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Abstract 
 

This work explored and characterized the evaporator section of a fully engineered heat 

pipe, a proposed semi-passive cooling solution for the thermal management at high heat fluxes, 

with the use of thin film evaporation. High heat loads present a problem in electronics, circuitry, 

space, and defense applications which are the main target areas for this cooling solution. 

Conventionally manufactured flat samples made of copper micropillar arrays were tested to 

determine their heat removal capabilities for high heat flux applications. The samples were 

manufactured with 400 μm micropillar hydraulic diameter, various micropillar spacings ranging 

from 500-1100 μm, with 500 μm and 600 μm micropillar height. These known micropillar 

dimensions were used to adapt a theoretical model which is used to predict the capillary-limited 

dry out heat flux. This model considered fluid properties, material properties of the manufactured 

sample, and micropillar dimensions. The sample’s ability for fluid transport and the measure of 

void spaces throughout this micropillar array were determined for each tested sample based on its 

micropillar dimensions. Models for these samples were adapted from literature and a relation 

between micropillar dimensions and theoretically predicted capillary dry-out heat flux was made. 

Micropillar dimensions are to be optimized to maximize heat removal capacities for these 

manufactured surfaces for exposure to high temperature and extreme heat fluxes. Higher dry-out 

heat flux is desired for maximum cooling.  

An experimental set up was designed and assembled to test these manufactured test 

samples using the phase change cooling technique of thin film evaporation with deionized water 

as the working fluid. This setup was designed to precisely control the flow of deionized water as 

it enters the manufactured test samples to ensure wicking of the fluid onto the micropillar arrays 

by capillary action. Pressure and temperature readings were closely monitored to ensure saturation 
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conditions were present as the tested sample was gradually heated up until dry out is observed. 

Temperature readings throughout the evaporation assembly were recorded and used to determine 

the heat flux of the test sample throughout the test. Calculated heat flux was plotted as a function 

of the temperature difference between the test sample and the saturation temperature.  

Various flow rates were tested to determine the point where heat flux becomes independent 

of flow rate, assuring that dry-out occurred due to high surface temperature and not lack of fluid 

capillary fluid supply. Manufactured samples made of copper were tested at up to 50 mL/min 

volumetric flow rate to determine the maximum heat flux they can withstand before dry-out is 

observed. Samples with the smallest micropillar spacings of 500 μm had the lowest heat flux value 

of 64.17 W/cm2 while the manufactured sample having 800μm spacing dissipated 92.2 W/cm2, the 

most of all samples, showing the most optimized micropillar dimensions of the tested samples. 

Experimental results were compared with the theoretical model. Experimental results showed good 

agreement with expected values and showed similar trend as the predicted plot.  
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Chapter 1: Introduction 
 
1.1 Introduction 

High temperature and high heat fluxes present a problem in thermal management which 

require intricate cooling solutions. Aerospace, defense, and electronics are key areas that are 

subject to these heat high heat loads that reduce device performance and cause material 

degradation. Modern day technology incorporates high performance electronics, high speed 

vehicles and deep space missions that are subject to very high heat fluxes. It is key to avoid low 

device performance and avoid failure for constant heat removal of a surface, therefore, different 

cooling solutions have been proposed for high rates of heat dissipation 

 

1.2 Phase Change Heat Transfer 

There exist many different types of cooling solutions nowadays such as single phase and 

phase change cooling with each having different rates of heat dissipation and heat transfer 

capabilities. Techniques like pool boiling, flow boiling, and spray cooling all present good 

thermal management solutions, but each has its downside whether it be fluid transport issues or 

intricate flow patterns. It is known that the heat transfer coefficient in phase change cooling 

solutions is higher compared to single phase cooling. Critical heat fluxes for these different types 

of cooling solutions are shown in Fig. 1-1.  
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Figure 1-1: Critical heat flux for different cooling solutions. (Zhu 2017) 

 

1.3 Thin Film Evaporation 

A phase change cooling strategy that has received a great amount of interest recently is thin 

film evaporation. This cooling technique relies on the phase change of a thin liquid film of fluid 

through an extended meniscus which improves thermal transport and rate of heat dissipation by 

increasing the evaporative area and decreasing the conduction resistance throughout the surface. 

Evaporative area is increased using micro/nanostructures along a surface which offer high 

porosity, permeability, and capillary action. Previous thin film studies done by Solomon et al. 

(2016) have shown that this cooling technique can dissipate very high heat fluxes of up to 6 

kW/cm2 with microstructure heights in the range of 60-80μm. This cooling technology shows 

promising heat removal capabilities for small scale, high heat flux applications.  
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1.4 Dry-out Heat Flux 

Dry-out heat flux, often referred to as the critical heat flux, is the maximum heat flux a 

device can withstand before undergoing failure. Past this point, there will be no heat removal from 

a targeted surface leading sudden increases in surface temperature that lead to material degradation 

and failure of these devices. It is essential to determine this critical point for any test device to 

know its heat transfer capabilities and limits for high heat flux applications. In thin film 

evaporation, the dry-out heat flux is the point where the working fluid is no longer syphoned or 

wicked onto the wicking surface due to high surface temperatures leading to a dry-out spot forming 

furthest away from the liquid supply. This spot rapidly increases radially across the device leading 

to low performance. This study shows and determines the cooling rates of manufactured test 

surfaces to determine the effect that micropillar dimensions have on the dry-out heat flux.  

 

1.5 Motivation 

The phase change cooling solution of thin evaporation is widely used in heat pipes, a fully 

sealed cooling device. A heat pipe consists of three sections, an evaporator section, wick section 

and condenser section and is a fully sealed passive two-phase heat transfer device that takes 

advantage of a fluids high latent heat of vaporization to achieve efficient heat transfer. Fluid is 

processed under vacuum conditions which allows for two-phase operations across a wide 

temperature range. A heat load is inputted into the evaporator section causing the working fluid to 

boil and transported to the colder region of the heat pipe due to the pressure difference along the 

device. Vapor gives up latent heat and condenses back into a liquid and absorbed by the wicking 

structure which passively pumps the fluid back into the evaporator. To characterize and optimize 

the heat transfer capabilities of this device it is important to experimentally explore the limitations 
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of each sub-section. Once these sections are characterized and optimized, a fully engineered heat 

pipe can be designed and manufactured to be incorporated as a cooling solution in high heat flux 

environments. 

This work presented is novel as the team’s goal is to explore additively and conventionally 

manufactured test surfaces for this characterization. Conventionally manufactured copper samples 

tested in this work incorporated large scale structures for preliminary studies and foundation for 

future work exploring small scale additively manufactured test surfaces.  

 

1.6 Organization of Thesis 

Chapter 1 introduces the fundamentals of thin film evaporation, a phase change cooling 

solution proposed for high heat flux environments used in a fully sealed passive two phase heat 

transfer device. Chapter 2 presents studies done and current limitations of this proposed cooling 

solution. It also discusses how thin film evaporation has been used in copper-water heat pipes and 

states how this combination is most promising due to fluid and material properties. Chapter 3 

presents the theoretical approach taken to create the predicted capillary limited dry-out heat flux 

plotted against wall-to-wall spacing between micropillars. Chapter 4 focuses the UTEP thin film 

evaporation test facility, test procedure, and data interpretation steps needed to express the 

experimental results to detect the dry-out heat flux for each manufactures test sample. Chapter 5 

shows the experimental results for each tested sample at a known flow rate and discusses the 

obtained results and compares them to the theoretical model.  
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1.7 Statement of Objectives 

The goal for this thesis is to design and develop a test facility to study a phase change heat 

transfer cooling solution for high heat flux environments. Hardware should transport water into a 

manufactured sample for determining heat transfer capabilities of different manufactured samples. 

This thesis outlines the following objectives.  

1. Experimentally characterize the evaporator section of a fully engineered heat pipe with 

the use of thin film evaporation.  

2. Experimentally demonstrate the effect of micropillar dimensions on the capillary 

limited dry-out heat flux.  

3. Compare experimental values to literature based theoretical model values. 
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Chapter 2: Literature Review 
 
 
2.1 Thin Film Evaporation Through Micropillar Wicks 

The phase change heat transfer cooling solution of thin film evaporation has been a very 

targeted area in research due to its high rates of heat dissipation. This cooling strategy relies on the 

phase change of a thin liquid film over a surface from an extended meniscus formed by the fluid 

along a wicking surface. It is important to understand how the working fluid acts when in contact 

with the substrate surface and how fluid properties affect the rates of heat removal from the surface. 

For example, solid to liquid interactions like the fluid contact angle on the substrate surface affect 

the sites of evaporation as attractive forces limit this phase change phenomenon. Capillary pressure 

and intermolecular forces drive the fluid into the evaporative area where the liquid-vapor interface 

is less affected by the attraction forces of the solid. Plawsky et al. (2014) describes the regions of 

thin film evaporation where these different forces interact leading to efficient phase change heat 

transfer, shown in Fig. 2-1.  
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Figure 2-1: Evaporating meniscus regions in thin film evaporation. (Plawsky et al. 2014) 

 

The extended meniscus, or transition region, is used to enhance the thermal transport of the 

fluid through the wicking surface. This region is the site of thin film evaporation due to its small 

thickness along with low thermal resistance compared to the bulk meniscus region where larger 

film thickness and greater thermal resistance exist. To maximize heat dissipation using this heat 

transfer technique, the evaporative area is to be increased throughout a heated surface. Many 

studies have been done using a variety of micro/nanostructures configurations and porous wicks 

as the wicking surfaces creating a larger number of evaporation sites for greater heat removal. 

Different structure configurations have been explored as Xiao et al. (2010) studied liquid 
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propagation rates through structured surfaces using cylindrical micropillars along with Ranjan et 

al (2010) who studied the evaporating meniscus region through packed spheres, vertical and 

horizontal wires, along with rectangular ribs.  

Previous studies have tested the heat dissipation limits for this phase change cooling 

strategy. Solomon et al. (2016) experimentally characterized fabricated test devices to determine 

their thermal performance through cylindrical silicon micropillar wicks. Experiments were 

performed with micropillars having a diameter of 5μm, height of 82μm, and12μm. Thin film 

evaporation was observed at a heat flux of 20 W/cm2 and a dry island that formed furthest from 

the water reservoir was observed at a heat flux of 46 W/cm2 where the heat transfer mechanism 

changed from evaporation to convection, shown in Fig. 2-2.   

 

 
Figure 2-2: High speed images of the test device during steady-state evaporation at ≈20 W/cm2 

and dry out and thermal run away at ≈46 W/cm2 (Solomon et al. 2016) 

 

Determined heat flux was then plotted as a function of the temperature difference between 

the substrate wall and the chamber for the before mentioned test device, shown in Fig. 2-3. Heat 

flux was shown to gradually increase as the temperature difference also increased. The two points 
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are pointed out on the plot where steady state thin film evaporation was observed as well as dry-

out detection.  

 
Figure 2-3: Heat flux as a function of temperature difference between the substrate wall and the 

chamber for device with D, H, and L of 5, 82, and 12μm, respectively. (Solomon et al. 2016) 

 

Solomon et al. (2016) also characterized hot spot cooling using thin film evaporation 

through these silicon micropillars for the same test device.  Using thin film evaporation, heat fluxes 

up to ≈ 6 kW/cm2 were dissipated from a 640x620 μm2 footprint area. When viscous losses exceed 

the capillary pressure a hotspot dry out forms due to insufficient liquid supply. When this dry spot 

formed, the temperature at this location increased up to ≈290°C while neighboring locations 

remained low at about 50°C. This showed that thin film evaporation is truly useful for dissipation 

of high heat fluxes while maintaining a low device temperature. A heat flux value of ≈6 kW/cm2 

was dissipated from a single hotspot and shown in Fig. 2-4.  
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Figure 2-4: Dry out heat flux captured by high-speed camera due to liquid starvation. (Solomon et 

al. 2016) 

 

To maximize the heat flux through microstructures it is important to understand the effect 

that the microstructure dimensions have on the amount of heat dissipation. Farokhnia et al. (2016) 

theoretically and experimentally analyzed the optical dimensions for micro/nanostructures to 

maximize the interfacial heat flux using thin film evaporation. Different geometries of 

microstructures were chosen to characterize the optimal configuration for thin film evaporation, 

shown in Figure 2-5. 
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Figure 2-5: Studied model structures for thin-film evaporation: rectangular ribs (configuration I), 

vertical square pillars (configuration II), and vertical wires (configuration III). (Farokhnia et al. 

2016) 

 

Through theoretical modeling, it was determined that the configurations II and II shown an 

optical value of width-to-spacing ratio that maximizes the interfacial heat flux for microstructure 

length of 50μm and height of 50μm. A value of 1.27 and 1.5 were determined for configuration II 

and III, respectively. Knowing these optimal microstructure dimensions, samples were 

manufactured using silicon wafers coated with a thin layer of chromium. Samples with various 

width to spacing ratios with the same density of pillars were developed along with microstructures 

with the same width to spacing ratio but with varying pillar density. Tests were performed with 

isopropyl alcohol as the working fluid to increase the wettability of the structures, results between 

simulations and experimental trails are shown in Figure 2-6 and Figure 2-7.   
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Figure 2-6: Interfacial heat flux values predicted compared to experimental measurements for 

microstructures with varying width to spacing ratios. (Farokhnia et al. 2016) 

 

 
Figure 2-7: Interfacial heat flux values predicted compared to experimental measurements for 

microstructures with same width to spacing ratios but varying density of pillars. (Farokhnia et al. 

2016) 
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Plawsky et al. (2014) suggest that altering the surface chemistry and surface topography of 

the microstructures can lead to enhanced vaporization from these surfaces. Tailoring the substrate 

properties along with the liquid to solid interactions have seen significant advancements in 

effective heat removal. To efficiently understand these liquid and solid interactions it is important 

to know how the working fluid responds to the selected substrate material. Surface wettability 

plays an important factor in how well the working fluid can wick through manufactured 

microstructures. Hydrophilic surfaces maximize the contact area with the fluid through attractive 

forces such as molecular bonding, dipole interactions, and Van der Waals forces that attract or 

repulse atoms. On the other hand, hydrophobic surface minimizes contact area with the fluid 

through repulsive forces. These different types of surfaces affect the contact angle between the 

working fluid and the substrate surface. Studies done by Orlova et al. (2015) show contact angles 

of water on copper substrates with different roughness ranging from 60-87°. It was determined 

that increasing surface roughness led to an increase in contact angle. Ranjan et al. (2011) developed 

a numerical model for the evaporating liquid meniscus in wick structures using the solid-liquid 

combination of copper-water and considered various contact angles to determine the effects on 

evaporation. Results show that with increasing contact angle there is a decrease in the substrates 

heat flux as a function of meniscus height, shown in Fig. 2-8.  
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Figure 2-8: Variation of base heat flux with meniscus level for various contact angles. (Ranjan et 

al. 2016) 

 

Another key factor that affects heat transfer performance through thin film evaporation is 

capillary pressure. This difference in pressure throughout a wicking surface determines the rate of 

suction of a fluid through these microstructures. Models by Ranjan et al. (2009) studied wicking 

characteristics through four well-defined microstructures for various contact angles. Values of 

capillary pressure were determined for decreasing pore sizes between the microstructures, showing 

optimal values for suction, or wicking, of the fluid through these microstructures. Effects of 

porosity on capillary pressure were presented and showed that higher porosity leads to a decrease 

in maximum possible capillary pressure.   

Based on existing literature, it is key to understand the liquid-solid interactions and 

microstructure optimization to be able to maximize heat dissipation for a manufactured surface. 

Thin film evaporation is a proven efficient two-phase heat transfer solution with multiple 

theoretical models established to predict its cooling capabilities. Optimal microstructure 
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dimensions and fluid properties are vital in increasing the surface heat flux leading to highly 

efficient cooling solutions. This motivated this work in designing a setup that uses this phase 

change cooling solution to experimentally characterize the heat transfer capabilities of 

manufactured surfaces with micropillar arrays using rectangular microstructures with known 

dimensions.  

 

2.2 Heat Pipe Thermal Management 

Based on previous studies done experimentally and values obtained from simulations, heat 

dissipation rates achieved by thin film evaporation make this cooling strategy ideal to be 

incorporated in high heat flux environments. The working principle of thin film evaporation has 

been incorporated into heat pipe, a fully sealed passive two-phase heat transfer device that takes 

advantage of a fluids high latent heat of vaporization, leading to efficient heat transfer, shown in 

Fig. 2-9. This capillary-based heat transfer device was first demonstrated in the 1960’s (Shukla 

2015) and later, was first used for the thermal equilibration of satellite transponders. Since then, 

heat pipes have been incorporated in spacecraft cooling, electronic components in satellites, and 

computers.  
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Figure 2-9: Schematic of a heat pipe. (Shukla 2015) 

 
The working fluid of the heat pipe is processed under vacuum conditions, allowing for two-

phase heat transfer across a wide temperature range along the device. A heat pipe is made up of 

three sections: an evaporator, wick, and condenser section. Heat is inputted into the evaporator 

section causing the working fluid to boil, leading to isothermal expansion. The vapor then travels 

to the condenser section, the low pressure/colder section of the heat pipe, through an adiabatic 

section. It is at this point where the vapor gives up its latent heat and condenses back into a liquid, 

or isothermal compression, and is absorbed by the microstructures/wicking structures that 

passively pump the fluid back into the evaporator. This is aided by the capillary pressure created 

by the menisci along the wicking surface such as axial grooves, mesh screen, sintered metal 

powder grooves and micro/nanostructures. This cooling technique is most prominent due to its 

high reliability, small size, lightweight, and zero needed maintenance. Working fluids for heat 

pipes range from helium and nitrogen for cryogenic applications to liquid metals including 

mercury, sodium, and indium for high temperature environments.  
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A copper heat pipe with water as the working fluid if most used for the cooling of 

electronics. Due to waters high latent heat of vaporization it makes it a very popular working fluid 

due to its high figure of merit.  The merit number is based on the fluid properties, and this 

determines the maximum power the heat pipe can withstand when it is capillary limited. A model 

showed by Chaudhry et al. (2012) shows the figure of merit for various fluids across a 100K 

temperature range, shown in Fig. 2-10. It is seen that water is the best working fluid candidate and 

has been historically used in heat pipes for efficient thermal management.   

 

Figure 2-10: Figure of merit for various heat pipe working fluids. (Chaudhry et al. 2012) 

 

Aside from having the best figure of merit compared to other popular working fluids, water 

also presents great wicking power. Anderson et al. (2008) discussed a cooling design using a 

copper-water heat pipe to cool concentrating photovoltaic systems by natural convection. A 

copper-water heat pipe was selected due to compatibility and far superior wicking capabilities of 
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water on the copper surface, shown in Fig 2-11. The proposed heat pipe was able to dissipate 40 

W/cm2 to the environment with a total cell-to-ambient temperature of only 40°C while cooling 

with a single copper block would have a temperature difference of up to 210°C. 

 

Figure 2-11: Heat pipe wicking limit for various working fluids of proposed wicking surface. 

(Anderson et al. 2008) 

 
The effect of capillary pressure was studied by Wang et al. (2005) who developed a novel 

flat heat pipe for the thermal management in high power microelectronics, power converting 

systems, laptop computers and spacecraft control systems with sintered copper screen mesh used 

as the wicking surface with a series of parallel wires allowing for the flow of the fluid. Two 

prototypes were created with different number of layers of mesh screen providing variable wicking 

surfaces and results showed that the device with the greater amount of screen layers was able to 

dissipate 19.1 W/cm2 while the other dissipated 17.4 W/cm2. Theoretical models displayed the 

effect of the wicking surface thickness on the maximum heat transport for a proposed heat pipe. 

Models showed that the more porous a wicking surface is, the great the amount of heat dissipation.  
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The ability of a heat pipe to dissipate heat from a concentrated heat load makes these heat 

transfer devices reliable and a vital tool for thermal management. Many studies have been done 

with a copper-water proposed heat pipes for the thermal management of electronics. Hayat et al. 

(2020) studied copper foam-based heat sinks for the thermal management of electronic systems 

with water as the working fluid. The test substrates were subjected to various heat fluxes ranging 

from 2-3 kW/m2 and results showed that after 100 minutes there was 50% temperature reduction. 

Ivanova et al. (2006) explored the feasibility of a cooling system with miniature copper heat pipes 

for embedded electronics with water as the working fluid. The heat transfer limits of these heat 

pipes were explored and determined that each had the capacity to transfer more than 110W without 

experiencing dry out at the evaporator. Li et al. (2016) investigated the thermal performance of a 

copper-water flat heat pipe with a novel wicking surface having diameters ranging from 50-100μm 

and a 1mm thin liquid film. The proposed heat pipe was able to effectively dissipate 100 W/cm2 

with very small thermal resistance. Temperature readings comparing the heat pipe with a copper 

sheet at an applied heat load were compared. The heat pipe showed a much more even temperature 

distribution with ≈3°C difference throughout the body compared to ≈8°C difference of a copper 

sheet.  

The characterization of the manufactured samples in this work will lead to an 

understanding of the evaporator section of a fully engineered heat pipe. Obtained heat fluxes will 

be compared for samples having varying microstructure dimensions for optimization of heat 

transfer capabilities. Based on available literature, a heat pipe is the most promising cooling 

solution for thermal management at high heat fluxes and has been implemented along various 

applications and areas of study. Being able to remove heat from a concentrated heat load allows 

for better thermal managements for aerospace, deep space, electronics, and defense applications. 
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Chapter 3: Theoretical Approach 
 
3.1 Theoretical Approach 

A theoretical model to plot the expected capillary limited dry-out heat flux was adapted 

from previous thin film evaporation studies done by Solomon (2016) to plot the expected dry-out 

heat flux against wall-to-wall spacing between micropillars. This model considers both material 

and fluid properties for the selected liquid-solid combination. Multiple test samples with various 

micropillar heights were manufactured and were tested to determine the effect on the dry-out heat 

flux.  

The ability of the test sample to transmit fluid, known as permeability, was determined.  

Micropillar dimensions 𝑎, 𝑏, ℎ are the diameter, wall-to-wall spacing, and height of the 

micropillars, respectively. 2D permeability relation was used from Sangani et al. (1982) and Xiao 

et al. (2011) for this theoretical model.  Micropillar spacing and diameter was used to determine 

the two-dimensional permeability, not accounting for micropillar height. Using Eq. 1 and Eq. 2, 

the 2D permeability relation was calculated using Eq. 3.   

𝑐 =  
𝜋𝑑ଶ

4𝑏ଶ
                                                                       (1) 

𝑧 = ln(𝑐.ହ) − 0.738 + 𝑐 − 0.887𝑐ଶ + 2.038𝑐ଷ                                    (2) 

𝐾ଶ = (𝑏ଶ) ቀ
𝑧

4𝜋
ቁ                                                                (3) 

Porosity, the measure of the void spaces on the test sample surface, was then determined. 

Porosity of the 1x1cm2 micropillar wick section was calculated using Eq. 4. Micropillar 

dimensions varied for each manufactured sample that was tested.  
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𝜀 = 1 −
𝜋𝑑ଶ

4𝑏ଶ
                                                                       (4) 

A geometric parameter was used to express a relationship between the porosity and the 

two-dimensional permeability of each of the samples. This geometric parameter, β, was calculated 

using Eq. 5. 

𝛽 = ඨ
𝜀

𝐾ଶ
                                                                         (5) 

The capillary pressure of the wick section is known as the force due to the pressure 

difference between the vapor and liquid side of the meniscus, as stated by Solomon et al. (2016). 

This pressure is the driving force of the fluid through the wicking surface and was calculated using 

Eq. 6 where 𝜃 is the contact angle of water on the targeted test sample material. A contact angle 

of 87° its take for water on a copper surface (Orlova et al. 2015) 

𝑃 =
4𝜎cos (𝜃)

𝑑 ቆ
4
𝜋

ቀ
𝑏
𝑑

ቁ
ଶ

− 1ቇ

                                                                (6) 

The actual micropillar height, ℎ∗, is calculated knowing the effect of the meniscus and its 

relationship with the receding contact angle. The actual micropillar height was calculated using 

Eq. 7.  

ℎ∗ = ℎ −
൫√2𝑏 − 𝑑൯(1 − sin(𝜃))

2 cos(𝜃)
                                                   (7) 

The effective micropillar height is determined by assuming a linear relation in its height 

from the edge of the micropillar to the center and was determined using Eq. 8.  
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ℎ =
1

2
(ℎ + ℎ∗)                                                                   (8) 

Knowing the parameters stated above, the effective permeability is then calculated using 

several correction factors (𝜉, Λଵ, Λଶ) shown in Eq. 9, 10 and 11. The effective permeability was 

then calculated using Eq. 12.  

𝜉 =
𝜀𝑑

4(1 − 𝜀)
                                                                     (9) 

Λଵ =
ℎ

ℎ
                                                                          (10) 

Λଶ =
ℎ + 𝜉

ℎ + 𝜉
                                                                      (11) 

𝐾 = 𝐾ଶ ቆ1 −
𝑒ଶఉ − 1

𝛽ℎ൫𝑒ଶఉ + 1൯
ቇ ΛଵΛଶ                                                        (12) 

Calculating the theoretical dry-out heat flux is now possible by knowing the effective 

parameters of the sample. A figure of merit is expressed for the selected surface/working fluid and 

was calculated using Eq. 13 

𝑀 =
𝜎𝜌ℎ

𝜇
                                                                   (13) 

where 𝜌 is the liquid density, ℎ is the liquid to vapor latent heat of evaporation, and 𝜇 is the 

dynamic viscosity of the fluid. This expression considers all fluid properties which determine the 

heat carrying capacity of the fluid. Fluid properties used for this model are shown in Table 3-1.  

 

Table 3-1: Fluid properties of water used for calculations. 

Fluid Property Unit 

Contact Angle of Water on Copper 87° 
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Liquid to Vapor Surface Tension of Water 0.0763 
ே


 

Liquid Density of Water 997 


య
 

Liquid to Vapor Latent Heat of Evaporation of Water 2442000 



 

Dynamic Viscosity of Water 0.000891 


∗௦
 

 

An effective geometric parameter is calculated, using the relation in Eq. 6, considering the 

calculated effective permeability of the sample, and was calculated using Eq. 14.  

𝛽 = ඨ
𝜀

𝐾
                                                                    (14) 

This parameter was then used to determine a dimensionless parameter, 𝜓, which relates the 

porosity and effective permeability that are calculated from the micropillar geometries. This 

parameter is expressed and calculated using Eq. 15.  

𝜓 =

ℎ𝐾 ቆ1 −
tanh൫ℎ𝛽൯

ℎ𝛽
ቇ

𝑙ଶ𝑑 ൭ቀ
4
𝜋

ቁ ቀ
𝑏
𝑑

ቁ
ଶ

− 1൱

                                                (15) 

The capillary limited dry-out heat flux is then calculated using the effective parameters, 

the fluid heat carrying capacity, and the fluids receding contact angle, shown in Eq. 16.  

𝑞" = ൬
40

3
൰ 𝜓𝑀𝑐𝑜𝑠𝜃                                                              (16) 

Based on this theoretical model, a plot was made for the manufactured test samples with 

different micropillar dimensions using Eq. 1-16.  

 



24 
 

Chapter 4: Experimental Setup 
 
4.1 Test Facility 

An experimental setup was designed and assembled to determine each samples thermal 

management capabilities based on previous studies done by Solomon et al. (2016). The objective 

of these experiments was to find the capillary limited dry-out heat flux of each of the manufactured 

sample with known micropillar dimensions. The thin film evaporation test facility schematic and 

piping and instrumentation diagram are shown in Fig. 4-1 and Fig. 4-2. 

 

Figure 4-1: CAD of water thin film evaporation test facility. 
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Figure 4-2: P&ID of thin film evaporation facility. 

 

The experimental setup was divided into four main sections that together make up the entire 

assembly. The setup consists of the evaporation assembly, vacuum chamber, fluid canister, and 

the main tubing line that supplies the fluid to the sample, the assembled test facility if shown in 

Fig. 4-3. The fluid canister serves as the liquid container and pressure build up site as liquid is 

heated up. The fluid is solely pressure driven by the pressure differential between the fluid canister 

and the vacuum chamber. The heat sink located along the tubing line allows for cooling of the 

fluid to the targeted temperature of 24° as it enters the vacuum chamber and onto the test surfaces. 

The evaporation assembly consists of instrumentation that allow for heating control and data 

acquisition throughout thin film evaporation tests for determining the dry-out heat flux.  
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Figure 4-3: UTEP thin film evaporation test facility. 

 
4.1.1 Chamber 

A modular vacuum chamber was selected for the vacuum chamber of this experimental 

setup. A 9” 6061-T6 aluminum alloy cube vacuum chamber frame (Ideal Vacuum) was used to 

attach three multiport 9x9” chamber plates (Ideal Vacuum), two 9x9” tempered glass viewing 

window plates (Ideal Vacuum), and one 9x9” heater plate (Ideal Vacuum). Each multiport chamber 

plate consisted of two CF 2.75 flanges and one CF 4.5 flanges. A CF 2.75 electrical feedthrough 

is attached to one of the multiport chamber plates and is used to connect the cartridge heater 

terminals from the interior and connected externally to their corresponding pins connected to a 

VARIAC power supply. A liquid feedthrough with all necessary adapters is connected to the CF 

4.5 flange to allow for liquid supply into the chamber and into the sample assembly. Two 5 pair 

type K thermocouple feedthroughs are connected to the second multiport chamber plate that allows 

for temperature readings inside the vacuum chamber. The third multiport chamber plate located 

on the back of the vacuum chamber includes all pressure management and monitoring components. 
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These components include a Micro Pirani Series 925 pressure transducer, vent valve, and the 

vacuum line that connects to the setups vacuum pump (Kinney Tuthill KVAC-21 KVAC21 Pascal 

Dual Stage Rotary Vane Vacuum Pump). The fully assembled modular vacuum chamber is shown 

in Fig. 4-4 and Fig. 4-5.  

 

Figure 4-4: Front view of the modular vacuum chamber with attached feedthroughs and flanges. 

 

 
Figure 4-5: Back view of the modular vacuum chamber with attached feedthroughs and flanges. 

 

The thin film evaporation assembly was then connected to the liquid supply feedthrough 

from the inside of the chamber. The 6.35 mm Swagelok elbow on the test sample is connected to 
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the corresponding Swagelok terminals of the liquid supply line. The assembly is placed inside 

ensuring it is structurally supported, and cartridge heater terminals are connected to the 

corresponding pins on the electrical feedthrough located on the left wall of the chamber. A sliced 

view of the evaporation assembly inside the vacuum chamber is shown in Fig. 4-6.  

 

Figure 4-6: Sliced view of evaporation assembly connected inside vacuum chamber. 

 
4.1.2 Fluid Canister 

The fluid canister was made up of a CF 6 stainless steel full nipple with reducers to CF 

2.75 on each end. The top end of the canister included a CF 2.75 5-way cross that allowed for all 

necessary feedthroughs for temperature and pressure readings, vacuum line for pressure 

management, and access port for filling up the canister with the working fluid. One Type K 

thermocouple was placed on the inside of the canister to allow for the temperature readings of the 

bulk fluid. A Micro Pirani Series 925 pressure transducer is used for pressure readings inside the 

canister, all readings are displayed on LabVIEW. At the bottom flange of the canister a CF 2.75 

to 6.35 mm Swagelok adapter is attached to connect the canister assembly to the tubing lines. A 
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rope heater with adjustable temperature control is wrapped around the canister from the outside to 

heat up the fluid. The assembled fluid canister is shown in Fig. 4-7.  

 

Figure 4-7: Fluid canister with attached flanges and feedthroughs. 

 

As the fluid is being heated, pressure in the canister increases. Manual hand valves are used 

to close or open the flow from the canister into the main tubing line. Initially, these valves are 

closed to allow for pressure build up inside the canister assembly. Once ready, the hand valve on 

the main tubing lines opened to allow for the flow of this heater water. Along the tubing, a heat 

sink for water (McMaster-Carr) was installed and connected to a VARIAC power supply to adjust 

its cooling capability based on fluid temperature and vacuum pressure conditions. Thermocouples 

are located before the fluid enters the heat sink and right before the flow adjusting valve to monitor 

temperature and how much the fluid is being cooled. A low flow metering valve is located before 

the fluid enters the vacuum chamber to control and adjust the flow rate. 
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4.1.3 Test Surfaces 

A conventionally manufactured flat sample was designed and manufactured out of copper. 

These samples consisted of two parts, the primary reservoir with a 1x1 cm2 micropillar array (Fig. 

4-8a) and the secondary reservoir with a 6.35 mm diameter tube (Fig. 4-8b) in which a 6.35 mm 

Swagelok elbow connects to the liquid supply line inside the vacuum chamber. Multiple samples 

were manufactured to test and determine the effect the material of sample has on the capillary dry-

out heat flux. A liquid gasket is made from Permatex High Temperature Gasket Maker and placed 

between the two parts to seal and avoid any leaks throughout the test.  

 

Figure 4-8: (a) Primary reservoir with micropillar array. (b) Secondary reservoir. 

 

As the working fluid enters the test sample, it is introduced through the attached 6.35 mm 

Swagelok elbow and into the secondary reservoir. The secondary reservoir incorporates four 

circular slots for water to drip down into the primary reservoir, shown in Fig, 4-9. A drain excess 

port on the secondary reservoir was included to dispatch any excess water entering the sample 

assembly once both the primary and secondary reservoirs are filled. 
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Figure 4-9: (a) Top view of primary reservoir. (b) Bottom view primary reservoir. 

 

Water is then introduced into the four primary reservoirs and once filled, onto the 

micropillar array by capillary wicking. Test samples were designed in a way that the primary 

reservoirs remain filled throughout the test. A sliced view of both the primary and secondary 

reservoirs are shown in Fig. 4-10. 

 

Figure 4-10: (a) Sliced view of primary reservoir. (b) Sliced view of secondary reservoir. 
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Conventionally manufactured test samples made of copper were tested. Samples were 

designed with micropillar hydraulic diameter of 400 μm, various micropillar spacings ranging 

from 500-1100 μm, and heights of 500 and 600 μm were tested to determine the effect on the 

capillary limited dry-out heat flux. Manufactured test sample with labeled components is shown 

in Fig. 4-11 along with all the manufactured test samples presented in Table 4-1.   

 

Figure 4-11: Labeled manufactured test sample. 

 

 
Figure 4-12: Labeled micropillar array schematic with micropillar diameter, spacing, and height 
(a, b, and h). 
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Table 4-1: Manufactured test sample micropillar dimensions. 

 
Test Sample Diameter (μm) Spacing (μm) Height (μm) 

1 400 500 500 

2 400 500 600 

3 400 800 500 

4 400 1100 500 

 
 

SEM images were obtained and shown in Fig. 4-13 through Fig. 4-16 for all manufactured 

samples to determine the actual micropillar dimensions. These dimensions were accounted for and 

were used to develop the true theoretical prediction to compared to the obtained experimental 

results. 

 

 

Figure 4-13: SEM images and averaged dimensions for manufacture sample having micropillar 
dimensions a=400μm b=500μm and h=500μm. 

 

 

Figure 4-14: SEM images and averaged dimensions for manufacture sample having micropillar 

dimensions a=400μm b=500μm and h=600μm. 
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Figure 4-15: SEM images and averaged dimensions for manufacture sample having micropillar 

dimensions a=400μm b=800μm and h=500μm. 

 

 

Figure 4-16: SEM images and averaged dimensions for manufacture sample having micropillar 

dimensions a=400μm b=1100μm and h=500μm. 

 

4.1.4 Heater Block 

The copper heating block is insulated to reduce convective heat losses. The insulator block 

made of the insulating material PEEK is divided into three sections which hug the copper block to 

insulate and reduce any thermal losses from heat being supplied and conducted onto the sample. 

The assembly is secured and compressed using four 1/4”-20 screws. The evaporation assembly 

schematic is shown in Fig. 4-17, and a sliced view is shown in Fig. 4-18.  
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Figure 4-17: Thin film evaporation assembly with attached test sample. 

 

 
Figure 4-18: Sliced view of the evaporation assembly with attached sample. 

 
Once assembled, the test sample is then placed and secured on the evaporation assembly. 

This assembly consists of a copper heating block, an additively manufactured insulation block, 

and eight cartridge heaters. The copper heating block, shown in Fig. 4-19, was manufactured with 

eight circular slots in which the 9.525 mm wide, 31.75 mm long cartridge heaters are inserted for 

heating. The copper block neck has three 1 mm diameter slots, 6 mm apart, for the insertion of 
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fine tip thermocouples for temperature readings leading up to the heated flat sample. The fully 

assembled evaporation assembly connected interiorly is shown in Fig. 4-20.  

 
 

 

Figure 4-19: Manufactured cooper heating block. 

 

 

Figure 4-20: Interior components of the vacuum chamber assembled and connected. 
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4.1.5 Data Acquisition System & LabVIEW 

All temperature and pressure readings are displayed and monitored using the test facility 

LabVIEW display. An NI-9214 module was used to connect all the setup thermocouples along the 

fluid canister, tubing line and vacuum chamber to the display. Data was collected at 4 samples per 

second. The canister and chamber pressure transducers were connected to an NI-9205 module and 

a DC power supply was used to power on these sensors. The test facility LabVIEW display is 

shown in Fig. 4-21.  

 

Figure 4-21: Thin film evaporation facility LabVIEW display. 

 
4.2 Test Procedure 

Initially, the fluid canister is filled with a known amount of water and sealed off to ensure 

no leaks are present. Pressure levels of the chamber and the canister were decreased to an ambient 

pressure of 3 kPa (22.5 Torr). Once desire pressure was reached, the fluid inside the canister was 
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heated using a rope heater that is wrapped around the exterior surface of the flange. Fluid was 

heated up to 60°C and temperature and pressure levels were displayed and monitored on the 

LabVIEW display. When the target temperature of the fluid was reached the manual valves on the 

main tubing line were opened to allow the fluid to flow throughout the line. Fluid transport was 

solely pressure driven by the differential in pressure between the fluid canister and the vacuum 

chamber. Fluid was cooled from 60°C to 24°C using a heat sink connected to a VARIAC power 

supply. The fluid temperature was monitored before and after entering the heat sink and the heat 

sinks fan speed was adjusted using the VARIAC power supply. Power level was determined based 

on active cooling of the fluid. The flow rate was adjusted using a low flow metering valve on the 

main tubing line before entering the chamber. Theoretical flow rate was determined based on 

expected heat flux and fluid properties. Fluid was then introduced into the sample and into the 1x1 

cm2 micropillar array by capillary action. Once thin film layer of the fluid was covering the 

micropillar array, the cartridge heaters on the evaporation assembly were powered on using a 

VARIAC power supply. Power was supplied to the heaters by gradual increments on the power 

supply dial position. Temperature readings of the copper neck, flat sample, and chamber were 

monitored on the LabVIEW display. System was allowed to reach steady state once gradual 

increase in power was supplied to the cartridge heaters. When temperature readings of the copper 

neck and the flat sample were not changing more than 0.5°C for 1 minute, data was recorded for 

30 seconds. This gradual increasing in power was repeated until dry-out was seen on the 

micropillar sample resulting in the capillary limited dry-out heat flux. Temperature readings for 

each recorded data point were used to determine the heat flux of the sample. Data was processed 

and plotted to express the calculated heat flux as a function of the temperature difference of the 

test sample and the saturation temperature of the fluid. 
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4.3 Data Processing 

Temperature readings throughout every test recording are averaged and were interpreted 

where heat flux was calculated from the following equation: 

𝑞" =  −𝑘௨

𝑑𝑇

𝑑𝑥
                                                                     (18) 

where 𝑘௨ is the thermal conductivity of the copper heating block and 
ௗ்

ௗ௫
 is the temperature 

gradient along the copper neck defined by Cooke et al. (2011) shown in Eq. 19.  

𝑑𝑇

𝑑𝑥
=  

3𝑇ଵ − 4𝑇ଶ + 𝑇ଷ

2∆𝑥
                                                            (19) 

where 𝑇ଵ, 𝑇ଶ, and 𝑇ଷ are the temperature readings of the copper block where 𝑇ଵ is at the location 

closest to the test sample, and ∆𝑥 is the spacing between the thermocouples, shown in Fig. 4-22.  

 

Figure 4-22: Zoomed view of thermocouple location along the neck of the copper heating block. 

 

Calculated heat flux values for each test recording were determined and plotted against the 

temperature difference between the test sample heated surface and the saturation temperature at 

the testing conditions using Eq. 20.  
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∆𝑇 = 𝑇ସ − 𝑇௦௧                                                                  (20) 

where 𝑇ସ is the average test sample temperature for each recording and 𝑇௦௧ is the saturation 

temperature of water at the tested pressure conditions inside the chamber.  

Plots were generated for each tested sample to express the calculated heat flux as a function 

of wall superheat. From the plots, critical heat flux (CHF) will be determined based on the trendline 

and heat flux values after dry-out is achieved.  
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Chapter 5: Thin Film Evaporation Results 
 
 
5.1 Results and Discussion 

Tests were performed on manufactured copper test samples with various micropillar 

dimensions to determine the dry-out heat flux and compare with the theoretical model calculated, 

shown in Fig. 5-1.  

 

Figure 5-1: Theoretically calculated dry-out heat flux for manufactured copper samples. 

 

Four different samples with different wall-to-wall spacing between micropillars and 

different micropillar height were tested to determine their heat transfer capabilities. Water entered 

the sample and onto the micropillar array by capillary action and a steady gradual increase in heat 

flux was applied until dry-out is achieved. Results for all four samples with known micropillar 

dimensions are shown.  
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5.1.1 Effect of Flow Rate  

The first sample that was tested had known micropillar diameter of 400 μm, spacing of 500 

μm, and height of 600μm. As the test sample was subjected to gradual increases in heat, the sample 

surface temperature along with the three thermocouples placed on the copper heating block 

gradually increased. Initially, water entered the samples secondary reservoir making its way onto 

the four primary reservoirs and onto the 1x1 cm2 micropillar array. As higher temperatures were 

reached, heat flux gradually increased as the temperature gradient between the thermocouples 

along the copper neck became more apparent. Initially, the test sample surface temperature is the 

same as the chamber temperature (25°C) at its respective saturation pressure (24 Torr). This 

ensured that water entering the sample was in fact at saturation conditions.  

The effect of flow rate was determined by subjecting the sample to various flowrates of the 

working fluid onto the sample. This was done to determine when the dry-out heat flux becomes 

independent from the flow rate. This ensured that dry-out is indeed due to the super heat of the 

sample surface and not due to lack of liquid supply onto the sample. Fig. 5-2 presents the results 

from the thin film evaporation tests on the manufactured copper micropillar arrays. Y-axis presents 

the heat flux given to the micro-pillar arrays, and X-axis presents the wall-superheat that is the 

surface temperature above the water saturation temperature (here 24 °C). The different colors on 

the plot represent different tests performed at various flow rates on the same surface. The arrow 

represents the dry-out heat flux after which the heat flux goes down due to failure in liquid supply 

to the micro-structures through capillary action. A dry-out heat flux of ~80 W/cm2 was observed 

in the preliminary tests for the 500 μm conventional copper surface. However, the second test 

shows a slight decrease in dry-out point that is ~76 W/cm2. 
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Figure 5-2: Heat flux as a function of surface superheat at various flow rates for copper sample 

a=400μm b=500μm h=600μm. 

 

It was observed that between 35 mL/min and 50 mL/min heat flux becomes independent 

as similar heat flux values were obtained for these two flow rates. Due to the sample design, excess 

water is disposed once primary and secondary reservoirs are full. This confirmed that at these flow 

rates, dry-out heat flux is due to surface temperature superheat rather than fluid starvation on the 

samples reservoirs.  

 

5.1.2  Effect of Micropillar Spacing 
 

The effect of micropillar spacing on the dry-out heat flux was then determined. Three 

different samples with micropillars having known diameter of 400μm and height 500μm were 
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manufactured with various spacings of 500μm, 800μm, and 1100μm. Once temperature readings 

along the assembly reached steady state conditions the first data point was recorded. Then, the 

VARIAC power supply that is connected to the assembly’s cartridge heaters was then set to 5V 

supplying the first heat load to the copper heating block and onto the test sample. Data was 

recorded when the heat flux reading on the LabVIEW display would increase by 5 W/cm2. After 

determining the point where heat flux becomes independent of the flow rate a constant flow rate 

was set at a known position that supplies a flow rate of 50 mL/min. At higher heat loads, constant 

evaporation between the microstructures could be seen on the sample surface. Once partial dry-

out at these evaporation sites occurred, water would wick back onto the micropillar array from the 

available fluid on the primary reservoirs. Heat flux plots for all three samples with different 

micropillar spacings is shown in Fig. 5-3.  

 

Figure 5-3: Heat flux as a function of surface superheat for copper samples having a=400μm 

h=500μm and various spacings at 50 mL/min. 
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For the sample having the smallest spacing, dry-out was seen at a wall superheat of 13.53°C 

and a heat flux of 64.17 W/cm2. At this point, there was no active wicking onto the test sample 

micropillar array leading to the rapid increase in surface temperature. The dry-out was attributed 

to the surface temperature and not the lack of fluid supply as water continued to be dispatched 

form the secondary reservoir excess port.  

The next sample tested had a wall-to-wall spacing of 800μm. Thin film evaporation was 

observed at a super heat of 17.23°C and a heat flux value of 41.5 W/cm2. At dry-out, this sample 

was able to dissipate 92.2 W/cm2 at a wall superheat of 31.7°C, the most heat removal from all 

tested samples. 

The last sample tested was that with the largest spacing of 1100μm. As gradual increases 

in heat load were applied it could be seen that the sample surface temperature and on the plot that 

the slope changes slightly at 23.95°C and a heat flux of 50.8 W/cm2. At this point there were many 

evaporation sites on the samples micropillar array as once partial dry-out occurred, water would 

wick onto the surface again forming the thin fluid layer along the wicking surface forming a 

meniscus allowing for thin film evaporation to occur. At a wall superheat of 38.56°C a critical heat 

flux of 78.7 W/cm2 was achieved. It was at this point where water would not wick onto the surface 

due to the high temperature of the surface, resulting in the capillary limited dry-out heat flux.  

 

5.2 Test Summary 

Four manufactured copper samples with a 1x1cm2 micropillar array were tested to 

determine their capillary limited dry-out heat flux at a constant flow rate of 50 mL/min. Samples 

were tested under a pressure of 24 Torr with its respective saturation temperature of 25°C. Heat 

fluxes ranging from 44.2 W/cm2 to 92.2 W/cm2 were achieved once the capillary limited dry-out 
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heat flux was achieved for various micropillar spacings and heights.  Results show that the dry-

out heat flux for each sample follows the predicted behavior established by the theoretical model. 

Fig. 5-4 shows the predicted dry-out heat flux as a function of intrinsic contact angle for two 

different angles. The experimental results are in good correlation with model for contact angle of 

88° as a contact angle of 87° predicts 1.5 times more heat flux due to an increased capillary 

pressure with increasing contact angle. Capillary pressure is the driving force of the fluid onto the 

wicking surface, therefore, higher wicking leads to higher critical heat flux due to constant fluid 

supply to heated area.  

 

 

Figure 5-4: Theoretical model vs. experimental results for tested copper samples for different 

contact angles. 

 
The two samples with same micropillar diameter and spacing of 400μm and 500μm, 

respectively, but with different heights of 500μm and 600μm established that an increased 

micropillar height leads to a higher dry-out heat flux value. From the model, test sample with 



47 
 

800μm wall-to-wall spacing was predicted to dissipate the most heat compared to the other 

samples. Experimental results showed that this sample was able to dissipate 92.2 W/cm2, the 

highest of all tested samples. Three samples with the same height of 500μm were manufactured to 

prove the theoretical plots trend showing that 800μm is the optimum spacing for a copper-water 

application.   

Lower experimental heat flux values are attributed to the surface roughness of the 

manufactured samples along with certain fabrication and manufacturing errors leading to lower or 

higher values for the proposed micropillars. Higher surface roughness leads to more sites for 

nucleation which leads to lower the heat flux values using thin film evaporation. Studies done by 

Kim et al. (2018) have shown that increasing surface roughness along with the contact angle led 

to a decrease in heat flux compared to smoother surfaces. For pool boiling, more nucleation sites 

are desired to for better thermal performance while in thin film evaporation it is key to avoid 

nucleation and solely depend on the evaporation of the fluid meniscus. Chan et al. (2009) 

investigated the performance of a finned surface using pool boiling in low vapor pressures. Fins 

having a wall-to-wall spacing of 500μm and height of 15mm were able to dissipate about 

65W/cm2. In comparison, structures that were tested in this work are 30 times smaller and can 

achieve similar heat fluxes, proving that thin film evaporation with the use of micropillars is a 

smaller scale efficient cooling strategy.  

Samples with 500μm wall-to-wall spacing show the lowest value of dry-out heat flux due 

to low permeability and capillary pressure which is dependent on the contact angle. Capillary 

pressure is proportional to micropillar dimensions along with the contact angle of water on a 

copper surface, therefore a larger contact angle leads to lower heat flux. Sample having a spacing 

of 800μm, dissipated the most heat due to high permeability and capillary pressure. Capillary 
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pressure is the driving force of fluid onto the micropillar array, therefore maximum pressure is 

desired.  

Thin film evaporation results were then compared to past work done, shown in Fig. 5-5. 

Experimental results were plotted as a function of width-to-spacing ratio as previous work done 

by Solomon et al. and Farokhnia et al. had smaller scale micropillar arrays compared to this work. 

The plot shows that the manufactured test samples presented in this work can dissipate higher heat 

fluxes with larger scale micropillars with small width-to-spacing ratios.  

 

 

Figure 5-5: Experimental results compared to work done by Solomon et al. and Farokhnia et al. 

 

Future work for this thin film evaporation test facility includes improving the thermal 

contact between for the use of titanium samples. This will result in better thermal performance and 
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the test sample will be able to dissipate higher heat fluxes. Although titanium has relatively low 

thermal conductivity and is hard to machine, it provides a great solution for high temperature 

applications due to its high compressive and tensile stress, fracture toughness oxidation resistance 

and high strength-to-weight ratio (Yuan et al. 2021).  
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Chapter 6: Conclusion 
 

Conventionally manufactured copper surfaces with known micropillar dimensions were 

tested to determine their heat transfer capabilities. SEM images of the test surfaces showed the 

actual dimensions of these surfaces which were used to theoretically predict the dry-out heat flux 

for each surface. The theoretical model was adapted from Solomon et al. (2016) which accounts 

for micropillar dimensions, intrinsic contact angle, and fluid properties. Solid to fluid interactions 

are the driving force for constant heat dissipation of these surface, therefore it is crucial to 

understand the relation these parameters have on the capillary limited dry-out heat flux. The lower 

the intrinsic contact angle, the less the value for the expected heat flux is as capillary pressure is 

dependent on the contact angle which is the driving force of the fluid onto the wicking surface. 

Experimental results showed good correlation with the expected theoretical values for known 

micropillar spacings. Manufactured sample with the smallest wall-to-wall spacing between 

micropillars dissipated 64.17 W/cm2, the least of all test surfaces, while the sample with 800 μm 

spacing was able to remove the most heat from all samples, a dry-out heat flux of 92.2 W/cm2. 

Experimental results were compared with previous studies done on smaller scale manufactured 

surfaces. The width-to-spacing ratio was considered due to this work exploring larger scale 

microstructures. Results obtained in this work show higher critical heat fluxes at a lower width-to-

spacing ratios proving effective heat transfer at larger scale microstructures.  
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