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Abstract 

The goal of this research was to address three key challenges in additive manufacturing 

(AM), the need for feedstock material, minimal end-use fabrication from lack of functionality in 

commercially available materials, and the need for qualification and property prediction in 

printed structures. The near ultraviolet-light assisted green reduction of graphene oxide through 

L-ascorbic acid was studied with to address the issue of low part strength in additively 

manufactured parts by providing a functional filler that can strengthen the polymer matrix. The 

synthesis of self-healing epoxy vitrimers was done to adapt high strength materials with 

recyclable properties for compatibility with AM technology. Lastly, machine vision and machine 

learning were used for the autonomous characterization of micro and macrostructure and 

performance prediction in syntactic foams and lattice structures. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

With the increasing demand for tailored made parts, additive manufacturing (AM) has 

quickly been gaining interest for materials processing. AM enables the freedom of geometrical 

design, customization with no added cost from traditional manufacturing methods, and 

fabrication of complex geometries by taking a computer designed structure and slicing it into 

individual layer that can then be deposited by a variety of methods[1]. The lower cost of 

manufacturing, rapid prototyping, fabrication of complex geometry and custom building has 

given AM technology a competitive edge over traditional methods in the manufacturing of 

materials. However, there are several challenges that need to be addressed for the technology to 

progress beyond its use as a rapid prototyping tool or simply an intermediary step[2]. These 

challenges include lack of feedstock material that is compatible with the technology, minimal 

end-use fabrication due to the lack of high strength or functional materials, and the need for 

qualification and property prediction. Through this dissertation, the issues in additive 

manufacturing are addressed with the use of functional fillers such as graphene, the adaptation of 

novel materials such as vitrimers for compatibility with the technology, and the qualification of 

AM fabricated parts through machine vision and machine learning. 

1.2 BACKGROUND 

1.2.1 Graphene 

One of the methods to mitigate the low part strength of printed polymers is through the 

use of functional filler such as graphene. Graphene has been a highly regarded material since 

2004 when co-workers Konstantin Novoselov and Andre Geim employed a simple mechanical a 

simple mechanical exfoliation technique to obtain single layered graphene[3]. Graphene’s high 
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modulus of elasticity[4], thermal conductivity[5], and electron mobility[6] have enabled its use 

in various applications including high-end composite materials[4,7,8],sensors[9–11], 

electronics[12,13], and energy storage devices[14–16]. Additionally, its optical 

transmittance[17,18] and high surface area[19] make graphene an ideal material for energy 

collection devices[20,21]. Several methods have been developed over the years to produce 

graphene including mechanical exfoliation[22–24], chemical vapor deposition[25–27], and liquid 

phase exfoliation[28–30]. When incorporated into a polymer matrix, graphene has the capability 

to improve the mechanical properties while adding electrical and thermal conductivity 

functionalities[31]. 

1.2.2 Covalent adaptive network polymers 

Polymers are generally divided into two categories, thermoplastics and thermosets, based 

on the bonds that form between the polymer chains[32]. Thermoplatics are formed by physical 

bonds that although weak, allow for reprocessibility and recyclability. Thermosets, on the other 

hand, have strong covalent bonds that give the polymer high strength, resistance to chemical 

solvents, and heat stability. In recent years, polymers with the strength of thermosets and 

reprocessability of thermoplastics, known as covalent adaptive networks (CANs), have been 

gaining increasing interest. CANs can be described as polymer networks with dynamic 

crosslinks that are capable of reconfiguring their network topology and reform broken bonds 

through intricate chemical processes[33]. Various CANs have been continuously adapted for 

their use in additive manufacturing (AM) to mitigate negative effects of the printing process[34] 

such as improving inter filament adhesion and therefore strength[35] or by allowing materials 

that would otherwise not be processable through AM to be compatible with the technology[36–

38]. 
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1.2.3 Machine learning/vision for advanced manufacturing 

The lack of qualification and property prediction of 3D printed parts is a challenge in AM 

which is being addressed through the use of machine learning. Machine learning is a series of 

procedures and algorithms that analyze data to recognize patterns, clusters, or trends for the 

extraction of useful information[39]. In AM, process parameters are obtained through loops of 

trial-and-error, a repetitive process which is largely dependent on the capabilities of an operator 

to recognize anomalies and make the corresponding adjustment[40]. However, these patterns can 

often be difficult to notice for which machine learning can easily draw inferences. Machine 

learning has been applied at various steps of the additive manufacturing process being used for 

design optimization prior to printing[41,42], quality assurance and defect detection in 

conjunction with machine vision during the printing process[43,44], and for performance 

prediction of the printed part after the process[45].   
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Chapter 2: Green reduction of graphene oxide through near-ultraviolet light and l-ascorbic 

acid 

2.1 INTRODUCTION 

Graphene has many desirable properties such as high modulus of elasticity[4], thermal 

conductivity[5], and electron mobility[6] that can be passed down to a polymer matrix when 

used as a nanofiller. Nevertheless, these production methods of graphene are associated with 

either high cost of production or low scalability which limit the use of graphene in commercial 

applications[46]. Consequently, one of the more well-studied methods of recent years has been 

the reduction of graphene oxide (GO) due to its scalability[24,47,48] and tunability[49,50].  GO 

is typically synthesized by oxidizing graphite using a strong acid mixture such as potassium 

chlorate (KClO3) with nitric acid (HNO3) as described by the Brodie and Staudenmaier 

methods[51], or by using potassium permanganate (KMnO4) with sulfuric acid (H2SO4) in the 

more commonly used Hummer’s method[52–54]. The produced multilayered GO is then 

subjected to liquid exfoliation by sonication in water or organic solvents to produce single-

layered GO[55]. In order to remove oxygen functionalities and obtain a product with comparable 

properties to graphene, GO is reduced by various means[56],  although primarily through a 

chemical reduction process[57,58].  

As an efficient chemical reductant, hydrazine has been the most widely used, but its 

toxicity and adverse effects on the environment[59,60] have prompted a search for green 

alternatives such as plant extracts[61–63], microorganisms[64–66], sugars[67], proteins[68,69], 

and organic acids[70]. While these alternatives are much safer for the environment, the quality of 

the reduced graphene oxide produced, as characterized by various chemical structural 

characterization methods, cannot yet reproduce the quality of reduced GO produced from using 

hydrazine[71]. However, few alternatives including l-ascorbic acid[72], glucose[73], starch-
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based materials[74], hydrogen rich water[75], ginseng[76], natural cellulose[77], backer’s 

yest[78], and gallic acid[79], amongst others[80–85], have shown reduction efficiencies 

comparable to hydrazine. 

Recently, L-ascorbic acid (L-AA), an organic acid, has demonstrated its potential to be a 

green, low cost, substitute to hydrazine due to its anti-oxidative properties and abundance. The 

reduction of GO through L-AA has been demonstrated to occur at room temperature[86]; 

however, conditions such as alkaline pH, high L-AA to GO ratio, and applied heating can 

increase the rate of reduction from 48 hours, to nearly under one hour. In addition, stirring and 

sonication have also been shown to affect the rate of reduction as well as the quality of the 

reduced product[87].  

Previous studies have shown that L-AA is highly photosensitive[88], and as such, 

relevant parameters such as radiation type, wavelength and power of light source could be used 

to directly affect the effectiveness of L-AA as a green reducing agent for graphene oxide.   In 

this study, the effects NUV light on the reductive behavior of green reductant L-AA in GO films 

are investigated. Our wide-angle x-ray scattering (WAXS) analysis after 48-hour exposure to L-

AA, shows that GO films exhibit variable degrees of reduction depending on the length of 

exposure to L-AA, as it is revealed by the detection of two distinct peaks, corresponding to the c-

lattice spacing of two distinct structural phases within the films. X-ray photoelectron 

spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy  were also used to 

further analyze the degree of reduction and provide evidence that chemical methods under 

external stimuli can prove to be effective at obtaining metastable reduced graphene oxide films, 

in comparison to previous reports[89]. Additionally, NUV-radiation was shown to assist in 

preventing the films from redispersing in the aqueous solution by making them hydrophobic in 

the surface. As a result, the films can be immersed in aqueous solutions for longer periods 

without the risk of resuspension. 

 



6 

2.2 EXPERIMENTAL DETAILS 

2.2.1 Materials 

Graphene oxide in a 5 mg/mL suspension was purchased from Goographene (Virginia, 

United States). L-ascorbic acid (99% purity) was obtained from Sigma Aldrich (Darmstadt, 

Germany).  Graphene oxide (GO) films were prepared by drop-casting 15 mL of GO solution 

onto a quartz glass substrate and dried overnight in air at room temperature. An aqueous solution 

composed of 5 g of L-ascorbic acid (L-AA) and 20 mL of deionized (DI) water, based on a 

previous report[90], was carefully pipetted onto the GO films and left soaking for different time 

periods. GO films in L-AA solution were irradiated by a 405 nm wavelength near ultraviolet 

(NUV) light using a FormCure from Formlabs (Massachusetts, United States) for different 

lengths, 1 hour, 2 hours, and 3 hours. After the L-AA solution and NUV light exposure, films 

were washed and neutralized with DI water to remove the L-AA from the films. GO films were 

then left to dry overnight in air at room temperature. 

 

2.2.2 Synthesis and fabrication 

The drop-casting method produced uniform graphene oxide (GO) films (Figure 2.2.2: 

Digital images of graphene oxide film (a) drop casted on quartz glass substrate and (b) film 

immediately after chemical reduction through L-AA.); however, due to the hydrophilic 

properties of GO, special care was given to the samples when immersed in L-AA solution and 

when washed to avoid agitation that would lead to the films breaking apart from resuspension or 

redispersion. NUV-irradiated films and films with longer (over four hours) L-AA exposure 

demonstrated higher integrity in the aqueous solution than the controlled GO films and films 

with one, two, and three hours of exposure to L-AA solution, which is an indication of higher 

degree of reduction considering the hydrophobic nature of reduced graphene[91,92].   
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Figure 2.2.2: Digital images of graphene oxide film (a) drop casted on quartz glass substrate and 

(b) film immediately after chemical reduction through L-AA. 

 

2.2.3 Material characterization 

The thickness and surface morphology of GO films were characterized through scanning 

electron microscopy (SEM) on a thermionic ISM-IT500 from JEOL (Massachusetts, United 

States) under high vacuum, 10.0 kV accelerating voltage using a secondary electron detector. 

The efficiency of NUW exposure in the removal of oxygen-containing groups was analyzed 

through Fourier transform infrared spectroscopy (FT-IR) using a Cary 630 FT-IR spectrometer 

from Agilent (California, United States). Wide-angle x-ray scattering (WAXS) measurements 

were carried out using a Xenoc Xeuss 2.0 HR SAXS/WAXS system (Sassenage, France) with a 

Cu source tuned to λ = 0.1542 nm. In WAXS, x-rays scattered as a function of the scattering 

angle 2θ with respect to the transmitted direct beam were collected on the detector. The 2-D data 

was azimuthally averaged and plotted as I(Q). Here, Q is given by equation 1, 

𝑄 =  
4𝜋 sin 𝜃

𝜆
                                                                                    (1) 

where θ is half the scattering angle and λ is the wavelength of the source beam. I(Q) was 

scaled to units of differential scattering cross section per unit volume (cm-1) using a glassy 
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carbon intensity calibration standard[93]. To ensure that samples produced isotropic scattering 

when hit by the x-ray beam, films were crushed into a fine powder and vacuum dried 

(Supplementary Section). Furthermore, the interlayer spacing, d, for the GO samples was 

calculated using Bragg’s law (equation 2[94],  

𝑑 =  
𝜆

2 sin 𝜃
                                                                                    (2) 

X-ray photoelectron spectroscopy (XPS) was performed on an AXIS ULTRA X-Ray 

Photoelectron Spectrometer from Kratos (Manchester, United Kingdom). In order to acquire 

representative data for the entire film, samples were ground up into a powder and multiple 

readings were taken from different locations. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Microstructure 

The thickness of the GO films were estimated from their cross-sectional view (Figure 

2.3.1: Scanning electron micrographs of graphene oxide films treated with l-ascorbic acid and 

near ultraviolet light displaying folds on the surface (A and B). Cross-sectional micrographs of 

the film reveal waviness in a stacked structure.A) at multiple locations through scanning electron 

microscopy (SEM). An average film thickness of 2.89 ± 0.14 μm was measured. This cross-

section of the GO films revealed a tightly packed, layered structure formed by graphene oxide 

laminates. Furthermore, small pockets can be observed in treated samples (Figure 2.3.1: 

Scanning electron micrographs of graphene oxide films treated with l-ascorbic acid and near 

ultraviolet light displaying folds on the surface (A and B). Cross-sectional micrographs of the 

film reveal waviness in a stacked structure.B) likely due to partial intercalation of water and L-

AA solution in the inner GO stackings without complete delamination. 
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Figure 2.3.1: Scanning electron micrographs of graphene oxide films treated with l-ascorbic acid 

and near ultraviolet light displaying folds on the surface (A and B). Cross-sectional 

micrographs of the film reveal waviness in a stacked structure. 

 

From the micrographs of the film’s surface (Figure 2.3.1: Scanning electron micrographs 

of graphene oxide films treated with l-ascorbic acid and near ultraviolet light displaying folds on 

the surface (A and B). Cross-sectional micrographs of the film reveal waviness in a stacked 

structure.C), wrinkles and folds averaging a width of 1.73 μm and varying lengths can be seen 

throughout the film. These wrinkles are caused by drying and are prominent in graphene oxide 

films after the evaporation of water from the drop-casting procedure [95–97]. 

 

2.3.2 Fourier transform infrared spectroscopy 

Graphene oxide peaks located at 1029 cm-1 (C-O stretching), 1262 cm-1 (C-OH 

bending), 1340 cm-1 (O-H bending), 1616 cm-1 (C=C stretching), 1728 cm-1 (C=O stretching), 

and 3116 cm-1 (O-H stretching) were observed (Figure 2.3.2: Fourier transform infrared 

spectrum for graphene oxide films comparing NUV-irradiated with unirradiated after one hour 

(A), two hours (B), three hours (C), and four hours (D) of exposure to l-ascorbic acid.). Samples 

soaked in L-AA solution for one hour (Figure 2.3.2: Fourier transform infrared spectrum for 

graphene oxide films comparing NUV-irradiated with unirradiated after one hour (A), two hours 

(B), three hours (C), and four hours (D) of exposure to l-ascorbic acid.A). did not show 
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significant differences between NUV-irradiated and unirradiated GO. The presence of the narrow 

band of OH vibration further suggest the presence of intercalated water in the films. Flattening of 

this band was observed to occur within two hours in irradiated samples (Figure 2.3.2: Fourier 

transform infrared spectrum for graphene oxide films comparing NUV-irradiated with 

unirradiated after one hour (A), two hours (B), three hours (C), and four hours (D) of exposure to 

l-ascorbic acid.B) while the same feature was not observed in unirradiated samples until three 

hours of soak time in L-AA (Figure 2.3.2: Fourier transform infrared spectrum for graphene 

oxide films comparing NUV-irradiated with unirradiated after one hour (A), two hours (B), three 

hours (C), and four hours (D) of exposure to l-ascorbic acid.C). After three hours of continuous 

NUV-radiation (Figure 2.3.2: Fourier transform infrared spectrum for graphene oxide films 

comparing NUV-irradiated with unirradiated after one hour (A), two hours (B), three hours (C), 

and four hours (D) of exposure to l-ascorbic acid.C), samples show a clear flattening of the peak 

corresponding to the C-OH bonds bending, which is an indication that reduction is taking place. 
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Figure 2.3.2: Fourier transform infrared spectrum for graphene oxide films comparing NUV-

irradiated with unirradiated after one hour (A), two hours (B), three hours (C), and 

four hours (D) of exposure to l-ascorbic acid. 

 

2.3.3 Wide-angle x-ray scattering 

WAXS was used to quantify the changes in interlayer spacing caused by the removal of 

oxygen functionalities in the GO films. The peak shift within the first three hours of reduction 

was compared between NUV-irradiated and unirradiated films (Figure 2.3.3.1: Wide angle x-ray 

scattering spectra of pulverized graphene oxide films with increasing exposure to l-ascorbic acid 

alone (A) and NIV radiation (B). Additionally, WAXS spectra of GO films irradiated after 48 

hours of exposure to L-AA solution compare (C) the two NUV radiation extremes (0 hours vs 3 

hours) and (D) different NUV radiation times.). A noticeable shift occurred within the first hour 
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regardless of radiation conditions, decreasing the spacing of 8.07 Å by 0.91 Å and 0.76 Å from 

NUW-radiation with L-AA solution and L-AA solution alone respectively. This large shift is 

caused by the repacking of the GO layers from the initial removal of oxygen containing groups 

due to the exposure to L-AA. The peak at 2θ angle 26.5° (d = 3.36 Å), is observed in all samples 

and is due to residual graphite from the commercial GO solution[98]. 

 

Figure 2.3.3.1: Wide angle x-ray scattering spectra of pulverized graphene oxide films with 

increasing exposure to l-ascorbic acid alone (A) and NIV radiation (B). 

Additionally, WAXS spectra of GO films irradiated after 48 hours of exposure to L-

AA solution compare (C) the two NUV radiation extremes (0 hours vs 3 hours) and 

(D) different NUV radiation times. 

After the first hour, differences in peak location, and therefore interlayer spacing, 

between NUV-irradiated and unirradiated samples became more prominent. While samples 

immersed in L-AA solution indicated a decrease in spacing by 0.14 Å between the second hour 

and 0.10 Å between the second and third hour, irradiated samples saw a more notable decrease in 
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spacing of 0.30 Å between the first and second hour and 0.10 Å between the second and third 

hour. This difference was attributed to NUW light assisting in further degrading the l-ascorbic 

acid ion, l-ascorbate, into dehydroascorbic acid at a faster rate (Figure 2.3.3.2: L-ascorbic acid 

degradation (sped up by NUV light) into l-dehydroascorbic acid yielding two H+ ions which act 

as antioxidants and react with hydroxyls and epoxies in the surface of graphene oxide.), and 

issue well studied in produce containing high concentrations of vitamin C with beneficial effects 

in the reduction of GO[86,99]. It was also noted that the decrease in spacing does not occur at a 

linear rate as demonstrated by both conditions. A greater decrease in the rate is seen in NUV-

irradiated samples potentially caused by the consumption of L-AA and decrease of oxygen 

containing groups. 

 

 
Figure 2.3.3.2: L-ascorbic acid degradation (sped up by NUV light) into l-dehydroascorbic acid 

yielding two H+ ions which act as antioxidants and react with hydroxyls and 

epoxies in the surface of graphene oxide. 

 

No significant reduction occurred past 25 hours in the segments of the GO film that were 

partially reduced. Films exposed to L-AA for longer periods, 24 hours to 48 hours, displayed 

relatively similar locations of peaks at 2θ angles near 15.6° (d = 5.68 Å) independent of radiation 

time as shown in Figure 2.3.3.1: Wide angle x-ray scattering spectra of pulverized graphene 

oxide films with increasing exposure to l-ascorbic acid alone (A) and NIV radiation (B). 

Additionally, WAXS spectra of GO films irradiated after 48 hours of exposure to L-AA solution 

compare (C) the two NUV radiation extremes (0 hours vs 3 hours) and (D) different NUV 

radiation times.. Moreover, a broad, intense peak appeared past the 20.0° (d = 4.44 Å), 

characteristic of partially reduced graphene oxide and near full reduction[100]. These peaks 
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confirm the reduction of graphene oxide is taking place to various degrees within the films, 

achieving results comparable to previous studies using hydrazine as a reductant[89]. In the 

previous study of hydrazine-reduced GO films, a bimodal distribution of unreduced and reduced 

GO film. 

In this study, all of the starting material was involved in the reduction process. One 

fraction of the material gave rise to a break diffraction peak (2θ = 15.6°-26.5°), indication of 

reduced graphene oxide and its corresponding distorted, non-crystalline stacking of graphene 

sheets; the other fraction of the material exhibited partial reduction with L-AA intercalation, but 

incomplete removal of resulting species from the interlayers (Figure 2.3.3.1: Wide angle x-ray 

scattering spectra of pulverized graphene oxide films with increasing exposure to l-ascorbic acid 

alone (A) and NIV radiation (B). Additionally, WAXS spectra of GO films irradiated after 48 

hours of exposure to L-AA solution compare (C) the two NUV radiation extremes (0 hours vs 3 

hours) and (D) different NUV radiation times.A & B). The broadness is further evidence to 

suggest the uniformity of the reduction method. 

 

Figure 2.3.3.3: X-ray scattering of graphene oxide as received, and graphene oxide and reduced 

graphene oxide, each vacuum dried for 15 hours at 120 °C. A) SAXS region 

showing vacuum dried samples exhibited excess scattering which corresponds to 

correlation lengths of 24 Å for dry GO and 30 Å for dried reduced GO. B) WAXS 

data showing low-angle diffraction peaks. The non-dry GO sample has the lowest Q 

value peak corresponding to the largest interplanar d-spacing.  

In conjunction to performing WAXS measurements on the GO films, small-angle x-ray 

scattering (SAXS) was performed (Figure 2.3.3.3: X-ray scattering of graphene oxide as 
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received, and graphene oxide and reduced graphene oxide, each vacuum dried for 15 hours at 

120 °C. A) SAXS region showing vacuum dried samples exhibited excess scattering which 

corresponds to correlation lengths of 24 Å for dry GO and 30 Å for dried reduced GO. B) 

WAXS data showing low-angle diffraction peaks. The non-dry GO sample has the lowest Q 

value peak corresponding to the largest interplanar d-spacing.). SAXS revealed that only surface 

scattering could be seen from the non-dried graphene oxide. This was indicated by the 

featureless constant slope of about 3.5 in the log-log representation of the SAXS data. However, 

the dried materials have a significant additional scattering which deviated the most from the non-

dried GO sample over a Q-range near Q=0.1 Å-1. Additionally, WAXS (Figure 2.3.3.3: X-ray 

scattering of graphene oxide as received, and graphene oxide and reduced graphene oxide, each 

vacuum dried for 15 hours at 120 °C. A) SAXS region showing vacuum dried samples exhibited 

excess scattering which corresponds to correlation lengths of 24 Å for dry GO and 30 Å for dried 

reduced GO. B) WAXS data showing low-angle diffraction peaks. The non-dry GO sample has 

the lowest Q value peak corresponding to the largest interplanar d-spacing.) also revealed that 

drying had a big impact in the low angle peak position, changing the d-spacing from 8.46 Å 

(with atmospheric H2O) to 6.62 Å dried under vacuum ay 120C for approximately 15 hours. Dry 

GO vs reduced GO showed a difference from 6.62 Å to 6.09 Å which led to the conclusion that 

drying conditions were reducing GO films as well, therefore a milder temperature (60C) was 

used to dry the films subsequently. 

 

2.3.4 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) was used to track the decrease in concentrations 

of oxidized C species (C-Ox) as a function of exposure time to NUV-radiation and l-ascorbic 

acid (L-AA). Initial GO films showed an O/C ratio of 0.29 which is much lower than GO 

synthesized through the modified Hummer Method (0.41)[101]. The lower O/C ratio could be 

due to the presence of graphite contaminants in the commercial GO solution used. This is further 
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supported by the WAXS results through the presence of the graphitic peak at 2θ = 26.5°, present 

in all samples regardless of NUV radiation or L-AA exposure. The effects of continuous NUV 

exposure were studied by comparing the C1s spectra (Figure 2.3.4.1: Comparative C1s XPS 

spectra stackings for unirradiated (A) and NUV-irradiated (B) graphene oxide films for the first 

three hours, after 24 hours (C) and after 48 hours of treatment with l-ascorbic acid solution.) and 

C-C bond concentration (Figure 2.3.4.1: Comparative C1s XPS spectra stackings for unirradiated 

(A) and NUV-irradiated (B) graphene oxide films for the first three hours, after 24 hours (C) and 

after 48 hours of treatment with l-ascorbic acid solution.) of irradiated films with non-irradiated 

films for the first three hours. In all three instances, irradiated films show a larger degree of 

reduction in comparison to the un-irradiated films as observed by the increase in intensity of the 

peak near a binding energy of 285 eV (C-C) and the decrease of the peak near a binding energy 

of 287 eV (O-C=O). Additionally, while irradiated samples displayed some reductive behavior 

having an increase in C-C bond concentrations, the opposite was observed in un-irradiated 

samples. A large variance in reduction of the film was noted in the data acquired for unirradiated 

samples increasing with every hour. 
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Figure 2.3.4.1: Comparative C1s XPS spectra stackings for unirradiated (A) and NUV-irradiated 

(B) graphene oxide films for the first three hours, after 24 hours (C) and after 48 

hours of treatment with l-ascorbic acid solution. 

 
Figure 2.3.4.2: Comparison of C-C bond concentration in NUV irradiated with unirradiated 

samples in the first three hours (A) and different LAA solution exposure times (B). 

 

2.3.5 Discussion 

The variation in the reduction of the graphene oxide films could be largely due to the 

intercalation of water and L-AA reduction byproducts in the GO stackings, a common problem 

with green reductants as illustrated in Figure 2.3.5.1: Schematic of GO films demonstrating the 
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effect that vacuum drying has on the casted films before and after reduction based on WAXS and 

XPS results.[100]. When drop-casted, the graphene oxide sheets tend self-align and stack neatly 

on top of one another forming a film with roughly one water molecule hydrogen bonded between 

the oxygen functional groups of two GO layers, as evident from the presence of the OH band in 

the FT-IR results. Upon vacuum drying, the film begins to repack as moisture between the stacks 

dissipates[102]. Due to the hydrophilic nature of GO, pockets with water molecules can form, as 

demonstrated by the WAXS results (Figure 2.3.3.3: X-ray scattering of graphene oxide as 

received, and graphene oxide and reduced graphene oxide, each vacuum dried for 15 hours at 

120 °C. A) SAXS region showing vacuum dried samples exhibited excess scattering which 

corresponds to correlation lengths of 24 Å for dry GO and 30 Å for dried reduced GO. B) 

WAXS data showing low-angle diffraction peaks. The non-dry GO sample has the lowest Q 

value peak corresponding to the largest interplanar d-spacing.). When immerse in L-AA solution, 

reduction begins on the surface of the film and slowly makes its way through paths created from 

spaces and cavities in the loosely stacked structures[102] entering tight areas of the inner layers 

of the film. Vacuum drying releases the moisture in the films but may leave adsorbed molecular 

water and L-AA residuals (gluronic and oxalic acids) which may from hydrogen bonds with 

residual oxygen functionalities[86] that could not be removed easily through washing. 
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Figure 2.3.5.1: Schematic of GO films demonstrating the effect that vacuum drying has on the 

casted films before and after reduction based on WAXS and XPS results. 

It is shown in literature that graphene oxide paper/films can rapidly desorb around 80% 

of the adsorbed moisture using wrinkle-like tunnels such as those shown in Figure 2.3.1: 

Scanning electron micrographs of graphene oxide films treated with l-ascorbic acid and near 

ultraviolet light displaying folds on the surface (A and B). Cross-sectional micrographs of the 

film reveal waviness in a stacked structure.[97]; however, other factors affect the moisture 

desorption of the reduced graphene oxide film. As Boukhalov et al. have demonstrated through 

simulation, the interlayer distance between graphene sheets plays a crucial role in the water 

permeation mechanism[103]. The decrease in interlayer distance from the reduction of the 

graphene oxide can make the membrane 100 times les permeable to water and create blockage 

when the interlayer spacing drops to around 4 Å,  as demonstrated experimentally by Nair et al 

[104]. While it is suggested that the formation of percolated capillaries from unoxidized or 

reduced regions assist the flow of water[103], the probability of lenticular pores forming between 

impermeable passages which would essentially seal the water in cannot be discarded. Due to the 

modest heat applied during the vacuum drying to limit influence on reduction, it is unlikely that 
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lenticular pores would be ruptured. In addition, intercalated water in the films can restrict the 

movement of other molecules. In this case gluronic and oxalic acids whose presence near the 

film’s surface can influence the XPS readings. Du to the impermeability to molecules other than 

water, chemical approaches are not suggested as appropriate methods to reduce graphene oxide 

stacked structures such as films, membranes, or papers. 

Most samples that have been irradiated demonstrate significantly less variance in the 

degree of reduction. This could be due to the NUV light penetrating past the surface layers. Since 

graphene oxide has relatively lower absorbance at the visible NUV light range (400-405 nm) 

than UW light. This means that NUV light can reach deeper into the film and partially reduce the 

graphene oxide in the center layers of the film up to a certain depth[105]. Go et al. [106] have 

shown through UV-Vis that UV light is capable of reducing graphene oxide at a similar rate as 

L-AA alone; however, these experiments were done using 252 nm UV-radiation which can lead 

to some discrepancies since GO has a greater absorption at that particular wavelength. 

The concentrations of C-C bonds in the samples were measured after being exposed to L-

AA for four hours, 24 hours, and 48 hours at the three NUV-radiation levels (Figure 2.3.4.1: 

Comparative C1s XPS spectra stackings for unirradiated (A) and NUV-irradiated (B) graphene 

oxide films for the first three hours, after 24 hours (C) and after 48 hours of treatment with l-

ascorbic acid solution. ) and the statistical significance of these results was validated using 

Minitab. The normal probability plots indicate that the results follow a normal distribution and 

are statistically acceptable for design of experiment analysis. From the main effect plot, it was 

determined that all factors are significant with exposure to L-AA having the highest impact, 

followed by the interaction between L-AA and NUV exposure, and lastly NUV-radiation 

meaning that after the initial NUV-exposure, the reduction of the film became more dependent 
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on the exposure to L-AA. While NUV light works in conjunction with L-AA to reduce the 

surface of the film, L-AA plays a more important role after the radiation in reducing the 

underlying layers, therefore, exposure to L-AA is necessary to reduce inner layers of the film and 

improve uniformity. The low impact of NUV exposure alone is likely cause by the reduction of 

the film’s surface. As the film was irradiated and reduced, graphene oxide began absorbing more 

light at 405 nm wavelength[106] until reaching a point where the effects of NUV light were 

negligible. After this point only the solution that has entered the inner layers of the film through 

gaps furthered the reduction. 

 

Figure 2.3.5.2: Optimization plot with the individual evaluated factors (columns) and their effect 

on the responses (rows) based on the bond percentages observed from XPS results.  

 

The optimization graph obtained through design of experiment (Figure 2.3.5.2: 

Optimization plot with the individual evaluated factors (columns) and their effect on the 

responses (rows) based on the bond percentages observed from XPS results.) suggests that the 

combination that will maximize the reduction are longer NUV-exposure time (three hours) and 
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longer exposure to L-AA (48 hours) producing samples with a C-C bond concentration of 

60.70% and an O/C ratio of 0.23, which is comparable to, although higher than, GO suspensions 

reduced by green reductants (). 

Table 2.3.5: Comparison of O/C ratio in most reduced samples reported (three-hour NUV-

radiation and 48 hours of L-AA exposure) with values reported in literature from 

other green reductants. 

Green Reduction Method O/C Ratio Source 

This report: 0.23 [107] 

Ginseng 0.20 [76] 

Natural Cellulose 0.18 [77] 

Baker’s Yeast 0.17 [78] 

Hydrogen Rich Water 0.21 [75] 

Gallic Acid 0.19 [79] 

Pulsed Laser 0.21 [83] 

Urea 0.18 [80] 

L-Ascorbic Acid (Aqueous 

Dispersion) 
0.17 [86] 

 

2.4 CONCLUSION 

The effect of NUV light in conjunction with l-ascorbic acid (L-AA) on the reduction of 

graphene oxide films was characterized using SEM, FT-IR, WAXS, and XPS. It was determined 

that NUV-radiation at 405 nm wavelength can promote the reduction of graphene oxide by not 

only accelerating the degradation of L-AA and subsequently the reduction of graphene oxide, but 

also increasing the depth of reduction from the surface layers to the layers in between the film. 

Samples exposed to 3 hours of NUV-radiation also showed that longer exposures of NUW-

radiation can have a significant impact in the reduction of graphene oxide films within the first 
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hours, meaning that longer exposure is recommended to obtain a more uniformly reduced film. 

Exposure time in L-AA was also proven to be a main factor in reducing the graphene oxide past 

the surface layer, with 48 hours of exposure showing concentrations of C-C bonds up to 60.7% 

and the presence of an intense peak in the 2θ angle near 20.0°, comparable to solution processed 

graphene oxide reduced by other green methods. However, it is important to note that the 

lowered permeability of the reduced film may entrap moisture and chemical residuals from the 

reductant. Still, alternately to using high temperature thermal annealing which can result in 

blistering of the film due to the volatile release of vapors and air or other chemical methods with 

a large variance in reduction of the film, the use of L-AA synergistically with NUV-radiation can 

produce stable GO films with tailored reduction.  
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Chapter 3: Synthesis for water-induced stiffening epoxy vitrimer 

3.1 INTRODUCTION 

Polymers can be categorized into thermoplastics of thermosets depending on the type of 

bonding that holds the polymer network together, each with their own advantages and 

disadvantages depending on the application[32]. While thermoplastic polymers tend to be 

weaker, the physical bonds that form them allow for reprocessing and recyclability. On the other 

hand, thermoset polymers cannot be reprocessed once fully cured, but due to their strong 

covalent bonds, these materials are typically stronger, more chemically resilient, and thermally 

stable. Thermoset polymers, however, can achieve the plasticity of thermoplastics through the 

introduction of exchangeable chemical bonds in the covalent crosslinks forming dynamic 

crosslinks. This exchange mechanism allows the material to flow while not permanently altering 

the material’s properties. Polymers with these types of exchangeable bonds are known as 

covalent adaptive networks (CANs)[108]. Polymers containing CANs can respond to an applied 

stimulus such as heat or pressure and are capable of reconfiguring their network topology or 

reforming broken bonds through intricate chemical processes[33].  

Vitrimers are associative CANs that show a gradual viscosity decrease after heating due 

to the transesterification reaction in epoxy/acid networks[109]. These novel materials display a 

shift in crosslink position upon the application of heat but retain the same number of crosslinks, 

exhibiting a fixed crosslink density in the network. This fixed crosslinked density avoids 

dissolvement in the material. One of the chemistries that can form vitrimers is disulfide exchange 

which undergo a radical mediated mechanism[110]. 4-aminophenyl disulfide is a hardener used 

for the design of reprocessable and recyclable epoxy vitrimer[111]. This exchange mechanism 
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occurs faster and at lower temperatures than other types of reactions such as Diels-Alder[112], 

imine bonds[113], and coordination bonds[114].  

Due to their CANs, some vitrimers have shown other functional properties. In the case of 

4-aminophenyl disulfide, cleaving the S-S bonds produces a bright green discoloration[111]. For 

the first vitrimer project, we explored ceramic filler to enhance the mechanochromic effect of the 

disulfide vitrimer. The aminophenyl disulfide isomer, 2-aminophenyl disulfide, has shown 

potential for self-healing applications[115]. The second and third vitrimer projects aim to adapt 

the disulfide vitrimer with 2-aminophenyl disulfide for additive manufacturing and facile 

templating. 

3.2 SYNTHESIS OF SELF-SENSING POLYMER COMPOSITES 

3.2.1 Materials, synthesis and fabrication 

Bisphenol A diglycidyl ether (BADGE) (340.41 g/mol) and 4-aminophenyl disulfide 

(4AFD) (248.37 g/mol) were purchased from Sigma Aldrich (Darmstadt, Germany). Barium 

titanate powder (200 nm average particle size) was purchase from Inframat Advanced Materials 

(Connecticut, United States), alumina powder (0.1 µm average particle size) and silica powder 

(11 nm average particle size) were purchased from Sigma Aldrich (Darmstadt, Germany). Glass 

hollow spheres (HGS) were kindly provided by the Kansas City National Security Campus. 

Vitrimer composites were synthesized by first melting the BADGE resin at 85 °C. Once fully 

melted, the dynamic hardener 4AFD was added to the resin and mixed with a magnetic stirrer for 

15 minutes at 85 °C. Afterwards, different weight percentages (Table 3.2.1: Vitrimer 

compositions tested for mechanochromism.) of ceramic powders were added to the epoxy resin 

and were allowed to mix for 10 minutes at the same temperature. The resin was then poured into 

silicone molds and cured for 5 hours at 150 °C.  
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Table 3.2.1: Vitrimer compositions tested for mechanochromism. 

Sample Ceramic Filler Wt % 

Vit-HGS-1 Hollow Glass Spheres 0.1 

Vit-HGS-2 Hollow Glass Spheres 1.0 

Vit-SiO2-1 SiO2 0.1 

Vit-SiO2-2 SiO2 1.0 

Vit-BaTiO3-1 BaTiO3 1.0 

Vit-BaTiO3-2 BaTiO3 50.0 

Vit-Al2O3-1 Al2O3 1.0 

Vit-Al2O3-2 Al2O3 50.0 

 

3.2.2 Material characterization 

The mechanochromic effect of pure vitrimer and vitrimer composites was evaluated from 

the color change after the application of mechanical force. First, samples were subjected to 

abrasive forces using sandpaper of grit size 240. Scratch testing was done by gently scratching 

the surface of the vitrimer composites with a stainless-steel needle. Response to impact was 

tested impacting the sample with hammer with a small spherical end.   

3.2.3 Results and discussion 

When pure vitrimer samples were subjected to abrasive forces using sandpaper and 

through scratching with stainless-steel needle, the samples produced a bright discoloration in the 

afflicted surfaces as well as in the dust produced from sanding (Figure 3.2.3.1: 4AFD vitrimer 

after being subjected to abrasive forces.). Pure vitrimer samples, however, were unresponsive 

when impacted with a hammer. 
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Figure 3.2.3.1: 4AFD vitrimer after being subjected to abrasive forces. 

 

Vitrimer-HGS composites showed similar response to abrasive forces such as sanding 

and scratching as pure vitrimer. With a greater color contrast between the discoloration and the 

vitrimer composite, the mechanochromic effect was more easily distinguished. When impacted 

with a hammer, vitrimer-HGS composites produced same discoloration as in the impacted 

surfaces. The mechanochromic effect, although not as vivid as in the impacted surfaces, could 

also be observed in surfaces of the cracks, a result of the impact testing. Vitrimer-SiO2, vitrimer-

BaTiO3, and vitrimer-Al2O3 composites only responded to scratching which produced a dark 

discoloration as opposed to the pure vitrimer and vitrimer-HGS composites. These vitrimer-

ceramic composites also did not respond to any other mechanical forces tested, even at higher 

weight percentages despite the color contrast. At 50 wt% of Al2O3 filler, the vitrimer- Al2O3 

showed increased response but only in the surfaces surrounding burst air bubbles.  
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Figure 3.2.3.2: Multiple vitrimer composites formed with HGS, SiO3, BaTiO3, and Al2O3 with 

varying concentrations of ceramic filler. 

3.3 VITRIMER PRINTING 

3.3.1 Materials and synthesis 

Bisphenol A diglycidyl ether (BADGE) (340.41 g/mol), 2-aminophenyl disulfide(2AFD) 

(248.37 g/mol), and polyethylene glycol 1500 (PEG1500) were purchased from Sigma Aldrich 

(Darmstadt, Germany). Graphene oxide in a 5 mg/mL suspension was purchased from 

Goographene (Virginia, United States). Pure vitrimer samples were synthesized by first melting 

the BADGE resin at 85 °C and mixing 2AFD at the same temperature for 15 minutes. Vitrimer 

composites were synthesized by first melting the BADGE resin at 85 °C. Once fully melted, 0.8 

mL of graphene oxide solution was added to the melted BADGE and mixed at 100 °C to 

evaporate the water from the graphene oxide suspension. Afterwards the dynamic hardener, 
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2AFD, was added to the resin and mixed with a magnetic stirrer for 15 minutes at 85 °C. 

Afterwards, 5 wt% of PEG1500 was added to the epoxy resin and were allowed to mix for 10 

minutes at the same temperature. The resin was then poured into silicone molds and cured for 1.5 

hours at 150 °C.  

3.3.2 Fabrication 

A Hyrel Engine HR equipped with a KR-15 direct write heated extruder was used to 

print. Pure vitrimer was extruded at 80 °C while vitrimer-GO-PEG composites were extruded at 

90 °C. Test geometries such as a 10x10x10 mm3 cube and a dinosaur were printed to validate the 

material’s capability to extrude and print. Further testing was done to attempt to obtain 

mechanical testing samples in accordance to ASTM standard D638.  

3.3.3 Results and Discussion 

Initial success was achieved printing small geometries with the pure vitrimer 

formulations (Figure 3.3.3.1: Successful first prints of small and complex geometries through 

FFF.). The pure vitrimer formulation was extruded with a 0.8 mm nozzle at 80 °C which allowed 

for the printing of complex structures such as overhangs without the need of supports structures. 

This is due to how close the vitrimer was to the solidification temperature which meant the 

vitrimer could cool and harden very rapidly. The highest achievable resolution with the pure 

vitrimer formulation was of 0.2 mm at 90 °C, however, unlike the 0.8 mm nozzle, it was unable 

to print overhangs from the need to cool longer to harden. The same vitrimer used to print the 

structures in Figure 3.3.3.1: Successful first prints of small and complex geometries through 

FFF. was reused for two months of continuous recycling with no significant deterioration. 

Towards the end of the vitrimer’s recyclable life, the vitrimer became rubbery. Printing at the 

higher temperatures required for smaller diameter nozzles significantly reduced the vitrimer’s 
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recyclable life with every print since each time the vitrimer was extruded, it required a higher 

temperature to print.   

 

Figure 3.3.3.1: Successful first prints of small and complex geometries through FFF. 

 

When printing larger geometries such as ASTM Standard D638 Type V dog bone 

samples, printed parts suffered from brittle properties. Attempting to remove the parts from build 

platform resulted in cracking and failure, making the removal process difficult. To address the 

issue of low part strength and limited recyclability at higher resolutions, graphene oxide (GO) 

and polyethylene glycol 1500 (PEG1500) were added to the formulation. GO filler added 

increased the toughness of the epoxy vitrimer and allowed for extrusion at lower temperatures as 

Krishnakumar et al have demonstrated[115]. This facilitated the removal and printing process; 

however, GO also decreased the recyclable life of the vitrimer, making the stock material reach a 

rubbery state sooner. PEG1500 was added to as a retardant and a plasticizer at the printing 

temperature. The free volume added by the inert chains of PEG1500 facilitates the recombination 

of dynamic covalent bonding and limits the formation of new crosslinks which would restrict the 
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flow of the vitrimer[116]. This, in term, lengthens the recyclable life of the vitrimer. Further 

studies are needed to further validate the pot-life and recyclability of the enhanced vitrimer resin. 

 

3.4 WATER-INDUCED STIFFENING VITRIMER 

3.4.1 Experimental details 

3.4.1.1 Materials, synthesis, and fabrication 

Bisphenol A diglycidyl ether (BADGE) (340.41 g/mol), 2-aminophenyl disulfide(2AFD) 

(248.37 g/mol), and polyethylene glycol 400 (PEG400) were purchased from Sigma Aldrich 

(Darmstadt, Germany). Vitrimer composites were synthesized by first melting the BADGE resin 

at 85 °C. Once fully melted, the dynamic hardener 2AFD was added to the resin and mixed with 

a magnetic stirrer for 15 minutes at 85 °C. Afterwards, 50 wt% of PEG400 was added to the 

epoxy resin and were allowed to mix for 10 minutes at the same temperature. The resin was then 

poured into silicone molds and cured for 20 hours at 150 °C. Water-treated vitrimer composites 

were soaked in water at room temperature for 24 hours and then left to dry in air overnight. 

Water-treated samples were then placed in an oven at 80 °C for 10 minutes after air drying to 

allow the vitrimer composite to relax and undo any curling that may result during the drying 

process.   

3.4.1.2 Material characterization 

The surface morphology of the vitrimer composites and phase separation on the cross-

sectional area were analyzed using a Thermo Scientific (Massachusetts, United States) Phenom 

ProX scanning electron microscope at 15 kV accelerating voltage and with a backscatter electron 

detector. The change in molecular structure of the vitrimer composites after water and heat 

treatment was analyzed through Fourier transform infrared (FT-IR) spectroscopy using a Thermo 

Scientific (Massachusetts, United States) Nicolet iS5 Infrared Spectrometer. X-ray diffraction 
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measurements to analyze changes in the composite’s crystallinity at the surface and polished 

cross-sectional area were carried out using a Brucker (Massachusetts, United States). Tensile 

mechanical testing of the vitrimer composites was done in accordance with ASTM Standard 

D638 at a strain rate of 1 mm/minute using an Instron (Massachusetts, United States) 5886 

mechanical load frame with a video extensometer. 

3.4.2 Results and discussion 

3.4.2.1 Microscopy 

The phase separation effect was visible through optical microscopy in thin samples (~2 

mm thickness). As casted samples did not show any unique features and looked homogenous 

throughout. When wetted, the vitrimer composites formed spherical features, attributed to to the 

phase separation induced by the water absorption. After removing the vitrimer composite and 

allowing it to dry in air for 24 hours, the features on the vitrimer remained more losely packed 

than when wet. The presence of these spherical features after wetting and even after drying, 

shows that they are composed of the PEG400 and not water. The microscope images are visual 

evidence to support that there is a phase separation occuring between the hydrophobic vitrimer 

and the hydrophilic PEG. 

 
Figure 3.4.2.1: Schematic with microscope images of water induced phase separation in the 

vitrimer composite after exposure to water. 
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3.4.2.2 Mechanical properties 

The stress-strain relationship of vitrimer composites was measured through tensile 

mechanical testing at room temperature using the strain ramp mode. The stress-strain behavior 

for dry vitrimer composites containing PEG400 was plotted in Figure 3.4.2.2: Mechanical results 

from (left) as casted PEG-vitrimer composites and (right) a comparison of as casted samples with 

samples processed with water and heat treated afterwards.. As observed, the modulus of 

elasticity is directly influenced by the amount of plasticizer present in the composite with more 

plasticizer leading to softer vitrimer composites. Figure 3.4.2.2: Mechanical results from (left) as 

casted PEG-vitrimer composites and (right) a comparison of as casted samples with samples 

processed with water and heat treated afterwards. also shows a comparison of the stress-strain 

behavior of the as casted samples with the samples post water/heat treatment. Vitrimer 

composites saw an improvement in mechanical properties post water/heat treatment leading to 

not only a 585x increase in elastic modulus but also 1.8x increase in strain at break and a 118x 

increase in ultimate tensile strength. 

 

Figure 3.4.2.2: Mechanical results from (left) as casted PEG-vitrimer composites and (right) a 

comparison of as casted samples with samples processed with water and heat 

treated afterwards.  
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3.4.2.3 X-ray diffraction 

X-ray diffraction was used to analyze changes in the crystallinity of the vitrimer 

composite at the surface. In all three stages of processing, as casted, after wetting, and after 

drying and post-heating, the vitrimer composites showed a high intensity in the broad peak in 2θ 

ranging from 10 °- 30 °, apparent in homogenously amorphous epoxy composites[117] which 

infers the that the polyethylene glycol is completely dispersed in the epoxy vitrimer. As casted 

vitrimer composites showed small diffraction peaks at 2θ values of 29.6 ° and 31.0 °. When the 

composites are wetted, these peaks are lost and replaced with a peak at 2θ = 26.7 °. In addition, 

the intensity of the amorphous peak decreased showing loss of amorphous structure due to the 

phase separation between the hydrophobic epoxy matrix and the hydrophilic plasticizer. After 

drying and post-heat treatment, the vitrimer composite show complete loss of crystalline 

structure. 

 

Figure 3.4.2.3: X-ray diffraction of PEG-vitrimer composites after casting, being exposed to 

moisture, and reheating after drying. 
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3.4.2.4 Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FT-IR) was used to analyze the changes in 

molecular structure of vitrimer blends. First, the absence of oxirane rings (914 cm-1) indicates 

that the vitrimer composite is fully cured. The as casted vitrimer composite shows a chemical 

structure similar to bisphenol A ethoxylate, which has structure resembling bisphenol A 

diglycidyl ether with extended chains akin to polyethylene glycol chains. This demonstrates the 

compactness of the PEG400 plasticizer in the epoxy vitrimer crosslinks. After water treatment, 

the vitrimer composites lost their PEG structure at the 3000-2800 cm-1 range, showing a more 

similar structure to epoxy mixture. After heat treatment, the peak at 1670 cm-1 disappeared 

while a sharp peak at 1720 cm-1 appeared potentially from an oxidative reaction due to the 

presence of intercalated water. 

 

Figure 3.4.2.4: Fourier transform infrared spectroscopy showing the difference in molecular 

structure of PEG-vitrimer as casted, after wetting, and after drying and heat 

treatment. 
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3.4.2.5 Other observations 

Other qualitative observations were made for the response of the vitrimer-PEG 

composites to water. Firstly, vitrimer composites that are not fully crosslinked show two types of 

hydrochromic response. When a casted vitrimer is exposed to water, the vitrimer changes from 

an amber color to a bright white. This is due to the disruption of the vitrimer network caused by 

the phase separation between the hydrophilic PEG chains and the hydrophobic epoxy 

chains[118]. The original amber color is restored over time upon drying or can be induced 

immediately at temperatures above 100 °C. When extruded from a nozzle, the vitrimer changes 

from a dark amber color to a very bright green, reminiscent of the mechanochromic vitrimer 

produced with the disulfide isomer 4-aminophenyl disulfide. The difference in color is likely due 

to the alignment of the semicrystalline domain causing the vitrimer to cleave at the disulfide 

bonds upon phases separation[119].    

 

Figure 3.4.2.5.1: Discoloration of extruded (A, B) and casted (C) PEG-vitrimer composites.   

The vitrimer-PEG composite’s response to ethanol, another solvent for PEG, was also 

observed. In contrast to the composite’s response to water, vitrimer-PEG composites partially 

dissolved when soaked in ethanol. Since PEG and uncured resin have a high solubility to ethanol 

rather than causing a phase separation, ethanol likely cause the PEG and vitrimer to become 

more miscible. This is highly probable since the PEG chains restrict the crosslinking of the 
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epoxy vitrimer and is more likely to retain the solubility of epoxy resin. The solubility test is also 

evidence to support that the phase separation is repentant on the difference in hydrophilicity 

between the two polymers. 

 

 

Figure 3.4.2.5.2: Solubility testing of PEG-vitrimer composite in water and ethanol. 

Densification effects can also be observed on the vitrimer-PEG composites after water 

and heat treatment. The vitrimer composites swell upon exposure to water; however, upon drying 

see a reduction in volume (11%) with no significant mass loss. After heat treatment, the vitrimer 

composites form a transparent outer layer and an opaque center in the perfect shape of the casted 

composite’s geometry. 

 

 

Figure 3.4.2.5.3: Changes in volume (A) and color (B) of PEG-vitrimer composited before (left) 

and after (right) exposure water and air drying. 
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3.5 CONCLUSION 

Overall, properties of dynamic epoxies can be altered through filler material to obtain 

unique properties that fit a wide range of applications as demonstrated from the three vitrimer 

projects presented. From the synthesis of self-sensing polymer composites, it was demonstrated 

that mechanochromic vitrimer, synthesized with the dynamic hardener 4-aminophenyl disulfide, 

show greater response to mechanical damage with hollow glass sphere filler than pure vitrimer. 

The mechanochromic response from the vitrimer composites with other ceramic filler such as 

SiO2, BaTiO3, and Al2O3 do not better the sensing capabilities of the vitrimer despite having a 

greater color contrast to the expect color change. This shows that epoxy vitrimer has a high 

affinity with glass and the use of hollo particle filler can enhance the mechanochromic response.  

From the printing of vitrimer synthesized with 2-aminophenyl disulfide, it was learned 

that the self-healing vitrimer had great potential for extrusion based additive manufacturing. 

Great success was demonstrated when printing small simple and complex geometries. The 

material’s brittleness when printing larger structures was addressed through the incorporation of 

graphene oxide nanofiller for enhanced toughness and processability as well as polyethylene 

glycol for prolonging the recyclable life of the vitrimer. This opens the possibility for the use of 

additive manufacturing to process novel materials with functional properties. 

Lastly, the water-induced effects of self-healing vitrimer-polyethylene glycol composites 

were studied. According to the analysis performed through x-ray diffraction, the change in 

crystallinity at the vitrimer surface shows that exposure to water removes polyethylene glycol 

from te surface. Fourier-transform infrared (FT-IR) spectroscopy and optical microscopy were 

both evidence to support the fact that phase separation was occurring between hydrophobic 

vitrimer and hydrophilic polyethylene glycol throughout the composites upon exposure to water. 
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Furthermore, the FT-IR analysis and mechanical response, and other visual observations such as 

color change in the center of the samples, suggest a strengthening reaction is occurring due to the 

PEG in the composite. These results demonstrate the ability to incorporate polyethylene glycol 

for ease of manufacturing through templating and the potential for the material to be used in 

structural applications due to the strength and toughness. 
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Chapter 4: Machine vision and machine learning for property prediction of syntactic foams 

and lattice structures 

4.1 INTRODUCTION 

The lack of qualification and property prediction of 3D printed parts is a challenge in AM 

which is being addressed through the use of machine learning. Machine learning is a series of 

procedures and algorithms that analyze data to recognize patterns, clusters, or trends for the 

extraction of useful information[39]. In AM, process parameters are obtained through loops of 

trial-and-error, a repetitive process which is largely dependent on the capabilities of an operator 

to recognize anomalies and make the corresponding adjustment[40]. However, these patterns can 

often be difficult to notice for which machine learning can easily draw inferences. Machine 

learning has been applied at various steps of the additive manufacturing process being used for 

design optimization prior to printing[41,42], quality assurance and defect detection in 

conjunction with machine vision during the printing process[43,44], and for performance 

prediction of the printed part after the process[45].   

The first machine vision project aims to recreate the machine vision algorithm and 

machine learning result obtained by Roach et al., in which the properties of 3D printed foam 

replacement structures were predicted through visual analysis of the filament diameter, filament 

spacing, and number of layers[120]. The second machine vision project aims to form a more 

robust analysis of the microstructure in syntactic foams, which are composite materials in which 

porous particles are embedded in the matrix material[121]. Through the use of an image 

segmentation method known as STARDIST[122], we trained a model to be used for automated 

characterization and information gathering for machine learning.  
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4.2 MACHINE VISION/LEARNING FOR PROPERTY PREDICTION OF FOAM REPLACEMENT 

STRUCTURES 

4.2.1 Machine vision for feature detection 

4.2.1.1 Data acquisition 

Foam replacement structures were prepared by first mixing polydimethyl siloxane 

(Dowsil SE 1700) with 2 wt% fumed silica (Aerosil R 8200) in a Thinky planetary mixer in three 

intervals of 10 minutes with cooling time in-between to prevent overheating. The ink was then 

loaded into a syringe and centrifuged for one minute at 3000 rpm to removed trapped air. To 

print, the ink is then extruded using a Nordson Ultimus I pneumatic pressure system. The ink is 

then extruded from the syringe and printed as 40x40 mm2 (length and width) face centered 

tetragonal lattice structures (Error! Reference source not found.). The lattice structures were 

then cut into 30x30 mm2 (length and width) structures. The cross-section was then analyzed and 

imaged through a Keyence VH-ZST (Osaka, Japan) optical microscope. 

 

Figure 4.2.1.1: 3D printed foam replacement structures through direct write AM. 

 

4.2.1.2 Automated unit conversion 

The purpose of the automated unit converter algorithm is to scale pixel value of to their 

respective SI units regardless of the scale used by the microscope or magnification. The unit 
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converter employs an optical character recognizer to read the scale and units located at the 

bottom of the raw microscope images. By decomposing the text, the scale is stored as an integer 

value while the units are stored as a string that is associated with a multiplier (e.g., nm = 10-9). 

Through the use of Hough’s Line Transform algorithm, the length of the scale bar is measured in 

pixel units. Through proportionality, a scaling factor is calculated from the scale integer and the 

scale bar size. If working with different magnifications or scale bars, the unit associated 

multiplier is used to keep all measurements on common scales. 

4.2.1.3 Feature calculations 

Identification of the filament diameter is done through Hough’s Circle Transform which 

outputs the center coordinates and radius for each detected circle. The location of the circles are 

then used to identify the filament spacing by measuring the distance between horizontally 

aligned circles. The number of layers were calculated by measuring the number of circles in a 

column and adding them to the number of lines detected in a column divided by two. This allows 

for accurate calculation of the number of layers even in the case of sagging. 

4.2.2 Machine learning for property prediction of lattice structures 

Due to the complex nature of the information that needs to be predicted from the features 

of the printed lattice structures, an artificial neural network (ANN) was used to fit the prediction 

model. The ANN comprised of a three-node input layer, a 500-node single hidden layer, and 

400-node output layer. The nodes on the input layer were for the filament diameter, the filament 

spacing, and the number of layers calculated by the by the machine vision algorithm. The 400 

layers of the output layer represent the 200 X-coordinates and 200 Y-coordinates on a stress-

strain curve. Only a single hidden layer with 500 nodes was used. 
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The ANN was designed to replicate the results obtained by Roach et al.[45] and trained 

with the same data set through back propagation and mean squared error (MSE) for gradient 

decent optimization. Various activation functions for the hidden layer were tested to attempt to 

replicate the results and the sigmoid activation function was found to best approximate the MSE 

reported. The training data set consisted of 756 replications for which 80% was used for training, 

10% for validation, and 10% for testing. Using 3000 epochs, or iterations, for training, the model 

reached an MSE value of ~0.1 as reported by Roach et al. [45] 

4.3 MACHINE VISION FOR MICROSTRUCTURE ANALYSIS IN SYNTACTIC FOAMS 

4.3.1 Syntactic foams 

4.3.1.1 Materials, synthesis, and fabrication 

The syntactic foams used to train and test the machine vision algorithm were prepared in 

accordance to Hassan et al.[123]. Bismalemide (BMI) powder was obtained Imitec Inc. (New 

York, United States). Carbon micro balloons (CMB) with a 5-30 µm diameter particle size 

distribution and 2.3 µm wall thickness were kindly provided by Honeywell (New Jersey, United 

States). A Gilson SS-150 sieve shaker from Hogentogler (Maryland, United States) was used to 

sieve the BMI powder to obtain a 20-80 µm dispersion. The BMI powder was then blended with 

10 vol% of CMBs for laser absorbality from the selective laser sintering (SLS) printer and 

printed with a Sinterit Lisa 3D printer from 3D Herndon (Virginia, United States). The printed 

BMI/CMB green bodies were then fully cured in an oven at 250 °C for 4 hours.  

4.3.1.2 Material characterization 

Images of the surface of the syntactic foams were obtained using a Thermo Scientific 

(Massachusetts, United States) Phenom ProX scanning electron microscope at 15 kV 

accelerating voltage with a backscatter electron detector. The BMI syntactic foams were first 
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polished and air blasted for clarity during imaging. Multiple images were obtained from each 

side of the rectangular prism geometry at several locations. 

4.3.2 Algorithm 

The machine vision/machine learning algorithm is shown in Figure 4.3.2: Schematic of 

machine vision and machine learning algorithm and flow. The algorithm takes raw scanning 

electron micrographs as input and processes the text and visual information separately. The 

visual information is then segmented through the use of a STARDIST algorithm and 

characterized into feature to serve as input for the machine learning model. The text information 

is used to maintain a common scale regardless of magnification used in the imaging process. 

 

Figure 4.3.2: Schematic of machine vision and machine learning algorithm and flow. 

 

4.3.3 Machine vision for feature detection 

4.3.3.1 Data processing 

Raw scanning electron microscope images are separated into three parts, the visual 

image, the scale bar, and scale. The scale bar and scale are processed using an optical character 

recognizer through the same algorithm presented in section 4.2.1.2 Automated unit conversion. 

The visual image is then scaled down by 50% for faster processing without affecting the 

detectable boundaries. After, the image is cropped in 13 images formed from a 3x3 matric and 
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the 4-image intersection as shown in Figure 4.3.3.1:  Image processing of (left) scanning electron 

micrograph into (right) smaller crops at lower resolution. These images are exported as .tif files 

for labeling of training data ground truth.  

 

Figure 4.3.3.1:  Image processing of (left) scanning electron micrograph into (right) smaller 

crops at lower resolution. 

The training data set was created by manually labeling the CMB shells with the use of 

ImageJ and the Labkit plugin. The ground truth labels were also exported as .tif files and 

consisted of 533 image and label pairs. 

4.3.3.2 Image segmentation through star-convex polygons 

Image segmentation for the detection of CMBs in the 3D printed syntactic foams was 

done using the STARDIST detection method developed by Schmidt et al. to detect cells[122]. 

The STARDIST method is trained to densely predict the distance to object boundaries along a 

fixed set of rays and object probabilities with then produce a set of candidate polygons from an 

input image. To avoid the detection of an object multiple times, the method employs a non-

maximum suppression to obtain the final results, where boxes with low confidence are 

suppressed by boxes of higher confidence, if they substantially overlap[122]. 

The first step to evaluate the number of rays the star-convex polygons required for an 

accurate reconstruction of the ground truth. Figure 4.3.3.2.1: Reconstruction of the ground truth 

label using number of rays equal to 2n. shows the reconstruction of the labeled CMBs using a set 

of rays equal to 2n where n ranged from 2 to 7. To quantitively determine the minimum number 
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of rays needed (Figure 4.3.3.2.2:  Intersection over union scores of for the reconstruction of the 

ground truth with varying number of rays.), the mean intersection over union for the input image 

was calculated, where a score higher than 0.8 is desired. From this study, a minimum number of 

16 rays was needed for the accurate reconstruction of the labeled CMBs. For training, the default 

number of 32 rays was used. 

 

Figure 4.3.3.2.1: Reconstruction of the ground truth label using number of rays equal to 2n. 

 

 

Figure 4.3.3.2.2:  Intersection over union scores of for the reconstruction of the ground truth with 

varying number of rays. 

The STARDIST model was trained using a 533 image-label pair dataset. The dataset was 

augmented by applying random rotations, flips, and intensity changes, in vain of something that 
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could be obtained from a microscope image. The performance of the detection from the trained 

STARDIST model was evaluated by measuring the how well the predicted objects overlapped 

with the ground truth labels. In Figure 4.3.3.2.3: Performance of STARDIST model based on 

various metrics with respect to intersection over union threshold.various performance were used 

to evaluate the performance of the model at various intersection over union thresholds (τ). Based 

on precision and recall scores, bellow τ = 0.5 the model does a fair job at detecting a large 

portion of the CMB particles. From the test data (Figure 4.3.3.2.4: Comparison of (left) input vs 

predicted labeling. Red circles highlight features predicted labeling was unable to capture.), 

however, it can be noted which particle the model has a difficult time detecting. Because the 

model was not trained sufficiently with labeled small particles, it is unable to distinguish these 

from noise introduced in the training dataset as debris and dust. For a more accurate detection of 

the entirety of the CMB dispersion in the BMI matrix, obtaining a larger dataset containing a 

good portion of small sized CMBs is highly advised. 

 

Figure 4.3.3.2.3: Performance of STARDIST model based on various metrics with respect to 

intersection over union threshold. 
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Figure 4.3.3.2.4: Comparison of (left) input vs predicted labeling. Red circles highlight features 

predicted labeling was unable to capture. 

4.3.3.3 Generation of attributes for machine learning 

After training, the STARDIST model was used to estimate the particle size distribution of 

the CMB in the BMI matrix as shown in Figure 4.3.3.3: Particle size distribution and mean 

particle dimensions of test sample image processed with trained STARDIST model. Since each 

particle is uniquely labeled, the are that each particle occupies can be calculated through the 

summation of same valued pixels for every unique instance. By using the conversion factor 

obtained through the automatic unit conversion sequence, the area of the particles was obtained 

in SI units. With the assumption that all of the detected particles can be represented by perfect 

circles, the diameter of the particles can be estimated. The particle size distribution with a pre-

determined number of bins can then be used as an input for a machine learning model. 
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Figure 4.3.3.3: Particle size distribution and mean particle dimensions of test sample image 

processed with trained STARDIST model. 

4.4 CONCLUSION  

The capabilities of machine vision for characterization of lattice and syntactic foam 

structures were demonstrated through two projects. In the first project, machine vision and 

machine learning for lattice structures, the results from literature were recreated. Through the use 

of basic computer vision techniques such as Hough’s Line and Circle Transforms, the filament 

diameter, filament spacing, and number of layers were identified from microscope images of 

silicone lattice structures. This information was then fed into a machine learning model that was 

validated using a dataset obtained by the literature source we attempted to replicate, obtaining 

similar results. This project gave us the confidence to further our efforts with syntactic foams. 

Due to the more complex nature of in the microstructure of syntactic foams, in 

comparison to the microstructure of lattice structures, a more robust machine vision method was 

necessary. Through STARDIST, scanning electron micrographs of the polished surface of 

bismalemide (BMI)- carbon micro balloons (CMB) syntactic foams were segmented to uniquely 
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label CMBs on a planar axis of selective laser sintering printed parts. With this information, 

features such as the particle size distribution were calculated. The trained STARDIST model 

shows potential for the automatic characterization of syntactic foam microstructures to assist in 

the generation of data to train machine learning models for property prediction and effectively 

reduce time by not having to manually extract information from micrographs. 
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