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Abstract

In this day and age, adversaries in the cybersecurity space have become alarmingly ca-

pable of identifying network vulnerabilities and work out various targets to attack where

deception is becoming an increasingly crucial technique for the defenders to delay these

attacks. For securing computer networks, the defenders use various deceptive decoy ob-

jects to detect, confuse, and distract attackers. By trapping the attackers, these decoys

gather information, waste their time and resources, and potentially prevent future attacks.

However, we have to consider that an attacker with the help of smart techniques may de-

tect the decoys and avoid them. One of the well-known challenges in using decoys is that

it can be difficult to design effective decoys that are hard to distinguish from real objects,

especially against sophisticated attackers who may be aware of the use of decoys. Both

real and decoy objects have observable features that may give the attacker the ability to

distinguish one from the other. One way for a defender to enhance a decoy’s effective-

ness is to modify a few features of either the real or fake objects. But, such information

manipulation or system modification for the defender needs to be cost-effective. Game-

theoretical models are often useful to analyze strategic interactions between agents to find

the best decision-making solutions. In this thesis, I study some game-theoretic and adver-

sarial machine learning models to determine optimal strategies for the defender and focus

on employing decoys to prevent security threats.

The first game model I work to design practical decoy objects that can fool a sophisti-

cated attacker. This model allows us to investigate many aspects of how a defender should

optimize efforts to conceal deceptive objects, which can be applied to honeypots, disguis-

ing network traffic, and other domains. Furthermore, its theoretical foundation provides

the benefits and limitations of adversarial learning methods for generating deceptive ob-

jects. In our model, we allow the defender to modify either the real or fake object that

renders objects indistinguishable for the attacker thus, improve deception noticeably. By
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using this model, we seek to capture some key aspects of cyber deception that are missing

from other game-theoretic models. In particular, we focus on whether the defender can

design convincing decoy objects and the limitations of deception if some discriminating

features of real and fake objects are not easily maskable. To my knowledge, this the first

model that introduces a two-sided deception technique to mislead the attackers. How-

ever, an important element to take into account for the use of two-sided deception is cost.

Here we show, in some cases, deception is either unnecessary or too costly to be effective.

The deception level mainly relates to attackers’ sophistication, wherein naı̈ve attackers are

easy to deceive even with a low-cost strategy. This game model provides a new and more

nuanced way to consider the quality of various deception strategies but strives to solve

large and complex two-sided feature deception problems. To further develop and scale the

model, we use the Adversarial Machine Learning (AML) approach that can generate fake

samples that look like real samples and real samples that look like fake samples when the

feature space is complex and large. The technique can also be used as a robust classifier

for the binary classification problem in a dynamic learning environment. We also present

the empirical analysis of the AML algorithm and discuss some possible use cases of our

model.

The next game-theoretic model I design to use deceptively crafted honey traffic to

confound the knowledge gained by an adversary through passive network reconnaissance.

This model characterizes how a defender should deploy honey traffic in the presence of

an sophisticated attacker and finds the optimal strategy for deploying honey flows that

are fast enough to be used for realistic networks. These optimal defender strategies deter

an attacker from acting on the existence of real vulnerabilities found in network traffic.

Our proposed model balances cost and benefit trade-offs, but can still be solved quickly

enough to be used in a complex network environment. We show that the strategic opti-

mization benefit is the highest when the cost of producing honey flow is reasonable, which

is the most likely real application scenario, and the network defender should generate more

honey flows to cover the highly valued vulnerabilities. We extend the current game model

vii



by addressing that the attack distributes beliefs over various types of honey traffic, reflect-

ing the quality of the honey flows, indicating how hard it is for the attacker to distinguish.

In addition, the attacker needs to pay a cost to attack. This model further captures how

the honey traffic quality impacts attacks decision-making strategies. We show that high-

quality honey traffic makes it harder for the attacker to distinguish between real and honey

traffic.
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Chapter 1

Introduction

In recent years, the advent of Artificial Intelligence (AI) has rendered machines to be-

come smarter, increasingly capable and independent, influencing how we live and work.

One such example of developing AI algorithms is self-driving cars showing significant

promise in terms of safety and efficiency. The impact of Artificial intelligence is ex-

panding in numerous applications in various fields such as decision-making, economics,

healthcare, verification, security control, to name a few, making our life more comfortable

and convenient. However, AI’s advancement though beneficial, has raised some concerns

too; we are slowly witnessing the machines taking over jobs and thus putting humans out

of work. Furthermore, AI becomes an additional threat to our security. The human race is

now not only battling against human adversaries but also intelligent agents. But let’s not

be hasty; artificial intelligence is still in its infancy. AI algorithms are incredibly limited

and vulnerable in learning and decision-making in the dynamic and unknown environment

instead of true independent agents who can do these on their own.

Game theory, a branch of AI, studies the strategic interactions between different agents

to find the best decision-making solution in a context. It helps to analyze many situations

we may face in our lives, especially when equipped with limited resources to confront

attackers in an adversarial setting where the best outcome depends on optimal resource

allocation. Many game models are popular nowadays to analyze and solve multi-agent

interaction problems, such as Normal Form Game, Stackelberg Games, Bayesian Game,

Extensive-Form Games, etc. In this thesis, I focus on using decoy resources to ensure

maximum cybersecurity and investigate different game-theoretic models to determine the

defender’s optimal deceptive strategies while interacting with attackers.
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With the widespread growth of computer networks, the attackers are becoming more

sophisticated over time, and standard countermeasures are no longer enough to provide

network security. But deceiving the attackers can improve cybersecurity by introducing

uncertainty in a computer network. Cyber deception methods use deceptive decoy objects

like fake hosts (honeypots), fake network traffic, files, and even user accounts to counter

attackers in a variety of ways [1, 2, 3]. For instance, a honeypot is installed in a computer

network to create confusion for attackers, make them more hesitant and less effective

in executing further attacks. Also, it can help to gather information about the behavior

and tools of various attackers. Through it, the defenders can detect malicious activities

and actors in the network. However, deceptive objects’ effectiveness boils down to how

closely these objects can be designed to resemble the real objects, so they are not easily

identified and avoided. A critical problem in deploying a decoy object is that both real

host and decoy object may have observable features that may give the attacker the ability

to distinguish one another.

This thesis will present the first game-theoretic model called Honeypot Feature Selec-

tion Game (HFSG). It finds the optimal decisions for the defender who is trying to disguise

the identity of real and honeypots so that the attacker can not reliably distinguish between

them. Generally, honeypots are designed in such a way that the observable character-

istics simulate the real host properties. However, creating realistic honeypots is highly

expensive, sometimes impossible. Also, deceiving the attackers by using and adapting

honeypots (one-sided deception) is not adequate to secure a computer network. Therefore,

my first research question is:

Q1.1. How to model a framework by utilizing features deception to make effective

cyber decoys?

In the HFSG model, we introduce a two-sided deception approach where a defender

can modify system features by paying some costs to make the deception more convinc-

2



ing. Unlike many models of deception, we consider the possibility that the defender can

make changes to both the real and fake objects. This game model allows us to study cyber

deception’s strategic aspects against different adversaries under several practical assump-

tions where an adversary may or may not aware of the deception. Through it, we can

evaluate the cost involved in such deception, their benefits, and discern the abilities of the

players. Most importantly, it can answer how and when we should create decoy objects.

Our experiments show that applying deception always provide better benefit to the de-

fender rather than no deception. The efficacy of deception is related proportionally to the

number of features available to change. When objects provide more modification space to

the defenders, it creates more confusion for attackers in distinguishing the real hosts and

honeypots. We found that when the feature distributions become more informative, two-

sided deception provides a useful advantage over one-sided deception. The analyses also

show that two-sided deception is more likely to mislead naı̈ve attackers when the feature

distributions are similar between real and honeypots, but the opposite is true for a rational

attacker. However, a critical problem of two-sided deception modeling is that real hosts’

modification can affect network performance. Therefore, we need to be cautious in select-

ing the features of a real host’ for change. Now, my next research question is :

Q1.2. When should we consider employing the two-sided deception strategy for

concealing cyber decoys?

Generally, we avoid altering the real hosts’ features and only employing one-sided

deception; try to modify the honeypot to look like a real host. Also, there are some extreme

cases for both real hosts and honeypots where some features may not be possible to modify

at all. In this work, I try to identify those features that the defender should focus on

modifying to make the deception more useful, including real hosts’ features. Also, I seek

to find situations where deception is not the best solution because of the high costs of

creating a believable deception.

3



For the experiment, we set the modification costs of some features to infinity in the

HFSG model. The results show that if the same feature for the real host and honeypot is

unmodifiable and the feature distributions are highly dissimilar, then two-sided deception

provides minimal benefit to the rational attacker. But, when the features that cannot be

modified are different for the real and honeypot hosts, it is an excellent benefit for the

defender to use two-sided deception. The experiment also shows that when the feature

descriptions are more informative and the real features modification costs are high, the

two-sided deception has a small advantage over one-sided deception. But when the real

feature modifications are not too costly, the two-sided provides a noticeable improvement

in defenses, even the feature distribution difference is high.

The HFSG game model allows us to evaluate the effectiveness of cyber deception un-

der several different realistic assumptions about the costs and benefits of deception and

the abilities of the players. We identify cases where deception is highly beneficial, as well

as some cases where deception has limited or no value. We also show that in some cases,

using two-sided deception is critical to the effectiveness of deception methods. However,

one limitation of the model is that we analyzed the two-sided deception approach using

a small number of features. Also, the time and memory complexities of the game model

depend on the number of hosts, the number of features, feature modification options, and

the amount of sampling, which makes the model grow exponentially. Therefore, the fol-

lowing is my next research question :

Q2. How to extend and scale the HFSG model to solve much larger two-sided

problems with vast numbers of complex features?

Recently, adversarial machine learning models have shown great promise in generating

deceptive objects, and the most well-known approach is Generative Adversarial Networks

(GAN). The intuition of GAN is that the networks are playing a zero-sum game. Typi-

cally GANs are used in much larger problems with vast numbers of complex features and
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generate fake samples without modifying real inputs. On the other hand, adding small

perturbations to the original inputs could mislead machine learning models with high con-

fidence. Therefore, we use Adversarial Machine Learning methods to solve the scaling

problem of two-sided feature deception and and introduce an algorithm called TS-GAN.

We model the problem as a two-player minimax game between the defender and attacker.

The defender attempts to confuse the attacker by creating fake and adversarial samples,

the latter of which is created by modifying a real sample in such a way that the attacker

mispredict it as a fake sample. The attacker’s goal is to correctly distinguish between real

and fake samples to minimize his expected loss. On the other hand, the defender’s strategy

is to maximize the attacker’s expected loss.

For experiments, We investigate the impact of varying the similarity between the HFSG

and TS-GAN models. In the game model, two-sided deception has an advantage in highly

informative cases, and the utility of the defender grows more as the feature distributions

become more informative. We also see a similar pattern in the TS-GAN model: the at-

tacker loss is higher in two-sided feature manipulation than in one-sided feature manipu-

lation. Fake image quality isn’t good enough in the early stages of learning, resulting in

a more significant gap between real and fake samples. As a result, the attacker loss in the

TS-GAN is higher. The two-sided approach can help us figure out when and how to use

deception, and one conceivable application is for network traffic to be disguised as other

traffic using the models. There are many reasons to disguise network traffic to look like

other traffic; defenders may wish to generate fake traffic to support honeypots or conceal

the properties of real traffic on their networks otherwise. Attackers also may want to make

their network traffic appear similar to real traffic to avoid detection. Now, the question is:

Q3. How to deploy fake network traffic optimally to deceive an attacker in the

reconnaissance phase?

In a network, the most significant threat is posed by Advanced Persistent Threat (APT)

actors who use sophisticated techniques to compromise the network and remain inside for
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long periods to gather valuable data by network reconnaissance. These attackers seek to

stay undetected and gradually identify various network vulnerabilities from the collected

data by statistical traffic analysis. Now, I am moving to another problem where we use

honey flows (fake packets) to expose different fake vulnerabilities to deceive attackers in

the network reconnaissance phase. In this work, I model a Normal Form Game (NFG) that

characterizes how we should deploy honey traffic that potentially prevents an adversary

from acting on the existence of real vulnerabilities observed within network traffic.

The game model determines the optimal strategy for deploying honey flows fast enough

for realistic networks. The experiment shows that the strategic optimization value is the

highest when honey flow generation costs are moderate, which is the most likely real

application scenario. The results also show the network defender should create more

honey flows for disguising the high valued vulnerabilities that potentially divert the at-

tacker towards the less valued systems. However, this model does not consider the impact

of honeyflow quality on attackers’ decision-making strategies. Therefore, we extend the

existing model for further investigation where the attacker could distribute beliefs over

various types of honey traffic that reflects the quality of the honeyflows, demonstrating

how difficult it is for the attacker to detect the dissimilarity. We also take into account the

cost of an attacker in attacking a particular type of vulnerability. We find that the quality

of honey flow significantly impacts an attacker’s decision-making strategy. Honeyflows

that look like real traffic make it harder for attackers to distinguish between real and fake

vulnerability.
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Chapter 2

Related Works

2.1 Deception and Game Theory

Cyberspace is gradually becoming more vulnerable to attackers, but deceiving them can

improve cybersecurity. Decoy objects (e.g.honeypots) are deployed in computer networks

to analyze malicious activities of the attackers by trapping them [4, 5]. The advance tar-

geted attack where an attacker practices network reconnaissance can also be restrained by

using deception [3]. However, long time deception is not always possible, also costly. The

attackers may identify decoy objects by scanning and try to avoid interacting with them.

The deception interaction between a defender and an attacker is an increasing interest

of study to ensure maximum network security. For many years, the game-theoretic ap-

proaches have been very successful in finding optimal strategies for allocating deceptive

resources, sending fake signals, concealing attributes of a decoy, quantifying deception,

and detecting the goals of the attackers [6, 7, 8, 9, 10].

Many previous works have proposed different game models to practice deception and

information manipulation. Honeypot Selection Game [11, 9] tried to solve a key decision-

making problem of allocating honeypots to a network that maximizes security against a

rational attacker. In a real-world network, all systems are not equally important, for ex-

ample, a military database server is more valuable than a laptop. Therefore, the values of

honeypots should not always be the most or least while deploying. This model formulated

a zero-sum game to determine the defender’s optimal strategy of increasing the probability

that an attacker targets a honeypot rather than a real system. . The Cyber Deception Game

(CDG) [12] computes optimal deception strategy for disguising certain characteristics of
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the network hosts. This approach potentially introduces uncertainty to the network and

invalidates the attacker’s gathering information in the reconnaissance phase, but the model

is limited to zero-sum settings. Another limitation of this CDG model is the attacker’s

consideration as a rational, who is aware of the deception, but this is not a general case in

a real-world network. But, the CDG proposed in [13] considers both rational and naive

attackers, unawares of fixed preferences over observed network hosts, and determines so-

lutions for both. The Cyber Camouflage Games (CCG) [14] extended the CDG model by

considering a general-sum setting with addressing uncertainties in the defender’s knowl-

edge of the attacker valuations. Determining the optimal solution of the CCG is NP-hard,

but solvable by using an approximation algorithm.

Network traffic obfuscation is another way of deception to foil network reconnais-

sance. Encryption and adding a pad in traffic features at various levels such as ciphertext

formats, stateful protocol semantics, and statistical properties are effective ways of pre-

venting statistical traffic analysis [15, 16]. Sending fake traffic with real traffic can also

manipulate an adversary’s observation of a particular traffic pattern and efficiently cam-

ouflage network traffic [17]. However, this approach is usually inefficient and sometimes

incurs huge network overhead. While there are many approaches used to obfuscate net-

work traffic, the Water-filling algorithm is optimal in chaff-aided traffic obfuscation for

a given chaff budget [18]. The game-theoretic model is an efficient way of finding the

optimal strategy to deploy the proper amount of chaff with limited resources [19], but not

enough works were done before.
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Chapter 3

Background

3.1 Normal Form Game

Game theory is the study of decision-making problems where multi-agent interactions are

analyzed to produce optimal outcomes. There are several types of game models: single-

shot, sequential, cooperative, non-cooperative, finite, infinite, stochastic, and others. Nor-

mal form games are the most familiar type of game models for analyzing multi-agent

interactions, also the most fundamental representation in game theory.

Definition 1 (Normal Form Game [20]). A normal-form game is represented by a tuple

(N,A, u), where :

• N is a finite set of n players, indexed by i

• A = A1 × .... × An, where Ai is a finite set of actions available to player i. Each

vector a = (a1, ...., an) ∈ A is called an action profile;

• u = (u1, ..., un) where ui : A 7→ R is a real-valued utility (or payoff) function for

player i.

Normal form games are also known as matrix-form games where an n-dimensional matrix

represents an n-player game. Table (3.1) represents a matrix-form of a two-player normal

form game where each row is labeled with a possible strategy for player 1 (A and B),

and each column is labeled with a possible strategy for player 2 (C and D). If player 1

plays that row A and player 2 plays column C, player 1 gets payoff 1 and player 2 gets -1,
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Table 3.1: Example of a normal form game

Player 2

C D

A (−1,−1) (−4, 0)

Player 1 B (0,−4) (−3,−3)

respectively. The primary purpose of modeling a multi-player game is to find the optimal

strategies for each player that maximizes his expected payoff.

Definition 2 (Mixed strategy [20]). Let (N,A, u) be a normal-form game, and for any

set X let
∏

(X) be the set of all probability distributions over X . Then the set of mixed

strategies for player i is Si =
∏

(Ai).

In a pure strategy, a player plays a single action from his available actions, and the set of

strategies for each player is called a pure-strategy profile. But when a player sets some

probability distribution over his available actions, it is called a mixed strategy.

Definition 3 (Mixed-strategy profile [20]). The set of mixed-strategy profiles is simply the

Cartesian product of the individual mixed-strategy sets, S1 × ....× Sn.

The probability of an action ai that played under the mixed strategy si is denoted si(ai).

Definition 4 (Best response [20]). Player i’s best response to the strategy profile s−i is a

mixed strategy s∗i ∈ Si such that ui(s∗i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

The best response is a strategy that determines a player’s best possible outcome when the

other player’s strategy is given.

Definition 5 (Nash equilibrium [20]). A strategy profile s = (s1, ...., sn) is a Nash equi-

librium if, for all agents i, si is a best response to s−i.
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A Nash equilibrium is a solution concept in game theory where each player performs the

best response to all other players to reach a stable strategy profile means, and no player

would benefit by changing his strategy from that strategy profile.

3.2 Extensive Form Imperfect-Information Game

In an extensive form game, the choice nodes of a player are partitioned into information

sets when the player has imperfect information about the game condition, also the nodes

belong to the same information set are indistinguishable to him.

Definition 6 (Imperfect-information Game [20]). An imperfect-information extensive

form game is represented by a tuple (N,A,H,Z, χ, ρ, σ, I), where :

• N is a finite set of n players, indexed by i

• A is a (single) set of actions, where Ai denotes player ith available action set

• H is a set of non-terminal choice nodes

• Z is a set of terminal nodes, disjoint from H

• χ : H 7→ 2A is the action function, which assigns to each choice node a set of

possible actions

• ρ : H 7→ N is the player function, which assigns to each non-terminal node a player

i ∈ N who chooses an action at that node

• σ : H × A 7→ H ∪ Z is the successor function, which maps a choice node and

an action to a new choice node or terminal node such that for all h1, h2 ∈ H and

a1, a2 ∈, if σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2

• u = (u1, ..., un), where ui : Z 7→ R is a real-valued utility function for player i on

the terminal nodes Z
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• I = (I1, ..., In), where Ii = (Ii,1, ..., Ii,ki) is an equivalence relation on (i.e., a

partition of) {h ∈ H : ρ(h) = i} with the property that χ(h) = χ(h) and ρ(h) =

ρ(h) whenever there exists a j for which h ∈ Ii,j and h ∈ Ii,j

Figure 3.1: Imperfect-information extensive form game

Figure (3.1) represents an example of 2-player extensive form game with imperfect

information. In this game, the top most choice node is the only information set for player

1 where A and B are the action choices. Also, player 2 has one information set, which

includes the bottom choice nodes. Here, player 2 is uncertain whether player 1 chose A or

B while choosing between L and R.

Definition 7 (Pure strategies [20]). Let G = (N,A,H,Z, χ, ρ, σ, I) be an imperfect in-

formation extensive-form game. Then the pure strategies of player i consist of the Carte-

sian product
∏

Ii,j∈Ii χ(Ii,j)

In an imperfect information game, a pure strategy for a player is any action from all

possible actions in each player’s information set. In Figure (3.1), the pure strategies of

player 1 are {A, B} and of player 2 {L, R}.
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Definition 8 (Perfect recall [20]). Player i has perfect recall in an imperfect-information

game G if for any two nodes h, h
′

that are in the same information set for player i, for

any path h0, a0, h1, a1, h2, ..., hn, an, h from the root of the game to h (where the hj are

decision nodes and the a j are actions) and for any path hi0, a
′
0, h

′
1, a

′
1, ...., h

′
m, a

′
m, h

′

from the root to h
′

it must be the case that:

1. n = m

2. for all 0 ≤ j ≤ n, hj and h
′
j are in the same equivalence class for player i and

3. for all 0 ≤ j ≤ n, if ρ(hj) = i (i.e., hj is a decision node of player i), then aj = a
′
j

G is a game of perfect recall if every player has perfect recall in it

In a perfect recall game, no player forgets any information he knew about moves made so

far, precisely he remembers all information of his own moves.

Definition 9 (Sequential equilibrium [20]). A strategy profile S is a sequential equilib-

rium of an extensive-form game G if there exist probability distributions µ(h) for each

information set h in G, such that the following two conditions hold:

• (S, µ) = limn−→∞(Sn, µn) for some sequence (S1, µ1), (S2, µ2), ...,where Sn is

fully mixed, and µn is consistent with Sn (in fact, since Sn is fully mixed, µn is

uniquely determined by Sn); and

• For any information set h belonging to agent i, and any alternative strategy S
′
i of i,

we have that

ui(S|h, µ(h)) ≥ ui((S
′
, S−i)|h, µ(h))

In a mixed strategy perfect recall game, the sequential equilibrium induces a positive

probability on every node in a game tree in such that each player’s strategy maximizes his

expected utility in each information set, considering other players’ strategies are fixed.
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3.2.1 Solution Approach

The general approach of solving an extensive form game is to convert it to a normal form

game by considering all pure strategies. But, the number of pure strategies of a large size

extensive form game is often exponential. An alternative approach, called sequence form,

is similar to normal form but linear in the game tree’s size. The sequence form is a matrix

where a sequence of sequential moves replaces pure strategies. Instead of moving from

every information set, a player moves from a choice node by targeting a terminal node

of the game tree in such that it creates a path from the root to the terminal node where

each path goes through an information set of the player. This path represents a sequence

rather than a pure strategy. A player’s optimal strategy is to determine the probability

distributions for his sequences to maximize his expected utility while other players have

a fixed strategy. Therefore, the sequences can be characterized as variables to form the

linear equations that can be solved using linear programming (LP). The solution of an LP

results in the equilibria of a game.

3.3 Stackelberg Game

In the above-stated [Definition 1] normal form game, it is generally assumed that each

player is symmetrically knowledgeable about the conditions of a game and he plays ra-

tionally to reach the Nash equilibria. This hypothesis is, however, limited to real-world

scenarios. Stackelberg game, a popular non-symmetric game model, is used to analyze

the interactions between a defender and an attacker when the defender keeps his strategy

fixed. The game is proceeded by the defender making his move first as a leader who can

play any mixed strategy. As a follower, the attacker evaluates the defender’s strategy to

devise an optimal strategy to respond to the defender. In this game, both leader and fol-

lower have a possible set of pure strategies denoted as δ and α, respectively. Each has a

mixed strategy played over pure strategies using a probability distribution that is denoted

as x for the leader and y for the follower.
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Table 3.2: Example of a Stackelberg Game

Target Defender Attacker

Protected Unprotected Protected Unprotected

1 0 -5 -5 10

2 -10 -20 -40 20

3.3.1 Stackelberg Equilibria

Stackelberg Equilibrium is the Stackelberg game’s solution concept where the follower

observes the leader’s strategy x first then responds with strategy f(x) : x 7→ y which is

optimal with respect to his expected payoff. Generally, Strong Stackelberg Equilibrium

(SSE) and the Weak Stackelberg Equilibrium (WSE) are two types of Stackelberg equi-

librium. In SSE, the follower breaks ties in favor of the defender, where in the WSE, he

plays the worst strategy for the defender.

Definition 10 (Strong Stackelberg Equilibrium [21, 22, 23]) A pair of strategies (x, f(x))

forms a Strong Stackelberg Equilibrium (SSE) if it satisfies the following:

1. The leader plays a best-response: Ul(x, f(x)) ≥ Ul(x
′
, f(x

′
)), for all the leader

strategies x
′

2. The follower plays a best-response: Uf (x, f(x)) ≥ Uf (x, y
′
), for all the follower

strategies y
′

3. The follower breaks ties in favor of the leader Uf (x, f(x)) ≥ Uf (x, y
′
), for all the

follower strategies y
′
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Chapter 4

Concealing Cyber-Decoys using

Deception Games

4.1 Introduction

Both civilian and military computer networks are under increasing threat from cyber at-

tacks, with the most significant threat posed by Advanced Persistent Threat (APT) actors.

These attackers use sophisticated methods to compromise networks and remain inside,

establishing greater control and staying for long periods to gather valuable data and intel-

ligence. These attackers seek to remain undetected, and estimates from APT attacks show

that they are often present in a network for months before they are detected [24].

Cyber deception methods use deceptive decoy objects like fake hosts (honeypots), net-

work traffic, files, and even user accounts to counter attackers in a variety of ways [1, 2, 3].

They can create confusion for attackers, make them more hesitant and less effective in ex-

ecuting further attacks, and can help to gather information about the behavior and tools

of various attackers. They can also increase the ability of defenders to detect malicious

activity and actors in the network. This deception is especially critical in the case of APT

attackers, who are often cautious and skilled at evading detection [25]. Widespread and

effective use of honeypots and other deceptive objects is a promising approach for com-

bating this class of attackers.

However, the effectiveness of honeypots and other deceptive objects depends crucially

on whether the honeypot creators can design them to look similar enough to real objects,

to prevent honeypot detection and avoidance. This design goal especially holds for APT
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threats, which are likely to be aware of the use of such deception technologies and will

actively seek to identify and avoid honeypots, and other deceptive objects, in their recon-

naissance [25, 26]. A well-known problem with designing successful honeypots is that

they often have characteristics that can be observed by an attacker that will reveal the de-

ception [27]. Examples of such characteristics include the patterns of network traffic to

a honeypot, the response times to queries, or the configuration of services which are not

similar to real hosts in the network. However, with some additional effort, these charac-

teristics can be made more effective in deception (e.g., by simulating more realistic traffic

to and from honeypots).

We introduce a game-theoretic model of the problem of designing effective decoy ob-

jects that can fool even a sophisticated attacker. In our model, real and fake objects may

naturally have different distributions of characteristic features than an attacker could use

to tell them apart. However, the defender can make some (costly) modifications to either

the real or the fake objects to make them harder to distinguish. This model captures some

key aspects of cyber deception that are missing from other game-theoretic models. In par-

ticular, we focus on whether the defender can design convincing decoy objects, and what

the limitations of deception are if some discriminating features of real and fake objects are

not easily maskable.

We present several analyses of fundamental questions in cyber deception based on our

model. We analyze how to measure the informativeness of the signals in our model, and

then consider how effectively the defender can modify the features to improve the effec-

tiveness of deception in various settings. We show how different variations in the costs

of modifying the features can have a significant impact on the effects of deception. We

also consider the differences between modifying only the features of deceptive objects,

which can be referred to as one-sided deception or decoy deception only, and being able

to modify both real and deceptive objects (two-sided deception). While this is not always

necessary, in some cases, it is essential to enable effective deception. We also consider

deception against naı̈ve attackers, and how this compares to the case of sophisticated at-

17



tackers. Finally, we discuss how our model relates to work in adversarial learning and

how this model could be applied beyond the case of honeypots to, for example, generating

decoy network traffic.

4.2 Motivating Domain and Related Work

While the model we present may apply to many different types of deception and decep-

tive objects, we will focus on honeypots as a specific case to make our discussion more

concrete and give an example of how this model captures essential features of real-world

deception problems. Honeypots have had a considerable impact on cyber defense in the

30 years since they were first introduced [28].

Over time, honeypots have been used for many different purposes, and have evolved

to more sophisticated designs with more advanced abilities to mimic real hosts and to cap-

ture useful information about attackers [29, 30, 31]. The sophistication of honeypots can

vary dramatically, from limited low-interaction honeypots to sophisticated high-interaction

honeypots [29, 32, 4].

Here, we do not focus on the technological advancements of honeypots, but rather

on the game-theoretic investigation of honeypot deception. There have been numerous

works that emphasize this game-theoretic approach to cyber deception as well. Our work

builds upon the Honeypot Selection Game (HSG), described by Pı́bil et al. [33, 2]. Much

like the HSG, we model the game using an extensive form game. We extend the HSG

model with the introduction of features, which are modifiable tokens in each host that

enable more robust deceptions and allow to model more realistic settings. Several game-

theoretic models have been established for other cyber defense problems [34, 35, 36, 37],

specifically for deception as well [38, 39], however these consider attribute obfuscation as

the means of deception rather than use of decoy objects.

[40] notably investigates the use of honeypots in the smart grid to mitigate denial-of-

service attacks through the lens of Bayesian games. [41] also model honeypots mitigating
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denial-of-service attacks in a similar fashion but in the Internet-of-Things domain. [42]

tackles a similar “honeypots to protect social networks against DDoS attacks” problem

with Bayesian game modeling. These works demonstrate the broad domains where honey-

pots can aid. This work differs in that we do not model a Bayesian incomplete information

game.

A couple of works also consider the notion of two-sided deception, where the defender

deploys not only real-looking honeypots but also fake-looking real hosts. Rowe et al.

demonstrate that using two-sided deception offers an improved defense by scaring off

attackers [43]. Caroll and Grosu introduced the signaling deception game where signals

bolster a deployed honeypot’s deception [6]. Our work differs in that we define specific

features (signals) that can be altered and revealed to the attacker. Shi et al. introduce the

mimicry honeypot framework, which combines real nodes, honeypots, and fake-looking

honeypots to derive equilibria strategies to bolster defenses [44]. They validated their work

in a simulated network. This notion of two-sided deception is quickly becoming a reality;

De Gaspari et al. provided a prototype proof-of-concept system where production systems

also engaged in active deception [45].

4.3 Honeypot Feature Selection Game

We now present a formal model of the Honeypot Feature Selection Game (HFSG). This

game models the optimal decisions for a player (the defender) who is trying to disguise

the identity of real and fake objects so that the other player (the attacker) is not able to

reliably distinguish between them. Each object in the game is associated with a vector of

observable features (characteristics) that provides an informative signal that the attacker

can use to detect fake objects more reliably. The defender can make (limited) changes to

these observable features, at a cost. Unlike many models of deception, we consider the

possibility that the defender can make changes to both the real and fake objects; we refer

to this as 2-sided deception.
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The original feature vector is modeled as a move by nature in a Bayesian game. Real

and fake objects have different probabilities of generating every possible feature vector.

How useful the features are to the attacker depends on how similar the distributions for

generating the feature vectors are; very similar distributions have little information while

very different distributions may precisely reveal which objects are real or fake. The de-

fender can observe the features and may choose to pay some cost to modify a subset of

the features. The attacker observes this modified set of feature vectors and chooses which

object to attack. The attacker receives a positive payoff if he selects a real object, and a

negative one if he selects a honeypot.

To keep the initial model simple, we focus on binary feature vectors to represent the

signals. We will also assume that the defender can modify a maximum of one feature.

Both of these can be generalized in a straightforward way, at the cost of a larger and more

complex model.

4.3.1 Formal definition of Honeypot Feature Selection Game

We now define the Honeypot Feature Selection Game (HFSG) formally by the tuple G =

(Kr, Kh, N, vr, vh, Cr, Ch, P r, P h, τ, χ).

• Kr denotes the set of real hosts andKh denotes the set of honeypots. Altogether, we

have the complete set of hosts K = Kr ∪Kh. We denote the cardinalities of these

by k = |K|, r = |Kr|, h = |Kh|.

• [n] is the set of features that describe any given host. The sequence of feature val-

ues of a host is referred to as its configuration. Thus, the set of different possible

configurations is {0, 1}n.

• vr, vh denote the importance values of the real hosts and honeypots resp.

• Cr, Ch denote the cost vectors associated with modifying a single feature of a real

host and a honeypot resp., and are indexed by the set of features N . Thus, Cr
i is the
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cost of modifying the ith feature of a real host.

• P r : {0, 1}n → [0, 1] is probability distribution over feature vectors for real hosts

• P h : {0, 1}n → [0, 1] is the probability distribution over feature vectors for honey-

pots

• The collection of all possible information sets is denoted by τ .

• χ : {0, 1}kn × D → τ is a function that given the initial network and a defender

action, outputs the attacker’s resultant information set I ∈ τ . Here, D is the set of

defender actions.

An example of a small HFSG with 1 real host, 1 honeypot, and 1 feature for each

host is shown in Figure 4.1. The probability distributions P r(0) = P r(1) = 0.5, and

P h(0) = P h(1) = 0.5 are randomly generated for each feature combination.

4.3.2 Nature Player Actions

We assume that both players know the probability distributions P r and P h that define

how the feature vectors are selected by nature for real and honeypot hosts, respectively.

Nature generates the network configurations as per the distributions P r and P h. Thus,

the network state x = (x1, . . . , xk) is generated as per the joint distribution P x where

P x(x) =
∏r

i=1 P
r(xi) ×

∏k
i=r+1 P

h(xi). Both players can compute the distribution P x.

For example, in Figure 4.1 P x = 0.25 for network 0R1D is calculated from P r(0) = 0.5

and P h(1) = 0.5.

4.3.3 Defender Actions

The defender observes the network configuration x ∈ X , selected by nature as per prob-

ability distribution P x. Then he chooses an appropriate action d ∈ D, which is to change

at most one feature of any single host. Thus, D has nk + 1 different actions. This action
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Figure 4.1: The extensive form game tree with one real host, one honeypot and 1 feature

in each host. The importance value of real host is 10 whereas the modification cost of a

feature is 3. The same values for the honeypot are 5, 1 resp.
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results in a configuration x′ ∈ {0, 1}nk that the attacker observes, defining his information

set I ∈ τ as described previously. In the example of Figure 4.1, given the initial network

configuration 0R0D, the defender can alter a feature which results into 0R1D or 1R0D, or

make no change leading to 0R0D as the attacker’s observation.

4.3.4 Attacker Actions

The attacker observes the set of feature vectors for each network, but does not directly

know which ones are real and which are honeypot. Thus, any permutation of the host con-

figurations is perceived identically by the attacker. Hence, the attacker’s information set is

merely characterized by the combination of the host configurations and thus represented

as a multiset on the set of host configurations as the Universe. For example, in Figure 4.1,

the networks 0R1D and 1R0D belong to the same information set. Given the attacker’s

information set, he decides which host to attack. When indexing the attack options, we

write the information set as an enumeration of the k host configurations, and we assume a

lexicographically sorted order as a convention. Given this order, we use a binary variable

aIi to indicate that when he is in the information set I , the attacker’s action is to attack host

i ∈ K.

4.3.5 Utility Functions

A terminal state t in the extensive form game tree is characterized by the sequence of ac-

tions that the players (nature, defender, attacker) take. The utilities of the players can be

identified based on the terminal state that the game reaches. Thus, given a terminal state

t as a tuple (x, j, a) of the player actions, we define a function U(t) = U(x, j, a) such

that the attacker gains this value while the defender loses as much. That is, this function

serves as the zero-sum component of the player rewards. In particular, if the action a in the

information set χ(x, j) corresponds to a real host, then U(x, j, a) = vr, whereas, if it cor-

responds to a honeypot, then U(x, j, a) = −vh. Intuitively, the successful identification of
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a real host gives a positive reward to the attacker otherwise gives a negative reward that is

equal to the importance value of a honeypot. The expected rewards are computed by sum-

ming over the terminal states and considering the probabilities of reaching them. Finally,

the defender additionally also incurs the feature modification cost Cr
i or Ch

j if his action

involved modifying ith feature of a real host or jth feature of a honeypot respectively.

4.3.6 Defender’s Linear Program

We can solve this extensive form game with imperfect information using a linear program.

For solving this game in sequence form [46], we create a path from the root node to the

terminal node that is a valid sequence and consists of a list of actions for all players. Then

we compute defender’s behavioral strategies on all valid sequences using a formulated LP

as follows, where Ud and Ua are the utilities of the defender and the attacker. To solve

the program, we construct a matrix X[0 : 2kn] of all possible network configurations, and

then the defender chooses a network x ∈ X to modify. In network x, any action d of

the defender leads to an information set I for the attacker. Different defender’s actions in

different networks can lead to the same information set I ∈ τ . Then, in every information

set I , the attacker chooses a best response action to maximize his expected utility.
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max
∑
xεX

∑
jεD

∑
iεK

Ud(x, j, i) d
x
jP

xa
χ(x,j)
i (4.1)

s.t.
∑

(x,j):χ(x,j)=I

Ua(x, j, i)d
x
jP

x aIi ≥

∑
(x,j):χ(x,j)=I

Ua(x, j, i
′) dxjP

x aIi

∀i, i′ ∈ K ∀I ∈ τ (4.2)

dxj ≥ 0 ∀x ∈ X ∀j ∈ D (4.3)∑
jεD

dxj = 1 ∀x ∈ X (4.4)

∑
iεK

aIi = 1 ∀I ∈ τ (4.5)

The program’s objective is to maximize the defender’s expected utility, assuming that the

attacker will also play a best response. In the above program, the only unknown variables

are the defender’s actions D (the strategies of a defender in a network x ∈ X) and the

attacker’s actions aI . The inequality in Equation 7.4 ensures that the attacker plays his

best response in this game, setting the binary variable aIi to 1 only for the best response

i in each information set. Equation 4.3 ensures that the defender strategies in a network

x is a valid probability distribution. Equation 4.4 makes sure that all probability for all

network configurations sum to 1. Finally, Equation 4.5 ensures that the attacker plays pure

strategies.

4.4 Empirical Study of HFSG

The HFSG game model allows us to study the strategic aspects of cyber deception against

a sophisticated adversary who may be able to detect the deception using additional obser-

vations and analysis. In particular, we can evaluate the effectiveness of cyber deception

under several different realistic assumptions about the costs and benefits of deception, as
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well as the abilities of the players. We identify cases where deception is highly beneficial,

as well as some cases where deception has limited or no value. We also show that in some

cases, using two-sided deception is critical to the effectiveness of deception methods.

4.4.1 Measuring the Similarity of Features

One of the key components of our model is that real hosts and honeypots generate observ-

able features according to different probability distributions. The similarity of these distri-

butions has a large effect on the strategies in the game, and the outcome of the game. In-

tuitively, if out-of-the-box honeypot solutions look indistinguishable from existing nodes

on the network the deception will be effective without any additional intervention by the

defender. However, when the distributions of features are very dissimilar the defender

should pay higher costs to modify the features to disguise the honeypots. In some cases

this may not be possible, and the attacker will always be able to distinguish the real hosts

and honeypots.

Measuring the similarity of the feature distributions is a somewhat subtle issue, since

the defender can make changes to a limited number of features. Standard approaches such

as Manhattan distance or Euclidean distance do not provide a good way to compare the

similarity due to these constraints. We use a measure based on the Earth Mover’s Distance

(EMD) [47], which can be seen as the minimum distance required to shift one pile of earth

(probability distribution) to look like another. This measure can be constrained by the

legal moves, so probability is only shifted between configurations that are reachable by

the defender’s ability to change features.

In the experiments, we allow the defender to modify only a single feature in the net-

work and the EMD determines the minimum cost needed to transform a weighted set of

features to another where the probability of each feature configuration is the weight. The

ground dissimilarity between two distributions is calculated by the Hamming distance.

This distance between two distributions of equal length is the number of positions at which
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the comparing features are dissimilar. In other words, it measures the minimum number of

feature modification or unit change required to make two sets of feature indistinguishable.

We model the distance from moving the probability of one configuration (e.g., turning

[0, 0] into [0, 1]) to another by flipping of a single bit at a time with a unit cost of 1. This

can be seen visually in Figure 4.2 where we calculate the EMD of moving the honeypot’s

initial distribution into that of the real node’s initial distribution.

Figure 4.2: Earth Mover’s Distance process. a) Displays the initial feature configuration

probability distributions Pr and Ph and where to move slices of the distribution from Ph

and b) Shows the updated Ph after the conversion, resulting in a final EMD of 0.5.

In our experiments we will often show the impact of varying levels of similarity in

the feature distributions. We generated 1000 different initial distributions for the features

using uniform random sampling. We then calculated the similarities using the constrained

EMD and selected 100 distributions so that we have 10 distributions in each similarity

interval. We randomly select these 10 for each interval from the ones that meet this sim-

ilarity constraint in the original sample. This is necessary to balance the sample because

random sampling produces many more distributions that are very similar than distributions

that are further apart, and we need to ensure a sufficient sample size for different levels
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of similarity. we present the results by aggregating over the similarity intervals of 0.1 and

average ten results in each interval.

4.4.2 Deception with Symmetric Costs

Figure 4.3: Comparison of defender utility when the real host’s importance value a) dou-

bles that of the honeypot and b) equals that of the honeypot. Here we see one-sided

deception provides a comparable defense despite a high initial dissimilarity.
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Table 4.1: Parameters used in HFSG experiments. RIV denotes real system’s importance

value, RMC denotes real system’s feature modification cost, HpIV denotes importance

value of honeypot and HpMC denotes feature modification cost of honeypot. All numbers

are normalized to 1

Figure RIV
RMC HpMC

HpIV
F 1 F 2 F 1 F 2

4.3a 1.0 0.25 0.1 0.1 0.25 0.5

4.3b 1.0 0.25 0.1 0.2 0.1 1.0

4.4 (Both (A)) 1.0 0.25 0.1 0.1 0.2 0.5

4.4 (Both (B)) 1.0 0.5 0.2 0.1 0.2 0.5

4.4 (Both (C)) 1.0 1.0 0.5 0.1 0.2 0.5

4.5 (Exp-1) 1.0 0.1 ∞ 0.1 ∞ 1.0

4.5 (Exp-2) 1.0 0.1 ∞ ∞ 0.1 1.0

4.6 (Exp-1) 1.0 0.2 0.2 0.2 0.2 1.0

4.6 (Exp-2) 1.0 0.15 0.25 0.25 0.15 1.0

4.6 (Exp-3) 1.0 0.1 0.3 0.3 0.1 1.0

4.6 (Exp-4) 1.0 0.05 0.35 0.35 0.05 1.0

4.6 (Exp-5) 1.0 0.0 0.4 0.4 0.0 1.0

4.8 1.0 0.25 0.1 0.2 0.1 1.0
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Our first experiment investigates the impact of varying the similarity of the feature dis-

tributions. We also vary the values of real host and honeypot. As the similarity of the

distributions P r and P h decreases, we would expect a decrease in overall expected de-

fender utility. We can see this decrease in Figures 4.3a and 4.3b as we vary the similarity

measured using EMD. In Figures 4.3a and 4.3b, we compare the utility differences be-

tween an optimal defender that can only modify the features of the honeypot (one-sided

deception), an optimal defender that can modify features of both the honeypot and real

host (two-sided deception), and a baseline defender that cannot make any modifications

against a fully rational best response attacker.

In Figure 4.3a, the honeypot has the same importance value as the real host, while

in Figure 4.3b, the honeypot value is half of the real host. The first observation is that

in both cases the value of deception is high relative to the baseline with no deception,

and this value grows dramatically as the feature distributions become more informative

(higher EMD). In general, the defender does worse in cases where the hosts have different

values. Two-sided deception does have a small advantage in cases with highly informative

features, but the effect is small. Here, the costs of modifying the features are symmetric,

so there is little advantage in being able to modify the feature on either the honeypot or the

real host, since the defender can choose between these options without any penalty.
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Figure 4.4: Comparison of defender utility when the cost of modifying the real host fea-

tures is different than modifying the honeypot features.

To further investigate the issue of one-sided and two-sided deception, we fix the hon-

eypot features modification costs and increased real host modification costs as reflected in

Table 4.1. Here, we compare how increasing the real host’s feature modification negatively

affects the defender’s expected utility. As the cost for modifying the real hosts increases

relative to the cost of modifying honeypots, the defender must make more changes on hon-

eypots in order to maximize his utility. Altering the real system in this case is not feasible

and does not provide a good return on investment.

Traditionally network administrators avoid altering features in their real hosts on the

network and simply employ one-sided deception, attempting to alter the honeypot to look

like a real host. In the case where modifying a real host to look less believable might be be

too costly or even impossible, one-sided deception is an obvious choice as demonstrated

in Figure 4.4. However, when these real feature modifications are not too costly, we see

that two-sided provides a noticeable increase in defenses when the feature distributions are

increasingly dissimilar.
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4.4.3 Deception with Asymmetric Costs

Figure 4.5: Comparison of defender utility when some features cannot be modified.

While the results so far have suggested that one-sided deception may be nearly as effective

as two-sided deception, they have all focused on settings where the costs of modifying

features are symmetric for real and fake hosts. We now investigate what happens when

the costs of modifying different features are asymmetric. We start with the extreme case

where some features may not be possible to modify at all.

In our examples with two features, we can set the unmodifiable features for the real

and honeypot hosts to be the same or to be opposite. In Figure 4.5, we show the results

of the game when we set the modification costs of some features to infinity. If the same

feature for the real host and honeypot are unmodifiable, then there is little the defender

can do to deceive an intelligent attacker when they are highly dissimilar. However, when

the features that cannot be modified are different for the real and honeypot hosts, we see

a very different situation. In this case the defender benefits greatly from being able to use

two-sided deception, since he can avoid the constraints by modifying either the real or fake

hosts as needed.
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Figure 4.6: Impact of modification cost over various initial similarity parameters.

In our next experiment, we investigate less extreme differences in the costs of modify-

ing features. We set the costs so that they are increasingly different for real and honeypot

hosts, so modifying one feature is cheap for one but expensive for the other, but not impos-

sible. We show the results of using either one or two-sided deception for varying levels of
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initial feature distribution similarity in Figure 4.6. The specific costs are given in Table 4.1.

We see that there is very little difference when the initial distributions are similar; this is

intuitive since the attacker has little information and deception is not very valuable in these

cases. However, we see a large difference when the initial distributions are informative.

As the difference in the feature modification costs increases, the value of two-sided decep-

tion increases, indicating that this asymmetry is crucial to understanding when two-sided

deception is necessary to employ effective deception tactics.

Figure 4.7: Comparison of defender utility when increasing the number of features.

We also expect that the number of features available to the players will have a signifi-

cant impact on the value of deception. While the current optimal solution algorithm does

not scale well, we can evaluate the differences between small numbers of features, holding

all else equal. Figure 4.7. presents the results of the modeling HFSG with variable number

of features.We found that when the number of features is increased two-sided deception

becomes more effective than one-sided deception. The defender in this case has more op-

portunity to alter the network by changing the features and make it the more confusing

network to the attacker. However, the defender payoff decreases with more features due to

the constraint on how many features he can modify and the total cost of modifying these
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features.

4.4.4 Deception with Naı̈ve Attackers

Figure 4.8: Comparison of defender utility of a naı̈ve attacker versus a fully rational at-

tacker. Here, the naı̈ve attacker does not consider the defender’s utility or strategy at all.

The previous empirical results all assumed a cautiously rational attacker who actively

avoided attacking honeypots. This is a common practice, because fully rational actors

present the highest threat. In cybersecurity, these fully rational attackers might be an

experienced hacker or APT. However, these are not the only threats faced in cybersecurity

and we cannot assume that these attacking agents are always cautious and stealthy. For

example, many attacks on networks may be conducted by worms or automated scripts that

are much simpler and may be much more easily fooled by deceptive strategies.

We now consider a more naı̈ve attacker that does not consider the defender’s deception.

He observes the hosts on the network and assumes no modifications were made. Based on

all observations for a particular network he calculates his best response, but does predict

the defender’s optimal strategy. The results of the experiment are shown in Figure 4.8 and

the costs given in Table 4.1.
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The best case is when the defender can perform two-sided deception against a naı̈ve

attacker and the worst case is when the defender performs no deceptive actions against a

fully rational attacker. These two cases form an upper- and lower-bound as seen in Fig-

ure 4.8. Two-sided deception is more effective in this case when the feature distributions

are similar, while the opposite was true for a rational attacker. Overall, deception strategies

are much more effective against naı̈ve attackers.

4.5 Discussion and Further Applications

Our model gives a new and more nuanced way to think about the quality of different

deception strategies, and how robust they are to an adversary being able to see through

the deception. We can identify which features the defender should focus on modifying

to make the deception more effective, including features of the real objects. In addition,

we can correctly identify cases where deception is not the best solution because the costs

of creating a believable deception may be higher than the value they create. One of our

key findings is that the two-sided deception is an effective strategy when the situation is

asymmetric. One practical example is that activating on or off a particular process of a

host is more expensive than enabling or disabling a specific port. Moreover, running an

extra process on a real host may result in higher overhead than a honeypot. Therefore,

when the costs of feature modification differ, the modification space increase, resulting

in an effective deception practice. Finally, we conclude by discussing some connections

to adversarial machine learning and an additional case where our model could be applied

beyond honeypots.

4.5.1 Adversarial Learning

Recently, adversarial machine learning models have shown great promise in generating

deceptive objects, focusing mostly on images and video applications [48, 49, 50], though

they have the potential to generalize to many other types of deceptive objects. The most
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well-known approach is Generative Adversarial Networks (GAN) [51], which rely on a

pair of neural networks, one to generate deceptive inputs, and the other to detect differ-

ences between real and fake inputs. The intuition for these is often that the networks are

playing a zero-sum game, though the interpretation is vague and there is no formal game

presented. Our model can be viewed as a formalization of the game these types of ma-

chine learning algorithms are playing, though there are some differences. We specifically

consider the costs of modifying different features of the objects, as well as the possibility

of modifying the real distribution in addition to the fake one. On the other hand, GANs

typically are used in much larger problems with vast numbers of complex features, and

they do not find optimal solutions. Also, they use abstracted representations of the fea-

ture space in the learning process, and it is not clear exactly how this works or what the

implications are.

We believe that further developing and scaling this model to address more complex

feature deception problems will help to understand the theoretical qualities of GANs and

related methods better. In particular, we can better understand the limits that these AML

methods may have based on the costs and infeasibility of modifying features in some cases,

as well as giving optimal or bounded approximations of the solutions to small feature

deception games, which can then be used to provide clear quality comparisons for machine

learning methods that may scale to much more complex problems but without specific

quality guarantees.

4.5.2 Disguising Network Traffic

While we presented our model using honeypots as a motivating domain, there are many

other possible applications. We briefly discuss another example here to make this point.

There are many reasons to disguise network traffic to look like other traffic; defenders may

wish to do this to generate fake traffic to support honeypots or to conceal the properties of

real traffic on their networks otherwise. Attackers also may want to make their network
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traffic appear similar to real traffic to avoid detection.

While network traffic, in general, has a very large number of possible features, an in-

creasing fraction of traffic is encrypted, which hides many of the deep features of the data.

However, it is still possible to do an analysis of encrypted traffic based on the source, desti-

nation, routing, timing and quantity characteristics, etc. Our model can be used to analyze

how to optimize the properties of real and decoy traffic to improve the effectiveness of the

decoy traffic, based on the costs of modifying different features. For example, modifying

traffic to be sent more frequently will clearly have costs in increased network congestion,

while modifying some features of the real traffic may not be feasible at all (e.g., the source

and destination). Even simple versions of our model with relatively few features could be

used to optimize decoy network traffic in encrypted settings, where there is limited observ-

able information about the traffic. The unencrypted case allows for many more possible

features, so it would require larger and more complex versions of our model to analyze,

which would require more scalable algorithms to solve exactly using our model, or the

application of approximation methods and adversarial learning techniques.

4.5.3 Limitations

The time and memory complexities of the game model depend on n, k, feature modifi-

cation options, and the amount of sampling; which makes the model grow exponentially.

To avoid computational complexity, we tested our model with two machines, one each

of type (real and honeypot) with two features in each. Extending the model to include

more machine types and features is straightforward, although the optimization problem

will become much more difficult to solve. A scalable algorithm will need to be developed

to solve larger size games.
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4.6 Conclusions

Deception is becoming an increasingly crucial tool for both attackers and defenders in

cybersecurity domains. However, existing formal models provide little guidance on the

effectiveness of deception, the amount of effort needed to sufficiently disguise deceptive

objects against motivated attackers, of the limits of deception based on the costs of modify-

ing the features of the deceptive objects. Also, most analyses only consider how to make

deceptive objects look real, and not how real objects can be modified to look more like

deceptive ones to make the task of deception easier. We present a formal game-theoretic

model of this problem, capturing the key problem of disguising deceptive objects among

real objects when an attacker may observe external features/characteristics.

Our model of HFSG allows us to investigate many aspects of how a defender should

optimize efforts to conceal deceptive objects, which can be applied to honeypots, dis-

guising network traffic, and other domains. This also gives a more theoretical foundation

to understand the benefits and limitations of adversarial learning methods for generating

deceptive objects. We show that the symmetry or asymmetry of the costs of modifying

features is critical to whether we need to consider two-sided deception as part of the strat-

egy, and we also show that in some cases deception is either unnecessary or too costly to

be effective. Also, the sophistication of the attackers makes a great difference; in cases

with naı̈ve attackers deception is even more effective, even when considering a low-cost

strategy.
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Chapter 5

Two-Sided Feature Deception Using

Adversarial Learning

5.1 INTRODUCTION

Two-sided deception is a technique of making fake objects look real, and in many cases,

making real objects look fake is a better form of deception. This concept of two-sided de-

ception is rapidly gaining attention; De Gaspari et al. created a prototype proof-of-concept

system in which production systems engaged in active deception [45]. When a defender

uses real-looking honeypots and fake-looking real hosts, it provides better defense by scar-

ing away attackers [43]. Shi et al. offer the mimicry honeypot framework, which mixes

real nodes, honeypots, and fake-looking honeypots to enhance defenses where the find-

ings are simulated in a network [44]. Aggarwal et al. [52]conducted an exploratory study

based on human attackers, which found that human attackers are confused more when

masking feature characteristics of real and fake objects rather than using one-sided de-

ception. Miah et al. [53] proposed a Honeypot Feature Selection Game (HFSG) model in

which a defender can modify some features of either the real or decoy objects (at some

cost), making the decoys more effective. The game model determines optimal strategies

for generating fake and real objects, but the algorithm is not scalable for a large size game

model.

This work builds upon Honeypot Feature Selection Game (HFSG), described by Miah

et al. [53]. One limitation of the current HFSG model is that the two-sided deception

approach is applied on a small number of features. But we can connect the model to
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adversarial machine learning methods where two-sided deception could be applied to a

large set of features. It will help us find how to extend and scale the two-sided deception

approach to understand adversarial learning’s theoretical qualities. Recently, adversarial

machine learning models have shown great promise in generating deceptive objects and

the most well-known approach is Generative Adversarial Networks (GAN) [51, 54]. Typ-

ically GANs are used in much larger problems with vast numbers of complex features and

generate fake samples without modifying real samples. On the other hand, adversarial

attacks try to fool machine learning classifiers by changing original samples. The attack-

ers can generate adversarial samples by adding small perturbation to the original inputs

intent to mislead machine learning models. [55, 56]. They can also train their own models

with adversarial samples and transfer the samples to the victim model in order to pro-

duce incorrect output by the victim classifier. [57]. Currently, no method is fully effective

against adversarial examples. [58, 59]. We combine adversarial attack and GAN models

to analyze two-sided deception approach on a large scale.

In this work, we propose using Adversarial Machine Learning (AML) methods to solve

the problem of two-sided feature deception. We model the problem as a two-player min-

imax game between a defender and an attacker. The defender attempts to confuse the

attacker by creating fake and adversarial samples, the latter of which is created by mod-

ifying a real sample in such a way that the attacker mispredict it as a fake sample. The

attacker’s goal is to correctly distinguish between real and fake samples to minimize his

expected loss. On the other hand, the defender’s strategy is to maximize the attacker’s

expected loss. Our contributions are three-fold:

• We introduce the two-sided Generative Adversarial Network (TS-GAN), a novel al-

gorithm for capturing two-sided feature deception approach. Though, the algorithm

is limited to provide optimal solutions, but provide approximation solution for two-

sided feature deception problem.

• Our method can generate fake samples look likes as real samples and real samples
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looks like as fake samples when the feature space is complex and large. In a dynamic

learning environment, the technique can also be used as a robust classifier for the

binary classification problem.

• We present an empirical analysis of this model to show strategies for effectively gen-

erating adversarial examples that may be used for adversarial attacks successfully in

a semi-white box setting.

5.2 Background

5.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) is one of the most successful models for unsu-

pervised generative modeling where two players compete with each other: the generator

(G) tries to trick the Discriminator (D) into classifying its generated fake data as true

[54, 51]. It is a probabilistic model that uses noise variables z and observable variables x

for learning. The model corresponds to a minimax zero-sum game where two functions

can represent the two players in the game. Generally, in practice, both are implemented

using multilayer networks. To produce fake samples from the same distribution as the

real data x, the prior input noise variables, pz(z), are created to learn the generator’s data

distribution pg over x. The G generates a data distribution usingG(z; θg), where G is a dif-

ferentiable function define by a multilayer network with θg parameters. Similarly, D is also

a multilayer network can be defined by D(x; θd) where the θd are the model parameters.

The probability that x came from the data rather than pg is defined by D(x). In this model,

D is trained to maximize the probability of assigning the correct label to both training ex-

amples and samples from G. Simultaneously, G is trained to minimize log(1−D(G(z))).

Therefore, the value function V (G;D) of the minimax zero-sum game can be defined as

follows :

min
G

max
D

V (G,D) = Ex∼Pdata(x) [logD(x)] + Ez∼Pz(z) [log(1−D(G(z)))] (5.1)
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D and G compute their gradients simultaneously and adversarially in the above game, each

making one step in the gradient’s direction and repeating until neither can make progress.

Though GAN is theoretically zero-sum, the learning processes of D and G are different.

The global optimum of the minimax game model is reached when pg = preal, but this

might be computationally infeasible to achieve.

5.2.2 Adversarial Examples

Machine learning algorithms are frequently vulnerable to adversarial attacks. An adver-

sary can carefully add small perturbations to the original input data that can mislead the

machine learning models with high probability. He can even train his model with adversar-

ial samples and then transfer the samples to the victim model, causing the victim classifier

to provide inaccurate output. One popular technique to generate an adversarial example

with a given classifier is to alter the input in a way that increases the cross-entropy loss. If

an input x that is correctly classified by neural network h(x) and h∗(x) is the true class.

The adversarial learning algorithm then looks for a small perturbation to x, xadv = x+∆x,

such that h∗(x) 6= h(xadv). The value of ∆x should be small enough when added to x and

the difference between xadv and x should be almost imperceptible. The objective of the

learning algorithm is to minimize the probability assigned to the true label. For the neural

network h, network parameters θ, input data x, and corresponding true output ttrue, the

adversary determines the perturbation ∆x as follows:

∆x = argmax
r∼ρ

J(θ, x+ r, ttrue) (5.2)

Equation (5.2) is a optimization problem that maximizes the objective function J

where ρ is the adversary’s policy, a deterministic mapping from input x to the space of

bounded perturbations r ≤ λ.

While there are a many methods for adversarial examples, the L-BFGS algorithm [50]

generates an adversarial example xadv from a input x is as follows :

min||x− xadv||2+λJ(hθ(x
adv), ttrue) (5.3)
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The first term imposes a penalty of x for large perturbations, whereas the second imposes a

penalty when classification deviates from the target class ttrue. J denotes the loss function

between ttrue and the output of the classifier hθ(xadv). The model parameter is λ > 0.

For, a given input x, label and a fixed model, the fast gradient sign method [55] gen-

erates untargeted adversarial perturbations by performing one step in the gradient sign’s

direction with step-width ε as follows :

xadv = x+ ε sign(∆xJ(hθ(x
adv), ttrue)) (5.4)

This method determines an adversarial perturbation under L∞ norm where the norm

computes the maximum change to any of the coordinates.

5.3 Two-Sided Generative Adversarial Network

We can consider the two-sided adversarial learning problem from a game-theoretic per-

spective, the defender aims to generate fake and adversarial examples in order to minimize

its maximum possible loss against the best policy of the adversary. We modify the GAN’s

formulation to an adversarial training scenario in which the defender and adversary com-

pete in minimax game, with the attacker acting as the discriminator. We consider that the

two-sided Generative Adversarial Network (TS-GAN) consists of two parts, the attacker,

and the defender. The defender learns to create perturbation for a given input data as well

to generate fake data from a latent space. The attacker learns to be robust to the, real,

perturbed and fake data. Figure(5.1) shows the basic architecture of TS-GAN.

Now, we formulate our problems as follows: Let’s (x1, ......., xn) represent the training

instances, and Preal represent the uniform distribution across (x1, ...., xn). Here, (xi, yi)

is the ith instance in the training set, which is made up of feature vectors xi ∈ χ where

χ ⊆ Rn represents the feature space and yi corresponding real class label (1). Also, let

G(z1), ...., G(zr) be a collection of r examples from the generated distribution Pg that are

corresponding fake class label (0) and represents by (x′1, ...., x
′
n) where x′i ∈ χ. Similarly,
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Figure 5.1: Two-Sided Generative Adversarial Network Architecture

assume, O(x1), ...., O(xn) is a set of perturbation generated from (x1, ......., xn) where

xi + O(xi) = xadvi ∈ χ is the ith adversarial example, such that D(xadvi ) = t (target

attack) where t is the target class (0). The adversary’s learning goal is to learn a classifier

D : χ → Y from the domain χ to the set of classification outputs Y ∈ {0, 1}, where |Y|

represents the number of classification outputs. Now, we formally define TS-GAN, which

consists of a defender and an attacker like following.

5.3.1 Defender

The defender, we assume, contains two modules, both of which would be neural networks.

One of the networks is the generator that generates fake data which we represent as Gθ

with θ parameters. The Gθ uses latent space z from a l-dimensional spherical Gaussian

distribution Pg, then applies Gθ to h to create a fake sample x′ = Gθ(z) of the distribution

Pg. Also, it learns to estimate the distribution from which the training data is drawn to
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generate fake samples from that distribution Pg. The objective of the Gθ is to minimize

the probability of generated sample as fake by the attacker. Therefore, the loss functions

of the Gθ is specified as:

LG = −Ez∼Pz(z) [φ(1−Dθ(Gθ(z)))]

The defender’s second neural network is Obfuscator, which refers to Oθ with θ pa-

rameters. The Oθ takes the original instance x as its input and generates a perturbation

∆x = Oθ(x). The dimensions of the inputted data and outputted perturbed data of this

network are identical. Then x + Oθ(x) will be passed to the discriminator Dθ, which

will learn the samples from the real sample distribution using the obfuscated data. The

goal of Oθ is to make it so that a given adversarial example and generated fake samples

are indistinguishable by Dθ. To fulfill the goal of fooling Dθ’s learning, we perform an

iterative adversarial attack where the target model Dθ takes x + Oθ(x) as its input and

outputs its loss LDadv, which represents the distance between the prediction and the target

class t (targeted attack). Here, the discriminator Dθ aims to distinguish the adversarial

samples xadv = x + Oθ(x) from the fake data x′ . Note that the x′ is sampled from the

fake class, so as to encourage that the generated adversarial examples are close to the fake

class. Therefore, the loss for fooling the Dθ in a targeted attack is:

LDadv = Ex`D(Dθ(x+Oθ(x)), t) (5.5)

where `D is the loss function used to train the Dθ, and LDadv loss encourages the per-

turbed samples to be misclassified as target class t ( fake class label (0)).

Similar to the work on Carlini et. al. [60], we add a soft hinge loss on the L2 norm to

bound the magnitude of the perturbation as follows :

Lhings = Ex max(||O(x)||2−ε, 0) (5.6)

where ε represents for a user-defined bound. Finally, the full objective of Oθ can be ex-

pressed as:
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LO = LDadv + αLhings (5.7)

where α is used to regulate the relative importance of the Lhings, and LDadv is used to

produce adversarial samples, maximizing the attack success rate. Now, the defender has

two networks Gθ and Oθ which try to minimize the detection success of the attacker and

form a minimax game between the attacker and the defender.

5.3.2 Attacker

The attacker is a classifier would be a neural network that learns to classify input data- real,

fake, and adversarial samples. The architecture of the attacker is similar to the Discrimina-

tor model of GAN, except the discriminator learns from three types of data. Therefore, in

this model, we consider the discriminator as the attacker Dθ, where Dθ’s aim to maximize

the probability of assigning the samples in the correct class. In the case of adversarial

samples xadv generated by Oθ, the Dθ’s learning is to provide a higher probability that the

xadv comes from the real distribution. Simultaneously, the defender (Gθ and Oθ) tries to

minimize Dθ’s detection probability by generating fake and adversarial samples. There-

fore, the interaction between the defender and the adversary forms a minimax game and

the value function V (Gθ, Oθ;Dθ) of the game can be defined as follows:

min
Gθ,Oθ

max
Dθ

V (Gθ, Oθ;Dθ) =Ex∼Preal(x) [φ(Dθ(x))] + Ex∼Preal(x) [φ(Dθ(x+Oθ(x)))]

+ Ez∼Pz(z) [φ(1−Dθ(Gθ(z)))]

(5.8)

where φ is the measuring function, and the best strategy for the model is when the dis-

criminator provides output 1/2 for each x, x
′ and xadv. In the above game model, the

defender aims to minimize its maximum possible loss against the best policy of the adver-

sary. Therefore, we can rewrite the equation (5.8) from the game-theoretic perspective as

follows:

π∗, ρ∗ = argmin
p∼π

max
r∼ρ

Eπ,ρ[J(Mp(θ), χ,Y)] (5.9)
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in Equation (5.9) the defender tries to maximize the loss of the attacker by generating

fake and adversarial examples under a strategy ρ where the attacker’s goal is to take a

strategy π that minimizes his expected loss of detecting fake and real samples by changing

model parameters θ to a new Mp(θ). π∗, ρ∗ represents the best response for the attacker

and the defender, respectively.

In practice, traditional GAN training sometimes leads to mode dropping, where the

model can collapse due to the differences of the minimax and maximin solutions hypoth-

esized. Also, optimizing Dθ to completion in the inner loop of training is computationally

prohibitive, and on finite datasets, it would result in overfitting. But alternatively, opti-

mization of Dθ in k steps and Gθ in one step provides the approximate optimal solution.

Similarly, we train three networks simultaneously in our model, alternating between k

steps of optimizing Dθ, one step of optimizing Oθ, and s steps of optimizing Gθ to sta-

ble the model from Dθ’s rejecting samples with high confidence since they differ from

the training data. Figure (5.2) shows some fake and adversarial samples generated by the

TS-GAN model.

Figure 5.2: (a) MINST real digit samples for training (b) Fake digit samples generated by

Gθ (c) Adversarial digit samples generated by using Oθ and real digit (d) Perturbations

created by using Oθ
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5.4 Experiments

This section investigates our method’s empirical results and benefits on the MNIST dataset

[61], where each sample in the dataset is 28× 28-sized images of hand-written digits. We

used 18000 samples from the dataset as real data, while the generator generated the fake

data. We used (1024, 512, 256) hidden units for the Discriminator model, (256, 512, 1024)

hidden units for the Generator model, and (256, 512, 1024) hidden units for the Obfusca-

tor model to train three neural networks simultaneously where a rectified linear function

is applied in each layer. We used k = 1 and s = 2 for the optimization steps. We also set

the perturbation to have a magnitude between [-0.3, 0.3] in each of its components applied

each step of training of Obfuscator to generate adversarial examples. Then, we train the

networks using batches of size 32 for 300 epochs. We compare the performance of TS-

GAN and the GAN model, where the standard GAN model is considered as a one-sided

feature manipulation and TS-GAN as a two-sided feature manipulation binary classifica-

tion problem. Finally, we took the MINST test dataset, which comprises 10000 samples

for real class labels, and used a standard GAN with modified architecture and training data

samples to produce another 10000 samples for fake class labels.

5.4.1 Measuring the Similarity of Features

Our first experiment investigates the impact of varying the similarity between FSG game

model and TS-GAN model. We use Earth Mover Distance (EMD) [47, 53] as a similarity

metric in the FSG game model, where this game considers two features in each object.

In addition, for both real and fake objects, we utilize the importance value 1 and set the

feature modification cost to (0.25, 0.1). In Figure 5.3 (a), the first observation in the FSG

model is that two-sided deception has an advantage in highly informative cases, and the

utility of the defender grows more as the feature distributions become more informative

(higher EMD). In the TS-GAN model Figure 5.3 (b), we see a similar pattern: the attacker

loss is higher in two-sided feature manipulation than in one-sided feature manipulation.
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Fake image quality isn’t good enough in the early stages of learning, resulting in a larger

gap between real and fake samples. As a result, the attacker loss in the TS-GAN model

is higher. Because TS-GAN consists of two generative models that we consider as the

defender, we examine attacker loss rather than defender gain. However, after 150 epochs,

the loss of the attacker decreases.

Figure 5.3: (a) Comparison of defender’s utility in FSG game when modifying features

of both real and fake objects (two-sided) vs. only modifying features of fake objects

(one-sided) (b) Comparison of the attacker’s loss between TS-GAN (two-sided) and GAN

(one-sided)

Table (5.1) shows different evaluation measures [62] used to compare the overall per-

formance of the discriminator between TS-GAN and GAN methods. When the discrim-

inator gives output greater than or equal to 0.5 on the test data, we consider predicting

a real class label in binary classification, otherwise a fake class label. The results show

that the discriminator of TS-GAN outperforms traditional GAN considered in detecting

real and fake samples. The results show that the discriminator of TS-GAN outperforms

traditional GAN in detecting real and fake samples. The attacker (discriminator) learns in

the TS-GAN model over time from real, fake, and adversarial data, making the attacker

more robust in distinguishing real and fake samples.
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Table 5.1: Comparison of the discriminator’s performance between TS-GAN and GAN

Accuracy F1-Score Precision Recall

GAN 32.1 % 55.8 % 48.5 % 65.9 %

TS-GAN 59.4 % 75.9 % 73.5 % 78.5 %

5.4.1.1 Effectiveness of TS-GAN in Semi-Whitebox Settings

This experiment explores a possible way of using the adversarial examples of our TS-

GAN model where the Obfuscator creates the perturbations based on binary classification.

Figure 5.2 (d) shows some random perturbation generated by the Obfuscator. We applied

the adversarial examples in a semi-whitebox settings to study the effectiveness of the ad-

versarial attack where we assume that the adversary knows the training data source only.

The target model is a three-layer neural network with 1024, 512, and 256 hidden units,

with each layer using a rectified linear function with 0.3 dropouts. We trained the target

model with MINST dataset disjoint from the TS-GAN used dataset for 100 epochs where

the dataset contains 10 categorical classes, 0-9 digits.

We compare our attack by evaluating the success rate of fooling the target neural net-

work. As a baseline comparison, we used the fast gradient sign method (FGSM) and

projected gradient descent (PGD) attacks, which assume that the adversary is completely

aware of the target model’s architecture and training data source. For FSGM, we set

ε = 0.5 and for PDG, we select ε = 0.1 and search for 1e4 steps with 1000 iterations.

Despite the fact that our model is trained on binary classification, the findings in Table

(5.2) show that our model gives better attacks for classes 0, 1, and 3 than the PGD model.

The attack ratio, on the other hand, is not as good as the FSGM model. But, our model

successfully generates adversarial examples for all classes while comparing to the test

accuracy of the target model.
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Table 5.2: Adversarial attack success rate per class, the lower is better (the row labeled

’NN test’ refers to the target model’s test data accuracy, not any attack measure)

Class 0 1 2 3 4 5 6 7 8 9

NN test 97.8 98.4 96.0 96.3 96.7 96.8 96.9 95.7 93.7 96.5

FGSM 1.0 0.0 0.0 0.0 0.0 34.5 15.0 11.3 4.3 11.2

PGD L∞ 92.7 90.9 63.4 68.9 75.7 71.9 77.6 73.4 55.0 61.4

TS-GAN 87.1 77.0 97.2 60.8 91.7 87.4 88.1 87.1 76.9 94.1

5.5 Related Works

Several prior articles have discussed the concept of two-sided deception where adversaries

are confused by both real-looking fake objects and fake-looking real objects. Rowe et

al. show that adopting two-sided deception improves defense by terrifying attackers away

[43]. De Gaspari et al. introduced a proof-of-concept prototype system in which the pro-

duction system is equipped with active defense capabilities [45].The honeypot framework

is another powerful deception strategy for bolstering defenses because it integrates actual

hosts, honeypots, and fake-looking honeypots [44]. Caroll and Grosu introduced the sig-

naling deception game to determine the optimal equilibria strategies of sending signals

that improve the honeypot’s deception [6]. These studies, however, do not take into ac-

count feature deception, in which individual features can be manipulated and revealed to

the attacker.

Feature deception has been studied in many domains, primarily focusing on using cy-

ber security to conceal essential pieces of information. Network adversaries use tools like

Nmap to probe and analyze various target properties, but deliberately manipulating probe

reply packets can confuse and foil an attack effort [63, 64, 65]. Masking important fea-

tures of a real object make more difficult to detect, whereas adapting fake objects can lure

adversaries by strategically revealing fake information [66, 67]. Shi et al. introduce the
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feature deception game to optimally abstract decision-relevant information as features of

network systems where an adversary observes the features of each network system and

then could choose a particular system to attack [44]. Aggarwal et al. use HackIT to

change the observable features of fake and real systems, creating confusion for attackers

and improving cyberdefense when the attackers are human [52]. Miah et al. introduce the

Feature Selection Game to determine the optimal strategy for the defender to alter observ-

able characteristics of both real host and decoys so that the attackers can not distinguish

them apart [53]. We study two-sided feature deception using adversarial machine learning

to scale large-size feature manipulation problems.

The most well-known adversarial learning approach is Generative Adversarial Net-

works (GAN) [51] where two neural networks are used to generate deceptive inputs and

detect differences between real and fake inputs. Some studies have suggested using mul-

tiple generators and simultaneously training them help to focus on some modes of the

data space and learn better [68, 69]. However, the generator models in various GAN pri-

marily focus on generating fake samples that resemble real inputs while not manipulating

real samples. Many strategies are now prevalent to manipulate real inputs and generate

adversarial examples, in which carefully chosen perturbations to input data can result in

high-probability misclassification [50, 60, 70, 71, 72]. Goodfellow et al. introduce the fast

gradient sign approach, which applies a first-order approximation of the loss function with

respect to the input data and injecting perturbed data into their training dataset [55]. Xiao

et al. use generative adversarial networks to generate adversarial examples that can learn

and approximate the distribution of original instances [73]. In our work, we simultane-

ously use adversarial networks to generate fake and adversarial samples that can be used

to solve two-sided deception on a larger scale.
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5.6 Discussion and Further Application

The TS-GAN model introduces a new way of creating various decoys and camouflages.

Though the experiments of this work are based on image datasets where the features are

gray-scale pixel values, the model is not confined to that type of data only. This model can

generate fake samples of any type of data with properties similar to real training samples.

Simultaneously, it can identify the strategy of modifying the characteristics of real samples

to make detection more difficult.

One practical application of this model could be to prevent statistical traffic analysis

where an adversary can classify different applications and protocols from the observable

statistical properties, especially from the meta-data (e.g., packet size, timing, flow direc-

tions, etc.). Network traffic obfuscation is a technique where network traffic is manip-

ulated (e.g., adding dummy bytes with the packets to increase packet size) to limit the

attacker’s gathering of information by causing errors in the classification models. This

obfuscation approach is effective at reducing the risk of passive reconnaissance, where an

attacker gathers traffic and uses statistical analysis to categorize different patterns (e.g.,

protocols, applications, user information, etc.). Also, the network administrators can send

dummy packets that reveal different types of fake applications and protocol information

to introduce uncertainty to the network. Our model can generalize the overall deception

approach by creating dummy packets and obfuscating real traffic packets. Another appli-

cation could be generating honeyflows which is applicable to reveal the various type of

fake vulnerability (e.g., os vulnerability, service vulnerability, etc. ). An adversary can

analyze network packets’ features, such as TTL, Window size, Data Fragment, or ban-

ner information, to figure out specific operating system versions or service information.

Obfuscating these features and generating honey packets can delay the detection of real

vulnerabilities. Therefore, we can use these datasets to test our model and analyze more

practical experiments.
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5.7 Conclusion

Two-sided feature deception is an effective strategy for the defender for generating cyber

camouflages. Honeypot Feature Selection Game (HFSG) can provide the optimal solution

for creating real and fake samples, but it’s only suitable for handling when the sample size

is small. In this paper, we propose TS-GAN, a novel algorithm that can generate real-like

fake samples and fake-like real samples, potentially increasing the difficulty of detecting

real and fake samples for an adversary. Our algorithm can solve large and complex two-

sdied feature deception problem and provide approximation solution of the minimax two-

sided deception game. Moreover, the TS-GAN can be used as a robust binary classifier

and generating successful adversarial examples.

There are a number of ways that this work could be extended, including the fact that

the HFSG model is a one-shot game, therefore the attacker and defender’s learning cannot

be fully represented. The HFSG game can be modeled in a multi-round environment

and compared to TS-GAN learning. We could also use a different dataset or architecture

for measuring the performance of TS-GAN algorithm. However, our main focus in this

work is to develop a scalable algorithm that can solve large and complex two-sided feature

deception problems, not to provide better performance measures. Therefore, this solution

is sufficient to solve the problem that successfully meets our goals.
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Chapter 6

Vulnerability-Driven Decoy Traffic

Optimization

6.1 Introduction

Advanced Persistent Threats (APTs) are a significant concern for enterprises. In such sce-

narios, advanced adversaries take slow and deliberate steps over months and even years to

compromise critical resources (e.g., workstations and servers) in a network. A key step in

the kill chain of APTs is reconnaissance. Historically, reconnaissance is largely active, for

example using network port scanning to identify which hosts are running which services.

In response, many enterprises closely monitor their networks for scanning attacks.

Simultaneously, Software Defined Networking (SDN) technology is emerging as a

powerful primitive for enterprise network security. SDN offers a global perspective on

network communications between hosts. It can be used as an enhanced tool to identify

network scanning, provide flexible access control to mitigate attackers bypassing defenses

such as firewalls, and even prevent spoofing. However, the increased functionality within

network elements (e.g., switches) makes them a target for attack. A compromised SDN

switch is particularly dangerous, because it can perform reconnaissance passively. As a

result, defenders may have little to no signal that an APT is in process.

In our previous work, we discussed how the defenders can generate fake (honey) traffic

to support honeypots or to conceal the properties of real traffic on their networks by mod-

ifying various features(e.g packet size, timing, etc.) of a network packet for both real and

fake traffic. This work addresses the threat of passive network reconnaissance and pro-
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poses an application to use honey traffic: fake flows deceptively crafted to make a passive

attacker think specific resources (e.g., workstations and servers) exist and have specific

un-patched, vulnerable software. We consider that the adversary knows about the possi-

bility of honey traffic and uses game theory to characterize how best to send honey traffic.

For doing so, we demonstrate how a defender can either successfully deflect or deplete an

adversary using optimal amount of honey traffic.

We model this defender-attacker interaction as a two-player non-zero-sum Stackelberg

game. In this game, the defender sends honey traffic to confound the adversary’s knowl-

edge. However, if the defender sends too much honey traffic, the network may become

overloaded. In contrast, the adversary wishes to act on information obtained using passive

reconnaissance (e.g., a banner string indicating a server is running a vulnerable version of

Apache). However, if the adversary acts on information in the honey traffic, it will un-

knowingly attack an intrusion detection node and be discovered. Thus, the game presents

an opportunity to design an optimal strategy for defense. Our algorithmic solution finds

the optimal strategy for deploying honey flows that is fast enough to be used for realistic

networks. Also, we present an empirical evaluation of the performance of our game model

solutions under different conditions, as well as the scalability of the algorithm.

6.2 Motivation and Related Work

Enterprise network administrators are increasingly concerned with Advanced Persistent

Threats (APTs) where adversaries first obtain a small foothold within the network and

then stealthily expand their penetration over the course of months, sometimes years. The

past decade has provided numerous examples of such targeted attacks, e.g., Carbanak [74],

OperationAurora [75]. Such attacks require significant planning. Initially, adversaries

identify attack vectors including 1) vulnerable servers or hosts, 2) poorly configured se-

curity protocols, 3) unprotected credentials, and 4) vulnerable network configurations. To

do so, they leverage network protocol banner grabbing, active port scanning, and passive
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Table 6.1: Example of types of information used for attacks

Target Type Analysis Space Examples

Fingerprinting OS TTL, Packet Size, DF Flag,

SackOk, NOP Flag, Time

Stamp

Windows 2003 and XP

Server software, ver-

sion,

service type

Default banners Apache HTTP 2.2,

Windows Server 2003

Network topology,

forwarding logic

Flow-rule update frequency,

controller-switch communi-

cation

Lack of TLS adoption,

modified flow rules

Employee Credentials,

personal information

Server-client traffic header

and data

HTTP traffic, HTTPS

traffic

with weak TLS/SSL

monitoring [76, 77]. Examples of different types of desired information and corresponding

attacks are shown in Table 6.1.

SDN has the potential to address operational and security challenges large enterprise

networks [78]. They provide flexibility to programmatically and dynamically re-configuring

traffic forwarding within a network [79] and provide opportunities for granular policy en-

forcement [80]. However, these more functional network switches form a large target for

attackers as they can provide a foothold to perform data plane attacks using advanced re-

connaissance and data manipulation and redirection [81]. Using one or more compromised

switches, an adversary can learn critical information to mount attacks, including network

topology and software and hardware vulnerabilities [82, 83].

Deception is an important tactic against adversary reconnaissance, and there have

been a variety of different approaches that apply game-theoretic analysis to cyber decep-
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tion [84]. Many of these previous works have focused on how to effectively use honeypots

(fake systems) as part of a network defense [6, 85, 33, 9]. This has included work on

signaling games where the goal is to make real and fake systems hard to distinguish [53].

Work on security games (including games modeling both physical and cybersecurity) fo-

cuses on deception to manipulate the beliefs of an attacker [86, 87, 65, 88]. Another

research [12] proposes a game model of deception in the reconnaissance phase of an at-

tack, though they do not consider honey flows. Stackelberg game models have been used

to find optimal strategies for cyber-physical systems [89].

6.3 System Model Overview

Our proposed game-theoretic model is based on a deception system [90] that could mis-

lead or delay the passive reconnaissance by an adversary. The system provides this de-

ception using honey traffic that is precisely controlled by the defender. Traditionally, a

network flow is defined as a 5-tuple: source IP, source port, destination IP, destination

port, and protocol (e.g., TCP). For simplicity, we assume honey flows include network

flows in both directions to simulate real network communication.

Honey flows can fake information in network flow identifiers. For example, a honey

flow can attempt to make the adversary believe a non-existent host has a specific IP ad-

dress, or a host is running a server on a specific port. Due to the flexible packet forwarding

capabilities of SDN, the defender can route honey flows through any path it chooses, e.g.,

to tempt an adversary that has compromised a switch on a non-standard path. Honey flows

can fake information in the packet payload itself. For example, network servers often re-

spond with a banner string indicating the version of the software, and sometimes even the

OS version of the host. Attackers often use this banner information to identify unpatched

vulnerabilities on the network. Honey flows can simulate servers with known vulnerabil-

ities, making it appear as if there are easy targets. If at any point the adversary acts on

this information (i.e., connects to a fake IP address), the system will redirect the traffic to
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an intrusion detection node. Since the intrusion detection node does not normally receive

network connections, the existence of any traffic directed towards it indicates the presence

of an adversary on the network.

6.3.1 Threat Model

The adversary’s goal is to compromise networked resources, e.g., workstations and servers,

without detection. The adversary does not know what hosts are on the network or which

hosts have vulnerabilities. It must discover vulnerable hosts using network reconnaissance.

The adversary assumes the defender has deployed state-of-the-art intrusion detection sys-

tems that can identify active network reconnaissance such as network port scanning. How-

ever, we assume the adversary has gained a foothold on one or more network switches (an

upper-bound of which is defined by the model). Using this vantage point, the adversary is

able to inspect all packets that flow through the compromised switches. In doing so, it can

learn (1) network topology and which ports servers are listening to by observing network

flow identifiers, (2) about the installed software versions by observing server and client

banner strings. We assume the adversary can map between banner strings and known vul-

nerabilities and their corresponding exploits. We conservatively assume this mapping can

occur on the switch, or can be done without the knowledge of the defender. The adversary

also has the capability to initiate new network flows from the switch while forging the

source IP address, as response traffic will flow back through the compromised switch and

terminate as if it was delivered to the real host. Finally, we assume the adversary is rational

and is aware of the existence of the deception system and that honey traffic may be sent to

fake hosts. However, the adversary does not know the distribution of honey traffic.

We assume the defender’s network contains real hosts with exploitable vulnerabilities.

The defender is aware of those. For example, the defender’s inventory system may indicate

the existence of an unpatched and vulnerable server, but due to production requirements,

the server is not yet patched. We further assume the defender can identify valuations of
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each network asset and approximate the valuation of the assets to the attacker (e.g., domain

controllers that authenticate users are valuable targets).

6.4 Game Model

An important question we must answer to deploy deceptive system effectively is how to

optimize the honey traffic created by the system, including how much traffic to create of

different types. This decision must balance many factors, including the severity of differ-

ent types of vulnerabilities, their prevalence on the network, and the costs of generating

different types of honey flows (e.g., the added network congestion). In addition, a sophis-

ticated APT attacker may be aware of the possible use of this deception technique, so the

decisions should robust against optimal responses to honey traffic by such attackers. Fi-

nally, we note that many aspects of the environment can change frequently; for example,

new zero day vulnerabilities may be discovered that require an immediate response, or the

characteristics of the real network traffic may change. Therefore, we require a method for

making fast autonomous decisions that can be adjusted quickly.

We propose a game theoretic model to optimize the honey flow strategy for deception.

Our model captures several of the important factors that determine how flows should be

deployed against a sophisticated adversary, but it remains simple enough that we can solve

it for realistic problems in seconds (see Section 6.5 for details) allowing us to rapidly adapt

to changing conditions. Specifically, we model the interaction as a two-player non-zero-

sum Stackelberg game between the defender (leader) and an attacker (follower) where the

defender plays a mixed strategy and the attacker plays pure strategy. This builds on a large

body of previous work that uses Stackelberg models for security [91], including cyber

deception using honeypots [33].
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Table 6.2: Game Notation

d defender

a attacker

Vi ∈ V set of i types of vulnerabilities in

the network

Ri number of real flows indicating Vi

Hi upper bound on the number of

honey flows indicating Vi

Φij action of selecting j ∈ [0, Hi]

honey flows for Vi

Φ defender’s mixed strategy as

the marginal probabilities over

{Φi0, . . . ,ΦiHi}

Ci cost of creating each honey flow

that indicates Vi

υa,ri υa,hi the value the attacker gains from

attacking a real or fake flow of type

Vi

υd,ri υd,hi the value the defender loses from

an attack against a real or fake flow

of type Vi

ai denotes the action of attacking a

flow of type Vi where a0 is the no-

attack action, yielding 0 payoff

We now formally define the strategies and utilities of the players using the notation
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listed in Table 7.1. We assume that the defender is using a deceptive system as a mitigation

for a specific set of i vulnerabilities that we label Vi. Every flow on the network indicates

the presence of at most one of these types of vulnerabilities in a specific host. The real

network traffic is characterized by the number of real flows Ri that indicate vulnerability

type Vi. The pure strategies for defender are vectors that represent the number of honey

flows that are created that indicate each type of vulnerability Vi; we write Φij to represent

the marginal pure action of creating j flows of type Vi. These fake flows do not need

to interact with real hosts; they can advertise the existence of fake network assets (i.e.,

honeypots). The defender can play a mixed strategy that randomizes the number of flows

of each type that are created, which we denote by Φ. To keep the game finite we define

the maximum number of flows that can be created of each type as Ri. The attacker’s pure

strategy ai represents choosing to attack a flow of type Vi, or not to attack. We assume

the attacker cannot reliably distinguish real flow and honey flow, so an attack on a specific

type corresponds to drawing a random flow from the set of all real and fake flows of this

type.

The utilities for the players depend on which vulnerability type the attacker chooses,

as well as on how many real and honey flows of that type are on the network. An attack on

a real flow will result in a higher value for the attacker than on a honey flow of the same

type, and vice versa for the defender. Specifically, if the attacker chooses type Vi, it gains

a utility υa,ri , which is greater than or equal to the value for attacking a honey flow of the

same type υa,hi (which may be negative or 0). We assume that this component of the utility

function is zero-sum, so the defender’s values are υd,ri = −υa,ri and υd,hi = −υa,hi . The

defender’s utility function includes a cost term Ci that models the marginal cost of adding

each additional flow of type Vi (for example, the additional network congestion which can

vary depending on the type of flow). If the defender plays strategy Φ and the attacker

attacks the Vi, the defender’s expected utility is defined as follows:

Ud(Φ, i) = P r
i υ

d,r
i + (1− P r

i )υd,hi − Ch (6.1)
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Here, P r
i denotes the probability of attacking a vulnerability of type Vi which can be

calculated as follows:

RSMN(mc, P ) =
∑

j∈{0,...,Hi}

Φij(Ri/(j +Ri))

The overall cost Ch for playing Φ is given by Equation 7.1:

Ch =
∑
i∈V

∑
j∈{0,...,Hi}

(Φij × j × Ci)

Analogously, for the attacker the expected utility is given by:

Ua(Φ, i) = P r
i υ

a,r
i + (1− P r

i )υa,hi (6.2)

6.4.1 Game Example

Consider a network with two types of vulnerabilities. Let the values be υa,r = (10, 20), and

υa,h = (−5,−10), and the cost of creating honey flow indicating each type of vulnerability

is C = (1, 0.5). The total number real flows indicating each type of real vulnerability is

R = (5, 5), and the upper bound on honey flows is H = (2, 3). Thus at most two honey

flows of 1st vulnerability type and three honey flows of 2nd vulnerability type can be

created. Now, consider if the defender plays the following strategy Φ:

In Φ the defender creates one honey flow 50% of the time and two honey flows 50%

of the time with type 1 vulnerability. The defender also creates three honey flows 100% of

the time type 2 vulnerability. The attacker’s best response is to attack vulnerability type 2

with expected utility Ua(Φ, 2) = 8.75, and the defender utility is Ud(Φ, 2) = −11.75.
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6.4.2 Optimal Defender’s Linear Program

Our objective is to compute a Stackelberg equilibrium that maximizes the defender’s ex-

pected utility, assuming that the attacker will also play the best response. To determine

the equilibrium of the game, we formulate a linear program (LP) where the attacker’s pure

strategy a is a binary variable. We create a variable for each defender’s pure strategy Φi,j ,

the action of creating j honey flows for Vi. The following LP computes the defender’s

optimal mixed strategy for each type of vulnerability under the constraint that the attacker

plays a pure-strategy best response:

max
i∈V

Ud(Φ, i) ai (6.3)

s.t. ai ∈ {0, 1}, Φij ∈ [0, 1]

Ua(Φ, i) ai ≥ Ua(Φ, i′) ai ∀ i, i′ ∈ V (6.4)∑
j∈{0,...,Hi}

Φij = 1 ∀Φi ∈ Φ (6.5)

∑
i∈V

ai = 1 (6.6)

In the above formulation the unknown variables are the defender’s strategy {Φi0, . . . ,ΦiHi
}

for each Φi ∈ Φ and the attacker’s action ai. Equation 7.3 is the objective function of the

LP that maximizes the defender’s expected utility. The inequality in Equation 7.4 ensures

that the attacker plays a best response. Finally, Equation 7.6 forces the defender strategy

to be a valid probability distribution.

6.5 Experiments and Solution Evaluation

Our experiments focuses on evaluating the solution quality of the proposed Stackelberg

game model for optimizing honey flows compared to some plausible baselines, 1) not

generating honey flows at all, 2) using a uniform random policy for generating honey
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flows. We average the results over 100 randomly generated games, each with 5 types

of vulnerabilities. We set the number of real flows for each type to 500 and the upper

bound on the number of honey flows for each type is uniform randomly generated from

[500,1000]. Values are described in the caption, and we vary the costs of creating flows as

shown in the Figure 7.4.

Figure 6.1: Comparison of defender utility when the defender uses different values: a) the

value of attacking a fake vulnerability is zero and a real is 1 b) the value of attacking a

fake vulnerability is the same as real value and the values are randomly generated from

[0.5, 1.0].

The results in Figure 7.4 show that the game theoretic solution significantly outper-
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forms the two baselines in most settings, demonstrating the value of optimizing the honey

flow generation based on the specific scenario. We also note that the cost has a significant

impact on the overall result; with a high cost the game theories solution is similar to not

generating flows at all (since they are not very cost effective). Random honey flow gener-

ation can be detrimental for the defender. With a low cost, the performance of the game

theoretic solution is similar to the uniform random policy; since flows are so cheap it is

effective to create a very large number of them without much regard to strategy. With in-

termediate costs the value of the strategic optimization is highest, which is the most likely

scenario in real applications.

In our second experiment we consider vulnerabilities with different values and exam-

ine the variation in the optimal solution as we vary the number of real flows. We use 5

vulnerabilities with the values of the real systems (0.8, 0.5, 0.9, 0.6, 1.0) and attacking any

fake system gives 0. The cost is 0.0005 for all types. The results in Figure 6.2 show that

the defender’s strategy is to create more honey flows for the high valued vulnerabilities.

As the number of real flows increases the cost of adding flows to create a high ratio is

substantial and the overall number created drops for all types.

Figure 6.2: Defender’s optimal strategy as number of real flows varies.
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6.5.1 Solution Analysis

We now analyze how the ratio of honey flows to real flows changes in the optimal solution

as we change the number of real flows. In Figure 6.3, the network setup consists of four

vulnerabilities with values of (10, 20, 30, 40) and fake flows with values of (9, 18, 27,

32). The cost of generating each honey flow is 0.1. We show the defender’s expected

utility as we increase the ratio of honey flows to real flows. Each line represents a different

number of real flows in the original game. We see that the defender utility increases as we

add honey flows, but only up to a point; when the marginal value is less than the cost the

optimal solution is to stop adding additional flows. We see this in the shape of the curves.

Figure 6.3: Utility with varying honey flow ratios

6.5.2 Scalability Evaluation

In a practical application of this model we would need to be able to calculate the optimal

strategy quickly, since the network may change frequently leading to different game pa-

rameters. For example, the number of real flows will change over time, as will the hosts in

the network. The values of traffic and vulnerabilities, and the specific vulnerabilities we
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are most interested in can change also (e.g., due to the discovery of new vulnerabilities).

We evaluate the scalability of the basic LP solution for this game as we increase the size

of the game in two key dimensions: 1) increasing the number of vulnerability types, and

2) increasing the number of flows.

Figure 6.4: Comparison of computational time when a) varying the number of vulnerabil-

ities; b) varying the number of honey flows

We randomly generate games holding the other parameters constant to evaluate the
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solution time. The results are shown in Figure 6.4. Though the solution time increases

significantly as we increase the complexity of the game, we were able to solve realistic

size games with a large number of flows and vulnerability types of interest within just

a couple of seconds using this solution algorithm. This signifies that we can apply this

to optimize honey flows in realistic size networks with a fast response rate; with further

optimization we expect that the scalability could be improved significantly beyond this

basic algorithm.

6.6 Conclusion

In this work, we use deceptively crafted honey traffic to confound the knowledge gained

by adversary through passive network reconnaissance. We defined a Stackelberg game

model for optimizing the quantity and type of honey flows to create. This model balances

cost and value trade-offs in the presence of a sophisticated attacker, but can still be solved

fast enough to be used in a dynamic network environment. We have evaluated this model

by simulations that explore the properties of the game theory solutions.

There are a number of ways that this model could be improved, including incorporat-

ing network structure and variable host values into the analysis, and allowing for more

overlap between vulnerabilities and flows (e.g., flows with more than one vulnerability).

We can consider additional types of honey traffic, such as modifying real flows in decep-

tive ways. However, these may come with significantly increased computational costs for

finding solutions, so we will need to develop faster algorithms to make solving these more

complex models practical for a real implementation.
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Chapter 7

Honeyflow Optimization based on

Adversarial beliefs

7.1 Introduction

Cyber deception techniques using decoy objects can effectively reduce the quality of the

hostile reconnaissance by providing false information to attackers. Specifically, honey-

pots are commonly applied to enhance network security. Network defenders install fake

hosts (honeypots) to mislead attackers and make them hesitant to continue their additional

attacks. They generate fake traffic to support honeypots or conceal natural traffic proper-

ties on their networks. Specifically, sending fake traffic can invalidate attackers’ gathering

information in the passive reconnaissance phase and confuses adversaries in identifying

network vulnerabilities. However, generating fake traffic that mimics real traffic and oper-

ating them is challenging.

Recently, the Generative Adversarial Networks (GAN) [51] model has shown great

promise in generating deceptive objects, focusing primarily on images and video applica-

tions. The model relies on pair of neural networks: generator and discriminator. Typically,

the generator is trained to map from a latent space to a particular data distribution, and

the discriminator distinguishes candidates produced by the generator from the true data

distribution. The objective of the trained generator is to increase the error rate of the

discriminator where the networks plays a zero-sum game in between them.

The previous chapter discussed how to deploy honeyflow to delay cyber attacks and

a game model that provides the optimal solution for honey flow deployment. However,
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we didn’t go over how to make honeyflow or how the quality of honeyflow affects the

attacker’s decision-making. In this chapter, we considers the GAN-based model used

to mimic a real network flow called honeyflow to mislead attackers. Specifically, hon-

eyflows carry fake information, such as devices’ vulnerabilities, in a network. To optimize

the defender’s honey traffic generation strategy while considering an adversary maintains

varying beliefs about different types of real and honey flows, we present a two-player non-

zero-sum Stackelberg game model. The attacker’s belief reflects the defender’s ability to

create realistic deceptive honeyflow.

In the following sections, we will first discuss the network configuration briefly. Then

we will discuss the basic deception architecture. After that, we will present the belief-

based honeyflow game model. Finally, we will discuss the empirical results of the game-

theoretic solution.

7.2 Network Configurations

We consider an SDN-based enterprise network consisting of servers, workstations, Open-

flow switches, routers, and logically or physically connected. In addition, the network

includes fake hosts (e.g., honeypots) to enhance cyber security. The main objective of

the honeypot is to attract attackers’ attention and protect actual hosts. In the network

topology, any host can be specified as a node in the network, where each node might

have pre-existing vulnerabilities in OS and software. Nodes that have vulnerabilities are

generally exploitable. The defender’s inventory system may indicate the existence of an

unpatched and vulnerable server, but due to production requirements, some devices are

not yet patched. In addition, zero-day attacks are challenging to identify and prevent for

the defender. Our model considers the vulnerability value to represent how difficult is to

compromise a host for an attacker when the host contains a particular type of vulnerabil-

ity. Every host in the network obtains a vulnerability value based on its actual situation,

such as the OS type and application versions. For example, suppose a host deploys an
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old version of OS or applications. In that case, it will get a relatively high vulnerability

value, which means the attacker can exploit it with less effort or resources. Additionally,

the same type of vulnerability in differently valued hosts can cause different costs to the

defender. We assign an importance value to each host from the perspective of the defender

and are determined by the type of devices (e.g., servers, laptops, and IoT devices) and the

roles of the device owners (e.g., CEO or officer). For example, the server or database in the

SDN network should be more valuable than a laptop that has no confidential information.

Assumption: We consider that the attacker attempts to identify targets based on the

communications between clients and servers. Assume the attacker has control of at least

one compromised switch and can only capture packets and execute necessary analysis

during the reconnaissance phase. We assume the attacker has the necessary processing

power to analyze its target information, including vulnerabilities and importance values,

based on the observed network flows.

The trusted computing base (TCB) includes the system defender (SDN controller or

a separate trusted server) and the southbound network between the SDN controller and

SDN switches. We do not assume SDN switches are trustworthy, but we assume that not

all the switches are compromised. We focus on passive traffic monitoring without dis-

cussing Openflow switch compromise methods and other malicious actions in the SDN

environment. In addition, we only consider TLS-protected TCP communications. How-

ever, research shows that encrypted web traffic can leak information through packet length,

packet timing, web flow size, and response delay.

7.3 Deception Architecture

A network administrator must monitor network data to keep the network running smoothly

and efficiently. Therefore, monitoring and capturing specific traffics passing through the

network, especially vulnerable servers, is vital before implementing honey flow. Currently,
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sniffing tools are available to sort out vulnerable traffics and a defender’s observation might

include following:

• Normal Traffic Flows: This observation contains all the information that the SDN

controller and network administrator can know, such as the flow rules and the amount

of network flows.

• Honey Traffic: The defender has knowledge about all the information about the

honey traffic, including the path, amount and contained misinformation of all the

honey traffic.

• Partial Misbehavior: we assume if attacker trust the misinformation in honey traffic

and deploy attacks based on the misinformation, the defender can detect them.

• System Security Situation: the defender can know the security situation that is in-

troduced in the node model.

Based on the observations, the defender needs to determine the optimal deception strate-

gies, including how much honey flow to develop and how many fake hosts to install.

Generally, the network utilization is not near-maximum capacity during regular operation.

However, exceeding honey traffic may cause congestion and cause network degradation.

To protect the valuable hosts in the network, the defender can deploy fake hosts (e.g.,

honeypot) to attract the attacker’s attention. Meanwhile, one challenge is how to create

natural enough honeyflows to mislead an attacker’s behavior.

In an SDN environment, the SDN controller can obtain network flow information, such

as source/destination hosts, the number of transferred packets and the bytes of packets.

Leveraging on this feature, we consider the SDN controller to learn from the hosts and

define network-level false information and application-level false information.

• Network-level information is applied to guide the honeypot to mimic regular hosts’

behaviors, such as the frequency, length, and the number of network packets. Specif-

ically, to mimic a regular host, we use six features to parameterize the creation of
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honeyflow connections, which are (1) data first seen, (2) duration, (4) source/desti-

nation IP addresses and port numbers, (5) number of packets, and (6) bytes of each

packet. To generate realistic honey connection, a honey connection generator needs

to learn the pattern of a real server.

• Application-level information includes the details that assist attackers in searching

for targets and prepare their exploitation. Specifically, attackers can generate its be-

lief about one device’s importance and vulnerabilities via these information. For

example, the HTTP/HTTPS connections may include the server’s OS information.

Other application-level information involve Gmail cookies and passwords for unen-

crypted protocols.

GAN Based Honeyflow Generation : To mislead passive monitoring attacks, the hon-

eyflow needs to be well designed for imitating the regular network flow and involves false

information to confuse the adversaries. Therefore, we use GAN model which is applied to

learn from real hosts’ pattern and guide honeypots’ communications. Our SDN controller

learns the hosts’ network behavior and instructs the honeypots to imitate real servers and

clients.

To train the GAN model, we consider to use the CIDDS-001 dataset [92] which in-

cludes flow-based packets’ attributes. From the dataset, we select features [date first

seen, duration, source IP address, destination IP address, bytes, packets]. We can sim-

ulate clients’ behavior by measuring the total number of packets, bytes, and duration to

guide the honey connection. From the CIDDS-001 dataset, we randomly select 10 clients

and one server. The clients are from the developer subnet and the server is the File Server

in the subnet. For each client, we select all the traffic it communicated with the File

Server during one week and generate the same number of honeyflow packets. For the File

Server, we select all the packets it sent back to the clients upon requests as real data, and

generate a honeyflow in the same pattern. As a GAN can process only continuous input

attributes, this is a major challenge since flow-based network data consists of categori-
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cal attributes (e.g., IP addresses or port numbers). Another challenge is how to interpret

continuous output vectors to flow-based network data. Therefore, we conceived network

dataflow attributes as analogous to utterances in natural language. We adopt deep learn-

ing approaches for natural language generation tasks in this work to overcome the above

challenges. Donahue et al. [93] proposed LaTextGAN to utilize an AutoEncoder to learn

a low-dimensional representation of sentences and generate sentences with the improved

Wasserstein GAN (WGAN) [94]. We adopt the AutoEncoder (AE) and Long-Short Term

Memory (LSTM) model for representing the attributes of the packets. Moreover, we use

the AE–LSTM model to encode attributes of network data (e.g., IP addresses and port

number) into smooth representations. The generator network then trained to generate its

own flow-based representations in the learned latent space. Each network flow-based data

vector produced by the generator is then passed through the decoder, which decodes to the

nearest network attributes.

The generator network produces additional points in this latent variable space, which

decode to valid packets. Typically in GAN, the discriminator network is trained to classify

real and generated packets from their latent representations. In this work, the generator

is the defender that attempts to fool the discriminator by generating realistic packets. On

the other hand, the discriminator plays the role of the attacker’s passive reconnaissance

processes. Our game model assumes that the attacker utilizes the discriminator detection

probability as belief.

7.4 Game Model

Let a computer network ℵ may have many hosts or resources which are connected each

other. Each node η may contain various types of vulnerabilities. For simplicity, we assume

that each node contains only one vulnerability of a type τ ∈ T , where T is the set of all

possible types of vulnerabilities. Here, we consider that the defender uses a deception

technique to expose the types of fake vulnerabilities in the network by using honeyflows.
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The attacker does not know which node information is real and which one is a honeypot by

using packet analysis. We assume the attacker cannot reliably distinguish real and honey

flow, but he/she has belief distributions over real and honey flows. These beliefs mainly

depend on how realistically the defender generates honey flows, which the defender uses

as signals to the attacker. We also assume that the attacker is simply relying on the signals

to make his decisions. Therefore, in network ℵ, a node ητ ∈ ℵ can be a real host or a

honeypot from the attacker’s perspective.

We now formally define the strategies and utilities of the players using the notation

listed in Table 7.1.

Table 7.1: Game Notation

ℵ Network

T set of all types of vulnerabilities in the network

Rτ Number of real nodes containing τ type vulnerability where R is a

vector

χτ Defender’s mixed strategy over each type τ ∈ T

β Upper bound vector of fake vulnerabilities indexed by each type of

vulnerability τ ∈ T

ζτ Cost of creating each fake τ type of vulnerability using honey flow

P τ
r Attacker’s belief on τ type real flows

P τ
h Attacker’s belief on τ type honeyflows

υτ Vulnerability value that is a cost of attacking τ type node

ψrητ Importance of a real node η that contains τ type vulnerability

ψhητ Importance of a fake node η that contains τ type vulnerability

αητ Action of attack the node ητ where α0 is the no-attack action, yield-

ing 0 payoff
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Our proposed game model is a Stackelberg two-player normal form non-zero sum

game between the defender and attacker. The defender plays a mixed strategy over each

type τ ∈ T vulnerability, and the attacker plays a pure strategy. Here, we define χτβ as

action of the defender to generate maximum β ∈ N fake τ type vulnerabilities in the net-

work using honey flow that makes the game finite.Therefore, the defender’s action space

for a particular τ is a set {χτ0, . . . , χτβ} and the defender plays a mixed strategy over it. The

defender’s overall strategy is to distribute marginal probabilities over all types of vulner-

abilities T , which is denoted by χ. The attacker’s pure strategy αητ represents choosing

to attack a node ητ ∈ ℵ that contains type τ vulnerability, or not to attack. The notation

Rτ denotes the total number of real nodes that contain τ type vulnerability. Our consider-

ation is that the attacker knows the total number of real nodes Rτ but can not distinguish

between real and fake nodes.

7.4.1 Utility Functions

The utilities for the players depend on attacker’s beliefs, the node the attacker attacks,

the importance of that node, the defender’s strategy of generating fake vulnerabilities,

honey flow generation cost, and the vulnerability value. To reduce calculation complexity,

we assume that nodes with the same type of vulnerability have equal importance values.

When the attacker targets a real node, he gets a positive reward that is equal to ψrητ , but

the reward is negative when the target node is fake where the reward is equal to ψhητ . The

rewards are opposite for the defender. In this game, the υτ denotes the amount of time

and resources the attacker needs to expense to compromise a particular node that contains

τ type vulnerability. Also, ζτ denotes the defender’s cost of exposing each vulnerability

which may include honey flow generation cost, network congestion, deploying deceptive

host (e.g. honeypot). The notations P τ
r and P τ

h are used to represent the attacker’s beliefs

over real and honey flows respectively for τ type.
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Defender’s Utility If the defender plays the strategy χ and the attacker’s strategy is ατη ,

the defender’s expected utility is defined as follows:

Ud(χ, ητ ) = F(χ, τ)
[
(P τ

r × (−ψrητ )) + ((1− P τ
r )× (+ψhητ ))

]
+ (1−F(χ, τ))

[
(P τ

h × (−ψrητ )) + (1− P τ
h )× (+ψhητ ))

]
−
∑
τ∈T

∑
x∈[0,βτ ]

[χτx × x× ζτ ]
(7.1)

Here, F(χ, τ) denotes the cumulative function that considers all possible numbers up to

the upper bound of creating the fake τ ∈ T , which can be calculated as follows:

F(χ, τ) =
∑

x∈[0,βτ ]

χτx

[
Rτ

Rτ + x

]

Attacker’s Utility Analogously, when υτ is the attacking cost of a τ type vulnerable

node for the attacker, the expected utility is given by:

Ua(χ, ητ ) = F(χ, τ)
[
(P τ

r × (+ψrητ )) + ((1− P τ
r )× (−ψhητ ))

]
+ (1−F(χ, τ))

[
(P τ

h × (+ψrητ )) + (1− P τ
h )× (−ψhητ ))

]
− υτ

(7.2)

A Small Example : Consider a network with two categories of vulnerable nodes. Let the

attacker’s beliefs be P r = (1.0, 0.5) and P h = (0.5, 0.5). Let the importance of nodes be

ψr = (5, 10), and ψh = (5, 5) and the attacking costs υ = (2, 1). Let the cost of creating

honey flow indicating each type of vulnerability is ζ = (1, 0.5). Let the total number real

flows indicating each type of real vulnerability be R = (2, 2), and the upper bound on

honeyflows be β = (2, 2). Now, consider if the defender plays the following strategy χ:
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In the above matrix, we represent a type τ by its index position (e.g., χ1), and the row

indexes are the count of honey vulnerability for each τ . Now, the attacker’s best response

is to attack vulnerability type-2 with expected utility Ua(χ, 2) = 1.5, and the defender’s

utility is Ud(χ, 2) = −3.75 when the defender strategy is to create 1 type-1 and 2 type-2

fake vulnerabilities.

7.4.2 Solution Approach

We present a solution method to solve above non-zero sum game. We formulate the nor-

mal form Stackelberg formulas using Linear Programming (LP). By solving this program,

we can determine the optimal strategy for the defender in the game that generates different

numbers of fake vulnerable nodes’ by using honey flow. This solution distributes marginal

probability over each type of vulnerability τ ∈ T . The following LP computes the de-

fender’s optimal mixed strategy for each type of vulnerability under the constraint that the

attacker plays a pure-strategy best response:

max
ητ∈ℵ

Ud(χ, ητ ) αητ (7.3)

s.t.

Ua(χ, ητ ) αητ ≥ Ua(χ, ητ
∗
) αητ ∀ ητ , ητ∗ ∈ ℵ (7.4)

χτx ∈ [0, 1] ∀τ ∈ T ∀x ∈ [0, βτ ] ∀x, βτ ∈ N (7.5)∑
x∈[0,βτ ]

χτx = 1 ∀τ ∈ T ∀x, βτ ∈ N (7.6)

αητ ∈ {0, 1} ητ ∈ ℵ (7.7)∑
ητ∈ℵ

αητ = 1 (7.8)

Equation (7.3) represents the objective function reflecting the Stackelberg equilibrium

and maximizing the defender’s expected utility. In a Strong Stackelberg Game (SSG), the
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leader (defender) moves first, and the follower (attacker) observes the leader’s strategy and

attacks a particular target. The inequality in Equation (7.4) ensures that the attacker plays

the best response. A tie means multiple targets provide the same expected utility for the

attacker which breaks in favor of the defender. Equation (7.5), created a real variable for

each defender’s pure strategy χτx, the action of creating x ∈ [0, βτ ] fake vulnerabilities for

type τ type where βτ is the upper bound. Therefore, (χτ0, . . . , χ
τ
β) are unknown variables

and the possible pure strategies for the defender for τ ∈ T . Equation (7.6) forces the

defender strategy to be a valid probability distribution over τ and distributes marginal

probability over all types. Finally, Equations (7.7–7.8) make sure that the attacker plays a

pure strategy best response in the game where ατη is a binary variable.

Our proposed solution can not scale a large size game since the game grows exponen-

tially. We could improve this solution by using advanced methods based on an incremental

strategy generation approach. However, our main focus is to analyze the honeyflow de-

ception, not to improve the game-theoretic algorithm. The basic solution is sufficient to

solve a mid-size network that successfully meet our goals.

7.5 Game-Theoretic Experiments

In this section, we focus on evaluating the solution quality of the proposed Stackelberg

game model. Figure (7.1) investigates the impact of real and honeyflow beliefs in decision

making of the attacker with five types of vulnerabilities. We set the number of real vul-

nerability for each type to 100, and the upper bound on the number of fake vulnerability

for each type to 100. We also set the honeyflow generation cost to 0.0001 and the attack-

ing cost zero. Then, we set the same importance for real and fake nodes as 1 and fixed a

specific real flow belief while changing the value of honeyflow belief. We observe that the

attacker’s utilities start increasing when the honeyflow belief is greater than the real flow

belief. When the honeyflow belief is higher, the attacker gets high informative informa-

tion from the honeyflows. In this case, the expected utility of the attacker depends on the
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information revealed from the real flow. If the real flow belief is higher than honeyflow,

the attacker can identify the real flow with a higher probability once these probabilities

become equal, it is more confusing for the attacker to identify the real and fake hosts

correctly.

Figure 7.1: Comparison of attacker utility with different vulnerability value

In the following experiment, we investigate the impact of attack cost in the attacker’s

utility. First, we set the number of real vulnerabilities and the upper bound on the number

of fake vulnerabilities to 100. Then, we set the importance of a real host to 1.0 and of

a honey host to 0.5. We set real and honeyflow signal probabilities to 0.5. We set the

honeyflow generation cost to 0.0001 and consider varying attack costs. The results in

Figure (7.2) show that the attacker utility does not change in the game-theoretic solution

when the signal of the real and honey are identical. We note that the small attack cost does
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not impact the overall result. However, the game-theoretic solution provides lower utility

to the attacker than the two-baseline model.

Figure 7.2: Comparison of attacker utility with different vulnerability value

In Figure (7.3), we show the defender’s expected utility as we increase the ratio of

honeyflows to real flows. In this experiment, we set the number of real vulnerabilities

for each type and the upper limit of fake vulnerabilities to 100. We also set the real and

fake host importance to 1.0 and 0.5, respectively, as well as the real and honeyflow signal

probability to 1 . In the graph, each line represents a different number of real flows in the

original game. We see that the defender utility increases as we add honeyflows, but only

up to a point; when the marginal value is less than the cost, the optimal solution is to stop

adding additional flows. We see this in the shape of the curves. We note that the point

where these curves flatten out is similar across all of the different numbers of real flows.
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Figure 7.3: Comparison of defender’s utility when the honey and real flow ratio is variable

We now analyze how the honeyflow cost impacts the optimal solutions. In Figure (7.4),

the network setup consists of five types of vulnerabilities where we set real vulnerabilities

in each type and the limit of fake vulnerabilities to 100. We also set real host impor-

tant value 1.0 and fake host importance 0.5. The real and honey signal probability are

1.0 and 0.5, respectively. Also, the vulnerability value is 0.5. The results in show that

the game-theoretic solution significantly outperforms the two baselines in most settings,

demonstrating the value of optimizing the honeyflow generation based on the specific sce-

nario. We also note that the cost has a significant impact on the overall result; with a high

cost, the game-theoretic solution is similar to not generating flows. Thus, random honey

flow generation can be detrimental for the defender. With a low cost, the performance of

the game-theoretic solution is identical to the uniform random policy; since flows are so
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cheap, it is practical to create a very large number of them without much regard to strat-

egy. With intermediate costs, the value of the strategic optimization is highest, which is

the most likely scenario in real applications.

Figure 7.4: Comparison of defender utility when honey flow generation cost is different.

7.6 Conclusion

Network attackers often use traffic analysis as passive reconnaissance to understand net-

work topology and uncover network vulnerabilities. They can interact with a network

environment in several stages and stay to conduct an APT attack for an extended time. In

this work, we consider a deceptive framework that generates honey flows to carry fake in-

formation of various vulnerabilities in a network. We propose a two-player non-zero-sum

Stackelberg game that determines the optimal defender’s strategy to deploy honey traf-

fic in the presence of an attacker who perceives different beliefs in different types of real
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and honeyflows. This model can be used in a dynamic network to balance cost and value

trade-offs. The empirical analysis shows that when honeyflows are highly similar to real

flows, distinguishing real and honey flows is harder for attackers. We can investigate the

qualities of game-theoretic solutions in real-world network for further exploration. Also,

this model could be extended where the attackers can update their beliefs based on the

traffic analysis.
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Chapter 8

Conclusion

8.1 Thesis Summary

This thesis presented several game-theoretical and adversarial machine learning solutions

to practice deception further effectively and resolve some limitations of existing formal

models that provide little guidance on deception effectiveness in designing and allocating

decoys. In chapter 4, we propose Honeypot Feature Selection Game (HFSG) to analyze

how to make deceptive objects look real and how real objects can be modified to look

more like misleading ones that potentially make the computer network more uncertain to

the adversaries. We showed two-sided deception, as we named this approach, is more

effective in many situations over one-sided deception where the defender is restricted to

making a change in real objects. Our HFSG model gives a new and more nuanced way

to think about the quality of different deception strategies and how robust they are to an

adversary being able to see through the deception. We can identify which features the

defender should focus on modifying to make the deception more effective, including real

objects’ features. We can also correctly identify cases where deception is not the best

solution because the costs of creating a believable deception may be higher than the value

they create. However, one limitation of our current HFSG model is that we analyzed the

two-sided deception approach using a small number of features. For further exploring

and scaling the two-sided deception approach, in chapter 5, we introduce the Two-Sided

Generative Adversarial Network (TS-GAN) algorithm that can solve two-sided feature

deception on a large and complex basis and provide an approximate optimal solution. We

model the problem as a two-player minimax game between the defender and attacker.
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The defender attempts to confuse the attacker by creating fake and adversarial samples,

the latter of which is created by modifying a real sample in such a way that the attacker

mispredicts it as a fake sample. The attacker’s goal is to correctly distinguish between

real and fake models to minimize his expected loss. On the other hand, the defender’s

strategy maximizes the attacker’s expected loss. Our method can generate fake samples

look likes as real samples and real samples looks like as fake samples when the feature

space complex an large. In a dynamic learning environment, the technique can also be

used as a robust classifier for the binary classification problem.

Our study on deception using fake network traffic to invalidate the attacker’s gathering

information through network reconnaissance is presented in Chapter 6. Here, we use a

normal form game-theoretical model to optimize the honey (fake) flow deployment for a

defender. Our results showed that we could apply this model to optimize honey flows in

realistic-sized networks with a fast response rate. But for further optimization, we need the

scalability that could be improved significantly beyond this basic algorithm. However, this

model does not consider the impact of honeyflow quality on attackers’ decision-making

strategies. Therefore, in Chapter 7, we present a new honeyflow game model to incorpo-

rate the attacker’s beliefs across different types of honey traffic, reflecting the quality of the

honey flows and indicating how difficult it is for the attacker to discriminate. The experi-

mental results show that the quality of honey flow has a substantial impact on an attacker’s

decision-making method. To effectively mislead an attacker, the deceptive architecture

must generate a substantially similar honeyflow to real traffic.

Overall, in this thesis, the HFSG model answers how and when a defender should cre-

ate decoy objects, including honeypots, honey traffic, and other domains. Then, my TS-

GAN algorithm provides a new way of solving the two-sided feature deception problems

when the feature spaces are large and complex. Finally, my honeyflow game models char-

acterize how defenders can optimize decoys or honey traffic deployment in an adversary’s

presence while taking into account a variety of real-world computer network conditions.
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8.2 Future Direction

In TS-GAN model, the Generator generates data that looks like the training set, and the

Obfuscator manipulates training samples that look like fake data. The architecture of the

Generator is similar to the traditional GAN model, where it learns to map a particular

distribution to a different distribution, potentially resulting in fake output samples. The

existing TS-GAN algorithm could be useful for making decoy objects with more complex

and large features. But the existing model can be extended differently using two data sets

for real and fake inputs. Instead of mapping a specific distribution to fake data directly,

the fake data set will be used for training and manipulated to create real-like fake samples.

In this case, the Generator architecture will be similar to the Obfuscator. However, one

key challenge is to train the three networks simultaneously. If the real and fake data sets

are very different, only manipulating samples’ features can lead the training process to the

failure or collapse mode. Therefore, this model needs to explore a number of ways, such

as employing different types of data sets instead of only images, such as network traffic,

malware, and many other forms of data.

An additional extension I want to incorporate is feature modification constraint loss,

which imposes an extra cost for modifying some particular features.The penalty will only

be applied when the model adds perturbation more than a particular threshold. In the

current version of TS-GAN, the Obfuscator model uses two loss functions, with the dis-

tance loss penalizing more when feature manipulation is considerably large. On the other

hand, the obfuscation loss aims to create a perturbed vector that encourages the real sam-

ple is missclassified as a fake class. The introduction of modification constraint loss must

pose significant challenges, especially in selecting the non-modification feature group and

drawing the relationship between the features and their costs. But it will help to understand

the two-deception problem’s theoretical qualities better.
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Pěchouček, “Game Theoretic Model of Strategic Honeypot Selection in Computer

Networks,” , no. 1, pp. 201–220, 2012.

[12] Aaron Schlenker, Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long Tran-

Thanh, Phebe Vayanos, and Yevgeniy Vorobeychik, “Deceiving cyber adversaries:

A game theoretic approach,” in Proceedings of the 17th International Conference

on Autonomous Agents and MultiAgent Systems. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2018, pp. 892–900.

[13] Aaron Schlenker, Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, and Phebe

Vayanos, “Game theoretic cyber deception to foil adversarial network reconnais-

sance,” in Adaptive Autonomous Secure Cyber Systems, pp. 183–204. Springer, 2020.

[14] Omkar Thakoor, Milind Tambe, Phebe Vayanos, Haifeng Xu, Christopher Kiek-

intveld, and Fei Fang, “Cyber camouflage games for strategic deception,” in In-

ternational Conference on Decision and Game Theory for Security. Springer, 2019,

pp. 525–541.

91



[15] Kevin P Dyer, Scott E Coull, and Thomas Shrimpton, “Marionette: A pro-

grammable network traffic obfuscation system,” in 24th {USENIX} Security Sympo-

sium ({USENIX} Security 15), 2015, pp. 367–382.

[16] A. J. Pinheiro, J. M. Bezerra, and D. R. Campelo, “Packet padding for improving pri-

vacy in consumer iot,” in 2018 IEEE Symposium on Computers and Communications

(ISCC), 2018, pp. 00925–00929.

[17] Yong Guan, Xinwen Fu, Dong Xuan, Prashanth Umesh Shenoy, Riccardo Bettati,

and Wei Zhao, “Netcamo: camouflaging network traffic for qos-guaranteed mission

critical applications,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, vol. 31, no. 4, pp. 253–265, 2001.

[18] Ertugrul Ciftcioglu, Rommie Hardy, Kevin Chan, Lisa Scott, Diego Oliveira, and

Gunjan Verma, “Chaff allocation and performance for network traffic obfuscation,”

in 2018 IEEE 38th International Conference on Distributed Computing Systems

(ICDCS). IEEE, 2018, pp. 1565–1568.

[19] Ertugrul N Ciftcioglu, Rommie L Hardy, Lisa M Scott, and Kevin S Chan, “Efficient

chaff-aided obfuscation in resource constrained environments,” in MILCOM 2017-

2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017, pp. 97–

102.

[20] Kevin Leyton-Brown and Yoav Shoham, “Essentials of game theory: A concise mul-

tidisciplinary introduction,” Synthesis lectures on artificial intelligence and machine

learning, vol. 2, no. 1, pp. 1–88, 2008.

[21] Jiarui Gan and Bo An, “Minimum support size of the defender’s strong stackelberg

equilibrium strategies in security games,” in Proc. AAAI Spring Symp. on Appl.

Computat. Game Theory, 2014.

92



[22] George Leitmann, “On generalized stackelberg strategies,” Journal of optimization

theory and applications, vol. 26, no. 4, pp. 637–643, 1978.

[23] Michele Breton, Abderrahmane Alj, and Alain Haurie, “Sequential stackelberg equi-

libria in two-person games,” Journal of Optimization Theory and Applications, vol.

59, no. 1, pp. 71–97, 1988.

[24] Mandiant Intelligence Center, “Apt1: Exposing one of china’s cyber espionage

units,” Mandiant, Tech. Rep, 2013, https://www.fireeye.com/content/

dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf.

[25] Nikos Virvilis, Bart Vanautgaerden, and Oscar Serrano Serrano, “Changing the

game: The art of deceiving sophisticated attackers,” in 2014 6th International Con-

ference On Cyber Conflict (CyCon 2014). IEEE, 2014, pp. 87–97.

[26] Cliff Changchun Zou and Ryan Cunningham, “Honeypot-aware advanced botnet

construction and maintenance,” in International Conference on Dependable Systems

and Networks (DSN’06). IEEE, 2006, pp. 199–208.

[27] Neal Krawetz, “Anti-honeypot technology,” IEEE Security & Privacy, vol. 2, no. 1,

pp. 76–79, 2004.

[28] Cliff Stoll, The cuckoo’s egg: tracking a spy through the maze of computer espi-

onage, Doubleday, 1989.

[29] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish Jena, “Honeypot

in network security: a survey,” in Proceedings of the 2011 international conference

on communication, computing & security. ACM, 2011, pp. 600–605.
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belief: A dynamic game approach to deception by design for proactive network se-

curity,” in International Conference on Decision and Game Theory for Security.

Springer, 2017, pp. 273–294.

97



[66] Palvi Aggarwal, Omkar Thakoor, Aditya Mate, Milind Tambe, Edward A Cranford,

Christian Lebiere, and Cleotilde Gonzalez, “An exploratory study of a masking strat-

egy of cyberdeception using cybervan,” in Proceedings of the Human Factors and

Ergonomics Society Annual Meeting. SAGE Publications Sage CA: Los Angeles,

CA, 2020, vol. 64, pp. 446–450.

[67] Lance Spitzner, “Honeypots: Catching the insider threat,” in 19th Annual Computer

Security Applications Conference, 2003. Proceedings. IEEE, 2003, pp. 170–179.

[68] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung, “Mgan: Training gen-

erative adversarial nets with multiple generators,” in International conference on

learning representations, 2018.

[69] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K

Dokania, “Multi-agent diverse generative adversarial networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2018, pp. 8513–

8521.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[71] Weiwei Hu and Ying Tan, “Generating adversarial malware examples for black-box

attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[72] Alonso Granados, Mohammad Sujan Miah, Anthony Ortiz, and Christopher Kiek-

intveld, “A realistic approach for network traffic obfuscation using adversarial ma-

chine learning,” in International Conference on Decision and Game Theory for Se-

curity. Springer, 2020, pp. 45–57.

98



[73] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song,

“Generating adversarial examples with adversarial networks,” arXiv preprint

arXiv:1801.02610, 2018.

[74] Group-IB and Fox-IT, “Anunak: Apt against financial institutions,”

https://www.group-ib.com/resources/threat-research/

Anunak_APT_against_financial_institutions.pdf, 2014.

[75] Tim Matthews, “Operation Aurora – 2010’s major breach by Chi-

nese hackers,” https://www.exabeam.com/information-security/

operation-aurora/, 2019.

[76] Tabu S. Kondo and Leonard J. Mselle, “Penetration testing with banner grabbers and

packet sniffers,” Journal of Emerging Trends in computing and information sciences,

vol. 5, no. 4, 2014.

[77] Genevieve Bartlett, John Heidemann, and Christos Papadopoulos, “Understanding

passive and active service discovery,” in Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement (IMC). 2007, pp. 57–70, ACM.

[78] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann,

“Panopticon: Reaping the benefits of incremental SDN deployment in enterprise net-

works,” in 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadel-

phia, PA, 2014, pp. 333–345, USENIX Association.

[79] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Openflow: Enabling inno-

vation in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.

69–74, 2008.

[80] H. Kim and N. Feamster, “Improving network management with software defined

networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

99

https://www.group-ib.com/resources/threat-research/Anunak_APT_against_financial_institutions.pdf
https://www.group-ib.com/resources/threat-research/Anunak_APT_against_financial_institutions.pdf
https://www.exabeam.com/information-security/operation-aurora/
https://www.exabeam.com/information-security/operation-aurora/


[81] Markku Antikainen, Tuomas Aura, and Mfikko Särelä, “Spook in your network:
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