaluating performance and

generalization capability. On average, FIL-BP provides a 57% savings by the number of function

calls that are skipped. This number is especially significant for the large databases that are typically

part of problems solved by deep learning.

EPOCHS
completed

FORWARD
PHASE
(# of

function
calls)

BACKWARD
PHASE

(# of BP
function

calls)

SAVINGS in BP
(# of BP

function calls
skipped)

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

MAX 5000 2,640,000 2,640,000 0 0 0.262952 209 45.24
MIN 5000 2,640,000 2,640,000 0 0 0.027072 103 22.29
AVG 5000 2,640,000 2,640,000 0 0 0.075117 172.25 37.28

MAX 5000 2,640,000 2,536,024 1,998,475.00 75.70 0.240363 226 48.917749
MIN 5000 2,640,000 641,525 103,976.00 3.94 0.032297 112 24.242424
AVG 5000 2,640,000 1,128,580 1,511,419.95 57.25 0.068177 176.06 38.11

TRAINING (Dataset size= 528) PERFORMANCE EVALUATION (Dataset size= 462)

Trad-BP

FIL-BP

86

CHAPTER 6: CONCLUSION

The aim of this research is to investigate innovative strategies that can optimize the learning

algorithms used in DLN with the purpose of speeding up the training phase in an effort to provide

a solution to the challenging problem of reducing long training times that are typical in large AI

applications.

This study shows that FIL-BP training model successfully reduces training execution times

by inserting a two-phase intelligent fuzzy agent integrated into the backpropagation algorithm.

During the first phase, the fuzzy agent serves as a decision support system which monitors the

performance at the local level and decides when to allow the training procedure to continue and

when to avoid updating the weights. In the second phase, the fuzzy agent uses performance metrics

at the global level along with a rule base system to infer a conclusion that controls a skipping

mechanism which successfully reduces the number of operations required to complete the training

of a network while maintaining its classification accuracy.

This study shows that the network trained with the integrated fuzzy intelligent agent

learning model successfully and substantially reduces the number of backpropagation operations

by an average of at least 50% and provides up to 82% in savings to effectively reduce the execution

time and accomplish the desired speedup. Remarkably, the extensive savings do not impact the

ability for the network to reduce the system error, in fact, the network is able to achieve the same

level of reduction as the traditional implementation and at times it outperforms it by reaching

network convergence 600 epochs earlier which provide considerable extra savings by completing

the training session in advance and avoiding all operations in the forward and backward training

phases after that point, hence reducing the execution time and optimizing the training even further.

Additionally, the generalization capability of FIL-BP model achieves the same high levels of

classification accuracy, and in many instances, it outperforms the traditional implementation which

is particularly noticeable on the most complex databased used.

87

The next sections present a concise review of the results, offers conclusions, and suggests

recommendations for future work.

6.1 REVIEW OF RESULTS OBTAINED

A feedforward multi-layer network with binary sigmoid activation function trained with

the traditional implementation of the backpropagation algorithm was created to serve as the

baseline model identified as Trad-BP. The training scheme of the traditional backpropagation

algorithm was modified to be assisted by fuzzy inference learning in the proposed model identified

as FIL-BP.

In essence, FIL-BP model uses an intelligent agent that tracks the performance of the

network as it processes the training data to produce a response. If the response to a particular

pattern causes a local error considered acceptable to a tolerable degree, the fuzzy agent will advise

the network to skip the backward phase of the training and focus on those patterns that cause larger

errors, and hence need to complete the backpropagation process. By doing so, the network will

effectively avoid those unnecessary updates to the weights which would not make a meaningful

adjustment to the network’s knowledge, nor contribute to the improvement of the classification

capability. At the same time, the fuzzy agent considers the global performance of the network in

order to control the skipping mechanism by diligently tracking the magnitude of the system error

and the subtle changes in the error to infer an action that will modify the aforementioned tolerance

when necessary.

In order to evaluate and compare their performance, both Trad-BP and FIL-BP models

were trained with three different benchmark datasets that differ in size and complexity.

It should be noticed that while training for all three classification problems, FIL-BP was

successfully able to skip numerous BP function calls causing substantial savings of up to 82%.

This provided the desired training speedup effect while remarkably being able to maintain a system

error and classification accuracy behaviors that effectively mirrored the baseline case.

88

These results are summarized by Table 6.1. Notice that, on average, the savings are at least

50% and can go up to 82% while the system error is maintained at the same comparable level. The

classification accuracy of FIL-BP is actually increased in all categories for the large dataset.

Table 6.1: Performance comparison for Trad-BP and FIL-BP

6.2 CONCLUSION

Based on the observed results, several conclusions can be made. Overall, it can be stated

that when FIL-BP was trained with three benchmark databases, it demonstrated an ability to

provide great levels of savings which do not cause a significant impact on the minimization of the

system error and does not hinder the classification accuracy. In fact, in the case of the vowel

dataset, the generalization capability is greater for FIL-BP which seems to suggest that when the

modified algorithm is trained with large, badly-behaved datasets, it also avoids the problem of

SAVINGS in
of BP

function
calls

skipped

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

SAVINGS in # of
BP function

calls skipped

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

FIL- BPTrad- BP
PERFORMANCE EVALUATION PERFORMANCE EVALUATION

MAX 0 0 0.069264 4 100 2 0.110 0.069264 4 100
MIN 0 0 0.009758 2 50 0 0 0.009758 2 50
AVG 0 0 0.011162 3.94 98.44 0.03 0.00 0.011162 3.94 98.44

XO
R

MAX 0 0 0.355858 59 98.33 372,760 82.836 0.386947 59 98.33
MIN 0 0 0.01 0 0 6,116 1.36 0.01 0 0
AVG 0 0 0.054089 49.14 81.90 223,854 49.94 0.058380 47.45 79.09

IR
IS

MAX 0 0 0.262952 209 45.24 1,998,475.00 75.70 0.240363 226 48.92
MIN 0 0 0.027072 103 22.29 103,976.00 3.94 0.032297 112 24.24
AVG 0 0 0.075117 172.25 37.28 1,511,419.95 57.25 0.068177 176.06 38.11VO

W
EL

89

overtraining! This is a welcomed outcome because DL applications usually train with this type of

big data.

By analyzing the empirical results across all different databases used, it can be concluded

that FIL-BP can be recommended for general use independent of the type of problem. In fact, FIL-

BP savings increases as the complexity, size, and challenge of the dataset increases.

For clarity of these comments, the following sections present the observation of each

classification problem. Please refer to Table 6.1 for numerical values.

6.2.1 Comparing Performance While Training for the XOR Problem

It should be noted that the information presented for the XOR problem in Table 6.1 shows

that the metrics under all the categories are the same for both Trad-BP and FIL-BP. There is only

one opportunity of savings which is not significant. This means that on average, FIL-BP did not

cause any speed up in training on this type of problem.

This result suggests that the proposed model doesn’t find many opportunities for savings

due to the small size of the database which contains only the core patterns necessary to achieve

the expected learning.

6.2.2 Comparing Performance While Training for the IRIS Problem

The information presented for the IRIS problem in Table 6.1 shows that FIL-BP can

provide substantially large savings of up to 82% on training, while, on average, the system error

remains essentially the same when compared to Trad-BP (with a difference in error of 0.004).

Similarly, there is a minimal classification accuracy difference of 2.81%. These minimal

differences in system error magnitude and classification accuracy are a small price to pay when

compared to the substantial savings that FIL-BP can provide by reducing the number of

computations that are required during training. Based on the observed results, it could be argued

that FIL-BP is recommended for use in medium size or well-behaved datasets, unless the aim of

90

the application strives to achieve the maximum classification accuracy possible, without regard to

the time spent in training. By using FIL-BP the speedup provided by the average savings of at least

50% outweighs the 0.004 reduction error difference.

6.2.3 Comparing performance while training for the vowel problem

The information presented for the vowel problem in Table 6.1 shows that FIL-BP was able

to provide savings of up to 75% with an average of 57% of BP function calls skipped. This means

that on average FIL-BP allowed the system to skip more than half of the operations that would

have been required under Trad-BP training.

Not only was FIL-BP able to offer big savings in computations made, it surprisingly was

better in every category under the evaluation metrics. Notice that the number of hits while using

the test data is greater in all cases, hence the classification accuracy is also greater than Trad-BP

at the maximum, minimum and average comparisons.

These results suggest that for large and badly-behaved databases, FIL-BP not only speeds

up the training, but also helps in the generalization. It could be argued that, by not spending time

learning from training patterns that it already knows how to classify (within a tolerable degree)

and hence avoiding unnecessary weight updates, the network also avoids overtraining which is an

important factor that impacts generalization.

This argument can be supported by taking a closer look at the following case. When FIL-

BP trained using the challenging vowel dataset, specifically under the learning parameters =

(0.3, 0.7), it required the processing of 528 patterns that passed through the network for a duration

of 5,000 epochs. This means that Trad-BP passed all the patterns forward and backward through

the network causing a total of 2,640,000 updates to the weight matrix. Meanwhile, FIL-BP

executed only 641,525 updates to the weigh matrix for a savings of 75%. By analyzing this result

further, it is important to notice that under the same settings, at times FIL-BP model was skipping

up to 89% of the whole dataset (skipping 470 of the 528 patterns) as shown in Figure 6.1.

91

This seems to suggest that by skipping so many patterns and reducing the training time, at

the same time it avoided overfitting the network to the training data. This can be corroborated by

the higher classification values.

Figure 6.1: FIL-BP skips up to 89% of the data vectors in the dataset

6.3 RECOMMENDATIONS AND FUTURE WORK

Based on the presented work and the obtained results, it would be interesting to continue

the research investigating some of the following suggestions that could improve or enhance the

proposed model.

First, since the model is already tracking the system error through the epochs and the

change in error, it would be exciting to add more rules, and fine-tune the membership functions,

for the fuzzy agent to use towards an exit strategy that would halt the training session when there

is a trend that indicates the learning has stalled. For instance, if the error is small or the change in

error is small and this trend continues for a certain number of epochs, at this point there is no more

learning occurring, therefore, the system should stop training. This would allow a savings in the

number of epochs required for training and would also skip all the operations in the forward phase.

92

Having this exit strategy would very likely avoid overtraining and also avoid the unnecessary

modification of the weights that sometimes cause the final error to increase.

Second, using the FIL-BP model and shortening the training time would allow exploration

of the effects of increasing the number of neurons or number of layers could have on problems

such as the vowel classification where accuracy might improve by doing so. It also allows faster

feedback on the effects of changing the number of maximum iterations or the use of optimizers

(such as AdaGrad, RMS Prop or Adam) for the learning rate or momentum parameters.

Finally, the decision-making ability of the fuzzy agent could be improved by keeping track

of each class in the dataset. By doing so, even if the pattern error is lower than the tolerance, the

fuzzy agent can advise to continue with the backpropagation phase if the class performance is

lower than desired.

93

REFERENCES

[Au98] Au Shu-Fai, “Letter Recognition Using a Fuzzy Logic Controlled Neural Network,” M.
S. Thesis, The University of Texas at El Paso, 1998.

[Ami18] Amiri Z., Hassanpour H., Khan M., Khan H., “Improving the Performance of Multilayer

Backpropagation Neural Network with Adaptive Learning Rate”, 2018 International
Conference on Advances in Big Data, Computing and Data Communications Systems
(icABCD), August, 2018

[Ara92] Arabshahi P., Choi J., Marks R., Caudell T., “Fuzzy Control of Backpropagation”, IEEE

International Conference on Fuzzy Systems, Proceedings 967-972, 1992

[Ben12] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

 architectures. In Neural Networks: Tricks of the Trade. (pp. 437-478). Berlin: Springer.

[Chu01] Chudler, H. Eric, “A computer in your head?” Odyssey magazine, Cobblestone

Publishing, 10:6-7, 2001.

[Cir12] Ciresan, D., Meier U., Schmidhuber J., ““Multi-column deep neural networks for image
 classification," in Computer Vision and Pattern Recognition (CVPR), no. February,
 pp. 3642-3649, 2012.

[Dua19] Dua, D., “UCI Machine Learning Repository,” (University of California, School of

Information and Computer Science) http://archive.ics.uci.edu/ml, January 1, 2019.

[Fau94] Fausset, Laurene, “Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications,” Prentice Hall , pp1-96,289-324, 1994.

[Fal21] Falk, A., “Deep Learning vs Machine Learning: What’s the Difference,” IEEE Computer

Society Tech News, https://lawtomated.com/a-i-technical-machine-vs-deep-learning/,
June 15, 2021.

[Fis36] Fisher, R., "The use of multiple measurements in taxonomic problems,” Annual
Eugenics, 179-188, 1936.

[Fre01] Freudenrich, C. Craig, “How your brain works,”

http://science.howstuffworks.com/brain.htm/, 2001.

[Hai21] Human-centered Artificial Intelligence, “AI Index Report 2021,”

https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-
Report_Master.pdf

[He15] He, K., Zhang X., Ren S., Sun J., “Delving deep into rectifers: Surpassing human-level
 performance on imagenet classification," Proceedings of the IEEE International
 Conference on Computer Vision, vol. 2015 Inter, pp. 1026-1034, 2015.

94

[Ho19] Ho, K., “MIT Technology Review,” TechnologyReview.com:
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-
can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/, June 6, 2019

[Gax12] Gaxiola F., Melin P., Valdez F., “Backpropagation method with type-2 Fuzzy Weight

Adjustment for Neural Network Learning”, Proceedings of the International Joint
Conference on Neural Networks (IJCNN), 2012

[Jan97] Jang J. -S. R., Sun C.-T., Mizutani E., “Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence,” Prentice Hall, pp.197-
327, 1997.

[Jou17] Jouppi N.P., Borchers A., Boyle R., et al, “In-Datacenter Performance Analysis of a

Tensor Processing Unit," ACM SIGARCH, Computer Architecture News, vol. 45, no. 2,
pp. 1-12, 2017.

[Kar04] Karakose M., Akin E., “Type-2 fuzzy activation function for multilayer feedforward

neural networks” , IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No 04CH37583), October, 2004

[Kar16] Karn, U., “An Intuitive Explanation of Convolutional Neural Networks,”

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/, August 11, 2016.

[Kau20] Kaur, J., “Automatic log analysis using deep learning and AI,”

https://www.xenonstack.com/blog/data-science/log-analytics-deep-machine-learning-
ai/, August 24, 2020

[Klu22] Klubnikin, A., “How much does artificial intelligence cost?,”

https://itrexgroup.com/blog/how-much-does-artificial-intelligence-cost/, August 29,
2022

[Kol19] Kolbusz J., Lysenko O., Rozycki P., Wilamowski B., “Error Back Propagation Algorithm

with Adaptive Learning Rate”, International Conference on Information and Digital
Technologies (IDT, June 2019

[Kri17] Krizhevsky, A., Sutskever, I., & Hinton, G. E., “Imagenet classification with deep

convolutional neural networks,” Communications of the ACM, (pp. 84-90), 2017.

[Lab21] Lab, S. V., “Imagenet,” https://image-net.org/, March 11, 2021

[Lar19] Lardinois, F., “Google's newest Cloud TPU Pods feature over 1,000 TPUs,”

https://techcrunch.com/2019/05/07/googles-newest-cloud-tpu-pods-feature-over-1000-
tpus/, Tech Crunch, May 7, 2019.

[Lin15] Ling A., Capalija D., Chiu G., “Accelerating Deep Learning with the OpenCL
 Platform and Intel Stratix 10 FPGAs," tech. rep., Intel, 2015.

95

[Lip94] Lippe W. M., Feuring Th., Tenhagen A., “A Fuzzy-controlled Delta-bar-delta Learning

rule”, Proceedings of IEEE International Conference on Neural Networks (ICNN;94),
July 1994

[Mcc43] McCulloch W. S. And Pitts W., “A Logical Calculus of the Ideas Immanent in Nervous

Activity,” Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[Mlp20] MLPerf Training V0.7 Results 2020, https://mlcommons.org/en/

[Nok19] Nokland A., Eidnes L., “Training Neural Networks with Local Error Signals”,

International Conference of Machine Learning, 2019

[Ovt15] Ovtcharov K., Ruwase O., Kim J., Fowers J., Strauss K., Chung E.S., “Accelerating
 Deep Convolutional Neural Networks Using Specialized Hardware," Microsoft
 Research Whitepaper, pp. 3-6, 2015.

[Ras12] Rashidy H., Azar K., “Reduction of Neural Network Training Time Using an Adaptive

Fuzzy Approach in Real Time Applications” , International Journal of Information and
Electronics Engineering, Vol. 2, No. 3, May 2012

[Rud76] Rudin, W., “Principles of Mathematical Analysis,” McGraw-Hill, 1976.

[Rus20] Rustum, R., Kurichiyanil, Forrest, S., & Sommariva, C., “Sustainability Ranking of

Desalination Plants using Mamdani Fuzzy Logic Inference System,” Sustainability,
12(2) 631, 2020.

[Sch02] Schmutter, P., “A Taxonomy for Artificial and Computational Intelligence,”

http://www.ooop.org/publications/thesis/node18.html, January 1, 2002.

[Sch19] Schuchmann, S., “History of the first AI Winter,”

https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b, Towards
Data Science, May 12, 2019.

[Tch17] Tch, A., “The mostly complete chart of Neural Networks, explained,”

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-
explained-3fb6f2367464, Towards Data Science, August 4, 2017.

[Wig21] Wiggers, K., “AI weekly: AI model training costs on the rise, highlighting need for new

solutions,” https://venturebeat.com/ai/ai-weekly-ai-model-training-costs-on-the-rise-
highlighting-need-for-new-solutions/, The Machine, October 15, 2021

[Wil19] Willems, K., “Keras Tutorial: Deep Learning in Python,”

https://www.datacamp.com/community/tutorials/deep-learning-python, Datacamp,
December 1, 2019.

96

APPENDIX A: Program Code:

Backpropagation Algorithm with Trad-BP and FIL-BP modes

97

/**
 * Optimized learning using fuzzy-inference-assisted
 * algorithms for Deep Learning
 *
 * Miroslava Barúa
 *
 * A dual mode feedforward multi-layer neural network
 * with binary sigmoid activation function trained
 * with choice of traditional Backpropagation (BP) algorithm
 * or optimized BP training with Fuzzy intelligent agent.
 *
 * Basic Version
 *
 * Define BP net architecture
 * Initialize weight matrix w/small random #'s
 * Initialize fuzzy inference system
 * Obtain training data from specified file
 * Augment input vector with bias neuron
 * Train net with backpropagation algorithm
 * Do Forward phase
 * Use Fuzzy Inference System to optimize backward phase
 * Control BP skip conditions
 * Process test data obtained from file
 * Evaluate performance
 *
 **/

 /***
 * Portions of code for traditional BP mode
 * based on code by Dr. Patricia Nava
 *
 ***/

 /**
 *
 * File Name: FIL-BP.c
 *
 **/

 /***
 * File contains the following functions:
 *
 * back_prop(i):
 * get_goals():

 * init_inputs():

98

* init_weights():
 * main():
 * process():
 * propagate(i):
 * rnd_num():
 * train():
 * init_fuzzy_system()
 * get_system_inputs(input1, input2)
 * fuzzification()
 * rule_evaluation()
 * defuzzification()
 *
 ***/

 /*---------------- INCLUDE FILES --------------------------*/

#include "stdio.h"
#include "math.h"
#include "stdlib.h"
#include "float.h"
#include <string.h>

#define IN_UNTS 2 /* no. of input neurons */
#define HDN_UNTS 2 /* no. of hidden layer neurons */
#define OUT_UNTS 1 /* no. of output neurons */
#define FEED_IN 4 /* max no. of inputs to a neuron */
#define N_THRES 1.0 /* threshold for neurons if not in file */
#define MX_UNTS 4 /* max no. of neurons in any layer */
#define MX_PATTS 4 /* max no. of input samples */
#define MX_INPTS 16 /* max no. of input neurons */
#define MX_OUTPTS 3 /* max no. of output neurons */
#define NET_THRESHOLD 1.0 /*neurons threshold value */

#define max(a,b) (a<b ? b : a) /* For Fuzzy agent*/
#define min(a,b) (a>b ? b : a) /* rule evaluation */
#define MAXNAME 10
#define UPPER_LIMIT 1 /*limit - degree of membership */

/*---------------- TYPEDEFS AND STRUCTS BP -------------------*/

typedef struct {
 float input[FEED_IN + 1];
 float weight[FEED_IN + 1];

99

 float delta_weight[FEED_IN + 1];
 float delta;
 float output;
} neuron; /*define neuron's structure*/

float input[MX_PATTS][MX_INPTS + 1]; /*declare matrices by architecture*/
float goals[MX_PATTS][MX_OUTPTS];
float known_output[MX_PATTS][MX_OUTPTS];
float patt_err[MX_PATTS][MX_OUTPTS];
float tot_patt_err[MX_PATTS];

neuron hid_layer[HDN_UNTS + 1];
neuron out_layer[OUT_UNTS];

float sys_err; /* system error */
int num_samples, num_goals, num_misses = 0;
int max_iterations = 5000, min_err_iter; /* Set training session maximum duration */
int miss_flag = 0;
float learning_rate = 0.7, momentum = 0.8; /* learning parameters*/
float max_tot_err = 0.01, max_indv_err = 0.001; /* system error tolerance*/
float min_err_td = 500.0;
long randseed = 568731L; /* for random number*/
char rpt_name[20];

/*---------------- TYPEDEFS AND STRUCTS FOR FUZZY AGENT -------------------*/

struct io_type* System_Inputs;
struct io_type* System_Output;
struct rule_type* Rule_Base; /* rules in Rule base*/

struct io_type {
 char name[MAXNAME]; /* FIS system input and output structures */
 float value;
 struct mf_type* membership_functions;
 struct io_type* next;
};
struct mf_type { /* Membership functions structure*/
 char name[MAXNAME];
 float value; /* degree of membership */
 float point1;
 float point2;
 float slope1;
 float slope2;
 struct mf_type* next;
};

100

struct rule_type {
 struct rule_element_type* if_side; /* antecedents */
 struct rule_element_type* then_side; /* consequent */
 struct rule_type* next;
};
struct rule_element_type {
 float* value;
 struct rule_element_type* next; /* next element in rule */
};

float my_patt_err[MX_PATTS]; /* total local patterrn error ej */
float epoch_sys_err; /* epoch error*/
float outFIS;
int skip = 0;
int iter;
int skip_BPcnt = 0;
int yes_bp_cnt = 0;
int my_skip_cnt = 0;
float pat_err_tresh = 0.0;
/* Set up pointers */
FILE* rpt_ptr;
FILE* wt_ptr;
FILE* wtfin_ptr;

/***
 *
 * FUNCTION NAME: rnd_num()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: random floating point number
 *
**/

 /* Get small random number for neuron’s weight matrix */
float rnd_num()
{
 int num;
 randseed = 15625L * randseed + 22221L;
 num = (randseed >> 16) & 0x7FFF;
 return(num / pow(2.0, 15.0) - 0.5);
}/* end of rnd_num() function */

/***
 *

 * FUNCTION NAME: init_weights()

101

 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: user initializes neuron’s weights with small
 * random values --> calling generator function.
 *
 ***/
void init_weights()
{
 int j, k;
 float rnd_num();
 /* set up hidden layer threshold neuron */
 hid_layer[HDN_UNTS].output = N_THRES;

 for (j = 0; j < HDN_UNTS; j++) { /* hidden neuron # */
 for (k = 0; k < IN_UNTS + 1; k++) { /*input to jth neuron */
 hid_layer[j].weight[k] = rnd_num();
 } /* endloop (# of weights for each unit) */
 }/* endloop (# of hidden units) */

 for (j = 0; j < OUT_UNTS; j++) { /*ouput neuron # */
 for (k = 0; k < HDN_UNTS + 1; k++) { /*input to jth neuron */
 out_layer[j].weight[k] = rnd_num();
 }/* endloop (# weights for each unit) */
 }/* endloop (# of output units) */

 /*----------- Progress information ---------*/
 /* Write initial weight matrix onto a file */
 /* Loop for the hidden layer neuron's weights */
 fprintf(wt_ptr, "\n\n\n--");
 fprintf(wt_ptr, "\nweights are:\n");
 fprintf(wt_ptr, "hidden_layer \n");

 for (j = 0; j < HDN_UNTS; j++) { /* write hidden layer's weights */
 fprintf(wt_ptr, " \n");
 for (k = 0; k < IN_UNTS + 1; k++) {
 fprintf(wt_ptr, " %f \t\t", hid_layer[j].weight[k]);
 }/*for all inputs*/
 }/*for all hidden units*/

 /* Loop for the output layer neuron's weights */
 fprintf(wt_ptr, "\noutput_layer \n");
 for (j = 0; j < OUT_UNTS; j++) { /* write output layer's weights */

102

 fprintf(wt_ptr, " \n");
 for (k = 0; k < HDN_UNTS + 1; k++) {
 fprintf(wt_ptr, " %f \t\t", out_layer[j].weight[k]);
 }/*for all hidden units*/
 }/*for all output units*/
}/* end init_weight function */

/***
 *
 * FUNCTION NAME: init_inputs()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: Reads TEST patterns to process from a file to eval NN
 *
 **/
void init_inputs()
{
 int j, k;
 FILE* f_ptr;
 /*error message when file unavailable */
 if ((f_ptr = fopen("Test.txt", "r")) == NULL) {
 fprintf(rpt_ptr, "\nThe input file could");
 fprintf(rpt_ptr, " not be opened. Terminating program.");
 exit(10);
 }/* endif */
 /*Testing file scan */
 if (fscanf(f_ptr, "%d", &num_samples) != EOF)
 fprintf(rpt_ptr, "\n\n Opening test data of %d patterns\n\n ", num_samples);
 else
 printf("init_inputs() error ~ bad num_samples \n");
 for (j = 0; j < num_samples; j++) {
 for (k = 0; k < IN_UNTS; k++) {
 if (fscanf(f_ptr, "%f", &input[j][k]) != EOF)
 printf("....\n");
 else {
 printf("init_inputs() error ~ in input units or reached EOF\n");
 return(0);
 }
 }/* endloop (# of input units) */
 /* set up threshold "neuron" for input layer */
 input[j][IN_UNTS] = 1.0;
 /* ---------- this section for eval. purposes ---*/

103

for (k = 0; k < OUT_UNTS; k++) {
 if (fscanf(f_ptr, "%f", &known_output[j][k]) != EOF)
 printf("....");
 else
 printf("Error in target values \n");
 }/* endloop (# of target output units) */
 }/* endloop (# of data sets) */
 fclose(f_ptr);
} /* end of init_inputs() function */

/***
 *
 * FUNCTION NAME: init_fuzzy_system()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: Reads files for antecedents, consequence, rule base
 * init corresponding structures, determine slopes
 *
 **/

init_fuzzy_system()
{
 float a, b, c, d, x;
 char buff[10], buff1[4], buff2[4];
 FILE* fp;
 struct io_type* outptr; /*set pointers*/
 struct mf_type* top_mf;
 struct mf_type* mfptr;
 struct io_type* ioptr;
 struct rule_type* ruleptr;
 struct rule_element_type* ifptr;
 struct rule_element_type* thenptr;
 ioptr = NULL;
 ruleptr = NULL;
 ifptr = NULL;
 thenptr = NULL;
 top_mf = NULL;

 /*~~~ INITIALIZE STRUCTURES */
 if ((fp = fopen("Antecedent1.txt", "r")) == NULL) /* First antecedent */
 {
 printf("ERROR- Unable to open file named Antecedent1.txt.\n");

104

exit(0);
 }
 else {
 printf("Succes open file\n");
 }
 /* set pointer*/
 ioptr = (struct io_type*)calloc(1, sizeof(struct io_type));
 System_Inputs = ioptr;
 x = fscanf(fp, "%s", buff);
 sprintf(ioptr->name, "%s", buff);
 mfptr = NULL;
 while ((x = fscanf(fp, "%s %f %f %f %f", buff, &a, &b, &c, &d)) != EOF)
 {
 if (mfptr == NULL)
 {
 mfptr = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 top_mf = mfptr;
 ioptr->membership_functions = mfptr;
 }
 else
 {
 for (mfptr = top_mf; mfptr->next; mfptr = mfptr->next);
 mfptr->next = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 mfptr = mfptr->next;
 }
 sprintf(mfptr->name, "%s", buff);
 mfptr->point1 = a;
 mfptr->point2 = d;

 if ((b - a) == 0) {
 mfptr->slope1 = (UPPER_LIMIT / 1);
 }
 else if (b - a > 0) {
 mfptr->slope1 = (UPPER_LIMIT / (b - a));
 }
 else
 {
 printf("Error (b-a)<0 element %s.\n", buff);
 exit(1);
 }
 if ((d - c) == 0) {
 mfptr->slope2 = (UPPER_LIMIT / 1);
 }
 else if (d - c > 0) {
 mfptr->slope2 = UPPER_LIMIT / (d - c);
 }

105

else {
 printf("Error in (d-c)<0 element %s.\n", buff);
 exit(1);
 }
 }
 fclose(fp);

 /*~~~ INITIALIZE STRUCTURES */

 if ((fp = fopen("Antecedent2.txt", "r")) == NULL)
 {
 printf("ERROR- Unable to open data file Antecedent2.txt.\n");
 exit(0);
 }
 else
 {
 printf("\n Success open file\n");
 } /* set pointer*/
 ioptr->next = (struct io_type*)calloc(1, sizeof(struct io_type));
 ioptr = ioptr->next;
 x = fscanf(fp, "%s", buff);
 sprintf(ioptr->name, "%s", buff);
 mfptr = NULL;
 while ((x = fscanf(fp, "%s %f %f %f %f", buff, &a, &b, &c, &d)) != EOF)
 {
 if (mfptr == NULL)
 {
 mfptr = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 top_mf = mfptr;
 ioptr->membership_functions = mfptr;
 }
 else
 {
 for (mfptr = top_mf; mfptr->next; mfptr = mfptr->next);
 mfptr->next = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 mfptr = mfptr->next;
 }
 sprintf(mfptr->name, "%s", buff);
 mfptr->point1 = a;
 mfptr->point2 = d;

 /* calculate slopes and store*/
 if ((b - a) == 0) {
 mfptr->slope1 = (UPPER_LIMIT / 1);
 }
 else if (b - a > 0) {

106

mfptr->slope1 = (UPPER_LIMIT / (b - a));
 }
 else
 {
 printf("Error (b-a)<0 element %s.\n", buff);
 exit(1);
 }

 if ((d - c) == 0) {
 mfptr->slope2 = (UPPER_LIMIT / 1);
 }
 else if (d - c > 0) {
 mfptr->slope2 = UPPER_LIMIT / (d - c);
 }
 else {
 printf("Error in (d-c)<0 element %s.\n", buff);
 exit(1);
 }
 }
 fclose(fp);

 /****** INITIALIZE STRUCTURES */
 if ((fp = fopen("Conseq_out.txt", "r")) == NULL)
 {
 printf("ERROR- Unable to open data file Conseq_out.txt.\n");
 exit(0);
 }
 else {
 printf("\n Opened successfully\n");
 }
 /* set pointer */
 ioptr = (struct io_type*)calloc(1, sizeof(struct io_type));
 System_Output = ioptr;
 x = fscanf(fp, "%s", buff);
 sprintf(ioptr->name, "%s", buff);
 mfptr = NULL;
 while ((x = fscanf(fp, "%s %f %f %f %f", buff, &a, &b, &c, &d)) != EOF)
 {
 if (mfptr == NULL)
 {
 mfptr = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 top_mf = mfptr;
 ioptr->membership_functions = mfptr;
 }
 else
 {

107

for (mfptr = top_mf; mfptr->next; mfptr = mfptr->next);
 mfptr->next = (struct mf_type*)calloc(1, sizeof(struct mf_type));
 mfptr = mfptr->next;
 }
 sprintf(mfptr->name, "%s", buff);
 mfptr->point1 = a;
 mfptr->point2 = d;

 if ((b - a) == 0) {
 mfptr->slope1 = (UPPER_LIMIT / 1);
 }
 else if (b - a > 0) {
 mfptr->slope1 = (UPPER_LIMIT / (b - a));
 }
 else
 {
 printf("Error (b-a)<0 in element %s.\n", buff);
 exit(1);
 }
 if ((d - c) == 0) {
 mfptr->slope2 = (UPPER_LIMIT / 1);
 }
 else if (d - c > 0) {
 mfptr->slope2 = UPPER_LIMIT / (d - c);
 }
 else {
 printf("Error in (d-c)<0 element %s.\n", buff);
 exit(1);
 }
 }
 fclose(fp);

 /***INITIALIZE STRUCTURES */
 ioptr = NULL;
 outptr = NULL;
 if ((fp = fopen("rulebase.txt", "r")) == NULL) {
 printf("ERROR- Unable to open RULES file successully.\n");
 exit(0);
 }
 else {
 printf("\n Success open file\n\n");
 }
 ruleptr = (struct rule_type*)calloc(1, sizeof(struct rule_type));
 if (ioptr == NULL)Rule_Base = ruleptr;
 while ((x = fscanf(fp, "%s %s %s", buff, buff1, buff2)) != EOF)
 {

108

ioptr = System_Inputs;
 for (mfptr = ioptr->membership_functions; mfptr != NULL; mfptr = mfptr->next)
 {
 if ((strcmp(mfptr->name, buff)) == 0) /* first*/
 {
 ifptr = (struct rule_element_type*)
 calloc(1, sizeof(struct rule_element_type));
 ruleptr->if_side = ifptr;
 ifptr->value = &mfptr->value;
 ifptr->next = (struct rule_element_type*)
 calloc(1, sizeof(struct rule_element_type));
 ifptr = ifptr->next;
 break;
 }
 else {
 printf("...");
 }
 }
 ioptr = ioptr->next; /* second */
 for (mfptr = ioptr->membership_functions; mfptr != NULL; mfptr = mfptr->next)
 {
 if ((strcmp(mfptr->name, buff1)) == 0)
 { ifptr->value = &mfptr->value;
 break;
 }
 else {
 printf("...\n");
 }
 }
 if (outptr == NULL)outptr = System_Output; /* output */
 for (mfptr = outptr->membership_functions; mfptr != NULL; mfptr = mfptr->next)
 { if ((strcmp(mfptr->name, buff2)) == 0)
 { thenptr = (struct rule_element_type*)
 calloc(1, sizeof(struct rule_element_type));
 ruleptr->then_side = thenptr;
 thenptr->value = &mfptr->value;
 break;
 }
 else {
 printf(" ...\n");
 }
 }
 ruleptr->next = (struct rule_type*)calloc(1, sizeof(struct rule_type));
 ruleptr = ruleptr->next;
 } /* FINISHED FILES */

 fclose(fp);

109

} /* END INITIALIZE FUZZY SYSTEM */

/***
 *
 * FUNCTION NAME: propagate(i)
 *
 * PARAMETERS: i -- integer pattern number
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: FORWARD PHASE, propagates pattern #i through the net

 ***/
void propagate(i) /*feedforward pass begins */
int i;
{
 int j, k;
 float sum, fnet;
 /* ---------- initialize & calc. hidden units' responses --- */
 for (j = 0; j < HDN_UNTS; j++) {
 for (k = 0; k < IN_UNTS + 1; k++) {
 hid_layer[j].input[k] = input[i][k];
 }/* endloop (initializing inputs for this unit with scanned values) */
 }/* endloop (initializing inputs for hidden units with scanned values) */

 for (j = 0; j < HDN_UNTS; j++) {
 sum = 0.0; /*weighted sum initialized*/
 for (k = 0; k < IN_UNTS + 1; k++) {
 sum += hid_layer[j].weight[k] * hid_layer[j].input[k];
 }/* endloop (summing weighted inputs) */

 fnet = -(sum) / NET_THRESHOLD; /*hidden neuron’s activation*/
 hid_layer[j].output = 1.0 / (1.0 + exp(fnet)); /*function response*/
 }/* endloop (calculations of hidden layer) */

 /* ---------- initialize & calc. output units' responses --- */
 for (j = 0; j < OUT_UNTS; j++) {
 for (k = 0; k < HDN_UNTS + 1; k++) {
 out_layer[j].input[k] = hid_layer[k].output;
 }/* endloop (initializing inputs for this unit with scanned values) */
 }/* endloop (initializing inputs for hidden units with scanned values) */

 for (j = 0; j < OUT_UNTS; j++) {
 sum = 0.0; /*weighted sum initialized*/
 for (k = 0; k < HDN_UNTS + 1; k++) {
 sum += out_layer[j].weight[k] * out_layer[j].input[k];

110

}/* endloop (summing weighted inputs) */

 fnet = -(sum) / NET_THRESHOLD; /*output neuron’s activation*/
 out_layer[j].output = 1.0 / (1.0 + exp(fnet)); /*function response*/
 }/* endloop (calculations of output layer) */
}/* end of FWD propagate function */

/***
 *
 * FUNCTION NAME: get_goals()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: reads training patterns from file
 * # of patterns is the first piece of data in the file
 * followed by input patterns
 ***/
void get_goals()
{
 int j, k;
 FILE* f_ptr;

 /*---------------- OPEN TRAINING DATA FILE ------------------*/
 if ((f_ptr = fopen("TRAIN_file.txt", "r")) == NULL) {
 fprintf(rpt_ptr, "\nThe input file for training could");
 fprintf(rpt_ptr, " not be opened. Terminating program.");
 exit(11);
 }/* endif */
 fscanf(f_ptr, "%d", &num_goals);
 printf("Successfully Opened training file\n");
 for (j = 0; j < num_goals; j++) {
 for (k = 0; k < IN_UNTS; k++) {
 fscanf(f_ptr, "%f", &input[j][k]);
 }/* endloop (# of input units) */
 /* set up threshold "neuron" */
 input[j][IN_UNTS] = 1.0;
 for (k = 0; k < OUT_UNTS; k++) {
 fscanf(f_ptr, "%f", &goals[j][k]);
 }/* endloop (# of target output units) */
 }/* endloop (# of training data sets) */
 fclose(f_ptr);
}/* end of get_goals() function */

/**

111

*
 * FUNCTION NAME: set_params()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: allows user to set parameters and report,
 init delta weights (initialize to zero)
 ***/
void set_params()
{ int j, k;
 char choice, fname[20];
 /*indicate status on report file */
 fprintf(rpt_ptr, "\n\n\n--");
 fprintf(rpt_ptr, "\nParameters are:\nlearning_rate = %f", learning_rate);
 fprintf(rpt_ptr, "\tmomentum = %f", momentum);
 /* initialize delta_weights BEFORE training */
 for (j = 0; j < HDN_UNTS; j++) {
 for (k = 0; k < IN_UNTS + 1; k++) {
 hid_layer[j].delta_weight[k] = 0.0;
 }/* weights on all inputs */
 }/* all of the hidden units */
 for (j = 0; j < OUT_UNTS; j++) {
 for (k = 0; k < HDN_UNTS + 1; k++) {
 out_layer[j].delta_weight[k] = 0.0;
 }/* weights on all inputs */
 }/* all of the output units */
}/* end set_params function */

/***
 *
 * FUNCTION NAME: fuzzytutor(i)
 *
 * PARAMETERS: i - integer pattern number

 *
 * RETURN VALUE: 0 or 1
 *
 * DESCRIPTION: will calculate Pattern [i] FWD pass total error
 * (accross ALL output neurons) and decide if
 * BP function call or not
 *
 ***/

int fuzzytutor(i)

112

int i;
{
 int j, k;
 float sum;
 my_patt_err[i] = 0.0; /*pattern total error*/
 int my_grade = 0.0;
 for (j = 0; j < OUT_UNTS; j++) { /*compare target with output*/
 patt_err[i][j] = (goals[i][j] - out_layer[j].output)
 * (goals[i][j] - out_layer[j].output);
 my_patt_err[i] += patt_err[i][j]; /*sum errors*/
 }/* for all output units */
 if ((my_patt_err[i] > pat_err_tresh)) {
 yes_bp_cnt++; /*continue */
 my_grade = 1;
 } /*for all patterns sent to do BP */
 else {
 my_skip_cnt++;
 my_grade = 0;
 };
 return (my_grade); /* return decision*/
}/* end of fuzzytutor() function */

/***
 *
 * FUNCTION NAME: get_system_inputs(input1, input2)
 *
 * PARAMETERS: input1, input2
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: Get system inputs intercepted
* from BP into structure
 * to be processed by fuzzy agent
 * ***/
float get_system_inputs(input1, input2)
float input1, input2;
{ struct io_type* ioptr;
ioptr = System_Inputs;
ioptr->value = input1; /* first value*/
ioptr = ioptr->next;
ioptr->value = input2; /*second value*/
} /*end of get_system_inputs*/

/***
 *
 * FUNCTION NAME: fuzzification ()

113

*
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: Uses the slopes, structure and input values
 * to fuzzify each input value into corresponding
 * DEGREE OF MEMBERSHIP for each set!
 * (values correspond to antecedent in rules)
 *
 ***/

fuzzification()
{
 struct io_type* si; /*system input pointers*/
 struct mf_type* mf;
 //FUZZIFICATION begins
 for (si = System_Inputs; si != NULL; si = si->next)
 for (mf = si->membership_functions; mf != NULL; mf = mf->next)
 {
 compute_degree_of_membership(mf, si->value);
 }
} /*end of fuzzification*/

/***
 *
 * FUNCTION NAME: rule_evaluation ()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: When rule is evaluated, use min function to obtain strenght
 * from antecedents values. If output already assigned a rule strenght
 * during inference use maximum function to determine
 * final strength
 *
 ***/

rule_evaluation()
{
 struct rule_type* rule;
 struct rule_element_type* ip; /* pointers */
 struct rule_element_type* tp;
 float strength;
 float nomatch = 0;

114

//Rule evaluation begins
 for (rule = Rule_Base; rule != NULL; rule = rule->next)
 {
 strength = UPPER_LIMIT;
 for (ip = rule->if_side; ip != NULL; ip = ip->next)
 {
 strength = min(strength, *(ip->value)); /*use min value */
 }
 for (tp = rule->then_side; tp != NULL; tp = tp->next)
 {
 *(tp->value) = max(strength, *(tp->value)); /* use max function */
 if (strength > 0)nomatch = 1;
 }
 }
 if (nomatch == 0) printf("NO MATCHING!\n");
} /* end of rule_evaluation() */

/***
 *
 * FUNCTION NAME: defuzzification()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: crisp value that will modify skip threshold
 *
 * DESCRIPTION: Use Center of Gravity (COG) to calculates centroids for each
 * membership function, limit each function height using
 * applied rule strenght, compute areas or membership function,
* get sum of areas and sum of products to compute
 * defuzzified output value returned by fuzzy agent
 *
 ***/

float defuzzification()
{
 struct io_type* so;
 struct mf_type* mf;
 float sum_of_products;
 float sum_of_areas;
 float area, centroid;
 float outFIS; /* defuzzified value */
 for (so = System_Output; so != NULL; so = so->next)
 {
 sum_of_products = 0;
 sum_of_areas = 0;
 for (mf = so->membership_functions; mf != NULL; mf = mf->next)

115

{
 area = compute_area_of_trapezoid(mf);
 centroid = mf->point1 + (mf->point2 - mf->point1) / 2;
 sum_of_products += area * centroid;
 sum_of_areas += area;
 }
 if (sum_of_areas == 0) {
 so->value = 0;
 return (so->value);
 }
 so->value = sum_of_products / sum_of_areas;
 outFIS = (so->value) / 1000; /*return*/
 return(outFIS);
 }
} /* end of defuzzification () */

/***
 *
 * FUNCTION NAME: compute_degree_of_membership()
 *
 * PARAMETERS: mf, input
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: Determine point1 ,
 * determine point2 , and the
 * slopes (calculated and stored during init_fuzzy).
 *
 * delta1 = x - point1 delta2= point2-x
 * MFdegree = min {(delta1 * Slope1) , (delta2*Slope2)}
 *
 ***/

compute_degree_of_membership(mf, input)
struct mf_type* mf;
float input; // Compute degree begins
{ float delta_1, delta_2;
 delta_1 = input - mf->point1; // delta1 = x - point1
 delta_2 = mf->point2 - input; // delta2 = point2 - x
 if ((delta_1 <= 0) || (delta_2 <= 0))mf->value = 0;
 else
 {
 mf->value = min((mf->slope1 * delta_1), (mf->slope2 * delta_2));
 mf->value = min(mf->value, UPPER_LIMIT);
 }

116

 for (j = 0; j < OUT_UNTS; j++) { /*compare target with output*/
 patt_err[i][j] = (goals[i][j] - out_layer[j].output)
 * (goals[i][j] - out_layer[j].output);
 tot_patt_err[i] += patt_err[i][j]; /*sum errors*/

 /* calc delta_weight (n+1) */
 out_layer[j].delta = (goals[i][j] - out_layer[j].output) *
 (1.0 - out_layer[j].output) *
 out_layer[j].output;

 for (k = 0; k < HDN_UNTS + 1; k++) { /* backprop. learning rule for output*/
 out_layer[j].delta_weight[k] = learning_rate
 * out_layer[j].delta * hid_layer[k].output
 + (momentum * out_layer[j].delta_weight[k]);
 } /* Calculate all delta_weights feeding this output unit */
 } /* for all output units */

 for (j = 0; j < HDN_UNTS; j++) { /*hidden neurons = no target*/
 sum = 0.0;
 for (k = 0; k < OUT_UNTS; k++) {
 sum += out_layer[k].delta * out_layer[k].weight[j];
 }
 hid_layer[j].delta = sum * hid_layer[j].output
 * (1.0 - hid_layer[j].output);
 for (k = 0; k < IN_UNTS + 1; k++) { /* backprop. learning rule for hidden*/
 hid_layer[j].delta_weight[k] = learning_rate
 * hid_layer[j].delta * hid_layer[j].input[k]
 + (momentum * hid_layer[j].delta_weight[k]);
 }/* Calculate delta_weights on all inputs */
 }/* for all hidden units */

 /* ---------- NEW UPDATED WEIGHTS -------------------- */
 for (j = 0; j < OUT_UNTS; j++) {
 for (k = 0; k < HDN_UNTS + 1; k++) {
 out_layer[j].weight[k] = (out_layer[j].weight[k] +
 out_layer[j].delta_weight[k]);
 } /* adjust all weights feeding this output unit */
 } /* for all output units */

 for (j = 0; j < HDN_UNTS; j++) {
 for (k = 0; k < IN_UNTS + 1; k++) {
 hid_layer[j].weight[k] += hid_layer[j].delta_weight[k];
 }/* adjust weights on all inputs */
 }/* for all hidden units */
}/* end of back_prop function */

117

/***
 *
 * FUNCTION NAME: train()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: training procedure => network trains with patterns
 * with known outputs.
 * ***For FIL_BP, backward phase may be
 * interrupted when net should skip backpropagation()
 * function call
 * ** Keep track of savings (number of BP calls avoided
 *
 *
 ***/
void train()
{
 int j, k, iter = 0;
 int fwd_cnt = 0;
 int learn = 3;
 int examplar_cnt = 0;
 float ex_percentage = 0;
 float epoch_sys_err = 0; /* for epoch's error*/
 float trend = 0;
 float previous_err = 0; /* previous epoch's error*/
 float FISin1, FISin2; /* to fuzzy agent */
 float DeltaCE;
 do {
 sys_err = 0.0; /*setup system error */
 examplar_cnt = 0; /*reset counter at the start of each iteration*/
 ex_percentage = 0; /*reset counter at the start of each iteration*/
 for (j = 0; j < num_goals; j++) {
 propagate(j); /* FWD function call */
 fwd_cnt++;
 learn = fuzzytutor(j); //Fuzzy agent BP decision
 if (learn == 1) { /* BWD function call */
 back_prop(j); /*backpropagation phase begins */
 sys_err += tot_patt_err[j]; /*accumulated error */
 }
 else {
 examplar_cnt++;
 sys_err += my_patt_err[j]; /*accumulated error */
 }
 } /* for all target patterns */

118

iter++; /*increment epochs counter */
 ex_percentage = (examplar_cnt * 100) / MX_PATTS;
 sys_err = 0.5 * sys_err / num_goals;
 epoch_sys_err = sys_err; /* current epoch error */
 trend = epoch_sys_err - previous_err;
 previous_err = epoch_sys_err; /* previous Epoch error */
 FISin1 = epoch_sys_err; /*To fuzzy agent */
 if (trend < 0) {
 FISin2 = trend * (-1);
 }
 else {
 FISin2 = trend;
 }
 float input1 = FISin1 * 100; //normalize input values for FLE rules
 float input2 = FISin2 * 100;
 /*end of epoch, fuzzy inference system for control mechanism */
 init_fuzzy_system(); /* initialize fuzzy system */
 get_system_inputs(input1, input2);
 fuzzification(); /* begin fuzzification of inputs */
 rule_evaluation(); /* eval strenghts */
 DeltaCE = defuzzification(); /*defuzzified */
 report_FIS_system_outputs();
 if (iter > 100) {
 if (pat_err_tresh == 0) {
 printf("Pattern error ==zero Skip_Treshold %f, \n", pat_err_tresh);
 }
 else {
 pat_err_tresh = pat_err_tresh - DeltaCE;
 if (pat_err_tresh < 0) {
 pat_err_tresh = 0;
 }
 }
 }
 if (sys_err < min_err_td) { /*determine smallest error*/
 min_err_td = sys_err;
 min_err_iter = iter;
 }
 /*terminate training session */
 } while ((sys_err > max_tot_err) && (iter < max_iterations));
 if (sys_err > max_tot_err) {
 fprintf(rpt_ptr, "\nMaximum # of iterations was");
 fprintf(rpt_ptr, " exceeded, system did not converge");
 }
 else {
 fprintf(rpt_ptr, " \n The system converged.");
 }

119

fprintf(rpt_ptr, "\n iterations = %d Sys_error = %g", iter, sys_err);
 fprintf(rpt_ptr, "\n\t%d\t%g\t%g\t%d\t\t%d\t\t%d\t%d\n", iter, sys_err, min_err_td,

min_err_iter, fwd_cnt, yes_bp_cnt, my_skip_cnt);
 fprintf(rpt_ptr, " \n\tPropagate() calls, (FWD passes) was %d\n", fwd_cnt);

 /*----record the final weights to file-------*/
 /* Loop for the hidden layer neuron's weights */
 fprintf(wtfin_ptr, "\n\n\n--");
 fprintf(wtfin_ptr, "\n The learning rate and momentum are: %f,%f \t", learning_rate,
 momentum);
 fprintf(wtfin_ptr, "\nweights are:\n");
 fprintf(wtfin_ptr, "hidden_layer \n");
 for (j = 0; j < HDN_UNTS; j++) { /* write the hidden layer's weights */
 fprintf(wtfin_ptr, " \n");
 for (k = 0; k < IN_UNTS + 1; k++) {
 fprintf(wtfin_ptr, " %f \t\t", hid_layer[j].weight[k]);
 }/* weights on all inputs */
 }/* for all hidden units */
 /* Loop for the output layer neuron's weights */
 fprintf(wtfin_ptr, "\noutput_layer \n");
 for (j = 0; j < OUT_UNTS; j++) { /* write the output layer's weights */
 fprintf(wtfin_ptr, " \n");
 for (k = 0; k < HDN_UNTS + 1; k++) { /* to a file */
 fprintf(wtfin_ptr, " %f \t\t", out_layer[j].weight[k]);
 } /*adjust all weights feeding this output unit */
 }/* for all output units */
} /* end of train function */

/***
 *
 * FUNCTION NAME: process()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: processes pattern through the net &
 * evaluate net
 ***/
void process()
{
 int i, j, k;
 float out_err;
 char choice;

 num_misses = 0;

120

 /*---------------- PROCESS TEST DATA ----------------------*/
 for (j = 0; j < num_samples; j++) {
 miss_flag = 0;
 propagate(j); /*feedforward phase */
 for (k = 0; k < OUT_UNTS; k++) {
 if ((out_err = known_output[j][k] - out_layer[k].output) > 0.2) {
 miss_flag++;
 }
 }/* endloop (# of output units) */

 /*------------ following line for stats --------- */
 if (miss_flag > 0) num_misses++;
 }/* endloop (# of input sets) */
}/* end of process function */

/***
 *
 * FUNCTION NAME: evaluate()
 *
 * PARAMETERS: none
 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: checks NN classification against known
 * correct classification, for stats
 ***/
void evaluate()
{
 int correct = 0;
 int j, k;
 /*---------------- check classifications produced -------*/
 fprintf(rpt_ptr, "\n\n THE PERFORMANCE RESULTS:\n");
 fprintf(rpt_ptr, "\n Number of testing samples=\t\t%d",
 num_samples);
 fprintf(rpt_ptr, "\n Number of correct classifications=\t%d",
 (correct = num_samples - num_misses));
 fprintf(rpt_ptr, "\n Percentage of correct classifications=\t %f",
 (100.0 * (float)correct) / ((float)num_samples));
 printf("\n....should now terminate MAIN\n");
}/* end of evaluate function

/***
 *
 * FUNCTION NAME: main
 *

 * PARAMETERS: none

121

 *
 * RETURN VALUE: void
 *
 * DESCRIPTION: BPNN Learning algorithm with or without training
 * optimization by assistance of fuzzy agent
 *
 ***/
void main()
{
 char choice;
 void evaluate();
 void get_goals();
 void init_weights();
 void init_inputs();
 void process();
 void set_params();
 void train();
 float FISin1, FISin2;

 /*------- Open Weight Files ----------*/

 if ((wtfin_ptr = fopen("final_weights.txt", "w+")) == NULL) {
 exit(12);
 } /* endif */

 if ((wt_ptr = fopen("initial_weights.txt", "w+")) == NULL) {
 exit(13);
 }/* endif */

 /*---- Full report file of network perfomance-------*/

 if ((rpt_ptr = fopen("performance_report.txt", "w+")) == NULL) {
 exit(18);
 }/* endif */

 /* Backpropagation Learning algorithm for NN begins */
 for (learning_rate = 0.1; learning_rate < 0.2; learning_rate += 0.1) { /*Set parameters*/
 for (momentum = 0.1; momentum < 0.2; momentum += 0.1) {
 randseed = 568731L;
 min_err_td = 500.0;
 yes_bp_cnt = 0;
 my_skip_cnt = 0;
 pat_err_tresh = 0.0; //Set treshold for FIL-BP mode
 init_weights();
 set_params();

122

 get_goals();
 train();
 /*------------ SET WEIGHTS AND THRESHOLDS ---------*/
 init_inputs();
 process();
 evaluate();
 }/*end for all momentum changes */
 }/*end for all learning rate changes */

 fclose(wt_ptr); /*close pointers*/
 fclose(wtfin_ptr);
} /***** end main () ************/

123

APPENDIX B: XOR Dataset Training Performance

124

LEARNING
RATE

MOMENTUM
EPOCHS

completed

FORWARD
PHASE

(# of function
calls)

BACKWARD
PHASE

(# of BP
function calls)

SAVINGS in
BP

(# of BP
function

calls
skipped)

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM ERROR
(MSE)

HITS
Classification
Accuracy (%)

EPOCHS
completed

FORWARD
PHASE

(# of function
calls)

BACKWARD
PHASE

(# of BP
function calls)

SAVINGS in
BP

(# of BP
function

calls
skipped)

SAVINGS
PERCENTAGE

(% of BP
skipped)

SYSTEM ERROR
(MSE)

HITS
Classification
Accuracy (%)

0.1 0.1 5000 20,000 20,000 0 0 0.0692636 2 50 5000 20,000 20,000 0 0 0.0692636 2 50
0.1 0.2 5000 20,000 20,000 0 0 0.0284018 2 50 5000 20,000 20,000 0 0 0.0284018 2 50
0.1 0.3 4970 19,880 19,880 0 0 0.0099954 4 100 4970 19,880 19,880 0 0 0.0099954 4 100
0.1 0.4 4255 17,020 17,020 0 0 0.00999923 4 100 4255 17,020 17,020 0 0 0.00999923 4 100
0.1 0.5 3544 14,176 14,176 0 0 0.00998602 4 100 3544 14,176 14,176 0 0 0.00998602 4 100
0.1 0.6 2834 11,336 11,336 0 0 0.00999374 4 100 2834 11,336 11,336 0 0 0.00999374 4 100
0.1 0.7 2126 8,504 8,504 0 0 0.00999622 4 100 2126 8,504 8,504 0 0 0.00999622 4 100
0.1 0.8 1420 5,680 5,680 0 0 0.00998652 4 100 1420 5,680 5,680 0 0 0.00998652 4 100
0.2 0.1 3211 12,844 12,844 0 0 0.00999732 4 100 3211 12,844 12,844 0 0 0.00999732 4 100
0.2 0.2 2850 11,400 11,400 0 0 0.00998131 4 100 2850 11,400 11,400 0 0 0.00998131 4 100
0.2 0.3 2489 9,956 9,956 0 0 0.00998233 4 100 2489 9,956 9,956 0 0 0.00998233 4 100
0.2 0.4 2129 8,516 8,516 0 0 0.00998163 4 100 2129 8,516 8,516 0 0 0.00998163 4 100
0.2 0.5 1770 7,080 7,080 0 0 0.0099984 4 100 1770 7,080 7,080 0 0 0.0099984 4 100
0.2 0.6 1414 5,656 5,656 0 0 0.00997628 4 100 1414 5,656 5,656 0 0 0.00997628 4 100
0.2 0.7 1060 4,240 4,240 0 0 0.00995706 4 100 1060 4,240 4,240 0 0 0.00995706 4 100
0.2 0.8 708 2,832 2,832 0 0 0.0099881 4 100 708 2,832 2,832 0 0 0.0099881 4 100
0.3 0.1 2242 8,968 8,968 0 0 0.00998948 4 100 2242 8,968 8,968 0 0 0.00998948 4 100
0.3 0.2 2008 8,032 8,032 0 0 0.00999923 4 100 2008 8,032 8,032 0 0 0.00999923 4 100
0.3 0.3 1759 7,036 7,036 0 0 0.00997097 4 100 1759 7,036 7,036 0 0 0.00997097 4 100
0.3 0.4 1498 5,992 5,992 0 0 0.00995347 4 100 1498 5,992 5,992 0 0 0.00995347 4 100
0.3 0.5 1235 4,940 4,940 0 0 0.00995587 4 100 1235 4,940 4,940 0 0 0.00995587 4 100
0.3 0.6 977 3,908 3,908 0 0 0.00997773 4 100 977 3,908 3,908 0 0 0.00997773 4 100
0.3 0.7 727 2,908 2,908 0 0 0.00995155 4 100 727 2,908 2,908 0 0 0.00995155 4 100
0.3 0.8 484 1,936 1,936 0 0 0.00996075 4 100 484 1,936 1,936 0 0 0.00996075 4 100
0.4 0.1 1813 7,252 7,252 0 0 0.00996423 4 100 1813 7,252 7,252 0 0 0.00996423 4 100
0.4 0.2 1599 6,396 6,396 0 0 0.00996047 4 100 1599 6,396 6,396 0 0 0.00996047 4 100
0.4 0.3 1397 5,588 5,588 0 0 0.00998891 4 100 1397 5,588 5,588 0 0 0.00998891 4 100
0.4 0.4 1203 4,812 4,812 0 0 0.00996439 4 100 1203 4,812 4,812 0 0 0.00996439 4 100
0.4 0.5 1013 4,052 4,052 0 0 0.0099346 4 100 1013 4,052 4,052 0 0 0.0099346 4 100
0.4 0.6 825 3,300 3,300 0 0 0.00992211 4 100 825 3,300 3,300 0 0 0.00992211 4 100
0.4 0.7 638 2,552 2,552 0 0 0.0099628 4 100 638 2,552 2,552 0 0 0.0099628 4 100
0.4 0.8 453 1,812 1,812 0 0 0.00982161 4 100 453 1,812 1,810 2 0.110375276 0.00982187 4 100
0.5 0.1 1388 5,552 5,552 0 0 0.00997564 4 100 1388 5,552 5,552 0 0 0.00997564 4 100
0.5 0.2 1230 4,920 4,920 0 0 0.00994353 4 100 1230 4,920 4,920 0 0 0.00994353 4 100
0.5 0.3 1075 4,300 4,300 0 0 0.0099637 4 100 1075 4,300 4,300 0 0 0.0099637 4 100
0.5 0.4 923 3,692 3,692 0 0 0.00994567 4 100 923 3,692 3,692 0 0 0.00994567 4 100
0.5 0.5 772 3,088 3,088 0 0 0.00995376 4 100 772 3,088 3,088 0 0 0.00995376 4 100
0.5 0.6 622 2,488 2,488 0 0 0.0099073 4 100 622 2,488 2,488 0 0 0.0099073 4 100
0.5 0.7 471 1,884 1,884 0 0 0.00994222 4 100 471 1,884 1,884 0 0 0.00994222 4 100
0.5 0.8 320 1,280 1,280 0 0 0.00979552 4 100 320 1,280 1,280 0 0 0.00979552 4 100
0.6 0.1 1141 4,564 4,564 0 0 0.00997499 4 100 1141 4,564 4,564 0 0 0.00997499 4 100
0.6 0.2 1011 4,044 4,044 0 0 0.00999485 4 100 1011 4,044 4,044 0 0 0.00999485 4 100
0.6 0.3 884 3,536 3,536 0 0 0.0099513 4 100 884 3,536 3,536 0 0 0.0099513 4 100
0.6 0.4 758 3,032 3,032 0 0 0.00993738 4 100 758 3,032 3,032 0 0 0.00993738 4 100
0.6 0.5 633 2,532 2,532 0 0 0.00991306 4 100 633 2,532 2,532 0 0 0.00991306 4 100
0.6 0.6 508 2,032 2,032 0 0 0.00995125 4 100 508 2,032 2,032 0 0 0.00995125 4 100
0.6 0.7 384 1,536 1,536 0 0 0.0098677 4 100 384 1,536 1,536 0 0 0.0098677 4 100
0.6 0.8 260 1,040 1,040 0 0 0.00975755 4 100 260 1,040 1,040 0 0 0.00975755 4 100
0.7 0.1 974 3,896 3,896 0 0 0.00999943 4 100 974 3,896 3,896 0 0 0.00999943 4 100
0.7 0.2 864 3,456 3,456 0 0 0.00992723 4 100 864 3,456 3,456 0 0 0.00992723 4 100
0.7 0.3 754 3,016 3,016 0 0 0.00997879 4 100 754 3,016 3,016 0 0 0.00997879 4 100
0.7 0.4 646 2,584 2,584 0 0 0.00995529 4 100 646 2,584 2,584 0 0 0.00995529 4 100
0.7 0.5 539 2,156 2,156 0 0 0.00990377 4 100 539 2,156 2,156 0 0 0.00990377 4 100
0.7 0.6 432 1,728 1,728 0 0 0.00992859 4 100 432 1,728 1,728 0 0 0.00992859 4 100
0.7 0.7 326 1,304 1,304 0 0 0.00985901 4 100 326 1,304 1,304 0 0 0.00985901 4 100
0.7 0.8 220 880 880 0 0 0.00995727 4 100 220 880 880 0 0 0.00995727 4 100
0.8 0.1 854 3,416 3,416 0 0 0.00991832 4 100 854 3,416 3,416 0 0 0.00991832 4 100
0.8 0.2 756 3,024 3,024 0 0 0.00995913 4 100 756 3,024 3,024 0 0 0.00995913 4 100
0.8 0.3 660 2,640 2,640 0 0 0.00993914 4 100 660 2,640 2,640 0 0 0.00993914 4 100
0.8 0.4 565 2,260 2,260 0 0 0.00991827 4 100 565 2,260 2,260 0 0 0.00991827 4 100
0.8 0.5 471 1,884 1,884 0 0 0.00986389 4 100 471 1,884 1,884 0 0 0.00986389 4 100
0.8 0.6 377 1,508 1,508 0 0 0.00991234 4 100 377 1,508 1,508 0 0 0.00991234 4 100
0.8 0.7 284 1,136 1,136 0 0 0.00990903 4 100 284 1,136 1,136 0 0 0.00990903 4 100
0.8 0.8 192 768 768 0 0 0.00990392 4 100 192 768 768 0 0 0.00990392 4 100

X O R D A T A B A S E

 T R A D I T I O N A L B A C K P R O P A G A T I O N A L G O R I T H M F U Z Z Y- I N F E R E N C E L E A R N I N G (FIL) for B A C K P R O P A G A T I O N A L G O R I T H M

LEARNING PARAMETERS TRAINING (Dataset size= 4) PERFORMANCE EVALUATION (Dataset size= 4) TRAINING (Dataset size= 4) PERFORMANCE EVALUATION (Dataset size= 4)

125

APPENDIX C: Iris Dataset Training Performance

126

LEARNING RATE

MOMENTUM
EPOCHS

completed

FORWARD
PHASE

(# of function
calls)

BACKWARD
PHASE (#

of BP function
calls)

SAVINGS in BP
(# of BP

function calls
skipped)

SAVINGS
PERCENTAGE

(% of BP skipped)

SYSTEM ERROR
(MSE)

HITS
Classification
Accuracy (%)

EPOCHS
completed

FORWARD
PHASE

(# of function
calls)

BACKWARD PHASE
(# of BP function

calls)

SAVINGS in BP
(# of BP function

calls skipped)

SAVINGS
PERCENTAGE

(% of BP skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification Accuracy
(%)

0.1 0.1 5000 450,000 450,000 0 0 0.0108802 58 96.67 5000 450,000 79,511 370489 82.33 0.0132188 58 96.67
0.1 0.2 5000 450,000 450,000 0 0 0.0109005 58 96.67 5000 450,000 80,045 369955 82.21 0.0135242 58 96.67
0.1 0.3 5000 450,000 450,000 0 0 0.0109405 58 96.67 5000 450,000 82,739 367261 81.61 0.0136776 58 96.67
0.1 0.4 5000 450,000 450,000 0 0 0.010956 58 96.67 5000 450,000 86,085 363915 80.87 0.0136543 58 96.67
0.1 0.5 5000 450,000 450,000 0 0 0.0108934 58 96.67 5000 450,000 92,835 357165 79.37 0.0136508 58 96.67
0.1 0.6 5000 450,000 450,000 0 0 0.0109196 58 96.67 5000 450,000 92,883 357117 79.36 0.0135982 58 96.67
0.1 0.7 5000 450,000 450,000 0 0 0.0101352 58 96.67 5000 450,000 77,240 372760 82.84 0.0133072 58 96.67
0.1 0.8 5000 450,000 450,000 0 0 0.0108729 56 93.33 5000 450,000 220,996 229004 50.89 0.010012 58 96.67
0.2 0.1 5000 450,000 450,000 0 0 0.0109054 58 96.67 5000 450,000 87,971 362029 80.45 0.0136392 58 96.67
0.2 0.2 5000 450,000 450,000 0 0 0.0108929 58 96.67 5000 450,000 85,809 364191 80.93 0.0135776 58 96.67
0.2 0.3 5000 450,000 450,000 0 0 0.0108836 58 96.67 5000 450,000 85,463 364537 81.01 0.0135585 58 96.67
0.2 0.4 5000 450,000 450,000 0 0 0.0108744 58 96.67 5000 450,000 86,023 363977 80.88 0.0134786 58 96.67
0.2 0.5 5000 450,000 450,000 0 0 0.0108417 58 96.67 5000 450,000 84,188 365812 81.29 0.0134424 58 96.67
0.2 0.6 5000 450,000 450,000 0 0 0.0108254 58 96.67 5000 450,000 85,386 364614 81.03 0.0135685 58 96.67
0.2 0.7 5000 450,000 450,000 0 0 0.0100547 58 96.67 5000 450,000 271,352 178648 39.70 0.0108519 58 96.67
0.2 0.8 5000 450,000 450,000 0 0 0.0108036 58 96.67 5000 450,000 288,343 161657 35.92 0.173318 17 28.33
0.3 0.1 5000 450,000 450,000 0 0 0.0108629 58 96.67 5000 450,000 87,537 362463 80.55 0.0134366 58 96.67
0.3 0.2 5000 450,000 450,000 0 0 0.010861 58 96.67 5000 450,000 84,225 365775 81.28 0.0133323 58 96.67
0.3 0.3 5000 450,000 450,000 0 0 0.0108403 58 96.67 5000 450,000 85,580 364420 80.98 0.0130637 58 96.67
0.3 0.4 5000 450,000 450,000 0 0 0.0103046 58 96.67 5000 450,000 84,582 365418 81.20 0.0137896 58 96.67
0.3 0.5 5000 450,000 450,000 0 0 0.0108479 58 96.67 5000 450,000 79,504 370496 82.33 0.0137679 58 96.67
0.3 0.6 5000 450,000 450,000 0 0 0.0108083 58 96.67 5000 450,000 276,221 173779 38.62 0.0108554 58 96.67
0.3 0.7 5000 450,000 450,000 0 0 0.0108049 58 96.67 5000 450,000 438,162 11838 2.63 0.0108098 58 96.67
0.3 0.8 5000 450,000 450,000 0 0 0.169952 17 28.33 5000 450,000 286,261 163739 36.39 0.180452 17 28.33
0.4 0.1 5000 450,000 450,000 0 0 0.0108406 58 96.67 5000 450,000 88,729 361271 80.28 0.0132535 55 91.67
0.4 0.2 5000 450,000 450,000 0 0 0.0103098 58 96.67 5000 450,000 87,528 362472 80.55 0.0139092 58 96.67
0.4 0.3 5000 450,000 450,000 0 0 0.0100628 58 96.67 5000 450,000 83,809 366191 81.38 0.0139372 58 96.67
0.4 0.4 5000 450,000 450,000 0 0 0.0101383 58 96.67 5000 450,000 237,059 212941 47.32 0.0108288 58 96.67
0.4 0.5 5000 450,000 450,000 0 0 0.0108115 58 96.67 5000 450,000 254,301 195699 43.49 0.0108179 58 96.67
0.4 0.6 3691 332,190 332,190 0 0 0.0099999 58 96.67 5000 450,000 317,777 132223 29.38 0.0108147 58 96.67
0.4 0.7 5000 450,000 450,000 0 0 0.177426 17 28.33 5000 450,000 286,707 163293 36.29 0.184786 17 28.33
0.4 0.8 5000 450,000 450,000 0 0 0.188408 17 28.33 5000 450,000 285,894 164106 36.47 0.186833 17 28.33
0.5 0.1 4820 433,800 433,800 0 0 0.00999996 58 96.67 5000 450,000 83,730 366270 81.39 0.0139631 58 96.67
0.5 0.2 5000 450000 450000 0 0 0.0102075 58 96.67 5000 450,000 294,422 155578 34.57 0.0103048 58 96.67
0.5 0.3 5000 450000 450000 0 0 0.0105632 58 96.67 5000 450,000 85,292 364708 81.05 0.0132817 58 96.67
0.5 0.4 5000 450000 450000 0 0 0.0101864 58 96.67 5000 450,000 282,761 167239 37.16 0.0108034 58 96.67
0.5 0.5 5000 450000 450000 0 0 0.0103876 58 96.67 5000 450,000 438,606 11394 2.53 0.0108126 58 96.67
0.5 0.6 5000 450000 450000 0 0 0.010803 59 98.33 5000 450,000 427,885 22115 4.91 0.0107966 59 98.33
0.5 0.7 5000 450000 450000 0 0 0.181578 17 28.33 5000 450,000 286,593 163407 36.31 0.181376 17 28.33
0.5 0.8 5000 450000 450000 0 0 0.177435 58 96.67 5000 450,000 285,264 164736 36.61 0.193164 17 28.33
0.6 0.1 4198 377820 377820 0 0 0.00999996 58 96.67 5000 450,000 81,216 368784 81.95 0.0138536 58 96.67
0.6 0.2 5000 450000 450000 0 0 0.010147 58 96.67 5000 450,000 84,367 365633 81.25 0.0132746 58 96.67
0.6 0.3 5000 450000 450000 0 0 0.0101985 58 96.67 4812 433,080 315,228 117852 27.21 0.0099999 58 96.67
0.6 0.4 5000 450000 450000 0 0 0.010906 58 96.67 5000 450,000 297,066 152934 33.99 0.0108076 58 96.67
0.6 0.5 5000 450000 450000 0 0 0.0107977 58 96.67 5000 450,000 443,884 6116 1.36 0.0108006 58 96.67
0.6 0.6 5000 450000 450000 0 0 0.195139 17 28.33 5000 450,000 286,446 163554 36.35 0.178111 17 28.33
0.6 0.7 5000 450000 450000 0 0 0.173092 17 28.33 5000 450,000 286,102 163898 36.42 0.196224 17 28.33
0.6 0.8 5000 450000 450000 0 0 0.355858 0 0.00 5000 450,000 286,611 163389 36.31 0.180137 17 28.33
0.7 0.1 5000 450000 450000 0 0 0.0108181 58 96.67 5000 450,000 274,858 175142 38.92 0.0102587 58 96.67
0.7 0.2 4842 435780 435780 0 0 0.00999996 58 96.67 4188 376,920 215,429 161491 42.84 0.01 58 96.67
0.7 0.3 5000 450000 450000 0 0 0.0101927 58 96.67 4533 407,970 198,381 209589 51.37 0.01 58 96.67
0.7 0.4 5000 450000 450000 0 0 0.0100972 58 96.67 5000 450,000 438,733 11267 2.50 0.0107999 58 96.67
0.7 0.5 5000 450000 450000 0 0 0.0107982 58 96.67 5000 450,000 426,596 23404 5.20 0.0108632 58 96.67
0.7 0.6 5000 450000 450000 0 0 0.171049 17 28.33 5000 450,000 285,749 164251 36.50 0.189843 17 28.33
0.7 0.7 5000 450000 450000 0 0 0.175285 17 28.33 5000 450,000 285,560 164440 36.54 0.176342 17 28.33
0.7 0.8 5000 450000 450000 0 0 0.209634 17 28.33 5000 450,000 305,129 144871 32.19 0.20642 17 28.33
0.8 0.1 5000 450000 450000 0 0 0.0108037 58 96.67 5000 450,000 261,792 188208 41.82 0.0101819 58 96.67
0.8 0.2 5000 450000 450000 0 0 0.0108045 58 96.67 5000 450,000 231,172 218828 48.63 0.0100521 58 96.67
0.8 0.3 5000 450000 450000 0 0 0.0103872 58 96.67 5000 450,000 439,884 10116 2.25 0.0107964 58 96.67
0.8 0.4 5000 450000 450000 0 0 0.0107963 59 98.33 5000 450,000 441,713 8287 1.84 0.0102112 58 96.67
0.8 0.5 5000 450000 450000 0 0 0.188219 17 28.33 5000 450,000 324,679 125321 27.85 0.169913 17 28.33
0.8 0.6 5000 450000 450000 0 0 0.18431 17 28.33 5000 450,000 285,713 164287 36.51 0.193656 17 28.33
0.8 0.7 5000 450000 450000 0 0 0.177427 17 28.33 5000 450,000 285,394 164606 36.58 0.177557 17 28.33
0.8 0.8 5000 450000 450000 0 0 0.217935 41 68.33 5000 450,000 424,318 25682 5.71 0.386947 0 0.00

LEARNING PARAMETERS

 T R A D I T I O N A L B A C K P R O P A G A T I O N A L G O R I T H M

I R I S D A T A B A S E

EVALUATION (Dataset size= 60)

F U Z Z Y- I N F E R E N C E L E A R N I N G (FIL) for B A C K P R O P A G A T I O N A L G O R I T H M

PERFORMANCETRAINING (Dataset size= 90) TRAINING (Dataset size= 90) PERFORMANCEEVALUATION (Dataset size= 60)

127

APPENDIX D: Connectionist Bench (Vowel Recognition) Training Performance

128

LEARNING
RATE

MOMENT
UM

EPOCHS
completed

FORWARD
PHASE

(# of function
calls)

BACKWARD
PHASE (#

of BP function
calls)

SAVINGS in BP
(# of BP function

calls skipped)

SAVINGS
PERCENTAGE

(% of BP skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification
Accuracy (%)

EPOCHS
completed

FORWARD PHASE
(# of function

calls)

BACKWARD
PHASE

(# of BP function
calls)

SAVINGS in BP
(# of BP function

calls skipped)

SAVINGS PERCENTAGE
(% of BP skipped)

SYSTEM
ERROR
(MSE)

HITS
Classification Accuracy
(%)

0.1 0.1 5000 2640000 2640000 0 0 0.05454 143 30.95 5000 2640000 1322489 1317511 49.9057197 0.061372 143 30.95
0.1 0.2 5000 2640000 2640000 0 0 0.040294 133 28.79 5000 2640000 1251542 1388458 52.59310606 0.042329 122 26.41
0.1 0.3 5000 2640000 2640000 0 0 0.053621 164 35.50 5000 2640000 1168205 1471795 55.74981061 0.055448 164 35.50
0.1 0.4 5000 2640000 2640000 0 0 0.053102 165 35.71 5000 2640000 1073158 1566842 59.35007576 0.054124 167 36.15
0.1 0.5 5000 2640000 2640000 0 0 0.056532 178 38.53 5000 2640000 1027958 1612042 61.06219697 0.055935 167 36.15
0.1 0.6 5000 2640000 2640000 0 0 0.067305 161 34.85 5000 2640000 991210 1648790 62.45416667 0.049761 135 29.22
0.1 0.7 5000 2640000 2640000 0 0 0.048648 156 33.77 5000 2640000 1032078 1607922 60.90613636 0.059415 162 35.06
0.1 0.8 5000 2640000 2640000 0 0 0.051685 169 36.58 5000 2640000 796815 1843185 69.81761364 0.046624 164 35.50
0.2 0.1 5000 2640000 2640000 0 0 0.037622 180 38.96 5000 2640000 1057995 1582005 59.92443182 0.042602 173 37.45
0.2 0.2 5000 2640000 2640000 0 0 0.037809 174 37.66 5000 2640000 970410 1669590 63.24204545 0.038556 184 39.83
0.2 0.3 5000 2640000 2640000 0 0 0.037457 183 39.61 5000 2640000 928855 1711145 64.81609848 0.056184 182 39.39
0.2 0.4 5000 2640000 2640000 0 0 0.043656 149 32.25 5000 2640000 885472 1754528 66.45939394 0.047465 168 36.36
0.2 0.5 5000 2640000 2640000 0 0 0.081694 154 33.33 5000 2640000 844497 1795503 68.01147727 0.050865 157 33.98
0.2 0.6 5000 2640000 2640000 0 0 0.059265 163 35.28 5000 2640000 905905 1734095 65.68541667 0.060129 154 33.33
0.2 0.7 5000 2640000 2640000 0 0 0.048356 185 40.04 5000 2640000 736069 1903931 72.11859848 0.06048 165 35.71
0.2 0.8 5000 2640000 2640000 0 0 0.04907 193 41.77 5000 2640000 657081 1982919 75.11056818 0.058298 159 34.42
0.3 0.1 5000 2640000 2640000 0 0 0.042746 186 40.26 5000 2640000 898561 1741439 65.96359848 0.043935 190 41.13
0.3 0.2 5000 2640000 2640000 0 0 0.044322 161 34.85 5000 2640000 869065 1770935 67.08087121 0.042676 182 39.39
0.3 0.3 5000 2640000 2640000 0 0 0.047982 181 39.18 5000 2640000 854997 1785003 67.61375 0.044939 172 37.23
0.3 0.4 5000 2640000 2640000 0 0 0.080224 163 35.28 5000 2640000 1077924 1562076 59.16954545 0.075077 167 36.15
0.3 0.5 5000 2640000 2640000 0 0 0.044818 181 39.18 5000 2640000 777018 1862982 70.5675 0.039517 199 43.07
0.3 0.6 5000 2640000 2640000 0 0 0.069346 158 34.20 5000 2640000 910710 1729290 65.50340909 0.075909 149 32.25
0.3 0.7 5000 2640000 2640000 0 0 0.048169 209 45.24 5000 2640000 641525 1998475 75.69981061 0.100621 182 39.39
0.3 0.8 5000 2640000 2640000 0 0 0.059782 167 36.15 5000 2640000 2462621 177379 6.718901515 0.0565 208 45.02
0.4 0.1 5000 2640000 2640000 0 0 0.043404 186 40.26 5000 2640000 720451 1919549 72.71018939 0.034564 201 43.51
0.4 0.2 5000 2640000 2640000 0 0 0.05328 183 39.61 5000 2640000 871893 1768107 66.97375 0.048902 201 43.51
0.4 0.3 5000 2640000 2640000 0 0 0.039098 170 36.80 5000 2640000 733259 1906741 72.22503788 0.048319 141 30.52
0.4 0.4 5000 2640000 2640000 0 0 0.042623 168 36.36 5000 2640000 801867 1838133 69.62625 0.037828 213 46.10
0.4 0.5 5000 2640000 2640000 0 0 0.051302 193 41.77 5000 2640000 711450 1928550 73.05113636 0.042452 199 43.07
0.4 0.6 5000 2640000 2640000 0 0 0.081259 180 38.96 5000 2640000 658494 1981506 75.05704545 0.060517 174 37.66
0.4 0.7 5000 2640000 2640000 0 0 0.0454 177 38.31 5000 2640000 679553 1960447 74.25935606 0.057966 174 37.66
0.4 0.8 5000 2640000 2640000 0 0 0.139407 160 34.63 5000 2640000 1451268 1188732 45.02772727 0.12537 185 40.04
0.5 0.1 5000 2640000 2640000 0 0 0.042982 193 41.77 5000 2640000 745315 1894685 71.76837121 0.050192 159 34.42
0.5 0.2 5000 2640000 2640000 0 0 0.059 170 36.80 5000 2640000 804670 1835330 69.52007576 0.032297 217 46.97
0.5 0.3 5000 2640000 2640000 0 0 0.047817 207 44.81 5000 2640000 822146 1817854 68.85810606 0.035916 226 48.92
0.5 0.4 5000 2640000 2640000 0 0 0.027072 188 40.69 5000 2640000 646381 1993619 75.51587121 0.03398 186 40.26
0.5 0.5 5000 2640000 2640000 0 0 0.046632 201 43.51 5000 2640000 695035 1944965 73.67291667 0.065341 179 38.74
0.5 0.6 5000 2640000 2640000 0 0 0.075476 182 39.39 5000 2640000 792662 1847338 69.97492424 0.059684 206 44.59
0.5 0.7 5000 2640000 2640000 0 0 0.082531 207 44.81 5000 2640000 706765 1933235 73.22859848 0.082346 169 36.58
0.5 0.8 5000 2640000 2640000 0 0 0.191958 170 36.80 5000 2640000 2536024 103976 3.938484848 0.104451 217 46.97
0.6 0.1 5000 2640000 2640000 0 0 0.049775 191 41.34 5000 2640000 1015848 1624152 61.52090909 0.079954 173 37.45
0.6 0.2 5000 2640000 2640000 0 0 0.039743 209 45.24 5000 2640000 682628 1957372 74.14287879 0.037048 204 44.16
0.6 0.3 5000 2640000 2640000 0 0 0.044661 173 37.45 5000 2640000 718693 1921307 72.7767803 0.042471 173 37.45
0.6 0.4 5000 2640000 2640000 0 0 0.058142 159 34.42 5000 2640000 741432 1898568 71.91545455 0.040731 177 38.31
0.6 0.5 5000 2640000 2640000 0 0 0.091047 169 36.58 5000 2640000 988965 1651035 62.53920455 0.065607 197 42.64
0.6 0.6 5000 2640000 2640000 0 0 0.12559 157 33.98 5000 2640000 869656 1770344 67.05848485 0.057751 175 37.88
0.6 0.7 5000 2640000 2640000 0 0 0.061358 158 34.20 5000 2640000 1058993 1581007 59.88662879 0.108105 173 37.45
0.6 0.8 5000 2640000 2640000 0 0 0.208593 144 31.17 5000 2640000 2252213 387787 14.68890152 0.144434 183 39.61
0.7 0.1 5000 2640000 2640000 0 0 0.050605 168 36.36 5000 2640000 838372 1801628 68.24348485 0.063205 167 36.15
0.7 0.2 5000 2640000 2640000 0 0 0.05306 188 40.69 5000 2640000 864878 1775122 67.2394697 0.048077 197 42.64
0.7 0.3 5000 2640000 2640000 0 0 0.051471 177 38.31 5000 2640000 2383447 256553 9.717916667 0.073561 161 34.85
0.7 0.4 5000 2640000 2640000 0 0 0.078078 165 35.71 5000 2640000 947766 1692234 64.09977273 0.066369 177 38.31
0.7 0.5 5000 2640000 2640000 0 0 0.094624 157 33.98 5000 2640000 2366454 273546 10.36159091 0.090811 169 36.58
0.7 0.6 5000 2640000 2640000 0 0 0.105275 188 40.69 5000 2640000 901841 1738159 65.83935606 0.069057 187 40.48
0.7 0.7 5000 2640000 2640000 0 0 0.173572 127 27.49 5000 2640000 2418526 221474 8.389166667 0.103059 173 37.45
0.7 0.8 5000 2640000 2640000 0 0 0.262952 103 22.29 5000 2640000 1701343 938657 35.55518939 0.240363 112 24.24
0.8 0.1 5000 2640000 2640000 0 0 0.092734 189 40.91 5000 2640000 911863 1728137 65.45973485 0.069028 176 38.10
0.8 0.2 5000 2640000 2640000 0 0 0.062381 171 37.01 5000 2640000 722433 1917567 72.63511364 0.0894 164 35.50
0.8 0.3 5000 2640000 2640000 0 0 0.059794 209 45.24 5000 2640000 862115 1777885 67.34412879 0.07728 180 38.96
0.8 0.4 5000 2640000 2640000 0 0 0.087366 192 41.56 5000 2640000 2303733 336267 12.73738636 0.075231 205 44.37
0.8 0.5 5000 2640000 2640000 0 0 0.106001 162 35.06 5000 2640000 1251741 1388259 52.58556818 0.107868 143 30.95
0.8 0.6 5000 2640000 2640000 0 0 0.120052 179 38.74 5000 2640000 2264673 375327 14.21693182 0.070865 184 39.83
0.8 0.7 5000 2640000 2640000 0 0 0.163065 157 33.98 5000 2640000 2119935 520065 19.69943182 0.207598 182 39.39
0.8 0.8 5000 2640000 2640000 0 0 0.240235 141 30.52 5000 2640000 2522182 117818 4.46280303 0.096566 174 37.66

PERFORMANCE EVALUATION (Dataset size= 462)

V O W E L D A T A B A S E

 T R A D I T I O N A L B A C K P R O P A G A T I O N A L G O R I T H M F U Z Z Y- I N F E R E N C E L E A R N I N G (FIL) for B A C K P R O P A G A T I O N A L G O R I T H M

LEARNING PARAMETERS TRAINING (Dataset size= 528) PERFORMANCE EVALUATION (Dataset size= 462) TRAINING (Dataset size= 528)

129

VITA

Miroslava Barúa received her Bachelor of Science degree in Electrical Engineering from

The University of Texas at El Paso in December 2000. In 2004, she received her Master of Science

degree in Electrical Engineering from The University of Texas at El Paso earning the recognition

for Outstanding Thesis in Computer Engineering Honors Award. She later joined the doctoral

program in Electrical and Computer Engineering at The University of Texas at El Paso and worked

under the guidance and mentorship of Dr. Patricia Nava. Her teaching experience includes

instruction and support for courses in the area of Digital System Design I and II, Foundations of

Deep Learning, Microprocessor Systems, Senior Project Laboratory and Seminar of Critical

Inquiry focused in Foundations of Engineering. She has received the Outstanding Teaching Award

at the Doctoral level from UTEP Graduate School and several teaching certifications from the

Center for Instructional Design at UTEP. Her research and professional experience include

working on projects with Neuro-Fuzzy Systems Research Group, Research Institute for

Manufacturing and Engineering Systems, Academic Affairs and Undergraduate Studies for

College of Engineering, Software Development Engineering of Intelligent Agents for Supply

Chain Management and Assurance, White Sands Missile Range Data Support Division, and

Institute of Defense and Security. Her research interests are in Artificial Intelligence, Deep

Learning, Neural Network Architectures, and Digital Systems. She is a member of Tau Beta Pi

Engineering Honor Society, IEEE- Eta Kappa Nu Honor Society, Women In Engineering and

Society of Women Engineers. She has presented her research work at national and international

conference meetings and has several publications. Some of her publications are the following:

1. M. Barua and P. Nava, “Trends and strategies to optimize training processes to decrease

learning time in Deep Neural Networks,” 2022 World Congress in Computer Science,

Computer Engineering and Applied Computing (CSCE’22), July 25-28, 2022. In press

for publication in Springer Book Series: Transactions on Computational Science &

Computational Intelligence (Hamid R. Arabnia, Ed.) Electronic ISSN: 2569-7080, Print

ISSN: 2569-7072.

130

2. R. Villegas, P. Nava, and M. Barua, “Data Mining-based Techniques in Critical
Operation of Electrical Transmission and Distribution Systems in a Natural Disaster
Event: Future Direction Review,” Proceedings of the 13th Annual IEEE International
Systems Conference (SYSCON 2019), pp. 888-895, ISBN 978-1-5386-8396-5, March
2019.

3. Virani, S., Burnham, I. B., Gonzalez, V., Barua, M., Andrade, S. J., “Work in Progress:
Designing an Innovative Curriculum for Engineering in High School (ICE-HS)”,
American Society for Engineering Education (ASEE) Annual Conference & Exposition,
Vancouver, BC. DOI 10.18260/1-2—18773, ISSN 2153-5965, pp. 22.1701.1 -
22.1701.11, June, 2011

4. N. Kilicay-Ergin, M. Barua, R. Pineda, “Prognostics Health Management Process
Framework for System-of-Systems”, Intelligent Engineering Systems through Artificial
Neural Networks (ANNIE 2010), Volume 20. Ed. Dagli, CH. ASME Press, 2010.

5. M. Barua, “Hardware Implementation of Radial Basis Function Networks using Field
Programmable Gate Arrays”, Proceedings of the Live-Virtual-Constructive Conference
(LVCC), International Test and Evaluation Association (ITEA 2010), El Paso, Texas,
January 11-14, 2010

6. H. Nazeran, M, Goldman, P. Nava, B. Diong, M. Barua, and A. Crockett, “Forced
Oscillation: Neural Networks Can Advance the Utility of Impulse Oscillometry in
Assessment of Lung Function in Children”, International Journal of Medical Implants
and Devices, Vol. 3, No. 3 pp. 139-159, 2007.

7. M. Barua, H. Nazeran, P. Nava, B. Diong, and M. Goldman, “Implementation of
Artificial Neural Networks to Classify Impulse Oscillometric Patterns of Lung Function
in Asthmatic Children,” Proceedings of the 5th International Workshop on Biomedical
Signal Interpretation, Tokyo, Japan, September 6-8, 2005.

8. M. Barua, H. Nazeran, P. Nava, B. Diong, and M. Goldman, “Classification of Impulse
Oscillometric Patterns of Lung Function in Asthmatic Children Using Artificial Neural
Networks,” Proceedings of the 2005 27th Annual International Conference of the
Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp. 327-331, 2005.

9. M. Barua, H. Nazeran, P. Nava, and V. Granda, “Classification of Pulmonary Diseases
using Artificial Neural Networks,” Intelligent Engineering Systems through Artificial
Neural Networks (ANNIE 2004), Vol. 14, pp. 755-760, 2004.

10. M. Barua, H. Nazeran, P. Nava, V. Granda, and B. Diong, “Classification of Pulmonary
Diseases by an Artificial Neural Network, Based on Measurements from the Impulse
Oscillometry System,” Proc. Of the 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 3848-3851, 2004.

Contact Information: miroslav@miners.utep.edu

	Optimized Learning Using Fuzzy-Inference-Assisted Algorithms For Deep Learning
	Recommended Citation

	Microsoft Word - Barua--Miroslava--Dissertation--2022 -v8

