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Chapter 1

Introduction

Under the maximum likelihood framework, three asymptotic overall tests have been well

developed in generalized linear models (GLM) for testing the single null hypothesis H0 :

θ = θ0, namely, the Wald test, Likelihood Ratio Test (LRT) and Score test also known as

the Lagrange Multiplier test (LM). Modified versions of Wald, LR and LM tests can also

be found for testing the significance of a portion of the parameter θ, i.e., if θ = (θT1 ,θ
T
2 )

T

it is of interest to test H0 : θ2 = 0. However, with the constant increase of dimensionality

in data, the three tests becomes unfeasible to compute. The computational cost one has

to pay seems to be unrealistic and difficult or even untractable.

The approach taken in this document to deal with this issue follows the profile likelihood

framework which consists of partitioning the p-dimensional parameter vector θ into two

parameter vectors θ1 and θ2 of dimension q and p− q, respectively, estimate θ1 under H0,

say θ̃1, and use θ̃1 to estimate θ2. With this approach, one could reduce considerably the

execution time when estimating a big number of parameters in the model without losing

the asymptotic properties and the power of the traditional tests. Also, one could test the

null hypothesis even if the dimension of θ is moderately bigger than the sample size n as

long as both q and p− q are smaller than n.

This document is organized as follows. Chapter 2 gives an extensive background where

topics as linear regression, generalized linear models, profile likelihood, and stochastic con-

vergence are covered. Chapter 3 describes the two proposed methods and shows the deriva-

tion of the asymptotic distribution. Several applications are also discussed at the end of

this chapter. In chapter 4, simulations to study the empirical distribution, power, and size

of the proposed tests will be performed as well as the execution time. Comparison of the
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proposed methods and ordinary counterparts will be done. In chapter 5, it will be explored

the practical use of the proposed method with the use of a real data, one for each of the

three models considered in the simulation. Comparison of the performance among the ordi-

nary and proposed tests is made. Finally, in Chapter 6, summary of the procedure followed

to derive the proposed tests is made. Advantages and disadvantages of the proposed tests

are stated. Conclusions and future work will be discussed.
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Chapter 2

Background

In this chapter basic concepts and methods will be introduced starting by linear regression

models and the estimation of coefficients by the two most common frameworks, namely,

ordinary least squares and maximum likelihood. Generalized linear models will be described

with the aim of concepts in exponential family of distributions. Derivation of general

tests for testing single hypothesis such as likelihood ratio, Wald and score tests will be

conducted. Concepts on stochastic convergence will be given and used to introduce M and

Z-estimators. Chapter closes with the definition of consistency and the derivation of the

asymptotic normality of Z-estimators and Maximum Likelihood Estimators.

2.1 Linear Regression Models

The framework for linear regression models is one of the most known and developed ones.

In a linear model, it is assumed that the continuous response variable Y is linearly related to

a set of non-random predictor variables Xj plus a random term ϵ. When only one predictor

variable is used, the model can be written as

yi = β0 + β1xi + ϵi

for i = 1, . . . , n, where yi is the ith realization of the response random variable Y , xi

is the ith observation of predictor variable X, β0 and β1 are unknown parameters to be

estimated and ϵi is the ith random error. It is also assumed that the ϵis are independent

and identically distributed such that ϵi ∼ N (0, σ2) where σ is regarded as an unknown

constant. Two general approaches regarding the predictors can be considered. One could

3



assume either the predictors to be non-random or treat them as random as well. The former

approach is taken in the discussion unless otherwise stated. According to the assumptions,

it can be deduced that µi = E(Yi) = β0 + β1Xi, the Yis are independent N (µi, σ
2).

One of the approaches to estimate β0 and β1 is by least squares, which attempts to

minimize the criterion function

Q(β0, β1) =
n∑

i=1

ϵ2i =
n∑

i=1

(yi − (β0 + β1xi))
2,

known as sum of squares. Taking partial derivatives ofQ with respect to β0 and β1, equating

to zero and solving for β0 and β1 simultaneously yield the least squares estimators

b0 = ȳ − b1x̄, b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

where x̄ = n−1
∑n

i=1 xi and ȳ = n−1
∑n

i=1 yi. An estimate for σ2 can be found by using the

residual sum of squares (SSE)

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)
2

where ŷi is the ith fitted value of yi defined as ŷi = b0 + b1xi and ei is the ei is the ith

residual of yi defined as ei = yi− ŷi. One can prove that E(SSE) = σ2(n−2) and therefore

SSE/(n− 2) becomes a natural unbiased estimator of σ2, i.e., the estimator of σ2 is

s2 =
1

n− 2

n∑
i=1

(yi − ŷi)
2

This quantity is also referred to as the mean square residuals and denotes as MSE.

Another approach is to use the maximum likelihood framework which consists of max-

imizing the likelihood or log-likelihood function of Y1, . . . , Yn, i.e., maximizing

ℓ = ℓ(β0, β1, σ
2; y1, . . . , yn) =

n∑
i=1

log f(yi; β0, β1, σ
2).

Under the assumption that Yi ∼ N(µi, σ
2)

ℓ = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2,

4



which equating to zero yields to the sum of squares Q. Therefore, the maximum likelihood

estimators (MLEs) of β0 and β1, β̂0 and β̂1 respectively, are the same as the ones obtained

in least squares. Additionally, one can easily estimate the variance σ2 as

σ̂2 =
1

n

n∑
i=1

(yi − ŷi)
2

an biased estimator of σ2. One can note immediately that σ̂2 = (n− 2)s2/n.

To make inferences about the parameters β0 and β1, one can derive the sampling dis-

tribution of b0 and b1 by noticing that both b0 and b1 are linear combinations of normal

random variables

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

n∑
i=1

aiyi

where ai = (xi− x̄)/
∑n

i=1(xi− x̄)2. Since xi is not random and ȳ is normal, b0 = ȳ− b1x̄ is

also a linear combination of normal random variables. It is easy to prove that both b0 and

b1 are unbiased estimators of β0 and β1, respectively and that

Var(b0) =
σ2x̄2∑n

i=1(xi − x̄)2
, Var(b1) =

σ2∑n
i=1(xi − x̄)2

so that

b0 ∼ N
(
b0,

σ2x̄2∑n
i=1(xi − x̄)2

)
, b1 ∼ N

(
b1,

σ2∑n
i=1(xi − x̄)2

)
.

Regarding the multivariate linear regression model, it is assumed that

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + ϵi, i = 1, . . . , n

where Yi is the ith realization of the response variable Y and Xij is the ith realization for

the jth predictor variable Xj. In matrix notation, the model can be written as compact as

Y = Xβ + ϵ with

Y =


Y1

Y2
...

Yn

 , β =


β0

β1
...

βp

 , ϵ =

ϵ1

ϵ2
...

ϵn

 , X =


1 X11 . . . X1p

1 X21 . . . X2p

...
...

. . .
...

1 Xn1 . . . Xnp

 ,

5



where X is called the design matrix, β is the unknown vector of parameter to be esti-

mated, Y is a random vector of responses and ϵ is the random vector of errors following

multivariate normal distribution with mean zero and variance-covariance matrix σ2I, i.e.,

ϵ ∼ Nn(0, σ
2I).

To estimate β one can follow any of the two approaches mention above: least squares

or maximum likelihood framework. For the least square estimates, it is needed to minimize

Q(β) = ϵTϵ = (Y−Xβ)T (Y−Xβ)

with respect to β, which yield on the least square estimator b = (XTX)−1XTY with fitted

vector Ŷ = Xb = X(XTX)−1XTY = HY. The matrix H = X(XTX)−1XT is called the

hat matrix and plays an important role in model diagnosis. The residual vector is defined

as e = Y−Ŷ = (I−H)Y. This can be used, as before, to estimate σ2 through the residual

sum of squares

SSE = eTe = YT (I−H)Y

Last equality holds because H, and therefore I −H is symmetric and idempotent. It can

be proved that

E(SSE) = σ2(n− p− 1), E(b) = β, Var(b) = σ2(XTX)−1

which can be used to make inferences about individual parameter coefficients in a similar

fashion as in simple linear regression.

Linear regression models can be more flexible than they look. Xj can be transform in

many ways as long as the parameter coefficients remain linear. They can represent cate-

gorical variable by introducing dummy variables. Interaction between predictor variables

can also be included in the model through the product of variables. Another advantage

of linear models is its interpretability. Since the response variable is directly related to a

linear combination of predictors, it can be easy to interpret what each coefficient means

and the effect that a change in the predictor may produce in the response variable.

6



One of the principal assumptions in linear models is normality of the error term. With-

out this assumption, inferences regarding the estimation coefficient could be invalid. Some-

times it is also inappropriate to use a linear model to relate the mean of the response

variable with one or several predictor variables since the relation may not be linear. An-

other problem is multicollinearity which refers to high correlation among predictor variables.

Multicollinearity may produce larger standard errors and so less reliable results. The viola-

tion of the assumption that the variance of the error term is constant is also a big problem.

This is also referring to heteroscedasticity. Test result may not be valid since all theory

has been derived on base of a homoscedasticity assumption.

Several other models have been developed to fix these issues such as weighted linear

regression to deal with heteroscedasticity, polynomial regression to deal with non-linearity,

partial least squares regression to deal with multicollinearity, or generalized linear models

(GLM) to deal with non-linear relationships, heteroscedasticity, and/or discrete response

variables. All the assumption in GLMs will be discuss in the next sections but one of

the most important is that the response variable follows a distribution belonging to the

exponential family.

2.2 Exponential Family of Distributions

Distribution functions from the exponential family plays a main role in generalized linear

models. A distribution function f belongs to the single-parameter exponential family if it

can be rewritten in the form

f(x, θ) = h(x)g(θ) exp[a(x)b(θ)] (2.1)

where a(x) and h(x) > 0 are continuous functions independent of the parameter value θ

and b(θ) and g(θ) > 0 are continuous function of θ free of x. Alternatively

f(x, θ) = exp[a(x)b(θ) + c(θ) + d(x)] (2.2)

7



where c(θ) = log g(θ) and d(x) = log h(x). The function b(θ) is called the natural parameter

and sometimes denoted as η(θ), a(x) is known as the sufficient statistic and sometimes wrote

as T (x). When a(x) = x, f is said to be in canonical form. When the distribution function

has more than one parameter which are of no interest, they are referred to as nuisance

parameters, regarded as known and can be absorbed in any of the functions a(·), b(·), c(·),

or d(·).

One can prove that, if f is twice differentiable and the derivatives are interchangeable

with the integral sign,

E[a(X)] = −c
′(θ)

b′(θ)
, Var[a(X)] =

b′′(θ)c′(θ)− c′′(θ)b′(θ)

[b′(θ)]3
(2.3)

Proof can be found in [5].

The log-likelihood function of a random variable X which distribution belongs to the

exponential family is then

ℓ(θ,X) = a(X)b(θ) + c(θ) + d(X)

and for n random variables X1, . . . , Xn the log-likelihood function becomes

ℓ(θ,X) =
n∑

i=1

ai(Xi)bi(θi) +
n∑

i=1

ciθi +
n∑

i=1

di(Xi)

where θ = [θ1, . . . , θp]
T , X = [X1, . . . , Xn], Xi ∼ fi(xi, θi) and

fi(xi, θi) = exp[ai(xi)bi(θi) + ci(θi) + di(xi)]

Not only for exponential families but for any distribution function, the partial derivative

of ℓ with respect to θ satisfies E[ℓ̇(θ,X)] = 0 (See proof in [5]). Moreover, the variance

of ℓ̇(θ,X) is what is known as the expected information matrix or Fisher’s information of

X and it is denoted as I(θ). In [5] it has been shown that the information matrix is the

negative of the expectation of the matrix of second partial derivatives of ℓ, −E[ℓ̈(θ,Xi)].

The information matrix plays an important role in making inferences as will be seen in

next sections. Also, the information matrix of a random sample drawn from a distribution

8



belonging to the exponential family can be shown to be negative definite for all θ which

have a direct implication on the concavity of ℓ. Indeed, all distribution in the exponential

family are called log-concave since their log-likelihood is concave. This result will be useful

when investigating the asymptotic normality of MLEs in exponential families.

Some distributions belonging to the exponential family are the Normal, Binomial, and

Poisson distributions. If X ∼ N (µ, σ2), then

f(x, µ) = exp

[
x
(
− µ

σ2

)
− µ

2σ2
− x2

2σ2
− 2 log(2πσ2)

]
Here σ2 is considered as known and therefore regarded as a nuisance parameter. If X ∼

Binom(n, π) then

f(x, π) = exp

[
x log

π

1− π
+ n log(1− π) + log

(
x

n

)]
.

For the binomial distribution, π is the parameter of interest and n is regarded as constant.

Finally, if X ∼ Poiss(λ) then

f(x, λ) = exp[x log λ− λ− log x!].

All these distributions are in the canonical form, and it can be easily verified that their

expectations and variances satisfy (2.3). Other distributions belonging to the exponential

family are the exponential, gamma, beta, and geometric distributions but some of them are

not in the canonical form. Table 2.1 shows the principal components for some distributions

belonging to the exponential family.

For a parameter vector θ, f belongs to a vector exponential family if it can be rewritten

as

f(x,θ) = h(x)g(θ) exp[bT (θ)a(x)]

where a and b are vector-valued functions. It is also common to write f as

f(x,θ) = h(x) exp[ηT (θ)T(x)− ψ(θ)]

9



Table 2.1: Components of generalized linear models in common distributions

Distribution
Parameter

θ

Nuisance

parameter

Sufficient

statistic T

Natural

parameter η
Inverse

Normal µ σ2 x − µ
σ2

−σ2η

Binomial π n x log π
1−π

eη

1+eη

Poisson λ x log λ eη

Bernoulli π x log π
1−π

eη

1+eη

Exponential λ x − 1
λ

− 1
η

In this case, T(x) is called the natural sufficient statistic. If the natural parameter η(θ) is

a one-to-one function of θ, f can be reparametrized so that

f(x,η) = h(x) exp[ηTT(x)− ψ∗(η)]

It can be prove that E[T (X)] = ∂ψ∗(η)/∂η and Var[T (X)] = ∂2ψ∗(η)/∂ηTη.

2.3 Generalized Linear Models

Linear regression models relate a response variable Y with the predictor variablesX1, . . . , Xp

in such a way that the expectation of the response is equal to a linear combination of the

predictors, i.e., µ = EY = Xβ. The main idea of generalized linear models is to allow

this relationship to be nonlinear by relating Y with the predictors X1, . . . , Xp through a

function of its mean. The most popular models are the linear regression (normal), logistic

(binomial) and the log-linear (Poisson) models.

In generalized linear models there are a couple of assumptions that need to be satisfied.

First, it is assumed that Y1, . . . , Yn are independent and follow the same distribution func-

tion belonging to the exponential family which is fully specified up to the parameters in θ.

This is, Yi ∼ f(yi, θi), where f has the form in (2.2) for all i = 1, . . . , n. It is also assumed

10
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Figure 2.1: Three generalized linear models

that f is in the canonical form so that

f(yi, θi) = exp[yib(θi) + c(θi) + d(yi)], i = 1, . . . , n

and that the expectation of Yi, µi, is related to a linear combinations of predictor vari-

ables through a monotone and continuous function g called the link function, i.e., g(µi) =

xT
i β = ηi, where xi = [1, xi1, . . . , xip]

T is the ith row of the design matrix X and β =

[β0, β1, . . . , βp]
T is the vector of unknown parameters to be estimated.

For linear regression, the link function is the identity, i.e., µi = xT
i β; for the logistic

model, the link function is what is called the logit function, this is, log µi

1−µi
= xT

i β; and

finally the log-linear model uses the logarithm as the link function, log µi = xT
i β. See Table

2.1 and Figure 2.1.

Under the maximum likelihood framework, one can estimate β by maximizing the log-

likelihood function of Y1, . . . , Yn, this is, maximizing

ℓ(θ,Y) =
n∑

i=1

ℓi(θi, Yi)

The derivative of the log-likelihood function with respect to βj is what is called the score

11



function and can be verified that

Sj =
∂ℓ(θ,Y)

∂βj
=

n∑
i=1

Yi − E(Yi)

Var(Yi)

(
∂µi

∂ηi

)
xij

It can also be proved that

E(Sj) = 0, cov(Sj, Sk) =
n∑

i=1

xijxjk
Var(Yi)

(
∂µi

∂ηi

)2

for all j, k = 1, . . . , p. In matrix form, the variance-covariance matrix can be rewritten as

cov(S) = XTWX = (Ijk) where W is the n×n diagonal matrix with diagonal components

wii =
1

Var(Yi)

(
∂µi

∂ηi

)2

,

and Ijk are the components of the information matrix I. It is needed to find β = [β1, . . . , βp]

for which S = [S1, .., Sp]
T is the zero vector, i.e., S(β) = 0. Using the Newton’s method, β

can be estimated by an iterative process using the formula

b(r) = b(r−1) − [J(r−1)]−1S(r−1)

and an initial guess b(0) of β. Here b(r) is the estimation of β in the rth iteration, S(r−1)

is the evaluation of S in b(r−1), and J is the Jacobian matrix of S evaluated at b(r−1), that

is, the matrix of partial derivatives of S with respect to β at b(r−1)

Jjk =
∂Sj

∂βk
=

∂2ℓ

∂βk∂βj

Since E(∂2ℓ/∂βk∂βj) = −Ijk one can estimate J with its expectation −I

b(r) = b(r−1) + [I(r−1)]−1S(r−1) (2.4)

which is called the scoring method. Multiplying last equation by I(r−1) both sides, right

hand side can be rewritten as

n∑
i=1

xij
Var(Yi)

(
∂µi

∂ηi

)2
[

p∑
k=1

xikb
(r−1)
k + (yi − E(Yi))

(
∂ηi
∂µi

)]

12



Then, (2.4) becomes

XTWXb(r) = XTWz (2.5)

where z is the n× 1 vector which components are defined by

zi =

p∑
k=1

xikb
(r−1)
k + (yi − E(Yi))

(
∂ηi
∂µi

)
Note that (2.5) has the same form of the estimate β in weighted least squares, except

that (2.5) is solve by an iterative process because both W and z depend on b. Once b is

obtained, the inference part can be derived using Taylor expansion of S around b

S(β) ≈ S(b) + S(b)(β − b) = −S(b)(b− β) = I(b)(b− β)

since S(b) = 0 and −S(b) = I(b). If I is invertible at b and regarded as constant

E(b− β) ≈ 0 and

Var(b) = E[(b− β)(b− β)T ] ≈ E[I−1(b)S(β)ST (β)I−1(b)] = E[I(b)] = I(b),

since S(β)ST (β) = Var[S(β)] = I(β). Then, (b − β)TI(b)(b − β) ∼ χ2
p approximately.

The statistic (b− β)TI(b)(b− β) is what is called the Wald test. A more rigorous proof

can be given by following the concepts of consistency and asymptotic given in next sections

and can be found in Appendix A.

2.4 Likelihood Ratio, Wald, and Score Tests

When a statement about the true parameter θ is made, one wants to test whether the

statement is either true or false. This is done through a hypothesis test. The standard

form of a hypothesis test is H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0; H0 is called the null hypothesis

and H1 the alternative hypothesis. When θ0 consists of a single value or vector H0 is said to

be simple, in other case H0 is said to be composite. A test statistic W (X1, . . . , Xn) which

depends on the sample X1, . . . , Xn is used to decide about the feasibility of H0. The set

of values for which H0 is rejected, i.e., considered as false, is called the rejection region R.

13



Three general methods are used for testing hypotheses: the Likelihood Ratio Test (LRT),

the Wald test, and the Score test.

Consider testing the simple hypothesis H0 : θ = θ0 so that Θ0 = {θ0} and θ0 ∈ Rp.

Let X1, . . . , Xn be a random sample drawn from a population with distribution function

f(x,θ). Let X = [X1, . . . , Xn]
T , L(θ,X) be the likelihood function of X, ℓ(θ,X) be the

log-likelihood function of X, S(θ) = ℓ̇(θ,X) be the score function, I(θ) be the information

matrix, θ̂ be the unrestricted MLE of θ, and θ̂0 the restricted MLE of θ under H0, i.e.,

θ̂0 = θ0.

The Likelihood Ratio Test consists of comparing the two likelihoods in both the null

parameter space Θ0 and the entire parameter space Θ = Θ0 ∪Θc
0

LRT =
supΘ0

L(θ,X)

supΘ L(θ,X)
=
L(θ0,X)

L(θ̂,X)
. (2.6)

An alternative form for the LRT is

LRT = 2[ℓ(θ̂,X)− ℓ(θ0,X)] (2.7)

which can be obtained by applying logs to (2.6) and multiplying by −2. This modification

makes sense once the asymptotic distribution of LRT wants to be derived. Then H0 is

rejected when the LRT value is smaller than a critical value c which depends on the signifi-

cance level α. Under appropriate conditions, the log-Likelihood Ratio Test has a chi-square

asymptotic null distribution with p degrees of freedom.

One of the main disadvantages of the LRT is that it does not consider the curvature of

the log-likelihood function. If the log-likelihood is flat enough θ0 could be far from θ̂ but

ℓ(θ0) will be closed to ℓ(θ̂) then, LRT will fail to reject H0. See left graph in Figure 2.2

for the one-dimensional case. Note that green curve, referred to as ℓA in the graph, has

more curvature than red curve ℓB, moreover ℓ(θ̂) = ℓA(θ̂) = ℓB(θ̂) but the vertical distance

ℓ(θ̂)− ℓ(θ0) is greater for curve A than for curve B.

The Wald test, on the other hand, uses both the square distance between θ̂ and θ0

and the curvature of ℓ(θ) which can be estimated by the information matrix I(θ̂). This is
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Figure 2.2: Graphical representation of the LR, Wald and score tests

defined by

W = (θ̂ − θ0)TI(θ̂)(θ̂ − θ0). (2.8)

Note that the square distance is weighted by the curvature of ℓ. This is because a larger

curvature will produce a greater departure of ℓ(θ0) from ℓ(θ̂) as shown in left graph in

Figure 2.2.

Just as before, W ∼ χ2
p asymptotically. When θ is one-dimensional, the Wald test takes

a simpler form which is more familiar and common to see in literature:

W =
θ̂ − θ0

σ(θ̂)
∼ N(0, 1).

The Wald test will reject H0 if θ0 is farther enough to θ̂, or equivalently, if W is larger

than a critical value c(α). It will fail to reject if W is small.

The score test, also named as the Lagrange multiplier test (LM), considers both the

curvature and the slope of the log-likelihood function at the null value θ0. The curvature

of ℓ is again estimated by the information matrix I and the slope is computed with the

score statistic S which is, by definition, the partial derivative of ℓ with respect to θ, then
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the Lagrange multiplier test becomes

LM = ST (θ0)I−1(θ0)S(θ0). (2.9)

Recall that S(θ̂) = 0 since θ̂ is the MLE of θ then if θ0 is far from θ̂, S(θ0) will be far

from zero and then LM will reject H0. Conversely, LM will fail to reject it. Similar to the

Wald test, the square slope, ST (θ0)S(θ0), has been weighted but this time with the inverse

of the curvature since the more the curvature, the more the departure of S(θ0) from 0, and

therefore the bigger the square slope will be. In left plot of Figure 2.2, note that, for fixed

θ0, the square slop of ℓA(θ) at θ0 is greater than the square slop of ℓB(θ). If curvature in

LM was not taking into account, LM would reject H0 for random samples with associated

log-likelihood function ℓA but would fail to reject it if the associated log-likelihood function

was ℓB. Again, LM ∼ χ2
p asymptotically, under suitable conditions.

Right graph in Figure 2.2 shows these three tests graphically when testing the simple

null hypothesis H0 : θ = θ0. Although Wald, LR, and LM tests are asymptotically equiv-

alent, they possess different advantages and disadvantages. One of the most remarkable

disadvantages of LRT is that two models must be fitted to compute it: the full model and

the reduced one. In the Wald and LM tests only one model must be fitted, instead. An-

other advantage of Wald an LM tests is that one can easily construct confidence intervals

which could be analytically difficult (or even impossible) for the LRT. An advantage over

the Wald test is that LR and LM tests are invariant under monotone functions, which

allows to compute (or estimate) confidence intervals not only for θ but for g(θ), as well.

One of the major advantages of LM test is that it does not require the computation of θ̂,

however it requires the computation of the inverse of the information matrix, which may

not even exist. An interesting property when the three tests are applied to a linear model

is that W ≥ LR ≥ LM as shown in [4]. This relationship implies that, in testing the null

hypothesis H0 : θ = θ0, Wald test rejects the null hypothesis most often than the other

two.
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2.5 Profile Likelihood

In the maximum likelihood framework, one intents to estimate θ by maximizing the log-

likelihood function ℓ(θ,X) with respect to θ, that is,

θ̂ = argmax
θ

ℓ(θ,X)

However, one could be sometimes interested in making inferences about a portion of a

paramater θ. In this situation, one could consider θ being composed of two parts: the

parameter of interest ψ and the nuisance parameter η. More specifically, suppose that the

p-dimensional parameter θ can be partitioned into two subparameters (ψT ,ηT )T where ψ

and η are of dimensions q and p − q, respectively. In this case, it could be unnecessary

to estimate θ all at ones as it must be done under the Maximum Likelihood framework.

Instead, it could be better to estimate θ in two stages. First, one could suppose that ψ is

known and estimate η by maximizing ℓ(ψ,η) over η

η̂ψ = argmax
η

ℓψ(η) = argmax
η

ℓ(ψ,η). (2.10)

The subscript in η̂ψ is used to emphasize that the estimation is in terms of ψ. Second, use

η̂ψ to find the MLE of ψ,

ψ̂ = argmax
ψ

ℓ(ψ, η̂ψ)

Note that ℓ(ψ, η̂ψ) is only in terms of ψ. Finally, η̂ is found by replacing ψ̂ in η̂ψ, i.e.

η̂ = η̂ψ̂.

To illustrate the idea discussed above consider the following example. SupposeX1, . . . , Xn

are independent and identically distributed random variables following a N (µ, σ2). One

can be interested on estimating θ = (µ, σ2) but making inferences only about µ then σ2 is

regarded as the nuisance parameter. The log-likelihood function is then

ℓ(µ, σ2;X) = −n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2
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whereX = [X1, . . . , Xn]
T . Assume, for now, that µ is known and estimate σ2 by maximizing

ℓ(µ, σ2;X) = ℓµ(σ
2;X) with respect to σ2. Then

σ̂2
µ = argmax

σ2

ℓµ(σ
2;X) = argmax

σ2

(
−n
2
log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2

)
It is straightforward to find that σ̂2

µ = n−1
∑n

i=1(Xi−µ)2. Now, σ̂2
µ can be used to estimate

µ by replacing σ̂2
µ in ℓ(µ, σ2;X) and maximizing ℓ with respect to µ,

µ̂ = argmax
µ

ℓ(µ, σ̂2
µ;X) = argmax

µ

[
−n
2
log

(
2π

n

n∑
i=1

(Xi − µ)2

)
− n

2

]
Then µ̂ = n−1

∑n
i=1Xi = X̄ and hence σ̂2 = n−1

∑n
i=1(Xi − X̄)2. Note that µ̂ and σ̂2

µ are

the usual MLE (µ̂, σ̂2) = argmaxµ,σ2 ℓ(µ, σ2;X). This is not an special case, in fact, it can

be proved that the profile likelihood framework generates the usual MLEs.

In Figure 2.3, the two profile log-likelihood function for µ (left graph) and σ (right

graph) have been plotted for a random sample X = [X1, . . . , Xn]
T where Xi ∼ N (0, 1).

Note that the maximum of ℓ(µ, σ̂µ) is reached at some value closed to zero and the maximum

of ℓ(µ̂σ, σ) is reached at some value closed to one which is expected since true µ and σ equal

zero and one, respectively.

As it will be proved in next sections, the MLE of θ̂ has an asymptotic Np(θ, I(θ)−1)

distribution under suitable conditions, where θ = (ψT ,ηT )T is the true parameter vector.

Then, if θ̂ = (ψ̂T , η̂T )T

√
n

 ψ̂ −ψ

η̂ − η

 ∼ Np

0,

 Iψψ Iψη
Iηψ Iηη

−1
asymptotically. Here Iuv = Iuv(ψ,η) = −E

[
∂2ℓ(ψ,η)/∂u∂vT

]
for u,v = ψ,η. Notice

that for an invertible block matrix  A B

C D


its inverse is A B

C D

−1

=

 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1CB(A−BD−1C)−1 (D − CA−1B)−1


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and, therefore
√
n(ψ̂ −ψ) ∼ Nq(0, (Iψψ − IψηI−1

ηηIηψ)−1)

asymptotically. Henceforth, the Wald, LR, and LM tests for testing H0 : ψ = ψ0 become

W = n(ψ̂ −ψ0)
T (Iψψ − IψηI−1

ηηIηψ)(ψ̂ −ψ0), (2.11)

LRT = 2[ℓ(ψ̂, η̂)− ℓ(ψ0, η̂ψ0)], (2.12)

LM = ST (ψ0, η̂ψ0)(Iψψ − IψηI−1
ηηIηψ)−1S(ψ0, η̂ψ0), (2.13)

where the Iuv’s are evaluated at ψ = ψ0 and η = η̂ψ0 . As expected, Wald, LRT, and LM

have an asymptotic χ2
q distribution. Proof of the asymptotic distribution of LRT in profile

likelihood can be found in [9]. In fact, this result is known as the Wilk’s Theorem.
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2.6 Stochastic Convergence

The results presented throughout all this section are valid for both a single parameter θ and

a vector parameter θ as well as for a random variable X or vector X, therefore distinction

will not be made unless otherwise stated. Also, the following notations will be used.

2.6.1 About the Notations

Let P be a measure in a measurable space (X ,B) and f : X → Rk be a measurable function.

For a random vector X the expectation of f(X), E[f(X)], is denoted as Pf . The empirical

measure of a random sample X1, . . . , Xn is denoted and defined as

Pnf = n−1

n∑
i=1

f(Xi)

For a sequence fo random vectors Xn the symbol
d→ is set to indicate convergence of the

sequence in distribution; the symbol
p→ to indicate convergence in probability; and

as→ to

indicate almost surely convergence. These concepts will be defied shortly.

When n is used as an index, it is assumed that n tends to infinity and when referring

to the asymptotic behavior of a (sequence of) random vector, it is meant taking limits as

n goes to infinity.

Since convergence is a key concept in, rate of convergence will be discuss as well. The

symbol op(1) means convergence in probability to zero and Op(1) means bounded in prob-

ability. The general notations op(Rn) and Op(Rn) will be discussed in short.

2.6.2 Type of Convergence

Before defining type of convergence in probability, two main types of convergence in calculus

will be defined: pointwise and uniform convergence. Let fn be a sequence of functions

defined all on the same domain as a function f . fn is said to converge pointwise to f if

lim
n→∞

fn(x) = f(x) for every x in the domain of f . This is denoted by fn → f . On the other
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hand, fn is said to converge uniformly to f if for every ϵ > 0 and for every x in the domain

of f there exists n0 ∈ N, such that for all n > n0, sup
x

|fn(x)− f(x)| < ϵ.

For a sequence of random variables Xn, we say that Xn converges in distribution to

a random vector X if lim
n→∞

Fn(x) = F (x) for all x at which F is continuous, where Fn

and F are the cumulative distribution functions of Xn and X, respectively. This type of

convergence is also called weak convergence or convergence in law.

A stronger type of convergence is what is called convergence in probability. A sequence

of random vectors Xn converges in probability to X if for every ϵ > 0, lim
n→∞

Pr(d(Xn, X) >

ϵ) = 0, where d is any distance metric defined in the metric space (X, d). When Xn

and X are random variables, d(Xn, X) can be replace by |Xn −X|, then Xn converges in

probability to X if lim
n→∞

Pr(|Xn −X| > ϵ) = 0.

Finally, the sequence Xn is said to converge almost surely to X if Pr( lim
n→∞

d(Xn, X) =

0) = 1. Again, d(Xn, X) can be replaced by |Xn−X| when Xn and X are random variables.

An obvious question regarding convergence of a sequence of random vectors Xn is about

the convergence of a function of random vector. One could want to know whether conver-

gence of a sequence implies or not convergence of function of that sequence. This is true

if the function is continuous, along with other conditions, and is stated in the Continuous

Mapping Theorem. Proof can be found in [8].

Theorem 1 (Continuous Mapping). Let Xn be a sequence of random vectors and X a

random vector. Let g : RP → Rq be a continuous function in a nonempty set A ⊆ Rp with

the property that Pr(X ∈ A) = 1. Then

(i) if Xn
d→ X, then g(Xn)

d→ g(X)

(ii) if Xn
p→ X, then g(Xn)

p→ g(X)

(iii) if Xn
as→ X, then g(Xn)

as→ g(X)

The following theorem states the relation between the three types of convergence dis-

cussed above. The order in which they were defined the stronger the convergence is. In fact,
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almost sure convergence implies convergence in probability, convergence in probability im-

plies convergence in distribution, being the last mentioned the weakest type of convergence

among the three. Other relations are also stated. Proof can also be found in [8].

Theorem 2. Let Xn and Yn be two sequences of random vectors, X and Y two random

vectors, and c a constant vector. Then,

(i) if Xn
as→ X, then Xn

p→ X

(ii) if Xn
p→ X, then Xn

d→ X

(iii) Xn
p→ c if and only if Xn

d→ c

(iv) if Xn
d→ X and d(Xn, Yn)

p→ 0, then Yn
d→ X

(v) if Xn
d→ X and Yn

p→ c, then (Xn, Yn)
d→ (X, c)

(vi) if Xn
p→ X and Yn

p→ Y , then (Xn, Yn)
p→ (X, Y )

One important lemma is one called Slutsky’s Lemma. This states the distribution of the

sum and the product of two random sequences combining the Continuous Mapping Theorem

and statements (iii) and (v) from Theorem 2. Proof of the this theorem is straightforward.

Theorem 3 (Slutsky’s Lemma). Let Xn and Yn two random sequences, X be a random

vector and c a constant such that Xn
d→ X and Yn

d→ c, then

(i) Xn + Yn
d→ X + c

(ii) XnYn
d→ cX

(iii) Y −1
n Xn

d→ c−1X, c ̸= 0

Two last definitions are about boundness. A random vector X is said to be tight if for

every ϵ > 0 there exists a constant M such that Pr(||X|| > M) < ϵ. A sequence of random

vectors Xα is said to be uniformly tight or bounded in probability if for every ϵ > 0 there

exists a constant M such that supα Pr(||Xα|| > M) < ϵ.
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2.6.3 Rate of Convergence

As mentioned before, a random vector X is op(1) if X converges to zero in probability and

a sequence of random vectors Xn is Op(1) if Xn is bounded in probability. If Xn and Yn

are sequences of random variables, Xn = op(Yn) if and only if Xn/Yn = op(1), i.e., if Xn/Yn

converges in probability to zero, and Xn = Op(Yn) if and only if Xn/Yn = Op(1), that is, if

Xn/Yn is bounded in probability. If Xn and Yn are sequences of random vectors,

Xn = op(Yn) if and only if Xn = ZnYn and Zn
p→ 0,

Xn = Op(Yn) if and only if Xn = ZnYn and Zn = Op(1).

As a special property that can derived directly from the discussion above is that

op(Yn) = Ynop(1) and Op(Yn) = YnOp(1).

Moreover,

op(1) + op(1) = op(1),

op(1) +Op(1) = Op(1),

Op(1)op(1) = op(1).

The first arithmetic property is a direct consequence of the Continuous Mapping Theorem

and statement (vi) in Theorem 2. The other properties can be proved by writing op(1) and

Op(1) in terms of random vectors. More general properties can be found involving op(an)

and op(bn) for positive sequences an and bn converging to zero.

2.7 M and Z-Estimators

When one wants to estimate a parameter θ of a population f it is usual to use a criterion

function involving a random sample drawn from that population. Let X1, . . . , Xn a random

sample from a population with distribution function f . Consider maximizing the criterion
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function

Mn(θ) = n−1

n∑
i=1

m(Xi, θ) = Pnm(θ) (2.14)

where m : X → R is a known function which depends on the true parameter θ. Usually,

when maximizing some function, one appeals to solving equations of the type

Ψn(θ) = n−1

n∑
i=1

ψ(Xi, θ) = Pnψ(θ) = 0 (2.15)

where ψ is a known vector-valued function. When θ is p-dimensional, last equation can be

transformed into the system of equations

n∑
i=1

ψj(Xi, θ) = 0, j = 1, . . . , p. (2.16)

In this case, ψ can be thought as a vector of vector-valued functions, i.e. ψ = (ψ1, ..., ψp).

Equations such as the ones defined in (2.16) are called estimating equations. Finding vector

θ̂n which maximizes Mn(θ) in (2.14) yields what it is called an M -estimator. Similarly,

finding θ̂n which solves (2.15) yields what it is known as a Z-estimator.

Some examples of M -Z estimators are the sample mean and sample median. Note that

X̄ = argmaxθ n
−1
∑n

i=1[−(Xi − θ)2]. Here m(X, θ) = −(X − θ)2. Also X̄ can be thought

as the solution of n−1
∑n

i=1(Xi − θ) = 0. Other examples are the least square estimators

and maximum likelihood estimators. For a simple linear regression model

Yi = β0 + β1Xi + ϵi

the least square estimates are (b0, b1) = argmaxβ0,β1

∑n
i=1 −(Yi−β0−β1Xi)

2. Least squares

estimators can also be found by solving an equation of the form shown in (2.15). Recall

that, for a random sample Y = (Y1, ..., Yn), the MLE of β is defined by

β̂ = argmax
β

L(β, Y ) = argmax
β

ℓ(β, Y ) = argmax
β

n∑
i=1

ℓ(β, Yi)

Then, MLE is also an M -estimator. Moreover, β̂ can be thought as the solution of the

equation
n∑

i=1

∂ℓ

∂β
(β, Yi) =

n∑
i=1

S(β, Yi) = 0
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where S is the score function. If β is a p-dimensional parameter vector, S = (S1, ..., Sp)

where Sj = ∂ℓ/∂βj and the estimating equations become

n∑
i=1

Sj(β, Yi) = 0 for j = 1, . . . , p.

Henceforth, MLE can also be thought as a Z-estimator.

2.7.1 Consistency of M and Z-Estimators

One necessary property to establish asymptotic normality in M and Z-estimators is con-

sistency. An estimator θ̂n is said to be consistent to θ if θ̂n converges in probability to θ.

If θ̂n is the maximizer of Mn(θ) = Pnm(θ) and θ0 the maximizer of M(θ) = Pm(θ) by the

Law of Large Numbers (LLN) Mn(θ)
p→ M(θ) for all θ. An obvious question is whether

this convergence of the criterion function ensures the converges of the maximizer θ̂n to θ0.

Unfortunately, the answer is no. Convergence in probability is too weak and therefore a

stronger type of convergence is needed: the uniform convergence

lim
n→∞

sup
θ

Pr(|Mn(θ)−M(θ)| ≥ ϵ) = 0, for all ϵ > 0

However, uniform convergence is too strong and difficult to verify in some situations. A

way to relax this condition is to allow θ̂ being a nearly maximizer of Mn(θ). Moreover, it

is also needed to ensure that θ0 uniquely maximizes M(θ). The following theorem states

the sufficient conditions to ensure consistency.

Theorem 4 (Consistency). Let Mn(θ) = Pnm and M(θ) = Pm. Suppose that

(i) supθ |Mn(θ)−M(θ)| p→ 0,

(ii) supθ{M(θ) : d(θ, θ0) ≥ ϵ} ≤M(θ0) for every ϵ ≥ 0,

(iii) Mn(θ̂n) ≥Mn(θ0)− op(1)

Then, θ̂ is a consistent estimator of θ0.
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Proof. First condition implies that Mn(θ) converges uniformly to M(θ) and therefore

Mn(θ)
p→M(θ). Consequently Mn(θ0)

p→M(θ0). By third condition

Mn(θ̂n) ≥M(θ0)− op(1)

M(θ0)−M(θ̂n) ≤Mn(θ̂n)−M(θ̂n) + op(1)

≤ sup
θ

|Mn(θ)−M(θ)|+ op(1)

Notice that the first condition also can be seen as supθ |Mn(θ) − M(θ)| = op(1), then

M(θ0) − M(θ̂n) ≤ op(1) + op(1) = op(1). In other words, M(θ0) − M(θ̂n) converges in

probability to zero.

By the second condition an the definition of supremum there exists η > 0 such that for

every ϵ > 0, M(θ) < M(θ0)−η for every θ such that d(θ, θ0) ≥ ϵ. Therefore, it is clear that

{d(θ̂n, θ0) ≥ ϵ} ⊆ {M(θ̂n) < M(θ0)− η)}

Pr{d(θ̂n, θ0) ≥ ϵ} ≤ Pr{M(θ̂n) < M(θ0)− η)} → 0

Therefore, θ̂n converges in probability to θ0, i.e., θ̂n is a consistent estimator of θ0.

The same result can be obtained for Z-estimators by letting Mn(θ) = −||Ψn(θ)||,

M(θ) = −||Ψ(θ)||, θ̂n a be nearly zero of Ψn(θ), and θ0 be a zero of Ψ(θ) in the preceding

theorem.

2.7.2 Asymptotic Normality of Z-Estimators

Although M–estimators have been the main focus of this section, it can be proved easier

that Z–estimators are asymptotically normal under suitable conditions thanM–estimators.

Also, recall that some M–estimators are also Z–estimators, specially the maximum likeli-

hood estimations, which are the basis of the proposed test stated in the next section.

Consider the case where θ is a real number and θ̂n is a Z – estimator of θ. The following

theorem shows that if θ0 is a zero of Ψ(θ) and that θ̂n is consistent to θ0 then
√
n(θ̂n − θ0)

is asymptotically normal. Other conditions are also stated in the theorem.
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Theorem 5 (Asymptotic Normality). Let Ψn(θ) = Pnψ(θ) and Ψ(θ) = Pψ(θ). Suppose

that θ̂n is a zero of Ψn, θ0 is a zero of Ψ, and θ̂n
p→ θ0. If Pψ

2 <∞, Pψ̇ <∞, and Ψ̈n(θ̃n)

is bounded in probability for some θ̃n between θ̂n and θ0, then

√
n(θ̂n − θ0)

d→ N
(
0,

Pψ2(θ0)

(Pψ̇(θ0))2

)

Proof. Assuming that θ̂n is closed enough to θ0 and that ψ(θ) is twice differentiable at θ0,

there must exists a θ̃n between θ̂n and θ0 such that

0 = Ψn(θ̂n) = Ψn(θ0) + Ψ̇n(θ0)(θ̂n − θ0) +
1

2
Ψ̈n(θ̃n)(θ̂n − θ0)

2 (2.17)

which corresponds to the Taylor series of Ψn(θ̂n) around θ0. Equation (2.17) can be rear-

ranged so that
√
n(θ̂n − θ0) =

−
√
nΨn(θ0)

Ψ̇n(θ0) +
1
2
Ψ̈n(θ̃n)(θ̂n − θ0)

(2.18)

Note that, since Ψn(θ0) is an average and assuming that PΨ(θ0)
2 is finite, by the Cen-

tral Limit Theorem, Ψn(θ0) it is asymptotically normal. Moreover, the expectation of

−
√
nΨn(θ0) is zero since

PΨn(θ0) =
1

n

n∑
i=1

Pψ(Xi, θ0) = Pψ(θ0) = Ψ(θ0) = 0

Therefore, the numerator of (2.18) converges in distribution to N (0, Pψ2(θ0)). Concerning

the first term of the denominator in (2.18), note that Ψ̇n(θ0) converges in probability to

the constant Pψ̇(θo) by the law of large numbers. By assumption Ψ̈n(θ̃n) = Op(1) and

θ̂n − θ0 = op(1), therefore Ψ̈n(θ̃n)(θ̂n − θ0) = Op(1)op(1) = op(1) and

Ψ̇n(θ0) +
1

2
Ψ̈n(θ̃n)(θ̂n − θ0)

d→ Pψ̇(θ0)

Then,
−
√
nΨn(θ0)

Ψ̇n(θ0) +
1
2
Ψ̈n(θ̃n)(θ̂n − θ0)

d→ N
(
0,

Pψ2(θ0)

(Pψ̇(θ0))2

)
by Slutsky’s lemma.
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Theorem 5 and its proof can be extended for a p – dimensional parameter θ0, so that if

θ̂n is a consistent estimator of θ0, then

√
n(θ̂n − θ0)

d→ Np

(
0, (Pψ̇(θ0))

−1Pψ(θ0)ψ
T (θ0)(Pψ̇(θ0))

−1)
)

In this case, Ψn : Rp → Rp , Ψ̇n(θ0) are p× p matrices that converges to the p× p matrix

Ψ̇(θ0) whose entries are the expectation of the partial derivatives of ψi(θ0) with respect to

θj. The invertibility of Pψ̇(θ0) is also required.

2.7.3 Asymptotic Normality of MLEs

Recall that, for a sequence of random vectorsX1, . . . , Xn with common distribution function

f(θ), the maximum likelihood estimator of a parameter θ is defined as

θ̂n = argmax
θ

n∑
i=1

log f(Xi, θ) (2.19)

That is, θ̂n is an M -estimator. To show consistency of maximum likelihood estimators it

is sometimes convenient to write Mn(θ) is the form

Mn(θ) = n−1

n∑
i=1

log
f(Xi, θ)

f(Xi, θ0)
= Pn log

f(θ)

f(θ0)
(2.20)

Note that, θ̂n satisfying (2.19) also maximizes (2.20) since Mn(θ) = n−1
∑

i log f(Xi, θ)− c

where c = n−1
∑

i log f(Xi, θ0) which is constant with respect to θ. M(θ) is then

M(θ) = P log
f(θ)

f(θ0)
.

Since, by the Weak Law of Large Numbers (WLLN), Mn(θ)
p→ M(θ), it is expected

that the MLE θ̂n to converge in probability to the maximizer of M(θ). One condition for

the true parameter θ0 to be a maximizer of M(θ) is for f(θ) to be identifiable, this means

that for all θ1, θ2 ∈ Θ such that θ1 ̸= θ2, f(θ1) ̸= f(θ2). Along with the conditions in

Theorem 6, the MLE, θ̂n, is a consistent estimator of θ0.
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Moreover, MLEs are also the solution of the equation

Ψn(θ) =
n∑

i=1

ψ(Xi, θ) =
n∑

i=1

∂ℓ

∂θ
(Xi, θ) = 0

or, solution of the system of equations

n∑
i=1

∂ℓ

∂θj
(Xi, θ) = 0 for j = 1, ..., p

if θ is a p-dimensional parameter vector. Hence MLEs are also Z-estimators provided

ℓ̇(θ) = ∂ℓ(Xi, θ)/∂θ exists. By the WLLN Ψn(θ)
p→ Ψ(θ) where Ψ(θ) = P ℓ̇(θ) provided

the expectation and variance-covariance matrix of ℓ̇(θ) exist. Then, under other conditions

stated in Theorem 5, it is expected that
√
n(θ̂n − θ0) converges in distribution to

Np

(
0, (Pψ̇(θ0))

−1Pψ(θ0)ψ
T (θ0)(Pψ̇(θ0))

−1)
)
.

Recall that, for the information matrix I(θ0), I(θ0) = Pψ(θ0)ψ
T (θ0) and I(θ0) = −Pψ̇(θ0),

and therefore (Pψ̇(θ0))
−1Pψ(θ0)ψ

T (θ0)(Pψ̇(θ0))
−1) reduces to I−1(θ0). Then

√
n(θ̂n − θ0)

d→ Np(0, I−1(θ0)).
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Chapter 3

Proposed Methods

A method for hypothesis testing based on Maximum Likelihood and Profile Likelihood

frameworks is proposed. The main idea is to split a p-dimensional parameter into two parts

and test the null hypothesis that one of them is the zero vector, or in the more general

case, is a constant vector. The statistic proposed for this test is found by computing the

MLE of one part under H0 and use it to compute the MLE of the other part. The exact

procedure is described in the next section.

3.1 The Efficient Wald Test

Suppose a true parameter vector θ ∈ Rp is of interest. Consider partitioning θ in two

parts θ = (θT1 ,θ
T
2 )

T where θ1 ∈ Rq and θ2 ∈ Rp−q. Let H0 : θ2 = b the null hypothesis

to be tested. Let ℓ(θ) = ℓ(θ1,θ2) the log-likelihood function. Three traditional tests

can be implemented within the maximum likelihood framework: the likelihood ratio test,

the Wald’s test, and the score test. Modification of the first two will be explored. Let

θ̂ = (θ̂1, θ̂2) = argmaxθ∈Rp ℓ(θ) the unrestricted MLE of θ and

θ̃1 = argmax
θ1∈Rq

ℓ(θ1,θ2 = b), (3.1)

the restricted MLE of θ1 under H0. The LRT statistic is given by

LRT = 2
(
ℓ(θ̂)− ℓ(θ̃1,b)

)
. (3.2)

As shown in the [9], LRT
d→ χ2

p−q under H0.
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In the proposed method, θ̃1 is computed as before and used to compute θ̃2 as

θ̃2 = argmax
θ2∈Rp−q

ℓ(θ1 = θ̃1,θ2). (3.3)

Note that this is the maximizer of the profile likelihood for θ2 with the only difference that

the maximizer of θ1 is obtained computationally rather than analytically. In the following

sections, the asymptotic distribution of θ̃2 will be derived. In addition, the modified LR

test,

LRT ∗ = 2
(
ℓ(θ̃1, θ̃2)− ℓ(θ̃1,b)

)
(3.4)

will be studied in simulation. Another modification of the LRT could be considered

LRT ∗∗ = 2
(
ℓ(θ̂)− ℓ(θ̃1, θ̃2)

)
. (3.5)

For the Wald test, consider partitioning I(θ) as

I(θ) =

 I11 I12

I21 I22

 (3.6)

where Iij is the submatrix of I defined by

Iij = Iij(θ) = −E

(
∂2ℓ(θ,X)

∂θi∂θTj

)
, for i, j = 1, 2.

Then, the Wald test is defined as

W = (θ̂2 − b)T (I22 − I21I−1
11 I12)(θ̂2 − b) (3.7)

which asymptotic distribution is a χ2
p−q as shown in Appendix A. The Efficient Wald test

is finally defined as

W ∗ = (θ̃2 − b)T (I−1
22 − I−1

22 I21I−1
11 I12I−1

22 )
−1(θ̃2 − b). (3.8)

3.2 Asymptotic Properties of θ̃2

In previous sections has been shown that the MLE of θ is a consistent estimator of θ, under

some mild conditions. Since θ̃1 is the MLE of θ1, θ̃1
p→ θ1. It is enough to prove that if

θ̃2 is a consistent estimator of θ2 = b, then, by Theorem 2, (θ̃T1 , θ̃
T
2 )

T p→ (θT1 ,b
T )T . Next

result shows that θ̃2
p→ b under the same conditions stated in Theorem 6.
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3.2.1 Consistency of θ̃2

To set up, consider the framework of M -estimation. Let Mn(θ) = Pnm(θ) and M(θ) =

Pm(θ), where m(θ, ·) is a function involved in the objective function to optimize and Pn

and P are usual notations in empirical processes. Without loss of generality, it is of interest

to test H0 : θ2 = 0. Thus θ̃1 = argmaxθ1 Mn(θ1,0) and θ̃2 = argmaxθ2 Mn(θ̃1,θ2). Let

θ∗ = argmaxθ∈ΘM(θ) denote the true parameter, which is a global maximizer of M(·).

Under the null, θ∗ = (θ∗1
T ,0T )T .

Theorem 6. Suppose that

(i) supθ∈Θ |Mn(θ)−M(θ)| p→ 0;

(ii) supθ {M(θ) : d(θ,θ∗) > δ} < M(θ∗) for all δ > 0.

Then θ̃2
p→ 0 under the null H0.

Proof. Let θ̃ = (θ̃T1 , θ̃
T
2 )

T . It suffices to show θ̃
p→ θ∗. By condition (ii), for every ϵ > 0,

there exists δ > 0 such that

Pr
(
d(θ̃,θ∗) ≥ ϵ

)
≤ Pr

(
M(θ∗)−M(θ̃) ≥ δ

)
= Pr

(
M(θ∗)−Mn(θ

∗) +Mn(θ
∗)−Mn(θ̃) +Mn(θ̃)−M(θ̃) ≥ δ

)
≤ Pr

(
M(θ∗)−Mn(θ

∗) ≥ δ/3
)
+ Pr

(
Mn(θ

∗)−Mn(θ̃) ≥ δ/3
)
+

Pr
(
Mn(θ̃)−M(θ̃) ≥ δ/3

)
.

Condition (i) implies that the first and third terms go to zero while the second probability

also goes to zero since θ̃ is an approximate maximizer of Mn(·) in the sense that

Mn(θ̃) =Mn(θ̃1, θ̃2) ≥Mn(θ̃1,0) ≥Mn(θ
∗
1,0) ≥Mn(θ

∗)− op(1).

Condition (i) is essentially a ULLN (Uniform Law of Large Numbers) while condition

(ii) is an identifiability condition where approximately maximizingM(·) can unambiguously

specify the true parameter θ∗.
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3.2.2 Asymptotic Normality of θ̃2

Consider the estimator θ̃ = (θ̃T1 , θ̃
T
2 )

T in the GLM setting within the likelihood framework.

The following technical conditions are assumed. These are essentially regularity conditions

that guarantee asymptotic normality of the ordinary MLE in GLM.

(i) The observations (xi, yi) are independent and identically distributed with probability

density f(x, y,θ) with respect to some measure µ. The function f(x, y,θ) has a

common support and the model is identifiable.

(ii) The first and second logarithmic derivatives of f satisfying the equations

Eθ

[
∂ log f(x, y,θ)

∂θj

]
= 0 (3.9)

and

Eθ

[
∂ log f(x, y,θ)

∂βj

∂ log f(x, y,θ)

∂βk

]
= −Eθ

[
∂2 log f(x, y,θ)

∂βj∂βk

]
(3.10)

for j, k = 1, . . . , p. The expected Fisher information matrix

I(θ) = E

[(
∂ log f(x, y,θ)

∂θ

)(
∂ log f(x, y,θ)

∂θ

)T
]

is finite and positive definite at the true θ = θ⋆.

(iii) There exists an open subset or neighborhood N (θ⋆) of Ω that contains the true

parameter point θ⋆ such that, for almost all (x, y), the density f(x, y,θ) admits

all third derivatives ∂f(x, y,θ)/∂θj∂θk∂θl for all θ ∈ Ω. Furthermore, there exist

functions Mjkl(x, y) such that∣∣∣∣∂3 log f(x, y,θ)∂θj∂θk∂θl

∣∣∣∣ ≤Mjkl(x, y),

for all θ ∈ N (θ⋆), where Eθ⋆ [Mjkl(x, y)] <∞ for j, k, l = 1, . . . , p.

Let θ being partition as (θT1 ,θ
T
2 )

T . Let L(θ) =
∏n

i=1 f(xi, yi;θ) be the likelihood

function, ℓ(θ) = logL(θ) be the log-likelihood function, and H0 : θ2 = b. Let ℓ̇1 and ℓ̇2 be
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the partial derivatives of ℓ with respect to θ1 and θ2, respectively. Consider the case where

θ is 2-dimensional, i.e. p = 2 and therefore q = 1 and p− q = 1, to avoid third derivative

arrays. In such case, θ1 = θ1 and θ2 = θ2. Recall that θ̃1 was defined as the maximizer of

ℓ(θ1, b) with respect to θ1 by fixing θ2 = b under H0. Hence, it must satisfy ℓ̇1(θ̃1, b) = 0

and by Taylor expansion of ℓ̇(θ̃1, b) at θ1

0 = ℓ̇1(θ̃1, b) = ℓ̇1(θ1, b) + ℓ̈11(θ1, b)(θ̃1 − θ1) +
1

2

...
ℓ 111(θ

′
1, b)(θ̃1 − θ1)

2

for some number θ′1 between θ1 and θ̃1. Rearranging last equality yields to

θ̃1 − θ1 = − ℓ̇1(θ1, b)

ℓ̈11(θ1, b)
− 1

2

...
ℓ 111(θ

′
1, b)

ℓ̈11(θ1, b)
(θ̃1 − θ1)

2. (3.11)

Under regularity conditions,
√
nℓ̇1(θ1, b)

d→ N (0, I11). Moreover −ℓ̈11(θ1, b)
p→ I11. The

second term in (3.11) is op(|θ̃1 − θ1|) by assumption. Therefore, by Slutsky’s theorem

θ̃1
d→ N (θ1, I−1

11 )

where I−1
11 = −P ℓ̈11 evaluated at (θ1, b).

Now, consider θ̃2. Recall that θ̃2 = argmaxθ2 ℓ(θ̃1, θ2) which must satisfy 0 = ℓ̇2(θ̃1, θ̃2).

Applying Taylor expansion of ℓ(θ̃1, θ̃2) at θ2 = b by fixing θ̃1 yields to

0 = ℓ̇2(θ̃1, θ̃2) = ℓ̇2(θ̃1, b) + ℓ̈22(θ̃1, b)(θ̃2 − b) +
1

2

...
ℓ 222(θ̃1, θ

′
2)(θ̃2 − b)2

for some θ′2 between θ̃2 and b . Now, expanding ℓ̇2(θ̃1, b) at θ1 and plugging it at previous

equation one gets

0 = ℓ̇2(θ1, b) + ℓ̈21(θ1, b)(θ̃1 − θ1) +
1

2

...
ℓ 211(θ

′′
1 , b)(θ̃1 − θ1)

2

+ ℓ̈22(θ̃1, b)(θ̃2 − b) +
1

2

...
ℓ 222(θ̃1, θ

′
2)(θ̃2 − b)2

for some θ′′1 between θ̃1 and θ1. Rearranging terms, it follows that

θ̃2 − b = − ℓ̇2(θ1, b)

ℓ̈22(θ̃1, b)
− ℓ̈21(θ1, b)

ℓ̈22(θ̃1, b)
(θ̃1 − θ1)

−
...
ℓ 211(θ

′′
1 , b)

2ℓ̈22(θ̃1, b)
(θ̃1 − θ1)

2 −
...
ℓ 222(θ̃1, θ

′
2)

2ℓ̈22(θ̃1, b)
(θ̃2 − θ2)

2

(3.12)
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Notice that last two terms are op(||θ̃ − θ||) and hence can be ignored. However, the first

two terms are correlated. Bringing (3.11) into (3.12) leads to

θ̃2 − b = − ℓ̇2(θ1, b)

ℓ̈22(θ̃1, b)
+
ℓ̈21(θ1, b)

ℓ̈22(θ̃1, b)

ℓ̇1(θ1, b)

ℓ̈11(θ1, b)
+ op||θ̃ − θ||

=
[
ℓ̈−1
22 (θ̃1, b)ℓ̈21(θ1, b)ℓ̈

−1
11 (θ1, b) −ℓ̈−1

22 (θ̃1, b)
] ℓ̇1(θ1, b)

ℓ̇2(θ1, b)

+ op||θ̃ − θ||

Under regularity conditions ℓ̇(θ1, b)
d→ N2(0,−P ℓ̈(θ1, b)), and therefore

θ̃2
d→ N (b, V )

with (asymptotic) variance

V =
[
−I−1

22 I21I−1
11 I−1

22

] I11 I12

I21 I22

 −I−1
22 I21I−1

11

I−1
22


= I−1

22 − I−1
22 I21I−1

11 I12I−1
22

The following theorem summarized the result presented.

Theorem 7 (Asymptotic Normality of θ1 and θ2). Let θ̃1 and θ̃2 be defined as in (3.1)

and (3.3), respectively. Let H0 : θ2 = b be the null hypothesis and I be defined as in (3.6).

Under conditions stated previously

(θ̃1 − θ1)
d→ Nq(0, I−1

11 )

and

(θ̃2 − b)
d→ Np−q(0, I−1

22 − I−1
22 I21I−1

11 I12I−1
22 )

3.3 Several Applications

3.3.1 Significance Test

The new method that was proposed has a considerable number of applications, starting

with the usual applications in GLM. One could be interested in testing the null hypothesis
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Figure 3.1: Graphical representation of additive (left plot) and interaction (right plot) effect

induced by the binary moderator T for a single predictor X

that a set of predictors are not simultaneously significant, i.e., if the model

g(E(Y )) = β0 + β1X1 + · · ·+ βqXq + βq+1Xq+1 + · · ·+ βpXp

is fitted, one wants to test H0 : βq+1 = · · · = βp = 0 where 0 ≤ q < p, or, equivalently, if

β = (βT
1 ,β

T
2 )

T , H0 : β2 = 0. In such case, one would like to know whether the model

g(E(Y )) = β0 + β1X1 + · · ·+ βqXq

fits at least as well as the full model. Either LRT ∗ and Wald∗, defined in (3.4) and (3.8),

respectively, can be used to perform the test.

3.3.2 Moderation Analysis

Another application occurs in moderation analysis. A moderator between the set of pre-

dictors X = [X1, X2, . . . , Xp]
T and the response variable Y is a third variable T which can

be either numerical or categorical. In moderation analysis, it is of interest to evaluate the
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effect of the different levels of a mediator in the response variable. One could be interested

in fitting either the additive main-effect model

y = β0 + β1T + βTX+ ϵ, (3.13)

or the interaction model

y = β0 + β1T + βTX+ γTX′T + ϵ. (3.14)

where X′ is any subset of predictors.

The simplest case occurs when the moderator T is a dummy variable, i.e., a categorical

variable with only two different levels: 0 or 1. In such a case, (3.13) becomes

y =

β0 + β
TX+ ϵ, if T = 0

(β0 + β1) + β
TX+ ϵ, if T = 1

.

Notice that, in both cases, the model becomes a linear model and the graphical representa-

tion for both cases is a hyperplane with same normal vector but possibly different intercept

(see left plot in Figure 3.1). In this case it is of interest to test H0 : β1 = 0 to establish an

additive main-effect.

Equation (3.14), on the other hand, can be expressed as

y =

β0 + β
TX+ ϵ if T = 0

(β0 + β1) + β
TX+ γTX′ + ϵ, if T = 1

If X′ = X, the model for T = 1 becomes y = (β0 + β1) + (β + γ)TX + ϵ, that is, its

graphical representation for both when T = 0 and T = 1 is a hyperplane with possibly

different intercept and possibly different normal vector (see right plot in Figure 3.1). It is

of interest to test H0 : γ = 0 to discard or confirm an interaction effect.

3.3.3 Over-dispersion

One of the most common problem one has to face when fitting a linear model is het-

eroscedasticity. In linear regression a set of assumptions needs to meet including the as-
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Figure 3.2: Graphical detection of homoscedasticity (left plot) and heteroscedasticity (right

plot) in a linear model throughout the residuals ei = ŷi − yi

sumption of constant variance. Recall that a linear regression model has the form

yi = xT
i β + ϵi where ϵi ∼ N (0, σ2).

When σ2 is not constant, homoscedasticity assumption is violated and inferences regarding

the model may not be valid. This problem is also known as over-dispersion and occurs

when the observed variance in the model is higher than the theoretical variance and seems

to vary among observations.

One way to visually detect over-dispersion or heteroscedasticity is to plot the (standard-

ized) residuals, e = ŷ − y, obtained by fitting the linear model, versus a single predictor x,

the response variable y, or the fitted values ŷ. Figure 3.2 shows both cases when condition

of homoscedasticity is met (left plot) and when it is violated (right plot). One of the most

known test for heteroscedasticity is the Breusch-Pagan test which assumes a heteroscedastic

lineal model of the form

yi = xT
i β + ϵi where ϵi ∼ N (0, h(zTi γ)) (3.15)
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where h is a twice differentiable real-valued function which does not depend on the index

i, γ ∈ Rk is not related to β ∈ Rp, and z is a k-dimensional vector of regressors which first

component is assumed to be one and remaining components could be replaced by some

predictors in x. The null hypothesis to be tested for heteroscedasticity is

H0 : γ2 = · · · = γk = 0.

If the null hypothesis is true, h(zTi γ) = h(γ1) is constant and then ϵi ∼ N (0, σ2) where

σ2 = h(γ1). Usual choices for h are h(x) = exp(x) or h(x) = xm for a known integer m. If

h(·) is chosen to be exp(·), (3.15) becomes

yi = xT
i β + ϵi where ϵi ∼ N (0, exp(zTi γ))

Letting γ = (γT
1 ,γ

T
2 )

T with γ1 = γ1 and γ2 = [γ2, γ3, . . . , γk]
T , one is interested in testing

H0 : γ2 = 0.

The following steps must be performed to conduct the Breusch-Pagan test of het-

eroscedasticity: (i) fit the linear model yi = xT
i β+ϵi, (ii) compute the residuals ei = ŷi−yi,

(iii) fit the auxiliary linear model e2i = zTi γ + ηi, (iv) get the coefficient of determination,

R2, from previous model, (v) compute the test statistic LM = nR2 where n is the sample

size, and (vi) reject H0 : γ = 0 if LM > χ2
k−1(α).

Steps (iv) - (vi) can be omitted and instead to use the proposed statistics to test the

null hypothesis H0 : γ2 = 0, where γ2 is defined as above. If either LRT ∗ orWald∗ exceeds

χ2
k−1(α), H0 can be rejected and heteroscedasticity can be assumed to be present in the

model.
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Chapter 4

Simulation Studies

Three models have been considered for the simulation. All belonging to the generalized

linear models; normal (or Gaussian), Binomial, and Poisson. Data is generated artificially

in the following way. Design matrix X is created assuming that its columns have a multi-

variate normal distribution with mean zero and variance-covariance Σ whose components

are defined by σij = ρ|i−j| for i, j = 1, . . . , p according to an autoregressive model of first

order with ρ being the correlation coefficient. The linear predictor is then computed by the

product η = Xθ, where θ is the true parameter vector. The response variable Y is finally

generated according to one of the three models and using that E(Y) = g−1(η) where g is

the link function. See Table 2.1.

During the simulation the following values are computed: the LRT, Wald, proposed LRT

(mLRT), and proposed Wald (mWald) statistics as well as the time it takes for each of the

test to be executed. The empirical sample distribution, size and power of the proposed tests

will be investigated and compared with the original LR and Wald tests. The computational

time of the proposed tests is also compared with their original counterparts.

4.1 Empirical Sample Distributions

For investigating the sample distribution of the modified tests, three scenarios have been

considered. The true parameter vector is set to be of the form

θ =


θ0

θ1

θ2

 for θ0 ∈ R, θ1 ∈ Rq, and θ2 ∈ Rp−q (4.1)
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Figure 4.1: Empirical null distribution of the proposed tests in scenario (i) compared with

the theoretical asymptotic χ2
15−1 distribution.

where all the components of θ1 equal to one, and all components of θ2 equal zero; the

standard deviation for the Gaussian model is set to one, i.e., σ = 1, and the correlation

coefficient ρ to 0.5. N = 500 samples of size n = 1000 have been generated artificially

with p = 15 variables and (i) q = 1, (ii) q = 5, and (iii) q = 10 variables which associated

coefficients are non-zero. In all scenarios, the three models are considered. Graphs of the

empirical null distributions can be seen in Figures 4.1, 4.2, and 4.3.

Figures show the empirical distribution (histogram and red solid line) and theoretical

χ2
p−q distribution (blue dashed line) of the proposed Likelihood Ratio test (left plots) and

the proposed Wald test (right plots) of H0 : θ2 = 0 in the three models. According to what

was shown in last chapter, all the empirical distributions should match the theoretical χ2
14,
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Figure 4.2: Empirical null distribution of the proposed tests in scenario (ii) compared with

the theoretical asymptotic χ2
15−5 distribution.

χ2
10 and χ2

5 distributions for scenarios (i), (ii), and (iii), respectively.

In Figure 4.1, it can be seen that all empirical sample distributions seems to match the

χ2
14. Also, the empirical sample distributions for both the Gaussian and Binomial models

in Figures 4.2 and 4.3 coincide with the χ2
10 and χ2

5 distributions. But it also can be

observed that the empirical sample distribution for both the proposed LRT (mLRT) and

proposed Wald test (mWALD) in the Poisson model mismatch the theoretical χ2
10 and χ2

5

distributions. This mismatch seems to increase as the number of variables with non-zero

coefficient associated to them, q, increases. Although it could be hypothesized that, under

H0, the proposed tests still follows an asymptotic χ2 distribution but with a lower degrees

of freedom.
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Figure 4.3: Empirical null distribution of the proposed tests in scenario (iii) compared with

the theoretical asymptotic χ2
15−5 distribution.

Due to these mismatches in the sample distribution for the proposed tests in the Pois-

son model the following analysis regarding this model could be not valid. Even though,

empirical power, size and computational time will be investigated for all three models.

4.2 Empirical Size and Power

The empirical sizes for all scenarios are displayed in Figures 4.4, 4.5, and 4.6. Different

significance levels have been used: α = 0.01, 0.02, . . . , 0.10. The red dashed line indicates

the desired size of the tests.

Note that the empirical sizes of the proposed tests in all scenarios and models, except

for Poisson model in scenario (ii) and (iii), are similar compared with the empirical sizes
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Figure 4.4: Empirical size comparison in scenario (i). Theoretical asymptotic χ2
15−1 distri-

bution.

of the original tests. All of them seems to be around the red dashed line which indicates

the desired behavior. For the Poisson model, the empirical sizes of the proposed tests

are considerably lower than the empirical sizes of the original ones. This is because the

mismatch of the empirical sample distribution of the test which was previously discussed.

To investigate the power of the tests in the three scenarios several (p− q)-dimensional

θ2 have been generated using the formula

θ2 =
c√
p− q

1p−q (4.2)

where c is a positive constant which varies according to the scenario and model, and 1p−q

is the (p − q)-dimensional vector which components are all one. See values in the x-axis

of graphs in Figures 4.7, 4.8, and 4.9. The significance level is set to α = 0.05. Power is

compared with the euclidean distance, defined by

d2(x,y) = ||x− y||2 =

√√√√ p∑
i=1

(xi − yi)2 where x,y ∈ Rp, (4.3)
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Figure 4.5: Empirical size comparison in scenario (ii). Theoretical asymptotic χ2
15−5 distri-

bution.
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Figure 4.6: Empirical size comparison in scenario (i). Theoretical asymptotic χ2
15−10 dis-

tribution.
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Figure 4.7: Empirical Power Comparison in scenario (i)

of θ2 from 0 ∈ Rp−q which is equal to the positive constant c chosen:

d2(θ2,0) = ||θ2||2 =
c√
p− q

√
p− q = c.

according to (4.2) and (4.3).

It can be noticed that the power of the proposed tests in the different scenarios and

models is extremely similar to the original ones, except for the power of the tests in the sce-

narios (ii) and (iii) for the Poisson model which is not surprising since the χ2
p−q distribution

is used to compute the power.

Also, comparisons among the tests of the power with varying sample size are shown

in Figures 4.10, 4.11, and 4.12. All scenarios and models are considered but in case of

the binomial model, higher sample sizes had to be set to avoid what is known as the

complete separation problem which could inflate extremely the estimated coefficients. The

significance level α is set to 0.05, θ2 is chosen to be of the form specified in (4.2) with c being

a fixed positive constant for each model. In case of the Gaussian model c = 0.4 and n =

20, 30, . . . , 150 have been chosen; in the binomial model c = 2.0 and n = 100, 150, . . . , 1000

have been set; and in the Poisson model c = 0.1 and n = 40, 50, . . . , 150 was selected.

What can be observed from Figure 4.10 is that the power of the proposed tests for
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Figure 4.8: Empirical Power Comparison in scenario (ii)
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Figure 4.9: Empirical Power Comparison in scenario (iii)
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Figure 4.10: Empirical Power vs. Sample Size in Gaussian Model

small sample sizes differs considerably from the original tests in scenario (i) where q = 1.

In scenario (ii) all tests but LRT seems to be similar even for small sample sizes. In all the

scenarios, LRT shows a higher power than the rest but for moderate sample size, the power

among the four tests is almost equal. The comparison of power for different sample sized

in the binomial model in scenario (i) seems to be significantly different for sample sizes

smaller than 300. As long as q is varying according to the scenario, the power among the

tests in this model gets closer and closer. In case of the Poisson model the power among the

tests in the scenario (i) is extremely similar for all sample sizes. In contrast, the power of

the proposed tests in the scenarios (ii) and (iii) differ considerably from the original tests.

4.3 Computational Time Comparison

For time running performance four different sample sizes are considered: n = 30, 50, 100,

1000 and the true parameter vector is selected according to (4.1). Initial settings in the

three scenarios mentioned at the beginning of the chapter are used. Table 4.1 shows the

computational time for the four tests in the three scenarios and different values of n.
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Figure 4.11: Empirical Power vs. Sample Size in Binomial Model
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Figure 4.12: Empirical Power vs. Sample Size in Poisson Model
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Note the similarity in execution time among the tests. One can observed that the time

the proposed LRT in the Binomial and Poisson models takes to execute is almost always

smaller than the time taken by the original LRT. On the other hand, the Wald test seems to

be slightly faster than the proposed one in almost all the cases and models. This could be

justified by the way the Wald test and the proposed Wald are computed. When computing

the Wald test only the full model

g(µ) = θ0 + θ1X1 + · · ·+ θqXq + · · ·+ θpXp (4.4)

is fitted, but when the proposed Wald test is calculated, the two models:

g(µ) = θ0 + θ1X1 + · · ·+ θqXq, (4.5)

g(µ) = θ̂0 + θ̂1X1 + · · ·+ θ̂qXq + θq+1Xq+1 + · · ·+ θpXp (4.6)

need to be fitted. Here θ̂i in (4.6) is the ith estimated coefficient obtained when fitting the

reduced model in (4.5).

The estimation of the coefficients in the three models has been done using the glm

function available in R which internally implements the Newton-Raphson method. One way

to improve the execution time in the Wald tests is to implement them from the beginning as

well as rewrite in a proper way the updating formula used in the Newton-Raphson method

(see Equation 2.4). From the optimization perspective, the proposed methods breaks an

optimization problem involving p parameters into two smaller ones which requires the

estimation of q and p − q parameters. This approach could not be significantly more

(computationally) efficient than the original methods in lower-dimensional cases but when

a high-dimensional problem is faced the execution time could be considerably improved.

To see the point described in the previous paragraph, the computational time of the

four tests is examined. N = 100 samples of size n = 1000 are generated for each of the

models with p = 100 predictor variables of which q = 5, 10, . . . , 95 has a non-zero associated

coefficient. Results are shown in Figure 4.13.
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Figure 4.13: Execution Time Comparison

Note that in all the models, the execution time in the original LR test increases consid-

erably compared with the rest of the tests. Wald, the proposed LR, and the proposed Wald

tests seems to behave similarly for the Gaussian model. As expected, the execution time

increases as q increases. Also note the considerable increase in time when q = 30 and q = 10

in the original LRT and Wald tests for the Binomial and Poisson models. The execution

time for the proposed tests seems to be quite similar to each other even when two fits are

used to calculate the value of the proposed Wald test compared with the proposed LRT

which requires only one. The more considerable change occurs in the original LRT which

increases drastically compared with the proposed one. Something surprising is the behavior

of the execution time for the Wald test which remains constant after a certain value of q

in both the Binomial and the Poisson models. Even though, the proposed methods seems

to be more (computationally) efficient when a high-dimensional problem is faced.
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Chapter 5

Real Data Examples

To illustrate the application of the proposed methods, three real datasets will be analyzed:

BostonHousing, HepatitisC, and DoctorVisits datasets, for linear, logistic, and Poisson

regression, respectively.

5.1 The BostonHousing dataset

The BostonHousing dataset is available in the mlbench R package which was taken from the

UCI Repository of Machine Leaning Datasets. It has been originally published by Harrison

and Rubinfeld (1978) in the paper titled Hedonic prices and the demand for clear air

and used in the book Regression Diagnostics. Identifying Influential Data and Sources of

Collinearity written by Belsley, Kuh, and Welsch (1980). The dataset contains information

taken from the 1970 census concerning housing in Boston. It contains one response medv,

13 predictors, and 506 instances. Table 5.1 describes the attributes present in the data.

The partial output of the linear model fit of medv on the 13 regressors is shown in

R Code 5.1. A full output can be found in Appendix B in R Code B.1. It could be of

interest, by looking at the p-values of the estimated coefficients, to test the simultaneous

significance of indus and age. In Table 5.2 the test values and p values for each of the four

tests (LRT, Wald and the proposed ones) are displayed. p-values were obtained using the

χ2 distribution with 2 degrees of freedom.

Observe that all test values are similar to each other and therefore the p-values. All

four tests strongly suggest not to reject the null hypothesis H0 : βindus = βage = 0, and

therefore, the reduced model could be considered a better fit.
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Table 5.1: Description of attributes in BostonHousing dataset.

Name Description

crim Per capita crime rate by town

zn proportion of residential land zoned for lots over 25,000 sq.ft

indus Proportion of non-retail business acres per town

chas Charles River dummy variable (1-if tract bounds river; 0-otherwise)

nox Nitric oxides concentration (parts per 10 million)

rm Average number of rooms per dwelling

age Proportion of owner-occupied units built prior to 1940

dis weighted distances to five Boston employment centres

rad Index of accessibility to radial highways

tax Full-value property-tax rate per USD 10,000

ptratio Pupil-teacher ratio by town

b 1000(B − 0.63)2 where B is the proportion of blacks by town

lstat Percentage of lower status of the population

medv Median value of owner-occupied homes in USD 1000’s (target)
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Table 5.2: Test values and p-values of the four tests for testing

H0 : βindus = βage = 0

Ordinary Proposed

LRT Wald LRT Wald

Test value 0.1177937 0.1145480 0.1172407 0.1142418

p-value 0.9428040 0.9443353 0.9430647 0.9444799

R code 5.1: Partial output of linear model fit applied to BostonHousing dataset

1 Estimate Std. Error t value Pr(>|t|)

2 (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***

3 crim -1.080e-01 3.286e-02 -3.287 0.001087 **

4 zn 4.642e-02 1.373e-02 3.382 0.000778 ***

5 indus 2.056e-02 6.150e-02 0.334 0.738288

6 chas1 2.687e+00 8.616e-01 3.118 0.001925 **

7 nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***

8 rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***

9 age 6.922e-04 1.321e-02 0.052 0.958229

10 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***

11 rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***

12 tax -1.233e-02 3.760e-03 -3.280 0.001112 **

13 ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***

14 b 9.312e-03 2.686e-03 3.467 0.000573 ***

15 lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
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Table 5.3: Description of attributes in HepatitisC dataset

Name Description Name Description

Category Hepatitis C category (target) BIL Bilirubin

Age Age of individual in years CHE Choline esterase

Sex Sex of individual (1-female, 0-male) CHOL Cholesterol

ALB Albumin CREA Creatinine

ALP Alkaline phosphatase GGT γ-glutamyl-transferase

ALT Alanine amino-transferase PROT Protein

AST Aspartate amino-transferase

5.2 The HepatitisC dataset

For logistic regression, the HepatitisC dataset is used. This dataset was created and used

by Lichtinghagen, Klawonn, and Hoffmann in the paper Using machine learning techniques

to generate laboratory diagnostic pathways—a case study published in 2018. It is available

in the UCI Machine Learning Repository and contains 11 numerical attributes, 10 of them

being obtained via blood test: Age, ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and

PROT (see Table 5.3 for a complete description of the predictors); two categorical attributes:

Sex and Category which values corresponds to one of the five different levels: ”0=Blood

Donor”, ”Os=suspect Blood Donor”, ”1=Hepatitis”, ”2=Fibrosis”,”3=Cirrhosis” and 615

instances. The five levels in the response variable Category have been collapsed so that 0

corresponds to ”0=Blood Donor” or ”0s=suspect Blood Donor” levels and 1 corresponds

to ”1=Hepatitis”, ”2=Fibrosis”, or ”3=Cirrhosis” levels. The dataset also contains some

missing values in variables ALB, ALP, ALT, CHOL, and PROT. Imputation has been implemented

on the dataset using the R function missForest available in the package with the same

name.

R Code 5.2 shows the partial output of the fit of Category on the 12 regressors. As can
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be observed in the partial output, Age, ALB, and CHE seem to be non-significant. Complete

output can be found in Appendix B in R Code B.2.

R code 5.2: Partial output of logistic model fit applied to HepatitisC dataset

1 Coefficients:

2 Estimate Std. Error z value Pr(>|z|)

3 (Intercept) -14.445193 3.928088 -3.677 0.000236 ***

4 Age -0.006511 0.024304 -0.268 0.788772

5 Sex 1.344974 0.608607 2.210 0.027111 *

6 ALB -0.122350 0.063592 -1.924 0.054355 .

7 ALP -0.070402 0.012666 -5.558 2.72e-08 ***

8 ALT -0.020408 0.009422 -2.166 0.030317 *

9 AST 0.095025 0.019294 4.925 8.43e-07 ***

10 BIL 0.086677 0.028910 2.998 0.002716 **

11 CHE 0.125628 0.121698 1.032 0.301933

12 CHOL -0.690593 0.258862 -2.668 0.007635 **

13 CREA 0.024286 0.005208 4.663 3.11e-06 ***

14 GGT 0.030608 0.006211 4.928 8.30e-07 ***

15 PROT 0.225520 0.058047 3.885 0.000102 ***

The null hypothesis H0 : βAge = βALB = βCHE = 0 has been tested using the four methods

and the χ2 distribution with 3 degrees of freedom. Results are shown in Table 5.4. Notice

again that all test values and p-values are pretty similar to each other. The four tests

suggest to consider the reduced model.

5.3 The DoctorVisits dataset

A final model will be fitted using the DoctorVisits dataset. The dataset is available in

the R package AER. It was originally published by the Jornal of Applied Econometrics Data
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Table 5.4: Test values and p-values of the four tests for testing

H0 : βAge = βALB = βCHE = 0

Ordinary Proposed

LRT Wald LRT Wald

Test value 4.061120 3.915635 4.058021 4.062995

p-value 0.2549394 0.2707193 0.2552667 0.2547417

Archive and has been used by Cameron and Trevedi (1986) in the paper titled Econometric

Models Based on Count Data: Comparisons and Applications of Some Estimators and

Tests. It contains 12 attributes and 5190 instances collected from the 1977-1978 Australian

Health Survey. Table 5.5 describes the attributes of the data.

The response variable visits has been regressed on the 11 predictor variables assuming

a Poisson model. Partial output can be found in R Code 5.3. In Appendix B can be

found the complete output at R Code B.3. One could be interested on testing the null

hypothesis that the coefficients of age, private, freerepat, nchronic, and lchronic are

simultaneously equal to zero.

Notice the evident difference in the test values for the proposed tests as when as the

difference in the p-values shown in Table 5.6. In all the tests, a χ2 distribution with 5

degrees of freedom has been used to compute the p-values. The ordinary tests suggest to

reject the null hypothesis

H0 : βage = βprivate = βfreerepat = βnchronic = βlchronic = 0

with a p-value around 0.003. On the other hand, the proposed tests suggest not to reject

H0 if a significance level of α = 0.01 is considered. This is not surprising though, since

in Section 4, the null empirical distribution for the Poisson model seemed not to follow

the χ2
p−q asymptotic distribution but a χ2 asymptotic distribution with lower degrees of

freedom.
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Table 5.5: Description of attributes in DoctorVisits dataset.

Name Description

visits Number of doctor visits in past 2 weeks (target)

gender Factor indicating gender (0-male, 1-female)

age Age in years divided by 100

income Annual income in tens of thousands of dollars

illness Number of illnesses in past 2 weeks

reduced Number of days of reduced activity in past 2 weeks due to illness or injury

health General health questionnaire score using Goldberg’s method

private Factor indicating whether the individual have private health insurance

freepoor Factor indicating whether the individual have free government health insur-

ance due to low income

freerepat Factor indicating whether the individual have free government health insur-

ance due to old age, disability or veteran status

nchronic Factor indicating whether there is a chronic condition not limiting activity

lchronic Factor indicating whether there is a chronic condition limiting activity
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Table 5.6: Test values and p-values of the four tests for testing

H0 : βage = βprivate = βfreerepat = βnchronic = βlchronic = 0

Ordinary Proposed

LRT Wald LRT Wald

Test value 18.02394 17.63733 12.24816 12.32561

p-value 0.002916555 0.003437014 0.031541208 0.030588536

R code 5.3: Partial output of Poisson model fit applied to DoctorVisits dataset

1 Coefficients:

2 Estimate Std. Error z value Pr(>|z|)

3 (Intercept) -2.097821 0.101554 -20.657 < 2e-16 ***

4 gender 0.156490 0.056139 2.788 0.00531 **

5 age 0.279123 0.165981 1.682 0.09264 .

6 income -0.187416 0.085478 -2.193 0.02834 *

7 illness 0.186156 0.018263 10.193 < 2e-16 ***

8 reduced 0.126690 0.005031 25.184 < 2e-16 ***

9 health 0.030683 0.010074 3.046 0.00232 **

10 private 0.126498 0.071552 1.768 0.07707 .

11 freepoor -0.438462 0.179799 -2.439 0.01474 *

12 freerepat 0.083640 0.092070 0.908 0.36365

13 nchronic 0.117300 0.066545 1.763 0.07795 .

14 lchronic 0.150717 0.082260 1.832 0.06692 .
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Chapter 6

Discussion and Conclusions

In this document, modified versions of the ordinary Wald and LR tests for testing the

null hypothesis H0 : θ2 = b were presented. They were based on the profile likelihood

framework which consisted in partitioning the parameter θ into two subparameters θ1 and

θ2. The subparameter θ1 was estimated by maximizing the log-likelihood function under

H0, that is, maximizing ℓ(θ1,b) with respect to θ1. This estimation, say θ̃1, was used

to finally estimate θ2 by maximizing the log-likelihood function evaluated at θ1 = θ̃1, i.e.

maximizing ℓ(θ̃1,θ2) with respect to θ2. Then, the modified Wald test was defined by

W ∗ = (θ̃2 − b)T (I−1
22 − I−1

22 I21I−1
11 I12I−1

22 )
−1(θ̃2 − b)

and the modified LRT by

LRT ∗ = 2[ℓ(θ̃1, θ̃2)− ℓ(θ̃1,b)].

In the simulation, three models have been tested under the GLM framework: the normal,

binomial, and Poisson models. Different scenarios were considered where the main focus

was varying the number of variables with non-zero associated coefficients, q. It could be

observed that the empirical distribution of the modified tests follow an asymptotic χ2
p−q

distribution for the normal and binomial model. Also, it was observed that the empirical

power and size of the proposed tests behave similar to the ordinary tests. Regarding

the computational time performance, one could observed that when the total number of

variables p is small the execution time among the ordinary and the proposed tests is similar

to each other. However, when p increases the execution time for both ordinary Wald and

LR tests increases drastically compared with the proposed ones.
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One of the main advantages of the modified tests is the execution time. It could be

observed that the execution time of the proposed tests was considerably lower compared to

the ordinary tests when p is high. Moreover, the asymptotic properties, the power and size

of the new tests were similar to the ordinary ones. Another advantage is that both tests

can be used even if p is slightly bigger than n as long as neither q nor p− q exceed n which

cannot be done in the ordinary tests. One disadvantage of the proposed Wald test is that

it requires to fit two models instead of fitting one as is in the case of the ordinary Wald

test. Ordinary Wald test performed slightly faster than the proposed one. Unfortunately,

the proposed test did not performed well in the Poisson model compared to the ordinary

versions. These issues encountered regarding the proposed tests conduct to the following

future work:

1. As was presented in the simulation studies, one can be interested in investigating the

problem faced with the null asymptotic distribution in the Poisson model. In that

chapter was hypothesized that the proposed Wald and LR tests for the Poisson model

in the GLM framework followed an χ2 asymptotic distribution without a formal proof.

2. The proposed tests has been supposed to be applied to datasets with p≪ n assuming

that p is fixed and n goes to infinity. It could be of interest to study the case where

p ≥ n.
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Appendix A

Theorems and Proofs

Theorem 8. If X ∼ Np(µ,Σ), then (X− µ)TΣ−1(X− µ) ∼ χ2
p.

Theorem 9 (Asymptotic Distribution of Wald Test). Let θ̂ be an M-estimator of θ0 and

ψ(θ) = ℓ′(θ). Suppose conditions stated in Theorems 6 and 5

(θ̂ − θ0)TI(θ0)(θ̂ − θ0) ∼ χ2
p

Proof. Assume all conditions in Theorems 6 and 5 are satisfied. Then

√
n(θ̂ − θ0)

d→ Np

(
0, (Pψ′(θ0))

−1Pψ(θ0)ψ
T (θ0)(Pψ

′(θ0))
−1
)

Recall that Pψ(θ0)ψ
T (θ0) = I(θ0) and that Pψ′(θ0) = I(θ0) therefore

√
n(θ̂ − θ0)

d→

Np(0, I−1(θ0)) and

n(θ̂ − θ0)TI(θ0)(θ̂ − θ0) ∼ χ2
p

Theorem 10. Let X ∼ Np(µ,Σ) be partitioned as

X =

 X1

X2


where X1 is q × 1 and X2 is (p− q)× 1. Moreover, if µ and Σ are also partitioned as

µ =

 µ1

µ2

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 ,
with µ1 ∈ Rq, µ2 ∈ Rp−q, Σ11, and Σ22 being q×q and (p−q)×(p−q) matrices, respectively.

Then X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np−q(µ2,Σ22).
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Theorem 11. Let A be a k × p matrix of rank k. If X ∼ Np(µ,Σ), then AX ∼

Nk(Aµ,AΣAT ).

Theorem 12. Let θ̂ be an M-estimator of θ ∈ Rp. Consider partitioning both θ̂ and θ as

θ̂ =

 θ̂1
θ̂2

 θ =

 θ1
θ2


where θ̂1,θ1 ∈ Rq. Let H0 : θ2 = b be the null hypothesis to be tested for some constant

vector b. Suppose conditions in Theorems 6 and 5 are satisfied. Then the Wald test, defined

by

W = n(θ̂2 − b)TV−1
22 (θ̂2 − b)

where V22 is the (p− q)× (p− q) submatrix of the variance-covariance matrix Var(θ) = V

partitioned as

V =

 V11 V12

V21 V22

 ,
has a χ2 asymptotic distribution with p− q degrees of freedom.

Proof. Suppose conditions in the theorems mentioned are satisfied, then as shown in The-

orem 9,
√
n(θ̂ − θ) d→ Np(0, I−1(θ)).

Let A be a (p− q)× p matrix of the form

A =
[
0 I

]
where I is the p − q identity matrix. Notice that the rank of A is p − q. Then, Aθ̂ = θ̂2,

Aθ = θ2 = b under H0, and, by Theorem 11,

√
n(Aθ̂ −Aθ)

d→ Np−q(0,AI−1(θ)AT )

Notice that I−1(θ) = nVar(θ) = nV. Therefore

√
n(θ̂2 − b)

d→ Np−q(0, nAVAT )
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Or, equivalently

(θ̂2 − b)TV−1
22 (θ̂2 − b)

d→ χ2
p−q

Theorem 13 (Asymptotic Distribution of LRT). Let ℓ(θ) be the log-likelihood of a random

sample X1, ..., Xn. Let θ̂ be the MLE of θ0 ∈ Rp. Suppose ℓ(θ) ∈ C3 and that all conditions

stated in Theorems 6 and 5 are met. Then

LRT = 2[ℓ(θ̂)− ℓ(θ0)]
d→ χ2

p

Proof. Since all conditions in Theorems 6 and 5 are satisfied, θ̂
p→ θ0 and

√
n(θ̂ − θ0)

d→

N (0, I−1(θ0)). Suppose also that ℓ ∈ C3 and consider the Taylor expansion of ℓ at θ0

around θ̂

ℓ(θ0) = ℓ(θ̂) + (θ0 − θ̂)T∇ℓ(θ̂) +
1

2
(θ0 − θ̂)THℓ(θ̂)(θ0 − θ̂) + op(1)

where ∇ℓ(θ̂) is the gradient of ℓ at θ̂ and Hℓ(θ̂) is the Hessian matrix of ℓ evaluated at θ̂

which by definition is the matrix of partial derivatives of ℓ at θ̂. Notice that ∇ℓ(θ̂) = 0

and that Hℓ(θ̂) = −I(θ0) + op(1), therefore

2[ℓ(θ̂)− ℓ(θ0)] = (θ̂ − θ0)TI(θ0)(θ̂ − θ0) + op(1)
d→ χ2

p
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Appendix B

R Code and Outputs

R code B.1: Complete output of lineal model of medv regressed on the predictors in

BostonHousing dataset

1 Call:

2 glm(formula = medv ~ ., family = gaussian (), data = BostonHousing)

3

4 Deviance Residuals:

5 Min 1Q Median 3Q Max

6 -15.595 -2.730 -0.518 1.777 26.199

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***

11 crim -1.080e-01 3.286e-02 -3.287 0.001087 **

12 zn 4.642e-02 1.373e-02 3.382 0.000778 ***

13 indus 2.056e-02 6.150e-02 0.334 0.738288

14 chas1 2.687e+00 8.616e-01 3.118 0.001925 **

15 nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***

16 rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***

17 age 6.922e-04 1.321e-02 0.052 0.958229

18 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***

19 rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***

20 tax -1.233e-02 3.760e-03 -3.280 0.001112 **
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21 ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***

22 b 9.312e-03 2.686e-03 3.467 0.000573 ***

23 lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

24 ---

25 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

26

27 (Dispersion parameter for gaussian family taken to be 22.51785)

28

29 Null deviance: 42716 on 505 degrees of freedom

30 Residual deviance: 11079 on 492 degrees of freedom

31 AIC: 3027.6

32

33 Number of Fisher Scoring iterations: 2

R code B.2: Complete output of logistic model of Category on the predictors in HepatitisC

dataset

1 Call:

2 glm(formula = Category ~ ., family = binomial (), data = HepatitisC)

3

4 Deviance Residuals:

5 Min 1Q Median 3Q Max

6 -4.9143 -0.1860 -0.0906 -0.0402 3.8509

7

8 Coefficients:

9 Estimate Std. Error z value Pr(>|z|)

10 (Intercept) -14.445193 3.928088 -3.677 0.000236 ***

11 Age -0.006511 0.024304 -0.268 0.788772

12 Sex 1.344974 0.608607 2.210 0.027111 *
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13 ALB -0.122350 0.063592 -1.924 0.054355 .

14 ALP -0.070402 0.012666 -5.558 2.72e-08 ***

15 ALT -0.020408 0.009422 -2.166 0.030317 *

16 AST 0.095025 0.019294 4.925 8.43e-07 ***

17 BIL 0.086677 0.028910 2.998 0.002716 **

18 CHE 0.125628 0.121698 1.032 0.301933

19 CHOL -0.690593 0.258862 -2.668 0.007635 **

20 CREA 0.024286 0.005208 4.663 3.11e-06 ***

21 GGT 0.030608 0.006211 4.928 8.30e-07 ***

22 PROT 0.225520 0.058047 3.885 0.000102 ***

23 ---

24 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

25

26 (Dispersion parameter for binomial family taken to be 1)

27

28 Null deviance: 456.08 on 614 degrees of freedom

29 Residual deviance: 128.44 on 602 degrees of freedom

30 AIC: 154.44

31

32 Number of Fisher Scoring iterations: 8
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R code B.3: Complete output of Poisson model of visits on the predictors in

DoctorVisits dataset

1 Call:

2 glm(formula = visits ~ ., family = poisson (), data = DoctorVisits)

3

4 Deviance Residuals:

5 Min 1Q Median 3Q Max

6 -2.9502 -0.6858 -0.5747 -0.4852 5.7055

7

8 Coefficients:

9 Estimate Std. Error z value Pr(>|z|)

10 (Intercept) -2.097821 0.101554 -20.657 < 2e-16 ***

11 gender 0.156490 0.056139 2.788 0.00531 **

12 age 0.279123 0.165981 1.682 0.09264 .

13 income -0.187416 0.085478 -2.193 0.02834 *

14 illness 0.186156 0.018263 10.193 < 2e-16 ***

15 reduced 0.126690 0.005031 25.184 < 2e-16 ***

16 health 0.030683 0.010074 3.046 0.00232 **

17 private 0.126498 0.071552 1.768 0.07707 .

18 freepoor -0.438462 0.179799 -2.439 0.01474 *

19 freerepat 0.083640 0.092070 0.908 0.36365

20 nchronic 0.117300 0.066545 1.763 0.07795 .

21 lchronic 0.150717 0.082260 1.832 0.06692 .

22 ---

23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05

. 0.1 1

24

25 (Dispersion parameter for poisson family taken to be 1)

26
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27 Null deviance: 5634.8 on 5189 degrees of freedom

28 Residual deviance: 4380.1 on 5178 degrees of freedom

29 AIC: 6735.7

30

31 Number of Fisher Scoring iterations: 6
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