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Abstract

Time series classification (TSC) can be efficiently implemented with several techniques.

Many techniques are based on analyzing 1-D signals in the time series data. In this work,

we make an intrinsic analytical implementation of a new time series classification that

involves a two-stage process. Firstly, by using Recurrence Plots (RP), we transform the

time series into 2D images. The second stage consists in taking advantage of deep learn-

ing models to perform our classification. The image illustration of time series introduces

different feature types that are not available for all 1D signals, and therefore our classifi-

cation problem is treated as a 2D image recognition task. Experimental results show that

our multistage time series modeling is exceptionally effective compared with an alternate

traditional classification framework. A significant amount of data is stored in the form of

time series. Climatic measurements, performances, medical tests, stock exchanges, satellite

locations, and political opinions are all data saved as a time series. Time series data can be

any information collected successively in time. Since processes are often measured relative

to time, this data type exists in almost every task. Some examples of it are stock prices,

industrial processes, electronic health records, human activities, sensor readings, and lan-

guage. Because it is ubiquitous, extracting value from time series data around us is only

practical. Time series classification has an extensive range of applications. The novel ap-

plication of time series can start from the identification of Soil sedimentation, stock market

anomalies, and the Spread of viruses to automated detection of heart and brain diseases.

Time series classification can be evaluated or conducted with many techniques. Most of

these techniques have two stages. The first approach uses mathematical methods, statistics,

or programming tools to represent time series as feature vectors. Secondly, an algorithm

can measure the difference between the time series one wants to classify. When one uses

some algorithm to classify data, one can implement anything from k-nearest neighbors and

SVMs to deep neural network models.
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The convolution Neural Network (CNN) model also has many impeccable attributes. It

jointly and automatically allows different learning levels of representations with a classifier.

Therefore, Recurrence Plots RP and CNN in a compact, a unified framework is expected to

boost the time series classification recognition rate. Experimental results on the UCR time-

series classification demonstrate the rigid competitive accuracy of the proposed approach

compared to the existing deep architectures and the state-of-the-art TSC algorithms.
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Chapter 1

Introduction

The definitions of time series can be enormous. However, they all emanate from the concept

that time series is a sequence of real data points (measurements) with a natural tempo-

ral ordering. Pattern creation, identification, anomaly detection, and many important

pattern recognition tasks holistically deal with time series analysis. Time series analysis

is mainly grouped into curve fitting, functional approximations, prediction and forecast-

ing, segmentation, classification, and clustering. In a univariate time-series classification,

XnβYn is defined so that nth series of length l : Xn = (Xn1, Xn2, ..Xnn) is associated with

a class label yn ≡ 1, 2, .., c. Time-series classification problems can be easily adapted to

other tasks, such as anomaly detection and clustering. The feature types of data might

systematically sort Time-Series Classification (TSC) methods. Regarding feature types,

”Recurrence Plot” methods incorporate phantom examination and wavelet investigation,

while ”time series” techniques incorporate auto-relationship, auto-regression, and cross-

correlation analysis. The classification strategy can be partitioned into ”instance-based”

and ”feature-based” methods. The previous measures similarity between any incoming

test sample signal and the training set; and assigns a name to the most comparative class

(the Euclidean distance-based k-Nearest Neighbor (k-NN) and Dynamic Time Wrapping

(DTW) are two well-known and broadly utilized techniques for this classification. The lat-

ter first transforms the time series into the new space and extracts more discriminative and

representative features used by a pattern classifier, aiming at the optimum classification

boundaries. Deep Learning models have, over the years, achieved a high recognition rate

for computer vision and speech recognition. The Convolutional Neural Networks (CNN) is

one of the most well-known DL models. While other traditional” feature-based” classifica-
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tion framework needs this, CNN does not require any handcrafted features. The feature

learning and classification parts are unified into one model and are systematically learned

jointly. This makes their performances mutually enhanced. This work investigates the

performance of Recurrence Plots (RP) inside the deep CNN model for TSC. RP gives a

manner to visualize the systematic nature of a trajectory through a phase area and permits

us to research specific components of the m-dimensional phase area through a 2D repre-

sentation. Because of the recent thorough results by CNN on image recognitions, we first

encode time series signals as 2D plots and then deal with the TSC problem as a texture

recognition task. A CNN model with two hidden layers followed by a fully connected layer

is used.

1.1 Background Of Study

Significant results have been achieved by processing most data with deep learning tech-

niques, especially convolutional neural networks (CNN). (Antonio Fernandez 2015). CNN’s

performances in reading, processing, wrangling, and extracting essential features of two-

dimensional data have contributed to its popularity for data classification. However, even

in scenarios where input data are not formatted as an image, many transformation methods

have helped to apply CNNs to data types. Time series data is a data structure that can

be modeled well to solve problems from computer vision and image processing using deep

learning.

Spectrograms are one of the most famous representations for signals, in which time

series send information with time and frequency as magnitude and dimensions. Though

spectrograms are known to be graphical representations of frequency spectrum over time,

some delicate nuances exist between these representations and visual aids, like pictures

taken with a camera or paintings. However, in spectrograms, all local relationships are

represented using different domains. They have non-local relationships, in contrast to

pictures. Furthermore, this concept complicates the local feature extraction feeding 2D
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CNN layers with spectrograms. We can use this information to take advantage of 2D

CNN considering visual representations with inherent spatial invariance as they efficiently

provide the best input for a convolutional layer.

Recurrence plots are an advanced technique for visually representing multivariate non-

linear data. In essence, this refers to a graph illustrating a matrix, where elements corre-

spond to the time the data recurs to a particular state or phase. Recurrent behavior, such

as periodicities or irregular cyclicities, is a fundamental property of natural deterministic

dynamical systems, like nonlinear or chaotic systems.

1.2 Problem Statement

During the past couple of years, there have been conscious efforts to introduce computers

to the world. Data analysis, wrangling, acquisition, interpretation, and forecasting have

been prevalent in the world using computers. The availability of temporal data has over

the years increased significantly. Many applications are based on time series, so efficient

algorithms must be proposed and used. Many of the algorithms available require some

feature engineering as a separate work before the classification is done. This means there is

a loss of information and increased development time. Deep Learning solves this problem.

Deep learning models already incorporate feature engineering internally, optimizing it and

eliminating its need. Therefore they can extract information from the time series faster,

more direct, and more completely.

Thousands of data are compiled and used for many reasons. However, time series clas-

sification has become one of the most challenging data mining in data. Many classification

problems can be assiduously treated as a Time Series classification problem. Hence a more

accessible and less cost-effective classification approach to help solve cumbersome problems

is critical. Time series is very present in health care, finance, and cybersecurity. Interest

has been shown in other fields about time series. The main goal of a classification algorithm

is to build a model that associates with an object’s probability of belonging to the possible

3



classes according to the features of the objects related to each class. To be more specific.

A time series classification problem is a classification problem where the objects of the

datasets are univariate or multivariate time series. There are techniques implemented to

enable a smooth classification process with CNN. The Gramian Angular field and Markov

Transition fields are two techniques that can be well used to convert time series data into

image data. However, the Recurrence plot technique gives a better and less cost-effective

approach to transforming the time series data into image data and for CNN implementa-

tion. RP provides a systematic way to visualize a trajectory through a phase area and an

avenue to investigate specific aspects of the m-dimensional phase area trajectory through a

detailed 2D representation. We first encode time series signals as 2D plots and then treat

the TSC problem as a texture recognition task. A CNN model with two hidden layers

followed by a fully connected layer is used.
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1.3 Objective of the study

The objective of the study includes the following;

• Converting Time Series data into image Data using Recurrence Plot

• To introduce Convolution Neural Networks for classification

• Proof that Neural Networks can compute any function

• Is there a simple algorithm for computer intelligence?

• Show other approaches to Deep Neural networks

The desire to solve a particular case of the general problem of determining the accuracy

of such indirect measurements is the motivation for the work in this thesis.

1.4 Methodology

Time series can be characterized by distinct recurrent behavior, such as periodic and irreg-

ular cyclicities. The RP is a visualization tool that aims to explore all the m- dimensional

phase space trajectories through a detailed 2D representation of its recurrences. The main

idea is to reveal at which points any trajectories return to a previous state and if it can be

formulated as:

Ri,j = θi(εi− | −→xi −−→xi |),−→x (.) ∈ Rm, i, j = 1, ..., N (1.1)

Where N is the number of considered states −→xi ε is a threshold distance, a norm,

and θ(.) the Heaviside function. The R-matrix contains both textures, all single dots,

diagonal strains of lines, vertical and horizontal lines, and typology data characterized

as homogeneous, periodic, and drift. For instance, a fade to the top upper left and lower

bottom right corners means that the systematic process contains a trend or drift. Moreover,
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vertical and horizontal lines/clusters show that some states will not change or change slowly

concerning time, and this can be interpreted as a laminar state,

In calculating the recurrence plot, a systematic procedure is used.

• Firstly, a 2D phase space trajectory (m = 2) is built from the time series.

• Then, the R-matrix is derived based on the closeness of the states in the phase

area. The resulting R-matrix has only 0, 1 values, caused by thresholding parameter

ε. Inspired by the unique texture images derived from the R-matrices, this paper

proposes a TSC pipeline based on the CNN model. Firstly, the raw 1D time-series

signals are transformed into 2D recurrence images. And then, both features and

classifier are learned in one unified model.

The proposed 2-stage CNN architecture for TSC is then started. Recurrence plot images

are resized to 28 ∗ 28, 56 ∗ 56, or 64 ∗ 64 (depending on the data) and fed into the CNN

model.

1.4.1 CNN Architecture used

A 2-stage deep CNN model is applied with a 1-channel input of size 28 × 28. Each feature

learning stage represents a different feature level and comprises convolution (filter), pooling

activation, and pooling operators. The input and output of each of the layers are known as

feature maps. The convolutional layer is the primary building block of a CNN and exploits

spatially local correlation by re-enforcing a local connectivity pattern between neurons of

all adjacent layers. The activation function introduces non-linearity into the networks and

permits them to learn the complex models. We then applied ReLU (Rectified Linear Units)

because it systematically trains the neural networks faster without a significant penalty to

generalization accuracy. Subsampling reduces input resolution and makes it robust to all

slight variations for previously learned features. It combines the outputs of the i-1th layer

into a single input in the ith layer over a range of local neighborhoods. When the feature
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extraction is done, the feature maps are flattened and fed into a fully functional connected

layer for classification. The fully connected layers connect every neuron in one layer to

another. This is the same principle as the traditional multi-layer perceptron (MLP). The

proposed pipeline for TSC.

1.4.2 Learning Procedure

Training the above CNN architecture is almost similar to the Machine Learning problems.

The gradient-based optimization method (error back-propagation algorithm) estimates the

model’s parameters. Stochastic gradient descent (SGD) is used for faster convergence

to update the parameters considered. The training phase has two main classical steps:

Propagation and gradual weight update. Each propagation stage involves a feed-forward

and error back-propagation passes. The former determines the feature maps on the input

vector by passing from one layer to another layer until reaching the output. The latter

calculates the propagation errors with respect to the loss function for the desired predicted

output. The predicted error on each layer is used for calculating the derivatives by using the

chain rule of the derivative. Once the derivatives of parameters are obtained, the weight is

gradually updated. The output delta and input activation are then multiplied to derive the

weight gradient. And then, a ratio of the weight’s gradient considered is subtracted from

the weight. This cycle is repeated over and over until the network reaches a satisfactory

validation error.

1.5 Significance of the Study

This study is a step towards understanding and appreciating the usage of artificial intelli-

gence, particularly machine learning, concerning Deep Learning. A less costly and efficient

technique to solve classification in time series is critical. The methods, algorithms, and

processes made mentioned in the study can be implemented in the study of

7



• Electrocardiogram analysis. (records are saved in time series form. Distinguishing a

disease is a TSC problem)

• Gesture recognition. (Devices record a series of images to interpret the user’s gestures.

And also, identifying a correct gesture is a TSC problem)

• Anomaly Detection (This is the identification of unusual events. Often, the data for

anomaly detection are time series data. Recognizing an anomaly is a TSC problem)

8



1.6 Organization of Thesis

This study is organized into five chapters and outlined as follows

• Introduction : This chapter presents a general introduction to the study with a

background to the study, the problem statement, objectives, Methodology, and the

significance of the study.

• Literature Review: In this chapter, various works of literature about Time series

Classification techniques are presented.

• Methodology: This chapter discusses various methods adopted for the study and

the algorithm used.

• Model Formulation and Classification Analysis: In this chapter, the model is

formulated for each technique, and the analysis of each technique is explained.

• Simulations and Deep Learning information: In this chapter, further analyses

are discussed with simulations.

• Conclusion and Recommendations: This chapter concludes the entire study

and lays out some recommendations for future studies.
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Chapter 2

Literature Review

In this chapter, we briefly introduce machine learning and the techniques used in this study.

Machine Learning (ML) is an integral branch of Artificial Intelligence. It is a system that

takes in data, tries to find patterns, trains itself using it, and brings out an outcome.

ML algorithms have critical advantages over human professionals. Firstly, machines can

work faster than humans. Calculating spatial problems may usually take a long time. A

computer can do thousands of iterations and calculations in seconds. Machines can repeat

themselves thousands of times without getting exhausted. Humans do it, too. We call it

practice. While practice may make perfect, more practice can only put a human being

even close to the computational speed of a computer. Another advantage is the excellent

accuracy of machines.

With the recent availability of the Internet of Things technology, there is so much data out in

the world that humans cannot possibly go through. They can do work faster than humans.

If different algorithms can perform the same task, one is right to question which algorithm

is better. For example, if two programs are made based on two different algorithms to

find the smallest number in an unordered list. For the same list of unordered numbers (or

same set of input) and on the same machine, one measure of efficiency can be the speed or

quickness of the program, and another can be minimum memory usage. Thus, time and

space are the usual measures to test the efficiency of an algorithm. In some situations,

time and space can be interrelated; that is, the reduction in memory usage leads to fast

execution of the algorithm. For example, an efficient algorithm enabling a program to

handle complete input data in cache memory will allow faster program execution.

10



2.0.1 Deep Learning

Deep Learning is one of the main subsets of machine learning, which can easily be explained

as a neural network with three or more layers. Neural networks try to emulate the behavior

of the human brains enabling systems to cluster data and make reasonable predictions

with high accuracy (IBM Cloud Education 2020). Deep learning is the gradual scaling

up of neural network data structures. It is the optimal solution when working with large-

scale datasets. Even though a neural network with a single layer can create impressive

approximate predictions, more hidden layers can help optimize and refine for much better

accuracy.

Deep Learning helps most artificial intelligence (AI) applications and services and ren-

ders an improvement in automation, performing analytical and physical tasks. There is a

Deep learning technology behind most products and services.

2.0.2 Deep Learning vs. Machine Learning

Deep Learning is a known subset of machine learning, but it differs from each other. Deep

Learning is different from machine learning due to the type of data it works with and the

methods it learns with.

All machine learning algorithms leverage well-structured, labeled data to make pre-

dictions. It generally uses classical pre-processing to organize the data into a structured

format. The specific features are defined from the input data for the said model and

organized into well-defined tables.

Deep Learning eliminates some of the data pre-processing typically involved with all

machine learning. These algorithms can take data and process unstructured data, like

text, images, and videos, and it automates all feature extractions, removing some of the

sole dependency on experts.

Most phones with facial recognition work well. The technology can determine the

person’s features and compare them to the scanned face on the phone. Deep learning
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algorithms can determine which main features (e.g., ears) are most significant to distinguish

each animal from another. A human expert establishes this hierarchy of features manually.

(IBM Cloud Education 2020)

2.0.3 Applications of Machine Learning

Machine learning has done right by responding to numerous real-world challenges, yet there

are various issues for which AI advancement is required.

• Automatic Recognition of Handwritten Postal Codes How machine learning has

helped the post office can well appreciate. People write differently and have pe-

culiar ways of writing some alphabets. Hence deducing the word that was written is

sometimes challenging to read. A handwritten recognition algorithm was the way to

go.

• Language identification The ability to identify a particular language is sometimes

vital. When security companies want to transcribe or interpret languages, a machine

learning algorithm comes in handy.

2.0.4 Applications of Deep Learning

A few years ago, we never anticipated deep learning applications to bring us self-driving

cars and virtual assistants like Siri, Alexa, and Google Assistant. However, today, these

creations are part of our everyday life. Deep Learning fascinates us with its endless possi-

bilities, such as fraud detection, anomaly detection, and pixel restoration. Deep Learning

is an ever-growing industry; upskilling rapidly with the help of an accessible introduction

to deep learning course can help you understand the basic concepts and power ahead of

your career. (Marina Chatterjee; 2022)

• Self-Driving Cars
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Deep Learning is the concept that brings autonomous driving to life. Thousands

of data are fed to a system to create a model, then train the machines learn and

test the results. The Uber Labs at Pittsburg is not only functioning with the idea

of making driverless cars humdrum but also integrating numerous clever capabilities

and features, including food delivery options using driverless cars. The predominant

difficulty for self-driving automobile builders is coping with unprecedented scenarios.

(Marina Chatterjee; 2022)

• News Aggregation and Fraud News Detection

There is a way to filter out all the bad news from the news feed. Rigorous use of

deep Learning in news aggregation bolsters efforts to customize news per reader.

While this may not be new, newer levels of sophistication to understand, define and

monitor reader personas are being met to screen out news as per social, geographical,

and economic parameters, along with the individual preferences of most readers.

Fake news detection, on the other hand, is an essential asset in today’s world. The

internet has become the hub of all genuine and phony information. It becomes tough

to distinguish between fake news as bots replicate it across channels automatically.

Deep Learning helps to develop classifiers that can detect all fake or biased news,

remove it from your feed, and warn you of potential privacy breaches. Training and

validating a deep-learning neural network for news detection is challenging. The data

is plagued with opinions and sentiments, and no party can decide whether the news

is neutral or biased. (Marina Chatterjee; 2022)

• Visual Recognition

When you imagine yourself going through a plethora of old images, you decide to

get a few framed, but first, you would like to sort them out. The manual effort was

the only way to accomplish this without metadata. The maximum you could do was

briefly sort them out based on dates, then location. However, downloaded images

lack that metadata sometimes. Deep learning can do this work with ease.
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Searching for a particular photo from a library (let us say a dataset as large as Google’s

picture library) requires state-of-the-art visual recognition systems consisting of sev-

eral layers from basic to advance to recognize elements. Large-scale image Visual

recognition through deep neural networks boosts growth in this digital media man-

agement segment by extensively using convolutional neural networks, TensorFlow,

and Python. (Marina Chatterjee; 2022)

2.1 Mathematics Behind Deep Learning

Deep learning aims to scale machine learning to the challenges needed to solve artificial

intelligence. This means being able to understand high-dimensional data with a struc-

ture. We want AI algorithms to understand raw images, representing speech, documents

containing multiple words and punctuation characters, and dataset evolution.

2.1.1 Density Estimation

For an input x, machine learning deduces an estimate of the actual density(x) under the

data-generating distribution. This requires a single output, but it also requires a complete

detailed comprehension of the entire input. If an element of the vector is unusual, the

dynamic system must assign it a very low probability.

2.1.2 Denoising

For a damaged or incorrectly observed input x, the ML system returns an estimate of the

initial or correct x. For example, the machine learning system may be processed to ask to

remove dust or scratches from data or a picture.
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2.1.3 Missing Value Imputation

Given the dataset of some elements of x, a model is asked to output estimates of or a

probability distribution over some elements of x. This requires multiple outputs. The

model could be demanded to restore any of the elements of x so that it should understand

the entire input.

2.1.4 Sampling

The model generates new samples from the distribution p(x). Applications include speech

synthesis, producing new waveforms that sound like natural human speech. This requires

multiple output values and a good model of the entire input. If the samples have even one

element drawn from the wrong distribution, then the sampling process is wrong

2.1.5 Runtime concerning the cost of inference

Suppose we want to experiment and deduce an inference task where we use our model

of the joint distribution P(x) to compute some other distribution, such as the marginal

distribution P(x1) or the conditional distributions(x2|x2). Computing these distributions

will require summing across the entire table, so the runtime of these operations is as high

as the intractable memory cost of storing the model.

2.1.6 Runtime concerning the cost of Sampling

suppose we want to draw a sample from the model. The naive way to do this is to sample

some value uεU(0, 1), then iterate through the table, adding up the probability values until

they exceed and return the outcome corresponding to that position in the table. This

requires reading through the whole table in the worst case, so it has the exact exponential

cost as the other operations.
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2.1.7 Directed Graph

Formally, a directed graphical model defined on variables x is defined by a directed acyclic

graph G whose vertices are the random variables in the model, and set of local conditional

probability distributions P (xi|PaG(xi)), where aG(xi) gives the parents offering. The

probability distribution over is given by(x) =
∏
ip(xi|PaG(xi)).
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Chapter 3

Time Series Classification with

Convolutional Neural Network

This chapter will introduce time series, recurrence plots, and convolutional neural network

implementation.

3.1 Time Series

A time series is a sequence of raw data points occurring in successive order over time. This

may be contrasted with cross-sectional data, which captures a point in time. (Adam Hayes

2021). A critical type of time series is a stationary time series. A time series is stated to

be strictly stationary if its properties are not affected by any change in the time origin.

That is, if the joint probability distribution of the observations yt, yt+1, ...yt+n is the same

as the joint probability distribution of the observations yt+k, yt+k+1, yt+k+2, ....yt+k+n then

the time series is strictly stationary. When n = 0, the stationarity assumption means that

the probability distribution of yris the same for all periods and can be written as f(Y ).

3.1.1 Important factors to consider for time series models

• Accuracy and development time.

The best model is not the model that is the fastest. The best model is a model with

high accuracy and optimum development time. Some models may give faster outputs,

but the accuracy levels are bad.
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Figure 3.1: The chaining process of the DL classification.

• What-if scenerio

A good model should be very viable. Performing what-if scenario analysis and track-

ing potential forecast accuracy should be easy. When the metrics involved or the

datasets are changed, they should be able to work if the data structure is the same.

• Ease of use

Re-training and data pipeline setup saves time and makes the generation of predic-

tions effortless.

3.1.2 Time Series Analysis

Time series analysis is the collection of data at specific intervals to identify trends, cycles,

and seasonal variances to aid in forecasting a future event.

Trends are consecutive increases or decreases in measurement over time. A trend could last

several days, months, or years. A trend will reverse in almost every observation during the

measurement lifetime. This reversal is sometimes referred to as a correction. Corrections

occur in the economy, the stock market, and business. It normally follows unprecedented

growth or loss. Seasonal variances are measured over several months and are associated

with a specific time of the year. Retailers realize seasonal growth in sales during November

and December. For the rest of the year, sales are relatively flat. The year can be divided

into four quarters. The first three quarters show a small sales volume, giving way to a

significant growth in sales in the fourth quarter.
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3.2 Recurrence Plot

Recurrence analysis is based on the repeatability of time series states and allows presenting

a time series as a geometric structure. The topology of such geométric structures will en-

able us to reveal and analyze the characteristic features of time series dynamics of different

natures. The work aims to classify ECG time series based on the construction of recurrence

plots. After transforming the time series into recurrence plots, two approaches are applied

for classification: using quantitative recurrence characteristics as the classifier features and

the recognition of recurrence plot Images using a convolutional neural network.

3.2.1 Recurrence Plots interpretation

The recurrence plot is a square matrix RPi,j, i, j = 1, ...N The element of RPi,j is equal

to 1. If the distance between points x(ti) and x(tj)in phase space does not exceed some

predetermined value ε, When the opposite case occurs , RPi,j is equal to 0

A recurrence plot (RP) is an advanced technique for nonlinear data analysis. It is a

visualization (or a graph) of a square matrix, whereby the matrix elements correspond

to those times in which a state of a classical dynamical system recurs (columns and rows

correspond then to a particular pair of times). Technically, the Recurrence plot shows when

the phase space area trajectory of the classical dynamical system enters roughly the same

area.

3.3 Recurrent Plot Definitions

Recurrence Rate is the density of recurrent points.

RR =
1

N2

N∑
i.j=1

RP ε
i,j (3.1)
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Figure 3.2: Recurrence plot chain process

Probabilty Pτ that the system recurs to the ε neighborhood of point xi of the trajectory

after τ time steps.

Pτ =
1

N − τ

N∑
i.j=1

φ(ε− | xi − xi+1 |) (3.2)

Diagonal Lines P (l) = li; i = 1, ..., Ni is the frequency distribution of the lengths of the

diagonal lines, where the li is the length of the i-th diagonal line, Niis the number of

diagonal lines.

The visual appearance of all recurrence plots gives details about the system’s dynam-

ics. Caused by the characteristic behavior of the phase space trajectory, a recurrence

plot contains typical small-scale structures, such as single dots, diagonal lines, and ver-

tical/horizontal lines (or a mixture of the latter, which combines into extended clusters).

The large-scale structure, called texture, can be visually characterized by homogeneous,

periodic drift or disrupted. For example, the plot can show that if the trajectory is strictly

periodic with period T, then all such pairs of times will be separated by multiple T and

visible as diagonal lines. (Wikipedia 2020). For the transformation, a single, isolated re-

currence plot can occur if states are rare, do not persist for any time, or fluctuate heavily.

However, they are not a unique sign of chance or noise (for example, in maps). When the

data has periodic/ quasi-periodic patterns, it means there are cyclicities in the process;

the time distance between irregular patterns (e.g., lines) corresponds to the period; long
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Figure 3.3: From left uncorrelated stochastic data (white noise), harmonic oscilla-
tion with two frequencies, chaotic data (logistic map) with linear trend,
and data.

diagonal lines with different distances to each other reveal a quasi-periodic process. Fur-

thermore, if there are vertical and horizontal lines/clusters, the data stay mostly the same

for some time, indicating laminar states. Fig 3 shows a set of classical time series and their

corresponding transformed data.

Recurrence plot from paradigmatic systems gives an excellent introduction to charac-

teristic typology and texture. Moreover, their quantification offers a better objective way

to investigate the considered system. Fig 3.4 shows a fading to the upper left and lower

right corners. This means that the Olive Oil data is nonstationary; the process contains a

trend or drift.

3.4 Classifier for Images

For image classification, convolutional neural networks are the best. The CNN contains five

layers; the first two are convolutional. The designed output of the last layer is fed to a two-

sided softmax, producing a distribution over two classes. Neurons in fully well-connected

layers are connected to all of the neurons in the previous layers. The activation function

used is the ReLu. The method of batch normalization was used in layer regularization.
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Figure 3.4: Time series to image encoding on two datasets from the UCR archive:
FaceAll and OliveOil(from left to right, respectively).

3.5 ReLu Function

The rectified linear unit provides a straightforward nonlinear transformation. Given an

element x, the function is defined as the maximum of that element and 0:

ReLu(x) = max(x, 0) (3.3)

The RelU function retains only positive elements and discards all negative elements by

setting the corresponding activations to 0. When the input is negative, the RELU function

is 0, and also when the input is positive, the derivative of the RELu function is 1

3.5.1 Activation Functions

Activation functions decide whether a neuron should be well activated by calculating the

weighted sum and adding bias to it. They are differentiable operators to transform in-

put signals into outputs, while most add non-linearity. Because activation functions are

fundamental to deep learning, let’s briefly survey some common activation functions.
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Figure 3.5: The RP images of two sequences with opposite tendencies. (left column:
two sequences of the ‘SyntheticControl’ dataset, middle column: the
original RP images of these sequences, right column: the signed RP
images of these sequences

3.6 Asymmetric RP for encoding long time series

Information will be lost when the large-size recurrence plot images of long sequences are

directly reduced to smaller sizes. To address this information loss, a new asymmetric

recurrence plot is needed. The original one will be symmetric along the leading diagonal,

causing information redundancy. Hence we have to divide the long sequence into two pieces

and encode each as a recurrence plot. The two extracted matrices are reassembled into an

asymmetric image.

3.6.1 Introducing convolutional networks

A Convolutional Neural Network is a DL algorithm that takes as input an image or a mul-

tivariate time series and can successfully capture all the spatial and temporal patterns by
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Figure 3.6: Recurrence plot feature selection for convolutional neural network

Figure 3.7: Time series to Recurrence plot chain process for classification
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applying good, trainable filters and assigning importance to these patterns using trainable

weights. The pre-processing required in a Convolutional Neural Network is much lower than

in other classification algorithms. Even though many filter methods are hand-engineered,

Convolutional Neural Networks can learn these filters.
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Figure 3.8: A classical convolution Neural Network with layers

When well implemented, deep learning helps improve model accuracy and performance.

The techniques can be used in a variety of architectures and are not model-specific:

Examples include:

• Batch normalization

• Latent variables

• Activation functions

We can see that a Convolutional Neural Network is composed of three different layers:

They are the Convolutional layer, the Pooling layer, and the Fully-connected Layer

• Convolutional Layer The main principle of the 2D convolution is to drag a con-

volution kernel on the image. The convolution between the kernel and part of the

images is treated at all positions. The kernel then moves by the number of pixels
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(called stride). When the stride is relatively small, it becomes redundant information.

It is called zero padding in this case. If the size of the image input is W x H x C, the

volume of the output becomes W0 ∗H0 ∗ C0

W0 =
Wi − b+ 2p

s
+ 1 (3.4)

H0 =
Hi − b+ 2p

s
+ 1, (3.5)

If the image has three channels and if bl(l = 1, ..., C0) denote 5 * 5 * 3 kernels (where

three corresponds to the number of channels of the input image), the convolution

with the image I with the kernel bl corresponding to the formula.

bl ∗ I(i, j) =
2∑
c=0

4∑
n=0

4∑
m=0

bl(n,m, c)I(i+ n− 2, i+m− 2, c) (3.6)

The convolution operations are combined with an activation function φ(generally the

Relu activation function): if we consider a kernel K of size b ∗ b, if x is a b ∗ b patch

of the image, the activation is obtained by sliding the b ∗ b window and computing

z(x) = φ(b ∗ x+ bs), where bs is a bias.

• Pooling Layer The Pooling layers allow taking the mean or the maximum on all

patches of images. It acts on small patches of the image. When a 2x2 patch is

considered, we will take the maximum value to define the output layer a stride s = 2

will be divided by the height and width of the image. It is possible to reduce the

dimension. This can be done by taking a stride larger than one without padding. An

advantage of pooling is that it makes the network less sensitive to small translations

of the input images. reduce the dimension by

• Fully-Connected Layer After considering several convolutions and pooling layers,

The Convolution Neural Network ends with several fully connected layers. The tensor
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Figure 3.9: Deep Learning System

that we have at the output of the layers is transformed into a vector, and perceptron

layers are added.

The CNN is trained by feeding it with images of size 28 × 28 × 4 (width, height,

channels). Each image corresponds to an activity instance, and the four channels are the

distance matrices for the magnitude and x,y, and z axes, as outlined in the previous section.

The activity labels are also passed to the CNN as one-hot encoded vectors at training time.

Then the Input layer passes the data to two consecutive convectional layers, after which

max pooling and dropout (p = 0.25) are used. Next, the data passes through two more

convolutional layers, and again, max pooling and dropout (p = 0.25) are applied. After

that, the data is flattened and passed through a fully connected layer of five hundred and

twelve units with dropout (p = 0.50).

Each convolutional layer uses a kernel of size three with a stride size of 1. The max-

pooling layers use a pool size of 2. The kernels for the first two convolutional layers were

set to 16 and 32 for the last two. Finally, a fully connected layer with six units (for the six

activities) and a softmax activation function is used to produce the final output, i.e., the

probability for each activity.
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Figure 3.10: CNN Architecture

3.6.2 Softmax and Cross Entropy Loss

To minimize the difference between o and the labels y. While it turns out that treating

classification as a vector-valued regression problem efficiently works surprisingly well, it is,

however, lacking in the following ways:

• There is no guarantee that the outputs sum up to 1 in the way we expect probabilities

to behave.

• There is no guarantee that the outputs oi are even nonnegative, even if their outputs

sum up to 1, or that they do not exceed 1.
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3.7 Can CNN compute all Functions

It is possible to get results with just a single hidden layer. However, can we replace net-

works with external, single-hidden-layer networks? While, in principle, that is possible,

there are good practical reasons to use deep networks. Deep networks have a very hier-

archical structure, making them well adapted to learning the hierarchies of all knowledge

that seem helpful in solving problems. When approaching issues such as image process-

ing or recognition, it helps to use a classical system that understands not just individual

pixelations but also increasingly more complicated concepts, from edges to more geomet-

ric shapes, through complex, multi-object scenes. The universality of the neural network

shows that neural networks can compute any function. Empirical evidence also suggests

that deep networks are best adapted to learn the functions that help solve many real-world

problems.
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Chapter 4

Multistage Modeling Analysis and

Results

4.1 Structure of the data:

The choice of validating on the UCR/UEA archive is motivated by having datasets from

almost all domains broken down into seven categories ( Motion Capture, Spectrographs,

ECG, Image Outline, Sensor Readings, Electric Devices, and Simulated Data). The process

of classification of a time series with deep learning is very systematic. First, the time

series is transformed into image data with the help of the recurrence plot. After that, the

transformed image is used as a bedrock for the convolutional neural network.

4.2 Analysis of The Data

The UCR Archive currently contains 128 datasets. Fifteen of these are unequal lengths,

and one (Fungi) has a single instance per class in the train files. To have a thorough

and fair experimental evaluation of all approaches, we tested each algorithm on the whole

UCR/UEA archive (Chen et al., 2015b; Bagnall et al., 2017), which contains 85 univariate

time-series datasets. The datasets possess varying characteristics, such as the length of the

series and class.
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4.2.1 Classification Nuances

The benchmark approaches for time series arrangement could be sorted into three gath-

erings: distance-based, include-based, and brain network based. . We are interested in

the classification conduct of various models since they all perform similarly on the same

dataset with different accuracies and their feature areas and learn classifiers be noted.

4.3 Classification Transforms

4.3.1 Gramian Angular Fields

Gramian Angular Fields (GAF) are images representing a time series in a non-Cartesian

coordinates system (i.e., each point on the plane is referenced by an X and Y axis). Instead,

the coordinates are mapped by a Polar Ordinate system (i.e., each point on the plane is

determined by a distance from a reference point and an angle from a reference direction).

Thus each GAF represents a temporal correlation between each time point. (Johann Faouzi

et al)

4.3.2 Markov Transition matrix

A time series X = (X1, ..., Xn)of real-valued observations is discretized based on its quantile

bins; that is, each bin is assigned to its corresponding bin Qj with jε1, ..., Q and Q is

the number of quantile bins, resulting into a discretize-valued time series of length n.

Considering this discretized-valued time series as observations of a first-order Markov chain,

one can compute the number of occurrences of pairs of back-to-back bins for every pair of

bins, resulting in a Q × Q matrix.

The Markov transition matrix is insensitive to the temporal distribution of the time

series X since it only captures the frequencies of the transition but not at which time

points they occurred. Moreover, its size depends on the number of bins and not the length

of the time series, although larger time series may allow for a larger number of bins. To
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Figure 4.1: Gramian Angular Field output on Oliveoil data considered. This is the
image generated when the time series dataset is transformed into an
image

overcome these issues, the Markov transition matrix is projected onto an n × n matrix

called the Markov transition field. (Johann Faouzi et al)

4.4 Residual Neural Network

A residual neural Network is an artificial neural network with a very deep forward neural

network. It has many layers with much dense neural networks than most ANN. A non-

residual network is called a plain network. With Resnet, all layers are expanded and

stay closer to the manifolds, therefore learning faster. This makes it very susceptible to

perturbations that cause it to leave the manifold and needs more training data to recover.

(Wikipedia; 2022)
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Figure 4.2: Gramian Angular Field output on Oliveoil data
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4.5 Encoder

The encoder algorithm solves the lack of pre-trained models for image classification with

fewer training images, eliminating the need to appoint a category. Autoencoders use semi-

supervised learning algorithms that combine the strength of unsupervised and supervised

learning algorithms.

4.6 Multiscale Convolutional Neural Network

The multiscale convolutional neural network extends the dynamism of the hidden layers.

Additional convolution layers produce a very coarse output to match the low possibility

of components. This thereby accelerates the convergence and increases the stability of the

neural network.

4.7 Accuracy and Error Metrics

Evaluating a deep learning algorithm is an essential part of any research. Accuracy is

used to measure the performance of models; however, more is needed to judge models

using accuracy alone thoroughly. Using the average rank and the number of wins helps to

confirm the efficiency of the models. The average rank and number of wins help identify

the best algorithm for the exact project. It also enforces that due diligence must be done

before any algorithm is chosen to model any data.

4.8 Experiment

The training and testing sets are provided separately to ensure that the results of sev-

eral different algorithms of different studies are comparable. Different datasets from the

UCR time series were considered to assess the performance of different models. We then

compared the RP-CNN with three other benchmark methods. The hyperparameters of
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the RP-CNN are phase space dimensions. RP (with the classical phase space dimension

m = 3, and embedding time delay τ = 4) time-series to image encoding on the first sample

of different datasets from the considered UCR archive are shown. When the RP images

are more significant, they are re-sized to an acceptable size to avoid information loss. The

results of compared algorithms are obtained from their respective papers.

4.8.1 Classification Error Rates

Dataset RP-CNN Resnet Encoder MCNN

Wafer 0 0.003 0.4 0.087

Olive Oil 0.11 0.133 0.6 0.62

Coffee 0 0 0.021 0.486

Trace 0 0 0.04 0.646

Face Four 0 0.068 0.185 0.732

Two Pattern 0.4935 0 0 0.597

Adiac 0.28 0.174 0.516 0.978

Gunpoint 0 0.007 0.064 0.487

Syntheitic Control 0.3433 0 0.004 0.702

Swedish Leaf 0.06 0.042 0.07 0.882

Average Rank 0.1287 0.0427 0.19 0.6217

Number of Wins 7 5 1 0

4.8.2 Table Interpretation

The table comprises datasets with multistage neural networks. The recurrence plot CNN

technique, Resnet, Encoder, and MCNN error rates are documented. The average rank

system is used to rate the comparison rate of each. The number of wins shows the number

of times a particular algorithm was better than the others.
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4.9 Results

The best performer of each dataset is highlighted in bold. RP exploits CNN’s high perfor-

mance on all image classifications. However, Time-series signals are first transformed into

images (using RP) and then handled by a multistage deep CNN model.

The table comprises the summary of the performance of all the error results of all the con-

sidered algorithms. The better the algorithm, the smaller the average rank. It was noted

that RP-CNN had the second-best accurate algorithm with an average rank of 0.1287 and

many wins of 7. This was followed closely by Encoder, with an average rank of 0.19 with

one win. MCNN had the least accuracy, with an average rank of 0.6217. Resnet had the

best accuracy with an average rank of 0.0427 and 5 wins.

4.10 Observations

Recurrence plot transformation techniques are very effective for TSC. Some factors lead

to effectiveness. Multistage recurrence plots inherit the advantages of RP, e.g., exposing

recurrent patterns and constructing long-term time dependencies. These advantages are

highly complementary to CNN. CNN handles the weaknesses of RP, e.g., tendency confusion

and long encoding sequences. Therefore, they provide better representations for the time

series.
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Chapter 5

Conclusion

In multistage modeling using Deep learning, image processing can be two-dimensional or

one-dimensional. They can be implemented on a time series classification because time

series have an intense time locality that convolutions can extract. Multivariate time series,

however, has the same 2D data structures as images after transformation. CNN images

are very convenient for processing multivariate time series. CNN can get familiar with

an alternate degree of time series features in a classification state. RP can give a decent

representation of the m-layered stage space direction, giving the best performance in the

experiment. It is noted that the RP-CNN performs well on some datasets, but it can

be predicted that deepening the stature of a time series structure may be very good but

should be done carefully. Learning hierarchies of concepts and building up multiple layers

of abstraction should be fundamental in most deep-learning models. Furthermore, if this

is well implemented, very good and time considerate models can be made. Resnet was the

best with regard to the datasets chosen. However, when a model is needed for a particular

task, several algorithms should be considered, and the algorithm with the best wins and

average rank should be considered. In conclusion, high accuracy and high scalability make

the perfect algorithm for most deep-learning projects. Many algorithms can be used, and by

the ranking and number of wins method, the best one in terms of accuracy and time metric

can be chosen. There should be more than one standard algorithm for some problems.
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5.1 Future Work and Recommendations

• Echo state Networks can be considered because they can speed up the training process

since they are sparsely connected with most of their weights fixed.

• Large datasets are needed to train deep learning architectures well. Therefore, using

the proposed pipeline for TSC with very small sample sizes can be another future

direction that should be considered.
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