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Abstract

First principles-based simulations have allowed us to explore emerging phenomena in a va-

riety of systems. Its steadfast practicality has led to an increase in molecular and materials

design ranging from drug discovery to planetary formation. However ubiquitous in its field,

one of its biggest drawbacks is its computational cost, notably so in molecular dynamics

simulations. To counter this setback, there have been many leading efforts in machine

learning methods, whether it be in algorithms or network architectures. Our contribution

uses an active learning algorithm paired with a tensor field network, e3nn. By steadily

feeding new data points to our model, based on data it struggles with, our model gains a

better idea of the system. First, using Born-Oppenheimer molecular dynamics, we simulate

body-centered cubic zirconium with a (4× 4× 4) supercell of 128 atoms at 1500K for 800

time steps. This DFT model is subsequently fed into the network where we define energies

as our input and forces as our output. The active learning runs that follow reshuffle the

top 5% errors of the test set into the train set. Several runs later, we analyze the accuracy

of our trained model by generating phonon dispersions and comparing their structure to

that of the original DFT data.
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Chapter 0

Motivation

Over the last century, there have been considerable efforts in researching arising phenomena

in condensed matter, much of which has been spent on designing new materials. By exploit-

ing known molecular properties, we have successfully redesigned generations of electronic

devices. Because of this, it is fundamental to understand the interatomic interactions of

a system to gain a sense of its underlying mechanisms. In doing so, this process has been

made easier by calculating the properties of an atomic structure, whose current framework

relies on density functional theory (DFT). Even so, this quantum mechanical approxima-

tion of molecular properties requires corrections. Historically, for accurate calculations,

the Hartree-Fock (HF) method was used to solve for the electronic wavefunction, albeit it

faltered for large enough systems. Although time has improved upon both DFT and HF,

there are still glaring limitations in their application. For large molecular systems, this

would be the computational complexity: As the number of atoms in the system increases

so does the computational cost.

To accurately calculate the properties of a system, it is necessary to use a many-body

approach. Yet for a good amount of systems, using this approach to model critical phe-

nomena with high accuracy is still a ways away. In spite of this relative low inaccuracy, the

more pressing issue is the scalability of a system, which is where machine learning offers a

solution [1]. Currently, there is an abundance of methods yielding highly accurate results

[2, 3]. For molecular systems, it is most common to use graph neural networks [4] to repre-

sent a system. Even though it’s known that the arrangement of atoms in a system affects

its properties, it is not very commonly modeled in neural network architecture. Remedying

this are some symmetry aware networks in Euclidean space [5, 6, 7].
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As the physical properties of a system have deterministic transformations, where con-

served quantities are invariant, it has become increasingly apparent that equivariance is a

necessity for the prediction of geometrical objects [8, 9]. Though it is common to inter-

change invariance and equivariance, they do have distinct meanings. Mainly, equivariance

takes on a distortion with respect to the symmetric operation performed on an object e.g.,

if an image input is rotated, an invariant function wouldn’t notice a difference but an equiv-

ariant function would know the shift difference. In molecular systems, this is an advantage

as the recognition of a rotated object can cut down on data augmentation for training data.

For the system investigated in this thesis, the equivariant Euclidean (3) Neural Networks

[10] are used with a custom algorithm to accurately perform predictions at a low cost.

0.1 Structure

This thesis is split into two parts. The first builds upon the background of our simulations.

Chapters 1 and 2 include a detailed description of the theoretical background of the project.

Chapter 1’s format is written with the introduction to groups and group representation as

the basis for explaining the symmetric significance in crystals and later on its application

for neural networks. Chapter 3 discusses the results of DFT simulations with phonon

dispersions. The second part introduces the practicality of using machine learning for

materials science. Chapter 4 provides the background of the algorithm we’re using as well

as the neural network. Chapter 5 discusses the results of trained models, errors, predictions,

and the comparison to DFT phonon dispersions.

2



Chapter 1

Geometric Symmetries and Lattice

Dynamics

The innate nature of particles forming symmetric patterns that are translationally invariant

is the foundation of condensed matter physics. In 1912, after the discovery of crystal X-

ray diffraction by M. Laue [11], W. L. and W. H. Bragg observed diffraction peaks to

construct crystal structures [12][13]. The resulting so-called Bragg diffraction pattern is

a consequence of the periodic arrangement of atoms, or group of atoms, in a crystal.

Moreover, the (unusual) electronic properties of said crystal are accentuated and able to

be studied.

1.1 Groups

The concept and consequence of symmetry in physical systems can be explained through

tensor algebra and group theory. In solids, these symmetries can be used to determine

the properties of a system. In turn, these crystal structure symmetries can be defined

in terms of symmetric operations. Represented by individual elements, these operations

form a group. Formally, a group is defined as a mathematical set which combines any two

elements with an operation to form a third element.

Definition 1. A group, G, is a set of elements gn which satisfy the following [14]:

Closure If gi, gj ∈ G then gk = gigj ∈ G

Associativity For gi, gj, gk ∈ G, gi(gjgk) = (gigj)gk

3



Identity ∃ E : ∀ gn ∈ G, Egn = gnE = gn

Inverse Every element gn ∈ G has an inverse, g−1
n : g−1

n gn = gng
−1
n = E

Generally, as part of the closure condition, it is not required for the multiplication of

elements to be commutative. However, such an instance describes a group as abelian; and

a noncommutative composition as nonabelian.

Subgroups

A subset H of group G is considered a subgroup if H forms a group.

1.1.1 Group Representations

A representation D of group G is a mapping of the group elements g onto a set with the

following properties [14]:

Group product D(gi)D(gj) = D(gigj) ∀ gi, gj ∈ G

Identity D(Egi)D(giE) = D(gi)

Irreducible Representations

Irreducible representations, or irreps, are the smallest possible representations of an alge-

braic structure. If representation D′(g) is related to D(g) through a similarity transforma-

tion:

D′(g) = P−1D(g)P (1.1)

then a block-diagonal matrix can be constructed such that:

D′(g) =


D(1)(g) 0 . . . 0

0 D(2)(g) . . . 0
...

...
. . . 0

0 0 . . . D(k)(g)

 (1.2)

4



In the case of D′(g), it is reducible and can be written as a sum of its representations:

D′(g) = D(1)(g)⊕D(2)(g)⊕ · · · ⊕D(k)(g) (1.3)

If representations D(k)(g) are no longer able to be reduced they are said to be irreducible.

1.1.2 Invariance and Equivariance

A function f : RX → RY is said to be equivariant ∀ g ∈ G and x ∈ X for matrix

representation D(g) if:

f(DX (g)) = DY(g)f(x) (1.4)

where the function f commutes with group elements g; i.e., the symmetry operation(s) can

be applied before or after evaluating the function.

The more commonly studied property of invariance is a type of equivariance where

DY(g) = DX (g) = 1 , or more abstractly: a function whose value is unchanged under an

operation.

1.1.3 Euclidean Space

A point in three-dimensional space can be most simply described as a tuple of three num-

bers. In real coordinate space, this point is referred to as being in three-dimensional

Euclidean space, wherein there are three fundamental motions: rotation, translation, and

reflection. Known as Euclidean isometries, these transformations preserve the Euclidean

distance between any two points.

The rigid transformations of Euclidean space form a group called the Euclidean group,

or E(n) for n-dimension(s).

5



3D Rotations

A group of proper rotations in E(3) is referred to as SO(3), a special orthogonal group.

The orthonormal condition of this subgroup can be expressed as:

QTQ = QQT = I (1.5)

where I is the identity matrix and Q is an orthogonal matrix. It follows from this condition

that the determinant of matrix Q is ± 1. Matrices with determinant 1 form the subgroup

SO(n) of direct isometries which preserve chirality and are called proper. The direct isome-

tries themselves form another subgroup called SE(n), the special Euclidean group which

consist of rotations, translations, and combinations thereof. It should be noted that the

preservation of chirality excludes reflections from this group.

1.2 Crystal Structure

Symmetry groups

An operation on a geometric object is considered symmetric if it is invariant. The group

of transformations in which this is true is called the symmetry group.

Crystal structures in three dimensions are classified by the following symmetry groups:

triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic. These seven

Bravais lattice symmetry groups combine to construct the 14 known Bravais lattices. Each

of these lattices can be represented by a point group which is defined as a set of symmetric

transformations with at least one lattice point in common. From the crystallographic

restriction of n-fold symmetries, there are 32 point groups that leave the crystal invariant.

6



Cubic symmetry group. From left to right: simple cubic, body-centered cubic, face-centered

cubic.

Figure 1.1:

Lattice group

As a geometric term, a lattice is a group of points on which a set of operations produces

another point. More conceptually, it can be described as a symmetric group of (discrete)

translational symmetry.

As a crystalline structure basis, a lattice is an n-dimensional array with a periodic

arrangement of atoms produced by primitive translation vectors: a1, a2, a3. Where in

three dimensions, the translation operations are described by:

R = n1a1 + n2a2 + n3a3 (1.6)

When viewed from point r, such an arrangement will look the same as when viewed from

point r′:

r′ −→ r+R (1.7)

As with translation, any operation performed on the crystal that is isomorphic to itself is

part of the symmetry group for that crystal.

Primitive Unit Cell

The smallest possible representation of an ideal crystal is the (primitive) unit cell. Known

also as a minimum-volume cell, the primitive unit cell contains one lattice point and the

smallest basis for repetition. Its volume is defined by the primitive translation vectors as:

a1 · a2 × a3 (1.8)

7



In the case of a body-centered cubic lattice, the primitive translation vectors a1, a2, and

a3 can be represented as:

a1 =
1

2
a(x̂+ ŷ − ẑ) a2 =

1

2
a(−̂x+ ŷ + ẑ) a3 =

1

2
a(x̂− ŷ + ẑ) (1.9)

or in matrix form:

A =
a

2


1 1 −1
−1 1 1

1 −1 1


where a represents the side of the cube.

Figure 1.2: Wigner-Seitz cell of a hexagonal lattice.

One such case of a primitive unit cell, shown in figure 1.2, is the Wigner-Seitz cell.

Picking the lattice point to be in the center of a hexagonal lattice, lines are then drawn to

the nearest lattice point (in blue). A normal to these lines connecting two lattice points

(in grey) then encloses the minimum-volume cell (in green).

8



Reciprocal lattice

In reciprocal space, there exists a reciprocal lattice represented by the Fourier transform of

an original lattice. It is a mathematical representation of visual Bragg diffraction patterns

caused by wave scattering.

As the crystal is invariant under translation operations, this is also required for its

individual properties. Such that:

f(r+R) = f(r) (1.10)

where the fourier series f(r) is a periodic function and its expansion with reciprocal

wavevectors G (1.11), must be translationally invariant.

f(r) =
∑
m

fme
iGm·r (1.11)

Similarly to translation vector R (1.6), the reciprocal lattice vector can be represented as:

Gm = m1b1 +m2b2 +m1b2 (1.12)

where reciprocal axis vectors bi can be constructed using the primitive axis vectors satis-

fying the property: bi · aj = 2πδij.

b1 = 2π
a2 × a3

a1 · a2 × a3

b2 = 2π
a3 × a1

a1 · a2 × a3

b3 = 2π
a1 × a2

a1 · a2 × a3

(1.13)

Brillouin Zone

The Brillouin zone is defined as a Wigner-Seitz cell of the reciprocal lattice. In figure 1.2

the minimum-volume cell enclosed in green is also known as the first Brillouin zone.

As the reciprocal lattice is the representation of Bragg diffraction, the first Brillouin

zone is the set of points from the origin that don’t cross a Bragg plane. Although there are

n Brillouin zones, the first is sufficient to analyze the electronic structure of a system.

9



Scattering condition 1.16, provides an alternative for Bragg condition nλ = 2d sin θ

where the projection of wavevector k along the reciprocal lattice vector G lies in the

Brillouin zone.

k =
2π

λ
n̂ (1.14)

k′ =
2π

λ
n̂′ (1.15)

k = k′ −G (1.16)

Brillouin zone of a body-centered cubic lattice with labeled high symmetry points. (Γ = zone

center, N = face center, H = corner, P = point with three adjoining faces)

Figure 1.3:

High symmetry points

There are several points of interest in the Brillouin zone of a lattice structure. Their

grouping is known as an irreducible Brillouin zone since it’s a wedge that can be duplicated

to replicate the reciprocal lattice. The main interest of this manuscript lies in the body-

centered cubic structure as seen in figure 1.3. The symmetry points for a bcc structure are

as follows:

Γ = (0, 0, 0) H =
1

2
(−1, 1, 0) P =

1

4
(1, 1, 1) N =

1

2
(0, 1, 0) (1.17)

10



1.2.1 Phonons and Anharmonicity

When disturbed, the equilibrium interatomic distances for a system of particles produce

vibrations. In the simple one-dimensional realm, a monatomic lattice can be modeled as

follows:

Figure 1.4: Linear monatomic chain with periodicity

where u represents the displacements of nth atoms of m mass a distance a apart. The

imposed condition here is the Born-von Kármán boundary such that the wavefunction is

invariant to a translation (1.18).

ψ(r+R) = ψ(r) (1.18)

Then, the motion of the nth atom can be described by Newton’s second law and Hooke’s

Law as:

m
d2un
dt2

= C[(un+1 − un) + (un−1 − un)] (1.19)

where C is the nearest neighbor force constant. The solution for this equation then follows

a form:

un = εei(kx−ωt) (1.20)

which is a general solution function to a wave. For x = na, where a is the spacing between

planes n, 1.19 and 1.20 combine and reduce to:

mω2 = 2C[cos(ka)− 1] (1.21)

where rewriting in terms of frequency, we have the dispersion relation ω:

ω2 =
2C

m
[cos(ka)− 1] (1.22)
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Note here that the solution modes are either longitudinal or transversal, and hence, a

(1× 1) matrix. For systems of higher dimensions, solution 1.22 can be rewritten in terms

of dynamical matrix D as an eigenvalue problem:

ω2ε =
2C

m
[cos(ka)− 1]ϵ

= D(k)ε

where dynamical matrix D(k) contains the force constant matrices for every atomic inter-

action.

In the boundary of the first Brillouin zone, k = ±π/a, the dispersion curve shows clear

translational symmetry as seen in figure 1.5. While it is possible to analyse points beyond

this range, the subsequent lattice motion would only replicate previously seen values. Thus

any displacement u can be written in terms of k within the first zone.

Figure 1.5: Brillouin zone boundary of dispersion relation ω(k) at k = ±π/a
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Harmonic approximation

Given a crystal structure, a pair of atoms contribute an energy ϕ(R) for a separation r.

Its potential energy is then defined as a sum of all unique pair contributions.

U =
1

2

∑
i,j

ϕ(ri − rj) (1.23)

If an atom in its equilibrium position is disturbed, the imposed forces surrounding that

atom will attempt to push it back into equilibrium. For a small enough perturbation, a

Taylor expansion of the potential energy about its equilibrium is a useful approximation.

U =
1

2

∑
i,j

ϕ(ri− rj)+
1

2

∑
i,j

(ui−uj) · ∇ϕ(ri− rj)+
1

4

∑
i,j

[(ui−uj) · ∇]2ϕ(ri− rj)+O(u3)

(1.24)

The first term in equation 1.24 is a vanishing term as it’s the equilibrium potential energy.

The harmonic term is then reduced to:

Uharm =
∑
i,j

α,β=x,y,x

(ui − uj)αϕα,β(ri − rj)(ui − uj)β

=
∑
i,j

α,β=x,y,x

(ui − uj)α
∂2(ri − rj)

∂(ri − rj)α∂(ri − rj)β
(ui − uj)β

where neglecting higher order terms, prevents us from analysing the anharmonic effects

of a system. It should be noted that equation above, while perhaps unfamiliar, is akin to

elastic potential energy:

U =
1

2

∑
i

kx2i (1.25)

where:

Uharm =
1

2

∑
i,j

α,β=x,y,x

(ui − uj)αk(ui − uj)β (1.26)

for a force constant matrix k. In general, the equations of motion are written as:

müα(i, j) = −
∑
j

ϕα,β(ri − rj)uβ(i, j) (1.27)

which follow the same solution of the one-dimensional problem from 1.19.
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Phonon Dispersions

The study of phonons give an insight into the thermodynamic behavior of a material. Most

often, inelastic neutron scattering experiments provide phonon dispersions, ω, that when

plotted as band structures, provide a wealth of information. Simply put, these structures

describe the allowed energy levels of a crystalline solid.

The idea of the electronic band structure centers on the overlapping orbitals of nearby

atoms. This interaction in a tightly-bound model causes the formation of bands from

several discrete energy levels. As the main cause are outer electrons, the bands can reflect

on electronic behavior such as conductivity and binding.

Electronic band structure for bcc Zr from inelastic neutron scattering [15].

Figure 1.6:

In the case of bcc Zr as shown in figure 1.6, there are three acoustic branches in the

N−Γ section. The two lowest energy branches are called transverse and the highest energy

branch, longitudinal.
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Anharmonicity

In the harmonic approximation, an assumption is made that a lattice vibrates about its

equilibrium at relatively small displacements, which is valid at low temperatures. While

this model produces reasonable results, it neglects the finer details of temperature depen-

dent phenomena. Thus, the previously labeled small anharmonic effect is necessary for

understanding a temperature dependent system; or rather any real system, since it’s in-

accurate to model a solid with static ions and non-interacting phonons. Experimentally,

this is also seen in inelastic neutron scattering where the expected sharp phonon peaks

appear to have some width, strengthening the indication that an anharmonic treatment of

a crystal is significant.

Realistically, at a finite temperature, the effects of thermal expansion and conductivity

cannot be calculated with a harmonic approximation (which doesn’t include temperature in

calculating the thermal quantities of a system). To do this, the most common approach is

using an adiabatic approximation, which uses the same principle as the Born-Oppenheimer

approximation (2.5).
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Chapter 2

Density Functional Theory

A computational modelling method for molecules and condensed-matter, density functional

theory (DFT) relays predictions on fundamental properties of materials. As the basis for

an accurate model of electronic behavior, DFT is used heavily. Its starting point relies on

the non-relativistic time-dependent Schrödinger equation:

Ĥ |ψ(t)⟩ = iℏ
∂

∂t
|ψ(t)⟩ (2.1)

Typically, an atomistic system (barring hydrogen) consists of multiple electrons and

depending on the model, multiple nuclei. A system with N electrons and M nuclei is

accurately described by the many-body Schrödinger equation as:

ĤΨ =

{
−

M∑
i

1

2
∇2

α−
N∑
i

1

2
∇2

i−
N,M∑
i,α

Zα

|ri −Rα|
+

N∑
i,j ̸=i

1

|ri − rj|
+

M∑
α,β ̸=α

1

2

ZαZβ

|Rα −Rβ|

}
Ψ (2.2)

or:

ĤΨ =

{
T̂n + T̂e + V̂en + V̂ee + V̂nn

}
Ψ (2.3)

where T̂n is the kinetic energy due to the nuclei, T̂e is due to the electrons, V̂en is the

Coulomb attraction, V̂ee is the electron-electron repulsion, and V̂nn is the nuclei-nuclei

repulsion. As a formalism, equation 2.2 has been written with atomic units (2.4) in mind.

ℏ = e = a0 = me = 1 (2.4)

The main spectrum of this work focuses on simulated dynamics which employ the Born-

Oppenheimer approximation. In order to scale-down the complexity of a system, we make

a few assumptions: (1) The nuclei of a system is considerably heavier than its electrons and
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(2) The relative dynamics of a nuclei are stable and virtually nonexistent in comparison to

electrons. These assumptions will allow us to treat the nuclei and electrons as two separate

systems. Effectively, the many-body Schrödinger equation will be reduced to:

ĤΨ =

{
−

N∑
i

1

2
∇2

i −
N,M∑
i,α

Zα

|ri −Rα|
+

N∑
i,j ̸=i

1

|ri − rj|
+

M∑
α,β ̸=α

1

2

ZαZβ

|Rα −Rβ|

}
Ψ (2.5)

or:

ĤΨ =

{
T̂ + V̂en + V̂ee + V̂nn

}
Ψ (2.6)

where we no longer have kinetic operator T̂n to describe the nuclei.

Hohenberg-Kohn theorems

A main feature of DFT is the calculation of electronic density n(r) instead of the wave-

function ψ. This framework relies on two theorems by Hohenberg and Kohn [16]. First, for

a system, the external potential V̂en is a functional of the (ground state) electron density

such that:

E[n(r)] =

∫
n(r)V̂endr+ F [n(r)] (2.7)

where F [n(r)] is the Hohenberg-Kohn functional, although its form is not known. Second,

the density functional of the system is the ground state density if it minimizes the total

energy of the system. Thus finding the ground state energy of a system is possible by the

ground state electron density.

As it wasn’t possible to explicitly write F [n(r)], Kohn and Sham [17] developed a

method in which a fictitious system was introduced to solve this problem. In this approach,

the ground state electron density of a non-interacting system is the same as that of an

interacting system leading to the ground state energy of a many-body interacting system.

The ground state energy functional is then rewritten to:

EKS[n(r)] = Ts[n(r)] +

∫
n(r)V̂endr+ EHartree[n(r)] + Exc[n(r)] (2.8)

where Ts[n(r)] is the kinetic energy of the non-interacting system, EHartree[n(r)] is the

coulomb energy of electronic density, and Exc[n(r)] is the exchange correlation energy.
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Exchange correlation functionals

The Kohn-Sham equations, while a better attempt at solving the ground state energy

of a system, are not yet solvable without a form for the exchange correlation, Exc[n(r)].

There are a variety of density functionals, all of which have varying terms of accuracy

and computational efficiency. The most common, Local-density Approximation (LDA), is

expressed as:

ELDA
xc [n(r)] =

∫
n(r)ϵxc(n(r))dr (2.9)

where ϵxc is the exchange correlation energy for a homogeneous electron gas of charge

density n. More sophisticated methods include the generalized gradient approximation

(GGA) whose functional uses charge density and its gradient as follows:

EGGA
xc [n(r)] =

∫
ϵxc(n(r),∇n(r))dr (2.10)

The Perdew, Burke, Ernzerhof (PBE) functional [18] used as an improvement to GGA is

widely used for its accuracy. Many hybrid functional methods improve upon non-hybrid

functionals. However, there is still an under and overestimation of electronic properties,

most notably in the band gap.

Pseudopotentials

The use of pseudopotentials is introduced to approximate the complicated behavior of all

electrons. By rewriting the Schrödinger equation to have an effective potential instead of

the complicated coulombic interaction between non-valence electrons, one can use a plane

wave basis set. This method deals with valence electrons directly and considers non-valence

electrons as part of the nuclei as their contribution to chemical binding is limited.

A common type of pseudopotential is that of the projector augmented wave method

(PAW)[19] used for ab initio calculations. As wavefunctions tend to be highly oscillatory

before a cut-off radius rc, PAW smoothens them as shown in figure 2.1.
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Figure 2.1: Smoothening of dashed wavefunction and potential before cutoff radius

2.1 Molecular Dynamics

Despite design restrictions, molecular dynamics (MD) has been the pinnacle of analyzing

atomistic properties. It is a computational method made to simulate the time evolution

and interaction of a (many-body) system. Historically, solving such a system is a known

impracticality and thus there are several approximations to be taken. Nonetheless, such a

solution to a system provides a remarkable amount of information.

Fundamentally, there needs to be a well parametrized potential or force field for the

dynamics to reproduce electronic behavior. Albeit accurate, one of the biggest shortcomings

of MD is its scalability: as the simulation time increases, the errors accumulating from its

trajectory can no longer be ignored. The simplest model for interatomic interactions is the

Lennard-Jones pair potential [20]:

VLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
(2.11)

Although it comes with severe limitations stemming from particle interactions and tra-

jectories, accurate enough parameters can produce adequate results. As such, MD requires

a many body potential. For greater accuracy, widely used potentials include embedded

atom models [21] which use a function of the electronic density along with a pair potential

(2.12).

V eam
i = Fα

(∑
j ̸=i

ρβ(rij)

)
+

1

2

∑
j ̸=i

ϕαβ(rij) (2.12)
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Statistical mechanics for an ideal system

As a system of N particles for N > 3 can scale beyond current computational capabilities,

there are several numerical methods to constrain and preserve the system. Large enough

and complex systems lend themselves to the use of statistical mechanics. For a system in

thermal equilibrium, ensembles are used to idealize a system of particles. The simulation

box can then be part of a microcanonical (NVE), canonical (NVT), or isothermal-isobaric

(NPT) ensemble; where the quantities within the parentheses are conserved. In each of

these cases, there are thermostats which control the motion and scaling of the particles.

Since the object of study for this thesis is body-centered cubic (bcc) zirconium, it is essential

to be able to control the temperature, as will be discussed in Chapter 3.

2.1.1 Ab initio molecular dynamics

While it is fast and easy to compute dynamics with a classical treatment, it is not reliable.

Hence, merging classical MD and ab initio electronic structure theory created the framework

for ab initio MD (AIMD) [22].

Despite the fact that AIMD is exceedingly accurate, it is much more computationally

expensive. Thus, there are several methods, or approximations, that have followed (BOMD,

QMD, FPMD)[23]. Nonetheless, the goal is the same: to compute atomic forces (2.13) as

the trajectory is generated. In many (if not all) cases, this is done via the Hellmann-

Feynman theorem:

FRγ = −
〈
ψ

∣∣∣∣ ∂Ĥ∂Rγ

∣∣∣∣ψ〉 (2.13)

where the force on ion γ at position Rγ is equal to the negative expectation value of the

derivative of the Hamiltonian; where the Hamiltonian in our case is that of the Born-

Oppenheimer approximation (2.5). Hence, the name Born-Oppenheimer molecular dy-

namics.
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Chapter 3

Phonon Thermodynamics of bcc

Zirconium

Zirconium (Zr) is a group four transition metal whose characteristics and thermodynamic

properties are of great interest. Like its naturally occurring counterparts, titanium (Ti) and

hafnium (Hf), it has an α → β phase transition at high temperature. Moreover, they all

have a coinciding high pressure ω phase associated with this transition [24, 25]. Strikingly,

while mechanically unstable at low temperatures, they become thermodynamically stable

at high temperatures. The stability in the body-centered cubic (bcc) phase is attributed

to either the anharmonic contribution from lattice vibrations [26, 27] or alloying in the ω

phase [28]. In this thesis, we will analyse the anharmonic effects of high temperature bcc

Zr by ab initio molecular dynamics simulations.

3.1 Methods

At zero Kelvin, zirconium has a hexagonal close-packed (α-phase) crystal structure which

undergoes a martensitic transformation to a body-centered cubic structure (β-phase) at

1135K [15]. Hence, plane-wave self consistent field (scf) calculations were performed to find

the equilibrium lattice parameter for a bcc structure. Using an ultrasoft PAW potential,

we start with a = 3.60 Å [24] and perform scf calculations for several points above and

below a. For the several points calculated, a fit to the Murnaghan equation of state 3.1

calculated the lattice parameter to be a = 3.52 Å, as shown by figure 3.1.
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E(V ) = E0 +B0V0

[
1

B0(B′
0 − 1)

(
V

V0

)1−B′
0

+
1

B′
0

V

V0
− 1

B′
0 − 1

]
(3.1)

Murnaghan equation of state fit for zirconium lattice parameter. Blue circles are scf calculations

for lattice parameters, a. The energy minimization lattice parameter is a = 3.52 Å.

Figure 3.1:

Born-Oppenheimer Molecular Dynamics

Our DFT simulations were performed with Quantum Espresso [29] using a plane wave

basis, an ultrasoft PAW potential, a wavefunction kinetic energy cutoff of 40 Ry, and a

stochastic-velocity-rescaling (svr) thermostat. The crystal lattice used was a (4 × 4 × 4)

bcc Zr supercell of 128 atoms with an input temperature of 1500K. Since our goal is to

analyze the thermal effects of our structure we simulate an NVT ensemble.

Before starting the MD simulations, we relaxed our supercell from positions slightly

displaced from equilibrium using steepest-descent and damped dynamics. From this step

forward, we simulated 800 trajectory steps at a high temperature range. To converge our

steps faster, the electronic self-consistent mixing factor, mixing beta, was set to 0.01. For

every 20 steps, either the temperature or parameter nraise was analyzed and slightly

changed to shorten the big range in temperature.
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Phonon Dispersions

With our dataset, we use a Born-von Kármán (BvK) fit to calculate force constants. In the

body-centered cubic lattice, there are 14 unique force constants for fifth nearest neighbors.

While these results are our main interest, we also analyze first through fourth nearest

neighbors.

Using positions and forces, the BvK fit can output each force constant matrix for unique

pair interactions in our crystal. The fit output is formatted in such a way that a phonon

calculator such as Phonopy [30] can use it as an input to calculate dispersions. For bcc

zirconium, the high symmetry direction used is the following: Γ− H− P− Γ− N

3.2 Results

Thermostat

As zirconium changes phase below ∼1135K and melts above ∼2100K, controlling the ther-

mostat is of utmost importance. As shown in figure 3.2, our temperature (using the

stochastic-velocity-rescaling thermostat) ranged from 1250K to 2050K with most points

being around 1600K.

(a) Temperature for every time-step (b) Temperature distribution

Figure 3.2: BOMD Temperature

23



Phonon Dispersions

As seen in figure 1.6, bcc zirconium has non-degenerate transverse acoustic branches in

the [110] direction. Across all time steps, the T1 branch oscillates between instability and

near degeneracy with the T2 branch. It also has a vast frequency range when considering

different nearest neighbors (3.8). Conversely, the T2 branch has a lower oscillating range,

mostly hovering about 3 THz. In the [111] direction, the T1 branch also oscillates towards

instability, however not as often as the N-phonon mode.
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Figure 3.3: Single time step unstable phonon modes

The anharmonic effect on bcc zirconium results in the general instability of phonon modes

for any given time step (3.3). Visually, this effect is more oscillatory (3.4 - 3.6). At some

time step, the dispersion may have some unstable phonon mode which will eventually be

stable for some other number of time steps before it becomes unstable again.
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Figure 3.4: Fluctuations: 324-326
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Figure 3.5: Fluctuations: 327-329
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Figure 3.6: Fluctuations: 330-332

Following the fact that, on average, a bcc high temperature system is stabilised by the

anharmonicity in lattice vibrations [31], we compute an average phonon dispersion from all

time steps (3.8); with the exception of fifth nearest neighbors, this is seen quite well.

The heat maps in figure 3.9 were created by layering all time steps in the simulation. It

is much easier to see the phonon broadening along different modes as well as its increase

with the inclusion of more nearest neighbors, of which a side effect is the lowered intensity.
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Figure 3.7: Overlay of figure 1.6 and our fit (3.8)

To compare with experimental data, we overlay points from figure 1.6 to a fourth nearest

neighbors fit from our data. The visual guide to the experimental data is no longer there

but our results match up well enough1 (with the exception of the transverse branches in

the N-Γ direction, where our results clearly show degenerate branches, and the low dip in

the H-P direction).

1Note here the temperature discrepancies from the experiment (1423K) and our data (1300K-2000K).
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Phonon dispersions: 1st through 5th nearest neighbors
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Figure 3.8: Average phonon dispersions for all points
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Heat maps

Figure 3.9: Heat maps of all time step phonon dispersions. From top to bottom:
1st nearest neighbors to 5th nearest neighbors
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Chapter 4

Machine Learning and Deep Learning

Machine learning and curated neural networks have currently been at the forefront for

solving computational problems in materials science, amongst a plethora of other topics.

From its statistical beginnings, the field has enjoyed great success, most considerably in

the last ten years.

The main goal of machine learning essentially lies in pattern recognition. Given a set

of known information, a network will try to predict a possible outcome. Perhaps the most

well known example is the classification of the MNIST dataset [32]. Several methods and

algorithms have been tried and developed to accurately classify handwritten digital images

of single digits, of which the best performing has been a convolutional neural network.

Handwritten digits (0-9) tested by different machine learning methods to study their

accuracy

Figure 4.1:
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As a whole, machine learning algorithms can be classified in terms of how supervised

the training set data is. There are mainly three categories: supervised, unsupervised, and

reinforcement learning. Occasionally, a fourth, semi-supervised, can be thrown into the

mix. As the representation of data is essential to a successful model in the category of

atomic structures, this thesis will focus on supervised learning methods.

Neural Networks

In 1943, W. McCullogh and W. Pitts proposed the idea of mathematically modeling neural

activity in what would become the start of artificial neural networks (ANNs) [33]. Based

on the biological system, ANNs are made up of nodes (neurons) and edges (connections

between neurons) which have an associated weight. As a model learns, the weights on both

nodes and edges update to lower the error on an output. Typically, in between the input

and output layer there is one or more hidden layers in which nodes are organized. Note

here that having more layers and more nodes per layer does not mean the model will learn

faster. This concept of having multiple layers to extract different features is the basis of

deep learning. The most common model is that of convolutional neural networks (CNNs).

CNNs are based on the mathematical operation of the same name. A convolution is

defined as an operation on two functions f, g that results in a third, (f ∗ g).

(f ∗ g)(t) :=
∫ ∞

−∞
f(a)g(t− a)da (4.1)

As convolution is commutative, equation 4.1 can also be written as:

(f ∗ g)(t) :=
∫ ∞

−∞
g(a)f(t− a)da (4.2)

A beneficial aspect of convolutions is their translational invariance. CNNs are very com-

monly used for image recognition and any translation operation on an image does not

change it. As part of the network architecture, this is reflected in parameter sharing;

across different pixels, a hidden layer output (feature map) is used on all of them.
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Supervised learning

Supervised learning is defined as a function-learning task that uses its’ input data to predict

a desirable output. As it requires labeled data, the representation of the input data is an

important facet to consider. Typically, the input is transformed into a feature vector which

should describe as much of an object as possible in its dimensional limit. In materials

science, there have been several approaches in defining the important features of a system

as well as its machine learning method [34, 2, 3].

In considering an atomic system, as mentioned in Chapter 1, the structure is an im-

portant factor in determining physical properties. While using an existing neural network

architecture is convenient for lowering errors in molecular predictions, it is perhaps more

powerful to generalize the problem. It follows then that the data representation of the

input should be functional across all atomic systems.

Active learning

A supervised learning method, active learning lets the user interact with and label new

data points as desired. The fundamental idea is that fewer selected data points will allow

a model to train faster than usual supervised learning methods [35]. As a typical dataset

can span hundreds or thousands of data points, of which labeling is not a feasibility, active

learning algorithms query or prompt the user to label new data. As is the case with all

machine learning methods, the performance mileage may vary across different problems.

There runs the risk of training with data that doesn’t necessarily improve performance or

let the model learn anything of significance. Thus, there are several methods within active

learning to reduce errors [36, 37, 38].
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4.1 Euclidean (3) Neural Networks: e3nn

The tensor field networks, e3nn [10], are a library of networks that enjoy the three dimen-

sional symmetries of Euclidean space. A defining characteristic is their 3D translational-

and rotational- equivariance [6]. As a consequence of this constraint, the rotation-invariant

output is less expensive than traditional data augmentation. An advantage of Euclidean

space is the freedom to pick any coordinate system for an atomic system. In rotating

said system, the vector quantities on each atom is preserved (as a consequence of equiv-

ariance). Subsequently, the network is able to recognize features in different locations and

orientations.

The architecture of the network itself is that of a modified convolutional neural net-

work. Where CNNs operate on pixel data for 2D images, e3nn uses point clouds for three

dimensions. The convolution filter: W (−→r ) = R(r)Y m
l (r̂), a product of a learnable radial

function and a spherical harmonic, is chosen as a spherical basis which steers the structure

of the network to be compatible with algebraic formalism, namely tensors. Hence, every

layer of the network inputs and outputs geometric tensors [6]:

L(ri, xi) = (ri, yi) (4.3)

where layer L operates on point coordinates xi ∈ RX , yi ∈ RY . For group representations

DX (g), DY(g) where g is an element of some group G, the condition for equivariance (1.4)

is expressed as follows [6]:

L ◦DX (g) = DY(g) ◦ L (4.4)

As the composition of two equivariant functions L1, L2 results in another equivariant

function, L1 ◦ L2, it’s easy to follow that the layers across the entire network (4.3) are

equivariant themselves.

The tensor fields of each layer in the network act on a set of points and a vector in a

representation of SO(3). They are implemented as a string of the following parameters:

multiplicity, rotation-order, and parity. For example, the string 1x0e is one instance of an
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even scalar. The first half of the string 1x corresponds to the number of copies needed. The

second half, 0e, can be expressed as l p where l, the rotation-order, is an integer depending

on the tensor form (0 = scalar, 1 = vector, 2 = symmetric traceless matrix, .., etc.) and

p is the parity. Since they are irreducible representations of SO(3), they have dimensions

2l+ 1. The irreducible representations of SO(3) are Wigner-D matrices.

4.1.1 Spherical Harmonics

The spherical harmonics Y m
l are a set of special functions that define points on a sphere.

They are defined as follows:

Ylm =


i√
2
(Y m

l )− (−1)mY −m
l m < 0

Y 0
l m = 0

1√
2
(Y −m

l ) + (−1)mY m
l m > 0

(4.5)

or visually:

Figure 4.2: Spherical harmonics for l=0,1,2,3 from top to bottom

Equivariant to SO(3), they are considered basis functions for irreducible representations.

Given a geometric input, E3NNs will transform this into features by spherical harmonic

projections.
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Under a rotation, R, a spherical harmonic can be expressed as:

Y (l)
m (r′) =

l∑
m′=−l

D
(l)
mm′(R)Y (l)

m′ (r) (4.6)

However, because 3D rotations are not abelian like rotations in 2D, a fully rotation-

equivariant filter is restricted to the following [6]:

F
(lf ,li)
cm (r) = R

(lf ,li)
c (r)Y

(lf )
m (r̂) (4.7)

where r is the magnitude of vector r, and r̂ is its normalized unit length vector. R
(lf ,li)
c :

R≥0 → R are weighted learned radial functions corresponding to input and filter rotation

orders: li, lf .

Since the layer inputs and filters are expressed in irreps of SO(3), they must combine

in a way that the output is equivariant. In e3nn, this is done with a tensor product,

an equivariant operation, where the combination of two representations, DX , DY can be

expressed as: DX⊗DY = DX⊗Y . As previously mentioned, the irreps of SO(3) are Wigner-

D matrices whose product can be calculated using Clebsch-Gordan coefficients. Thus, a

pointwise convolution layer is defined as [6]:

Ll◦
acm◦(ra, V

(li)
acmi

) :=
∑

mf ,mi

C
(l◦,m◦)
(lf ,mf )(li,mi)

∑
b∈S

F
(lf ,li)
cmf (rab)V

(li)
bcmi

(4.8)
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Chapter 5

Phonon Thermodynamics of Neural

Network Trained bcc Zirconium

As experienced by our calculations in Chapter 3, computational costs from density func-

tional theory molecular dynamics simulations are extremely costly. Here, we explore the

use of machine learning methods to cut down on those costs. Using the e3nn library with

an active learning algorithm, we reduce our output error to ∼0.008 eV/Å.

5.1 Methods

e3nn

It is more common and practical to exploit the invariance of scalar quantities in a network

not inherently built to recognize higher-order (geometric) tensors. By using an equivariant

model, the features that describe the system are only limited by invariant features and

symmetries [39]. Physical systems themselves inherently use equivariance to preserve their

quantities, as they transform deterministically.

To train our model, we use the DFT data generated by Quantum Espresso [29]. Since

the capabilities of e3nn are limited only by data structure, it was decided that energy would

be used as an input and the forces would be outputted directly, as opposed to energies being

outputted and forces calculated thereafter.

We use a modified gate point network to train our model since the distance between

positions in our lattice are necessary to calculate the edge shift. Using e3nn’s formalism for

identifying the structure of our inputs and outputs, we set irreps in to 1x0e for energy
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(scalar) and irreps out to 1x1o for force (vector). The rest of our parameters were chosen

on the basis that drastically changing them does not create a faster or better output. Thus,

num neighbors is set to 30.0 and max radius is set to 5.0 Å, where the latter is restricted

by the lattice parameter, but any value well above that can be chosen.

net = SimpleModNetwork (

i r r e p s i n =‘1x0e ’ ,

i r r e p s o u t =‘1x1o ’ ,

max radius=r a d i a l c u t o f f ,

num neighbors=num neighbors ,

num nodes=1.0 ,

poo l nodes=False ,

)

Figure 5.1: Sample net definition

In our training cell, while the input is an energy, the loss of our force is minimized with

respect to the original force data:

l o s s f o r c e s = l o s s f n (x [ ‘ f o r c e s ’ ] , f o r c e s )

Figure 5.2: Loss minimization

where the loss function is defined as the mean squared error.
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Active Learning

Using an expected error reduction [35, 36] query for our active learning method, we follow

the form of Y.-H. Tang’s protocol [40]:

• repeat

1. G← Train(S)

2. α← argmaxi∈TQ(G, i)

3. S ← S ∪ α

4. T ← T \ α

• until criteria is met

For a training set S and test set T , an acquisition function Q(G, i) will determine data

points to remove from T and shuffle back in to S. Our choice of acquisition function is the

predicted error of our model above a certain threshold.

Using DFT data to train our model with, we first start with 100 randomized time steps

in the train set, leaving the rest as part of the test set. Subsequent runs converge the loss

function to a set value or shuffle the top 5% of test set errors back into the train set.

Force Predictions

Regarding our DFT data as the ground truth, the calculation of force prediction errors are

as follows for a set of ground truth data points G and a set of prediction points P:

1. A(128×3) = G− P

2. a(128×1) = ||A||F =
√∑m,n

i,j |Aij|2

3. a(1×1) =
∑n

i ai

n
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Figure 5.3: Force error plot

In figure 5.3, every dot corresponds to step 3 above as the average error of the entire crystal

structure.

Point Sampling

Since the temperature distribution of our dataset has a wide range (3.2), we sample points

in several ranges and analyze the phonon dispersions for their accuracy. Recalling that

zirconium’s bcc phase stabilises with the help of lattice vibrations, the number of points

used in some of these ranges is not enough to provide stable phonon modes. Hence, several

points at each temperature range is necessary; for this purpose, 1000 points were generated.

Table 5.1: Points sampled for network validation

Temperature Points Generated Original # of Points

1200K-1300K 1000 6

1300K-1400K 1000 26

1400K-1500K 1000 58

1500K-1600K 1000 195

1600K-1700K 1000 259
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To generate 1000 points for each temperature range in table 5.1, the original points in

their respective range were first averaged. Given one average range, a normal distribution

dataset of width 1/σ (where σ is the standard deviation) was created with respect to the

original points.

5.2 Results

Active Learning

The first couple of runs in our active learning method show an oscillatory motion in the test

set (5.4 - 5.11) and a scatter-like pattern in the train set; with later runs seemingly gaining

a structure of sorts. This effect is more than likely due to the fact that our time-steps

are very close to each other as the DFT trajectory was generated and there is very little

difference between them. Later runs, 5.16 - 5.19, are mostly void of the structure-like gains

seen in earlier runs. They are also mostly true scatter-like plots with some slight oscillatory

motion as seen in figures 5.17 and 5.18.

Interesting to note is the loss function in later runs as well as runs that optimized the

loss to a set value. The loss function in run 1 (5.4) is what is usually observed when training

a model. The subsequent run (2, 5.5) was a loss optimization run converging the loss value

to 0.0025. Consequently, throughout the run, the model had a difficult time training as its

loss heavily fluctuated. Run 4 (5.7) was also an optimization run where the models loss

was even more volatile than run 2. In later runs, since the loss nears the initial conversion

value it was given, it is then eventually lowered to 0.00005. Since the model hovers around

this value relatively quickly, the last couple of runs are trained on 500 epochs, with no

consideration to the loss value.

In its initial goal to lower the train and test set error, even before 30 runs, it is clearly

visible how successful it was, as seen in table 5.2 and figure 5.20. With 621 training points

in the 30th run, by error standards, the model is sufficiently trained.
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Figure 5.4: AL run 1

Figure 5.5: AL run 2

Figure 5.6: AL run 3

Figure 5.7: AL run 4

40



Figure 5.8: AL run 5

Figure 5.9: AL run 6

Figure 5.10: AL run 7

Figure 5.11: AL run 8
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Figure 5.12: AL run 15

Figure 5.13: AL run 17

Figure 5.14: AL run 19

Figure 5.15: AL run 23
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Figure 5.16: AL run 27

Figure 5.17: AL run 28

Figure 5.18: AL run 29

Figure 5.19: AL run 30
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Table 5.2: Median force errors from train and test sets

Median errors (eV/Å)

Runs Train Test % difference

1 0.0519733 0.1471809 187.87

2 0.0172319 0.0882041 412.05

3 0.0397450 0.0968479 143.67

4 0.0313330 0.0847395 170.45

5 0.0362359 0.0869364 139.92

6 0.0494234 0.0789891 59.82

7 0.0531087 0.0739138 39.17

8 0.0509865 0.0660957 29.66

9 0.0463458 0.0586207 26.49

10 0.0373292 0.0430832 15.41

11 0.0283718 0.0331065 16.69

12 0.0223621 0.0293039 30.91
...

...
...

...

24 0.0093847 0.0105580 12.51

25 0.0093876 0.0105878 12.78

26 0.0105597 0.0111711 5.79

27 0.0083136 0.0091024 9.46

28 0.0088553 0.0092719 4.70

29 0.0080277 0.0087100 8.50

30 0.0055986 0.0063097 12.70
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Figure 5.20: Median errors across all runs

Table 5.2 highlights the error difference between train and test sets across several runs.

The median value for the prediction errors was picked because it provides a better depiction

of errors in all time steps. Occasional outliers and deviations from the median are points

that are re-shuffled into the train set.

Starting from the first run, the train error is already relatively low, but the test set

error indicates that it’s grossly overfit and not at all able to generalize the remaining data;

clearly seen by figure 5.4. In runs 1-12, the table shows the test set error trending lower,

fluctuating slightly. Somewhat contrary to this, the train set error gives a slight increasing

trend as the result of new data points being added. In the following runs, both set errors

decrease with minimal fluctuations. As shown by figure 5.20, both train and test set errors

seem to converge towards ∼0.008 eV/Å.
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Phonon Dispersions: Network Accuracy

Of the trained models in all our runs, three were picked to analyze their accuracy. Models

twenty-nine and thirty were picked because it was assumed that their training with a

greater number of data points would allow the network to learn more about our system

and therefore be more accurate. Their stark difference lies in train and test set errors as

shown in table 5.2, or less directly in figures 5.18 and 5.19. Taking into account the risk

of overfitting, it would be expected for run twenty-nine to perform better than run thirty.

Run twelve was picked in an effort to see the difference in accuracy for a model with less

training points and some slight overfit like run thirty.

As seen in figures, 5.21, 5.22, and 5.23, there are vast differences in the average phonon

dispersions spanning all nearest neighbors. For run twelve and thirty, dispersions for third

through fifth nearest neighbors show an instability in the Γ-phonon mode. Remarkably,

although run twelve has fewer points and is more overfit than run thirty, its dispersions

are near-interchangeable, save for some extremely slight differences in the Γ−N direction.

Run twenty-nine, with an overfit error just under ten percent, produced the most reliable

dispersions. In fact, in comparing to the original DFT data (3.8), there is virtually no

difference between them. Thus, we can conclusively say run twenty-nine, trained on just

611 data points, is able to accurately predict the forces of a system given an energy.

As with the original data, heat maps generated by overlayering all time steps were

produced (A). Interestingly, at a glance, the heat maps don’t seem to provide a clear

distinct difference between models, although there are a few minute details. Overall, they

are also very similar to the original data (3.9).
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Network phonon dispersions

Γ H P Γ N

0

1

2

3

4

F
re

q
u

en
cy

(a) 1st nearest neighbors

Γ H P Γ N

0

1

2

3

4

5

F
re

q
u

en
cy

(b) 2nd nearest neighbors

Γ H P Γ N

0

1

2

3

4

5

F
re

q
u

en
cy

(c) 3rd nearest neighbors

Γ H P Γ N

−1

0

1

2

3

4

5

F
re

q
u

en
cy

(d) 4th nearest neighbors

Γ H P Γ N

0

1

2

3

4

5

F
re

q
u

en
cy

(e) 5th nearest neighbors

Figure 5.21: Run 12 average phonon dispersion
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Figure 5.22: Run 29 average phonon dispersion
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Figure 5.23: Run 30 average phonon dispersion
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Phonon Dispersions: Temperature sample

As seen in figure 3.2, because our DFT models’ temperature range spans several hundred

Kelvins, we decided to take sample increments of 100K (5.1) and generate fictional data.

Using the best trained model, run twenty-nine, we feed the 1000 generated data points

for force predictions. Similarly to the network models and DFT data, phonon dispersion

averages are computed. With the exception of the first nearest neighbors, figures 5.24 to

5.27 show stable dispersions for all selected ranges.

The most significant difference from these selected ranges and the original data is the

Γ−H−P direction. In the fifth nearest neighbors plots, the longitudinal branch starts off

with a bit of an elbow crease at 1200K-1300K that generally smoothens out by 1500K. This

trend is generalizable as second through fifth nearest neighbors depict a similar pattern as

temperature increases. In comparison to the DFT averages, these temperature range dis-

persions have similar features. For first nearest neighbors, the transverse and longitudinal

branches in the Γ − H direction are degenerate and its peak softens as temperature in-

creases. For second and third nearest neighbors, these branches are only degenerate at

the H-phonon mode. In fourth and fifth nearest neighbors where a crease is present, the

branches aren’t completely degenerate and they shift to a higher frequency. The Γ − N

direction in these samples behave similarly to the original data in terms of its frequency

shift. Collectively, all these ranges produce reasonable dispersions associated with their

temperature [24].
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Point sampling phonon dispersions
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Figure 5.24: 1200K-1300K average phonon dispersion
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Figure 5.25: 1300K-1400K average phonon dispersion
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Figure 5.26: 1400K-1500K average phonon dispersion
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Figure 5.27: 1500K-1600K average phonon dispersion
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Chapter 6

Conclusions

Atomic lattice vibrations play a non-negligible role for temperature-dependent phenomena

in thermodynamic processes. We primarily analyzed its effects in phase stability for the

high temperature system of body-centered cubic zirconium. The main work presented in

this thesis demonstrates the viability of accurately predicting interatomic forces to derive

the same effects from DFT simulations. The paring of an active learning algorithm with a

Euclidean (3) neural network effectively reduced the needs to use a greater dataset than was

initially provided. With just 611 data points our model was able to replicate the electronic

band structure for bcc zirconium at a high degree of accuracy.

6.1 Future Work

The main direction for this work is in the molecular dynamics simulation of the neural

network trained model. In order to completely remove the costly DFT dynamics, a path-

way for neural network dynamics needs to be established. The successful simulation of a

trained model would lead to the generalization for other materials as well as its widespread

availability.

As part of the goal to generalize machine learning potentials, the zirconium dataset

should be expanded to include more configurations. A larger sample space in a trained

model would bypass the need to simulate different structures.
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6.2 Notes

To the future contributor: the setting of the thermostat in dynamics simulations is paramount.

It is by far a simple task to set the system to be in thermal equilibrium. Make little to

no changes in an input file. Prior to this main task where the lattice parameter is to be

derived, choose a suitable pseudopotential. The work in this thesis utilized a PBESOL

ultrasoft (USPP) potential for its entirety, and there’s much to be said about its accuracy

(but beware the raised flags from software). In any case, a PAW PBE potential is a safe

bet when concerned with reliability.

As for the machine learning aspect, not every model is created equal. Some may be

more difficult to train than others (though not dependent on said models complexity). The

criteria of the active learning algorithm may look arbitrary. Although a model can train

well and reduce its loss over a couple thousand epochs, it is much faster or simpler to

iteratively add small amounts of data. A bigger number of data points shuffled back into

the train set can cause latency in error lowering. It’s advised to base the criteria on the

lowest amount of points that can make a difference in training (our case made that 5%

of top errors). The input-output (scalar-vector) used is widely unconventional but useful.

It might also interest the reader to use a scalar input and output to compare behavioral

differences. In the vein of generating force-fields, it might also be prudent to try different

configurations.
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Appendix A

Heat map phonon dispersions

Figure A.1: Heat maps of active learning run 12. From top to bottom: 1st nearest
neighbors to 5th nearest neighbors
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Figure A.2: Heat maps of active learning run 29. From top to bottom: 1st nearest
neighbors to 5th nearest neighbors
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Figure A.3: Heat maps of active learning run 30. From top to bottom: 1st nearest
neighbors to 5th nearest neighbors

59



References

[1] J. Behler and M. Parrinello, “Generalized neural-network representation of high-

dimensional potential-energy surfaces,” Physical Review Letters, vol. 98, no. 14,

p. 14640, 2007.
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