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Abstract  

Identifying the regions with greatest changes in their hydrologic behavior under  extreme 

weather events in the 21st century, constitutes a study priority of global impact. Here, we present 

a global assessment assessing the sensitivity of the world’s water landscapes to climate variability 

during 2001-2016, using a new metric called the Hydrologic Sensitivity Index (HSi). This 

equation is based on the well-known Budyko curve that uses annual values of Potential and Actual 

Evapotranspiration (PET and AET), and Precipitation (P), to assess the hydrologic behavior of a 

location under a given climatic condition by plotting the Evaporative Index (AET/P) against the 

Dryness Index (PET/P). For values 𝐻𝑆i ≥1: Sensitive and 𝐻𝑆i<1: Resilient. Also, since elevation, 

slope and aspect are the three of the defining factors in temperature and humidity regimes, we 

evaluate their influence on HSi. Overall, majority of the world’s biomes display tendency toward 

drier state. Particularly, we identify the regions with hydrologic sensitivity to climate variability 

in tropical rainforests  accompanied with decreasing water yields and warmer/drier conditions 

evident along southernmost part of Amazon and central part of the Congo basin.  High sensitivity 

is also seen along easternmost Canadian and Eurasian arctic tundra and boreal forests with 

increasing water yield trends and dominant warmer/drier climate conditions. The hydrologic 

sensitivity is amplified at high elevations and steep-sloped terrain outlining the importance of the 

topography in modulating these effects. We direct the attention towards climate warming 

resulting in decreased forest cover as potential mechanism driving the decreasing water yield 

patterns in tropical zones, while snow melt and increasing precipitation in the tundra and boreal 

forests resulting in surplus water yields.  Our global  study highlights the particular locations with 

greatest hydrologic changes to climate variability while outlining the main water yield and 

climate directions—a study that indicates where water resources have been changing the greatest 

and in what ways. 
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Chapter 1: Introduction  

1.1 Background 

Global warming and human interventions are changing the behavior of Earth’s water 

cycle (Stott, 2016, Easterling et al., 2017, Sterling et al, 2013, Rodell et al., 2018, Tabari, 2020). 

Although there is evidence that extreme weather events and increasing climatic variability are 

intensifying hydrologic processes worldwide (Held & Soden, 2006, Milly et al., 2015, Huntingon, 

2006, Tabari, 2020, Creed et al., 2014), there is still no consensus on the direction or the 

magnitude in which different components of the water cycle will respond in the world’s major 

terrestrial ecosystems under these imposed changes (Stott, 2016, Zhan et al., 2012, Salmoral et 

al., 2015, Martens et al., 2018, Padron et al., 2017). As the current human population arrives at a 

critical environmental carrying capacity, and the world enters a warmer climate, our planet’s 

ecosystems are changing and adapting (Seddon et al., 2016, Pecl et al., 2017), bringing along 

changes in the way water is partitioned in the landscape (Milly et al., 2005; Held & Soden, 2006; 

Huntington 2006; Creed et al., 2014; Tabari, 2020). Whether natural or human induced, 

ecosystems’ alterations to the water cycle at the global scale need to be urgently assessed. 

Particularly in the face of increasing climate variability and the rising numbers and intensity of 

extreme weather events altering hydrologic processes worldwide (Stott, 2016; Milly et al., 2005; 

Zhan et al., 2012). Thus, looking at variations in hydrologic response as a function of the 

variability in climatic forcing offers an opportunity to detect regions where hydrologic dynamics 

are changing (Gao et al., 2016). Furthermore, identifying locations with changing hydrologic 

responses to climatic variability is important for detecting regions arriving at critical thresholds 

that may compromise the availability of water for both ecosystems and human settlements.  
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1.2 Concept of Elasticity 

Assessing the hydrologic sensitivity to climate variability can be approached from the concept of 

elasticity. Elasticity here is defined as the capacity of a system to keep a consistent response in 

spite of sudden perturbations, and/or extreme climatic variability (i.e. hydrologic resilience; 

Creed et al., 2014). Thus, in that sense, hydrologic sensitivity is the inverse of elasticity, and can 

be used to detect regions with unstable hydrologic systems. The elasticity concept has been 

devised using the well-known  and widely used Budyko’s curve (Creed et al., 2014, Roderick et 

al., 2014, Helman et al., 2017, Sinha et al., 2018, Padron et al.,2017), which provides a reference 

condition on the behavior of the long term mean water balance as a function of the average 

climatic condition of an area (Trenberth, 2011, Roderick et al., 2014, Helman et al., 2017, Li et 

al., 2019, Budyko, 1974, Greve et al., 2016) (Figure 1). It uses annual values of Potential and 

Actual Evapotranspiration (PET and AET respectively), and Precipitation (P) and examines 

changes in the Evaporative Index (i.e. hydrologic response, EI=AET/P) against changes in the 

Dryness Index (i.e. climate condition, DI; PET/P) over defined periods of time. Simply put, 

Budyko’s curve represents the historical average of multiple catchments across varying climate 

types. Therefore, a region’s EI can be obtained along the curve given information on its climate 

(DI). Thus, elasticity (e) is quantified by how far the EI deviates from the Budyko’s curve relative 

to the change in DI defined as the ratio between the range of the dryness index (ΔDI) and that of 

the evaporative index relative to the curve (ΔEIR) (Creed et al., 2014) (Equation 1). Positive 

deviation (+ΔEI, more AET) indicates less water yield (-Q, water left over on Earth’s surface 

after evaporation has taken place) while negative deviation (-ΔEI, less AET) indicates greater 

water yield (+Q) (Figure 1). A catchment has high elasticity when there is a small deviation in 

EIR relative to change in DI (e >1=ΔDI > ΔEIR, resilient) and low elasticity when a great deviation 

of EIR occurs relative to DI (e <1=s ΔDI < ΔEIR, sensitive). 
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                                       𝑒=
ΔDI

ΔEIR
=

ΔDI

Δ(EI−B)
 .                                                   (1) 

 

                          

Figure 1: Budyko’s Framework. The framework plots the evaporative index against the dryness index. When the 

evaporative index increases (decreases) the water yield decreases (increases). The solid lines represent the energy 

(red) and water limit (blue) lines, and the dashed line represents the historical average of where regions would plot 

given information on their climate (known as the original Budyko curve) (Creed et al., 2014, Budyko, 1974) .  

 

1.3 Novelty of this global assesment 

Although previous studies have documented regions undergoing hydrological changes 

using the concept of elasticity for showing how varying climate and the intensification of human 

activities can have a strong influence on year-to-year changes in hydrologic responses, (Wu et al, 

2017b, Creed et al., 2014, Helman, 2017, Li et al., 2019, Wu et al., 2017), they have only been 

assessed in a few catchments within geographically limited regions. Because of this limited 

geographic extent, other important factors known to modulate climatic variability, such as 

elevation, slope and aspect, have been obviated. For example, elevation and aspect in complex 

terrain alter temperature and humidity regimes across different land conditions within similar 

climatic zones. Elevation leads to changes in temperature and precipitation regimes which are 

further amplified by slope and aspect creating distinct microclimates (Gutiérrez-Jurado et al., 
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2006, Sristava et al., 2020). Together, these factors influence the partitioning of water in the 

landscape and hence its hydrologic response over time (Gutiérrez-Jurado et al., 2007), raising 

questions about which of them plays a major role in maintaining a consistent hydrologic behavior 

in spite of large climatic perturbations (e.g. climatic deviations from the normal). Changes to 

hydrologic functioning in response to climatic perturbations are expected to vary widely 

according to land cover conditions, topographic complexity of the terrain and geographic location 

(Sterling et al., 2013), specifically in places where sensitive characteristics to these perturbations 

are relevant. Thus, it is important to evaluate the hydrologic responses to climatic variability 

globally, and to assess the recurrence (frequency) of heightened responses, while evaluating the 

role of terrain properties in locations where relatively minor perturbations result in significant 

changes in hydrologic functioning. 

In this study, we evaluate the hydrologic responses to climatic variability globally, and  

assess the frequency of these responses, while evaluating the role of major topographic factors in 

modulating these responses. Given that different biomes (climate types) have unique 

characteristics and the way they respond to extreme climate forcing is inextricably linked to how 

it will affect water resources (Padron et al., 2017, Motew & Kucharick, 2013, Gudmunsson et al., 

2016), we explore the resulting hydrologic sensitive areas for each of the different terrestrial 

biomes in the world. Finally, we document the average direction in which hydrologic changes 

occur in these sensitive areas, noting if these regions are shifting to drier (+∆DI) or wetter state 

(-∆DI) and if they are yielding more (-∆EI) or less (+∆EI) water. 
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Chapter 2: Methods 

2.1 Data Collection  

We use annual values of the 3 key variables (AET, PET and P) for the period of January 

2001 to December 2016 due to the availability of datasets. The main characteristics (i.e. 

component, product, temporal resolution, spatial resolution) of the satellite products used are 

listed in Table 1. AET is derived from Penman Monteith Leuning version 2 (PML-V2) at 500m 

resolution (Zhang et al., 2019). The PML_V2 product performs well against observations at 95 

flux sites across the globe and is similar to or noticeably better than major state-of-the-art AET 

products such as PML-V1, MOD16, and GLEAM (Zhang et al., 2019). PET is derived from the 

Moderate-Resolution Imaging Spectroradiometer (MOD16A2) version 6 onboard the Terra 

satellite and produced at 500m resolution (Running et al., 2019). It has been validated over 46 

eddy flux towers, and the close agreement in the seasonality between data reveals the 

reasonability (magnitude, range and directions of variations) for valid pixels (Running et al., 

2019). P is derived from the Multi-Source Weighted-Ensemble Precipitation dataset (MSWEPv2) 

at 0.1-degree resolution (Beck et al., 2019a). This dataset, MSWEPv2, combines gauge and 

satellite products, with multiple corrections for regional differences and has shown to be a robust 

dataset when compared to other P products with a high spatial resolution (Beck et al., 2019b) is 

(≤0.1°,) which include Climate Hazards Group Infrared Precipitation with Stations (CHIRPS; 

0.05°), CPC morphing technique (CMORPH; 0.07°), Global Satellite Mapping of Precipitation 

(GSMaP; 0.1°), Integrated Multi satellite Retrievals for Global Precipitation Measurement 

(IMERG; 0.1°), and Precipitation Estimation from Remotely Sensed Information Using Artificial 

Neural Networks–Cloud Classification System (PERSIANN-CCS; 0.04°). Overall, the three 

products used in this study have been tested worldwide and span a variety of climates and land 
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cover types providing the opportunity to apply these datasets for studies of global terrestrial water 

and energy cycles and environmental changes.  

Table 1: Data Collection. List of products with temporal and spatial resolution used to evaluate HSi. 

 

 

2.2 A new metric: Hydrologic Sensitivity Index 

This study focuses on identifying regions that are most sensitive or are likely change to 

an alternative or permanent state in hydrologic functioning. Thus, we developed a new metric 

called the Hydrologic Sensitivity Index (HSi) by taking the inverse of the elasticity formulation. 

However, since Budyko’s framework is limited to steady-state conditions (Greve et al., 2016) 

and this study is executed at interannual scale, the Budyko’s formulation needs an adjustment. 

Specifically, at sub-annual and interannual timescales, changes in storage water terms such as 

soil moisture, groundwater, snow storage or human interventions results in AET>P (additional 

water other than P) does not characterize steady state conditions (Greve et al., 2016). 

Consequently, we apply the adapted Budyko formulation presented by Greve et al., 2016 to 

account for changes in storage (BA) (Equation 2a and Figure 2) using the parameter y0, which 
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represents a measure of the maximum amount of additional water besides P being available to 

AET  (Equation 2b). This parameter is calculated as the difference between AET and P (only 

when AET-P >0) normalized by PET. The parameter k is a free model constant that can be 

interpreted as a factor other than the aridity index that influence the water partitioning of EI and 

was determined to be κ = 2.6 corresponding to the best fit to the original Budyko function  

However, since this parameter varies by region it must be estimated (Greve et al., 2016). 

                BA=
𝐴𝐸𝑇

𝑃
= 1 + −

𝑃𝐸𝑇

𝑃
(1 + (1 − 𝑦0)𝑘−1 ∗ (

𝑃𝐸𝑇

𝑃
)

𝑘

)

1

𝑘

,                                 (2a) 

                             where 𝑦0 =
𝐴𝐸𝑇−𝑃

𝑃𝐸𝑇
, 𝑖𝑓 𝐴𝐸𝑇 − 𝑃 > 0                                            (2b) 

 
Figure 2: Adapted Budyko Curve. The Budyko framework accounts for changes in storage for regions where AET-

P>0, so that the range in EIR is in reference to the adjusted curve, while range in DI is not affected.  HSi is calculated 

as the ratio of a catchment’s range in EI to its range in DI between consecutive pair of years: HSi= (∆DI)/(∆EIR), 

where a) high sensitivity (HSi > 1, red) (i.e., approximating theoretical behavior), and (b) low hydrologic sensitivity 

(HSi<0, green) (i.e., deviating from theoretical behavior). 

Hence, by tracking the changes in hydrologic response (ΔEIR) of a location or region 

relative to the adapted curve (BA), that is, its water yield deviation to interannual climatic 

variability (ΔDI) for consecutive years, we can calculate the hydrologic sensitivity in the 

following manner:  
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                                             HSi = 
ΔEIR

ΔDI
=|

Δ(EIR− BA)

ΔDI
|,                      (3) 

where sensitive regions will display HSi>1, and resilient locations will show HSi <1 (Equation 

3). It is important to note that HSi evaluates the absolute difference between DI and EIR between 

successive years, regardless of which year was warmest or wettest. A conceptual diagram 

depicting the algorithm used is shown in Figure 2, of which a detailed description is provided 

next.  HSi evaluates the absolute ratio between ranges in DI and EIR values between consecutive 

years (e.g. HSi = |ΔEIR/∆ DI|  = | ΔEIR,2001−2002/ΔDI2001−2002 |).   

2.3 Computing HSi 

Knowing the year-to-year hydrologic sensitivity is more meaningful when looked over a 

longer period of time. Regions consistently showing sensitive behavior can be identified by 

looking at the frequency with which HSi >1 is detected. Figure 3 displays the algorithm for 

computing HSi frequency. First, we compute annual values of AET, PET, P, and  y0. Next, we 

compute HSi for every successive pair of years from 2001 to 2016.  All computations leading to 

the HSi are performed in the Google Earth Engine Platform  (Golerick et al., 2017).  A total of 

15 HSi maps were obtained representing the HSi for each consecutive pair of years.  For each 

map, where HSi >1, regions are classified as Sensitive and for HSi ≤1, Resilient. To provide a 

synthesis of the general trend of global hydrologic sensitivity, we display the frequency of HSi, 

showing the recurrence of HSi >1 for every terrestrial location with a range of 0 (low frequency) 

to 15 (high frequency). Regions where frequency HSi 7 are considered highly recurring and as 

such are deemed as the most hydrologically sensitive.   
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Figure 3: HSi Algorithm. Flowchart for computing HSi. Input data layers are shown in medium blue, intermediate 

data layers computed in Google Earth Engine as part of the algorithm are shown in light blue, and final output is 

displayed as a map of HSi Frequency. 

2.4 Computing Mean Sensitive Area 

Besides the geographic occurrence of hydrologic sensitive areas, identifying the 

percentage of sensitive area relative to the total area in a biome can help inform the regions of 

the world where hydrologic response has been consistently changing. Figure 4 displays the 

algorithm for estimating the mean hydrologic sensitive area for each terrestrial biome. For this 

analysis, the biome boundaries were obtained from Terrestrial Ecosystems of the World (TEOW) 

shapefiles (Figure 5) by the World Wildlife Fund (Olson et al., 2001). The 15 pairs of EIR’s and 

DI’s per biome are used to quantify sensitive for every consecutive pair of years. Hydrologic 

sensitive areas are represented by the colored quadrants (green and red or light and dark blue). 

All colored area shows that the interannual absolute change in evaporative index, |∆EI|, is greater 

than the interannual absolute change in the dryness index, |∆DI| which is equivalent to |HSi|>1. 

The diagram is split into 4 quadrants indicating the possible climate and water yield directions: 

drier (+∆DI) wetter (-∆DI) and less water yield (+∆EI) and more water yield (-∆EI). Sensitive 

area (grid cells) where |HSi|>1 = |∆EIR|>|DI| equivalent to: 
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    I = EIR > DI = less water yield and drier climate; 

    II = EIR > -DI = less water yield and wetter climate; 

    III = -EIR < -DI = more water yield and wetter climate; 

    IV = EIR < DI = more water yield and drier climate. 

Sensitive area is defined by the percentage of sensitive grid cells (HSi>1) to the total 

number of grid cells within each biome. Once we obtain all 15 values (one per pair of years) of 

sensitive area per biome, we compute the temporal average. Additionally, we display sensitive 

areas with direction of change by including the portion of sensitive area allocated toward drier vs 

wetter climate conditions (Figure 4a) and less vs greater water yield (Figure 4b) and direction of 

change. For instance, the percentage of sensitive grid values toward warmer/drier (∆DI) and 

colder/wetter (-∆DI) values defines the climate direction, while decreasing (∆EI) and increasing 

(-∆EI) water yield defines the water yield direction. Also, the fraction of the sensitive area is 

plotted relative to the global land area to provide a global areal extent of sensitivity for each 

biome. In addition, we created two maps to spatially display the median climate and water yield 

trends for regions with HSi>1 and Frequency ≥7.  
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Figure 4 : Mean Hydrologic Sensitive Area Concept. The diagrams show how the hydrologically sensitive area is 

calculated. a) Quadrant 1 and IV where hydrologic sensitive areas have become drier (red), so that the change in +DI 

is positive, while in quadrant II and III represents the areas which have become wetter the absolute change in -DI is 

negative (green).  b) Quadrant I and II represent the condition where hydrologic sensitive areas show decreasing water 

yield trends, so that the change in +EIR is positive (light blue), while in quadrant III and IV represent the areas that 

show increasing water yield trends, so that the change in -EIR is negative (dark blue).   

 
Figure 5: Global Terrestrial Ecosystems. A total of 14 Major Terrestrial Ecosystems reflect the diverse climate 
types (we do not consider lakes and rock ice biomes for this study). Terrestrial communities represented here include 

the full extent of continental topographic relief (Oslon, 2001). 
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2.5 Computing the effect of elevation, slope, and aspect 

We evaluate the effect topography on hydrologic sensitivity by plotting the average HSi 

frequency for all elevations ranges (binned every 100 m), aspects (binned every 22.5), and slope 

steepness (binned every 5) against latitudinal change. For this analysis we used global digital 

elevation models (DEMS) from the Shuttle Radar Topography Mission (SRTM, Jarvis et al., 

2008) data (90 m resolution; version 4, for latitudes < 60◦ N and GTOPO30 (1◦ resolution; 

http://lta.cr.usgs.gov/GTOPO30) for latitudes > 60◦ N as seen in Table 1. Slope and aspect maps 

were derived from the DEMs using standard GIS-based methods in ArcMap 10.7. (Burrough et 

al., 2015). The elevation range used is 0 to7000 meters above sea level (m.a.s.l), aspect (N, NE, 

E, SE, S, SW, W, NW) specifically above slope values greater than 10 (no flat areas used), and 

slope 0 to 90 degrees. 
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Chapter 3: Results  

3.1 Average annual excess water used from storage (y0) (i.e., groundwater-dependent 

ecosystems) 

We note where water storage was used to supplement precipitation to satisfy the annual 

AET (y0>0; Figure 6), except in locations where “no data” values in either AET or PET impeded 

the calculation of y0 (gray areas in Figure 6). In particularly, high values (y0>0.2) occur along the 

Yucatan Peninsula (y0~0.3-0.4, Mexico), California (y0~0.30-0.35, USA) and Great plains 

(y0~0.25, USA), Patagonia (y0~0.28-0.41, Argentina), Tamil Nadu and Rajasthan (y0~0.3-0.4 

India), Caatinga forest (y0~ 0.26-0.38, Brazil) and Eastern Africa (y0~0.40-0.65). Some of these 

regions showing large y0 values correspond to groundwater fed irrigated croplands where 

significant abstraction of water resources subsidizes high AET rates (e.g. Central Valley, 

California and Central Midwestern USA, Northern India, Northeastern China; Aeschbach-Hertig 

& Gleeson, 2012). Other areas with large y0 values show groundwater dependent ecosystems 

where vegetation has a continual access to water regardless of precipitation conditions yielding 

high annual AET (e.g. Yucatan Peninsula; Uuh-Sonda et al., 2018). Other regions along the high 

Artic tundra, northernmost boreal zones, and equatorial tropical zones display no excess storage 

(y0~0), while all other regions have slight excess water storage (y0>0-0.20) (see Figure 6).        
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Figure 6: Average excess water used from storage. 16-year average excess water storage as a fraction of the 

potential evapotranspiration (additional water other than P available to AET standardized by PET). The values range 

from 0 (no significant changes in storage) to 0.4 or greater (red, high changes in storage). Areas with dominant barren 

land and permanent ice (no data) are shown in grey. Pixel resolution is 500m. Map created in Google Earth Engine 

and modified with continental outline shapefile in ArcGIS 10.7 software.  

 

3.2 Frequency HSi 

The areas exhibiting the most frequent hydrologic sensitivity during the 2001-2016 period 

were located in the tropical rainforests (tropical & subtropical moist broadleaf forest) of Central 

and South America (Amazon Basin), the central-western Africa (Congo Basin), and southeast 

Asia (Himalayan region, Indochinese Peninsula, and Malay Archipelago), the Arctic tundra, parts 

of the boreal forest, and tropical and subtropical coniferous forests scattered throughout North 

America and Eurasia (Figure 7).  Overall, arid and semiarid areas worldwide display low 

frequency (<2) of HSi, and the areas displaying the highest frequency (>7) are in general 

surrounded by a zone of increasingly lower HSi frequency (orange and yellow areas in Figure 7) 

outwards.  

[

-

] 
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Figure 7:  Frequency of Hydrologic Sensitivity. Tendency to high hydrologic response to climate variability (based 

on the recurrence of HSi 1). The index ranges from 0 (no frequency, dark green) to 15 (high frequency, red). Areas 

with dominant barren land and permanent ice (no data) are shown in grey. Wetland areas, as identified by the Global 

Lakes and Wetlands Database, are mapped in blue. Pixel resolution, 500m; period, 2001–2016. Map created in 

Google Earth Engine and modified with continental outline shapefile in ArcGIS 10.7 software  
 

The areas where no hydrologic sensitivity is detected during the period of study (2001-2016) are 

regions with large interannual variability in climatic conditions. A map showing the coefficient 

of variation (CV) of the Dryness Index (DI) reveals that the regions of the world where this 

coefficient is large (values close to 1 show locations with high variability) closely match those 

with no hydrologic sensitivity (0 frequency of HSi >1; Figure 8.a). In those places the interannual 

variability of the DI outweighs any moderate or even large variabilities in Evaporative Index (EI; 

Figure 8.b). By contrast, the areas where the highest frequency of hydrologic sensitivity is 

observed, correspond to locations with low or moderate interannual variability in DI and EI (i.e. 

CV of DI and EI < 0.4). This suggests that hydrologic sensitivity, as measured by HSi, is largely 
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dependent on the prevailing interannual variability of the fluctuations in climatic conditions 

expressed by the DI. This finding gives confidence in the ability of the HSi to detect those 

locations where in spite of having low year to year variations in climatic conditions, relatively 

large variations in the evaporative index are occurring. 
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Figure 8. Coefficient of Variation of (a) Dryness Index (DI) and (b) Evaporative Index (EI) for the study period 

(2001-2016). The coefficient ranges from 0 (low variability, light yellow) to 1 (high variability, red). Areas with 

dominant sterile soil and permanent ice (no data) are shown in gray. Wetland areas, identified by Global Lakes and 

Wetlands Database, are mapped in blue. Pixel resolution is 500m. Map created in Google Earth Engine and modified 

to include continental schema basemap and lakes in ArcGIS 10.7 software. 

 

 

 

(a) 

(b) 
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3.3 Mean sensitive area per biome w/climate and water yield direction  

Figure 9 displays mean sensitive area per biome arranged from largest to least hydrologic 

sensitive. The biomes displaying the largest sensitive area in descending order are tropical 

rainforests, the Arctic tundra, tropical and subtropical coniferous forests, and boreal forests. 

Tropical and subtropical rainforests and coniferous forests display decreasing water yields, while 

tundra and boreal systems display increasing water yields. Relative to global land, boreal forests 

have the greatest actual areal extent of hydrologic sensitive land followed by tropical rainforests 

and grasslands (tropical and subtropical grassland, savannas, and shrublands). The hydrologic 

sensitive area in the majority of the biomes (12 out of 14 biomes) have a clear tendency towards 

decreasing water yield conditions with the exception of the Arctic tundra and temperate broadleaf 

mixed forests (mixed forests) which display a neutral behavior. Although the climate direction is 

roughly neutral for most biomes, the hydrologic sensitive area in 9 out of 14 biomes is slightly 

inclined toward drier conditions with the exception of the Arctic tundra, mixed forests, temperate 

coniferous forests, tropical & subtropical coniferous forests, and tropical rainforests, which lean 

toward wetter/colder conditions.  
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Figure 9: Hydrologic Sensitive Area. Average sensitive area per biome (relative to biome area) with portion 

indicating direction of change, where drier (red) and wetter (green) conditions refer to the climate direction; less 

(light blue) and greater water yield (dark blue) refers to the hydrologic direction; average sensitive area relative to  

the global land area (orange) refers actual extent of sensitivity. Values are computed on Google Earth Engine 

platform at ~1000m resolution.  

 

 

3.4 Water yield and climate direction  for regions with high HSi frequency 

 

Focusing on only those regions where HSi frequency ≥7 (mainly equatorial and northern 

high latitudes) the median direction in water yield (∆EI) and climate direction (∆DI) is displayed 

in Figure 10 and Figure 11 respectively. In particular, Figure 10 displays dominant decreasing 

water yield (light orange) for the majority of pixels within tropical forest (equatorial zones) while 

increasing water yields (blue) are evident in the northern high latitude regions particularly along 

Alaskan, easternmost Canadian and Eurasian arctic regions and boreal forests.  Figure 11 displays 

a general neutral tendency in climate conditions in dry (red) versus wet (blue) for these same 

regions. Nonetheless the map displays drying/warmer conditions along southern part of and 

southern edge of the Amazon basin, western and central Congo Basin and the northeastern part 
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of the Canadian and Eurasian continent. Colder/wetter conditions are seen along the northern part 

of the Amazon basin and northmost Siberia.  

 

Figure 10: Water yield direction of hydrologically sensitive regions. For display purposes, observed results are 

based on median values of interannual change in evaporative index, ∆EI, only for regions where the frequency of 

HSi≥7. The values range from less water yield (+∆EI, light orange) to greater water yield (-∆EI, dark blue) conditions. 

Areas with dominant sterile soil and permanent ice (No Data) and non-sensitive areas are shown in gray. Pixel 

resolution is 500m. Map created in Google Earth Engine and modified to include continental schema basemap in 

ArcGIS 10.7 software. 
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Figure 11: Climatic direction of hydrologically sensitive regions. For displaying purposes observed results are 

based on median values of interannual change in dryness index, ∆DI, only for regions where the frequency of HSi≥7. 

The index ranges from colder/wetter (-∆DI, blue) to drier/warmer (+∆DI, red) climate conditions. Areas with dominant 

sterile soil and permanent ice (no data) and non-sensitive areas are shown in gray. Pixel resolution is 500m. Map 

created in Google Earth Engine and modified to include continental schema basemap in ArcGIS 10.7 software. 

 

3.5 Effect of topographic parameters on HSi 
 

The topographic effects on hydrologic sensitive areas are most apparent along high 

latitude regions, particularly at mountainous locations in both hemispheres, including the Tibetan 

Plateau (33N) as seen in Figure 12a-c For example, in Figure 12a elevation appears to be a 

defining parameter driving hydrologic sensitivity beyond 45 latitude in both the Northern and 

Southern hemispheres. Conversely, midlatitude regions (between 20 and 40) in both South and 

North hemispheres appear to be somewhat hydrologically insensitive to changes in elevation, but 

most markedly and for a larger latitudinal stretch in the Southern hemisphere. The latitudinal 

stretch in the Northern Hemisphere where HSi values are low across all elevation ranges is 5 

shorter than in the Southern Hemisphere (20 to 40 vs -30 to -45 respectively). Along the 
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equatorial belt, in between 15 S and 7 N, high HSi values appear at the lowlands (0-500 m.a.s.l) 

and above ~1500 m.a.s.l throughout all the elevation range, with the highest sensitivity above 

2000 m.a.s.l. In the same latitudes, where high HSi is found across elevation gradients, steep 

slopes (slopes greater than 30°) display high HSi values in Figure 11b, mainly attributed to the 

various effects of mountainous landscapes that are generally associated with having steep-sloped 

topography compared to low elevations (Riebe et al., 2015). Along the equatorial zone (~7°N and 

~10°S) high HSi values are found at the majority of slope angles but with highest sensitivity at 

slopes greater than 15°. In the Northern hemisphere, HSi gradually increases beginning at latitude 

45° and beyond, but has specific thin latitudinal stretches (~2°) of higher sensitivity at slopes 

greater than 30° around 50°, 60°, 70° and 80°. In the Southern hemisphere, HSi increases abruptly 

at higher latitudes beginning at -40° and beyond with highest sensitivity for very steep slopes 

(slope>60 °). HSi in regions between latitudes of -20 and -40 (location of arid lands) appear to 

be insensitive at all slope angles and elevations. In our analysis, aspect (orientation of the terrain) 

did not show an effect on HSi (Figure 12c). This is possibly due to the inability of the HSi data 

to capture the fine scale microclimatic variability in areas with complex terrain due to the native 

spatial resolution of the data (>500m). There is evidence that varying aspects in complex terrain 

modulate the hydrologic response to extreme hydroclimatic events (Gutiérrez-Jurado et al., 2007) 

and could potentially amplify or mute the HSi of headwater catchments constituting some of the 

largest inland water yielding areas. Further studies addressing this shortcoming in the analysis 

with the use of higher resolution data, should provide a clearer picture on the impact of terrain 

attributes on the HSi of these regions.  
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Figure 12: Frequency HSi [0,7+] at varying values of a) elevation [100,7000] in m.a.s.l. b) slope steepness [0,90] 

in degrees, and  c) aspect[0,359] in degrees against latitudinal change from 80N to -55.5S  from low frequency (blue) 

to high frequency (red). Graphs created in MATLAB 2019 software using pixel resolution at 90m for each variable. 
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Chapter 4: Discussion  

4. Discussion 

In this study we showed a global map displaying excess storage water. These regions 

agree with locations of some of the world’s groundwater-dependent ecosystems and 

groundwater-fed irrigated croplands (Rodell et al., 2018, Aeschbach-Herring & Gleeson, 2012). 

Regions displaying no excess water storage such as northern high latitude regions and equatorial 

tropical zones are mostly explained by being energy-limited regions and receiving large amounts 

of precipitation resulting in larger moisture influxes relative to evapotranspiration outfluxes. The 

relatively simple computation of y0 can provide a first insight into out-of-water-balance areas that 

can alter the estimates of hydrologic sensitivity by raising AET totals substantially at the annual 

scale. Our analyses indicate that the majority of the regions detected as hydrologic sensitive areas 

are changing towards drier conditions with decreasing water yields. This observation coincides 

with a phenomenon suggested by Cook et al., (2014), in which vast regions of land  in the planet 

are experiencing at least moderate drying as  a warmer climate—generally more able to evaporate 

moisture from the land surface– in combination with hotter temperatures will favor increasing 

dryness.   

Our results showed that the locations with the highest HSi can be clustered in two regions: 

(1) tropical zones across all elevation ranges (2) along artic tundra and boreal zones. For the first 

region, at equatorial latitudes, we found hydrologic sensitivity in tropical rainforests associated 

with changing water yields. A majority of tropical regions show decreasing water yields while 

fewer regions show increasing trends (Figure 8). There is still no consensus as to whether reduced 

forest cover will increase or decrease water yields across these regions (Bruijinzeel et al., 2004, 

Zhoue et al., 2013, Roudier et al., 2014, Reyer et al., 2017, Deb et al., 2018). Reduced forest 

cover, which has been shown to alter precipitation patterns (Ellison et al., 2011, van der Ent et 

https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall
https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall


25 

al., 2010) resulting in reductions in leaf gas exchanges (Seddon et al., 2016, Clark et al., 2003, 

Staal et al., 2018, Wu et al., 2019) along these regions is a potential explanation to the observed 

reductions in water yields. Placed in a large-scale context, a great portion of tropical forests’ 

rainfall is water recycled within these basins by forest evapotranspiration (van der Ent et al., 2010, 

Lenton et al., 2008). For instance, approximately one-third of rainfall in the Amazon (Staal et al., 

2018, van der Ent et al., 2010, Lenton et al., 2008), Congo (van der Ent et al., 2010, Dyer et al., 

2017), and northern Indonesia and Papua New Guinea basins is regional recycled precipitation 

(van der Ent et al., 2010). Hence, a reduction in tropical forest cover leads to decreases in forest 

evapotranspiration which in turn results in reduced precipitation. Consequently, reduced regional 

recycled precipitation at large scales implies a tendency toward decreasing water yields. This 

highlights the hydrologic sensitivity of tropical regions to forest cover changes. Continuing 

deforestation and human land use and disturbances at continental scale, currently highest in this 

terrestrial biome (Crowther et al., 2015), have the potential to amplify the negative impact 

observed in water yields (Davidson et al., 2012). In contrast, regions south of Indonesia and Papua 

New Guinea where ocean moisture is the main precipitation source, show the areas where forest 

cover loss is accompanied by increasing water yield trends (van der Ent et al., 2010). In addition, 

there is evidence that regional recycling ratios are amplified in mountainous regions globally 

since these areas are able to block moisture from entering continents or easily capture moisture 

from the atmosphere (van der Ent et al., 2010). Accelerating vegetation changes involving 

biodiversity loss and reduction of tropical alpine areas (Buytaert et al., 2011) is therefore a 

plausible cause for decreased water yields within these regions. 

For the second region, at high latitudes, in the past three decades temperatures have 

increased rapidly, mainly in the northern hemisphere (Hartmann et al, 2013). As a consequence, 
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rapid rates of snow melt have been observed in Arctic tundra and boreal forests in response to 

warming temperatures (López-Moreno et al., 2020, Najafi et al., 2015, Pepin et al., 2015, Myers-

Smith et al., 2015, Lamprecht et al., 2015). These regions are warming more rapidly than lower 

latitudes due to polar amplification of temperature, water vapour, and surface albedo feedbacks 

(Myers-Smith et al., 2015, Chapin et al., 2005, Hinzman et al., 2013). There is also evidence that 

this effect is enhanced at high elevation regions where snow accumulation is greatest and changes 

in precipitation patterns are occurring (e.g  regions in the Tibetan Plateau, Rocky Mountains, 

Greater Alpine Region) (Pepin et al., 2015, Ohmura, 2012, Zhang et al., 2013, Yan et al., 2016, 

Palazzi et al., 2019). For example, recent findings have shown increases in lake levels and 

volumes in the Tibetan Plateau related to temperature amplification resulting in enhanced 

precipitation from a faster warming rate compared to the mean global warming (Zhang et al., 

2020). Also, high latitude and mountainous regions of Siberian and Canadian Arctic and boreal 

zones have seen increasing water yield trends due to ice-sheet loss, increasing precipitation, 

thawing and shrub growth in steep slopes (Rodell et al., 2018, Myers-Smith et al., 2015, Zhang 

et al., 2013). These lines of evidence are consistent with our findings of high HSi areas leaning 

toward higher water yields in these regions, and particularly those along the Siberian and 

easternmost Canadian and Eurasian Arctic. 
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Chapter 5: Conclusions  

5. Conclusion 

We identified regions with hydrologic sensitivity to climate variability globally and at high 

spatial and temporal resolution within high and low latitudes. At high latitudes, boreal and 

arctic zones show heightened hydrologic sensitivity accompanied by increasing water yields, 

while at low latitudes, tropical rainforests show the largest hydrologic sensitivity with the 

majority of their sensitive area trending towards decreasing water yields. We found that 

hydrologic sensitivity is amplified at high elevations and in steep-sloped terrain, outlining the 

importance of topography in modulating these effects with strong implications for high water 

yielding headwater catchments. We direct the attention towards climate warming resulting in 

increasing snow melt and precipitation in Arctic tundra and boreal forests and increasing tree 

cover loss in tropical forests, as possible mechanisms driving the observed patterns. Although 

there is no clear consensus yet on the direction surface water yields would take in tropical 

zones as a result of climate variability, our findings suggest that hydrologic sensitivity may 

be linked to vegetation changes. Other land cover changes associated with altered climatic 

patterns across high latitude regions may be contributing to changing hydrologic dynamics 

(Myers-Smith et al., 2015) in areas displayed in our HSi analysis as highly sensitive 

locations. Globally, boreal and tropical forests, the two biomes producing the greatest water 

yields also display the greatest extent of hydrologic sensitive land. This makes them hotspots 

for hydrologic surveillance of expected impacts from further increases in climatic shifts with 

the potential to significantly alter the global water cycle. Future work should determine if the 

hydrologic sensitivity patterns found in this study represent tipping points in changing 

hydrologic dynamics within each biome, and to assess at the regional and local scale their 

cascading impacts on ecosystems and human settlements.  
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Code Availability 

Code and datasets used to conduct this analysis are available online from our  Google Earth 

Engine link https://code.earthengine.google.com/9efbe6a3ccfb488eef80a903d923a30f. A 

MATLAB  code and associated data to reproduce the topographic analyses is available for 

download in the following open access repository: http://doi.org/10.5281/zenodo.4479716. 
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