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Abstract 

The Arctic is seeing some of the most extreme effects of climate change that induce 

environmental pressures, including warmer temperatures and longer growing seasons. Due to 

this, taxa may need to adapt or migrate in order to survive. The long-lived tussock cottongrass, 

Eriophorum vaginatum, is a foundation species in the Arctic, and little is currently known about 

the genetic constraints that could be playing a role in how this species will respond to the 

changing climate. Specific gene families that play an important role in signaling genetic 

pathways related to plant phenology and response to environmental stress are likely to be a key 

component to the performance of E. vaginatum under climate change in the Arctic. The purpose 

of this study was to investigate the genomics of adaptation, emphasizing the Phytochrome gene 

family and “Response to Stress” genes. Sanger sequencing was utilized to investigate evidence 

for selection among the Phytochrome gene family (PHYTA, PHYTB, and PHYTC) along a 

latitudinal gradient in northern Alaska. Analyses using Bayesian gene tree construction and 

nonsynonymous and synonymous (KA/KS) mutation rates showed that these genes are likely not 

under selection in relation to North/South ecotypes, but there is allelic variation in these genes 

and some evidence that is associated with specific populations. The E. vaginatum transcriptome, 

the program SciRoKo 3.4, and several Python scripts were used to identify genes that play a role 

in stress response and identify SSRs and SNPs associated with these genes for genetic marker 

development. Primers will be developed for these genetic markers to be used to examine the 

potential for ecotypic variation with stress response in future selection studies of E. vaginatum. 
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Chapter 1: Genetic variation of Phytochrome genes in Eriophorum vaginatum along an 

Arctic latitudinal gradient 

1.1 INTRODUCTION 

Earth’s global surface temperature has increased by 0.75°C over the past century, with 

most warming occurring in the past five decades (Stocker et al., 2013). Making up roughly 14% 

of the earth’s land surface, the arctic ecosystem is currently facing increasingly dramatic effects 

of climate change, with predictive models estimating up to an 11°C increase by the end of the 

21st century (Krinner et al., 2013). Local adaptation is a mechanism that takes place when a 

specific population of a species evolves to be better adapted to its local environment than other 

members of the same species that live in other environments or locations. If arctic plants are 

locally adapted, they will need to migrate or adapt in order to survive the changing climate. 

However, both will be a challenge within this short time scale, especially for long-lived 

organisms with little genetic turnover. Little is currently known about the genetics of local 

adaptations in arctic plants but understanding the mechanisms of genetic constraint can provide a 

better understanding of how organisms may respond.   

 The tussock cottongrass (Eriophorum vaginatum; Cyperaceae) is a foundation species 

and dominant plant of the moist acidic tundra of northern Alaska. It may face challenges with 

migration and new recruitment under climate change as there are ecotypes with some level of 

homesite adaptations across their range (Bennington et al., 2012; Curasi et al., 2019) and display 

low rates of seedling establishment, as they are long-lived (>100 years) with low turnover 

(Fetcher & Shaver, 1982). They may also face competition with other plants, such as shrubs (e.g. 

Betula nana) that could have a better ability to migrate (Curasi et al., 2019). The decline of 

tussock cottongrass in the warming Arctic could lead to dramatic effects on ecosystem CO2 flux 
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responses (Oberbauer et al., 2007). A better understanding of the degree of local adaptations of 

E. vaginatum could be ascertained through understanding the underlying genetic variation in 

genes that would respond to changing environmental pressures and provide a starting point to 

understanding the future potential of the species to persist and compete in the new Arctic. 

 

1.1.1 Local Adaptations in Relation to Climate Change 

Local adaptations occur due to selective pressures related to environmental variables such as 

light, temperature, and predation across a species range leading to genetic differentiation. Long 

term ecological studies show that E. vaginatum ecotypes have local adaptations in different parts 

of their range in northern Alaska that can convey homesite advantage, a particularly important 

characteristic when discussing long-term fitness of a widespread species under climate change 

(Bennington et al., 2012; Parker, Tang, Clark, Moody, & Fetcher, 2017). Strong adaptation to 

local climates could leave arctic plants vulnerable to rapid climate change (Mcgraw et al., 2015). 

Due to the local adaptation of E. vaginatum along a latitudinal gradient (pictured in Figure 1.1) 

in Alaska, regional populations are described as ecotypes (Bennington et al., 2012; Souther, 

Fetcher, Fowler, Shaver, & McGraw, 2014). Not all ecotypes recognized in the long-term 

ecological studies (e.g., Bennington et al. 2012) were recovered in large scale population 

genomic studies (Stunz et al. In Revision) instead, population genomic markers recognized 

broader structure among plants of the region with a division between plants north and south of 

treeline and one population (Eagle Creek) unique from all others. However, transcriptome 

studies support variation among ecotypes in differential expression of genes (DEG) related to 

stress response when under heat stress (Mohl, Fetcher, Stunz, Tang, & Moody, 2020) and to a 

lesser extent among genes related to metabolic processes even when not under stress. Therefore, 
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Figure 1.1 ArcGIS map displaying latitudinal gradient and 
locations of ecotypes in northern Alaska (Stunz et al., In 
Revision). Tree line is represented with dashed black line, 
blue stars designate reciprocal transplant gardens from 
previous studies (Bennington et al. 2012; Mohl et al. 2020), 
and circles depict the populations of study for my first 
chapter. Orange circles are the reciprocal transplant gardens 
and yellow are ecotypes. 

there is potential for adaptations that are 

related to broad ecosystem variation 

between the Tundra Biome north of 

treeline and Taiga Biome south of 

treeline as well as local adaptation for 

homesite. A better understanding of the 

genetic mechanisms that drive local 

adaptations can give insight to the long-

term fitness of an organism under 

climate change (Elmer & Meyer, 2011; 

Pavey, Bernatchez, Aubin-Horth, & 

Landry, 2012) and provide clarity of 

whether local adaptations are ‘hard-

wired’ (based on genetic differences) to 

their environment. 

1.1.2 Phenology and Fitness in 

Relation to Climate Change  

Some aspects of fitness in plants 

can be measured through phenology. 

Plant phenology is the vegetative or 

reproductive life cycle events, usually in 

response to seasonal variation that can 

be influenced by environmental 
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pressures. Local adaptations in plant phenology are often related to the seasonal timing of 

ecological events such as flowering and senescence (Chapin, Shaver, Giblin, Nadelhoffer, & 

Laundre, 1995; Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007). Phenological processes 

are likely under genetic control for E. vaginatum and other arctic plants. Over time, some plants 

have adapted to produce and drop leaves based on timing of snowmelt at the beginning of the 

season (Borner, Kielland, & Walker, 2013; Chapin et al., 1995; Parker et al., 2017). Recent 

evidence shows that different ecotypes of E. vaginatum retain phenological character traits from 

their homesites when moved. For example, when plants were moved to reciprocal transplant 

gardens along a latitudinal gradient in the Alaskan Arctic (see Figure 1.1) they retained their 

homesite leaf senescence timing (Parker et al., 2017). Meaning that southern plants underwent 

leaf senescence later than plants originating from northern populations no matter which garden 

they were planted in, utilizing the same senescence timing as if they were still in their homesite 

(Parker et al., 2017). Therefore, different ecotypes of E. vaginatum retain phenological character 

traits from their homesite when moved. This means that if this characteristic is genetically 

‘hardwired’ in northern ecotypes, they will likely be unable to take advantage of the warmer 

temperatures and longer growing season already found with climate change in the Arctic (Parker 

et al., 2017). Phenology response is usually related to Plant Phytochrome genes, differential light 

receptivity (Ding & Nilsson, 2016; Schmitt, Dudley, & Pigliucci, 1999) and signaling to 

transcription factors (Kudoh, 2016) that will be discussed further below. Understanding specific 

mechanisms behind local adaptation and phenological plasticity in terms of genetic 

differentiation and the changing climate with E. vaginatum (Parker et al., 2021) can help us 

discover the extent of genetically ‘hardwired’ factors that play a role in adaptations with 

environmental pressures. 
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1.1.3 Phytochromes and Light Regime  

While there appears to be a clear difference in phenology among ecotypes of E. 

vaginatum (Parker et al., 2017), a knowledge gap resides in identifying which genetic constraints 

control the timing of senescence in E. vaginatum with response to growing season length. Gene 

families are variants of similar genes that are historically the result of gene or chromosomal 

duplication, and these genes often have similar functions (Henikoff et al., 1997). Phytochromes 

are a family of genes that respond to light quantity and quality and have an important role in 

signaling the genetic pathways related to plant phenology (Halliday & Davis, 2016). They are the 

leading class of photoreceptors that regulate multiple developmental processes including 

interpreting photoperiodic signals, appearing in three different gene forms: PHYA, PHYB, and 

PHYC. These three Phytochrome gene forms have previously displayed playing important roles 

in photoperiodic responses and environmental senescence of vegetation (Chen et al., 2014; Lin, 

2000; Schippers, 2015). Biologically, Phytochrome B plays an inhibitory role in floral initiation 

(Lin, 2000; Mockler, Guo, Yang, Duong, & Lin, 1999) and Phytochrome C is the least 

understood member of the Phytochrome family, but it has displayed involvement in 

transcriptional regulation of both photoperiod and clock genes, as well as a distinct role in the 

regulation of flowering time (Chen et al., 2014). Phytochromes function by fluctuating between 

two isomeric forms that respond to red light (Pr), occurring from 650-670nm and far-red light 

(Pfr) which occurs from 705-740nm. As the different spectrums of light fluctuate, Phytochromes 

respond to the light ratios. Direct sunlight has a red to far-red (R:FR) light ratio of roughly 1, in 

the temperate zone of the Arctic the R:FR light ratio changes from 1.1 to 0.8-0.9 (Holmes & 

Smith, 1977). As light quality changes under canopies and shrub encroachment, the 

Phytochromes must adjust accordingly. Furthermore, it is likely that Phytochromes could act as 
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temperature sensors as well, playing an important role for plant performance (Halliday & Davis, 

2016). Due to the ecotype locations along the latitudinal gradient in northern Alaska, sensitivity 

to changes in R:FR light ratio may influence (Parker et al., 2017) the variability in the 

Phytochrome gene family of photoreceptors, and these variations are likely to be a key genetic 

component for the performance of E. vaginatum in its local environments under climate change 

in the Arctic. If there are missense mutations in these genes it could relate to functional changes, 

and this would be particularly pertinent if the changes correspond to North or South broad 

ecotypes or are isolated to specific populations. 

 

1.1.4 Chapter Aim and Hypothesis 

Here, the aim of this work is twofold: (1) To identify, isolate and create primers to 

amplify Phytochrome genes of E. vaginatum, and (2) to identify if there is ecotype specific 

variation in Phytochrome genes that could be related to adaptation for E. vaginatum in the 

Figure 1.2 Conceptual image describing the rationale behind Chapter 1, starting broad with a full 
latitudinal gradient and two major ecosystems, and ending with mutations that are likely to change gene 
function and be important for adaptations for E. vaginatum. 
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Arctic. This will be addressed by examining variation within members of the Phytochrome gene 

family between E. vaginatum ecotypes from north and south of treeline along a latitudinal 

gradient in the Alaskan Arctic. Eriophorum vaginatum has shown differences in phenology that 

are correlated with ecotype location (Parker et al., 2017). Given that Phytochrome genes have 

been found to be directly linked to phenology (Hill & Li, 2016; Hyles, Bloomfield, Hunt, 

Trethowan, & Trevaskis, 2020; Zhao et al., 2014), I hypothesize that there will be variation in 

these Phytochrome genes that alter amino acids between ecotypes and correlates with 

phenological differences between plants from these regions. 

1.2 METHODS 

1.2.1 Study Area and Study Organism  

The study area covers a latitudinal gradient located in northern Alaska, beginning just 

north of Fairbanks and covering roughly 426 km between northern and central Alaska (Figure 

1.1). The treeline, which represents the division of northern and southern ecotypes occurs on the 

southern slope of the Brooks Range (Figure 1.1). North of treeline is Tundra ecosystem where E. 

vaginatum is a dominant species and found in continuous population; South of treeline is Taiga 

ecosystem where E. vaginatum populations are interspersed in patches among continuous spruce 

forest. This study area has been utilized to research phenological, ecological, molecular, and 

environmental effects of the changing climate since the early 1970s (Hobbie & Kling, 2014). 

1.2.2 Sampling  

Eriophorum vaginatum samples used in this study originate from north of tree line 

(Prudhoe Bay, Coastal Plain, Toolik Lake, Atigun, and Chandalar), and south of tree line 

(Coldfoot, Gobbler’s Knob, No Name Creek, Elliott Highway, and Eagle Creek) (Figure 1.1) and 

were taken during the summers of 2015 and 2017. Leaf material was taken from 30 individual 
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plants and immediately dried in silica gel for subsequent DNA extraction (Table 1.1). Here 

forward, these leaf sample DNA extractions will be referred to as “DNAs”. 

 

 

Site Latitude (N), Longitude 
(W) 

Elevation (m) Vegetation Type 

Eagle Creek (EC) 65.4332°, -145.5118° 771 MAT 

Elliott Highway (EL) 65.3081°, -149.1230° 720 MAT 

No Name Creek (NN) 66.1171°, -150.1676° 167 Tussock bog 

Gobbler’s Knob (GO) 66.7459°, -150.6862° 520 Muskeg 

Coldfoot (CF) 67.2631°, -150.1591° 321 Muskeg 

Chandalar (CH) 68.0518°, -149.6115° 968 MAT 

Atigun (AT) 68.1730°, -149.4392° 1,063 MAT 

Toolik Lake (TL) 68.6292°, -149.5778° 758 MAT 

Coastal Plain (CP) 68.9945°, -150.2871° 173 MAT 

Prudhoe Bay (PB) 70.3270°, -149.0645° 8 MAT 

 

Table 1.1 Sampling sites for Chapter 1. The northern ecotypes include PB, CP, SG, TL, and CH, treeline 
occurs between CH and CF, and the southern ecotypes include CF, GO, NN, EL, and EC. The first subset 
of populations includes EC, NN, CF, AT, TL, and PB. 
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1.2.3 Gene Assembly and Primer Design 

A preliminary in-house script (Chapter 1 Preliminary Script, see appendix A1 for full 

script) was written using the computer programming language Python to ensure general 

mutations occurred within the Phytochrome genes in the E. vaginatum transcriptome. Once 

mutations were confirmed, a more in-depth in-house Python script (Chapter 1 SNP Script, see 

appendix A2 for full script) was developed to locate and build individual assemblies of the 3 

Phytochrome genes (Phytochrome A, B, and C) all approximately 4,000 bps in length, from the 

transcriptome (Table 1.2) (Mohl et al., 2020). A part of the script was also dedicated to parsing 

out the Phytochrome genes with a sample depth of 8 and allele depth of 60, this was done by 

calculating the Variant Allele Frequency (VAF) and identifying if there was variation in the 

Figure 1.3 The general outline of the in-house script that was written to parse variable Phytochrome genes 
from the transcriptome. Starting with a FASTA file containing all the Phytochrome genes from the 
transcriptome and a VCF file containing mutations (Single Nucleotide Polymorphisms or SNPs) from the 
samples in the transcriptome, a for loop (portion of image in blue) was applied to identify mutations in all 
samples. Sample depth (SD) and allele depth (AD) were adjusted to target Phytochromes with only the 
most prominent mutations.  
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Figure 1.4 ArcGIS map displaying latitudinal 
gradient and locations of ecotypes in northern Alaska 
(Stunz et al., In Revision). Tree line is represented 
with dashed black line, blue stars designate reciprocal 
transplant gardens from previous studies (Bennington 
et al. 2012; Mohl et al. 2020), and yellow circles show 
the ecotypes of study for my first chapter, red circles 
display the new populations of focus with the given 
number of samples. 

genes among 5 ecotypes used (Mohl et al., 

2020) (Figure 1.3). The VAF is important 

for assessing the different alleles present at 

a mutation. 

The Phytochrome genes were 

translated using Expasy Translate 

(web.expasy.org/translate/) and primers 

were designed to amplify the open reading 

frames of Phytochrome coding regions 

using the program Geneious 10.0.9 (Kearse 

et al., 2012). To design these primers, the 

following parameters were used: Primer 

Size of 18bp to 24bp; Temperature melting 

point of 52°C to 58°C; GC content of 40% 

to 60%; and Target length of 600-800bps. 

Primers were screened for hairpins and 

primer dimers.   

1.2.4 Ecotype Sampling 

 Initially, the goal was to sequence 10 

DNAs from 10 individual ecotypes, 

however due to unprecedented events, time 

constraints, and budgeting allotment, 

sequencing was conducted with 4 DNAs 

Treeline 
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from all 10 ecotypes in the latitudinal gradient. Population genomics along the same latitudinal 

gradient used for this study identified genetic structure at tree line (north vs south; Figure 1.4) 

(Stunz et al., In Revision), consistent with ecological specialization of ecotypes. Given these 

results, our approach is to sample 4 DNAs from 10 populations (5 north/ 5 south) to look at 

genetic variation between the distinct ecotypes. With this approach, 20 samples were sequenced 

from the northern populations and 20 samples were sequenced from the southern populations for 

each of three Phytochrome gene regions.  

1.2.5 DNA Extractions, PCR, and Sequencing 

Genomic DNA extractions from the 10 sampled populations were conducted from 50mg 

of dried leaf tissue (Stunz et al, In Revision) using the CTAB method (Doyle & Doyle, 1987). 

The DNA concentrations were then quantified using the Qubit dsDNA BR Assay Kit 

(Invitrogen) and Qubit 3.0 Fluorometer (Thermo Fisher Scientific), then stored in a -20°C freezer 

for later use.  

The polymerase chain reaction (PCR) was used to amplify all Phytochrome gene regions 

with the custom designed primers (Table 1.2) using 2 individuals each from a subset of 4 

populations (PB, TL, GO, and EC; Table 1.1) to determine if there was variation among 

populations in the Phytochrome genes (Table 1.2). Gene regions that provided good sequence 

data from the initial examination and were variable, were included for a more inclusive sampling 

of 4 individuals from each of the 10 populations. 

PCR was performed with 14µl of Master Mix containing 6.8µl ddH2O, 1.5µl 10x Buffer, 

2.5µl MgCl2, 2.3µl dNTPs, 0.4µl primers, 0.2µl taq and 2µl DNA template. PCR was performed 

in an Eppendorf Mastercycler Pro thermocycler. The cycle reaction was 94°C 5 min. followed by 

30 cycles (94°C 45 s, 52°C or 56°C 45 s, 72°C 45 s) with a final extension 72°C for 10 min. All 
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unincorporated dNTPs and primers were removed using EXOSAP-IT (Applied Biosystems).  

The PCR products were sequenced using the same primers used for PCR and BigDye terminator 

chemistry (Applied Biosystems, Waltham, Massachusetts, USA) on an ABI 3730 × DNA 

sequencer at the UTEP Border Biomedical Research Center (BBRC) Genomics Analysis Core 

Facility. 

Raw sequence data was uploaded to Sequencher® 4.0.5 to align, edit, and determine 

sequence quality and presence of sequence polymorphisms among individual accessions. If a 

polymorphism (Figure 1.5B) was found in the sequence data among the initial 8 samples, 

sequence data was collected from the other populations and accessions (as described above). 

Once the additional data was included, final sequence alignments were exported as aligned 

FASTA files. These FASTA files were then uploaded into the software DNASP 6 (Rozas et al., 

2017) to phase sequences with polymorphisms to identify haplotypes. Phasing sequence data 

with polymorphisms provide a means of identifying and extracting the likely alleles for each 

accession.  
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1.2.6 Data Analysis: Gene Trees 

 FASTA files with the phased sequence data was uploaded into Geneious 10.0.9 (Kearse 

et al., 2012) to construct gene trees using MrBayes (Huelsenbeck & Ronquist, 2001) and to align 

sequence exons. Aligned sequences of each Phytochrome gene were first analyzed for best fit 

model for Bayesian analyses using the Aikike Information (AIC) in the program JMODELTEST 

2 (Darriba, Taboada, Doallo, & Posada, 2012) accessed through the web portal CIPRES (Miller, 

Pfeiffer, & Schwartz, 2010).  In Geneious 10.0.9 (Kearse et al., 2012), the plugin “MrBayes” 

(Huelsenbeck & Ronquist, 2001) was then used to construct gene trees using the best fit model 

for each Phytochrome gene region. Phased sequence data that was aligned to a reference 

sequence for each Phytochrome region was then exported as an aligned FASTA file.   

Figure 1.5 Possible Sanger sequencing results: (A) shows a poor-quality sequence with multiple nucleotide 
peaks at one base pair position, meaning that the nucleotide that was called for that position is likely 
inaccurate. (B)  Polymorphism is highlighted in yellow, two alleles, one with a ‘T’ the other an ‘A’ is 
signified with a ‘W’. (C) Poor quality sequence where individual nucleotide peaks can be identified, 
however the sequence quality is too poor to clearly identify polymorphisms. (D)  High quality sequence 
data alignment with a SNP mutation (highlighted in yellow). 
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1.2.7 Data Analysis: KA/Ks Analysis  

Analyses were conducted to look for evidence that supports selective sweeps, these occur 

when a beneficial mutation increases in frequency and may eventually become fixed in a 

population or subset of populations. Selective sweep signatures can be identified when there is 

reduced allelic variation with one allele becoming more established in one population (or subset 

of populations), compared to overall expected distribution of that allele in all populations. They 

can also be identified at individual genes if specific non-synonymous mutations occur more 

frequently than would be expected at random among a set of populations or compared to other 

genes. 

In order to identify polymorphisms that could potentially change gene function, I 

followed methods similar to Mattila et al. (2016) to analyze the sequences for evidence that 

supports selective sweeps. First, the coding region was identified for each data set uploaded in 

DNASP 6 (Rozas et al., 2017). The signature of selection was examined for each gene region by 

determining complete measures of nucleotide diversity, site specific variation, and KA/Ks ratios 

across all accessions, among populations and north/south ecotypes within DNASP 6 (Rozas et 

al., 2017). Nucleotide diversity is a measure of the average proportion of nucleotide differences 

per site of the given samples, DNASP 6 (Rozas et al., 2017) used the total number of differences, 

sequence sizes, and varying numbers of pairwise comparisons to calculate this across all 

samples. The KA/KS ratio test is a measure of non-synonymous to synonymous mutations, the 

command estimates the number of non-synonymous substitutions per non-synonymous site and 

synonymous mutations per synonymous site between two sequences (Rozas et al., 2017). The 

analysis yields the average number of nucleotide differences per site between two sequences (or 

nucleotide diversity) using pairwise comparison (Rozas et al., 2017). Once the KA/KS statistic is 
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calculated, if the ratio is greater than 1, there is a higher likelihood for selection, if the statistic 

yields a number less than 1, it’s likely that this gene or sequence data is not under selection 

(Rozas et al., 2017). 

The DNA Polymorphism (sliding window) analysis in DNASP 6 was conducted to 

identify regions of the Phytochrome genes where mutations are occurring, and to visualize these 

mutations in the form of a line graph. With this analysis, each window of ~25bp (though this can 

vary) is considered a site, and as the window “slides” across the selected region of sequence data, 

the number of mutations is noted (Rozas et al., 2017). For this research, a window size of 25 bps 

and a window length of 100 sites was utilized. 

1.3 RESULTS 

1.3.1 Phytochrome Gene Primers 

After identifying the reading frames for each of the Phytochrome genes, 16 primer pairs 

were designed to amplify the coding regions for each gene (Table 1.2). Due to the size of the 

Phytochrome gene coding regions, multiple primer pairs were needed to amplify them in their 

entirety. Primer pairs amplify 600bp to 800bp regions of the reading frame, and primer pairs 

were designed to cover the entire coding region. When multiple primer pairs for one coding 

region were designed, they had at least 20bp of overlap to avoid losing parts of the coding region 

during amplification (Table 1.2).  

High quality sequence data that contained polymorphisms was attained from only some 

primer pairs for each gene. Initial sequencing revealed that of the Phytochrome A primers, there 

were two regions (F2-R2, F5-R5) with high quality sequence data and the occurrence of 

polymorphisms. For Phytochrome B, two primer pairs (F4-R4, 2_F1-2_R1) resulted in high 

quality sequence data, but only F4-R4 had polymorphisms. Phytochrome C had three primers 
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pairs that provided high quality sequence data, two had polymorphisms (F1-R1, F2-R2), and one 

lacked polymorphism (F3-R3). Due to the results of the initial sequencing run, only those primer 

pairs amplifying regions that returned high-quality sequence data with the occurrence of 

polymorphisms were used to attain further data. 

 

F1 ATGAAAGAGAAGGAGGAGCTG
R1 AAGGTAAGAATGATCTGCGA
F2 CTTTCACGATGACGACCAT
R2 GTCAACCAGATAGCAATTTG
F3 ATGGATTTAGTGAAGTGCGA
R3 CGATCTTCTGATTCCAACCAT
F4 GTTACAAGTGAGATGGTGAGG
R4 CCTGTCATAGCCGTGTTTA
F5 CAAAACCCTAACCCTCTGAT
R5 CCGCTATCATTATCACATCCC
F6 ATTGATATTGGCTCGAGATGC
R6 TGTCTACAAGAAGGTCCTCAT
F1 ACGATAGGGTGATGGTTTACA
R1 GCAAGATGAGAGCCATTCAAT
F2 TATGTTCTACCATGGCAGGTA
R2 ATCTTCTTCTCCTCTCAGTGC
F3 TTTAAGGAGTCTGAGGAGGTC
R3 CTGTCATCTCCAAAAGTGAGT
F4 GGAATTGGCCTATCTTTGTCA
R4 CTCCATGTTGCAGTCATTTTG

2_F1 CCTCACAATTCAATCACAAACC
2_R1 ACAACTACAAGTACCAGTTCG
RC_F1 TCTGGTTATGGACATGGAG
RC_R1 CAGAATGTGCCTCTCCTTTG
RC_F2 AGTTCCTAGTGCAAGTCTTTG
RC_R2 TAGCCGAACCATCTCATTAGT
RC_F3 CGTCTGATGATGCAAGAAGAA
RC_R3 GAGATGGCAGTGTTCAGAAT
RC_F4 GTCAGGCATGTGTATAGAGTG
RC_R4 TCATTCAAATCTGAGGACTGC
RC_F5 TCTGGTCAAGATGTCGAAAAG
RC_R5 TCTCTAAACCACTCTTAGCCA

Sequence (5'-3')

Phytochrome A 
(PHYTA)

DN61317_c0_g1_i1

Gene Length (bp) Primer Name

4377

4077

4472

Gene Name Transcript

Phytochrome B 
(PHYTB)

DN72706_c1_g1_i3 

Phytochrome C 
(PHYTC)

DN67535_c0_g1_i1

Table 1.2 Primers developed for Phytochrome A, B and C genes. Included are the gene ID (transcript) 
following Mohl et al. (2020), \ \ gene length, and primer pairs to amplify the coding region. F = forward 
primer, R = reverse primer. Due to the length of the genes, coding region sizes, and the occurrence of 
multiple reading frames found, multiple primers were designed to amplify 600-800 bp regions for all 
reading frames. Primers in Bold type indicate those that provided high quality sequence data with 
polymorphisms. 
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1.3.2 Sequence Data 

 Sequence data from Phytochrome A included two regions, here forward referred to as 

PHYTA1 and PHYTA2. PHYTA1 (F5-R5) had 702 total bases (included a 145 bp intron region) 

located at positions 924 bp to 1627 bp of the reference sequence, and PHYTA2 (F2-R2) has 548 

total bases located at position 2575 bp to 3122 bp of the reference sequence. Partial sequence 

from Phytochrome B included one region, here forward referred to as PHYTB. PHYTB had 722 

total bases (included a 234 bp intron region) located at positions 3624bp to 4349bp of the 

reference sequence. Partial sequence from Phytochrome C included two regions, here forward 

referred to as PHYTC1 and PHYTC2. PHYTC1 (F2-R2) had 648 total bases located at position 

2953bp to 3600bp of the reference sequence, and PHYTC2 (F1-R1) with 682 total bases located 

at position 3580bp to 4261bp of which all were exons. Due to Phytochrome A and C having two 

different sections of sequence data from the coding regions, sequences were concatenated in 

Sequencher® 4.0.5 before further analyses were conducted. Once sequences from Phytochrome 

A and C were concatenated and reading frames with no stop codons were identified, protein 

sequences were blasted with the NCBI database verifying their identity as Phytochrome genes. 

1.3.3 Gene Trees 

 JMODELTEST2 (Darriba et al., 2012) was used to determine the best fit model for 

Bayesian analysis for each data set resulting in the following models used: PHYTA; JC+I, 

PHYTB; F81, and PHYTC; K80+I. Each of these models were used to create gene trees using 

Bayesian analysis (Figure 1.6). The resulting Bayesian gene trees did not support divergence 

between northern and southern populations, though there is strong evidence for allelic variation 

(Figure 1.6). 
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Phytochrome A 

Phytochrome B 
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Phytochrome C 

Figure 1.6 Bayesian gene trees resulting from analysis of the three Phytochrome genes using Geneious 
10.0.9. Branch values are posterior probabilities. 
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1.3.4 KA/KS Analysis 

Sliding window analysis DNASP 6 (Rozas et al., 2017) was used to measure the KA/Ks 

ratio per sequence data set. Phytochrome A received a KA/Ks statistic of 0.6 (Table 1.3). 

Phytochrome B received a KA/Ks statistic of 0.67 (Table 1.3). Lastly Phytochrome C, received a 

KA/Ks statistic of 0.3 (Table 1.3). 

 

 

 
 

 

 

 

Ka Ks Ka Ks Ka Ks
A 0.003 0.005 0.002 0.003 12 6 0.6
B 0.002 0.003 0.0004 0.001 2 1 0.67
C 0.0009 0.003 0.002 0.007 3 3 0.3

Nonsynoymous/Synonymous Mutation Analysis Results

Phytochrome
Theta Pi, Jukes and Cantor Number of Mutations

Ka/Ks Statistic

Figure 1.7 Two types of mutations that are present in the Phytochrome genes from populations of E. 
vaginatum along the latitudinal gradient. (A)  synonymous, or silent mutation in Phytochrome C, where the 
variable base pair does not cause a change in the amino acid coded for. (B) a non-synonymous mutation in 
Phytochrome A, where the variable base pair causes a change in the amino acid. 

Table 1.3 Results from the Ka/Ks analysis conducted in DNASP 6 for each Phytochrome gene region.  
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1.3.5 Sliding Window Analysis 

The sliding window results displayed that Phytochrome A had 18 polymorphic sites, 16 

haplotypes, and a nucleotide diversity of 0.0021, Phytochrome B had 3 polymorphic sites, 4 

haplotypes, and a nucleotide diversity of 0.0005, and Phytochrome C had 21 polymorphic sites, 7 

haplotypes, and a nucleotide diversity of 0.0036 (Table 1.4). 

 

 

 
 

Phytochrome Polymorphic Sites Haplotypes Nucleotide Diversity
A 18 16 0.00209
B 3 4 0.00055
C 21 7 0.00361

Sliding Window Results

Table 1.4 Results from the sliding window analysis conducted in DNASP 6 for each Phytochrome gene 
region.  

Phytochrome A 
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Phytochrome C 

Phytochrome B 

Phytochrome B 

Phytochrome C 

Figure 1.8 Data visualization of polymorphic sites in each Phytochrome gene, images created in DNASP 
6. 
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1.4 DISCUSSION 

Eriophorum vaginatum has phenological variation related to leaf senescence timing that 

is consistent between northern and southern ecotypes in the Alaskan Arctic (Parker et al., 2017). 

There is also evidence of genetic structure separating north and south ecotypes at treeline that is 

supported by population genomics (Stunz et al., In Revision). With the warming of the Arctic 

changing the length of growing season, there is a knowledge gap that resides in identifying the 

potential genetic constraints for adaption among ecotypes. Due to the role that the Phytochrome 

gene family plays in signaling the genetic pathways related to plant phenology (Halliday & 

Davis, 2016), and the recognized phenological differences among ecotypes of E. vaginatum in 

the Alaskan Arctic (Parker et al., 2017; Stunz et al., In Revision), it was hypothesized that 

Phytochrome genes of E. vaginatum would have genetic variation in a pattern consistent with 

northern and southern ecotypes.  The overarching goal of this chapter was to determine if there 

were sequence polymorphisms within the Phytochrome genes of E. vaginatum and if found, 

determine if they alter amino acids, which could change gene function. The ultimate goal for this 

work was to determine if there were potentially adaptive changes in these genes associated with 

ecotypes north and south of treeline. 

1.4.1 Phytochrome Genetic Variation 

The C1S script (Figure 1.3) was used to identify Phytochrome genes and determine if any 

had SNPs among the populations sampled by Mohl et al. (2020). Sequence sampling across 10 

populations identified variation in Phytochrome A, B, and C coding regions. However, gene tree 

construction for each Phytochrome gene did not provide evidence of allelic divergence that was 

consistent between northern and southern ecotypes along the latitudinal gradient, despite there 

being a strong display for allelic variation among ecotypes (Figure 1.6).  
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 This could be due to the occurrence of multiple gene copies for some of the 

Phytochrome genes that the designed primers (Table 1.2) found during PCR, these Phytochrome 

genes (A, B, and C) have all displayed duplication previously in other plant genomes (Sheehan, 

Farmer, & Brutnell, 2004). There could be true allelic variation among these genes, yet no 

evidence of selection with consistencies among northern and southern ecotypes. The results of 

the KA/KS analysis suggest that these Phytochrome genes are likely not under selection (Table 

1.3) despite displaying strong evidence for allelic variation (Figure 1.6). Results of the KA/KS 

analysis (Table 1.3) did not show a higher ratio of KA (nonsynonymous) mutations to 

(synonymous) mutations, when correcting for total ratio of potential KA and KS type mutations 

for the Phytochrome genes. For gene duplication to lead to retention of multiple copies it would 

be expected that selection would lead to alternative function for these genes (Senetar & McCann, 

2005).  Given the lack of a signal of selection via the KA/KS analysis there isn’t evidence for this. 

However further analysis of amino acid changes and whole genome analysis could provide 

evidence that the pattern we see is due to multiple copies of all phytochrome gene in E. 

vaginatum.   

Additionally, the data do not show strong evidence for both copies of genes in a majority 

of accessions as would be expected if multiple copies of a gene were present (Table 1.4). While 

many heterozygotes are detected, homozygotes for an apparently more dominant allele are 

present in many accessions. Phytochrome A does not display any alleles found as homozygotes 

for the alternative nucleotide, only heterozygotes, suggesting that these are true mutations 

detected in this gene, rather than supporting the presence of multiple gene copies.  However, this 

also may just be due to artifacts of PCR sometimes not capturing one gene copy or another and 
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sometimes preferring one copy over the other. In the latter case this may be due to primer design 

favoring the gene copy the primers are designed for.  

Duplication events have resulted in multiple copies of Phytochrome genes. For example, 

there is genetic redundancy of Phytochrome A in other plant genomes, these multiple homologs 

are likely a result of ancient tetraploidization in ancestral lineage (Liu et al., 2008; Sheehan et al., 

2004). If there are multiple copies of Phytochrome A in the E. vaginatum genome and the 

multiple copies are functional then this could explain the Phytochrome A results, these primers 

might have found a different copy of the gene. Biologically, Phytochrome A is involved 

throughout the whole life cycle of angiosperm plants including but not limited to light promotion 

of germination in seeds, shade perception, and resetting of circadian rhythms (Casal, Sanchez, & 

Yanovsky, 1997), though its most prominent role lies in promoting flowering (Bagnall et al., 

1995; Lin, 2000). Phytochrome A, B and C did not yield statistics that indicate they are under 

selection (Table 1.3). In the closely related grass (Poaceae) lineage, the maize genome has 

multiple copies of Phytochrome A, B, and C (Sheehan et al., 2004). Due to a relatively recent 

polypoidization event in the maize genome (Gaut, 2001), and the conservation of sequence of the 

Phytochrome homeologs, there is likely functional redundancy of this gene family that was 

maintained during evolution of modern maize (Sheehan et al., 2004). 

Recovering high quality Phytochrome B sequence data proved to be particularly 

problematic (though there were issues with the other genes as well). Sanger sequencing was 

utilized for this research due to its fast and cost-effective nature, and the relatively small sample 

size. Additionally, Sanger sequencing is an effective approach when looking at variant screening 

in single genes when working with a low number of samples (Schuster, 2008). However, this 

method can be problematic when multiple copies of the targeted sequence are found or there are 
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multiple alleles that have length differences based on indels or SSRs, as the multiple copies can 

be sequenced simultaneously and lead to poor quality sequencing results.  The portion of 

Phytochrome B that was sequenced here had a number of introns, which are regions that indels 

and SSRs are more commonly found and could have led to sequencing issues.  Within the 

transcriptome, multiple Phytochrome B transcripts were identified (Mohl et al. 2020), but it was 

unclear if this was due to multiple versions of the gene or variations of portions of the sequence 

assembled. In any case, given the Sanger sequencing issues encountered, using a Next 

Generation Sequencing (NGS) approach with targeted amplicon sequencing will be the preferred 

approach for E. vaginatum. Taking an NGS approach in the future will allow for attaining high 

quality sequence for regions of poor quality with the Sanger approach and assessing if multiple 

copies are found of each gene or if there is allelic variation. The NGS approach will allow better 

discovery power to identify novel variants, (König et al., 2015; Shendure & Ji, 2008), but is an 

approach beyond the budget available for this project.  

 For future selection studies including the Phytochrome gene family, an approach using 

reference genes that are not associated with phenology to serve as controls when running 

comparative analyses, will also be required. This approach was not taken during this study due to 

time constraints imposed by UTEP closure during 2020. These genes could be selected for 

neutrality and provide general mutation rates across the genome for analyses concerning natural 

selection, polymorphisms, and divergence data among the 10 ecotypes using likelihood HKA 

(Hudson-Kreitman-Aguadé) with a multilocus approach considering the reference genes could 

also be utilized. This could give valuable insight by conducting statistical analyses for allelic 

variations that are not the same across all populations for a specific locus and provide 
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assessments as to which loci contribute to drift under neutrality using the reference loci not 

related to phenology or under selection (Wright & Charlesworth, 2004). 

1.4.2 Future Directions 

 To continue this work, primarily, it would be best to increase the number of samples 

sequenced from each ecotype. Sample collection from the field has already occurred, but more 

DNA extractions would need to be conducted in order to do this.  Inclusion of more sequence 

data would allow for more in-depth statistical analyses to be conducted, such as the usage of 

reference genes and maximum likelihood HKA. The goal for number of samples acquired should 

be at least 10 DNAs from all 10 ecotypes spanning across the latitudinal gradient. Furthermore, 

given the evidence of variation in E. vaginatum phenology along the northern Alaskan latitudinal 

gradient (Parker et al. 2017), more gene families related to phenology need to be examined for 

selection.  
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Chapter 2: Genetic Marker Identification in Genes Related to Stress Response 

2.1 INTRODUCTION 

2.1.1 Genetic Markers 

Genetic differentiation can be identified through observed variation in allelic frequencies, 

or DNA sequence variations at a given gene (Zhang & Hewitt, 2003). One way to recognize 

genetic differentiation and different allelic patterns is through the use of genetic markers. Genetic 

markers are powerful tools that can be used to link phenotypic and genotypic variation in 

organisms (Varshney, Graner, & Sorrells, 2005). Given the evidence of phenotypic variation in 

E. vaginatum (Parker et al., 2017) along the latitudinal gradient in northern Alaska, more insight 

is needed on possible changes in genetic markers to infer molecular response to environmental 

pressures that come with the changing climate in the Arctic. Two frequently used genetic 

markers are microsatellites (or simple sequence repeats (SSRs)) and single nucleotide 

polymorphisms (SNPs).  

2.1.2 Genetic Differentiation 

Genetic differentiation within a species can be uncovered by examining allelic 

frequencies, or DNA sequence variations at a given gene (Zhang & Hewitt, 2003), among 

populations. The variation can be driven by evolutionary factors including mutations, gene flow, 

and natural selection. Understanding genetic differentiation and allelic frequencies among and 

within populations gives insight to the potential for a taxon to evolve with environmental 

pressures and how populations may have evolved in the past. Methods for detection of 

significant genetic differentiation and variation among populations depend on many factors 

(Waples & Gaggiotti, 2006) including the type of genetic marker being studied. In this work I 
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chose to utilize two different types of genetic markers, SNPs, due to their ease of detection and 

SSRs due to their high levels of polymorphism (Zhang & Hewitt, 2003). 

2.1.3 Simple Sequence Repeats (SSRs) 

SSRs occur when segments of DNA are repeated anywhere from five to fifty times or 

more and can be found within either coding or noncoding regions of an organism’s genome 

(Kalia, Rai, Kalia, Singh, & Dhawan, 2011). Plants are rich in dinucleotide AT repeats (Kalia et 

al., 2011; Morgante & Olivieri, 1993), and dinucleotide repeats are most common in many 

species, but these repeats are more frequent in non-coding regions rather than coding regions 

(Wang, Weber, Zhong, & Tanksley, 1994; Zane, Bargelloni, & Patarnello, 2002). Previous 

studies have suggested that in plants, AT repeats are more common to CG repeats and show 

more variation (Merritt, Culley, Avanesyan, Stokes, & Brzyski, 2015; Morgante & Olivieri, 

1993). The AT dinucleotide repeats are generally favored for use due to their higher levels of 

variation, which is likely due to ease of mutation through DNA slippage during replication 

(Chakraborty, Kimmel, Stivers, Davison, & Deka, 1997; Levinson & Gutman, 1987; Merritt et 

al., 2015). Transcriptomic studies that include searches for SSRs find that the most abundant 

repeats in coding regions are trinucleotide (Han et al., 2018; Pramod, Perkins, & Welch, 2014), 

as they can occur without shifting reading frames as opposed to other repeats. Trinucleotide 

SSRs are found in both coding and noncoding regions of plants but have been found to occur 

more abundantly (nearly twice as often) in coding regions, most likely due to a result of positive 

selection for single amino acid stretches (Li, Korol, Fahima, Beiles, & Nevo, 2002). Smaller and 

larger motif repeats (such as dinucleotide and tetranucleotide) are more likely to be distributed in 

5’UTRs and 3’UTRs as they would cause frameshifts if found in coding regions (Pramod et al., 

2014).  
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Polymorphic SSR markers are uniquely valuable for genomic studies of adaptation and 

population structure due to their abundance and uniformity of genome coverage, their frequent 

association with expressed sequence tags (ESTs) (Kalia et al., 2011) and with functional genes in 

sequenced transcriptomes (Hodel et al., 2016). ESTs are small sequences of DNA (roughly 200-

500 bps long) that are developed by sequencing one or both ends of an expressed gene, however 

fully sequenced transcriptomes are now more commonly associated with SSR discovery (Hodel 

et al., 2016).  Previously, SSRs have been identified in publicly available EST projects and gene 

sequences using several tools that evaluate a single sequence at a time such as BLASTN tools 

and SSRfinder (Kalia et al., 2011; Scott et al., 2000; Temnykh et al., 2000; Varshney et al., 

2005). Other tools are now available that will identify SSRs across entire genomes and 

transcriptomes, such as IMEx, SciRoKo (Kofler, Schlötterer, & Lelley, 2007; Mudunuri & 

Nagarajaram, 2007), and MISA (MIcroSAtellite) (Hodel et al., 2016). Additionally, several 

scripts in Perl and Python have been used to recognize SSR patterns in genomic sequence studies 

(Labbé, Murat, Morin, Le Tacon, & Martin, 2011; Varshney et al., 2005). The utilization of 

SSRs from transcriptomes that are related to functional genes can identify genetic variances in 

different populations that could be related to adaptation. These aspects of SSRs make them 

particularly useful for examining gene flow and/or selection patterns in natural populations 

(Kalia et al., 2011; Provan, Powell, & Hollingsworth, 2001).  

2.1.4 Single Nucleotide Polymorphisms (SNPs) 

SNPs are defined as a variation in a single nucleotide of DNA sequence that occurs 

throughout the genome, including both coding and non-coding regions. SNPs are commonly 

used today as a genetic marker to identify loci under selection in natural populations (Rellstab, 

Zoller, Tedder, Gugerli, & Fischer, 2013; Wessinger, Kelly, Jiang, Rausher, & Hileman, 2018) 
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or for development of sustainable agricultural crops (Jain, Darshan, & B. S. Ahloowalia, 2010; 

Varshney, Mahendar, Aggarwal, & Börner, 2007). The identification of SNP among populations 

in or associated with transcribed (coding) regions can help us further understand the effects of 

selection on population structure and gene flow in various model and non-model organisms 

(Emanuelli et al., 2013; van Inghelandt, Melchinger, Lebreton, & Stich, 2010).  

2.1.5 Genetic Markers in the Arctic Foundation Species Eriophorum vaginatum 

Due to the occurrence of SSRs and SNPs in and associated with coding regions, a 

transcriptome wide development of genetic markers can be used to further our understanding of 

ecotype specific genetic adaptations in E. vaginatum. Due to the variation uncovered among 

ecotypes in E. vaginatum with environmental response (Bennington et al. 2012; Mohl et al., 

2020), I hope to discover patterns of variation in genetic markers related to functional genes 

involved in environmental stress response due to local adaptation and homesite advantage. 

2.1.6 Response to Stress GO Term 

When the E. vaginatum transcriptome was sequenced (Mohl et al., 2020), a GO (Gene 

Ontology) enrichment analysis was also conducted to classify genes by function. The enrichment 

analysis first classifies genes into three main domains: biological process, molecular function, 

and cellular component. The domain cellular component includes genes incorporated with the 

cell or the extracellular environment, molecular function includes genes with elemental activities 

at the molecular level, and biological process includes genes with operations or sets of molecular 

events pertinent to the functioning of living units (Ashburner et al., 2000). Within those three 

domains, genes are further classified by more specific functions and provided a “GO Term” or 

ID (example: ID: GO:0000016 Name: Lactase Activity Ontology: Molecular Function). The 

GO identifier “Response to Stress” is defined as any gene that plays a role in processes that 
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result in a change in state or activity of a cell or an organism as a result of disturbance in 

organismal or cellular homeostasis, typically due to exogenous factors such as temperature and 

humidity (Ashburner et al., 2000). 

 

 

2.1.7 Chapter Aims 

The overarching goal of this work is to identify genetic markers that can be used to 

explore ecotype specific variation that could be related to adaptation for E. vaginatum in the 

Arctic. There are 4 goals for this research (1) Develop and modify Python scripts to isolate genes 

and genetic markers of interest; (2) Identify genes that are classified within the subgroup 

“Response to Stress” in the “Biological Process” group when using GO terms for E. vaginatum. 

These genes will be most likely to have function in response to climate variation found along the 

arctic latitudinal gradient; (3) SSRs and SNPs will be identified in “Response to Stress” genes 

that can be used in association studies for selection to environmental stressors across E. 

vaginatum ecotypes; and (4) Design primers for these genetic markers to use for future selection 

studies that will examine variation among ecotypes of E. vaginatum exposed to different 

environmental stressors. 

 

Figure 2.1 Chapter 2 flow chart, starting broad with the E. vaginatum transcriptome (Mohl et al., 2020), 
focusing in on the genes of interest, locating genetic markers that could be variable among ecotypes with 
different environmental pressures, and preparing to determine their utility for future selection studies.  
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2.2 METHODS 

Site Latitude (N), Longitude 
(W) 

Elevation (m) # Accessions 

Eagle Creek (EC) 65.4332°, -145.5118° 771 3 

Coldfoot (CF) 67.2631°, -150.1591° 321 6 

Toolik Lake (TL)* 68.6292°, -149.5778° 758 6 

Sagwon (SG) 69.4244°, -148.6976° 299 6 

Prudhoe Bay (PB) 70.3270°, -149.0645° 8 3 

 

 

 

 

 
 

 

 

 

 

Table 2.1 Location data for each E. vaginatum 
ecotype used in this study. Plants from each of 
these sites were transplanted into a common 
garden at the Toolik Field Station (*) in 2012 and 
2013 (Mohl et al, 2020). 
 

Figure 2.2 ArcGIS map displaying the locations 
of ecotypes on the northern Alaska latitudinal 
gradient used in developing the E. vaginatum 
transcriptome (Mohl et al., 2020). The dark purple 
circles denote ecotypes used in the transcriptome 
and the light purple circle is the location of the 
transplant garden containing all ecotypes.  
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2.2.1 Transcriptome Sampling 

This research used the transcriptome sequence data for E. vaginatum (Mohl et al., 2020) 

that was derived from five populations (EC, CF, TL, SG, and PB; Figure 2.2, Table 2.1) and 

represents ecotypes from north (TL, SG, PB) and south (EC, CF) of treeline in the Alaskan 

Arctic, which were transplanted into a central common garden located at Toolik Lake (Table 2.1, 

Figure 2.2). Three accessions each were collected and pooled from all ecotypes in July of 2016 

on an ambient day (13.8°C) and from only CF, TL, and SG on an extreme heat day (26.6°C) at 

the Toolik field station (Mohl et al., 2020). In total, representing 3 accessions each from EC and 

PB and 6 accessions each from CF, TL, and SG.  

The transcriptome contains 182,744 transcripts that could be utilized for identifying SNPs 

and SSRs with 23,132 that were present in all ecotypes (Figure 2.3: Mohl et al., 2020). There 

were 124,150 transcripts assigned Gene Ontology (GO) classification terms resulting in a total of 

286,156 GO terms recognized, 93,296 were assigned as biological processes and 207 of these 

were categorized as “Response to Stress” (RTS), (Mohl et al., 2020). The focus of this study is to 

identify SSRs and SNPs that will likely vary among ecotypes, to do this, genes associated with 

the GO term for “Response to Stress” in biological processes will be the primary targets (see 

Figures 2.3 and 2.4). 
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 Figure 2.3 Venn diagram showing 
the number and overlap of unigenes 
expressed among the 5 ecotypes 
utilized for the transcriptome of E. 
vaginatum on the ambient 
temperature day (13.8°C) in the 
Toolik Field Station common garden 
(Mohl et al. 2020). 

Figure 2.4 Histogram of Gene Ontology classification for E. vaginatum unigenes showing the overall 
percentage of unigenes by their GO term and divided into 3 functional groups. Red bars are 26.6°C day 
and grey bars are 13.8°C day (Mohl et al. 2020). 



36 

2.2.2 Isolation of “Response to Stress” Genes 

A previously written in-house Python script (Mohl Script 1), here forward referred to as 

MS1, was utilized for this thesis and used to isolate the gene identifiers that are associated with 

the Gene Ontology term GO:0006950, which is the Response to Stress (RTS) biological process 

from the full transcriptome list of gene identifiers, this script was modified to isolate these genes 

of interest. This script utilizes arguments corresponding with the E. vaginatum Data Matrix file 

which contains expression counts and gene IDs and the Web Gene Ontology Annotation 

(WEGO) file which contains GO terms with corresponding genes. Once the gene identifiers for 

RTS genes were isolated, another previously written in-house Python script (Mohl Script 2), here 

forward referred to as MS2, was modified to use the list of RTS gene identifiers to extract the 

RTS sequences from the full transcriptome and write these to a FASTA file.  

2.2.3 Search Parameters for SSRs associated with RTS genes 

Once the RTS transcript sequences were isolated and placed into a separate FASTA file, 

the software SciRoKo 3.4 (Kofler et al., 2007) was used to create an SSR dataset focusing on di-, 

tri-, tetra-, and pentanucleotide Perfect and Imperfect SSRs. 

Search parameters aligned closely with those given in Honig et al. (2017) and included a 

minimum of 6, 4, 4, and 4 repeat motifs for di-, tri-, tetra-, and pentanucleotide repeats 

respectively. However, due to limited setting parameters, and new updates, the program 

SciRoKo 3.4 (Kofler et al., 2007) was run twice (once for Imperfect SSRs and once for Perfect 

SSRs) to include a broad span of SSR motifs. The parameters for Perfect SSRs were any short 

sequence repeats (mononucleotide to hexanucleotide) that had a repeat length of at least 4 

nucleotides. The parameters for the Imperfect SSRs include: (1) a minimum required score of 4, 

which refers to the total nucleotide length of the entire SSR (example: a dinucleotide SSR needs 
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to have a length of 8 and repeated at least 4 times); (2) a mismatch penalty of 5, referring to the 

number of nucleotide substitutions within the SSR that are allowed to occur; (3) SSR seed 

minimum length of 8. which is the length (bps) of the seed SSR (without the insertion of a 

random nucleotide in the middle of the SSR; for example, a dinucleotide SSR repeated 4 times 

with an insertion occurring after the 7th nucleotide would have an SSR seed minimum length of 

6); and (4) SSR seed minimum repeats of 3, the mismatch penalty, or the number of repeats 

occurring in the seed SSR. Once collected, this data was uploaded to Microsoft Excel (2019), 

then parsed and sorted to focus on the SSRs that were dinucleotide to hexanucleotide in repeat 

type (excluding mononucleotide repeats) and occurred at least 3 times.  

2.2.4 Translations, Alignments, and creation of BED file 

 

 

 

 
 

Figure 2.5 Flow chart for Python script developed to identify SSRs associated with the RTS genes and 
their coding regions. 
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Once the SSRs in the RTS transcripts were identified, another in-house Python script 

using Biopython version 1.78 (Cock et al., 2009) was developed to translate the different reading 

frames of the RTS transcripts to identify the longest coding region and store their start and stop 

positions, here forward referred to as the Chapter 2 Translate (C2T) Script and is highlighted in 

Figure 2.5. The script then parsed positions of the SSRs from the output file from SciRoKo 3.4 

(Kofler et al., 2007) and compared them to the start and stop of the genes to determine if they 

occur inside or outside of the coding regions of the RTS transcripts. The SSRs that occurred 

inside and outside the coding regions were then written to separate output files. Another output 

file of the C2T script was a text document that gave details on the type of SSR that occurred in 

the transcript as well as its positions (see appendix A3 for the complete script). 

Once the SSRs occurring inside and outside of the coding regions of the RTS transcripts 

were identified and stored in separate output files, the SSRs were aligned with the full RTS 

transcript using Clustal Omega (Sievers et al., 2011) to visually see where they occurred and to 

verify that the translate script was working correctly (Figure 2.6). The output file from the C2T 

script that contained details on the SSRs were then parsed for start and stop positions to create a 

BED file that was used with VCFtools (Danecek et al., 2011). In order to identify variability in 

SSR lengths, the start and stop positions in the BED file that correspond with the positions of the 

SSRs in the RTS transcripts were altered to extract mutations within 10 bps before the start 

position and 10 bps after the stop position. VCFtools (Danecek et al., 2011) was used to extract 

mutations within the positions of the BED file from the 8 samples in the E. vaginatum 

transcriptome. This was completed for SSRs occurring inside the RTS coding regions and SSRs 

occurring outside the coding regions.  
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The output VCF files were then examined by hand to determine if the Variant Allele 

Frequency suggested a real SNP, or if a sequencing error occurred. The Variant Allele Frequency 

(VAF) is a breakdown of the different alleles present at a mutation, this is how a mutation can be 

classified as homozygous for the reference, heterozygous, or homozygous for the alternate. The 

VAF is a calculation determined by dividing the sequences the mutation is present in by the total 

allele depth. For example, if a VCF file shows that a mutation is present in a sample 5 times with 

a total depth of 9, the VAF would be calculated by dividing 5 by 9, yielding a VAF of 0.56. 

Generally speaking, I used a VAF from 0-0.25 is homozygous for the reference, 0.25-0.75 is 

heterozygous, and 0.75-1 is homozygous for the alternate, which is considered to be very 

Figure 2.6 Examples of different alignments of RTS transcripts that had multiple SSRs using Clustal 
Omega. (A) RTS gene that had a long region of repeats, both Perfect and Imperfect. (B) RTS gene that 
contained multiple SSRs motifs within. (C) RTS gene where a perfect and imperfect SSR were recognized.  
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conservative. In this case, mutations that yielded VAFs between 0.25 and 1 were ideal, all other 

mutations (that yielded a VAF of <0.25 or were homozygous for the reference) were parsed out.  

2.2.5 SNP Identification in RTS Genes 

Using the FASTA file that was previously parsed with all the RTS transcript sequences 

and the same in-house python script that was constructed in Chapter 1, the Chapter 1 SNP Script, 

here forward referred to as C1S script, (to locate the Phytochrome genes; Figure 1.3) the full 

transcriptome VCF was parsed for SNP mutations that occur in these RTS genes. Parameters 

included an allele depth of 60 and a sample depth of 8, these parameters were used in an effort to 

narrow down the number of mutations found in these transcripts to a workable number. The RTS 

genes that displayed mutations within these parameters were written to an output directory. This 

script (C1S) was also altered from its use in Chapter 1 to create a BED file with positions of all 

RTS SNPs that were identified. 

2.2.6 Primer Design 

After the SSRs and SNPs in the RTS transcripts are identified, primer design for RTS 

SSRs will be conducted using SciRoKo 3.4, SciRoKo’s Little Helper, and a Perl script that 

incorporates Primer3 (Kofler et al., 2007). All of these components are included with the 

SciRoKo 3.4 software (Kofler et al., 2007), primer design will follow similar parameters to 

Chapter 1. Sequence extractions would be conducted with SciRoKo’s Little Helper, to collect 

extractions of up to 200bp on either side of the SSR of interest. The Perl script then uses the 

SciRoKo 3.4 output file with information on the identified SSRs and sequence extractions to 

create an output file with designed primers using Primer3. For RTS SNPs, primer design will be 

conducted in Geneious 10.0.9 (Kearse et al., 2012) to target regions of 200bps that include the 

SNPs of interest and will be dependent on the number of SNPs at a locus as well as the distance 
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apart. For both SSRs and SNPs, primer design will use the following parameters: Primer Size; 

18bp to 24bp, Temperature melting point; 52°C to 58°C, GC content; 40% to 60%, and 

recognition of hairpins and primer dimers will be applied. 

2.3 RESULTS 

2.3.1 SSR Detection in RTS Genes 

In efforts to only focus on transcripts with expression, the Data Matrix file from the full 

E. vaginatum transcriptome (Mohl et al., 2020) was used to parse transcripts that contained the 

RTS identifier. If the full WEGO file from the E. vaginatum transcriptome was used, the script 

would have yielded approximately 200 RTS transcripts, regardless of expression. There were 47 

transcripts detected in the transcriptome that showed expression and were identified as RTS 

genes using the MS1 Python Script. The MS2 Python script was used to create a separate 

FASTA file with transcript names and sequences of the 47 RTS transcripts. The program 

SciRoKo 3.4 (Kofler et al., 2007) found a total of 44 Perfect SSRs and 104 Imperfect SSRs 

associated within these 47 RTS transcripts. The C2T script identified that of these SSRs, there 

was 1 hexanucleotide, 1 tetranucleotide, 40 trinucleotide, and 14 dinucleotide SSRs inside the 

coding regions of the RTS transcripts. The C2T script also identified that there were 4 

pentanucleotide, 4 tetranucleotide, 25 trinucleotide, and 15 dinucleotide SSRs outside the coding 

region. After the RTS genes were translated and aligned with Clustal Omega (Sievers et al., 

2011), there were 16 RTS transcripts that contained Perfect SSRs inside the coding region and 

the same 16 transcripts and an additional 13 transcripts contained Imperfect SSRs inside the 

coding region. There were 13 transcripts with Perfect SSRs and 26 transcripts with Imperfect 

SSRs that occurred outside of the RTS coding regions. All 13 transcripts that contained Perfect 

SSR motifs also had variability in an Imperfect SSR motif, similarly to the SSRs that occurred in 
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the coding regions. After creating alignments of the SSRs in the coding region and the 

corresponding full RTS transcript using Clustal Omega (Sievers et al., 2011), there were multiple 

SSR regions that had both Perfect and Imperfect motifs (Figure 2.6; Table 2.2). Altogether, there 

were 56 SSRs detected inside the coding region of the RTS transcripts and 48 SSRs detected 

outside the coding region (Table 2.2). 

2.3.2 Variable SSRs in Transcriptome Samples 

Using VCFtools (Danecek et al., 2011) and the constructed BED file, there were 7 SSRs 

that provided length variation among the transcripts from Mohl et al (2020) that occurred within 

the coding regions, and 1 outside the coding region that were parsed and added to new VCF files. 

However, once the Variant Allele Frequency was assessed, it was determined that these 

mutations were likely sequencing errors rather than true mutations occurring in the SSRs inside 

the coding regions as well as outside of the RTS transcripts.  

2.3.3 SNP Detection in RTS Genes 

Previously, arguments were implemented in the C1S script (Figure 1.3, see appendix A2 

for full script) for ease of use in the future. The C1S Script (Figure 1.3) was written to take a 

subset of genes in the form of a FASTA file and transform sequence data with SNPs in the form 

of a VCF file. Parameters pertaining to sample depth and allele depth were then implemented to 

target only the genes with mutations containing a sample depth of 8 and allele depth of 60 

(Figure 1.3). This script was altered to create a BED file of the positions of the SNPs in the RTS 

transcripts, this was done to keep track of how many SNPs met the given parameters for each 

transcript, and their exact positions can be used to identify which ecotypes the mutations 

occurred in as well as whether or not they occur in the coding regions of the RTS transcripts. The 

modified C1S script was used to detect SNPs occurring in the RTS genes with at least an allele 
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depth of 60 and a sample depth of 8. From the newly created VCF file, there were 28 RTS 

transcripts detected with 170 SNPs that correspond with the parameters mentioned above (Table 

2.2).   

2.3.4 Primer Design 

Due to the limitations of SciRoKo 3.4 in re-uploading and reading SSR output files, I was 

unable to use this program to design primers for the identified RTS SSRs. The original SciRoKo 

3.4 output file needed to be parsed for the RTS SSRs and re-uploaded to the program in order for 

SciRoKo’s Little Helpers to perform the extractions that were then to be used with the Perl script 

and Primer3 to design the primers. These RTS SSRs included trinucleotide repeats that occur 

inside the coding regions and all other forms of SSRs that occur outside of the coding regions, 

these were identified using the C2T script. Due to time limitations, the SNP primers weren’t 

designed. The C2T script is being developed for SNPs that occur in the coding regions. Once 

identified, primer pairs can be designed for SNP markers that show variability in the coding 

regions of RTS transcripts. 
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Table 2.2 Displays RTS transcripts with SSRs or SNPs among ecotypes with gene description and the 
types of genetic marker identifiers they contain. SSRs are categorized by whether or not they occur in the 
coding regions. The number of SNPs within each RTS transcript are noted in the last column.  

Inside Outside
DN2248_c0_g1_i1 retrotransposon protein, putative, unclassified 1 3
DN11744_c0_g1_i1 heat shock cognate protein 80 2
DN60087_c0_g2_i1 heat shock 90 6
DN62293_c0_g2_i1 predicted protein 5 1
DN65296_c0_g1_i1 universal stress family expressed 1 1
DN66896_c0_g1_i5 histone deacetylase HDT1-like 1 3
DN66904_c0_g1_i6 ubiquitin receptor RAD23c-like 2 15
DN67150_c0_g1_i1 calmodulin-binding 60 A isoform X1 3 2
DN67150_c0_g1_i7 calmodulin-binding 60 A-like 1 1 2
DN67249_c0_g6_i1 universal stress A isoform X1 3 3
DN68049_c0_g1_i5 universal stress A 2 2 2
DN68720_c0_g2_i1 ASR2 1
DN69283_c1_g1_i1 Adenine nucleotide alpha hydrolase-like superfamily 2
DN69294_c0_g1_i3 predicted protein 3 2 1
DN70026_c0_g1_i2 activator of 90 kDa heat shock ATPase homolog 2 11
DN70789_c0_g2_i1 heat shock cognate 80 2 4
DN70789_c0_g2_i5 heat shock 83 4 1 13
DN71373_c0_g1_i7 calmodulin-binding 60 B 1 5 4
DN72618_c0_g6_i1 U-box domain-containing 33-like isoform X1 1
DN72644_c2_g4_i5 xanthoxin dehydrogenase-like 2
DN73671_c0_g2_i7 predicted protein 1
DN73755_c0_g2_i1 Pre-mRNA-processing factor 19 homolog 2 1
DN74061_c0_g1_i1 ethylene-responsive transcription factor 5-like 1 17
DN74431_c0_g7_i1 mediator of RNA polymerase II transcription subunit 32-like 3
DN75232_c0_g9_i4 XP_008778664.1 enolase-like 2 1 5
DN75407_c0_g1_i4 probable zinc metallopeptidase EGY3, chloroplastic 3 2 7
DN75807_c2_g1_i1 plant UBX domain-containing 2-like 3
DN75807_c2_g1_i2 XP_020083507.1plant UBX domain-containing protein 2 6
DN75807_c2_g1_i3 XP_020083507.1plant UBX domain-containing protein 2 9
DN76530_c0_g1_i3 retrotransposon unclassified 2 5 4
DN76906_c1_g2_i1 fumarate hydratase 1 2 1
DN77223_c0_g1_i2 Universal stress protein A-like protein 1 1
DN77223_c0_g1_i3 Universal stress protein A-like protein 1 6
DN77621_c0_g1_i5 bromodomain-containing protein, putative 1 3
DN78174_c1_g6_i1 water-stress inducible 1 1 4
DN78174_c1_g8_i2 abscisic stress ripening 1 1 3
DN78253_c2_g14_i10 heat shock 70 kDa 17 2 1
DN78557_c0_g15_i1 ycf3-interacting protein 1, chloroplastic 3

DN78639_c0_g16_i1 heat shock protein 90-6, mitochondrial 2 2 30
DN79210_c3_g3_i2 probable serine/threonine-protein kinase GCN2-like 1 1
DN79301_c0_g4_i3 single-stranded DNA-binding mitochondrial 1 1 4
DN130620_c0_g1_i1 endoplasmin 2

4

SSRs

DN78557_c0_g15_i2 protein CHLOROPLAST ENHANCING STRESS 
TOLERANCE, chloroplastic

Transcript Gene Description SNPs
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2.4 DISCUSSION 

Given the evidence of phenotypic variation in E. vaginatum (Parker et al., 2017) along 

the latitudinal gradient in northern Alaska, a better understanding of E. vaginatum’s molecular 

response to the changing climate in the Arctic is needed. The purpose of this work was to 

identify genetic markers in the RTS genes of the E. vaginatum transcriptome that are likely to be 

variable among ecotypes, then to develop tools that can be used for future selection studies 

directed toward understanding the molecular response of E. vaginatum under environmental 

pressures. A major goal of this study was to design bioinformatic tools to utilize in this and 

future work that can be easily altered to incorporate different input data files and parameters 

developed for specific tasks related to the transcriptome. Here, bioinformatic tools were designed 

for a subset of RTS transcripts but can be applied to the full E. vaginatum transcriptome or other 

large data sets of interest. 

2.4.1 RTS Gene Identification 

The scripts developed for this research were highly effective for identifying and 

extracting the RTS gene transcripts for this project. 47 RTS transcripts were identified in the E. 

vaginatum transcriptome, of which, 44 RTS transcripts, or 36 RTS genes contained at least one 

of the 274 SSRs or SNPs identified (Table 2.2). The program VCFtools (Danecek et al., 2011) 

and the C2T script did not identify SSRs located inside the coding regions of the RTS genes that 

varied among the 8 samples in the transcriptome. The C1S script identified that there were 28 

RTS transcripts with SNPs that were variable among the samples in the transcriptome. The 

scripts (C1S and C2T) were designed to be easily modified to search for other regions of interest 

in the transcriptome such as different gene families or genes with different GO IDs. This was 

done by implementing arguments in the scripts that can be called from the command line, these 
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different arguments correspond with critical components of the script such as input files, 

parameters, output files, and output directories. 

Some of the RTS transcripts identified that contained SSRs or SNPs could be associated 

to transcripts that showed differential expression associated with adaptation found by Mohl et al. 

(2020).  For example, one RTS gene, DN70789, is a heat shock protein (HSP) that, showed 

expression level variation in all eight samples in the transcriptome on both the ambient 

temperature day (13.8°C) and the extreme heat day (26.6°C) (Mohl et al., 2020). This gene had 

two isoforms and contained SSRs both inside and outside of the coding region for which markers 

could be designed. There are also SNPs identified among the DN70789 isoforms (Table 2.2). 

These findings make this transcript a prime candidate to investigate selection among the 

latitudinal gradient in Alaska. There were other HSPs with associated SSRs and SNPs (e.g.  

DN78253, DN11744, DN60087, and DN78639) that did not show variation in expression levels 

in response to heat stress (Mohl et al., 2020), but may still be useful for examining other stress 

responses. 

2.4.3 SSRs and SNPs  

 SSRs with multiple alleles were found to be associated with 22 RTS transcripts.  Of these 

transcripts, 19 had more than one SSR region for which markers could be developed. Due to the 

higher likelihood of variability found when using dinucleotide SSR markers they are frequently 

targeted for designing and selecting primer pairs (Chakraborty et al., 1997; Levinson & Gutman, 

1987; Merritt et al., 2015), despite their locations likely being outside of the coding regions. 

There were almost the same number of dinucleotide repeats located inside the coding regions 

versus outside for the RTS transcripts. When the dinucleotide repeats that were found inside the 

coding region were examined for size variability among ecotypes, no variation occurred among 
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the samples in the transcriptome. Due to variability in the length of dinucleotide repeats shifting 

the reading frame, no variation was expected. However, variation among ecotypes was also 

absent for the trinucleotide and hexanucleotide repeats inside the coding regions, that would not 

shift the reading frame but could still alter amino acids. While SSRs inside the coding regions 

could directly identify selection directed at RTS genes, SSRs closely associated outside the 

coding regions of the RTS transcripts is more likely and targeting length variability among these 

for multiple ecotypes will be a future priority.  

For future work, the C2T script (Figure 2.5) needs to be enhanced to identify genetic 

markers at a more proximal distance to the coding regions of genes of interest, starting at 10 

nucleotides and expanding further if needed, rather than just identifying if a genetic marker is 

inside or outside of the coding region. Another component that would be valuable is 

implementing an argument that can be called from the command line in order to easily alter the 

number of base pairs on either side of the coding region identified. Interest lies in the region just 

outside of coding regions due to its close linkage to the gene. This region is associated ribosomal 

recruitment in the 5’ cap, where the ribosome binds and translation is initiated (Hellen & 

Sarnow, 2001) and is more prone to variability as it lacks the structural constraints of the coding 

region. 

The C1S script was created to identify transcripts containing SNPs that met specified 

parameters for allele and sample depth and store the transformed sequence data in an output 

directory (Figure 1.3). However, due to the need to identify how many SNPs met the parameters 

of the script and occurred in each transcript, the C1S script was altered to store the positions of 

the SNPs in the RTS genes by implementing a Boolean type, and then creating a BED file with 

these positions. The program VCFtools (Danecek et al., 2011) used the created BED file and the 
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full E. vaginatum VCF file to parse the SNPs occurring in the RTS transcripts. Using this 

modified script 170 individual SNPs were identified in 28 transcripts. Modification of the script 

will be needed to identify if there are ecotype specific alleles among the samples used in Mohl et 

al. (2020) or allelic bias for northern vs southern ecotype. The C1S script will be modified by 

implementing a loop that sorts the mutations by sample, which ecotype they occurred in and on 

which temperature day (either of ambient or extreme heat). 

There is also a need to further enhance the C2T script to read in the positions of the SNPs 

to determine if they occur inside or outside of the RTS transcript coding regions. This will be 

done by altering the part of the script that reads the positions of the SSR BED files. There is 

currently a parameter for the type of SSR (dinucleotide, trinucleotide, tetranucleotide…), which 

will be removed in order for the SNP BED file to be read in and processed. Ideally, the C1S and 

C2T scripts will be combined to form one script that transforms RTS sequence data and 

identifies prominent SNPs, creates a BED file with the positions of these SNPs, translates the 

RTS sequences to find the longest coding region, and stores SNPs that occur in the coding 

regions of the RTS transcript in an output directory. 

Although, not feasible under the time constraints of this project, the identified SSR and 

SNP markers can be examined across the populations sampled for Mohl et al. (2020) to identify 

if there is allelic difference that correlates with northern and southern ecotypes. This can be done 

using a series of contingency Fisher’s Exact Tests (FET), Bonferroni correction tests, and R 

statistical package (R Core Development Team, 2019). If there is a significant relationship 

between the presence of an allele with an ecotype these markers will be candidate markers for 

studying RTS genes involved in adaptation with additional population level sampling. 
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2.4.5 Future Research 

Due to limitations of RNA-seq and the quality of the transcriptomic sequence data 

available for E. vaginatum, the parsed RTS genes were referred to as transcripts, this is due to 

some genes having multiple isoforms (example: DN77223_c0_g1_i2 and DN77223_c0_g1_i3; 

Table 2.2) that vary by length and coverage in the transcriptome sequence data. With the limited 

number of samples in the E. vaginatum transcriptome, and the possibility of multiple gene copies 

present in the full genome, it is not currently possible to determine if the isoforms are duplicate 

genes. Complete genome sequence data of E. vaginatum would potentially lead to more clarity 

on whether these isoforms are functionally different, and the associate allelic diversity would be 

informative for each. 
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Appendix 

A. PYTHON SCRIPTS 

A1. Chapter 1 Preliminary Script 

import re,random, argparse 
 
#looking for mutations in general across all Phytochrome genes 
 
#Arguments that can be altered in the terminal 
parser = argparse.ArgumentParser() 
parser.add_argument('-i', '--VCF_input_file', type=str) 
parser.add_argument('-o', '--parsed_output_file', type=str) 
parser.add_argument('-a', '--allele_depth', type=int) 
parser.add_argument('-m', '--min_allele_freq', type=float) 
 
args = parser.parse_args() 
 
#VCF input file 
if args.VCF_input_file: 
    vcfIn = args.VCF_input_file 
else: 
    print('Error: Need VCF file') 
 
#parsed output file (showing there are mutations in samples) 
if args.parsed_output_file: 
    fileOut = args.parsed_output_file 
else: 
    print('Error: Output file already exists') 
     
#allele depth (only care about transcripts with _% for alternate) 
if args.allele_depth: 
    Depth = args.allele_depth 
else: 
    print('Error: No mutations at that allele depth') 
     
#minimum allele frequency 
if args.min_allele_freq: 
    Freq = args.min_allele_freq 
else: 
    print('Error: No mutations at that allele frequency') 
 
#Begin script 
#PART 1 reading in and parsing FASTA file 
f = open(vcfIn,'r') 
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lines = f.readlines() 
f.close() 
lines 
temp = ''.join(lines).split('#')[-1] 
geno = temp.strip().split('\n') 
 
need = [] #list of sample lists 
perc = [] #alternate numbers 
 
#making a list of lists for samples 
for g in geno[1:]: 
 ge = g.strip().split('\t') 
 need.append(ge) 
 
 
 
#PART 2 creating output file with genes containing mutations 
#Writing samples of interest (>= _allele depth and >_% for alt min allele freq) 
f = open(fileOut,"w+") 
f.write(geno[0] + '\n') 
focus = [] 
 
 
 
#PART 3 calculating allele depth and minimum allele frequencey 
#focus on 7th element where mutation quality is located 
for ge in need: 
 if ge[4] != '<*>': 
  if ge[7].split(';')[0] == 'INDEL': 
   temp = ge[7].split(';')[4].strip('AD=').split(',') 
   if int(temp[0]) + int(temp[1]) >= Depth and float(temp[1]) / (int(temp[0]) + 
int(temp[1])) > Freq: 
    focus.append([temp[0],temp[1]]) 
    f.write('\t'.join(ge) + '\n') 
  else: 
   temp = ge[7].strip().split(';')[1].strip('AD=').split(',') 
   perc.append(temp) 
   if int(temp[0]) + int(temp[1]) >= Depth and float(temp[1]) / (int(temp[0]) + 
int(temp[1])) > Freq: 
    focus.append([temp[0],temp[1]]) 
    f.write('\t'.join(ge) + '\n') 
f.close() 
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A2. Chapter 1 SNP Script (C1S) 

import re,random, os, sys, argparse 
 
#Arguments that can be altered in the terminal 
parser = argparse.ArgumentParser() 
parser.add_argument('-f', '--fasta_file_name', type=str) #look up add.argument = required 
parser.add_argument('-v', '--vcf_file_name', type=str) #look up add.argument = required. Need to 
have in order to run. 
parser.add_argument('-ad', '--allele_depth', type=int) 
parser.add_argument('-sd', '--sample_depth', type=int) 
parser.add_argument('-o', '--output_directory', type=str) #send files to an output directory 
 
args = parser.parse_args() 
 
#fasta file 
if args.fasta_file_name: 
 fastaIn = args.fasta_file_name 
else: 
 print('Error: Need file containing fasta sequences') 
 
#vcf file 
if args.vcf_file_name: 
 vcfIn = args.vcf_file_name 
else: 
 print('Error: Need file containing variant call format') 
 
#allele depth 
if args.allele_depth: 
 allele_depth = args.allele_depth 
else: 
 allele_depth = 60 
 
#sample depth 
if args.sample_depth: 
 sample_depth = args.sample_depth 
else: 
 sample_depth = 8 
 
#output file make directory 
if args.output_directory: 
    Outdir = args.output_directory 
    if os.path.exists(Outdir): 
        print('output folder already exists, choose new folder') 
        quit() 
    else: 
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        os.mkdir(Outdir) 
else: 
 print('Error: Output directory name not given') 
 
 
 
#PART 1 
#Bring in sequence dictionary (find_seq.py) 
 
f = open(fastaIn, 'r') 
lines = f.readlines() 
f.close() 
 
#cleaning up sequences 
seq = ''.join(lines)[4:].split('>') 
 
search = {} 
 
#storing headers in dictionary 
for s in seq: 
 temp = s.split('\n') 
 head = temp[0] 
 seqs = temp[1] 
 search[head] = seqs 
 
 
 
#PART 2 
#Reading in VCF and determining if allele and sample depth qualify per parameters 
positions = [] 
 
g = '' 
#Reading in VCF 
#For loop to go through sites on protein 
with open(vcfIn, 'r') as fp: 
    l = fp.readline() 
    while l[0:2] == '##': 
        l = fp.readline() 
    #headers of individual sequence locations 
    header2 = l.split('\t')[9:] 
 
    head =[] 
    all = [] 
    #creating headers for transformed sequence data 
    #'a' for reference and 'b' for alternate mutations 
    for h in header2: 
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        h = h.split('.')[0] 
        head.append('>' + h + 'a') 
        head.append('>' + h + 'b') 
 
#Begin code for AD and SD parameters 
    l = fp.readline() 
    while l: 
        sl = l.strip().split('\t') 
         
        #determine AD 
        if sl[0] in search.keys(): 
            AD1 = sl[7].split(';') 
            AD2 = AD1[1].split('=') 
            ADfinal = AD2[1].split(',') 
            ADtotal = 0 
            for x in range(0,len(ADfinal)): 
                ADtotal += int(ADfinal[x]) 
            if ADtotal >= allele_depth and sl[0] in search.keys(): 
             
                #if the allele depth qualifies, then move to sample depth 
                #determine SD 
                SD1 = sl[9:] 
                SD = 0 
                for s in SD1: 
                    if re.search('[1-9]',s): 
                        SD += 1 
                if SD >= sample_depth: 
                #if both allele depth and sample depth qualify, transcript name will be printed in the 
terminal 
                    print(sl[0]) 
                    if sl[0] != g: 
                        #Wrap up old 
                        if g != '': 
                         
                            #writing individual output files with transformed data 
                            f = open("%s/TRINITY_%s_individ_sequences.txt"%(Outdir,g),"w+") 
                            for a in range (0,16): 
                                f.write(head[a] + '\n') 
                                f.write(''.join(all[a]) + '\n') 
                            f.close() 
                        #Start new 
                        g=sl[0] 
                        all = [] 
                        print(search[g]) 
                        for r in range(0,16): 
                            all.append(list(search[g])) 
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                    print(all.append(list(search[g]))) 
 
 
 
#PART 3 
#Begin code for data transformation, make 16 copies of each sequence, 2 for each sample 
(reference and alternate) 
                    #Get info for all samples 
                    ref = l.split('\t')[3] 
                    alt = l.split('\t')[4].split(',')[0] 
 
                    #For loop to go through samples 
                    i=0 
                    pos = int(l.split('\t')[1])-1 
                     
                    #Begin boolean type for SNP BED file 
                    Boo = False 
                    for t in l.split('\t')[9:]: 
                        st = t.split(':')[-1].split(',') 
                        #assigning variables for reference and alternate nucleotides 
                        trc = int(st[0]) 
                        tac = int(st[1]) 
                         
                        #for heterozygotes, randomly assigned to use ref or alt 
                        if trc != 0 and tac != 0: 
                            if float(trc) / (trc+tac) > 0.4 and float(trc) /(trc+tac) < 0.7: #hetero 
                                Boo = True 
                                r = random.random() 
                                if r >= 0.5: 
                                    all[i][pos] = alt #alt 
                                else: 
                                    all[i+1][pos] = alt #ref 
                                     
                            #homozygous for the alternate 
                            elif float(tac) / trc > 0.2: #homo alt 
                                all[i][pos] = alt 
                                all[i+1][pos] = alt 
                                Boo = True 
                        elif trc == 0 and tac != 0: #homo alt 
                            all[i][pos] = alt 
                            all[i+1][pos] = alt 
                            Boo = True 
                        i+=2 
                         
                    #Ending boolean loop and storing in "positions" variable 
                    if Boo == True: 



68 

                        positions.append(sl[0]+'\t'+l.split('\t')[1]) 
        l = fp.readline() 
 
 
 
#PART 4 
#Writing positions of SNPs to BED file 
#BED file contains positions of SNPs in transcript and how many SNPs each transcript contains 
that meet the parameters 
#Boolean type parameters, True = hetero and homo for the alternate, no homo for the reference 
v = open("SNP_positions.txt", "w+") 
v.write('\n'.join(positions)) 
v.close() 
 
 
 
#PART 5 
#Write to Output directory (with individual fasta files) 
if g != '': 
 f = open("%s/TRINITY_%s_individ_sequences.txt"%(Outdir,g),"w+") 
 for a in range (0,16): 
  f.write(head[a] + '\n') 
  f.write(''.join(all[a]) + '\n') 
 f.close() 

A3. Chapter 2 Translate Script (C2T) 

from Bio import Seq 
from Bio.Seq import Seq 
import re, sys, argparse, os 
 
#Arguments that can be altered in the terminal 
parser = argparse.ArgumentParser() 
parser.add_argument('-f', '--fasta_file_name', type=str) 
parser.add_argument('-s', '--SciRoKo_output_file_name', type=str) #td file type 
parser.add_argument('-l', '--SSR_minimum_repeat', type=int) #2=dinucleotide 
parser.add_argument('-out_file', '--output_file_name', type=str) #Output file contains transcript 
name, motif, and positions only where SSRs occur in the coding regions 
parser.add_argument('-out_fasta', '--output_fasta_file_names', type=str) #fasta files contain full 
gene sequence with SSR sequences that occur in the coding regions 
 
args = parser.parse_args() 
 
#FASTA file input 
if args.fasta_file_name: 
    fastaIn = args.fasta_file_name 
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else: 
    print('Error: Need file containing fasta sequences') 
     
#SciRoKo output file 
if args.SciRoKo_output_file_name: 
    SciRoKoIn = args.SciRoKo_output_file_name 
else: 
    print('Error: Need file containing SSR locations') 
     
#SSR minimum repeat type 
if args.SSR_minimum_repeat: 
    Minrep = args.SSR_minimum_repeat 
else: 
    SSR_minimum_repeat = 2 
     
#Output file with transcript name, SSR, start, stop 
if args.output_file_name: 
    FileOut = args.output_file_name 
else: 
    print('Error: Output file name not given, or already exists') 
 
#FASTA output files, to output directory 
if args.output_fasta_file_names: 
    fastaOut = args.output_fasta_file_names 
    if os.path.exists(fastaOut): 
        print('output folder already exists, choose new folder') 
        quit() 
    else: 
        os.mkdir(fastaOut) 
else: 
    print('Error: Output directory name not given') 
 
ssr_min = Minrep 
 
 
 
#Begin script 
#PART 1: reading in fasta, translating, and storing info 
 
f = open(fastaIn,'r') 
lines = f.readlines() 
f.close() 
 
#Dictionary with transcript and coding region information 
stored = {} 
#transcript:[coding, str(frame), str(start), str(stop)] 
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transcript = [] 
seqs = [] 
#to store transcript name (start, stop, increments) 
for l in range(0,len(lines),2): 
    transcript.append(lines[l].strip()) 
    #defining 'key', transcript-1 gives first element in transcript 
    key = transcript[-1].strip('>') 
    #to store sequences (transcript+1 = sequences) 
    s = lines[l+1].strip() 
    seqs.append(s) 
    #begin translation code 
    translated = [] 
    for x in range(0,len(lines)): 
        coding_dna = Seq(s[x:]) 
        translated.append(coding_dna.translate()) 
    coding = '' 
    start = 0 
    frame = 0 
    stop = 0 
    for t in range(0,len(lines)): 
        c = translated[t].split('*') 
        a = 0 
        for r in c: 
            if len(r) > len(coding): 
                #if r is greater than coding, update coding with new r 
                coding = r 
                #if r is greater than coding, store t(translated) in frame 
                frame = t 
                #if r is greater than coding, multiply amino acids by 3 and add one for the stop codon 
that was split on, need nucleotide position 
                start = a*3 + t 
                #if r is greater than coding, use start and the length of coding x3, need nucleotide 
position 
                stop = start + len(coding)*3 
                #for dictionary (stored) 
            a += len(r)+1 
    #for dictionary (stored) 
    stored[key] = [coding, int(frame), int(start), int(stop)] 
 
 
 
#PART 2: reading in SSR data (transcript, start, stop positions) to tell if it falls in coding region 
 
#from SciRoKo td output file 
#this is where script can be altered to read regular BED file 
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m = open(SciRoKoIn,'r') 
lines2 = m.readlines() 
m.close() 
 
info = ''.join(lines2).split('\r\n') 
 
ssr1 = [] 
 
ssr_in_coding = [] 
ssr_out_of_coding = [] 
 
for i in info[1:]: 
    sl = i.split('\t') 
    print('test',sl) 
    if len(sl) > 5 and len(sl[1]) >= ssr_min: 
        #storing information from SciRoKo td output file (transcript, motif, start, stop) 
        ssr1.append([sl[0],sl[1],int(sl[3]),int(sl[4])]) 
 
for s in ssr1: 
    if s[0] in stored.keys(): 
        if s[2] > stored[s[0]][2] and s[3] < stored[s[0]][3]: 
            ssr_in_coding.append(s) 
        else: 
            ssr_out_of_coding.append(s) 
 
 
 
#PART 3: creating file output 
 
forfasta = {} 
 
#Writing file with info on just SSRs in coding region 
c = open(FileOut, "w+") 
 
c.write('Transcript'+'\t'+'SSR'+'\t'+'Start'+'\t'+'Stop'+'\n') 
for r in ssr_in_coding: 
    c.write('\t'.join(map(str,r))+'\n') 
 
     
     
#PART 4: FASTA file outputs (to output directory) 
 
#These fasta files can be used with Clustal Omega to visually see where SSRs occur 
#Writing individual fasta files for transcripts (cycle through the forfasta key) 
 
    if r[0] not in forfasta.keys(): 
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        print(r[0]) 
        forfasta[r[0]] = ['>'+r[0],seqs[transcript.index('>'+r[0])]] 
     
    forfasta[r[0]].append('>'+r[0]) 
    forfasta[r[0]].append(seqs[transcript.index('>'+r[0])][r[2]-1:r[3]]) 
c.close() 
 
for k in forfasta.keys(): 
    y = open("%s/RTS_perfect_SSR_repeat_inside_coding_%s.txt"%(fastaOut,k), "w+") 
    y.write('\n'.join(forfasta[k])) 
    y.close 
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