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Abstract  

Digital twin (DT) technology is state-of-the-art for engineering processes using a virtual 

model of a physical system with near real-time data exchange (either fully or semi-automated) 

during the process (collection and feedback). The potential of DT for as-built civil infrastructure 

remains relatively unexplored. To achieve the expectation of a DT, three main capacities must be 

met: (1) accurate virtual twin of physical asset (2) continuous data acquisition and data 

management (3) automated or semi-automated decision making from the data exchange. The 

challenge addressed herein is to determine a feasible approach to create an accurate virtual model 

(efficiently) from light detection and ranging (LiDAR) data for existing infrastructure. The scope 

of this research focuses on the first capacity by comparing various virtual twin model creating 

methods for visualization of an existing pedestrian bridge, determining compatibility with data 

input, and proposing a data structure for predicting hidden structural components not captured by 

LiDAR. The initial attempts to improve infrastructure management practices by leveraging a DT 

for various applications were investigated in the literature review. The methods investigated were 

direct, manual conversion from scan to Building Information Modeling (BIM), and algorithm-

based reconstruction techniques via an open-source software. In all cases, it was found that the end 

results were short of the requirements to integrate into a DT, and that substantial human input was 

still required. A potential for closing the gap between these technologies and DT was identified 

via automated approaches like machine learning or artificial intelligence, but this would require 

substantial amounts of data that is not yet available.  
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Chapter 1: Introduction 

1.2 Background 

A Digital Twin (DT) is a virtual model of a physical asset or process with near real-time 

data exchange. The term digital twin was coined by Michael Grieves (2015) for industrial 

manufacturing processes. More recently, the idea of DT has become increasingly popular in the 

research community. Although the concept of DT was initially introduced for manufacturing 

processes, it can be applied to civil infrastructure with recent technological innovations. 

Technologies such as Internet of Things (IoT), real-time sensing equipment, cloud computing and 

storage, and machine learning for data interpretation enable DT for the monitoring of civil 

infrastructure conditions (Tao et al., 2019). Numerous lab-controlled case studies effectively 

modeled disaster management, maintenance, and inspections processes for infrastructure with 

more research needed at a city-wide scale. 

According to Batty (2018) the physical twin and digital twin exist in parallel with the need 

to communicate between the two systems for it to be useful. A DT built using terrestrial Light 

Detection and Ranging (LiDAR) scans creates a snapshot in time of the geometric condition of the 

infrastructure, but with limited additional information on the physical asset (i.e., no details that 

cannot be viewed externally). The systems, virtual and physical, remain separate processes. To 

connect the real-time behavior of the physical twin, the data input to the digital model needs to 

lead to a decision to affect the physical twin. The initial challenge is to create a virtual model of 

the existing infrastructure using point cloud data to create a model compatible with digital twin 

software and for simplified data integration. Laser scanned data at a large scale increases the 

computational requirements for processing the data. To understand DT technologies and the 
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process to achieve a DT for infrastructure applications, first a visualization of the digital model of 

the as-built infrastructure must be created. 

Advancements in visualization methods for a geometric replica model of a real physical 

system, such as photogrammetry and LiDAR, have become viable options. Three-dimensional 

laser scanning for LiDAR requires large storage capacity for the scanned data to be a feasible 

option for infrastructure modeling. The amount of data captured from a terrestrial laser scan (TLS) 

requires substantial computational power to process efficiently and integrate to DT software. 

Several techniques for improving the 3D reconstruction of infrastructure from scanned data have 

been researched but the manageability of the data set, storage, quality, and processing remains a 

challenge (Limberger & Oliveira, 2015). The quality of the scan is affected by self-shadowing, 

scan limitations (e.g., range), and noise. Alternative methods to perform laser scanning, such as 

aerial(manned), unmanned aerial vehicle (UAV), or GPS can be used. However, the accuracy and 

processing of data for 3D reconstruction remains challenging for larger data sets (Hinks et al., 

2009).  

 Several geometric 3D reconstruction methods from point cloud data and the current 

limitations of the technology are evaluated in this work. The one-way integration of data 

(infrastructure to virtual model) to a 3D model of an existing infrastructure is known as a digital 

shadow. A bridge infrastructure system was selected to create a digital shadow. The existing 

pedestrian steel bridge located in the university campus will include sensors for monitoring the 

structure (outside the scope of this work). The available 3D reconstruction techniques for built 

structures were investigated based on accuracy, efficiency, and compatibility with data. The three 

methods used were: 1) Scan-to-BIM approach, 2) algorithm reconstruction techniques via open-

source software, and 3) data-driven reconstruction. The processing of the large data sets from an 
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infrastructure scan remains computationally expensive, requiring extensive memory capacity and 

high amounts of RAM for processing. There is a need to find methodologies and techniques within 

this process to reduce the computational time and resources, and to optimize human input (Mirzaei 

et al., 2022).   

The methods selected for model reconstruction include a.) a manual approach via tracing 

the point cloud in a Building Information Modeling (BIM) software, b.) automated approaches 

leveraging available algorithms to automate the model reconstruction from point cloud data, and 

c.) combinations of both. Then a method to structure a database for predicting the hidden structural 

components (not captured from the laser scan) using machine learning is proposed. The 

infrastructure case study explored in this thesis is the Interdisciplinary Research Building 

(IDRB)—specifically the pedestrian bridge adjacent to the building—on the campus at The 

University of Texas at El Paso (UTEP). LiDAR was used to create a detailed digital geometric 

model of an existing pedestrian bridge using several reconstruction methods. The design drawings, 

provided by UTEP, were utilized as a reference to evaluate the accuracy of the scan-to-BIM model. 

The state-of-the-art in infrastructure design utilizes Building Information Models (BIM) but is 

currently limited by the fact that BIM models generally only exist for new construction. For 

operational infrastructure, IoT equipment to monitor and manage structural soundness in unison 

with a complete geometrical visual model increases the value to any DT efforts. A roadmap for 

standardizing and integrating digital data for already built infrastructure assets, and an 

understanding of available resources with its limitations is needed to improve the integration of a 

digital model for DT civil infrastructure assets.  
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1.2 Objective 

The objective of this research is to implement and assess standard approaches to geometric 

reconstruction of point cloud data in order to find a simple, effective approach that is scalable, 

manageable, and reliable.  

1.3 Research Question 

The primary research question addressed herein is:  

What approach or combination of approaches (if any) to geometric model reconstruction of point 

cloud data is efficient, reliable, accurate, and scalable such that it will facilitate widespread 

geometric replication of the built environment for Digital Twins? 

1.4 Thesis Breakdown 

Task 1: Literature Review 

This section defines digital twin, the origin of DT, the applications in manufacturing, and the initial 

applications for infrastructure. The existing literature of the technologies available for the 

geometrical reconstruction of a digital twin using LiDAR, the methods for data collection, model 

definition, and available algorithms for processing point cloud data are presented. 

Task 2: Data Collection of Pedestrian Bridge 

This section presents the methodology for the data collection for terrestrial laser scanning. The 

scanning techniques used to obtain detailed scan data of the structure, registration of the scans 

(aligning the scans), noise filtering process, and data file classification. Also, the segmenting used 

for processing and manipulation of point clouds. 
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Task 3: Three-Dimensional Reconstruction from Point Cloud Data 

Detailed measurements for the external dimension of individual components were collected from 

the point cloud data to identify the material sections and compute accuracy. Then, reconstruction 

methods were used to generate a three-dimensional model of the bridge from the point cloud. The 

methods range from manual measurements of the point cloud to the use of available algorithms to 

computationally generate planes for the mesh. The algorithms utilized involve creating planes 

using octree structure and primitive shape detection using the point cloud to perform mathematical 

computations.  

Task 4: Comparison of Reconstruction Methods 

The accuracy of the point cloud data (as-built structure) with respect to the design drawings was 

calculated. Then the data was used to determine if the point-to-point measurements match to AISC 

girder/beam dimensioning data to aid in the reconstruction of the resultant model. The 

reconstruction methods were compared in terms of the time to generate the model, the 

computational efficiency, and the accuracy of the mesh with respect to the point cloud.   

Task 5: Analysis of Results (Qualitative and Quantitative analysis) 

Based on the accuracy obtained from the comparison, a database structure is proposed to aid in the 

3D reconstruction of hidden components of a bridge using machine learning algorithm. These 

components were hidden within the structure or were not captured during the laser scanning. 
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Chapter 2: Literature Review 

The existing literature was reviewed to understand the previous applications and available 

resources for digital twins in manufacturing and infrastructure. In addition, the application of laser 

scanning and its limitations, 3D model reconstruction methods, and machine learning algorithms 

as applied to point cloud usage were studied for the application of DT for infrastructure 

management. The structure of the literature review is as shown in Figure 1. 

 

 

Figure 1. Image. Literature Review Structure 

 

2.1 Digital Twin and Applications in Manufacturing 

The original definition of DT for a virtual factory digital twin was defined to include three 

main parts: (1) a physical product, (2) a virtual product, and (3) the connection of the products 

using data and information (Grieves, 2015). The virtual product or model is done through tools 

such as Computer-aided Design (CAD), Computer-aided Engineering (CAE), and BIM. 

Technological advances have become sufficient for wireless communication of large data sets into 

the cloud; therefore, data sharing and processing can be established near real time. Artificial 

Intelligence (AI) through proper dataset structuring and training can provide additive advancement 
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with human-machine collaboration (HMC) (T. Wang et al., 2020). The structuring of the data and 

applying appropriate thresholds to the data is needed to implement algorithms to automatically 

make decisions for the system by relaying this information to both the operators and the physical 

system itself. Only when these requirements are met is it feasible for a digital twin to be functional 

for improved management and decision making to the system. 

As result of the fourth industrial revolution, the exponential growth in technology and AI 

became widely accessible and affordable to the public (Scepanovic, 2019). The promise of 

connectivity between the physical and the virtual realities of a DT through the innovations in 

Internet of Things (IoT), database quality, machine learning, and software as a service (SaaS) 

remains elusive. The high fidelity of the virtual model to physical process creates challenging 

issues for constructing a reliable DT (Y. Lu et al., 2020). For the machining process of aerospace 

components a DT for the manufacturing was developed to include mimicry of the geometry and 

progress information during the process to monitor machining characteristic and equipment, and 

aid in decision making. (S. Liu et al., 2020). The virtual-physical integration of a DT for smart 

manufacturing is possible using big data collected during the manufacturing process using radio 

frequency identification (RFID), various sensors, gateways, and IoT (Qi et al., 2018). 

 The entire product lifecycle assembly workflow of the manufacturing process can be 

managed virtually by leveraging the signature of the materials during the assembly of product in 

the manufacturing process (temperature, effects of gravity on thin material, etc.) (Polini & 

Corrado, 2020). A DT can aid in the optimization of the schedule of the dynamic production using 

edge computing and the manufacturing process data (Xu & Xie, 2021). The dynamic schedule 

improves the process itself by decreasing the delays and optimizing machining procedure. When 

using a DT to model an enclosed system (i.e., laboratory) the operations model reached high 
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accuracy then used to optimize the maintenance of equipment, and detected equipment failure (M. 

Li et al., 2020).  

 

2.2 Initial Application of DT for Infrastructure 

DT was initially introduced and widely accepted for manufacturing purposes, but the 

principle can be applied to infrastructure to understand interdependencies of multiple systems in 

management practices (Taylor et al., 2021). A DT is a virtual twin of an actual structure or 

infrastructure system with near real-time data exchange with the goal of monitoring the processes 

affecting the physical twin for improved decision making (Polini & Corrado, 2020). A DT is 

composed of three main aspects: a physical or experimental reality, collected data describing the 

experimental reality, and the virtual reality (physical asset, semi-automated two-way data 

exchange, and virtual model)(Angjeliu et al., 2020). Modern design methods, such as BIM, are 

used to create detailed virtual model.  

Infrastructure management value is provided when there are complex interconnected 

systems or unique operational challenges that would benefit from the use of a DT (Curl et al., 

2019).  Therefore, there is a need to understand and develop standards for the application of DT 

based on the importance of the infrastructure and limitations of the technologies ((Gatziolis & 

Andersen, 2008), (Ford & Wolf, 2020)). Examples of the types of data received from the actual 

processes include energy consumption(Lydon et al., 2019; Teng et al., 2021), waste production 

(Samimpay & Saghatforoush, 2020), air quality, utilities (Curl et al., 2019), structural soundness 

(Ye et al., 2019), among others and is dependent on the sensing technology placed on the physical 

asset.  
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The application of DT technology to existing infrastructure presents a solution to improve 

the monitoring of quality and management of these built assets(Ford & Wolf, 2020). The current 

infrastructure is not monitored sufficiently, and the inspection process is done using methods that 

have not been updated in several decades. The current method for inspection of infrastructure is 

through visual inspection of roads, buildings, bridges, water management, and sewage system. 

This is inherently subjective and lacks the consistency of data-driven, quantitative approaches. 

A DT of infrastructure faces challenges with unpredictable environmental conditions and 

effects of external stimuli, among many other challenges (Moselhi et al., 2020). Understanding 

how to apply technology like DT effectively to the built environment is critical to improve 

management practices for infrastructure systems. Infrastructure management with efficient 

communication for connectivity between individual systems, such as transportation infrastructure 

systems, storm water management, and water quality systems, enables better decision making. In 

the last decade, mobile devices have become a substantial source of data. The technology used for 

tracking changes based on electromagnetic waves, such as waves emitted by smartphones and 

smartwatches, is used for tracking occupancy, location, and behavioral patterns (Widhalm et al., 

2015). This is bound by user privacy issues and legal restrictions therefore it is not widely available 

without the users’ consent. The mobility data collected in real-time from drivers, vehicles, and 

surrounding vehicles aids a DT to predict problematic areas (Kumar et al., 2018). The use of 

available resources for human mobility data, such as Wejo, Streetlight, and  Inrix, effectively 

improves mobility but the disconnect of the knowledge with policy makers creates gaps for city 

application (A. Wang et al., 2020).  This data, in the context of civil infrastructure applications, 

can improve serviceability of highway and roads management. Such as the case of evacuation 
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planning routes, maintenance practices for high traffic use, and new transportation infrastructure 

development based on need.  

In water utility management a virtual model was created to simulate potential operational 

challenges by simulating the facility’s hydraulics at maximum flow scenarios, control operations, 

and performance data of the process (Curl et al., 2019). The process flow diagrams, piping, 

instrumentation diagrams, and sensing equipment are used for data acquisition. Water utilities 

benefited from improve planning strategies, operator training, collaboration, and communication. 

(Curl et al., 2019) 

 

2.2.1 Smart Cities DT  

The use of a DT for the management of civil infrastructure and its operations is initiative 

to achieve the promise of smart cities. A DT for smart cities was developed for disaster 

management by predicting damages and developing emergency response preparations to 

impending disasters by simulating condition from historic data collected about communities during 

disaster conditions (Ford & Wolf, 2020). The use of DT based simulation facilitates management 

strategies for decision makers by reliably forecast the potential impacts of proposed decisions. 

Additional work is required to develop smart cities digital twin at a community level for general 

community management during natural disasters to mitigate the effects of relocating people, 

measure the individual disruption to individual infrastructure systems, and the interactions 

between them (Ford & Wolf, 2020). Communication and coordination during a disaster was 

improved using artificial intelligence for efficient event extraction, entity recognition, speech 

recognition, and natural language processing (Fan et al., 2019).  



11 

2.2.2 Structures DT 

A DT to predict the structural health of a prestressed steel structure was achieved by 

reconstructing the physical asset virtually, and using data from sensors such as the cable force, 

displacement, and the service data of the structure (Z. Liu et al., 2020). This method allowed to 

monitor the structure near real-time and used the data received for decision making to affect the 

structure. To understand the real-time behavior of the physical structure, the movement, the 

degradation of materials, and overall structural safety need to be monitored using sensors. For 

example, accelerometers, displacement transducers, pressure cells, and temperature sensors have 

been used to measure the global response of physical assets. (Angjeliu et al., 2020). The data from 

set in-place sensors used to measure the effects of applied loads monitors the structure over a brief 

period, but the challenge is to continuously monitor the structure for the entirety of its design life.  

The energy expenditure of monitoring a system in real-time requires a sustained amount of 

energy to keep the system running. This is but a small fraction of the computational energy costs 

associated with storing and processing the copious amount of data being collected by a DT.  One 

criticism of DT is that the technology may not be sustainable. In terms of sustainability, 

maintenance and replacement of the sensors and data storage facilities need to be considered. The 

application of digital twin to monitor and collect sensor data for an extended time is limited by the 

large volume of data collected, recording and storage of the data, and management practices to 

make the data useful. 

2.2.3 Bridge DT 

The most ubiquitous approaches to data acquisition tools for three-dimensional geometric 

representation and visualization of virtual twins for built infrastructure are LiDAR and 

photogrammetry. To model bridge behavior, the digital model required must be at a high level of 
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detail (LOD) at the individual components level with information of the structural (e.g., rebar 

detailing, section properties, material properties, internal dimensions) and nonstructural 

characteristics (e.g., guardrails and drainage) (Channg-Su, Shim et al., 2019). The bridge industry, 

unlike buildings, is just now experiencing a critical mass of research and effort in support of 

applying BIM to bridges. We are in the initial stages of this application which means it is the 

perfect time to modify the process to support digital twin construction. Like buildings, existing 

bridges would not benefit from this, but unlike buildings, bridges must be inspected every two 

years. This means that humans will be at the bridge observing and taking measurements. This 

required touch point could be leveraged to build a database of existing bridge BIM models in 

support of widespread DT.  

A geometrical digital twin for visualization begins with an automation of 3D reconstruction 

for build assets by using a structured database of the components (currently not available). To 

achieve a digitization of bridges for DT visualization, a structured database of the individual 

components and the subcomponent with specific parameters of the design needs to be recorded to 

enable the ability to reconstruct 3D models of existing infrastructure bridges using automated 

methods. Using an accurate visual of the bridge structure a digital twin model was achieve to 

propose maintenance practices and monitoring the structural health to a reliability of 85% in terms 

of level of safety(Z. Liu et al., 2020). 

In regard to monitoring maintenance needs, a DT model was developed to inventory and update 

data when maintenance or retrofit was done to the structure ((Channg-Su, Shim et al., 2019)).  AI 

coupled with monitoring and sensing equipment and Internet of Things (IoT) provide automation 

opportunities in real-time data to monitor the performance and optimize the maintenance practices 

for built infrastructure (Angjeliu et al., 2020). Note that the requirement for biannual inspection 
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provides a unique and consistently applied mandatory human touch point which could be used to 

augment data collection. 

 

2.3 Visualization for DT  

To address the first challenge of a visualization model for existing infrastructure, a method to 

efficiently create the model needed. An accurate visual of the structure will aid in the effort to 

achieve a complete digital twin of infrastructure by attaining a geometry with a higher level of 

detail. An approach to address the issues that constitute the promise of a digital twin is to 

compartmentalize the tasks and solve them individually then integrate for a complete DT. The 

three general challenges of a digital twin are: 

1. 3D modeling: accurate representation of the visualization model for the physical structure 

with data compatibility 

2. Data: data acquisition (sensors or generated), high volume data storage and recording, and 

data management using the cloud 

3. Integrating data to model: algorithm-based machine learning for automated processing and 

feedback 

In industry, BIM is used in the conception of the design phase for new infrastructure 

projects and has increased in popularity in the past few years (Vilutienė et al., 2020). Standards 

and regulations for final project design documents of BIM models (particularly for bridges) are 

under development and even though the adoption of modern three-dimensional modeling methods, 

many established firms maintain 2D drawing as the preferred design method.  
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Building SMART standards for IFC and open BIM facilitate the transfer of BIM files by 

enabling compatibility of the project during the design phase and sharing through a cloud-based 

storage system. The standards apply to the geometric reconstruction of built assets using laser 

scanning data. A roadmap by buildingSMART to create international standards IFC4 for BIM is 

in progress for the year 2023 (buildingSMART, 2020). The level of compatibility, collaboration, 

and team management for the design process using the cloud-based system allow the project 

changes to update in real-time. The communication exchange between individual expertise, design 

model components, teams, and project are facilitated.  

Recent innovations in technology (i.e., programming techniques, developer tools, data 

compatibility, and simulation) have become increasingly multidisciplinary to fully understand the 

potential and the appropriate application of the technology to improve the process of creating an 

accurate three-dimensional model of existing infrastructure. There has been considerable 

advancement in modeling software (e.g., BIM) but there is a lack of acquisition of behavioral data 

during the entirety of infrastructure’s design life. The improvement in cloud computing, Internet 

of Thing (IoT) technologies, and modern sensing technologies permit near real time data 

communication but is limited by the ability to integrate the data received from the physical asset 

and the feedback sent back. The model needs open compatibility with application programming 

interfaces (API) for data visualization. The use of these sensing technologies remains on a project-

by-project basis to enable accurate information exchange between the virtual and physical systems, 

yet a step towards the promise of digital twins for the built infrastructure assets.  
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2.3.1 Gap in Geometrical Data for Infrastructure DT Visualization 

The data needed from existing infrastructure assets to create a functional DT is both 

geometrical and behavioral.  To apply digital twin technology for infrastructure, a system for data 

collection, management, and processing methods is needed. The first challenge is to record the 

geometric data in detail to develop a digital model for geometric representation of an as-built 

structure (R. Lu et al., 2019). For bridges specifically, the geometrical data needs to be retrieved 

for each individual component to increase the detail from the already complex projects, all while 

taking into consideration the limitations associated with the technology since it requires human 

intervention for optimal accuracy. Without the available of design documentation and/or digital 

construction documentation (i.e., BIM) for every existing structure, creating DT models for the 

built environment will remain a huge challenge. There is a need to develop tools and 

methodologies to create the building blocks of a DT (e.g., geometric models, BIM, design details) 

from remote sensing and other data collection approaches. 

  

2.4 LiDAR and Remote Sensing Data Collection 

  Laser scanning is but one method to obtain the geometrical characteristics of an 

infrastructure and reconstruct a three-dimensional model efficiently. A physical asset’s geometric 

properties (i.e., dimensions) can be efficiently obtained through LiDAR or photogrammetry. 

LiDAR data can be collected through a terrestrial scanner, a vehicle-mounted scanner, or aerially. 

The equipment is expensive but efficient to capture a large area in a few minutes. The laser captures 

data of the geometry of a structure by transmitting light and measuring time of flight for the light 

to hit an object and return. The total time of flight is used to determine the distance of a single 

point. The laser scanner rapidly captures millions of points within a radius of the equipment for 
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360-degree (in the horizontal plane) visualization of the surrounding area. The vertical aperture 

can vary based on sensor (e.g., 300-degrees angle of view). The laser scan does not discriminate 

between the area of interest (e.g., building from trees), therefore, to create digital replica of the 

physical structure of interest further processing and noise filtering is required. 

The three main laser scanning methods are: 

1. Terrestrial LiDAR Scanning (TLS): A stationary tripod mounted scanner for high 

accuracy, and least expensive when compared to the other laser scanning methods. 

2. Aerial LiDAR scanning: Aircraft mounted for faster scanning rates and accuracy, therefore 

reducing cost and time of laser scanning of large areas (Gatziolis & Andersen, 2008). 

Optimized scanning patterns mitigate these effects of self-shadowing. (Hinks et al., 2009).  

3. Vehicle Mounted LiDAR Scanning: Work well for road mapping and scanning large areas 

 

The concept of laser scanning for modeling has been available for quite some time now. The 

complete procedure to achieve a digital model from laser scanning has been investigated in terms 

of terrestrial laser scanning, point cloud processing requirements, mesh generation, and level of 

detail (Remondino & El-hakim, 2006). An application of laser scanning was used in a study to 

predict floods caused by melting ice caps in Alaska, leading to sea level increases. This was done 

by predicting flood scenarios using LiDAR data generated model of the coastal terrain elevation. 

The author anticipated 39 % of the buildings destroyed and $215M in damage for a 6-meter flood 

(Lantz et al., 2020). The laser scanned data was integrated into ArcGIS for the simulation, and the 

outputs focused primarily on cost.  
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2.4.1 Challenges of Sensing Technology 

Several common challenges in accurately modeling a specific system have arisen through this 

review, especially related to processing field capture data collected from laser scanning. The most 

recurring challenges of the laser scanning technology are: 

For Aerial LiDAR: 

• at low frequencies, the wide or narrow divergence of the scan changes the precision of the 

reflected light 

• use for undulating terrain, fog, rain, or in uncertain climate conditions 

• the aircraft is limited to 50 kilometers (about 31.07 mi) of a GPS base station for precision  

• unorganized scanning pattern and scan frequency reduce absorption, reflection, and point 

density  

For Terrestrial LiDAR:  

• Angle for data collection of taller infrastructure limits field of view and data collection 

quality 

• Complex geometry requires numerous scans to account for self-shadowing etc.  

• This type of data collection does not scale well 

For Vehicle-mounted:  

• Data collection limited to roadways where vehicles may travel 

Angle for data collection limits field of view 
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Specifically for infrastructure, a laser scan of the structure is comparable to a screenshot of 

the asset at a given point in time capturing the current geometrical conditions at the time of the 

laser scan. The constant deterioration of the structure, damage, and preventive maintenance is not 

automated to the digital model created by laser scanning. Subsequent scans over time are necessary 

to capture the changes in geometrical characteristics. Some factors to consider for these 

approaches, based on the literature, are cost of adding data acquisition methods, data storage, and 

maintenance versus the long-term cost benefits through modeling (construction processes, live 

monitoring, and safety from a DT system). 

  

2.5 Three-Dimensional Reconstruction Methods 

There are many approaches to digital reconstruction from point cloud data, many of which 

are branched from one another or are combinations of approaches. The following methods were 

reviewed and selected for the case study based on the nature of the infrastructure reconstruction 

requirement:  

• High-fidelity model  

• Automated reconstruction algorithms/methods 

• Segmentation algorithms and techniques  

• Shape approximation and octree structure 

 

2.5.1 Scan-to-BIM Application Toward Bridges 

A three-dimensional BIM model of a bridge can be reconstructed from point cloud data by 

preprocessing techniques to reduce point cloud size then using the point cloud data and design 
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drawings to obtain the bridge geometric and material characteristic. An example of  this method 

was used by reducing number of points, adjusting the coordinate of the point cloud to match the 

BIM grid, and then imported triangular surface reconstruction to BIM to facilitate the model 

creation. (Ma, 2019). A scan-to-BIM approach for bridges aid in the 3D reconstruction from laser 

scanning to mitigate drawing errors, in addition to improved construction management, quantities, 

and collaboration (Y. Li et al., 2020) There is a need for semi-automated segmentation of highway 

infrastructure with outputs compatible with Industry Foundation Classes (IFC) compliant file 

(Soilán et al., 2020) 

The level of detail (LOD) used in CityGML or buildingSMART (IFC4) is intended for 

buildings, but the standards can be followed for bridge components as well. LOD specifications 

as applied to bridges remains vague and subject to interpretation. According to Thomson and 

Boehm, there is need for a sustainable method to automate the digital reconstruction of geometry 

for existing infrastructure assets at a reliable level of detail (Thomson & Boehm, 2015). The use 

of the visualization model with a high LOD and compatible with data aids in the decision-making 

process but only in a case-by-case scenario and is dependent on the visual of the infrastructure 

asset.  

Some research has been conducted to improve the ambiguous definition for the LOD 

specifications in CityGML and EuroSDR 30 Special Interest Group 3D mapping standards 

(Biljecki et al., 2016). Using these standards (CityGML and BIM), a 3D model was developed for 

the property management of a condominium. This model defined the physical space and legal 

aspects of ownership of the space (L. Li et al., 2016).  
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2.5.2 Machine Learning Reconstruction 

Research using machine learning (ML) reconstruction techniques from point cloud data 

have become increasing popular and has been improved in terms of the accuracy and efficiency of 

the 3D reconstruction. An unsupervised ML method called Clustering of Symmetric Cross-

sections of Objects (COSCO) was developed to pre-process city point clouds by detecting the 

cross-section of symmetrical vehicles within seconds (Xue et al., 2020). This method is limited to 

symmetrical objects, the detection of the cross section only for further processing, needs training 

of machine learning algorithm, and requires expert structuring of the point cloud data. 

To achieve a better understanding of the uses of 3D reconstruction, the application to nerve 

visualization was investigated. In nerve fibers 3D reconstruction deep networks are used to view 

neurons by training the network using a segmentation process called U-Net Plus. (Q. Li & Shen, 

2020). These methods ultimately use photogrammetry to develop a visual of the nerve using 

similar methods used for 3D reconstruction processes. This method showed promising results yet 

scalability to infrastructure requires expert knowledge and extensive manual work during the 

process and may not be optimal for the size of the point cloud obtained from scanned infrastructure. 

2.5.3 Segmentation Method for Reconstruction 

A method using segmentation using artificial intelligence (AI) to detect specified objects 

from images or video footage to reconstruct the object in three dimensions. For example, a novel 

algorithm was used for processing video frames to automatically identify 2D highway assets and 

automate the asset 3D reconstruction as a point cloud data to enhance classification of highway 

assets (Golparvar-Fard et al., 2015). This method has been improved but requires expert 

knowledge in AI in addition to further processing for the reconstruction of the object from cross 

section.  
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Specific to bridge reconstruction, the application of sematic segmentation to detect bridge 

component (i.e., column, pier cap, deck, etc.) from laser scanned point cloud data can be obtained 

by training machine learning algorithms. The training of ML algorithm was used for automatic 

segmentation of three major bridge components: (1) deck, (2) pier, and (3) background (Kim et 

al., 2020). The algorithm can be trained to potentially detect other major bridge components for a 

more complete bridge model.  

A similar method for bridge segmentation is needed for further research for the use of BIM 

for bridge components. Segmentation requires no geometrical data; the method uses classification 

of the point cloud based on trained sample, therefore reducing the computational requirement when 

compared to algorithm processing methods (Xia et al., 2022). Additional research on bridge 

components segmentation methods using three alternatives; (1) PointNet, (2) DGCNN, and (3) 

HGCNN, compared and recommended for additional research in export to BIM application  (Lee 

et al., 2021). The CANUPO algorithm for point cloud classification allows for classification of 

materials by training a small sample of the points to create classifying subsets for each specified 

material (Brodu & Lague, 2012). 

 

2.5.4 Planar and Primitive Shape Algorithm based Reconstruction 

A method to generate planes from point cloud data using the points to generate planes 

based on the number of inliers with the detected plane simplified the 3D reconstruction, speed up 

the reconstruction when compared to other approaches.  For example, the oriented point sampling 

(OPS) algorithm was developed to decrease the computation requirement for detecting plane by 

using a single point to detect a plane (Sun & Mordohai, 2019). This method works well with plane 

structure (e.g., buildings) but is limited to the model created using planes, the input point cloud 
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file size, compatibility of the resultant model, and lacks material properties for the desired LOD in 

infrastructure. 

Other algorithms are publicly available via open-source software. Algorithms such as the 

Random Sampling and Consensus algorithm (RANSAC) and Poisson reconstruction are 

developed and integrated into the software for a user-friendly interface. RANSAS, in specific, is 

used for planar and primitive shape reconstruction for point clouds with clearly separated planes 

within a threshold. A modification to this algorithm, also known as CC-RANSAC, was developed 

to reduce the distance required for the separation between points for shape detection from the point 

cloud data (Gallo et al., 2011).    

The algorithm generated models can be considered a reduced-order model with a focus on the 

representation with reduced dimensionality using the minimum number of parameters for the 

automated generation of the model or as an intermediary step to obtaining a LOD 300 model. The 

overall positive and negative aspects of the technology on DT help understand its application. 

 

2.6 Conclusions from Literature Review  

Based on this review of the literature, the following conclusions which directly motivate and 

shaped the research presented herein, are provided:  

• DT for already-built infrastructure is possible, but requires substantial effort in terms of 

data collection, in contrast to DT for infrastructure in construction now, where digital 

construction documentation like BIM models are available.  

• Digital geometric representation of infrastructure is a critical component of DT moving 

forward 
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• LiDAR technology (terrestrial, aerial or vehicle mounted) is a suitable approach to data 

collection for digital geometric representation of infrastructure 

• For bridge structures, LOD 300 or greater is desired since much of the bridge 

functionality is tied to structural components that are either not visible (e.g., rebar 

detailing in concrete) or are dependent on size (e.g., flange dimensions on a steel beam).  

• 3D reconstruction of bridges using LiDAR point cloud data is an open challenge that 

requires human intervention, but many approaches such as AI and ML show promise 

• There is a need to explore the specific challenges and limitations to 3D reconstruction of 

bridges as compared to design documentation.  
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Chapter 3: Methodology 

This chapter discusses the bridge selected for the case study including the laser scanning process, 

the point cloud data noise filtering, the level of detail of the model, and a detailed explanation on 

each of the methods used for the reconstruction of the pedestrian bridge from point cloud data. 

3.1 Visualization Component of Existing Bridge Structures for Digital Twin 

3.1.1 Scope 

The extent of the application is to evaluate the use and limitations of available 3D 

reconstruction methods for as-built infrastructure, determine areas for improvement, identify 3D 

model for data compatibility extent (sharing and visualizing sensor data) and propose a roadmap 

for digitizing bridges. The gaps in current state of the art technology and 3D reconstruction 

methods were identified when using LiDAR to generate the 3D model of the infrastructure.  

3.1.2 Background 

A crucial aspect for the digital twin of an existing infrastructure is the reconstruction of the 

as-built physical asset in digital form (Zhang et al., 2014). To do so, a laser scan of a pedestrian 

bridge was done to capture a highly detailed virtual model. The pedestrian bridge used in this case 

study is located at the University of Texas of El Paso adjacent to the Interdisciplinary Research 

Building, as seen in Figure 2Error! Reference source not found.. The bridge was scanned using 

a BLK 360 laser scanner. The set-up of the laser scanner while capturing the substructure of the 

bridge is shown in Figure 3.The registration of the point cloud was done using Cyclone Register 

to combine scans, edit bridge scans, and record the metadata (date, time, duration, and location of 

each scan with respect to the bridge). The point cloud file was converted, using Autodesk Recap, 

to a file format compatible with BIM software and algorithms used for the virtual model 

reconstruction (e.g., .rcp, .e57, etc.). A single scan captures hundreds of millions of points (e.g., 
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200,000,000 or more) making the processing time consuming for large infrastructure scanning. A 

complete scan of a structure requires multiple scans to capture the most detail.  

 

Figure 2. Image. Pedestrian bridge location in university campus 

 

The point cloud data becomes a challenge when using algorithms to generate the model. 

The input data for the algorithm is limited to the file size to maintain maneuverability of the scan 

in software (e.g., open-source software Cloud Compare) and is dependent on the available 

computational capacity. For example, the point cloud data file for the pedestrian bridge becomes 

computationally expensive and reduces the processing speed when the surrounding buildings, 

terrain, and vegetation is kept for the processing the scan. This is considered noise when the focus 

is the structural components of the bridge. The surrounding environment is ideal for reconstruction 

such as the topology of a construction site or visualization of space. To improve the workability 

of the scan and optimize the model creation using the point cloud data the surround environment 



26 

was manually removed (cleaned). The process to create a mesh using available algorithms, or scan-

to-BIM model becomes manageable. 

 

Figure 3. Photo. Set-up of Terrestrial LiDAR Scanner (BLK 360) 

 

The pedestrian bridge scan file (.e57) size was 670.1 MB after removal of noise, adjacent 

structures, and vegetation. The model detail is dependent on the points captured therefore size of 

the file generated from the scanned infrastructure. An alternative would be to develop a new more 

efficient method or algorithm to do so. In specific, BIM software such as Revit requires a .rcp file 

format, while Cloud Compare (CC) is compatible with .e57, .pts, .xyz formats. Additional file 

transfer such as Unity require .ply and Oriented Point Sampling (OPS) require .pcd file formats. 

The captured scan import into Autodesk Recap can be seen in Figure 4. 
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Figure 4. Image. Autodesk Recap Point Cloud 

 

In this case study, available algorithms were used to compare the efficiency of three-

dimensional reconstruction methods for point cloud data of the pedestrian bridge. To achieve an 

accurate representational virtual twin of the bridge, multiple methods were investigated to recreate 

the existing bridge in digital form, then compared based on the application to the pedestrian bridge 

reconstruction. Subsampling the point cloud data is a method to improve the digital manipulation 

of the scan and enhance computation. A point cloud data file size of 3.5 Gigabytes was the input 

limit to algorithms for a laptop Intel core i7 with 16 GB RAM, and 258 GB of storage, with 

professional computational capacity.  

The methods selected use a mathematical approach to calculate the normal vectors, and to 

approximate the geometry of the scanned data by assigning planes or by detecting primitive shapes 

The geometry from unorganized data is limited to an object file for the “shell” of the 3D object. 

These algorithms use a data tree structure to organize the modification to the point cloud (i.e., 

subsampling, algorithm reconstruction) and parameter input.  
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3.2 Existing Bridge Characteristics  

The pedestrian bridge is composed of seven circular reinforced concrete columns, and 

weathering steel superstructure (shown in Figure 5). The steel superstructure is made of various 

W-sections; (1) W-14 x 22 (beams), (2) W-14 x 26 (beams), (3) W-18 x 40 (girders), and (4) W-

16 x 40 (girders). Much of the deck is composed of steel channel planks with welded steel railing 

as shown in Figure 6. A portion of the deck connecting to the building on the southern section of 

the bridge has the tallest columns which support a concrete deck on metal sheeting (shown in 

Figure 7). The member connections: (1) girder-to-girder, (2) beam-to-girder, and (3) column-to-

girder can be seen in Figure 8. These connections are bolted with half-inch bolts and reinforced 

with stiffeners welded perpendicular to the web of the beams and girders. The column-to-girder 

connection is by 1-inch anchor bolts, and 12-inch by 12-inch by ¾ inch base plates.  

 

 

Figure 5. Photo. Bridge substructure and superstructure 
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Figure 6. Photo. Steel channel planks(left) and railing(right) 

 

   

Figure 7. Steel channel planks (left) and concrete slab on metal sheet for decking (right) 

    

       

Figure 8. Photo. Steel beam to girder bolted connection(left), beam to beam bolted connections 

(center), and haunch at steel girder and reinforced concrete column connection (right) 
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3.3 Geometrical Data from Point Cloud 

The components of the bridge were individually measured using the point cloud data, then 

cross-referenced to the available design drawing. The bridge point cloud data was modified in 

Recap using the boxing tool to segment individual components and measure the points in the cross-

section to visible structural elements of the bridge. This process was done manually to accurately 

measure the dimensions of each individual structural component, specifically steel w-section 

dimension (depth, width, flange, and web thickness). The total number of beams, girders, and 

columns is 15, 5, and 7, respectively. Alternative methods to detect columns have been developed 

to algorithmically detect the cross section and assign a column designation to point cloud data 

(Chen & Cho, 2018), but were outside the scope of this work.  

3.3.1 Component Labeling and Designation 

A girder designation was defined as the member which carries a heavier load, is a 

horizontal member, supports smaller beams members, and consist of various point loads. Beam 

was defined as a member which carries load from slabs, transfers loads to girder, and carries 

distributed load (Civil Concept, 2022). The columns were labeled starting in the south end of the 

bridge moving from left to right towards the northern part of the bridge. A similar approach was 

used for girders, beams, and deck. To simplify the deck measurements on the south end of the 

bridge, only the area supported by the structure was considered and divided into 4 sections 

consisting of: 

1. Section 1 includes an area of 16 x 12 concrete tiles (concrete on metal sheeting) 

2. Section 2 includes 44 12”x 48” planks 

3. Section 3 includes 32 12”x 48” planks  

4. Section 4 includes 24 12”x 48” planks  
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This allowed for a simplified comparison of data with measured dimension of the point cloud. The 

sectioning is shown in Figure 12. The measurements for the component dimensioning from both 

point cloud data and design drawings are provided in the appendix in Table 21 (Beams), Table 22 

(girders), Table 23 (columns), and Table 25 (deck). The accuracy is presented in the results. The 

bridge component labels for columns, girders and beams are shown in Figure 9, Figure 10, and 

Figure 11, respectively.  

 

Figure 9. Image. Column Labeling 

 

 

Figure 10. Image. Girder Labeling 
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Figure 11. Image. Beam Labeling 

         

Figure 12. Image. Decking Sectioning for Deck Dimensioning  

 



33 

3.3.2 Analysis of Point Cloud data 

The Structural Steel Dimensioning Tool by AISC was used to obtain steel w-section 

dimensions and the values were later compared with measurements obtained from point cloud data 

to measure the accuracy of the as-built scan to the design drawings specification. The 

measurements taken from the point cloud data matched to the measurement obtained from the 

AISC dimension tool: (1) width (across flange) (2) depth (along web) (3) flange thickness and (4) 

web thickness. The depth of the w-section was measured from the exterior of the bottom flange to 

the exterior of the upper flange. The schematic for the dimensioning can be seen in Figure 13. 

       
(a)                  (b) 

    
    (c)       (d) 

Figure 13. Image. Cross-Sectional Dimension for Steel W-section Beams  (AISC, 2022)  
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The measurements from the point cloud for the beam, girder, and column sections were taken by 

using the cross-section. An example of this method is seen in Figure 14.  

 

Figure 14. Cross-section view for point cloud measurements 

 

The distance accuracy of the measurements from the point cloud varies depending on the 

quality of the scan. The measurements were taken using the limit box tool in Autodesk recap to 

increase the focus on the cross-sectional view of the specific components without affecting or 

detecting points from the original point cloud. Some measurements for the flange and the web 

thickness were apparently inaccurate when obtaining the data from the point cloud. For example, 

the areas where the laser path was at a steep angle with respect to the web, the flange caused a 

shadowing effect on the web therefore the quality of the points were either missing or inaccurate 

(shown in Figure 15). In addition, the thickness of the flange was not captured properly by the 

laser scan. Most of the scans were performed at ground level with the tripod mounted terrestrial 

laser scanner. This prevented the laser from capturing the accurate thickness of the flange and was 

prone to noise as seen in Figure 16. 
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Figure 15. Image. Self-shadowing of beam due to proximity to column 

 

 

Figure 16. Image. Self-shadowing of flange at beam-to-beam connection 
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Figure 17. Outline chart for reconstruction methods  
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3.4 Scan-to-BIM 

The BIM model for the pedestrian bridge was created using Revit and the available material 

properties. The challenge of using laser scan data is to reverse engineer infrastructure elements 

accurately without any information on internal or hidden components of the structure. In this case, 

the design drawing of the bridge was available as reference to generate the three-dimensional 

model and provide a reliable check on the other approaches that were implemented. The BIM 

model was achieved by tracing the point cloud and using the measured data to determine the correct 

structural components. The scan-to-BIM method was done as an attempt to expand BIM 

applications to bridges (Y. Li et al., 2020). 

3.4.1 Columns 

The first step was to create a grid on the xy-plane to the center point for the location of the 

columns, then determine the elevation plan for: (1) bottom of column, (2) top of column, (3) 

bottom of beam and (4) top of beam.  The columns of the pedestrian bridge were created using 

nine levels in the structural plan to maintain consistency with elevation change. Since the bridge 

is level at the top of beam most of the levels were created to indicate the elevation at the ground. 

This can be seen in Figure 19 for the eastern view of the elevation plan and the south elevation 

view in Figure 20. 

In addition, the hidden components either underground for the foundation or reinforcement 

in concrete were not considered. The set foundation piles were selected from the available 

foundation types in Revit for aesthetics purposes only.  
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3.4.2 Girders and Beams 

The beam and girder are I-beams therefore, the measurements for depth and width were 

matched the correct w-section member sizing. For example, steel section based on the measured 

distances was matched to the AISC specification for the member, then the correct material 

properties and extrusion was applied. The BIM model, although accurate in the material properties 

faces challenges when reconstructing existing connections with limited information from the laser 

scan. For this application connections, the decking material, railing, and concrete deck were not 

considered. Figure 18 shows the BIM model created using the Revit and point cloud later with 

respect to the true north.   

 
Figure 18. Image. Revit model from point cloud data 
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Figure 19. Image. Revit East Elevation View  

 

Figure 20. Image. Revit South Elevation View 

 

3.4.3 Structural Analysis Finite Element Model 

The reconstructed BIM model was easily converted to Autodesk Robot for structural 

analysis. In this model, links were used to connect stacked members and represent the bolted 

connection. The FEM is shown in Figure 21. For simplicity, the FEM did not include the concrete 

slab on the south end of on the pedestrian bridge. 
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Figure 21. Image. Robot FEM 3D View  

 

3.5 Algorithm Reconstruction Methods 

3.5.1 Pre-Processing for algorithm approaches 

The preprocessing of the point cloud included removal of the adjacent building and 

vegetation plus additional noise filtering based on a 0.0001 spacing between points. Then, the point 

cloud data was subsampled to 1%, 2%, and 3% percent of the total point cloud size and saved 

separately for input in various algorithms. The number of points used for the random subsample 

are shown in Table 1. In addition, a segmentation approach was used to reconstruct the point cloud 

by reconstructing a single structural component and determine if the accuracy of the reconstruction 

improves when compared to the reconstruction of the entire bridge point cloud (noise filtered). 
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Table 1. Number of points for random subsample 

Subsample (%) Points 

original 23826288 

3 714788.64 

2 476525.76 

1 238262.88 

 

3.5.2 Random Sampling Consensus (RANSAC) 

The RANSAC (shape detection) algorithm was created by Ruwen Schanbel et al. from 

Bonn University. The open-source software Cloud Compare was used to run the RANSAC 

algorithm which provides a user-friendly interface for iterative parameter inputs. The point cloud 

file was imported to the software as an .e57 format to conserve the red, green, and blue (RGB) 

color scheme of the physical environment captured during laser scanning. The point cloud 

subsamples were processed separately and the data for total time, shapes generated, leftover point, 

and inputs were recorded. The input parameter was iteratively selected to determine the best 

reconstruction and shape detection for the most efficient time and accuracy of the model. The 

values selected for the RANSAC reconstruction of the point cloud data are shown in Table 2. Input 

values for RANSAC algorithm 

Table 2. Input values for RANSAC algorithm 

Parameters Input 

Min support points per 

primitive  2000 

max distance to 

primitive       0.173 

sampling resolution 0.346 

max normal deviation 7 degrees 

overlooking 

probability 0.005 
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The RANSAC algorithm was adjusted to detect various combination of the available 

shapes to measure the accuracy of the model based on the input parameters. For example, a 

combination of only cylindrical and sphere shapes detection was specified in the input parameter 

to measure the number of shapes generated time to construct the model and visual accuracy. A 

comparison of these parameter was done to determine optimal shapes for algorithm to detect for 

the bridge reconstruction.  

 

Figure 22. Image. RANSAC shape detection algorithm generated model 

 

The algorithm randomly assigns a color to generated shapes. For example, entire columns 

are detected in a single shape. Also, the deck was assigned a single plane. Inconsistency in shape 

detection was found due to the type of steel channel planks and railing used in the structure (shown 

in Figure 22. The color changes indicate multiple shapes were assigned to this area. The serrated 

surface of the steel channel planks, and the railing used for the decking create open space therefore 

many shapes were detected.  
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3.5.3 Poisson Reconstruction 

Poisson Reconstruction algorithm, created by Misha Kazhdan from Johns Hopkins 

University, is used to generate a triangulated mesh from point cloud data. This method used an 

octree structure to generate a mesh. Using a higher octree level increases the accuracy of the mesh. 

Subsequently, the procession speed decrease.  After several iterations using various octree level 

depth inputs, a 10-octree level generates the 3D reconstruction efficiently and with high accuracy. 

A maximum value of 12 octree depth level increases the detail in the mesh reconstruction of the 

3D model but increases the computational requirements. A greater octree level significantly 

increasing the amount time needed to generate the model for high density point clouds. This 

limitation is dependent on computational resources.  

An additional step to refine the model was used to remove areas with low density points. 

The Poisson reconstructed model has two color schemes used to view and refine the mesh, scalar 

field and RGB. Using the scalar field parameters, the displayed density was adjusted to hide 

triangles with vertices with low density points. The triangles with high density point were kept 

while low density values were separated from the mesh using the density value for the scalar field. 

This can only be done for scalar field values and the RGB color scheme was not affected. 
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Figure 23. Image. Pedestrian Bridge Poisson Reconstruction RGB (top) and Scalar field (bottom) 

 

The scalar field histogram in Figure 24, shows the saturation values for the density of the 

point cloud relative to the red and blue color scales. Colors are randomly set to the scalar field with 

respect to the density of the points with blue representing lower point density and red higher point 

density.  

 

Figure 24. Image. Histogram of Density of Scalar Field for Poisson Reconstruction 
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The output mesh was modified using the scalar field density values to remove the section 

with low point density (as shown in Figure 25). The output mesh was split using the optimal scalar 

field value by visually approximating the best fit density. The reconstructed mesh is shown in 

Figure 23 for both RGB and scalar field color schemes.  

 

 

Figure 25. Image. Scalar Field Selected Density for Poisson Reconstruction 

 

The accuracy of the mesh was calculated using a tool to measure the distance of the mesh 

by using the point cloud data as a reference. The accuracy is computed by iteratively by identifying 

the nearest octree cell to the point and measuring the distance. The parameter used for the distance 

computation is shown in Figure 27.  
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Figure 26. Image. Distance of mesh to point cloud  

 

 

Figure 27. Image. Distance Computation parameters 
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3.6 Data Driven Component Prediction using Machine learning 

A three-dimensional model facilitates three-dimensional reconstructing by automating a 

method for predicting material properties using machine learning through training of a neural 

network. The neural network can be trained based on infrastructure specific geometrical (e.g., 

material, member dimensioning, etc.) and logistic data (i.e., design engineer, general location, etc.) 

The use of a structured database of existing bridge components and material properties of existing 

bridges using training of a machine learning algorithm can aid in the prediction of internal or 

hidden components of the as-built bridge (e.g., rebar in reinforce concrete column). This is useful 

for bridge structures when identifying the internal components of columns and assigning the 

material properties and specification to a digital twin model. An application of these predicted 

components can be used when design documents are missing, lost to fire, or mismanaged. 

3.6.1 Study of available databases  

A reconstruction of as-built infrastructure can benefit from a ML algorithm trained by 

component dimensioning to automatically determine structural components and increase accuracy 

in the predictions. The geometrical data retrieved from the point cloud can be used to automate the 

detection of components and aid in the reconstruction of a 3D model by assigning the correct 

structural member designation. For steel beam w-sections, the manual measurements of the point 

cloud can be used to match to the dimensions of a steel section specification. For this to work, a 

data sheet with the correct structuring needs to be developed. For data structuring, the data needed 

was identified, and the available databases were reviewed to suggest the replicability of this 

method to other bridges. 

The Federal Highway Administration (FHWA) databases (National Bridge inventory and 

Nation Bridge Element) and the Texas Department of Transportation (TXDOT) database were 
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reviewed. The database information includes the coordinates for bridge location available, bridge 

identification number, count on the number of bridges, year built, owner, condition rating. The 

data is general including a count for bridges with poor condition, fair condition, and good condition 

with no specific information of the geometrical characteristics of each bridge. In terms of material 

properties, a general total of area (in meters squared) is recorded for a specific bridge condition 

(poor, fair, good). Additional information is needed specific to the geometrical characteristics 

obtained from a laser scan, or detailed design drawings for the components of a bridge (e.g., rebar, 

ties, etc.).  

The current mesh generated by point cloud data allow for a digital visual of existing 

external elements of infrastructure. The goal of a digital twin model is a high level of detail and 

functionality to visualize the data captured by real-time monitoring systems. Therefore, there is a 

need to develop a method to identify the internal components of the infrastructure for a complete 

3D model (e.g., BIM). This can be done by three methods: (1) access to design drawings (2) 

additional field data collection (e.g., GPR (Ground Penetrating Radar)) and (3) data driven material 

properties prediction using machine learning based on the external geometrical data. The challenge 

is to identify the internal components of the infrastructure and then incorporate material properties 

to the generated model without the need of the design drawing. A data structure for the prediction 

of these components using information retrieved from a laser scan is presented in the results. 
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Chapter 4: Results and Discussion 

4.1 Brief Recap 

When reconstructing a 3D model from point cloud data, the model must have a high level of 

detail plus compatibility with other software and the ability to integrate data. Many major 

companies offer a digital twin software solution including the Bentley iTwin Platform, Ansys Twin 

builder, Microsoft Azure Digital Twin, and Autodesk BIM software. Other platforms, such as 

game engines (e.g., Unity) and simulation software, are being used in unison with data 

visualization. The commonalities between these platforms are cloud storage, Application Program 

Interfaces (API), web access, large scale database capacity, and data visualization capacity. 

The existing methods for digital twin applications from major software companies include 

visualization methods to create the model but are proprietary technologies and usually subject to 

an annual cost. For example, the Autodesk workflow for built infrastructure point cloud data would 

require preprocessing in Autodesk Recap before BIM modeling in REVIT or structural analysis in 

ROBOT. This creates a barrier to widespread implementation of infrastructure reconstruction. 

Therefore, there is a need to facilitate the reconstruction of existing infrastructure by studying 

available (i.e., affordable or open-source) resources. 

  The main challenge noticed in algorithm-generated-models is the limited information 

generated compared with the effort to collect and process the data. The models generated 

automatically are usually the exterior of the structure with the need to include more information 

about the hidden components of physical asset and material properties. Algorithm-generated 

models through open-source software are user-friendly but there is a need to improve the 3D 

modeling in general. The complex nature of improving the algorithm is out of the scope of the 
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research but with reconstruction techniques using the point cloud data, the process by which the 

model is reconstructed from the laser scan can be improved.  

4.2 Scan-to-BIM and Point Cloud Data Accuracy 

The data collected from the point cloud was used to identify the correct steel section used 

in the constructed pedestrian bridge and to measure the accuracy of the scan to the reference design 

drawings. To do so, the components were individually measured in the point cloud and then 

compared to the specifications from the design documents. Using the point cloud of the bridge 

structure, detailed geometrical measurements were retrieved for the visualization and analysis of 

the as-built structure. The data collected from the point-to-point measurements can be seen at the 

appendix from Table 21 to Table 25 Table 21. Beam measurements from point cloud data, design 

drawing, and AISC steel section dimensioningfor beam measurements from point cloud data, 

design drawing, and AISC steel section dimensioning. This data was used to: 

1. Compute the variation in the distance (at the component level for steel beam, girders, and 

columns) from the terrestrial lidar scanning to design drawings and member sizing. 

2. Calculate the error of the beam-specific dimensioning to the standardized sizes of material 

(steel beams) used in the construction of the bridge with specification of beam section for 

the W-section and design drawings. 

3. Determine the accuracy of the scan relative to the design drawings (members sizing, height 

of columns, overall design vs as-built structure) 

These measurements were used during the reconstruction of the BIM model and referenced 

with the design drawings. Assuming no design drawing are not available, the W-section 

dimensions (width, depth, flange thickness, and web thickness) can be used to identify the W-
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section used (as shown the flowchart in Figure 30). Assuming prismatic members, this can then 

extrude to the measured length. To validate this method of reconstruction using a point cloud data 

only, the percent error for individual components was measured to determine the efficacy of the 

method, by point-to-point measurements. The calculated accuracy of beams and girders was over 

90% for length, width, and depth of the flange. These measurements are easier to obtain because 

they are more visible (exposure) and tend to be larger in size. More detailed measurement such as 

the flange and web thickness show greater variability and lower accuracy of the measurements. 

The average accuracy for the beam flange thickness and web thickness measurements are 57% and 

62%, respectively. The accuracy for each component dimensioning is shown in Error! Reference 

source not found..  

 

Figure 28. Image. Summary of accuracy for individual dimension per component 

 

There are several factors which may contribute to these errors: 

1) the angle and distance for the terrestrial scanning 

2) self-shadowing at the flange or enclosed areas (as shown in Figure 29), 

3) additional noise captured in the area for the detailed scan, 

4) human error when point picking, 
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5) hidden components at the connection with the building and the patio area 

 

 

Figure 29. Photo. Enclosed space between beams in pedestrian bridge 

 

For column diameter and the deck area the average accuracy was over 97%. In, contrast a 

lower average accuracy of 87% was observed for the column height. The three tallest columns at 

the south end of the pedestrian bridge presented the highest percent error close to 20%. This area 

serves for the storm water drainage inlets therefore site landscape may cover a portion of the 

bottom of the column. The summary of the data for the calculated values is shown in Table 3, 

Table 4, and Table 5 for beams/girders, columns, and deck, respectively.  
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Figure 30. Image. Steel Girder/Beam W-Section Matching Process 

 

Table 3. Summary of Beam and Girder Measurements 

Summary table Length Width Depth 
Flange 

Thickness 

Web 

Thickness 

Beams 

Distance 

difference 

(in) 

mean 16.114 0.501 0.217 0.363 0.096 

std. dev. 14.889 0.369 0.116 0.171 0.052 

error (%) 
mean 7.761 10.026 1.576 43.464 38.408 

std dev. 6.005 7.371 0.842 18.830 20.884 

Average Accuracy (%) 92.24 89.97 98.42 56.54 61.59 

  

Girders 

Distance 

difference 

(in) 

mean  15.431 0.413 0.453 0.924 0.033 

std. dev.  23.288 0.293 0.704 0.144 0.018 

error (%) 
mean 6.576 7.717 2.726 82.914 13.386 

std dev. 4.503 5.023 3.871 11.964 7.043 

Average Accuracy (%) 93.42 92.28 97.27 17.09 86.61 
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Table 4. Summary of Column Measurements 

Summary table height diameter 

columns 

Distance 

difference (in) 

mean 24.917 0.472 

std. dev. 18.242 0.241 

error (%) 
mean 12.869 1.575 

std dev. 4.014 0.802 

Average Accuracy (%) 87.13 98.43 

 

 

Table 5. Summary of Deck Measurements 

Summary table Length  Width  

Deck  

Distance 

difference (in) 

mean 3.287 7.933 

std. dev. 5.093 12.152 

error (%) 
mean 1.348 2.656 

std dev. 1.760 3.062 

Average Accuracy (%) 98.65 97.34 

 

The individual calculated values for the difference in the distance, percent error, and accuracy 

are shown in: 

• Beams: Table 7 (calculated difference), Table 8 (percent error), and Table 9 (accuracy) 

• Girders: Table 10 (calculated difference), Table 11 (percent error), and Table 12 

(accuracy) 

• Columns: Table 13 (calculated difference), Table 14 (percent error), and Table 15 

(accuracy) 

• Deck: Table 16 (calculated difference), Table 17 (percent error), and Table 18 (accuracy) 

 

The rows highlighted in orange for the accuracy tables signifies the problematic area for manual 

measurements obtained from a point cloud. These values were either under 50 % accuracy or the 

dimensions were unidentifiable during the point-to-point measurements. 
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To complete the BIM model the total process took about 20 hours. This includes the 

recording measurements from point cloud needed to setup the grid in Revit, identifying the steel 

structural components, span lengths, and rendering the bridge (15 beams, 5 girders, and 7 

columns). This does not include additional measurement done to compute the accuracy of the 

point cloud data. The breakdown of the duration per task in shown in  

Table 6. 

 

Table 6. BIM task breakdown and approximate duration 

Tasks: Time (hrs) 

Record measurements from point cloud  3.5 

Grid setup span lengths and elevation  6.5 

Identify the steel structural 2 

Render bridge  6-7 

Total time 19.5 
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Table 7. Beam calculated distance difference per component 

Component  Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 
Web Thickness 

Beams 

Difference in 

distance 

measurements 

(inch) 

B1 

W16 x 26 

6.61 0.43 0.33 0.40 0.03 

B2 9.87 0.35 0.33 0.19 1.44 

B3 8.97 0.39 0.21 0.23 0.09 

B4 8.54 1.10 0.06 0.23 0.10 

B5 9.40 1.10 0.06 0.15 0.05 

B6 

W14 x 22 

59.20 0.67 0.27 0.38 0.14 

B7 7.11 1.26 0.32 0.13 0.06 

B8 0.49 0.16 0.31 0.42 0.05 

B9 12.14 0.43 0.03 0.61 0.18 

B10 15.21 0.24 0.13 0.50 1.21 

B11 22.22 0.16 0.36 0.50 0.14 

B12 39.98 0.12 0.34 0.50 0.46 

B13 13.36 0.24 0.21 0.65 0.46 

B14 15.21 0.43 0.15 0.14 0.50 

B15 13.40 0.43 0.15 0.42 0.62 

 mean 16.114 0.501 0.217 0.363 0.096 

std. dev. 14.889 0.369 0.116 0.171 0.052 
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Table 8. Beam calculated percent error per component 

Component Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 
Web Thickness 

Beams 

Error Point 

Cloud Data 

Measurement 

B1 

W16 x 26 

0.02 0.09 0.02 0.91 0.10 

B2 0.04 0.07 0.02 0.44 - 

B3 0.03 0.08 0.02 0.53 0.37 

B4 0.03 0.22 0.00 0.53 0.42 

B5 0.03 0.22 0.00 0.35 0.21 

B6 

W14 x 22 

0.15 0.13 0.02 0.34 0.57 

B7 0.01 0.25 0.02 0.12 0.26 

B8 0.00 0.03 0.02 0.37 0.21 

B9 0.13 0.09 0.00 0.55 0.73 

B10 0.16 0.05 0.01 0.44 - 

B11 0.05 0.03 0.03 0.44 0.57 

B12 0.08 0.02 0.03 0.44 - 

B13 0.14 0.05 0.02 0.57 - 

B14 0.16 0.09 0.01 0.13 - 

B15 0.14 0.09 0.01 0.37 - 

   mean 7.761 10.026 1.576 43.464 38.408 

   std dev. 6.005 7.371 0.842 18.830 20.884 
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Table 9. Beam calculated accuracy per component 

Component Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 
Web Thickness 

Beams 

Accuracy 

point cloud 

based on 

reference 

Design 

Drawings 

B1 

W16 x 26 

97.66 91.34 97.61 9.00 89.76 

B2 96.50 92.91 97.61 56.02 - 

B3 96.82 92.13 98.46 47.02 62.99 

B4 96.97 77.95 99.60 47.02 58.27 

B5 96.67 77.95 99.55 65.02 78.74 

B6 

W14 x 22 

85.30 86.61 98.07 66.49 42.52 

B7 99.02 74.80 97.64 88.01 74.02 

B8 99.93 96.85 97.78 62.99 78.74 

B9 87.35 91.34 99.79 45.49 26.77 

B10 84.15 95.28 99.07 55.99 - 

B11 95.33 96.85 97.35 55.99 42.52 

B12 91.60 97.64 97.49 55.99 - 

B13 86.08 95.28 98.50 42.52 - 

B14 84.15 91.34 98.93 87.49 - 

B15 86.04 91.34 98.93 62.99 - 

  Average Accuracy (%) 92.24 89.97 98.42 56.54 61.59 
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Table 10. Girder calculated error per component 

Table 11. Girder calculated distance difference per component 

 

Table 12. Girders calculate accuracy per component 

Component Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 

Web 

Thickness 

Girder 

Accuracy point 

cloud based on 

reference Design 

Drawings 

G1 W18x 40 85.825 86.614 90.524 25.938 89.764 

G2 

W14 x 22 

93.996 89.764 97.781 3.500 74.016 

G3 94.283 100.000 98.497 31.496 89.764 

G4 97.790 93.701 99.785 17.498 89.764 

G5 95.226 91.339 99.785 6.999 89.764 

Mean 93.424 92.283 97.274 17.086 86.614 

Std. Dev. 4.503 5.023 3.871 11.964 7.043 

Component  Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 

Web 

Thickness 

 

 

Girder 

 

Error Point 

Cloud Data 

Measurement 

G1 W18x 40 0.142 0.134 0.095 0.741 0.102 

G2 

 

W14 x 22 

0.060 0.102 0.022 0.965 0.260 

G3 0.057 0.000 0.015 0.685 0.102 

G4 0.022 0.063 0.002 0.825 0.102 

G5 0.048 0.087 0.002 0.930 0.102 

   Mean 0.066 0.077 0.027 0.829 0.134 

   Std. dev. 0.045 0.050 0.039 0.120 0.070 

Component  Label 
Steel 

Section 
Length Width Depth 

Flange 

Thickness 

Web 

Thickness 

 

 

Girder 

Difference in 

distance 

measurements 

(inch) 

G1 W18x 40 57.074 0.803 1.694 0.787 0.026 

G2 

 

W14 x 22 

5.764 0.512 0.305 1.086 0.065 

G3 5.488 0.000 0.207 0.771 0.026 

G4 4.244 0.315 0.030 0.928 0.026 

G5 4.583 0.433 0.030 1.046 0.026 
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Table 13. Column calculated distance difference per component 

Difference in distance 

Component Label Height  Diameter  

Column (in) 

C1 55.716 0.394 

C2 35.283 0.709 

C3 37.369 0.433 

C4 17.921 0.079 

C5 10.621 0.827 

C6 10.976 0.433 

C7 6.535 0.433 

mean 24.917 0.472 

Std. Dev. 18.242 0.241 

 

Table 14. Column calculated percent error per component 

Percent error (%) 

Component Label Height  Diameter  

Column  

C1 19.517 1.312 

C2 12.359 2.362 

C3 13.946 1.444 

C4 8.617 0.262 

C5 9.487 2.756 

C6 9.803 1.444 

C7 16.353 1.444 

Mean 12.869 1.575 

Std. Dev. 4.014 0.802 
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Table 15. Column calculated accuracy per component 

Accuracy Columns 

Component Label Height Diameter 

Column (in) 

C1 80.483 98.688 

C2 87.641 97.638 

C3 86.054 98.556 

C4 91.383 99.738 

C5 90.513 97.244 

C6 90.197 98.556 

C7 83.647 98.556 

mean 87.131 98.425 

Std. Dev. 4.014 0.802 

 

Table 16. Deck calculated difference per section 

(Based on decking dimensions) 
Difference in Measurements 

Length (in) Width (in) 

Deck 

D1 10.890 25.913 

D2 0.205 0.417 

D3 1.409 4.756 

D4 0.646 0.646 
 mean 3.287 7.933 
 Std. Dev. 5.093 12.152 

 

Table 17. Deck calculated percent error per section 

(Based on decking dimensions) 
% Error 

Length Width 

Deck 

D1 3.946 7.042 

D2 0.039 0.435 

D3 0.734 2.477 

D4 0.673 0.673 
 mean 1.348 2.656 
 Std. Dev. 1.760 3.062 

 

Table 18. Deck calculated accuracy per section 

(Based on decking dimensions) 
Accuracy (%) 

Length Width 

Deck 

D1 96.054 92.958 

D2 99.961 99.565 

D3 99.266 97.523 

D4 99.327 99.327 

average accuracy 98.652 97.344 
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4.3 RANSAC 

The RANSAC algorithm in the open-source software Cloud Compare was used to create a 

mesh by assigning shapes to the point cloud based on the parameter input. Various iterations were 

done to select the best fit combination of primitive shapes (plane, cylinder, sphere, cone, torus) to 

generate the mesh. The search time for the best fit mesh was 205 seconds (about 3 minutes 25 

seconds). This includes time associated with shape detection and with creating a shape generated 

model. The model includes 289 cylinders, 170 cones, 21 spheres detected, and leftover points 

removed that did not fit into the input parameters (shown in Figure 22). The time for algorithm to 

detect the primitive shapes for the various iteration is shown in Table 19.  If compared to the LOD 

specification provided for BIM, the level of detail produced by the RANSAC model is in between 

200-300. The model generated can be used as an intermediary step to obtain the geometrical and 

material properties of the bridge structure for further processing.  

The accuracy of the model was calculated using a Cloud Compare tool by measuring the 

distance between the point cloud data and the point cloud created from the primitive shapes The 

shapes remain as a point cloud format which make the file compatible with other software for 

further processing. Based on the automated calculations from point-to-point distance, the model is 

highly accurate (according to point cloud to shapes detected distance measurements) and efficient 

in the time the algorithm took to detect and assign a shape. But the primitive shapes detected do 

not make sense if we consider the planar nature of the faces in the beam and girders. The algorithm 

randomly assigned shapes to the point clusters that met the parameter inputs shown in Table 2 and 

Table 19. When segmenting a single column, beam, and girder the RANSAC algorithm will either 

oversimplify a beam/girder to a single plane or in the case of the column (as shown in Figure 32), 

multiple cylinders are detect assigned per column (as shown in Figure 31). 
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Table 19. RANSAC shape detection for multiple iterations 

Parameter input 

Time for shape 

detection 

(seconds) 

No. of 

planes 

No. of 

cylinders 

No. of 

spheres 

No. of 

cones 

No. of 

torus 

Plane  79.487 404 0 0 0 0 

Cylinder and sphere only 208.866 0 422 42 0 0 

Cylinder, sphere, cone 302.939 0 258 27 192 0 

Cylinder, sphere, cone, torus 205.837 0 289 21 170 0 

 

              

Figure 31. Multiple planes detection at component level 

        

Figure 32. Girder Plane Detection 
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4.4 Poisson Reconstruction 

The three-dimensional reconstruction of the mesh was generated in approximately 20 

seconds. The Poisson reconstruction method was completed after 16.2 seconds and generated 

1,437,671 triangles with 717,998 vertices. The distance computation for the point cloud to measure 

time was 88.47 seconds. The mean distance was 0.00346 with a standard deviation of 0.013764. 

Based on these results the mesh created proved to be accurate when compared to the scan. The 

Poisson Reconstructed mesh although accurate according to the measurement of the distance from 

the point cloud data, the mesh visually presents a lack of detail in the reconstruction of the beam 

and girders. There are visible patches in the reconstruction when viewing the component level 

reconstructions (as shown in Figure 33). The mesh generates shell of the bridge structure showing 

the external geometry with no material properties.  

 

Figure 33. Poisson Reconstruction of girder 
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The Poisson reconstruction automates the process to create a mesh, but the reconstruction does 

not allow for further data visualization and the reconstruction methods remain dependent on the 

quality of the scan.  

4.5 Comparison 

The method presented each have advantages and disadvantages. The use of algorithm 

generated model simplify the reconstruction by automating the computation procedure to generate 

the model and measure the accuracy with a few seconds. The disadvantage is the model is not 

created with specific information on the component and material properties. A building 

information model approach enables a high accuracy model with specific material properties and 

individual components. The disadvantage is recreating the model from point-to-point 

measurement or tracing. The algorithm reconstructed methods have several limitations. The model 

generated by shape detection creates an over simplified model or inaccurate by randomly assigning 

shapes to point cluster. The Poisson reconstruction generates a single mesh with no material 

section or properties. In addition, all methods are dependent of the quality of the scan, and exposure 

to the laser scanner field of vision. A complete comparison for the three-dimensional model created 

is shown in Error! Reference source not found..  
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Table 20. Comparison between the reconstruction methods 

  

Computational requirement 

 

Compatibility with 

software 

 

Data Integration 

 

Efficiency 

 

Accuracy 

 

Autodesk 

Recap As-built 

Point 

Measurement 

• Medium to high 

(dependent of point cloud 

data file size 

• User-friendly tools for 

segmenting points of 

interest (bridge 

components, beams, 

columns, etc.) 

• High compatibility  

• File conversion to 

Revit file format 

• Additional file format 

available (.laz, .e57, 

.pts, tec.) 

• Limited data integration  

• Insert images, videos, text 

to point 

• Point -to-point accuracy 

measurements (dependent 

on scan quality) 

• Medium to high efficiency 

(point cloud data file size 

dependent) 

• Simple data extraction and 

sharing 

• Smooth maneuvering and 

point cloud segmentation 

• Medium to high 

accuracy of 

measurement 

(dependent on 

quality of scan) 

 

 

 

Scan-to-BIM 

• Low to medium 

• Software knowledge (grid 

set-up, elevation set-up, 

data integration, and IFC 

compatible file) 

• High data compatible 

with other BIM 

software (IFC 

classes) 

• Data integration 

• Construction management 

data 

• Scheduling 

• Material count 

 

• Medium efficiency (when 

compared to algorithm 

mesh) 

• Manual tracing dependent 

on user 

• High accuracy 

• Time consuming 

(when compared to 

algorithm) 

 

 

Poisson 

Reconstruction 

• Low computation 

requirement  

• User-friendly parameter 

input and point cloud 

tools 

• Medium 

compatibility with 

most point cloud file 

types 

• Export file format for 

mesh import to 

additional software 

 

• Limited to point cloud 

data (merging, distance 

computation, topographic/ 

elevation segmentation) 

• High efficiency when 

generating a mesh 

(dependent on octree level 

for detail and size of point 

cloud data) 

 

• High accuracy 

(dependent on 

octree level and 

quality of laser 

scan) 

 

 

RANSAC 

• Low computation needed 

to run algorithm 

• Fast shape detection 

(within seconds) 

• High compatibility 

with point cloud files 

and export file 

formats 

• Low external data 

integration  

• Simplified shape of 

component (e.g., only one 

plane detected for beam 

• High primitive shape 

detection 

• Low quality when 

assigning correct primitive 

shapes to point cloud 

• Oversimplified shape 

detection  

• Low accuracy 

• Random assigning 

of primitive shapes 

when processing 

entire model 

 

ROBOT FEM • Low to medium 

(dependent on size of 

project and computational 

power 

• High direct link to 

Autodesk BIM 

software 

 

• Dependent on external 

data integrated 

• Simulation based  

• Direct export from BIM 

model 

• Links used to represent 

connections 

• High accuracy  

• Limited to 

structural elements 
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Chapter 5: Conclusions 

5.1 Summary  

The use of DT technology for infrastructure management is in its infancy. A three-

dimensional model for as-built infrastructure assets is an important aspect of a DT. The model 

should include the geometrical characteristics, section and material properties, simulation 

capabilities, and real-time data visualization. The geometrical characteristics of the infrastructure 

asset can be retrieved using laser scanning. A method to aid in the three-dimensional reconstruction 

of infrastructure is with geometrical data captured with laser scanning or through the inspection of 

bridges. 

The geometrical data for a pedestrian bridge case study on the UTEP campus was captured 

using terrestrial LiDAR scanning. The point cloud data was then measured to determine the 

difference in distance from the captured scan to the design drawings and section dimensioning. 

The measurements were used to compute the accuracy of using the point cloud as the reference to 

create a virtual model. Then the point cloud data was used to create a virtual reconstruction of the 

bridge using both BIM and algorithm reconstruction methods.  

The point cloud measurements of the external characteristics can be used to identify the section 

properties of the infrastructure for steel sections and the external geometry for concrete sections, 

but this requires human input. This process to match point cloud cross sectional measurement the 

dimensions to the steel section could be automated using simply filtering. For concrete, more 

robust tools would be required. General conclusions and future research directions are summarized 

below.  
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5.2 Limitations of the Study 

This study was focused on using LiDAR laser scanning to build geometric replica models of 

infrastructure. There were several limitations.  

First, the scanning layout and density were determined in a non-systematic manner that was 

consistent with the research team’s relative novice experience at the time. No efforts were made 

to scan from elevations other than the ground and deck elevation. Filtering and data cleanup were 

conducted through manual approaches, including manual evaluation of filter parameter variance 

on appearance of results. We did not explicitly validate numerous filtering approaches. We only 

considered two specific, relatively common approaches to automated reconstruction.  

The study focused on gross external measurements for structural components. The scope was 

limited to identifying LOD 300 information for structural components. The specific scenario 

considered for the case study focused on a relatively low traffic pedestrian bridge. As such, many 

of the logistical limitations that might be experienced on an operating highway bridge were not 

included.   

5.3 General Conclusions 

5.3.1 General issues with scanning  

• The information captured by a detailed terrestrial laser scanning process is limited to the 

external geometry of infrastructure and quality of the scan. 

• The laser scan quality is affected by the angle of incidence. A steep angle creates self-

shadowing effect on the flange.  

• The quality of the scan is dependent on the exposure of the infrastructure to the scanning 

equipment. Clear line of sight is important.  
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• The access to the site presents a challenge considering most bridges are constructed over 

bodies of water or operating roadways. For this case study, the laser scanning was 

conducted in terraced, complex terrain. 

• The scan is prone to self-shadowing of staggered members (e.g., column-to-girder 

connection) 

5.3.2 Issues with scan to BIM  

• Onsite scanning and data analysis is time consuming. For this study, the reconstruction of 

the pedestrian bridge alone took about 20 hours excluding the point-to-point measurements  

• The state-of-the-art in Scan-to-BIM still requires substantial human interaction including 

manual point-to-point measurements of the individual components, grid set-up based on 

point cloud measurements (column and beam spacing layout and orientation with respect 

to true north), and component identification of structural materials.  

• Structural geometry needs to be approximated using the measurements obtained from point 

cloud and is dependent on the quality of the scan. 

• The process to determine the section properties without the use of design drawing is 

challenge. For a steel member, for example, it requires matching the point cloud 

measurements to a steel section detail (i.e., AISC detail dimensioning).  

• There is no automated approach to assign material properties. This requires human input 

based on images or site assessment.  

• Certain critical design details like member-to-member connections are difficult to obtain 

from scans because the regions where these details are located are harder to scan and 

because the functionality of the connection is determined by rather small (i.e., weld size 

and location) details.  
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5.3.3 Issues with Algorithmic approach – RANSAC 

• The RANSAC algorithm assigns shapes to point clusters that meet the input criteria, 

generating shapes seemingly at random sometimes to create the model. As an example, 

beams were often assigned cylinders.  

• When segmenting the point cloud to a particular structural component (beam, girder, or 

column), the algorithm often assigns an oversimplified shape to the points (a single plane 

to beams/girders and cylinders for a column) 

• The model created requires further processing to reconstruct the individual components 

correctly and to assign section and material properties. The result is not close to 

implementation in a DT.  

5.3.4 Issues with algorithmic approach – Poisson Reconstruction 

• Self-shadowing and scan quality affect the reconstruction by leaving patches for missing 

points or extending to incorrect points.  

• The mesh is limited to the external geometry of the components with the need for further 

processing to assign section and material properties to the geometry. 

• The model is one mesh and does not distinguish between different structural elements. If 

segmented to a component level the mesh is prone to patching or overextending. The result 

is not ready for implementation in a DT 

5.4 Observed Challenges and Potential Solutions  

5.4.1Challenge 1: All approaches are dependent on scan quality  

Scan quality appears to be a key driver for what information can be obtained. However, 

scans are time consuming to obtain. A single scan is created in just 3 to 6 minutes depending on 
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the quality, but even for this relatively small pedestrian bridge, 14 scans were required. 

Considering time to setup, scan, and move to the next spot, a single bridge can take several hours. 

This also does not include challenges like traffic.  

Even if one ignores those challenges, there is a theoretical limit to how much information 

we can obtain from scans, particularly from ground level. Subsequent scans, including scans at the 

bridge bearing level, are very costly while providing only minimal additional value. Given that 

scans will never show the interior of concrete elements, or any details that are not visible from line 

of sight, it is impossible that scanning will provide everything needed even for a BIM model of a 

bridge, much less a DT. There will always be gaps between scan data and BIM and/or DT models.  

 

Figure 34. Image. Gap in LiDAR based model reconstruction 

 

5.4.2 Potential Solution 1: ML and AI can help to fill gaps 

ML or AI approaches offer one potential solution to close the gaps (seen in Figure 34). A 

ML algorithm can be trained to predict with quantifiable confidence these unknown parameters to 
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help create a DT-ready model from a scan. However, this creates a subsequent challenge to be 

addressed. This approach would require substantial, large, and diverse training datasets. 

5.4.3 Challenge 2: ML and AI require training data 

Currently, there is not enough training data available to implement ML and AI approaches 

for this problem. We would need large sets of specific geometric, section, and material property 

data so that we could confidently correlate measurable parameters (e.g., beam depth and flange 

width of a steel section) with unmeasurable parameters (e.g., beam web thickness).  This example 

with a steel section is illustrative but would not likely require ML or AI since the correlation 

between depth and width is very strong with internal dimensions. A simple filtering process would 

be sufficient. However, if one considers concrete elements, the challenge is clearer. Concrete deck 

thickness is not measurable, for example, but could be predicted based simply on bridge location, 

or span length/girder spacing.  

Collecting this data would be a substantial effort. The training data would have to be 

structured in such a way as to maintain the spatial relationships that are defined by a bridge (i.e., 

individual girders on a multi-girder bridge).  

5.4.4 Potential Solution 2.1: Augment bridge inspection protocols to include field data 

collection 

One way to reduce the cost of this data collection would be to leverage the Federal bridge 

inspection program. Bridge inspectors are out on bridges once every two years to conduct visual 

inspection. Their mandate could temporarily be expanded to include measurement of key 

parameters that would feed into a BIM for Bridge model to facilitate widespread model 

construction. This dataset could be used for training, and BIM for bridges could manage the spatial 

variation in this data.  
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5.4.5 Potential Solution 2.2: Paper study approach 

A second approach which would be costly but would not involve bridge inspectors would 

be to create a database of bridge characteristics that are required for DT models via a paper study 

– manual/automated review of bridge construction drawing archives. Again, in this scenario there 

is a need for a BIM for bridge model to act as a translator that can relate scan data to individual 

bridge elements via their spatial location.  

5.5 Future Research 

The use of machine learning and cloud computing for integrating, structuring, and using 

data to understand what is happening to the physical infrastructure system is key to remotely 

monitoring city scale infrastructure from a single access point. Specifically for bridges, a database 

with bridge components can improve the 3D reconstruction of the model for a high level of detail. 

This database is currently not available or has not been recorded.  

To understand the current method for collecting data from current bridge geometry we 

determined a gap in the current data being collected and introduced additional data collection 

criteria for potential machine learning trained algorithms.  Even after creation of a geometric 

replica model that can be incorporated into a DT model, there are still challenges with integrated 

real-time data efficiently and using that data to change behavior of the real system in the DT.  

The idea of DT and optimized 3D modeling methods need to aim for advancement in 

application of technology for infrastructure and consider the future visualization at a city scale. 

Gaming engines such as Unity have proven to work well for 3D reconstruction and visualization 

of the built infrastructure in a virtual environment. The vision is to fully replicate infrastructure 

digitally but to do so the capabilities of modeling software, algorithm reconstructions, and gaming 
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engines in terms of visualization and compatibility with data need to be well understood. Unity is 

compatible with data from sensing equipment using programming languages and proficient when 

creating a complete dashboard to monitor the near real-time condition of the sensor. In future 

research, this can be expanded to include real-time data for building energy consumption, utilities 

(water, gas), transportation infrastructure serviceability (numbers of cars, speed, vision-based 

sensing, vehicle type, etc.).  
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Table 21. Beam measurements from point cloud data, design drawing, and AISC steel section dimensioning 

Component  Label Steel Section Length Width Depth Flange Thickness Web Thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beams 

 

 

 

 

 

Design 

Drawings 

(in) 

B1  

 

W16 x 26 

282 5.0 13.875 0.4375 0.25 

B2 282 5.0 13.875 0.4375 0.25 

B3 282 5.0 13.875 0.4375 0.25 

B4 282 5.0 13.875 0.4375 0.25 

B5 282 5.0 13.875 0.4375 0.25 

B6  

 

 

 

W14 x 22 

402.625 5.0 13.75 1.125 0.25 

B7 726 5.0 13.750 1.125 0.25 

B8 726 5.0 13.750 1.125 0.25 

B9 96 5.0 13.750 1.125 0.25 

B10 96 5.0 13.750 1.125 0.25 

B11 476 5.0 13.750 1.125 0.25 

B12 476 5.0 13.750 1.125 0.25 

B13 96 5.0 13.750 1.125 0.25 

B14 96 5.0 13.750 1.125 0.25 

B15 96 5.0 13.75 1.125 0.25 

 

 

 

 

Point Cloud 

(in) 

B1  

 

W16 x 26 

275.394 4.567 13.543 0.039 0.276 

B2 272.126 4.646 13.543 0.630 1.693 

B3 273.031 4.606 13.661 0.669 0.157 

B4 273.465 3.898 13.819 0.669 0.354 

B5 272.598 3.898 13.937 0.591 0.197 

B6  

 

 

 

W14 x 22 

343.425 4.331 14.016 0.748 0.394 

B7 733.110 6.260 13.425 1.260 0.315 

B8 725.512 4.843 14.055 0.709 0.197 

B9 83.858 4.567 13.780 0.512 0.433 

B10 80.787 5.236 13.622 0.630 1.457 

B11  453.780 4.843 13.386 0.630 0.394 

B12  436.024 4.882 14.094 0.630 0.709 

B13  82.638 4.764 13.543 1.772 0.709 

B14  80.787 4.567 13.898 0.984 0.748 

B15  82.598 4.567 13.898 0.709 0.866 
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Table 22. Girder measurements from point cloud data, design drawing, and AISC steel section dimensioning 

  Label Steel 

Section 

Length Width Depth Flange 

Thickness 

Web 

Thickness 

 

 

 

 

 

 

Girder 

 

Design 

Drawings 

(in) 

G1 W18x 40 402.625 6 17.875 1.0625 0.25 

G2  

W14 x 22 

96 5 13.75 1.125 0.25 

G3 96 5 13.75 1.125 0.25 

G4 192 5 13.75 1.125 0.25 

G5 96 5 13.75 1.125 0.25 

 

 

Point 

Cloud (in) 

G1 W18x 40 345.551 5.1969 16.181 0.276 0.276 

G2  

 

W14 x 22 

90.236 4.4882 14.055 0.039 0.315 

G3 90.512 5.0000 13.543 0.354 0.276 

G4 187.756 4.6850 13.780 0.197 0.276 

G5 91.417 4.5669 13.780 0.079 0.276 

 

Table 23. Column measurements (drawing and point cloud) 

Column Drawings Design Drawings Measurements  Point Cloud Data Measurements  

Component Label T.O.C. T.O.F. Height (in) Diameter (in) Height (in) Diameter (in) 

 

 

 

Columns 

C1 3839.79 3816 285.48 30 229.764 29.606 

C2 3839.79 3816 285.48 30 250.197 29.291 

C3 3841.33 3819 267.96 30 230.591 29.567 

C4 3841.33 3824 207.96 30 190.039 29.921 

C5 3841.33 3832 111.96 30 101.339 29.173 

C6 3841.33 3832 111.96 30 100.984 29.567 

C6 3841.33 3838 39.96 30 33.425 29.567 
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Table 24. Foundation Design Drawing Measurements 

Design Drawings 

Component Label TC Elevation BC Elevation Depth (ft) Diameter (ft) 

Foundation 

1 3816 3798 

18 3 

2 3816 3798 

3 3819 3801 

4 3824 3806 

5 3832 3814 

6 3832 3814 

7 3838 3820 

 

 

Table 25. Deck Dimension Data (design drawings and point cloud) 

(Based on decking 

dimensions) 

Design Drawings Point Cloud 

Length (in) Width (in) Area (in^2) Length (in) Width (in) Area (in^2) 

 

 

Deck  

D1 276.000 368.000 101568 286.890 342.087 98141.14793 

D2 528.000 96.000 50688 96.417 527.795 50888.60748 

D3 192.000 192.000 36864 190.591 187.244 35686.95517 

D4 96.000 96.000 9216 95.35433071 95.35433071 9092.448385 

Total    198336.00   193809.159 
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