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Abstract 

Prototyping systems with interconnected components can be a time and resource expensive 

process. The process consists of three main phases (design, build and analysis) with each having 

their own associated cost. For the case of electronic circuits, the building phase is the costliest 

phase among the three, being prone to human errors which causes the circuit to fail. All three 

phases of the prototyping process are important. However, often a disproportionate amount of time 

is spent on the build phase due to the difficulty of making and troubleshooting circuits by hand. In 

this thesis we will discuss a system that delivers students a fast and reliable method to prototype 

real electronic circuits in a personal laboratory. This system uses a modular hardware architecture 

that can interconnect electronic components automatically using a developed software. The circuit 

building system demonstrated that the building phase of a circuit took 17% of the total time spent 

on the entire prototyping process of such circuit. The automation of the building phase allows users 

to balance their time between the different phases of prototyping including design, build, and 

analysis. 
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1. Introduction and Background 

Prototyping systems that are made of interconnected components is a complex process that 

can be time and resource consuming. The process consists of three distinct phases as shown in 

Figure 1. Each of the three phases (design, build, and analysis) have their own associated costs. 

For the case of electronic circuits, the build phase is usually the most time and resource consuming 

due to the manual aspect of making circuits. This phase is prone to human error which can cause 

the prototype circuit to fail. Addressing these mistakes is often a challenge that is proportional to 

the complexity of the circuit. As the size of the circuit increases, the difficulty in finding and 

correcting errors also increases.  

 

Figure 1 Prototyping process and how will the possible solution to reduce the cost of the build phase 

Learning how to prototype electronic circuits is an important learning objective in electrical 

engineering academic programs. All three phases of the prototyping process are important. 

However, often a disproportionate amount of time is spent on the build phase due to the difficulty 

of making and troubleshooting circuits by hand. As a result, insufficient time is spent on circuit 

design and testing where much more knowledge can be gained about circuitry. 

The seminal dissertation by Atalbe  [1] analyzed student perspectives on virtual electronic 

laboratories and listed eleven key design guidelines for laboratories. The guidelines were based on 

the deployment of a simulation laboratory tool to gain insight into key features for diverse types 

of virtual laboratories. The guidelines are listed below: [1] 
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1. “Enable sharing of knowledge and real-time feedback” 

2. “Enable options for individualized learning and group scheduling” 

3. “Provide consistent and useful responses to errors” 

4. “Provide access to tutors, preferably in real-time" 

5. “Provide additional online help, in the form of tutorials and/or videos” 

6. “Provide realism in the system” 

7. “Ensure that the virtual laboratory supports learning in the physical laboratory”  

8. “Involve students in the design from the beginning” 

9. “Explicitly consider the desired learning objectives in the virtual laboratory design”  

10. “Provide a user-interface that is intuitive, simple and easy to use, as well as easy to 

learn” 

11. “Provide for speed and reliability of the system” 

1.1 Available Systems 

A brief survey is presented of physical electronic laboratory systems that are readily 

available. A common aspect of the systems is that they facilitate the building phase process by 

automating the wiring of a circuit or having a pre-built circuit with adjustable parameters. 

1.1.1 Virtual Instrument System in Reality (VISIR) 

VISIR is a remote system developed by the Blekinge technology institute in Sweden [2]. 

The system’s architecture allows users to reconfigure, build, and test physical circuits remotely. 

One deployment of the VISIR lab is at Universidad Estatal a Distancia in Costa Rica [3]. VISIR 

offers its users the ability to remotely connect to a central board shown in Figure 2(a) to start 

prototyping “basic analog experiments”. Users design and test circuits through a graphical 

interface shown in Figure 2(b). A strength of the system is that real circuits are automatically built 
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and tested. However, the system can support only a limited number of users at a time. If the system 

is saturated, users will need to wait until the system is available. Although this system is a great 

approach to automate the building phase of a circuit, another limitation is that the centralized 

component tower has a fixed set of hardware components that users cannot easily configure to 

their needs. 

 

Figure 2 (a) VISIR central system. (b) VISIR user interface [3] This system is a great approach to automate the building phase of 

a circuit although their centralized component tower has a fix set of components and user cannot adjust the hardware 

configuration to their needs. 

1.1.2 Analog Electronics Lab (AELabs) for NI Elvis 

The Analog Electronics Lab developed by Quanser is another prototyping system that 

allows a fast connection between modules [4]. This system provides a set of cards with already 

built-in circuits which can connect one to another using a central board called “interface board” as 

shown in Figure 3. The system allows users to control the value of component parameters such as 

resistance, capacitance, and inductance using a graphical interface in a computer system. The 

system also provides several holes for probing different points of the circuit with measuring 
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instruments to study its response to changes. This system is a great option to prove basic concepts 

for analog circuits. However, it severely limits the degree of freedom from users to design their 

own circuits. User can only use the built-in circuits and cannot design their own circuit topologies. 

 

Figure 3 Analog Electronics Lab (AELabs) for NI Elvis [4] This system is a great option to prove basic concepts for analog 

circuits although it leaves a tiny degree of freedom to the user meaning that user cannot design their own prototype or circuit 

configuration to study. 

1.2 Contribution of This Thesis 

This thesis focused on a software development and describes the algorithms to drive a 

modular hardware system following a procedure I composed to describe and track the hardware 

configuration. The motivation of combining hardware and software is to create a personal and 

reconfigurable electronic laboratory [5] using Altalbe design guidelines [1] to achieve key features 

in a real prototyping laboratory. This thesis describes the development of a major process needed 

to convert a SPICE netlist into a real circuit.  
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2. Overall System Approach 

2.1 Netlist Representation of a Circuit 

A typical way to represent a circuit is through a schematic diagram as shown in Figure 4(a) 

and many software circuit simulators use the schematic representation to visually show the details 

of a circuit. However, internally a computer uses a file called a “netlist” to specify the details of a 

circuit as shown in Figure 4(b). The netlist is a standard text representation of a circuit that a 

compiler can parse and translate all information into a series of 0’s and 1’s so a computer can 

process any required calculation. For example, the netlist shown in Figure 4(b) contains all 

necessary information regarding how to build the respective circuit shown in Figure 4(a). Each 

component of a circuit is divided into blocks and each block stores all the respective information 

about the component. The amount of information stored varies depending on the component 

category. In this thesis we divide components into three main categories: “generic”, “specific”, 

and “net element”. We will discuss in more depth the component categorization and classification 

in later chapters of this thesis. 

 

Figure 4. (a) Circuit schematic showing each component pin number and its respective (b) netlist specification. 
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2.2  Matrix Representation of a Circuit 

An electrical circuit can also be represented as a matrix as shown in Figure 5, where the 

“o’s” in the matrix cells represent electrical connections between the components of circuit. The 

“x’s” represents self-connections. This type of representation facilitates arbitrarily manipulating 

the connections between components with a digital computer. For example, the interconnection 

between the components can be easily manipulated by changing the “o’s” within the matrix as 

shown in Figure 5(b). This type of matrix representation emphasizes how components terminals 

connect one to another by having an identical set of components in both the rows and columns of 

the matrix and deemphasizes the nodes of the circuit. In this matrix, a connection between two 

terminals is expressed with an ‘o’ in the matrix cell that is common to both terminals. Notice that 

there is no need to represent any connection in the diagonal of the matrix since by definition “every 

terminal is connected to itself”  [6]. Since the same components are used in rows and columns, the 

connections are symmetric above and below the major diagonal. This type of circuit matrix 

representation is called a component-to-component relation. 

  

Figure 5 (a) High-pass filter circuit schematic. (b) Component-to-component relation matrix representation of circuit A 
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Another method for specifying a set of connections in a circuit is a component terminal-

to-net relation as shown in Figure 6. In this matrix representation, the columns of the matrix 

represent a set of nets while components terminals are represented by the rows. In this case, every 

‘o’ represents a component terminal connection to a net.  Therefore, having two or more 

component terminals connected to the same net is equivalent to having them connected to each 

other. This allows us to quickly map any circuit schematic into a matrix. 

  

Figure 6 (a) High-pass filter circuit schematic. (b) Component terminal-to-net relation matrix representing circuit A. 

 

2.3 Implementation of Matrix via Cross-point Analog Switch Array 

One of the advantages of the component terminal-to-net matrix shown in Figure 6 is that it 

can be easily implemented with hardware using a cross-point analog switch array as shown in 

Figure 7. A cross-point analog switch array is a programmable analog array that has a set of vertical 

and horizontal lines (or wires) that can be arbitrarily interconnected. If components are physically 

connected to the horizontal lines and the vertical lines are interpreted as nets as shown in Figure 

7, then the components can be interconnected to physically implement a circuit. For example, the 

RC circuit shown in Figure 6 (a) can be physically produced by interconnecting the cross-points 

in the analog array corresponding to the cells marked ‘o’ elements in Figure 6 (b). It is noted that 
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the use of analog arrays grants the system the ability to create any desired connection and can 

therefore produce many different circuit configurations. 

However, to automate the build process of a circuit so that the interconnections are 

achieved without human interaction, software and a microcontroller also are needed. Software is 

needed to translate a circuit design into a set of addresses on the cross-point analog switch array. 

A microcontroller is needed to program the cross-point analog switch array with the appropriate 

input/output signals and the addresses created by the software. Together, the cross-point analog 

switch array with the software and microcontroller comprises a circuit building system. 

 

Figure 7 Cross-point analog switch capable of interconnecting components 

 

2.4 Modularization of Circuit Building System 

The circuit-building matrix shown in Figure 6 has several drawbacks. One is that the class 

of circuits that can be built is limited to the components that are hardwired to the cross-point analog 

switch array. Another is that the number of components is constraint to the number of ports 
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available on the cross-point analog switch array. This section describes how these limitations can 

be overcome by modularizing the circuit building system.  

The main idea of modularizing the hardware is to divide it into three major modules that can 

be connected as shown in Figure 8. One module contains solely the components and is called the 

“component card”. Another module is composed of the cross-point analog switch array and is 

called the “port board”. The third module is a microcontroller. As shown in Figure 8, each of the 

modules are detachable. To make a circuit, the microcontroller programs the port board to make 

the required component interconnections for the circuit. 

Software is needed to send instructions to the microcontroller and is the focus for this thesis. 

The software combines information about the hardware and circuit and sends instructions to the 

microcontroller. The software will be described in detail in the chapters below. 

 

 

Figure 8 Collection of modules comprehending a section of a modular hardware architecture for an Automated Circuit Build 

System 

 One benefit of this modular architecture is that it allows components to be interchanged 

simply by exchanging a component card with another set of components. Another benefit is that it 

allows the number of components and size of the cross-point analog switch array (number of port 
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boards) to be expanded as shown in Figure 9. Overall, the benefits of this modular architecture 

allow for a wider variety and higher complexity of circuits to be built. Reed’s Law can be used to 

estimate the number of ways in which a set of components can be interconnected [7]. In a system 

with forty, 2-terminal elements, there are 240 = one trillion configurations possible! In general 

Reed’s Law states that the number of configurations is given by 

Equation 1 Reed's Law 

c = ny  

where c is the number of configurations, n is the number of terminals of the components, and y is 

the number of components. The variety increases hyper-exponentially due to the combinatorial 

manner in which the components can be interconnected. In conclusion, a modular architecture 

allows the hardware to be easily changed or expanded according to user needs. The role of each 

module is described in more detail in the following sections. 
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Figure 9 Automated circuit build system hardware architecthre 
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2.4.1 Component Card 

A component card contains a set of components that can be used to physically implement 

a wide variety of circuits. A component card can be thought of as a “bag of components” that can 

be used to make a variety of circuits. Although the variety of circuits that can be made is 

constrained by the set of components, the variety can be easily changed or expanded since the 

component cards are detachable. In other words, the set of components can be easily exchanged 

and/or expanded by connecting a component card with different set of components and/or 

connecting more cards. This allows different and more complex circuits to be built. 

The components are physically connected to a multi-pin connector but not to each other as 

shown in Figure 10. The terminals of each component are connected to unique pins on the 

connector. In turn, the pins of the connector correspond to the horizontal lines or “ports” on the 

port board. In this way the components are made available for interconnection using the port board. 

The multi-pin connector may also be made available to connect electrical instruments such 

as power sources and meters. A connector can be placed and routed to the multi-pin connector 

depending on the type of electrical element that is going to be placed in the component card. 

 
Figure 10 Component card routing concept 
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2.4.2 Port Board 

A port board is a cross-point analog switch array that is used to interconnect components 

on component cards. The port board is a central board of the modular circuit building system and 

in cooperation with a microcontroller and component cards is used to make the interconnections 

needed to create physical circuits as shown in Figure 9. Essentially, the port board has three roles. 

One role is to provide ports so that components can be connected. The second role is to provide 

electrical lines that can be used as nets for a circuit. The third role is to interconnect the components 

as needed to make a circuit based on instructions from a microcontroller.  

Two advantages of the modular architecture of the circuit building system shown in Figure 

9 are that its configuration can be easily changed and expanded. For example, the system can be 

expanded by connecting two or more port boards together and connecting different component 

cards to each port board. This gives a circuit designer flexibility to work on a wide variety of 

circuits. However, the physical configuration of the system including the number of ports, the list 

of components and their location on each port board must be precisely accounted for. Figure 11 

shows how the number of ports doubles when two port boards with each 64 ports and 16 lines are 

connected to make a larger system with 128 ports and 16 lines. In the larger system, different 

component cards can be attached to each port board. All these configuration changes must be 

precisely described and recorded. This is accomplished through software with the help of a file 

called “Portlist” and is discussed in section 2.5 and Chapter 3. 

The port board distributes power among the cross-point analog switches that comes from 

any external source such as a microcontroller unit or any other power source. The power lines are 

also distributed among the any other port boards connected together. 
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Each port board contains a set of switches to assign the port board a unique position in the 

system. The port board can select among 4 distinct positions using two, two-state switches working 

as binary selectors to denote their position. For example, 00 in these switches will mark the first 

position or that the port board is the first port board in the system and a 11 will mark the last 

position as shown in Table 1. 

Table 1 Board selection truth table 

Switch 1 Switch 2 Board 

0 0 Board 1 

0 1 Board 2 

1 0 Board 3 

1 1 Board 4 

 

 

 
Figure 11 . (a) System using only one port board having 64 ports. (a) System using two port boards having 128 ports. 

2.4.3 Role of Microcontroller Unit 

The role of the microcontroller unit is to program the cross-point analog switch arrays 

contained in the port boards. The microcontroller receives instructions from a software program 
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that contains information about which analog switches needed to be turned on and details about 

the timing sequence to execute the programming. To accomplish the programming, an addressing 

scheme is used to identify each of the cross-point switches within the whole circuit building 

system. The addressing scheme used in this work consists of a 12-bit address stream as shown in 

Table 2. The address is used to target a port and line corresponding to a cross-point. A total of 8 

bits are used to address each port on the circuit building system. Two of the eight bits are used to 

select a port board. The remaining six bits are used to address ports on each port board. This gives 

a total of 256 physical ports available for components. The system has 16 physical lines that are 

addressed using 4 bits. The microcontroller receives a stream of 12-bit addresses from software 

and uses it to turn on all the cross-point switches needed to make a desired circuit. 

Table 2. 12-bit address stream 

4-bits Lines 
2-bits Board 

select 
6-bits Ports 

CS2 AY2 AY1 AY0 BE1 BE0 CS1 CS0 AX3 AX2 AX1 AX0 
 

2.5 Role of Software 

The overall role of the software is to combine information about the hardware and circuit 

design and create instructions for the microcontroller to make the circuit physically as shown in 

Figure 12. In other words, the task of software is to create a “mapping” from a circuit schematic 

to a set of addresses for the analog-switches needed to make the circuit. However, to accomplish 

this task several subtasks need to be performed.  

First, the software needs to recognize the components present in the component cards and 

all their corresponding ports on the port board. The software must recognize the physical 

configuration of the hardware. This is done through a file called the “Portlist” which is shown in 
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Figure 12. The Portlist’s key role is to list and specify the components present on each component 

card with their respective port numbers. In other words, the Portlist specifies what components are 

physically present on the component cards and at which ports they are located. As the name 

implies, the Portlist acts similar to a netlist because it contains a list components. The difference 

is that the Portlist specifies the ports, in contrast to nets, to which the components are connected. 

The Portlist can be thought of as a generalized description of the hardware. In this subtask, the 

software enters information from the Portlist into a relational database file that is used in other 

subtasks. The relational database is shown in Figure 12. 

The second subtask is to determine whether the creation of a circuit is physically viable for 

a given Portlist and netlist. A relation between the Portlist and netlist is performed to determine; 

(1) what is needed, (2) is it available, (3) where it is located and (4) where it will be connected. 

This relation is performed using logic control and stored in the relational database. This is the first 

stage of viability; knowing if the circuit can be physically built. 

The third subtask is to perform a design rule check to protect the system from damage. The 

purpose of the rules is to avoid physical damage to the hardware. The output of this rule check is 

either a pass or fail. The software will determine how many and which design rule checks are 

performed depending on the type of components required by the netlist. The tests are performed 

using conditional statements; for example, if a power line is directly connected to a ground line 

the test will raise a “fail” flag marking the circuit as an invalid circuit to build. Similar to the 

previous subtasks, the output from the test is written to the relational database.  This is the second 

stage of viability; knowing if the circuit is safe to build. 

Finally, once it is determined that it is possible to build a circuit in a safe manner, a 

translation is performed from the netlist required components, connections, and locations to an 
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address stream in accordance with the address programing scheme of the hardware. Address 

streams are arranged as a set with a specific order and timing to ensure that each cross-point analog 

array switch is targeted properly, and the circuit is guaranteed to be built. 

Throughout the entire process, information is written into and read from the relational 

database with all the necessary information. This makes accessing information fast and easy at any 

stage of the process. This information is crucial since all component port locations, line 

connections, address streams, design rule check results and finally circuit-build viability are stored 

within this database. At the same time, this database facilitates the comparison process through 

different conditional logic control tests, reducing the number of instructions needed per stage. 

 

Figure 12 Overall role of the software 

3. Method to Describe and Track Hardware Configuration 

Because the circuit building system is modular in the sense that it can be easily changed 

and expanded, a method is needed to conveniently describe and keep track of the hardware 

configuration. For example, if a component card is exchanged with another card that has a different 
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set of components, a method is needed to take this change into account. In general, a method is 

needed to describe the configuration of the hardware including the name, type, part number, value 

and corresponding port of each component attached to the port board(s).  

The method should allow the software to identify what is physically present and where it 

is located. It should also store or keep the configuration information within the software’s reach. 

There are two complementary methods to achieve this. One method is to use a (2 – 4 KB) variable 

that can be read anytime as required. However, a disadvantage is that all variables are deleted and 

“dumped” at the software’s end process i.e., when the main window of a program is closed. This 

causes the hardware configuration information to be lost and requires a time consuming “set up” 

process each time the program is started. 

An alternative solution is to use a file stored in nonvolatile memory that can be accessed 

to obtain the hardware configuration. This allows a single “configuration set up” if there are no 

changes in the hardware configuration. The downside to this method is that parsing through a file 

several times, even if it is a text file, can saturate the reader memory making the process slower 

with long periods of usage. Thus, a program reset may be required to free memory and start over. 

Table 3 lists the advantages and disadvantages of the two methods. The main advantage of a 

nonvolatile memory file is that the information can be stored and modified. On the other hand, the 

main advantage of a software variable is that the information can be accessed very quickly and 

modified on the fly.    

The approach taken in this work is to combine both methods to make use of their 

complementary advantages. Essentially this is accomplished by storing a description of the 

hardware configuration into a text file similar in format to a netlist. Then the information in the 

text file is read and translated into a software variable.  
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The sections below narrate how the text file is used to describe and keep track of the details 

of the hardware configuration. The information in the text file can be categorized into different 

levels. At the lowest level, a method to describe individual components is presented. This is 

followed by a method to describe component cards. The highest level is a method to describe the 

set of components in the whole system.  

Table 3 Comparison between two methods of storing hardware configuration information for software use. 

Software Variable Memory stored file 

Advantages Disadvantages Advantages Disadvantages 

 Fast memory 
accessing 

 Information 

can be 

modified on 

the fly 

 Volatile 
memory 

 Max allocated 

memory may 

saturate 

depending on 

information 

size  

 Non-volatile 
memory 

 File size can 

be as big as 

the free ROM 

memory 

 Higher CPU 
process 

required at 

long periods 

 File must be 

copied into 

local memory 

to be modified 

 

3.1 Description of Individual Components – Redefine Nets as Ports 

This section explains the method used to describe hardware at the individual component 

level. The method is similar to the format used in netlists. At the component level, a netlist uses 

blocks of text in a structured way to describe details about individual components and how they 

are interconnected to make a circuit as shown at the top of Figure 13. One aspect of the block 

describes the electronic characteristics of the component. Another aspect specifies the net that each 

terminal of a component is connected to. The method in this work is like the netlist but changes 

the meaning of net to port as shown at the bottom of Figure 13. In other words, by changing the 

significance of terminal-related elements for each component from net to port, a new information 

block is obtained that contains both the electronic characteristics of each component and the ports 

that its terminals are connected to as shown in Figure 13. Unlike nets, ports can be used only once. 
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Although this change in meaning appears minor, it is a key aspect to modularizing the circuit 

builder. For example, this arrangement can be used to produce a file that will serve as a resource 

file to identify the electronic components and their port locations on a respective component card. 

 

Figure 13. Changing the meaning of the terminal-related elements from net to port. 

 

3.2  Component Card Resource File 

A feature of the circuit building system is the ability to easily interchange component cards. 

However, for the circuit building system to operate correctly it is important to ensure that the 

information in the software matches the configuration of the physical resources. Changes in the 

hardware must be accurately tracked in the software. This requires a validation step to ensure that 

the information in the software matches the hardware configuration. At the component card level 

if the components are fixed or hardwired, a read-only resource file can be used to describe all the 

components on the card as shown in Figure 14.  The resource file can be in the form of a text file 

in a ROM chip on the component card. This will ensure that the correct resource file is associated 

with each component card. 
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Figure 14 Component card type and corresponding resource file. 

3.3 Portlist 

When component cards are exchanged or multiple component cards are used in a circuit 

building system, a method is required to keep track of all components and their unique port 

locations connected to the system via the component cards. This is achieved using a non-volatile 

information file called the “Portlist” which contains information about the type, name, terminal 

port locations, value parameter, and part number of all components. The Portlist is a hardware 

description of the circuit building system. It is important that the information in the Portlist be 

validated to ensure it matches the physical configuration of the system. An advantage of using a 

Portlist is that it be saved as a text file and reused without having to create it or validate it each 

time. However, if there is a physical change in the hardware (meaning a component card is replaced 

with a different component card) a new configuration/validation process is required to ensure a 

match between the Portlist information and the new hardware configuration. 

When configuring a circuit building system it is possible to use the same type of component 

card multiple times as shown in Figure 15. This means that identical sets of components will be 

connected to the system via the port boards. However, each component is still required to be 
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connected to unique ports and therefore assigned unique ports in the Portlist. The scheme to 

accomplish this is described next. 

Each component card allocates a total of 64 ports for component terminals which are 

connected to a port board. Two port boards connected one to another may accept two component 

cards of the same type. This means that in software to recognize these two component cards the 

same resource file is used, but to properly adapt the port routing to the corresponding port board 

we use  

Equation 2 Port board-port number equation 

𝑃𝐵𝑁 = ((𝑃𝐵 − 1) ∗ 64) + 𝐶𝐶𝑃 

were “PBN” indicates the port number of each port board; “PB” represents the port board number 

and “CCP” the component card port number. We can observe in Figure 15 how resistor “R1” 

terminals belong to port 0 and port 1 inside two component cards but, when a component card is 

connected to port board 2 the resistor “R1” terminals port numbers turn to be the port 64 and 65. 

This differentiation helps when building the Portlist file to remark which component cards belong 

to which port board and route their corresponding port number in accordance with the port board 

they are attached to. Once this distinction is made, we can append all resource files for all required 

component cards to create a Portlist. 
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Figure 15 Component Card port numbering vs Port board port numbering 

Opposite to a net, which are repeating elements, ports are unique elements. Therefore, each 

terminal related element in a Portlist must not be repeated through the entire Portlist as we can 

observe in Figure 16. 

 

Figure 16 Section of a Portlist denoting port location for Figure 15 
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4. Component Database 

The Portlist file is a convenient method to describe and store the hardware configuration 

and track changes. However, the Portlist is an unarranged information file that uses information 

blocks that are simply a string of characters. To make the best use of the information in the Portlist, 

the software rearranges and divides each information block into its essential information elements, 

creates a structured variable called “database”, and then inputs the element information into the 

database. A graphical representation of the structured variable is shown in  Figure 17. The single 

variable is structured into three levels of information denoted: (1) component, (2) component 

parameters and (3) safety parameters. Essentially these levels provide information about the 

number of components and their electronic characteristics, their location within the system, how 

they are to be interconnected, and whether it is safe to interconnect them.  These information levels 

can be used to manipulate the arrangement of the database and thus reduce the search space, as 

well as log (write) required information such as what component is being assigned and in which 

port. 

The component information level is the highest level of interaction between the software 

logic and the Portlist stored data. The number of components contained in the Portlist determines 

the size of the database since each vertical structure (Comp x) in Figure 17 corresponds to each 

component. The structures (Comp x) are created in the same order as the components are listed in 

the Portlist. This level of information is particularly useful to move an entire component 

informational set. However, the information extracted from this level is poor to determine which 

component is being selected. This is where the second level of information is highly useful. 

The second level of interaction is the component parameters information level. At this 

level, the system can retrieve specific information from each component including ID, type, name, 
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value, part number, and usage as shown on the left side of each vertical branch in Figure 17. This 

information allows the system to obtain identification characteristics of each component. In 

contrast the right side of each vertical branch provides 64 port parameters to store the port location 

of each terminal of a component. It is important to note that the port parameters have their own 

subset (3rd level) of information.  

 The decision to provide 64 parameters was due to the specific size of the hardware created 

for this thesis since each port board and component card has 64 ports. Null statements (instead of 

port numbers) are placed in excess parameters when components have less than 64 terminals. The 

null statements are useful because they signal a port searching process to stop as soon as a null 

port parameter is reached. 

The third information level is a port parameter subset that stores to which line (or net) that 

port should be connected and if such connection is safe for the hardware to create. Essentially this 

level provides information of how the components will be interconnected to make a circuit. In 

addition, it provides information regarding any potential electrical damage that may occur if such 

a circuit is built. This level of information is only accessed during a design rule check and 

information is not written until the component is marked as used by the software. 
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Figure 17 Component database structure 

4.1 Portlist-to-Database Data Transfer Process 

The algorithm used to fill the contents of the database is shown in Figure 18. Information 

in the Portlist is structured such that each line of text represents a component. When the database 

is created, its size or number of “Comp” structures (Figure 17) is set to the number of lines or 

components found in the Portlist. Moreover, each line is delimited by the “enter” character and 
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this allows the software to recognize each line of the Portlist divide it into component information 

blocks.  

Taking each line of text or component at a time, the software transfers the Portlist data in 

the database. The first step is to create a null data set to override any information the data set may 

have in the case of a previous existence of another database. This is similar to a clear or reset 

function. The next step is to split the component information block into its elemental or second 

level of information that contains the type, name, ports, value and part number. The ID parameter 

is filled by assigning the same value as the initial position this component has in the database. 

Additionally, the usage parameter is initialized as “false” since no circuit has been created at this 

point. Similarly, the third level of information is a subset added by software and initialized as null 

by the fact that no circuit has being created yet. Once each element from the component 

information block is written into its corresponding field in the database, the process repeats if there 

are any more components. 

Since the size of the database is based on the number of components present in the Portlist, 

it is guaranteed that no data set will remain null at the end of the database filling process. Therefore, 

when all data sets are full the software knows that no other component block exists within the 

Portlist and proceeds to save the database into ram memory. 
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Figure 18 Database filling algorithm 
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4.2 Database Special Conditions 

The database presents two special conditions that can occur and need to be taken into 

consideration for an identification process that will be explained in more detail in chapter 5.  

4.2.1 Tracking Order of Component Terminals 

For many components the function of each terminal is unique. This creates the need to 

track the location of individual terminals of each component. In a SPICE netlist this is 

accomplished using a standard order in which a component’s terminals are listed. For example, in 

a netlist for a diode the third element is always the anode, and the fourth element is the cathode.  

Figure 19 shows the netlist for the 1N4002G diode indicating that the third element is reserved for 

the anode and the fourth element is reserved for the cathode. Therefore, when storing this 

component in the software’s database it is important to maintain the position of each terminal. 

Also, the Portlist file needs to adhere to the SPICE netlist standard regarding the order of the 

terminals. For example, if the anode and cathode of a diode happen to be in port numbers 15 and 

14, respectively, then the values “15” and “14” should be stored in the component parameters “port 

1” and “port 2”, respectively, to preserve the diode terminal arrangement information. 

 

Figure 19 Diode 1N4002G Netlist information block. First terminal shown correspond to the Anode of the diode. Second 
terminal shown correspond to the Cathode of the diode. 

 

4.2.2 Case Sensitivity 

Another key factor to consider is that in a netlist file, component types are case-sensitive. 

An example netlist is shown in Figure 20 where a capital ‘X’ represents an oscilloscope instrument 
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and a lower case ‘x’ represents an Op-Amp. This distinction is crucial to identify components in 

future processes. 

 

Figure 20 Component type difference between an op-amp and an instrument 
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5. Netlist to Hardware Programming Code 

The pervious chapter delt with creating a database of physically available components in 

the circuit building system without considering how they are to be interconnected to make a circuit. 

In contrast, this chapter presents an algorithm to interconnect a set of components into a circuit 

using the information from a SPICE netlist and the database. It is useful to note here that the SPICE 

netlist has information about the circuit to be built. Whereas, the database has information about 

the components physically present in the circuit building system. The circuit building system 

combines these two pieces of information as shown in Figure 12 to make a circuit. 

In general the algorithm consists of first identifying the components listed in a netlist as 

shown in Figure 21. This is followed by a scan to ensure that the needed component and nets are 

physically available in the circuit building system. If availability of a component and required nets 

are confirmed, the component is reserved and its port connections to the circuit nets is encoded 

into the database. A circuit design rule check is then performed. Finally, if the circuit to be built 

passes the component and net availability, and design rule checks, a hardware binary address is 

created for all the interconnections needed to make the circuit. Otherwise the software will 

generate an error code and the process will be stopped. The sections below describe each of the 

major steps of the algorithm. 
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Figure 21 Automated circuit build algorithm 

5.1 Classification of Components on Netlist 

The first step of the algrorithm is to identify the characteristics of each of the components 

in the SPICE netlist and encode the information into a structured variable. The purpose of encoding 

the characteristics of individual components into a structured variable is to facilitate comparing 

with the database of the circuit building system.  

SPICE netlists contain critical as well as non-critical information that need to be separated. 

In this work, the SPICE netlists are condensed by removing non-critical content that do not give 

information regarding a component. This is achieved by analizing a SPICE netlist line-by-line and 

removing lines in which the first character is not a component type. Component types are identified 

with the following characters: “r, c, l, d, x, X, a, v,” and a special condition for power instruments 
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where the first three characters are identified as “VSS” or “VDD”. Figure 22 shows an example 

of how the SPICE netlist looks like after deleting all non-critical information. This condensed 

format of a SPICE netlist still contains all necessary information of the required components to 

build a circuit. After the condensing process, each line in the netlist corresponds to a single 

comopnent and the information is called a “component information block”. 

 

Figure 22 SPICE netlist cleared from non-critical information 

 

After the SPICE netlist has been condensed, the next step is split each component 

information block into “elements” that describe the characteristics and the terminal-to-net 

connections of the components as shown in Figure 23. Figure 23 shows a component block for a 

resistor broken down into information elements to identify such resistance. The elements are 

ordered from left to right and are delimited by a space character. The only exception is the first 

two elements “Component type”  and  “Component name” which are not delimited by any 

character. However, since the “Component type”  is a single character it can be easily identified 

as the first character of the entire line. 

 

Figure 23 SPICE Netlist component R1 information block representing R1 in Figure 22 and its corresponding elements 
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The elements are then stored in a structured variable called “ND” as shown in Figure 24, 

which is similar to the database structure (Figure 17) discussed in chapter 4. The differences 

between this new data and the database previously discussed are that the ND variable can only 

store one component at the time and the right side of the ND contains the nets that the terminals 

of the component are connected to instead of the ports. Moreover, the ND variable does not contain 

a third level of information. 

 

 

Figure 24 ND structure variable 
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After the ND variable is created, the next step of the identification process is to classify the 

component into one of the three categories as shown in Table 4. The classification is based on the 

component type. Classification is important because it will dictate the process used to search for 

components and confirm their existence on the circuit building system as described in the next 

section. 

Table 4 Components and elements classifications 

Component 

type 
Classification 

r 
Generic 

component 
l 

c 

d 

Specific 

component 

x 

X 

a 

v 

VSS 
Net element 

VDD 

 

5.2 Search for Existence of Components on Circuit Building System 

In general, the search for the existence of a required component on the circuit building 

system consists of comparing the ND variable with the database variable as shown in Figure 25. 

A match in the parameters indicates that the component required by the circuit is physically 

present on the circuit building system.  

During the search process, the database variable is arranged using a bubble sort algorithm  

[8]. For example, if the component type being searched in the database is ‘r’, the database is sorted 

in such a way that all components with ‘r’ as their type of parameter are the first elements in the 

database. This reduces the search space and thus avoids searching the entire database each time a 
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search process takes place. Other details of the search depend on the classification of the 

component. Once the classification of the component is determined the software executes one of 

three searches as listed in Table 5.  

Table 5 Search process based on the component classification 

Component 

classification 

Search process 

Generic Value based 

Specific Part number based 

Power Net element based 

 

5.2.1 Value Based Search 

Components that fall under the ‘generic’ classification have a parameter value that is either 

resistance, inductance, or capacitance. For this class of components, the software executes a 

research based on the component type and parameter value as emphasized in Figure 25 with the 

red (type) and green (value) traces.  

5.2.2 Part Number Based Search 

If the component falls into the ‘specific’ classification; a search based on the part number 

is performed. This is emphasized in Figure 25 with the red (type) and blue (part number) traces.  

5.2.3 Net Element Search 

If the component is classified as a ‘power element’, the software performs a net search 

process where the only requirement is to determine the parameter name of the power element. 

Since it is a difficult task to determine through software the amount of voltage or amperage that 

will be applied by the source, the software searches for a non-used line in the hardware and reserves 

it as a net for the power element. It also renames the line as the name obtained from the parameter 



37 

in ND variable. Currently, the software only handles DC sources as net elements. This means that 

other power sources such as AC wave generators are classified as specific components and are 

handled as components even if they are instruments. 

Regardless of the type of comparison performed the software always looks for exact 

coincidences although, some coincidences may be interpreted as exact depending on the parameter 

is being compared. For example, in the case where a generic component a value parameter of 

“2.2E3” is required but the database variable value parameter is “2200”, the system will try to 

parse the scientific notation and compare both values as integers and in the case of a match the 

existence of the component is validated. 

In the event that no component is not found in the database, the software terminates the 

“Netlist to hardware programming” process and prompts the user with a message regarding the 

error. However, future versions of the software could include a new process to search for “similar” 

components. 
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Figure 25 Physical validation comparing the ND variable and the DB variable. 
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5.3 Search for the Existence of Lines in Circuit Building System 

In the event of the database having an instance of a component that match the required 

searching criteria as described above, the software implements a validation to verify if the lines 

to where a component is to be connected exists. The process is a comparison between the 

required net and one of 16 possible cases, this 16 cases are accessed by the software depending 

on the name of the required net by the SPICE netlist ranging from the strings “0” to “15” as a 

SPICE netlist list its net names automatically. Users can rename the net name in the schematic 

capture software and thus confusing the software to not recognize a renamed net. Since the 

hardware has no expansion towards the lines the software does not adapt to the possibility of 

having more cases available to identify lines. 

A future process can be implemented in the software to adapt the possibility of having a 

SPICE netlist with personalized net names as well as a future implementation for line number 

adaptability. 

5.4 Availability and Selection of Components and Lines for Circuit 

A successful search for the existence of a component means that one or more instances of 

a component required by the circuit are physically present in the circuit building system. The next 

step is to determine whether any of the instances are available. The distinction between the 

existence and availability searches is that the former determines whether one or more instance of 

a component required by a circuit is/are physically present in the system and the latter determines 

whether at least one instance is available (or not) for use. The determination of availability consists 

of reading the contents of the usage parameter in the database as shown in Figure 26. If an instance 

of a component is available, the usage parameter will contain “false”: the algorithm will then 
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immediately select it and make it unavailable for any subsequent search by writing “true” into 

usage parameter of the database.  

On the other hand, if the content is “true” the component is not available. The usage 

parameter ensures that physical components are assigned to at most one instance in a circuit. In 

other words, it avoids selecting the same physical component two or more times. 

Once an available instance of a component is found, the next step is to determine whether 

enough lines and/or nets are available for each of the terminals of the component. If enough lines 

and/or nets are available, the net information from ND is written into the corresponding port 

parameter in the database as shown in Figure 26. Importantly, this is the key step in defining how 

the components will be interconnected with lines to make a circuit specified by a netlist. Once this 

step is accomplished for all the components on the netlist, how the physical components are 

interconnected with lines in the circuit building system to make a circuit is completely defined. At 

this point, the database contains all the information needed to make a circuit specified on a netlist. 

(As a reminder, lines are the vertical wires of the cross-point analog switch array. A used line 

becomes a net of a circuit.) 
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Figure 26 Assignation of nets to corresponding ports  

5.5 Circuit Design Rule Checks 

As a safety and system protection measure, circuit design rule checks can be performed 

before a circuit is built. After the interconnections of all the needed components have been defined 

as shown in Figure 26, the software performs conditional tests based on circuit design rules to 

determine if there are any connections that might create an electrical hazard or cause damage to 

the system. A list of design rule checks and their level of importance are shown in Table 6. 
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Table 6 Design rule checks based on the components used and their degree of importance 

Classification Components 
Rule checks 

performed 
Importance level 

NA Ground 
Floating ground Medium 

Ground to power High 

Generic Resistance 
Short circuit test High 

Floating test Low 

Generic Capacitors 
Short circuit test High 

Floating test Low 

Generic Inductors 
Short circuit test High 

Floating test Low 

Specific Op-Amp 

Ground to power High 

Output to ground High 

Inverted power 

supplies 
High 

Floating test Low 

Net Element 

Power supplies 

(Wave gen, DC 

power supply, etc.) 

Ground to power High 

Floating test Low 

Specific 
Multimeter 

(Readers) 
Short circuit test High 

 

Each rule check has its own importance level depending on the severity of consequence of 

a failed rule check. For low-level failed rule checks, the software will prompt users of a possible 

error made in the circuit design and proceed its program as normal. In the case of medium-level 

failed rule check, the software will warn the user regarding the error and stop its process, leaving 

files created incomplete. Finally, in the case of high-level failed rule check, the software will 

immediately terminate any process, warn the user of prevented damage and proceed to delete all 

files created during the process. 

The design rule checks are based on electrical circuit theory. For example, if a resistor has 

two of its terminals connected to net number 2, it is concluded that this component is shorted. In 

another example, if a power supply is connected to net 0 which is reserved for ground, a failure 

flag will rise indicating a ground to power fault. The software will then terminate the netlist-to-

hardware programming process and delete the resulting file from the process due to its high level 
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of importance. If no circuit design rule is violated, the software proceeds to the next step which is 

to create a set of binary addresses. 

5.6 Hardware Binary Address Streams 

In this final step, the system will produce a set of binary addresses corresponding to the 

port-line intersections the system needs to make the circuit. The addresses are used to program the 

cross-point analog switch array. Each address consists of two words: one corresponding to the port 

number and the other to the line number. In general, the addressing scheme is hardware 

independent and points to the intersections where ports and lines interconnect.   

The software generates addresses for each of the components that have a “true” in the usage 

parameter of the database. For example, Figure 27 shows a component with “true” in the usage 

parameter. This component is located at ports 20 and 21 and these two ports are to be connected 

to lines 0 and 1, respectively. The software will translate these numbers into their binary form as 

shown in Table 7 and Table 8. In this example, the binary word corresponding to the ports is 8-

bits long, and the word corresponding to the lines is 4-bits long. The set of 12-bit addresses are 

then sent to a microcontroller unit to program the cross-point analog switch array and create the 

required interconnections to make a circuit. 
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Figure 27 Required component for binary address stream 
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Table 7 Address stream for port parameter 1 shown in Figure 27 

4-bits Lines 8-bits Ports 

CS2 AY2 AY1 AY0 BE1 BE0 CS1 CS0 AX3 AX2 AX1 AX0 

0 0 0 0 0 0 0 1 0 1 0 0 
 

Table 8 Address stream for port parameter 2 shown in Figure 27 

4-bits Lines 8-bits Ports 

CS2 AY2 AY1 AY0 BE1 BE0 CS1 CS0 AX3 AX2 AX1 AX0 

0 0 0 1 0 0 0 1 0 1 0 1 
 

5.7 Machine Programing Code Synthesis 

Once all address streams are created for all the required components, a final product file 

called “the machine programming code” is created which can be loaded into a microcontroller 

unit. This part of the code is hardware dependent and the for the purpose of this thesis was created 

for the Digilent Analog Discovery II platform. However, further code can be added to the software 

to support other microcontrollers. As an example, for the Digilent platform, the file consists of a 

set of instructions for the microcontroller to drive its general-purpose input/output peripherals and 

a portion of the file is shown in Figure 28.  

In conclusion, the user can repeat the netlist to hardware programming code process with 

different SPCIE netlists allowing the user to create different machine programming codes thus 

creating several circuits in a matter of seconds. Like a netlist, a machine programming code can 

be stored in nonvolatile memory and used whenever needed without having to repeat the 

component identification, component availability, circuit design rule check, and address creation 

steps. 
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Figure 28 Portion of machine programing code file connecting one terminal 
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6. Hardware Programming 

It is typical that cross-point analog switch arrays are programmed using timed voltage 

signals. The programming specifications will depend on the specific cross-point analog switch 

array part numbers. However, the software’s source code is configured to allow an adaptation in 

the case of a different cross-point analog switch arrays are used. In this thesis, the Mitel MT8816 

cross-point analog switch arrays are used, and their programming method and timing will be used 

as an example to explain how the software can adapt to a different cross-point. 

6.1 Timed Signal 

The cross-point analog switch arrays require an address in combination with control 

signals to program a connection. In the case of the MT8816 the control signal are chip select 

(CS), data (DATA), strobe (STROBE), and reset (RESET). These control signals and their 

protocols are shown in Table 9the integrated circuit. This control memory signals are shown in 

Table 9 and Figure 29 [9]. 

Table 9 Control and I/O Timings [9] 

 



48 

 

Figure 29 Control memory timing diagram [9] 

The STROBE signal is the one in charge of pushing the selected address into the internal 

circuitry of the cross-point analog switch arrays. The CS, DATA and ADDRESS signals need to 

be stable for a minimum of 10 nanoseconds at the rise and fall of the STROBE signal. Additionally, 

for the STROBE signal to accomplish its duty, it must remain high for a minimum time of 20 

nanoseconds. Leaving the DATA signal on for the entire process, we can only focus on the three 

remaining signals CS, ADDRESS and STROBE. However, as mentioned in previous chapters the 

address scheme already includes the CS signal therefore, the address scheme is a combination of 

the CS and ADDRESS signals which leaves only the need of controlling the STROBE signal once 

the address scheme is loaded in the system. 

The time needed to connect a component terminal to a line can be estimated. Each address 

stream is a 12-bit signal and for the case of the Digilent microcontroller each bit represents an 

instruction in the hardware programming code. However, assuming ideal conditions where all the 

instructions are performed instantaneously, the programming duration will depend on the 

requirements for the strobe signal. In this case the following three timings will determine the 
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programming duration; (1) a wait time of 10 nanoseconds is needed once the address stream is 

loaded into the system, (2) the STROBE signal rises and stays high for 20 nanoseconds and then 

falls to low voltage afterwards, (3) subsequently, the address stream is cleared after another 10 

nanoseconds. In this estimate each component terminal can be connected in 40 nanoseconds as 

shown in Table 10. As mentioned in previous chapters an address stream is the equivalent of one 

component terminal, meaning that a component terminal is connected in 40 nanoseconds using 

this system as shown in Table 10. 

Table 10 Control timing assuming ideal conditions where the load and clear of the address stream occurs instantaneously. 

Step Signal Time Total time 

1 

Set up time Address 

Stream to STROBE 

(tAS) 

10 ns 10 ns 

2 
STROBE Rise and Fall 

(tS) 
20 ns 30 ns 

3 

Hold time Address 

Stream to STROBE 

(tAH) 

10 ns 40 ns 

 

In more realistic conditions, a microcontroller clock speed determines the time rate for each 

instruction. Assuming a clock speed of 1MHz, we can estimate each instruction is performed in 

one microsecond meaning that to initially load and clear the address stream a total of 12 

microseconds are needed. If this new timing required to load and clear the address stream is added 

to the time required to connect the cross-point analog switch array, 24.04 microseconds are 

required to connect one terminal. 

The key aspect of this timing signal is not the time the microcontroller takes to load and 

clear the address stream but the three timing steps that are required to “properly strobe” the address 

stream into the cross-point analog switch arrays. In Figure 30 we can observe a portion of the code 

that generates the hardware programming code which in its bottom portion we can see that there 



50 

are three dedicated lines with a “wait()” command which instruct the micro-controller to do 

nothing for the specified amount of time. To adapt the wait times for different cross-point analog 

switch array models, these three lines can be modified or replaced with a different wait method of 

choice.  

 

Figure 30 Hardware programming code portion to connect ground to node 0. 
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7. Results 

7.1 Software Interface 

A user interface as shown in Figure 31 was created to manipulate the software’s functions 

as described in previous chapters. The main window of the user interface is called “RCB” and 

contains two submenus called “File” and “Setup”. The “File” submenu has several buttons and 

text fields. The “OPEN” button will cause a file navigator window to open to search and select the 

desired SPICE netlist that will be converted into machine code as shown in  Figure 32. The text 

field called “Scrip Name” allows users to enter the name of the resulting machine programming 

code. The “Create Script” button that will start the SPICE netlist to machine programming code 

process. The text area supplies feedback to the user about any errors that occurred during the 

conversion process or warnings from the circuit design rule checks. The check box called “Include 

Clear Function?” is only for debugging purposes. Finally, the “Exit” button will end the program. 

 

Figure 31 Software’s main window 
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Figure 32 Software's file explorer 

The “Setup” submenu is used to input the configuration of the hardware into the software. 

This task needs to be performed every time the hardware configuration is changed. The “Setup” 

submenu will open a window as shown in Figure 33 where the user can select the number of boards 

in the system and their corresponding component cards. Inside each panel there is a drop box to 

select the component card resource file for each port board. The “Configure” button will cause the 

software to read the component card resource files and generate and store a Portlist for that specific 

configuration. The Portlist will be saved in the same directory as the main program application. 

 

Figure 33 Board Configuration window 
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7.2 Circuit Building System Evaluation 

Preliminary versions of the circuit building system were tested to evaluate how it would 

perform in practice. In this evaluation, two users collaborating remotely tested the system 

following the workflow diagram shown in Figure 34. The test procedure mimicked an educational 

laboratory exercise in which users collaborate with distinct roles to carry out a prototyping task. 

The task consisted of designing, building and testing an electronic filter using the system and 

recording the time spent on each prototyping phase. No other instructions were given regarding 

the type of filter. 

 

Figure 34 Prototype test workflow 
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The users opted to design a Twin-T notch filter as shown in Figure 35. During the design 

phase, user one recognized that not all the components physically present in the system matched 

the component values from the calculations. To account for the discrepancy, a combination of 

components was used to approximate the calculated values. This can be observed in Figure 35 

where some parts of the circuit have two components while others have only one like in the case 

of “C1”, “C2” and “C4”. 

 

Figure 35 Twin-T notch filter designed using NI Multisim software 

User-one then used the schematic capture software to produce a SPCIE netlist file and send 

it to user-two through email. Upon receiving the SPICE netlist file, user-two then used the software 

interface to create a set of instructions for the microcontroller. However, the circuit design rule 

checker was able to detect a mistake in the schematic of the circuit and prompted the user that 

resistor R4 had a terminal that was open. Resistor R4 appeared to be connected but there was no 

wire between R4 and R5 meaning that in fact the second terminal of R4 was open. User-one 

proceeded to revise the schematic design to fix the error as shown in Figure 36 and sent a new 

SPICE netlist to user-two. User-two then used the software to translate the SPICE netlist from the 

corrected circuit design without issues on the second attempt. The resulting machine programming 

code was then loaded into the Digilent microcontroller to build and analyze the circuit. 
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Figure 36 Circuit schematic correction 

Using an oscilloscope instrument, user-two performed two tests consisting of an AC sweep 

analysis and a network analysis. The AC sweep analysis showed that the amplitude of the output 

(blue line) was minimum at a frequency corresponding to 1.9 kHz as shown in Figure 37. In 

contrast, the amplitude input signal (yellow line) remained constant throughout the AC sweep. 

 

Figure 37 Twin-T notch filter AC sweep analysis 

A network analysis was also performed to further verify that the constructed circuit in the 

system was acting as a notch filter. The bode plot is shown in Figure 38 and shows the output of 

the circuit (blue line) dropped by 40 dB at approximately 1.9 kHz in good agreement with 

calculations of the notch filter. 
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Figure 38 Twin-T notch filter bode plot 

Figure 39 shows the timeline of the prototyping workflow to visualize the amount of time 

spent on each of the prototyping phases. User-one took around 35 minutes to design the twin-T 

notch filter. User-two needed approximately 10 minutes to build the circuit. Finally, user-two spent 

another 15 minutes analyzing the circuit behavior. The complete prototyping process lasted 60 

minutes as shown in Figure 39 showing that the building phase of the process used only 17% of 

the total time. 
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Figure 39 Prototyping workflow time chart 
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8. Conclusion 

A method and system were developed that automated the building of circuits in a time 

efficient manner. The automation of the building phase allows users to balance their time between 

the different phases of prototyping including design, build, and analysis. This will enrich their 

learning experience and enhance their knowledge gained. 

The modularity of the system formed by the port board, component card, microcontroller, 

and software offer users many options to expand and configure the system to their needs. For 

example, users can tailor the type and number of components they want to employ. Moreover, they 

can easily prototype circuits based on their own topological designs using any schematic capture 

software that produces a SPICE netlist. 

Overall, the circuit building system addressed many of the guidelines listed by Altalbe [1]. 

For example, the system supplied reliable and fast circuit building abilities using physical electrical 

components offering the user a real-time response of real physical circuits. Since the system uses 

schematic capture software, errors can be easily detected in the design phase. Moreover, the system 

also provides feedback prior to the building phase of various errors using the circuit design rule 

checks. Finally, the system is designed as a portable laboratory which provides users with the 

opportunity to enhance their individual learning. 

An evaluation of the system showed that it streamlined the prototyping workflow. Many 

important capabilities were demonstrated in the evaluation. For example, the system allowed users 

to remotely collaborate in real-time and balance their time to design, build and analyze a 

complicated real circuit. 
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