
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Open Access Theses & Dissertations

2021-08-01

Towards Reinforcement Learning Driven Mesh Adaptivity For Towards Reinforcement Learning Driven Mesh Adaptivity For

Second Order Elliptic Problems Second Order Elliptic Problems

Augustine Twumasi
University of Texas at El Paso

Follow this and additional works at: https://scholarworks.utep.edu/open_etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Twumasi, Augustine, "Towards Reinforcement Learning Driven Mesh Adaptivity For Second Order Elliptic
Problems" (2021). Open Access Theses & Dissertations. 3359.
https://scholarworks.utep.edu/open_etd/3359

This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open
Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information,
please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/open_etd
https://scholarworks.utep.edu/open_etd?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/open_etd/3359?utm_source=scholarworks.utep.edu%2Fopen_etd%2F3359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

TOWARDS REINFORCEMENT LEARNING DRIVEN MESH ADAPTIVITY FOR
SECOND ORDER ELLIPTIC PROBLEMS

AUGUSTINE TWUMASI

Master’s Program in Mathematical Sciences

APPROVED:

Natasha S. Sharma, Ph.D., Chair

Granville Sewell, Ph.D.

Tunna Baruah, Ph.D.

Stephen L. Crites, Jr., Ph.D.
Dean of the Graduate School

To my

FATHER Fosu, MOTHER Dora, WIFE Adelaide, Son Oheneba and my ADVISOR Dr.
Sharma

with love

TOWARDS REINFORCEMENT LEARNING DRIVEN MESH ADAPTIVITY FOR
SECOND ORDER ELLIPTIC PROBLEMS

by

AUGUSTINE TWUMASI

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Mathematical Science

THE UNIVERSITY OF TEXAS AT EL PASO

August 2021

Acknowledgements

This work was only possible thanks to so many giants that made me stand on their shoul-

ders, without whom I would not have been able to complete this journey. To God, in

whom I live, move and have my being. I would like to express my sincere gratitude to

my mentor Dr. Natasha S. Sharma. With her wisdom, inspiration, and trust, she guided

me through my path of pursuing my Masters, and helped me overcome any obstacles on

the way. Her support to me is beyond research, and I will forever cherish her guidance.

I also extend thanks to my committee members, Prof.Granville Sewell and Prof Tunna

Baruah for their valuable suggestions and insightful comments. I have certainly benefited

a lot from the discussion with them. I am also very grateful to The University of Texas

at El Paso Mathematical Science Department professors and staff for all their hard work

and dedication, providing me the means to complete my degree. To the love of my life,

Adelaide Awuradwoa Asiamah I cannot imagine my life without her. I love her to the end

of the world. To my son Oheneba Yaw Fosu Twumasi, thank you for challenging me, the

sight of you propel me to do more. And to my original teachers who thought me the length

and breadth of this life; my parents; Dora Okyere and Noah Fosu Manu.

iv

Abstract

Adaptive mesh refinement techniques have become an indispensable tool in achieving accu-

rate and efficiently computed solutions to problems which require impractically fine uniform

meshes to obtain an accurate approximation. The adaptive algorithm involves a recursive

application of SOLVE-ESTIMATE-MARK-REFINE steps where in particular the step ‘ES-

TIMATE’ involves computing a posteriori error estimator based on only the numerical so-

lution and the data of the problem. Over the years, several a posteriori error estimators

have been developed and successfully applied but often times, the choice of estimator is

ill suited for the problem at hand. In this research, we present two estimators namely the

residual-based estimator and the gradient recovery type estimator and illustrate the suit-

ability of these estimators for different problems at hand. We also provide the foundation

for data-driven adaptive mesh refinement strategies based on Reinforcement learning (RL)

with a focus on the Q-learning algorithm which is a fundamental learning algorithm in RL.

v

Table of Contents

Page

Acknowledgements . iv

Abstract . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Chapter

1 Introduction . 1

1.1 Problem Description . 2

1.2 Thesis Outline . 3

2 Related Literature . 4

2.1 Overview of Adaptive Mesh refinement . 4

2.1.1 Mesh . 4

2.1.2 Types of Meshes . 4

2.1.3 Mesh Adaptation Procedures . 5

2.1.4 Adaptive Mesh Refinement(AMR) 6

2.2 Reinforcement Learning . 9

2.2.1 Elements of Reinforcement Learning 10

2.2.2 History of Reinforcement Learning 12

3 A Posteriori Error Estimates for Finite Element Approximations 16

3.1 A Posteriori Error Estimators . 17

3.2 Residual Based a Posteriori Error Estimators 20

3.2.1 Upper Bound for the Total Error 20

3.3 Gradient Recovery Estimator . 31

3.3.1 Upper Bound for the a Posteriori Error Estimates 32

vi

3.3.2 Lower Bound for the a Posteriori Error Estimates 35

4 Markov Decision Process . 37

4.1 The Agent-Environment Interface . 37

4.1.1 History and State . 39

4.2 Markov Process . 42

4.2.1 Markov Property . 42

4.2.2 State Transition Matrix . 43

4.2.3 Example:Student Markov Chain . 44

4.3 Markov Reward Process . 45

4.3.1 Example: Student Markov Reward Process 46

4.3.2 Why Discounted . 48

4.3.3 Bellman Equation for MRPs . 48

4.3.4 Bellman Equation in Matrix Form 49

4.3.5 Solving the Bellman Equation . 50

4.4 Markov Decision Process . 50

4.4.1 Policies and Value Functions . 51

4.4.2 Bellman Expectation Equation for Policy and Value functions . . . 52

4.4.3 Optimal Value Function . 55

4.4.4 Optimal Policy . 56

4.5 Learning Algorithm . 59

4.5.1 The Set Up: Key Elements of RL 59

4.5.2 Q-Learning Algorithm: Storage of Q-values in a Q-Table 62

5 Adaptive Mesh Refinement Implementation . 66

5.1 Adaptive Strategy . 66

5.2 Refinement by the Newest Vertex Bisection. 67

5.3 Marking Strategy . 69

6 Numerical Experiments and Results . 72

6.1 Benchmark Problems . 72

vii

6.1.1 The Smooth Problem . 72

6.1.2 The L-Shaped Domain Problem 76

6.1.3 Interface Problem (Discontinuous Coefficient Problem) 80

6.2 Applying Q-Learning Algorithm . 84

7 Conclusion and Future work . 86

7.1 Significance of the Results . 86

7.2 Future Work . 86

References . 87

Appendix

Appendix . 91

Curriculum Vitae . 94

viii

List of Tables

6.1 Smooth Problem: Uniform mesh refinement. 73

6.2 Smooth Problem: Residual error estimate adaptive mesh refinement. 74

6.3 Smooth Problem: Gradient recovery estimate adaptive mesh refinement. . 75

6.4 L-Shape Problem: Uniform mesh refinement 77

6.5 L-Shape Problem: Residual error estimate adaptive mesh refinement. . . . 78

6.6 L-Shape Problem: Gradient recovery estimate adadptive mesh refinement. 79

6.7 Interface Problem: Uniform mesh refinement 81

6.8 Interface Problem: Adaptive-GR mesh refinement 82

6.9 Interface Problem: Adaptive-Res mesh refinement 83

1 Operators and Function Spaces . 91

2 Operators and Function Spaces . 92

3 Operators and Meaning . 93

ix

List of Figures

3.1 Clément’s interpolation operator(definition) 21

3.2 Clément’s interpolation operator(properties) 22

3.3 Level lines of the extension pEh . 27

3.4 The set D
(2)
E . 28

4.1 Agent and Environment . 38

4.2 Agent and Environment . 39

4.3 Environment State . 40

4.4 Agent State . 41

4.5 The agent-environment interaction in a Markov decision process 42

4.6 Student Markov Chain . 44

4.7 Student Markov reward process . 46

4.8 Backup diagram for MRPs . 49

4.9 Backup diagram for Bellman expectation equation for V π 53

4.10 Backup diagram for Bellman expectation equation for Qπ 53

4.11 Backup diagram for Bellman expectation equation for vπ 54

4.12 Backup diagram for Bellman expectation equation for qπ 55

4.13 Backup diagram for Bellman optimality equation for V∗ 57

4.14 Backup diagram for Bellman optimality equation for V ∗ 57

4.15 Backup diagram for Bellman optimality equation for Q∗ 58

5.1 Ω = (0, 1)2 . 69

6.1 Smooth Problem: Uniformly Refined Mesh 73

6.2 Smooth Problem: Residual Based Refined Mesh 74

6.3 Smooth Problem: GR estimatorl Based Refined Mesh 75

x

6.4 L-Shaped Domain: Uniformly Refined Mesh 77

6.5 L-Shaped Domain: Residual Based Refined Mesh 78

6.6 L-Shaped Domain: GR estimator Based Refined Mesh 79

6.7 Interface Problem: Uniformly Refined Mesh 81

6.8 Interface Problem: GR estimator Based Refined Mesh 82

6.9 Interface Problem: Residual Based Refined Mesh 83

6.10 Outcome of the training Algorithm . 85

xi

Chapter 1

Introduction

Partial differential equations emerge in the mathematical modelling of many physical, chem-

ical and biological phenomena and many diverse subject areas such as fluid dynamics,

electromagnetism, material science, astrophysics, economy, financial modelling, etc. Very

frequently the equations under consideration are so complicated that finding their solutions

in closed form or by purely analytical means is either impossible or impracticable, and one

has to resort to seeking numerical approximations to the unknown analytical solution[28].

Over the decades, adaptivity has been a well established tool used to improve the resolution

of rough solutions. Since analytic solutions to multiphysics problems are very uncommon,

we mostly resort to numerical solution techniques. In order to obtain a decent approxima-

tion of the true solution, a rather fine discretization mesh appears to be important. This

leads to huge large scale problems on the discrete level which present many difficulties to

numerical procedures. The aim of mesh adaptation is to coarsen the mesh in subdomains

where the (continuous) solution and data of the problem is calm and to use a fine mesh only

in regions where we expect nonlinearity or non smoothness of the significant solution or

data. Apparently, one seeks to minimize the number of nodes in a finite element discretiza-

tion of the problem under the limitation of keeping solution accuracy. For this process,

error estimates and local error indicators are required which guide that adaptation process.

As a consequence, in recent years automatic adaptivity has become an area of interest in

the field of applied mathematics. Therefore, adaptive mesh refinement is fundamentally

a sequential decision-making problem in which a sequence of greedy decisions dependent

on instantaneous error indicators does not comprise an optimal sequence of decisions for

the actual goal of achieving high cumulative or terminal precision. For example, in time-

1

dependent problems such as advection, an error estimator by itself cannot preemptively

refine elements which would encounter complex features in the next time step. Moreover,

the numerical error accumulated at the current time step will itself propagate throughout

the physical system and determine how the error at future time steps will accumulate.

This implies that the optimality of a refinement decision relies on the accuracy of future

states and that selecting an element which yields the largest reduction in error at the cur-

rent time step may not be the optimal decision over the entire simulation. Whether and

how optimal AMR strategies can be found by directly optimizing a long-term performance

objective are open questions. With the above analogy, we formulate AMR as a Markov

decision process(MDP) and propose a reinforcement learning(RL) approach that explicitly

trains a mesh refinement policy to optimize a performance metric, such as minimizing a

final solution error [39].

1.1 Problem Description

In finite element simulations there often arises the need to change the mesh and continue

the simulation on a new mesh. Numerical Analysts encounter such an issue when they

adaptively refine the mesh to reduce the computational cost, smooth distorted elements to

improve system conditioning, or introduce new surfaces and change the domain in simu-

lations of the PDE problem. This adaptive refinement is guided by estimators which is a

computable quantity calculated solely in terms of the data of the problem and the numeri-

cal solution. Adaptive mesh refinement has been around for the longest time and research

about its effeciency in terms of lower bound and reliability in terms of upper bound has

been establised over the decades. The challenge arise from the fact that we have several es-

timators such as residual-based, averaging estimators (gradient recovery type for instance)

and estimators based on local problems. Some estimators might not be well suited for

certain problems which may be as a result of computational complexity, reliability and

efficiency etc.

2

The problem is not the reliability or the efficiency since it has been well proven, but the

issue is how big are the constants involved (in the bounds) and the information they pro-

vide us with. For some problems, the estimator is not well suited because the reliability

constant might be very large which is just amplifying the estimator but not giving any

accurate information about the solution to the problem.

Therefore, depending on the problem at hand, a decision needs to be made about the choice

of estimator. But this is a difficult decision in the absence of information about the exact

solution, hence there is a need to develop a framework to automate this decision. Recently,

machine learning techniques have found applications in deterministic mathematical models

particularly adaptive finite element methods for example, recurrent deep neural networks

applied to mesh adaptivity in [8] and to hp-adaptivity in [23].

1.2 Thesis Outline

Having introduced this work, the rest of the thesis is organized as follows. Chapter 2 gives

pertinent literature review on adaptive mesh refinement(AMR) and reinforcement learning

(RL). In chapter 3, which is the heart of the thesis, we establish the fact that in abscence

of the true solution, we can still have an idea about the errors which we encoutered in

our approximation technique by defining error estimators and their proofs. We proceed to

talk about Markov Decision Process(MDP’s) as a decision process in learning by trial and

error which forms the basis of our learning procedure, thus, Reinforcement Learning(RL)

in chapter 4. We discuss adaptive mesh refinement implementation (AMR) and some

algorithm governing the strategy. In chapter 6, we present numerical experiments and

illustrate the suitability of these estimators for different problems at hand as well as observe

the convergence of the estimators and errors. We also provide the foundation for data-driven

adaptive mesh refinement strategies based on Reinforcement learning (RL) with a focus on

the Q-learning algorithm which is a fundamental learning algorithm in RL. We conclude

this thesis in chapter 7 with significance of our study propose some future studies.

3

Chapter 2

Related Literature

2.1 Overview of Adaptive Mesh refinement

2.1.1 Mesh

A mesh is a partition of a geometric domain into small simple shapes, such as triangles or

quadrilaterals in two dimensions and tetrahedra or hexahedra in three satisfying certain

assumptions. Meshes find use in many application areas. In geography and cartography,

meshes give compact representations of terrain data. In computer graphics, most objects

are ultimately reduced to meshes before rendering. Finally, meshes are almost essential in

the numerical solution of partial differential equations arising in physical simulation [6].

2.1.2 Types of Meshes

A structured mesh is a mesh in which all interior vertices are topologically similar. An

extreme restriction of the structured mesh is the condition that it describes a unique co-

ordinate mapping. A mesh is said to be an unstructured if the nodes have arbitrarily

varying local neighborhoods. A block-structured or hybrid mesh is formed by a num-

ber of small structured meshes combined in an overall unstructured pattern. In general,

structured meshes gives simplicity and easy data access, while unstructured meshes offer

more convenient mesh adaptivity(refinement/derefinement based on an initial solution) and

better fit for complicated domains. High- qaulity hybrid meshes enjoy the advantages of

both approahes, but hybrid meshing is not fully automatic.

4

2.1.3 Mesh Adaptation Procedures

A review of current literature on mesh adaptation techniques demonstrates that a mesh

adaptation strategy may include an addition of extra nodes, redistribution of existing nodes,

or increasing the order of the interpolating polynomial on an existing mesh. This leads to

the following general characterization of commonly used mesh refinement procedures:

• p-adaptation(increasing polynomial order)

• r-adaptation(redistributing existing nodes)

• h-adaptation(adding nodes)

p-adaptation

A p-type adaptive strategy assumes that the eIements in the mesh remain firm, both in

size and location, but the order of interpolation may change Iocally to match the variation

in the solution. The advantage of this method is that coarse meshes can be used. The

method was first developed for problems in solid mechanics [31], and later applied to the

two-deimensional Navier-Stokes equations by Demkowicz [11]. Schemes making use of p-

adaptation shows a faster rate of convergence than other adaptive schemes. Szabo et al

[31] report shows that for obtaining the same level of accuracy, the p-version reqires only

one-fifth to one-tenth the degrees of freedom required in the h-type adaptivity. A signifi-

cant demerit of the p-type adaptivity is its algorithmic complexity.

r-adaptation

The r-type strategy modifies the mesh degree by clustering existing nodes in areas/regions

of large solution error. The r-method has been widely utilized with 2-D structured grids

[19]. In reality, r-adaptivity can undoubtedly be regarded as one of the earliest (and in a

sense, most primitive) grid adaptation techniques. The true potential of adaptive methods

was, of course, only realized with unstructured meshes, which became well known due to

their remarkable flexibility in modeling complex geometries. Algorithms for r-adaptation of

5

unstructured triangular meshes often make use of a spring-equilibrium technique to redis-

tribute nodes in the mesh [2]. The utilization of r-adaptivity with unstructured triangular

meshes has mostly been accounted for simulating thermal and compressible fluid flows [13].

Since the mesh topology (or connectivity) does not change, the r-type strategy is somewhat

simple to implement. Then again, the number of degrees of freedom in the mesh remains

fixed during the analysis, and, subsequently, the desired solution accuracy may never be

achieved except if the analysis begins with a sufficient number of nodes. Moreover, r-type

adaptation often produces highly skewed or stretched element., resulting in solution oscil-

Iations or at least a seriously impaired convergence rate of the solution [24].

h-adaptation

The third type of mesh adaptation strategy is the h-type method, which generally involves

subdivision of elements based on a set of primitive geometric operations. This technique

is both simpIe and efficient. Unstructured meshes, made of triangles and tetrahedra, are

particularly suited for h-refinement. A significant benefit of h-refinement is that new ele-

ments are completely nested within their forming coarse elements. This nested property

of the refined meshes can be effectively exploited for constructing unstructured multigrid

algorithms [21]. EIement subdivision, however, results in isotropic refinement, which is not

satisfactory for strongly directional flow fields exhibiting extremely thin boundary layers

and weak regions [21]. For such flow fields, the r-method is preferred because it can produce

directionally stretched elements.

2.1.4 Adaptive Mesh Refinement(AMR)

The principle idea of AMR is to enable greater solution accuracy at lower cost, through

a more optimal distribution of nodes for each computed solution. The basic steps in an

AMR strategy are :

1. Computation of an initial solution.

6

2. Estimation of local solution error.

3. Modification of mesh based on estimated error.

4. Transferrence of solution onto adapted mesh.

5. Resumption of numerical solution procedure.

AMR is an approach, commonly used to maximize the accuracy or smoothness of the

solution and/or minimize the computational cost of the computation. When solutions are

calculated numerically, they are often limited to pre-determined quantified grids as in the

cartesian plane which constitute the computational grid, or ’mesh’. Many problems in

numerical analysis, however, do not require a uniform precision in the numerical grids used

for graph plotting or computational simulation, and would be better suited if specific areas

of the graph which needed precision could be refined in quantification only in the regions

requiring the added precision. Adaptive mesh refinement provides such a dynamic pro-

gramming environment for adapting the precision of the numerical computation based on

the requirements of a computation problem in specific areas of multi-dimensional graphs

which need precision while leaving the other regions of the multi-dimensional graphs at

lower levels of precision and resolution. This dynamic technique of adapting computa-

tion precision to specific requirements has been accredited to Marsha Berger, Joseph

Oliger ,and Phillip Colella who developed an algorithm for dynamic gridding called lo-

cal adaptive mesh refinement. [26] A PhD thesis presented to University of Toronto,

developed and tested an adaptive solution methodology for 3D incompressible flow simula-

tions in domains of arbitrary complexity, by adopting the Zienkiewicz-Zhu patch recovery

error estimator(LPR) to characterize the finite element solution error. [25] addressed the

construction of an automatic selection of a suitable mesh refinement threshold in AMR.

The method introduced set the threshold parameter automatically to get h-AMR algorithm

almost parameterless. What the method does is, it allows in principle, to refine without

hand-calibration of the pertinent regions.

7

[33] argued that immersed boundary methods coupled with adaptive mesh refinement

(AMR) is a powerful tool to solve complex viscous incompressible flow problesms, espe-

cially in the case where we have moving and deforming boundaries. They gave an overview

of ARM tools available currently, with an emphasis on block structured grids that are a

natural fit to immersed methods, and discussed the future trends.

[20] investigated and analyzed the grid convergence issues for an adaptive mesh refinement

(AMR) code. Their numerical results shows that, the AMR grid may have larger error

than those unrefined unifrom grid. Another findings from their work is that, the numerical

solution at the coarse–fine interface between different levels of the grid converges only in the

first-order accuracy. Consequently, the error close to the coarse–fine interface can rapidly

dominate the error in the other regions if the coarse–fine interface is active and not covered

by the fine grid.

[1] in their research identified one short coming of all existing literatures on adaptive mesh

refinement. They argued that, the techniques are usually applied to tetrahedra and hex-

ahedra. Having this in mind, they used triangular prismatic element as the discretization

shape for a Finite Element Method code with adaptivity. They further moved on to use five

different marking strategies and compared the results obtained with different parameters.

[38] proposed s method that uses a locally refined mesh in spray region in spray modelling

of engine combustion and emissions simulations. H-refinement adaptive method was em-

ployed and the results shows that the present scheme can achieve the same level of accuracy

in modeling sprays with significantly lower computational cost as compared to a uniformly

fine mesh.

[15] presented an extension of the a posteriori error estimation and goal-oriented mesh

refinement approach from laminar to turbulent flows, which are governed by the Reynolds-

averaged Navier–Stokes and k−ω turbulence model (RANS-k−ω) equations. Discoutinuous

Galerkin discretization of the (RANS-k−ω) equations was the governing idea and was used

within an adjoint-based error estimation and adaptive mesh refinement algorithm that tar-

gets the reduction of the discretization error in single as well as in multiple aerodynamic

8

force coefficient.

[9] described the computational algorithm used by parallel multigrid elliptic equation solver

with adaptive mesh refinement. Their method and code uses truncation error estimates to

adaptivly refine the grid as part of the solution process.

2.2 Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with how intelligent agents

learns what to-do, how to-do it by mapping situations to actions for the purpose of maxi-

mizing a numerical reward signal [3]. The learner (agent) is not informed which actions to

take, however rather should determine which actions yield the most reward by performing

some trials on them. In most interesting and challenging cases, actions taken by the agent

may influence the immediate reward as well as the following situation and, through that,

every resulting reward. These two characteristics—trial-and-error search and delayed re-

ward—are the two generally significant distinguishing features of reinforcement learning.

Reinforcement learning is different from supervised learning. Supervised learning is task

of learning a function that maps an input to an output based on example provided by a

knowledgeable external supervisor.

Also, reinforcement learning is different from unsupervised learning, which is typically about

finding structures hidden in collections of unlabeled data. Often than not, we are tempted

to classify reinforcement learning as a kind of unsupervised learning because it does not

depend on examples of correct behaviour, but that is not true because reinforcement learn-

ing is trying to maximize a reward signal instead of trying to find hidden structures which

is in the case of unsupervised learning. Nevertheless, uncovering structure in an agent’s

experience can certainly be useful in reinforcement learning, but by itself does not address

the reinforcement learning problem of maximizing a reward signal, therefore we consider

reinforcement learning to be a third machine learning paradigm.

One of the difficulties that emerge in reinforcement learning, but not in other kinds of

9

learning, is the trade-off between exploration and exploitation. To obtain a lot of reward, a

reinforcement learning agent must prefer actions that it has tried in the past and found to

be effective in producing reward. However, to find such actions, it needs to try actions that

it has not chosen previously. The agent needs to exploit what it has already experienced

to acquire reward, however it additionally needs to explore in order to improve action se-

lections later on. The problem is that neither exploration nor exploitation can be sought

after without failing at the task. The agent must try a variety of actions and dynamically

favor those that appear to be ideal.

Another important element of reinforcement learning is that it explicitly considers the en-

tirety problem of a goal-directed agent interacting with an uncertain environment. This is

in contrast to numerous methodologies that consider subproblems without addressing how

they might fit into a larger picture.

2.2.1 Elements of Reinforcement Learning

Aside the agent and the environment, we can identify four main subelements of a reinforce-

ment learning system: a policy, a reward signal, a value function, and, optionally, a model

of the environment.

• A policy characterizes the learning agent’s way of behaving at a given time. Gen-

erally speaking, a policy is a mapping from perceived states of the environment to

actions to be taken when in those states. It relates to what in psychology would

be called a set of stimulus–response rules or associations. At times the policy may

be a simple function whereas in others it may involve extensive computation such

as a search process. The policy is the core of a reinforcement learning agent in the

sense that it alone is sufficient to determine behavior. In general, policies may be

stochastic, specifying probabilities for each action.

• A reward signal defines the goal of a reinforcement learning problem. On every

time step, the environment sends to the reinforcement learning agent a single number

10

called the reward. The agent’s primary and only objective is to maximize the total

reward it receives over the long run. The reward signal thus characterize what are the

good and bad events for the agent. In a biological system, we can think of rewards

as analogous to the experiences of pleasure or pain. The reward signal is the primary

basis for altering the policy; if an action selected by the policy is followed by low

reward, then the policy may be changed to select some other action in that situation

in the future.

• Value function specifies what is good in the long run. In a simplest term, the

value of a state is the total amount of reward an agent can expect to accumulate

over the future, starting from that state. Whereas rewards determine the immediate,

intrinsic desirability of environmental states, values indicate the long-term desirability

of states after taking into account the states that are likely to follow and the rewards

available in those states. It is much difficult to determine values than it is to determine

rewards. Rewards are basically given directly by the environment, but values must

be estimated and re-estimated from the sequences of observations an agent makes

over its entire lifetime. An established fact is that, the most important component

of almost all reinforcement learning algorithms is a method for efficiently estimating

values.

• Model of the environment: The model of the environment mimics the behaviour

of the environment, or more generally, that allows inferences to be made about how

the environment will behave. Methods for solving reinforcement learning problems

that use models and planning are called model-based methods, as opposed to simpler

model-free methods that are explicitly trial-and-error learners—viewed as almost the

opposite of planning

11

2.2.2 History of Reinforcement Learning

The early history of reinforcement learning has two primary strings, both long and rich,

that were sought after independently prior to intertwining in present day reinforcement

learning. One string concerns learning by experimentation, and originated from the psy-

chology of animal learning. This string goes through some of the earliest work in artificial

intelligence and what’s more, prompted the recovery of reinforcement learning in the mid

1980s. The second string concerns the problem of optimal control and its solution using

value functions and dynamic programming. Generally, this string didn’t include learning.

The two strings were generally independent, yet got interrelated somewhat around a third,

less distinct string concerning temporal difference techniques. The string focusing on ex-

perimentation learning is the one with which we are most familiar and about which we

have the most to say in this short history. Before doing that, however, we briefly discuss

the optimal control thread.

The idea “optimal control” came into use in the late 1950s to describe the problem of

designing a controller to minimize or maximize a measure of a dynamical system’s behav-

ior over time. One of the methods to this problem was developed in the mid-1950s by

Richard Bellman and others through extending a nineteenth century theory of Hamilton

and Jacobi. This methodology uses the ideas of a dynamical system’s state and of a value

function, or “optimal return function,” to characterize a functional equation, now often

called the Bellman equation. The class of methods for solving optimal control problems by

solving this equation came to be known as dynamic programming. Bellman also presented

the discrete stochastic version of the optimal control problem known as Markov decision

processes (MDPs) [4]. Ronald [18] came up with the policy iteration method for MDPs.

All of these are essential elements underlying the theory and algorithms of modern rein-

forcement learning.

Dynamic programming is widely considered the only viable way of solving general stochastic

optimal control problems. It suffers from what Bellman called “the curse of dimensional-

ity,” implying that its computational requirements grow exponentially with the number of

12

state variables, however, it is still far more efficient and more widely applicable than any

other general method. Connections between optimal control and dynamic programming,

on the one hand, and learning, on the other, were slow to be perceived. We cannot make

certain about what accounted for this partition, yet its fundamental cause was likely the

partition between the disciplines involved and their diverse objectives. Also contributing

may have been the common perspective on dynamic programming as an offline computa-

tion depending basically on precise system models and analytic solutions to the Bellman

equation. Further, the simplest form of dynamic programming is a computation that pro-

ceeds backwards in time, making it challenging to see how it could be involved in a learning

process that must proceed in a forward direction. Some of the earliest work in dynamic

programming, such as that by [5], might now be classified as following a learning approach.

[36] work on An adaptive optimal controller for discrete-time Markov environments cer-

tainly qualifies as a combination of learning and dynamic-programming ideas. [35] argued

explicitly for prominent interrelation of dynamic programming and learning methods and

for dynamic programming’s significance to understanding neural and cognitive mechanisms.

This integration of dynamic programming methods with online learning was not in use until

the work [34] whose treatment of reinforcement learning utilizing the MDP formalism has

been widely embraced.

Since then these relationships have been widely evolved by many researchers, most par-

ticularly by [7], who instituted the expression “neurodynamic programming” to allude to

the combination of dynamic programming and artificial neural networks. Another term

currently in use is “approximate dynamic programming.” These different methodologies

emphasize different aspects of the subject, yet they all share with reinforcement learning

an interest in compassing the classical shortcomings of dynamic programming. On the

basis of this analogy, all the work in optimal control can be considered as a work in rein-

forcement learning. Now, considering the other major string leading to the current field of

reinforcement learning, the string based on the idea of trial-and-error learning.

According to American psychologist [37] the idea of experimentation learning goes as far

13

back as the 1850s to Alexander Bain’s discussion of learning by “groping and experiment”

and more explicitly to the British ethologist and psychologist Conway Lloyd Morgan’s 1894

utilization of the term to describe his observations of animal behavior. Maybe the first to

concisely communicate the substance of experimentation learning as a principle of learning

was Edward Thorndike:

“The greater the satisfaction or discomfort, the greater the strengthening or weakening of

the bond. (Thorndike, 1911, p. 244)” This statement according to Thordike is called the

“Law of Effect” because it describes the effect of reinforcing events on the tendency to

select actions.

The term “reinforcement” with regards to animal learning came into use well after Thorndike’s

expression of the Law of Effect, first appearing in this context in the 1927 English trans-

lation of Pavlov’s monograph on conditioned reflexes. Pavlov described reinforcement as

the strengthening of a pattern of behavior due to an animal receiving a stimulus—a rein-

forcer—in an appropriate temporal relationship with another stimulus or with a response.

To be considered reinforcer, the strengthening or weakening should persevere after the rein-

forcer is withdrawn; a stimulus that merely attracts an animal’s attention or that energizes

its behavior without producing lasting changes would not be considered a reinforcer.

The idea of implementing trial-and-error learning in a computer appeared among the ear-

liest thoughts about the possibility of artificial intelligence. In a 1948 report, Alan Turing

described a design for a “pleasure-pain system” that worked along the lines of the Law of

Effect:

“When a configuration is reached for which the action is undetermined, a random choice for

the missing data is made and the appropriate entry is made in the description, tentatively,

and is applied. When a pain stimulus occurs all tentative entries are cancelled, and when

a pleasure stimulus occurs they are all made permanent. (Turing, 1948)”. Numerous inge-

nious electro-mechanical machines were built that demonstrated trial-and- error learning.

The earliest may have been a machine built by [32] that was able to find its way through

a simple maze and remember the path through the settings of switches. In 1951 W. Grey

14

Walter built a version of his “mechanical tortoise” (Walter, 1950) capable of a simple form

of learning. In 1952 Claude Shannon demonstrated a maze-running mouse named The-

seus that used trial and error to discover its way through a maze, with the actual maze

recalling the successful directions via magnets and relays under its floor. [14] described a

computerized simulation of a neural-network learning machine that learned by experimen-

tation. But their interests soon shifted from experimentation learning to generalization

and pattern recognition, that is, from reinforcement learning to supervised learning [10].

This brought about the confusion about the relationship between types of learning. Many

researchers believed that they were studying reinforcement learning when they were actu-

ally studying supervised learning. For example, pioneers of artificial neural network such

as Rosenblatt(1962) and Widrow and Hoff(1960) were clearly motivated by reinforement

learning, they used the language of rewards and punishment yet the systems they examined

were supervised learning systems suitable for pattern recognition and perceptual learning.

Currently, some reseachers blur the distinction between these types of learning. One exam-

ple is that, some artifial neural network textbooks have used the term“trial-and-error” to

describe networks that are learning from training examples. This is a justifiable disarray

on the grounds that these networks use error information to update connection weights,

yet this misses the essential character of trial-and-error learning as choosing actions on the

basis of evaluative feedback that does not depend on knowledge of what the correct action

should be.

In the 1960s the terms “reinforcement” and “reinforcement learning” were used in the

engineering literature , probably for the first time to describe engineering uses of trial-and-

error learning (e.g., Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren,

1970). In particular, influential was Minsky’s paper “Steps Toward Artificial Intelligence”

[22] which discussed several issues relevant to trial-and-error learning, including prediction,

expectation, and what he called the basic credit-assignment problem for complex reinforce-

ment learning systems.

15

Chapter 3

A Posteriori Error Estimates for

Finite Element Approximations

The a posteriori error estimation of finite element approximations of elliptic boundary value

problems have reached some state of maturity. A posteriori error estimates are computable

quantities in terms of the discrete solution and data, which are instrumental for adaptive

mesh refinement (and coarsening), error control, and equidistribution of the computational

effort.

There are different concepts such as

• Residual type a posteriori error estimators

• Gradient recovery(ZZ) type a posteriori error estimators

• Hierarchical type a posteriori error estimators

• Error estimators based on local averaging

• Error estimators based on the goal oriented weighted dual approach

In this research , our focus will be on residual type estimators owing to relatively

cheap computational cost as compared to other estimators and gradient recovery(ZZ)

estimators.

16

3.1 A Posteriori Error Estimators

Lets consider the following model problem

Let Ω be bounded simply connected polygonal domain in Euclidean space R2 with bound-

ary Γ = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅ and consider the elliptic boundary value problem

Lu := −∇ · a ∇ u = f in Ω

u = 0 on ΓD

n.a ∇ u = g on ΓN ,

(3.1)

where f ∈ L2(Ω), g ∈ H1/2(ΓN) and a = (aij)
2
i,j=1 is supposed to be a matrix-valued

function with entries aij ∈ L∞(Ω), that is symmetric, aij(x) = aji(x) for almost all x

∈ Ω, 1 ≤ i, j ≤ 2 and uniformly positive definite in the sense that for almost all x ∈ Ω

2∑
i,j=1

ai,jξiξj ≥ α |ξ|2 ,

ξ ∈ R2, α > 0

The vector n denotes the exterior unit normal vector on ΓN . We further set

−
α: = max

1≤i,j≤2
||aij||∞

Setting V := {v ∈ H1(Ω)| v|ΓD
= 0}, the weak formulation of (3.1) is as follows:

Find u ∈ V such that

a(v, u) = l(v), v ∈ V

where

a(v, u) :=

∫
Ω

a ∇ v · ∇ u dx. v, u ∈ V

l(v) :=

∫
Ω

f vdx+

∫
ΓN

g v v ∈ V

(3.2)

For a given geometrically conforming simplicial triangulation Th of Ω we denote by

Vh := {vh ∈ V |vh|K ∈ P1(K), K ∈ Th} the trial space of continous, piecewise linear finite

17

elements with respect to Th. Note that Pk(K), k ≥ 0, denotes the linear space of polyno-

mials of degree ≤ k on K.

We will refer to Nh(D) and Eh(D), D ⊆
−
Ω as the sets of vertices and edges of Th on D.

The conforming P1 approximation of 3.1 reads as follows:

Find uh ∈ Vh : such that

a(uh, vh) = l(vh), vh ∈ Vh (3.3)

Definition 3.1.1. Existence and uniqueness of solution.

For the existence and uniqueness of a solution to the variational form in 3.2, we define the

V-elliptic bilinear form as follows and result to the Lax-Milgram theorem for its establish-

ment.

A bilinear form a(·, ·) : V × V 7→ R is called, V− elliptic if there exists a constant α > 0

such that

|a(u, v)| ≤ α||u||2v, u ∈ V (3.4)

Theorem 3.1.2. Lax-Milgram Lemma

Let V be a Hilbert space with dual V ∗ and assume that a(·, ·) : V × V 7→ R is bounded,

V− elliptic bilinear form and l ∈ V ∗. Then, the variational equation 3.2 admits a unique

solution u ∈ V .

Now, assuming that
−
uh ∈ Vh is some iterative approximation of uh ∈ Vh, we are

interested in the total error

e := u− −
uh (3.5)

which is the sum of the discretization error ed := u − uh and the iteration error

eit := uh−
−
uh. It is easy to see that the total error e is in V := H1

0,ΓD
(Ω) and satisfies the

error equation

a(e, v) = r(v), v ∈ V, (3.6)

18

where r(.) stands for the residual with respect to the computed approximation
−
uh

r(v) :=

∫
Ω

fv dx+

∫
ΓN

gv dσ − a(
−
uh, v), v ∈ V (3.7)

We are interested in cheaply computable a posteriori error estimator η of the total

error e consisting of elementwise error contributions ηK , K ∈ Th and edgewise error con-

tributions ηE, E ∈ Eh in the sense that

η2 =
∑
K∈Th

η2
K +

∑
E∈Eh

η2
E (3.8)

which does provide a lower and an upper bound for e according to

γ η ≤ ||e||1,Ω ≤ Γη (3.9)

with constants 0 < γ ≤ Γ depending only on the ellipticity constants and on the shape

regularity of the triangulation Th.

We may use the local error terms ηK and ηE as a criterion for local refinement of the

elements K ∈ Th. Among several refinement strategies, the so called mean-value

strategy is as follows:

−
ηK :=

1

nK

∑
K∈Th

nK

−
ηE :=

1

nE

∑
E∈Eh

nE

(3.10)

where nK := card Th and nE := card Eh.

Mark an element K ∈ Th and an edge E ∈ Eh for refinement, if

ηK ≥ σ
−
ηK

ηE ≥ σ
−
ηE

(3.11)

where 0 < σ ≤ 1 is some appropriate safety factor, e.g , σ = 0.9

Definition 3.1.3. Efficient and Reliable a posteriori error estimators

19

An a posteriori error estimator η satisfying

||e||1,Ω ≤ Γη (3.12)

is called reliable, since it ensures a sufficient refinement in the sense that the H1-norm

of the total error e will be bounded by a quantity of the same order of magnitude as a

user-prescribed accuracy, if this accuracy is tested by η.

On the other hand, an a posteriori error estimator η for which

γη ≤ ||e||1,Ω (3.13)

is said to be efficient, since it underestimates the H1-norm of the total error e and thus

prevents too much refinement.

3.2 Residual Based a Posteriori Error Estimators

The residual based a posteriori error estimator can be derived by viewing the residual as

an element of the dual space V and evaluating it with respect to the dual norm.

3.2.1 Upper Bound for the Total Error

An important tool in the construction of an upper bound for the total error is Clément’s

interpolation operator and Weighted Clément’s interpolation operator which are

defined as follows:

Definition 3.2.1. Clément’s interpolation operator

For p ∈ Nh(Ω)∪Nh(ΓN) we denote by ϕp the basis function in Vh with supporting point

p and we refer to Dp as the set

Dp :=
⋃
{K ∈ Th|p ∈ Nh(T)}.0 (3.14)

We refer to πp as the L2-projection onto P1(Dp), i.e,

20

Figure 3.1: Clément’s interpolation operator(definition)

(π(v), w)0,Dp = (v, w)0,Dp , w ∈ P1(Dp)

where (., .)o,Dp stands for the L2-inner product on L2(Dp) ∗ L2(Dp)

Then, Clément’s interpolation operator PC is defined as follows

PC : L2(Ω)→ Vh

PCv :=
∑

p∈Nh(Ω)∪Nh(ΓN)

πp(v)ϕp
(3.15)

In order to establish local approximation properties of Clément’s interpolation opera-

tor, for K ∈ Th and E ∈ Eh(Ω) ∪ Eh(ΓN) we introduce sets

D
(1)
K :=

⋃
{K ′ ∈ Th|Nh(K

′) ∩Nh(K) 6= ∅} (3.16)

D
(1)
E :=

⋃
{K ′ ∈ Th|Nh(E) ∩Nh(K

′) 6= ∅} (3.17)

21

Figure 3.2: Clément’s interpolation operator(properties)

Definition 3.2.2. Weighted Clément-type interpolation Let ∂2Th be the set of nodes,

Φz be the basic function of Vh on z ∈ ∂2Th, ωz = suppΦ(x) and set

ψz =
φz
ψ
, ψ =

∑
z∈Λ

φz

where Λ = ∂2Th\∂Ω. For v ∈ V, the weighted Clément-type interpolation of v is defined by:

πv =
∑
z∈Λ

vzφz ∈ Vh, vz =
(ψz, v)

(φz, 1)

Theorem 3.2.3. Approximation properties of Clément’s interpolation opera-

tors.

For K ∈ Th and E ∈ Eh(Ω) ∪ Eh(ΓN). Let D
(1)
K and D

(1)
E be given by (25) and PC be

Clément’s interpolation operator as given by (24). Then, there exist constants Cv > 0, 1 ≤

v ≤ 5, depending only on the shape regularity of Th such that for all v ∈ Vh:

|PC v||0,K ≤ C1 ||v||0,D(1)
K
, (3.18)

22

||PC v||0,E ≤ C2 ||v||0,D(1)
E ,

(3.19)

||∇ PCv||0,K ≤ C3 ||∇ v||
0,D

(1)
K
, (3.20)

||v − PC v||0,K ≤ C4 hK ||v||1,D(1)
K
, (3.21)

|v − PC v||0,E ≤ C5 h
1/2
E ||v||

1,D
(1)
E

(3.22)

where hK := diam K and hE := |E|.

Further, there exist the constants C6, C7 > 0 depending only on the shape regularity of Th
such that:

(
∑
K∈τh

||v||2
µ,D

(1)
K

)1/2 ≤ C6 ||v||µ,Ω, 0 ≤ µ ≤ 1 (3.23)

(
∑

E∈Eh(Ω)∪Eh(ΓN)

||v||2
µ,D

(1)
E

)1/2 ≤ C7 ||v||µ,Ω, 0 ≤ µ ≤ 1 (3.24)

Furthermore if v ∈ V , then the following holds for the weighted Clément’s interpolation

operator π

∑
K∈Th

||h−1
K (v − πv)||20,K ≤ C|v|21,Ω, ∀v ∈ V (3.25)

|πv|21,Ω ≤ C|v|21,Ω ∀v ∈ V (3.26)

Again, ∀f ∈ L2(Ω), ∫
Ω

f(v − πv) ≤
∑
z∈Λ

∫
ωz

|f − fz| |v − vzψ|, (3.27)

∑
z∈Λ

∫
ωz

h−2|v − vzψ|2 ≤ C|v|21,Ω (3.28)

where fz is a constant on ωz and hz = maxK⊂ωzhK

We have now provided all prerequisites to establish an upper bound for the total error e

measured in the H1-norm. For the functions vh ∈ W0(Ω; Th). We further refer to [Vh]J as

the jump across the common edge E ∈ Eh(Ω) of two adjacent elements K1, K2 ∈ Th.

[vh]J := vh|K1 − vh|K2 (3.29)

23

Theorem 3.2.4. Upper Bound for the Total Error

There exist constants ΓR,Γosc > 0 and Γit > 0 depending only on the elipticity constants

and the shape regularity of Th such that:

||e||1,Ω ≤ ΓRηR + Γoscosc+ ηit||eit||1,Ω, (3.30)

where the element and edge residuals are given by

ηR :=
3∑
v=1

η
(v)
R

η
(1)
R := (

∑
K∈Th

h2
T ||πhf − L

−
uh ||20,K)1/2

η
(2)
R := (

∑
E∈Eh(ΓN)

hE||πhg − nE.a ∇
−
uh ||20,E)1/2

η
(3)
R := (

∑
E∈Eh(Ω)

hE||[nE.a ∇
−
uh]J ||20,E)1/2

(3.31)

and Osc stnads for the data oscillations

osc := (
∑
K∈Th

osc2
K +

∑
E∈Eh(ΓN)

osc2
E)1/2

oscK := hT ||f − πhf ||0,K , oscE := hE||g − πhg||0,E,
(3.32)

Proof. Setting v = e in 3.6, we obtain

α ||e||21,Ω ≤ a(e, e) = r(e) = r(PCe) + r(e− PCe) (3.33)

Taking advantage of 3.2, for the first term on the right-hand side of 3.33 we get

r(PCe) =

∫
Ω

f PCe dx +

∫
ΓN

g PCe dσ − a(
−
uh, PCe)

=
∑
K∈Th

a|K(uh−
−
uh, PCe)

(3.34)

Using 3.21, the Schwarz inequality, and observing 3.24, it follows that

r(PCe) ≤
−
α C3

∑
K∈Th

||uh−
−
uh ||1,D(1)

K

≤ −
α C3(

∑
K∈Th

||uh−
−
uh ||21,K)1/2(

∑
K∈Th

||e||2
1,D

(1)
K

)

≤−α C3 C6 ||eit||1,Ω ||e||1,Ω

(3.35)

24

On the other hand, for the second term on the right-hand side of 3.33, Green’s formula

yields

r(e− PCe) =

∫
Ω

f (e− PCe) dx+

∫
ΓN

g (e− PCe) dσ

+
∑
K∈Th

∫
K

∇ · a ∇ −
uh︸ ︷︷ ︸

=−L −uh

(e− PCe)dx

−
∑
K∈Th

∫
∂K

n∂K .a ∇
−
uh c

=
∑
K∈Th

∫
K

(πhf − L
−
uh)(e− PCe)dx

+
∑

E∈Eh(Ω)

∫
E

[
nE. a ∇

−
uh

]
j
(e− PCe) dσ

+
∑

E∈Eh(ΓN)

∫
E

(πhg − nE. a ∇
−
uh)(e− PCe) dσ

+
∑
K∈Th

∫
K

(f − πhf) (e− PCe) dx

+
∑

E∈Eh(ΓN)

∫
E

(g − πhg) (e− PCe)dσ

In view of 3.19,3.20 and 3.24, 3.30 it follows that

r(e− PCe) ≤ C1 C6(
∑
KTh

h2
K ||πhf − L

−
uh ||20,K)1/2 ||e||1,Ω

+ C2C7(
∑

E∈Eh(Ω)

hE||
[
nE.a∇

−
uh

]
J
||20,E)1/2||e||1,Ω

+ C2C7(
∑

E∈Eh(ΓN)

hE||πhg − nE.a ∇
−
uh ||20,E)1/2||e||1,Ω

+ C1 C6(
∑
K∈Th

h2
K ||f − πhf ||20,K)1/2||e||1,Ω

+ C2 C7(
∑

E∈Eh(ΓN)

hE(||g − πhg||20,E)1/2||e||1,Ω

(3.36)

Using 3.35, 3.36 in 3.33 the assertion follows with

25

ΓR = Γosc := α−1max(C1C6, C2C7) and Γit := α−1 −α C3C6

For the construction of a lower bound, we will now show that the local contriburions

η
(v)
R,K := η(v)R|K , K ∈ Th, 1 ≤ v ≤ 3

of the residual based error estimator ηR do locally provide lower bounds for the total error

e. For this purpose we need appropriate localized polynomial functions defined on the

elements K of the triangulation and the edges E ∈ Eh(Ω)∩E ∈ Eh(ΓN), respectivity. Such

functions are given by the triangle-bubble functions ψK and the edge-bubble func-

tions ψE.

In particular, denoting by λKi , 1 ≤ i ≤ 3, the barycentric coordinates of K ∈ Th, then

the triangle-bubble function ψK is defined by means of

ψK := 27λK1 λ
K
2 λ

K
3 (3.37)

Note that supp ψK = Kint, i.e, ψK |δK = 0, K ∈ Th
On the other hand, for E ∈ Eh(Ω) ∪ Eh(ΓN) and K ∈ Th such that E ⊂ δK, and

pki ∈ Nh(T), 1 ≤ i ≤ 2, we introduce the edge-bubble functions ψE according to

ψE := 4λK1 λ
K
2 (3.38)

Note that ψE|E′ = 0 for E ′ ∈ Eh(Ω), E ′ 6= E.

The bubble functions ψK and ψE have the following important properties that can be easily

verified taking advantage of the affine equivalence of the elements:

Lemma 3.2.5. Basic Properties of the Bubble Functions: Part I

There exist constants Cv > 0, 8 ≤ v ≤ 12, depending only on the shape regularity of the

triangulations Th such that

||ph||20,K ≤ C8

∫
K

p2
hψKdx, ph ∈ P1(K) (3.39)

26

||ph||20,E ≤ C9

∫
K

p2
hψEdσ, ph ∈ P1(E) (3.40)

||phψK ||1,K ≤ C10h
−1
K ||ph||0,K , ph ∈ P1(K) (3.41)

||phψK ||0,K ≤ C11||ph||0,K , ph ∈ P1(K) (3.42)

||phψK ||0,E ≤ C12||ph||0,E, ph ∈ P1(E) (3.43)

For functions ph ∈ P1(K), E ∈ Eh(Ω) ∪ Eh(ΓN) we further need an extension pEh ∈ L2(K)

where K ∈ Th such that E ⊂ δK. For this purpose we fix some E ′ ⊂ δK,E ′ 6= E and for

x ∈ K denoted by xE that point on E such that (x− xE)||E ′ For ph ∈ P1(E) we then set

pEh := ph(xE) (3.44)

Figure 3.3: Level lines of the extension pEh

Further, for E ∈ Eh(Ω) ∪ Eh(ΓN) we define D
(2)
E as the union of elements K ∈ Th

containing E as a common edge.

D
(2)
E :=

⋃
{K ∈ Th|E ∈ E(K)} (3.45)

27

Figure 3.4: The set D
(2)
E

Lemma 3.2.6. Basic Properties of the Bubble Functions: Part II

There exist constants Cv > 0, 13 ≤ v ≤ 14, depending only on the shape regularity of

the triangulations Th such that

||pEhψE||1,D(2)
E
≤ C13h

−1/2
E ||ph||0,e, ph ∈ P1(E) (3.46)

|pEhψE||0,D(2)
E
≤ C13h

1/2
E ||ph||0,E, ph ∈ P1(E) (3.47)

Further there exists a constant C15 > 0 independent of hK , hE such that for all v ∈ V and

µ = 0.1

(
∑

E∈Eh(Ω)∪Eh(ΓN)

h1−µ
E ||v||2

µ,D
(2)
E

)1/2 ≤ C15(
∑
K∈Th

h1−µ
K ||v||2µ,K)1/2 (3.48)

We are now able to prove that up to higher order terms the estimator ηRalso does provide

a lower bound for the total error e:

28

Theorem 3.2.7. Lower bound for the total error

There exist constants γR, γE > 0, depending only on
−
α and on the shape regularity of

Th such that

γRηR − γEosc ≤ ||e||1,Ω, (3.49)

where ηR and osc are given as in the previous theorem. The theorem can be proved by

series of results which establish upper bounds for the local contributions η
(v)
R,T ≤ v ≤ 3 of the

estimator ηR

Lemma 3.2.8. Upper bounds for the local contributions

1. Let K ∈ Th, there there holds :

hK ||πhf − L
−
uh ||0,K ≤

−
α C8 C10||e||1,K + C8 C11hK ||f − πhf ||0,K (3.50)

2. Let E ∈ (Ω). Then there holds:

h
1/2
E ||[nE · ∇

−
u]J ||0,E ≤

−
α C9C13||e||1,D(2)

E

+C9C14hE||f − πhf ||0,D(2)
E

+ C9C14hE||πhf − L
−
uh ||0,D(2)

E

(3.51)

3. Let E ∈ Eh(ΓN). Then there holds:

h
1/2
E ||πhg − nE · ∇

−
uh ||0,E ≤

−
α C9C13||e||1,D(2)

E
+ C9C12h

1/2||g − πhg||0,E

+C9C14hE||f − πhf ||0,D(2)
E

+ C9C14hE||πhf − L
−
uh ||0,D(2)

E

(3.52)

Proof. 1 Set ph := πhf . Observe that ψK |δK = 0, by Green’s formula

a|K(
−
uh, ph, ψK) = −

∫
K

∇ · a∇ −uh phψK dx+

∫
δK

nδK .a∇
−
uh phψK︸ ︷︷ ︸

=0

dσ (3.53)

29

using 3.40,3.42 and 3.43 and taking advantage of 3.6 and 3.53 it follows that

||πhf − L
−
uh ||20,K ≤

∫
K

(πhf − L
−
uh)πhψKdx

= C8(

∫
K

fπhψK dx− a|K(
−
uh πhψK) +

∫
K

(πhf − f)πhψK)

= C8

(
a|K(e, πhψK) +

∫
K

(πhf − f)πhψKdx
)

≤ C8C10
−
α h−1||e||1,K ||ph||0,K + C8C11||πhf − f ||0,K ||ph||0,K

≤ −
α C8 C10||e||1,K + C8 C11hK ||f − πhf ||0,K

Which proofs equation 3.50

Proof. 2 Set pEh := [nE.a∇
−
uh]J . From ψE|E′ = 0, E ′ 6= E, Green’s formula yields∫

∂D
(2)
E

n
∂D

(2)
E
.a∇ −uh pEhψEdσ = a|

D
(2)
E

(
−
uh, p

E
h , ψE) +

∫
D

(2)
E

∇ · .a∇ −uh︸ ︷︷ ︸
=−L−uh

pEhψKdx (3.54)

If we use 3.41, 3.47 and 3.48 and observe 3.6, 3.54 it follows that

||[n
∂D

(2)
E
.a∇ −uh]J ||20,E ≤ C9

∫
E

[n
∂D

(2)
E
.a∇ −uh]JpEhψEdσ

=

∫
∂D

(2)
E

[n
∂D

(2)
E
.a∇ −uh]JpEhψEdσ

= C9

(
a|
D

(2)
E

(
−
uh, p

E
h , ψE)−

∫
D

(2)
E

fpEhψEdx

+

∫
D

(2)
E

(f − πhf)pEψE dx +

∫
D

(2)
E

(πhf − L
−
uh)p

EψE dx
)

= −C9a|D(2)
E

(e, pEhψE) + C9

(∫
D

(2)
E

(f − πhf)pEhψEdx +

∫
D

(2)
E

(πhf − L
−
uh)p

EψE dx
)

≤ C9C13
−
α h

−1/2
E ||e||

1,D
(2)
E
||pEh ||0,E

+ C9C13h
1/2
E ||f − πhf ||0,D(2)

E
||pEh ||0,E + C9C14h

1/2
E ||πh − L

−
uh ||0,D(2)

E
||pEh ||0,E

from which we readily deduce 3.51

30

Proof. 3 Set pEh := πhg− nE.a∇
−
uh observing ψE|E′ = 0, E ′ 6= E, Green’s formula yields∫

E

nE.a∇
−
uh ψE dσ

=

∫
∂D

(2)
E

n
∂D

(2)
E
.a∇ −uh ψE dσ

= a|
D

(2)
E

(
−
uh, p

E
h , ψE) +

∫
D

(2)
E

∇ · a∇ −
uh︸ ︷︷ ︸

=−L−uh

pEhψEdx

(3.55)

Now, using 3.41, 3.44, 3.47 and 3.48 and taking advantage of 3.6,3.55 we get

||πhg − nE.a∇
−
u ||0,E

≤ C9

∫
E

(πhg − nE.a ∇
−
u |)pEhψEdσ

= C9

(∫
D

(2)
E

f pEh ψE dx+

∫
E

g pEhψE dσ

− a|
D

(2)
E

(
−
uh, p

E
h , ψE) +

∫
D

(2)
E

(πhf − f) pEh ψE dx

+

∫
E

(πh g − g) f pEh ψEdσ −
∫
D

(2)
E

(πh f − L
−
uh)dx

)
= C9a|D(2)

E
(e, pEh , ψE) + C9

(∫
D

(2)
E

(πhf − f) pEh ψE dx

+

∫
E

(πh g − g) f pEh ψEdσ −
∫
D

(2)
E

(πh f − L
−
uh)dx

)
C9C13

−
α h

−1/2
E ||e||

1,D
(2)
E
‖|pEh ||0,E

+ C9C14h
1/2
E ||πhf − f ||0,D(2)

E
||pEh ||0,E

+ C9C12||πhg − g||0,D(2)
E
||pEh ||0,E

+ C9C14h
1/2
E ||πhf − L

−
uh ||0,D(2)

E
||pEh ||0,E

3.3 Gradient Recovery Estimator

Gradient recovery type a posteriori error estimate was introduced by Zienkiewicz and Zhu.

On the basis of superconvergence analysis, it has been proved that for the piecewise linear

31

finite element approximation of linear elliptic equation, when the partition is uniform and

the solution is smooth enough,

η = |u− uh|1,Ω + o(h) (3.56)

where η is the gradient recovery type a posteriori error estimate. We derive the gradient

recovery type a posteriori error estimate for the finite element approximation of 3.2. The

principle results is that:

c|u− uh|1,Ω − E ≤ η ≤ c|u− uh|1,Ω + E∗ (3.57)

Definition 3.3.1. In order to construct a posteriori error estimate, we need to define a

gradient recovery operator gvh on Vh which satisfies the following

gvh =
∑

z∈∂2Th

gvh(z)φz, gvh(z) =
Jz∑
j=1

αjz(∇uh)Kj
z
∀vh ∈ Vh

3.3.1 Upper Bound for the a Posteriori Error Estimates

We give a simple proof of the upper bound of a posteriori error estimates with reference

to the gradient recovery, which shares similar properties with residual type a posteriori

estimates.

Theorem 3.3.2. Let u and uh be the solutions of (3.2) and (3.3), respectively. Assume

that f ∈ L2(Ω), a ∈ L∞(Ω) ∩H1(Ω), then

|u− uh|21,Ω ≤ Cη2 + CE2 (3.58)

where

η2 =
∑
K

η2
K =

∑
K

||guh −∇uh||20,k,

E2 =
∑
z∈Λ

∫
ωz

h2
z|f−

−
fz |2 +

∑
z∈Λ

∫
ωz

h2
z|(∇a−∇az)∇uh|2

32

Proof. Let e = u − uh, eI = πe ∈ Vh be the weighted Clément-type interpolation of e. It

follows from 3.3 and 3.25 that

c|u− uh|21,Ω ≤
∫

Ω

a∇(u− uh)∇e =

∫
Ω

a∇(u− uh)∇(e− eI)

and ∫
Ω

a∇u∇(e− eI) =

∫
Ω

f(e− eI).

Let G be the recovery operator as defined, then

−
∫

Ω

a g uh∇(e− ei) =

∫
Ω

∇ · (a g uh)(e− eI).

Hence,

c|u− uh|21,Ω ≤
∫

Ω

f(e− eI) +

∫
Ω

∇ · (a g uh)(e− eI) +

∫
Ω

a(g uh −∇uh)∇(e− eI)

(3.59)

= I1 + I2 + I3 (3.60)

It follows from properties 3.25,3.26, 3.27 and 3.28 that

I1 ≤ C|e|1,Ω
(∑
z∈Λ

∫
Ω

h2
z|f − f z|2

) 1
2 ≤ CE2 +

c

6
|e|21,Ω (3.61)

Again,

I2 =

∫
Ω

∇ · (a g uh)(e− eI) ≤
∑
z∈Λ

∫
ωz

∣∣∣∇ · (a g uh)−∇azg uh(z)
∣∣∣|e− ezψ|

and

∑
z∈Λ

∫
ωz

h−2
z |e− ezψ|2 ≤ C|e|21,Ω.

Then we have

I2 ≤
c

6
|e|21,Ω + C

∑
z∈Λ

∑
K⊂ωz

h2
z

∫
K

∣∣∣∇ · (a g uh)−∇ah g uh(z)
∣∣∣2.

33

On any element K, ∇ · (a∇uh) = ∇a∇uh, hence we can deduce the following,∣∣∣∇ · (a g uh)−∇ah g uh(z)
∣∣∣
≤
∣∣∣∇ · (a g uh − a∇uh)∣∣∣+

∣∣∣(∇a−∇az)∇uh∣∣∣+
∣∣∣∇az(∇uh − g uh(z)

)∣∣∣
and ∑

z∈Λ

∑
K⊂ωz

h2
z

∫
K

∣∣∣(∇a−∇az)∇uh∣∣∣2 =
∑
z∈Λ

∫
ωz

∣∣∣(∇a−∇az)∇uh∣∣∣2 ≤ E2.

Now, since g uh,∇uh are piecewise polynomials on the element K, it follows from inverse

inequality property that,∑
z∈Λ

∑
K⊂ωz

∫
K

h2
z

∣∣∣∇ · (a g uh − a∇uh)∣∣∣2
≤ C

∑
z∈Λ

∑
K⊂ωz

h2
z||a||20,∞,K ||g uh −∇uh||21,K

+ ≤ C
∑
z∈Λ

∑
K⊂ωz

h2
z||a||21,K ||g uh −∇uh||21,∞,K

≤
∑
K

|g uh −∇uh||20,K ≤ C|g uh −∇uh||20,Ω = Cη2,

and∑
z∈Λ

∑
K⊂ωz

∫
K

h2
z

∣∣∣∇az(∇uh −Guh(z)
)∣∣∣2
≤
∑
z∈Λ

∑
K⊂ωz

h2
z

∣∣∣|∇ah∣∣∣|20,K ||g uh −∇uh||20,∞,K
≤
∑
K

||g uh −∇uh||20,K ≤ C||g uh −∇uh||20,Ω = Cη2

Then we have

I2 ≤ Cη2 + CE2 +
c

6
|e|21,Ω (3.62)

By Schwarz inequality,

I3 ≤ C||g uh −∇uh||0,Ω|e|1,Ω ≤ Cη2 +
c

6
|e|21,Ω (3.63)

Which completes the proof.

34

3.3.2 Lower Bound for the a Posteriori Error Estimates

In this section, a brief presentation of the lower bound for a posteriori error estimates in

reference to the gradient recovery and its prrof is given.

Theorem 3.3.3. Let u and uh be the solutions of (3.2) and (3.3), respectively. Assume

that f ∈ L2(Ω), a ∈ L∞(Ω) ∩H1(Ω), then

η2 ≤ C|u− uh|21,Ω + CE2
∗ , (3.64)

where η is defined in theorem 3.3.2,

E2
∗ =

∑
K

h2
z

∫
K

|f−
−
fz |2 +

∑
k

∫
K

h2
z|(∇a−∇az)∇uh|2

, where

Proof. ∀K ∈ Th, let SK =
⋃
K′∩K 6=∅ Using the definition of g uh(z), then on the element

K,

|∇uh − g uh|2 =

∣∣∣∣∣(∇uh)K − ∑
z∩K 6=∅

φz

(
Jz∑
j=1

αjz(∇uh)Kj
z

)∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
z∩K 6=∅

φz

(
Jz∑
j=1

αjz((∇uh)K − (∇uh)Kj
z
)

)∣∣∣∣∣
2

≤ C
∑

K′⊂SK

∣∣∣(∇uh)K − (∇uh)K′
∣∣∣2.

Now, taking into an account, the edge elements E ∈ Eh(Ω), the unit outward normal vector

n and the jump term across the common edges [Vh]j, we can deduce following. Note also

that ∀K,K ′ ⊂ SK , there exist a finite positive integer mk, which is independent of h, and

elements Ki ⊂ SK , i = 0, 1, ...,mk, such that Ki−1 ∩Ki = Ei, where Ei ⊂ SK are edges of

elements, Ei ∩ ∂SK = ∅, and K = K0, K
′
= Kmk. Hence,

∣∣∣(∇uh)K − (∇uh)K′
∣∣∣ =

∣∣∣∣∣
mK∑
i=1

[∇uh]Ei

∣∣∣∣∣ ≤ ∣∣∣
mK∑
i=1

[∇uh]Ei

∣∣∣ ≤ ∑
E⊂SK\∂SK

[∇uh]E.

35

Since uh is continous on Ω, then [a(∂uh)
∂t

]E = 0 if E∩∂Ω= ∅, where t is the tangent direction

of the edge E. Hence

∣∣∣[∇uh]E∣∣∣ ≤ C
∣∣∣[a∇uh]E∣∣∣ = C

∣∣∣∣∣
[
a
∂uh
∂n

]
E

∣∣∣∣∣ = C
∣∣∣[a∇uh · n]E

∣∣∣,
if E ∩ ∂Ω = ∅, then

η2 = ||g uh −∇uh||20,Ω ≤ C
∑
K

h2
E

∑
K⊂SK

∣∣∣[a∇uh · n]E

∣∣∣2 ≤ ∑
E∩Ω=∅

hE

∫
E

[a∇uh · n]2E. (3.65)

∑
E∩Ω=∅

hE

∫
E

[a∇uh · n]2E ≤ C|u− uh|21,Ω + C
∑
K

h2
E

∫
K

∣∣f +∇ · (a∇uh)
∣∣2, (3.66)

and ∑
K

h2
E

∫
K

∣∣f +∇ · (a∇uh)
∣∣2 (3.67)

≤ C|u− uh|21,Ω + C
∑
K

h2
E

∫
K

∣∣f − f ∣∣2 +
∑
K

h2
E

∫
K

|(∇a−∇az)∇uh|2. (3.68)

Therefore from 3.65 - 3.67, we have

η2 ≤ C|u− uh|21,Ω + CE2
∗ , (3.69)

which completes the proof.

This chapter was referenced from [16] [12]

36

Chapter 4

Markov Decision Process

In this chapter we introduce the formal problem of Markov decision processes, or MDPs,

which we will seek solution to. This problem involves evaluative feedback, and also an

associative aspect—choosing different actions in different situations. MDPs are classical

formalization of sequential decision making, where actions influence not just immediate

rewards, but also subsequent situations, or states, and through those future rewards. Thus

MDPs involve delayed reward and the need to tradeoff immediate and delayed reward. In

Bandit problems we estimate the value q∗(a) of each action a, but in MDPs our focus is to

estimate the value q∗(s, a) of each action a in each state s, or we estimate the value v∗(s) of

each state given optimal action selections. These state-dependent quantities are essential

to accurately assigning credit for long-term consequences to individual action selections.

MDPs are a mathematically idealized form of the reinforcement learning problem for which

precise theoretical statements can be made. We introduce key elements of the problem’s

mathematical structure, such as returns, value functions, and Bellman equations [29].

4.1 The Agent-Environment Interface

MDPs are intended to be a outlining of the problem of learning from interaction to achieve

a goal. The learner and decision maker is called the agent. The thing it interacts with,

comprising everything outside the agent, is called the environment. These interact con-

tinually, the agent selecting actions and the environment responding to these actions and

presenting new situations to the agent. The environment also gives rise to rewards, special

numerical values that the agent seeks to maximize over time through its choice of actions

37

[30].

Figure 4.1: Agent and Environment

At each step t, the agent

• Executes action At

• Receives observation Ot

• Receives a scalar rewrad Rt

The environment

• Receives action At

38

• Produce observation Ot+1

• Produce scalar reward Rt+1

at every incremental step of t

Figure 4.2: Agent and Environment

4.1.1 History and State

The history is the sequence of observations, actions and rewards. i.e all observable vari-

ables up to time t. Ht = O1, R1, A1, ..., At−1, Ot, Rt. What happens next depends on the

history; the agent select actions and the environment select observations/rewards. State

is the information used to determine what happens next. Formally speaking, the state is a

function of the history: St = f(Ht)

39

Environment State: The environment state Set is the environment’s private represen-

tation, i.e whatever data the environments uses to pick the next observation/reward. The

environments state is usually not visible to the agent. Even if Set is visible, it may contain

irrelevant information.

Figure 4.3: Environment State

Agent State: The agent state Sat is the agent’s internal representation, i.e whatever

information the agent uses to pick the next action. This is the information used by the

reinforcement learning algorithms. It can be any function of history Sat = f(Ht)

40

Figure 4.4: Agent State

In general, a Markov decision process of a reinforcement learning agent can be repre-

sented in a pictorial form as:

41

Figure 4.5: The agent-environment interaction in a Markov decision process

4.2 Markov Process

Markov decision processes formally describe an environment for reinforcement learning.

Where the environment is fully observable, i.e the current state completely characterises

the process. Most reinforcement learning problems and infact almost all can be formalised

as Markov Decision Processes(MDPs) e.g

• Optimal control primarily deals with continous MDPs.

• Partially observable problems can be converted to MDPs.

• Bandits are MDPs with one state.

4.2.1 Markov Property

In a Markov decision process, the probabilities given by p completely characterize the

environment’s dynamics. That is, the probability of each possible value for St and Rt

depends only on the immediately preceding state and action, St−1 and At−1, and not at

42

all on the earlier states and actions. This is best viewed as restriction not on the decision

process, but on the state. The state must include information about all aspects of the past

agent–environment interaction that make a difference for the future. If it does, then the

state is said to have the Markov property, which states that:

”The future is independent of the past given the present”

Definition 4.2.1. A state St is Markov if and only if

P [St+1|St] = P [St+1|S1, S2, ...St] (4.1)

The state captures all relevant information from the history, therefore the state is a suffi-

cient statistic of the future, i.e once the state is known, the history may be thrown away.

4.2.2 State Transition Matrix

For a Markov state s and successor state s
′
, the state transition probability is defined by

Pss′ = P
[
St+1 = s

′ |St = s
]

(4.2)

State transition matrix P defines transition probabilities from all states s to all successor

states s
′
, in essence, the state probabilities T (s, a, s

′
) specify the probability or chance of

ending up in state s
′

if taken an action a in state s

P = from

to

P11 ... P1n

.

.

.

Pn1 ... Pnn

(4.3)

where summation of each row of the matrix is one(1), that is for each state s and action a

∑
s′∈states

T (s, a, s
′
) = 1 (4.4)

43

such that T (s, a, s
′
) > 0

Rows indicate the current state and column indicate the transition.

A Markov process is memoryless random process. i.e a sequence of random states S1, S2, ...

with the Markov property.

Definition 4.2.2. A Markov Process(or Markov Chain) is a tuple 〈S,P〉

• S is a finite set of states

• P is a state transition probability matrix, given by 4.2

4.2.3 Example:Student Markov Chain

Figure 4.6: Student Markov Chain

44

From 4.2.3 we can deduce sample episodes starting from S1 = C1. S1, S2, ST

• C1 C2 C3 Pass Sleep

• C1 FB FB C1 C2 Sleep

• C1 C2 C3 Pub C2 C3 Pass Sleep

• C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Student Markov Chain Transition Matrix:

P =

C1 C2 C3 Pass Pub FB Sleep

C1 0 0.5 0 0 0 0.5 0

C2 0 0 0.8 0 0 0 0.2

C3 0 0 0 0.6 0.4 0 0

Pass 0 0 0 0 0 0 1.0

Pub 0.2 0.4 0.4 0 0 0 0

FB 0.1 0 0 0 0 0.9 0

Sleep 0 0 0 0 0 0 1.0

4.3 Markov Reward Process

In reinforcement learning, the goal of the agent is formalized in terms of a special signal,

called the reward, passing from the environment to the agent. A Markov reward process

can be defined as a Markov chain with values. At each time step, the reward is a simple

number, Rt ∈ <. Informally, the agent’s goal is to maximize the total amount of reward

it receives. This means maximizing not immediate reward, but cumulative reward in the

long run.

45

Definition 4.3.1. A Markov Reward Process is a tuple 〈S,P ,R, γ〉

• S is a finite set of states.

• P is a state transition probability matrix, given by 4.2.

• R is a reward function, Rs = E [Rt+1 |St = s].

• γ is a discount factor, γ ∈ [0, 1].

4.3.1 Example: Student Markov Reward Process

Figure 4.7: Student Markov reward process

46

Definition 4.3.2. Return

We have stated earlier that the agent’s goal is to maximize the cumulative reward it

receives in the long run. But the question is how might this be defined formally?. If the

sequence of rewards received after time step t is denoted by Rt+1, Rt+2, Rt+3, ..., then what

precise aspect of this sequence do we wish to maximize?. Generally, we seek to maximize

the expected return, where the return, denoted Gt, is defined as some specific function of

the reward sequence. We can therefore define the return Gt as the total discounted reward

from time-step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+k+1 (4.5)

• The discount γ ∈ [0, 1] is the present value of future rewards.

• The value of receiving reward R after k + 1 time-steps is γkR.

• This values immediate reward above delayed reward.

• γ close to 0 leads to ”myopic” evaluation.

• γ close to 1 leads to ”far-sighted” evaluation.

This approach makes sense in applications in which there is a natural notion of final

time step, that is, when the agent–environment interaction breaks naturally into subse-

quences, which we call episodes. Each episode ends in a special state called the terminal

state, followed by a reset to a standard starting state or to a sample from a standard dis-

tribution of starting states.

Although the return (4.5) is a sum of an infinite number of terms, it is still finite if the

reward is nonzero and constant if γ < 1. For example, if the reward is a constant +1, then

the return is:

Gt =
∞∑
k=0

γk =
1

1− γ
. (4.6)

47

4.3.2 Why Discounted

Most Markov reward and decision processes are discounted. Some of the possible reasons

are listed below;

• Mathematically convenient to discount rewards.

• Avoids infinite returns in cyclic Markov processes.

• Uncertainty about the future may not be fully represented.

• If the reward is financial, immediate rewards may earn more interest than delayed

rewards.

• Animal/human behaviour shows preference for immediate reward.

• It is sometimes possible to use undiscounted Markov reward processes (i.e γ = 1), e.g

if all sequences terminate.

Definition 4.3.3. Value Function

The value function v(s) gives the long-term value of state s. The state value function

v(s) of a Markov Reward Processes(MRP) is the expected return starting from state s

v(s) = E [Gt | St = s] (4.7)

4.3.3 Bellman Equation for MRPs

The value function can be decomposed into two parts

• immediate reward Rt+1

• discounted value of successor state γv(St+1)

48

v(s) = E [Gt | St = s]

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + ...| St = s

]
= E [Rt+1 + γ(Rt+2 + γRt+3 + ...)| St = s]

= E [Rt+1 + γGt+1 |St = s]

v(s) = E [Rt+1 + γv(St+1) |St = s]

(4.8)

Figure 4.8: Backup diagram for MRPs

v(s) = Rs + γ
∑
s′∈S

Pss′V (S
′
) (4.9)

4.3.4 Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R+ γPv (4.10)

where v is a column vector with one entry per state.

v(1)

.

.

.

v(2)

=

R1

.

.

.

Rn

+ γ

P11 ... P1n

.

.

.

Pn1 ... Pnn

v(1)

.

.

.

v(n)

(4.11)

49

4.3.5 Solving the Bellman Equation

The Bellman equation is a linear equation, therefore it can be solved directly:

v = R+ γPv

(I − γP)v = R

v = (I − γP)−1R

(4.12)

But the computational complexity is O(n3) for n states, therefore direct solution is only

possible for small MRPs.

There are many iterative methods for large MRPs, e.g

• Dynamic programming.

• Monte-Carlo evaluation.

• Temporal- Difference learning

4.4 Markov Decision Process

Definition 4.4.1. A Markov decision process(MDP) is a Markov reward process with de-

cisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple 〈S,A,P ,R, γ〉

• S is a finite set of states.

• A is a finite set of actions.

• P is a state transition probability matrix

Pa
ss
′ = P

[
St+1 = s

′|St = s, At = a
]

(4.13)

50

• R is reward function,

Ra
s = E

[
Rt+1 = s

′|St = s, At = a
]

(4.14)

• γ is a discount factor, γ ∈ [0, 1].

4.4.1 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions

of states (or of state–action pairs) that estimate how good it is for the agent to be in a given

state (or how good it is to perform a given action in a given state). The notion of “how

good” here is defined in terms of future rewards that can be expected, or, to be precise,

in terms of expected return. Of course the rewards the agent can expect to receive in the

future depend on what actions it will take. Accordingly, value functions are defined with

respect to particular ways of acting, called policies.

Definition 4.4.2. Policies

A policy π is a distribution over actions given states, Formally, a policy is a mapping

from states to probabilities of selecting each possible action. That is, Π : S 7→ A(s)

π(a|s) = P [At = a|St = s] (4.15)

A policy fully defines the behaviour of an agent. MDP policies depend on the current state

not the history, i.e Policies are stationary(time-independent), At ∼ π(.|St),∀t > 0.

Given an MDP M = 〈S,A,P ,R, γ〉 and a policy π, the state sequence S1, S2, ... is a

Markov process 〈S,Pπ〉.

The state and reward sequence S1, R2, S2, ... is a Markov reward processM = 〈S,Pπ,Rπ, γ〉

where

Pπ
s,s′

=
∑
a∈A

π(a|s)Pa
ss′

(4.16)

Rπ
s =

∑
a∈A

π(a|s)Ra
s (4.17)

51

Definition 4.4.3. Value Function

The state-value function vπ(s) of an MDP is the expected return starting from state

s, and then following policy π

vπ(s) = Eπ [Gt |St = s] (4.18)

The action-value function qπ(s, a) is the expected return starting from stete s, taking

action a, and then following policy π

qπ(s, a) = Eπ [Gt |St = s, At = a] (4.19)

4.4.2 Bellman Expectation Equation for Policy and Value func-

tions

The state-value function can again be decomposed into immediate reward plus discounted

value of successor state,

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s] (4.20)

The action-value function can similarly be decomposed,

qπ(s, a) = Eπ [Rt+1 + γqπ(St+1, At+1) | St = s, At = a] (4.21)

Definition 4.4.4. Bellman Expectation Equation of V state-value function V π

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (4.22)

52

Figure 4.9: Backup diagram for Bellman expectation equation for V π

Definition 4.4.5. Bellman Expectation Equation of Q action-value function Qπ

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′
vπ(S

′
) (4.23)

Figure 4.10: Backup diagram for Bellman expectation equation for Qπ

Definition 4.4.6. Bellman Expectation Equation for vπ

vπ(s) =
∑
a∈A

π(a |s)
(
Ra
s + γ

∑
s′∈S

Pa
ss′
vπ(S

′
)
)

(4.24)

53

Figure 4.11: Backup diagram for Bellman expectation equation for vπ

Definition 4.4.7. Bellman Expectation Equation for qπ

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a
′ |s′)qπ(s

′
, a
′
) (4.25)

54

Figure 4.12: Backup diagram for Bellman expectation equation for qπ

Definition 4.4.8. Bellman Expectation Equation in Matrix Form

The Bellman expectation equation can be expressed concisely using the induced MRP,

vπ = Rπ + γPπvπ (4.26)

with direct solution

vπ = (I − γPπ)−1Rπ (4.27)

4.4.3 Optimal Value Function

Definition 4.4.9. The optimal state-value function v∗(s) id the maximum value function

over all policies

v∗(s) = max
π

vπ(s) (4.28)

The optimal action-value function q∗(s, a) is the maximum action-value function over all

policies

55

q∗(s, a) = max
π

qπ(s, a) (4.29)

The optimal value function specifies the best possible performance in the MDP. An MDP

is ”solved” when we know the optimal value function.

4.4.4 Optimal Policy

Define a partial ordering over policies π ≥ π
′

if vπ(s) ≥ vπ′ , ∀S

Theorem 4.4.10. For any Markov Decision Process,

• There exists an optimal policy π∗ that is better than or equal to all other policies,

π∗ ≥ π, ∀π.

• All optimal policies achieve the optimal value function, vπ∗(s) = v∗(s) ∀s.

• All optimal policies achieve the optimal action-value function, qπ∗(s, a) = q∗(s, a)

∀s, a

Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

π∗(a | s) =

1 if a = argmax

a∈A
q∗(s, a)

0 otherwise

There is always a deterministic optimal policy for any MDP. If we know q∗(s, a) we imme-

diately have the optimal policy.

Definition 4.4.11. Bellman Optimality Equation for V∗

The optimal value functions are recursively related by the Bellman optimality equations:

v∗(s) = max
a

q∗(s, a) (4.30)

56

Figure 4.13: Backup diagram for Bellman optimality equation for V∗

Definition 4.4.12. Bellman Optimality Equation for V ∗

v∗(s) = max
a
Ra
s + γ

∑
s′∈S

Pa
ss′
v∗(S

′
) (4.31)

Figure 4.14: Backup diagram for Bellman optimality equation for V ∗

57

Definition 4.4.13. Bellman Optimality Equation for Q∗

The Bellman optimality equation states that, for any state-action pair (s, a) at the time t,

the expected return from starting in state s, selecting action a and following the optimal

policy thereafter will be the expected reward we get from taking action a in state s, which is

Rt+1, plus the maximum expected discounted return that can be achieved from any possible

next state-action pair (s
′
, a
′
).

q∗(s, a) =Ra
s + γ

∑
s′∈S

Pa
ss
′max

a′
q∗(s

′
, a
′
) (4.32)

= E
[
Rt+1 + γ max

a′
q∗(s

′, a
′
)
]

(4.33)

Figure 4.15: Backup diagram for Bellman optimality equation for Q∗

The figures in this chapter and the equations were taken from [27].

58

4.5 Learning Algorithm

We start this section by giving a brief history of our reinforcement learning algorithm:

Q-learning. A standout amongst other known examples of an effective MDP solving algo-

rithm is Q-learning, which has the great properties of being efficient in both computation

and memory and also being able to learn about the optimal policy while following any

sufficiently explorative policy. Q-learning was initially introduce in Watkins’ Ph.D thesis

”Learning from Delayed Rewards”, which presented a model of reinforcement learning as

incrementally optimizing control of a Markov Decision Process (MDP), and proposed a

new algorithm – which was named ”Q-learning” – that could on a fundamental level learn

optimal control directly without modelling the transition probabilities or expected rewards

of the MDP. The first arduous proof of its convergence was done by Watkins and Dayan

in 1992. Q-learning is a model -free reinforcement learning algorithm to learn the value of

an action in a particular state. It does not need a model of the environment, and it can

handle problems with stochastic transitions and rewards without requiring adaptations.

The underlying idea behind this technique is to iteratively update the Q-values for

every pair of state and action. The update is based on the Bellman equation (4.33) and is

calculated until convergence of the Q-function to the optimal Q-function is achieved. Since

the Q-values get updated with each iteration, this iteration technique is called the value

iteration.

Below we will describe how this algorithm is applied to the problem of picking the right

strategy for selecting elements in the AMR algorithm (1) without any prior knowledge

about the quality of the solution.

4.5.1 The Set Up: Key Elements of RL

• Environment: The agent in this environment is the pracitioner who wishes to

achieve accuracy in the numerical solution computed with efficiency.

Accuracy is measured in terms of achieving the optimal convergence rate O(hk), k is

59

the polynomial order of the finite element method.

Efficiency refers to achieving the accuracy with the use of minimal number of un-

known degrees of freedom (dofs).

It is well known that if the solution is smooth, the expected convergence rate will

be achieved and here the “best” choice of degrees of freedom correspond to those

arising due to uniform refinement. However, if the solution of the pde is nonsmooth

then, the optimal convergence of the solution can only be achieved through adaptive

mesh refinement. If the pde solution at hand is nonsmooth due to the presence of

a singularity, then adaptive mesh refinement driven by the residual estimator will

yield optimally refined meshes and thus, the best dofs. However, if the pde solution

is nonsmooth due to a discontinuous diffusion coefficient then, guiding the adaptive

mesh refinement using the gradient recovery estimator is a better choice.

• Challenge: The challenge in this task arises because the exact solution to practical

problems is seldom known a priori, hence, in the absence of this knowledge, the agent

has to make decisions about the type of mesh refinement strategy to be used. This

learning algorithm optimizes this decision.

• States: To explain our algorithm, we first assume the state space to be {0, 1, 2}

where the numbers represent:

State 0 if the mesh refinement strategy chooses all the cells (triangles or quadrilaterals)

i.e., uniform refinement.

State 1 if the mesh refinement strategy selects the cells based on the residual type es-

timator i.e., adaptive refinement with cell marking based on the residual based

estimator.

State 2 if the mesh refinement strategy picks the cells based on the gradient recovery

estimator i.e., adaptive refinement with cell marking based on the gradient re-

covery estimator.

60

• Actions: Analogous to the quantification of the states, we describe the actions taken

by the agent as follows.

Action 0 indicates marking all cells for refinement.

Action 1 refers to selecting the cells adaptively based on the residual type estimator.

Action 2 means that the cells are picked adaptively using the gradient recovery estimator.

As an example, if we have a smooth solution, then the optimal set of actions is

{0, 0, 0, · · · } to achieve the optimal convergence rate. We note that the optimal

convergence rate for a finite element method using polynomial degree k is k.

• Rewards: The consequence of each action is a numerical reward which can be

thought of as a function f(·, ·) defined on the state-action pair as follows:

f(St, At) = Rt+1 ∈ {−1, 1}

with

Rt+1 = 1, if CR− σk ≥ 0, otherwise − 1.

Here,

CR: Convergence Rate for the FEM.

k: The optimal convergence rate given by the polynomial degree k.

σ: A control parameter whose value is between 0.9 and 1.

• Episodes The number of time steps (iterations) of the AMR algorithm we would like

to run.

Below, we describe the details of a single time step/ iteration of the Q-Learning algorithm.

These steps will recursively occur until the termination of each episode.

61

4.5.2 Q-Learning Algorithm: Storage of Q-values in a Q-Table

At the beginning of the algorithm, the agent has no knowledge about the impact of its

actions i.e., whether it would lead to a positive reward or a negative reward. As a conse-

quence, it is unable to assign any specific value to each state-action pair.

Thus, in the absence of any knowledge about the environment, the Q-values for each

state-action pair will be initially assumed to be zero or assign random values.

The Q-values will be stored in a tabular form via a Q-table whose rows represent the

states and whose columns represent the actions.

Actions

States uniform mark-

ing

ηres based mark-

ing

ηgr based mark-

ing

uniform mesh 0 0 0

adaptive mesh

ηres

0 0 0

adaptive mesh

ηgr

0 0 0

While the above Q-table provides a possible representation of the environment, it provides

insufficient information to the agent particularly about the accuracy and efficiency of the

solution. Hence our assumption of denoting the states by discrete values needs to be modi-

fied to reflect the observed states of degrees of freedom, discretization error and convergence

rate.

For assessing the accuracy and efficiency, we require to calculate the convergence rate:

CR(t) = 2
log |et−1/et|

log |DoFt/DoFt−1|
. (4.34)

Hence, it is natural to instead consider the following quantities as the states:

62

1. DoFt: DoFs at the current time t.

2. et: Energy norm at the current time t.

3. DoFt−1: DoFs at the previous time t− 1.

4. et−1: Energy norm at the previous time t− 1.

With the above choices, the state space is no longer a finite space and as a consequence, it is

impossible to represent the uncountable rows of the Q-table. To circumvent this problem,

we discretize the state space into buckets and use these buckets as an entry in the Q-table.

A natural idea to circumvent this problem is, for each digit representing the state real

number have a possible combination of digits 0, · · · , 9. This results in a prohibitively large

Q-table and is not a practical approach. The approach we follow is to discretize the state

space into buckets of range values and use these buckets as an entry in the Q-table.

As an example, consider a state space whose continuous values live between −1.2 and 0.6.

Using 20 buckets for each range can be computed by partitioning the interval [−1.2, 0.6]

into 20 sub-intervals of uniform length 0.09 each.

Initializing Q-values

There are two ways to initializing the Q-table either all the values are set to zero which

makes sense since the agent has no information about the worth of each state-action pair.

Alternately, this can be initialized with random initial values.

Updating Q-values

The Q-values of the Q-table are updated according to

Qnew(st, at)← (1− α) ·Q(st, at) + α ·
(
rt + γ ·max

a
Q(st+1, a)

)
︸ ︷︷ ︸

learned value

(4.35)

where

63

• α is the learning rate. It tells us how quickly the agent abandons the current Q-value

and how much information to keep.

• γ is the discount factor indicating the weight on the future reward versus the imme-

diate reward. It is between 0 and 1 with 1 indicating the greatest emphasis on long

terms gains.

• maxaQ(st+1, a) is the estimate of optimal future value. It is calculated after the

actions has been performed using the newly calculated st+1 see Figure 4.5.

Epsilon Greedy Strategy: Exploration Vs. Exploitation

After initializing the Q-values, the obvious question to be asked is:

what action should the agent take next in the absence of any prior information about how

good any action is?

This is answered through first, exploring the environment to gain more information about it

and then combining the exploring with exploiting the information already obtained about

the environment.

Exploitation can be understood as choosing the action with the highest Q-value. Explo-

ration on the other hand, picks its action randomly and learns by the impact of this action.

Here, the agent would like to choose the right combination of exploring and exploiting the

environment. This is because with too much exploiting, the agent might not be able to

fully maximize its returns since it is not exploring other actions which might lead to better

returns. Achieving a suitable combination of exploitation and exploration is realized by an

epsilon greedy strategy.

Epsilon Greedy Strategy: This strategy is characterized by the parameter ε which

represents the likelihood that the agent will explore the environment rather than exploit it.

Initially, ε is set to 1 indicating the 100% certainty of exploring the environment. With each

new episode, the agent learns more about the environment and the probability of exploring

64

the environment rather than exploiting it decreases. Simultaneously, with the information

the agent gathers about its environment through exploration, it becomes “greedy” about

exploiting the environment.

This is implemented in the Q-learning algorithm by:

1. Generating a random number between 0 and 1.

2. Exploit the environment if the random number exceeds ε otherwise explore.

To summarize, within each episode of the Q-learning algorithm, the following steps are

executed:

1. Initialize all the Q-values to zero or a random initial value.

2. For each time step t in each episode:

(a) Choose an action keeping the exploration-exploitation trade-off.

(b) Observe the reward and next state Rt+1, St+1.

(c) Update the Q-value function.

65

Chapter 5

Adaptive Mesh Refinement

Implementation

5.1 Adaptive Strategy

The implementation of the adaptive algorithm is done according to the cycle:

SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE

where:

• SOLVE

This step is seeking a discrete solution uh ∈ Vh with respect to a triangulation Th(Ω)

of the computational domain Ω such that

a(uh, vh) = L(vh) uh ∈ Vh, holds.

The solve step is being done by direct solvers using sparse factorization technique

with a suitable preconditoner chosen to guide the adaptive process since we are using

small value of θ.

• ESTIMATE

The computation of the error estimators, the residual base error estimator ηh and the

gradient recovery or the so-called Zienkienwicz and Zhu’s (ZZ) estimator ηGR.

66

• MARK

Based on a given parameter θ ∈ [0, 1], we set a threshold and select edges and elements

(for refinement) whose indicators exceed this threshold. The selection of the elements

and edges for refinement is carried out using the bulk criterion θ ηh ≤ ηM, whereM

denotes the set of cells and edges in Th selected for refinement. There are different

ways for selecting this threshold. One way is by marking the elements/edges with

indicator of the largest magnitude(Maximum Strategy) which our algorithm depends

on or by an averaged indicator(Equidistribution Strategy).

• REFINEMENT is realized using either:

1. The newest vertex bisection in case Th consists of triangles otherwise

2. Quadrilateral refinement where each selected quadrilateral is divided into four

quadrilaterals, in case Th consists of quadrilaterals.

5.2 Refinement by the Newest Vertex Bisection.

The last step, refinement is done by bisection i.e., each marked simplex is divided into

atleast two subsimplices. There are several bisection methods which depend either on the

geometric structure of the triangulation (longest edge bisection) or are mainly concerned

with the underlying topological structure(newest vertex bisection). The newest vertex

bisection can be demonstrated as follows. Given a marked triangle T = span{a1, a2, a3},

we we set a vertex and label it as the newest vertex. The subelements which comes from

the T share the new vertex.

67

T

a2

a3 a1

T2

a3 a∗

a2

T1

a1a∗

a2

Newext vertex bisection assign one of the vertices as the new vertex a2, refinement is then

carried on by connecting a2 to the midpoint a∗ of the edge connecting a1 and a3. These

subelements are orderd as T1 = span{a1, a
∗, a3} and T2 = span{a3, a

∗, a2}.

The numerical implementation relies on the largest edge bisection. This bisection is a

particular case of the newest vertex bisection wherein the newest vertex is fixed as the

vertex that faces the longest edge [17].

The adaptive mesh refinement process is driven by ESTIMATE through estimators

which could be: residual-type a posteriori error estimators (popular owing to low computa-

tional cost) or a wide range of averaging estimators and estimators based on local problems

such as gradient recovery estimators. The role of the estimator is in two-fold namely: drive

the adaptive process and play the role of the global discretization error. The goal is to

automate the selection of estimators in the ESTIMATE step based on the data of the

problem and computed solution.

68

T1 T2 T3

T4 T5 T6

T7 T8 T9

Figure 5.1: Ω = (0, 1)2

5.3 Marking Strategy

Considering the Figure 5.1 above on the domain Ω as a guide for our refinement strategy,

the following can be deduced:

Triangulation: Th = {T1, T2, ..., T9}, in this case considering quadrilaterals.

Estimators: ηT i, i = 1, 2, ..., 9 and ηej , ej edges in Ω.

If we consider the set m = {T1, T4, T7} to be our selected elements, that is elements with

high error indicators.

Existing algorithms use this strategy:∑
T∈m ηT =

∑
i∈{1,4,7}

ηTi

ηh = ηT1 + ...+ ηT9

ηm = ηT1 + ηT4 + ηT7

0 <
ηm
ηh

< 1

69

where the largest proportion exceeding θ is selected for refinement.

That is,
ηm
ηh

> θ.

We propose a new marking strategy in this work. The computed estimators: ηT1, ηT2, ..., ηT9

is arranged in decreasing order say ηT1 > ηT4 > ηT7.

In this case: max
i=1,...,9

ηT i = ηT1

And loop over all the i′s and check the criteria ηT1

max
i=1,...,9

ηTi
> θ . Such implementation can be

achieved by the algorithm below.

70

Algorithm 1: Adaptive Strategy

Result: ηT i

initialization;

Function(f), Boundary condition(BD), Initial condition(IC), Order(polynomial

Degree), θ, maximum iteration(N)

Solve:

Compute: Uh, the approximate solution of the PDE

Estimation:

Calculate :

ηres , ηzz

Marking Strategy:

Set Max
i=1,...,N

ηT i = ρ

Select m = {ηTj ≥ φ, j = 1, ..., n : n ≤ N}

for i ∈ m do

if ηTi

ρ
≥ θ then

select ηT i for refinement;

end

end

Refinement ηT i by the newest vertex bisection method.

71

Chapter 6

Numerical Experiments and Results

6.1 Benchmark Problems

We present numerical results for some benchmark problems focusing on the performance of

the estimators in terms of the convergence rate. The experiment is performed for a suitable

choice of parameters for all the three problems. That is :

θ = 0.25 initial mesh size h = 0.5 and polynomial degree k = 2 in the finite element

method.

The rate of convergence for the problems was calculated by the formula:

2
log |en−1/en|

log |DoFn/DoFn−1|
.

6.1.1 The Smooth Problem

In this example we want to show how an error estimator for the Poisson problem

−∆u = f on Ω with f(x, y) = sin(πx)sin(πy) and Ω = (0, 1)×(0, 1) performs in terms

of rate of convergence of the smooth solution. The exact solution of the above problem is:

−sin(πx)sin(πy)

2π2
.

The energy norm error reduces significantly which gives a faster expected convergence rate

because the domain is smooth and the error is not redistributed.

72

Table 6.1: Smooth Problem: Uniform mesh refinement.

level Dofs ηh ηGR H1-Error RoC

1 00025 0.0068683 0.0002060 2.945139e-02 -

2 00081 8.3440692e-05 1.9506340e-06 6.257659e-03 2.635

3 00289 1.890081e-06 3.180055-08 1.617140e-03 2.128

4 01089 3.2345233e-08 4.9117943e-10 4.078479e-04 2.077

5 04225 5.1695950e-10 7.6622648e-12 1.021892e-04 2.042

6 16641 8.1232537e-12 1.1969285e-13 2.556158e-05 2.022

7 66049 1.2710717e-13 1.8701039e-15 6.391289e-06 2.011

8 263169 1.9867194e-15 2.9220016e-17 1.597878e-06 2.006

Figure 6.1: Smooth Problem: Uniformly Refined Mesh

73

Table 6.2: Smooth Problem: Residual error estimate adaptive mesh refine-

ment.

level Dofs ηh ηGR H1-Error RoC

1 00025 0.0068683 0.0002060 2.945139e-02 -

2 00081 8.3440692e-05 1.9506340e-06 6.257659e-03 2.635

3 00289 1.890081e-06 3.180055-08 1.617140e-03 2.128

4 00913 2.4583505e-07 6.5869731e-09 5.063194e-04 2.019

5 01129 5.1149859e-08 4.9110490e-10 4.052128e-04 2.098

6 03553 6.0074787e-09 9.0659197e-11 1.226124e-04 2.085

7 03993 1.276267e-09 8.397540e-12 1.053107e-04 2.606

8 10233 3.0201836e-10 5.065032e-12 5.512866e-05 1.376

Figure 6.2: Smooth Problem: Residual Based Refined Mesh

74

Table 6.3: Smooth Problem: Gradient recovery estimate adaptive mesh

refinement.

level Dofs ηh ηGR H1-Error RoC

1 00025 0.0068683 0.0002060 2.945139e-02 -

2 00081 8.3440692e-05 1.9506340e-06 6.257659e-03 2.635

3 00289 1.890081e-06 3.180055-08 1.617140e-03 2.128

4 00977 2.0200548e-07 5.4226583e-09 4.665650e-04 2.041

5 01137 6.3905664e-08 4.9110263e-10 4.086185e-04 1.749

6 03753 5.8550893e-09 8.8769217e-11 1.145533e-04 2.130

7 04129 1.2764033e-09 7.662239e-12 1.037803e-04 2.069

8 14449 2.766121e-10 1.6127044e-12 3.009677e-05 1.976

Figure 6.3: Smooth Problem: GR estimatorl Based Refined Mesh

75

6.1.2 The L-Shaped Domain Problem

Let Ω ⊂ R2 be the L-shaped domain

Ω := (−1, 0)× (−1,+1) ∪ [0, 1)× (0, 1)

and consider the Laplace equation

−∆u = 0 in Ω,

u = 0 on ΓD,

n.∇u = g on ΓN ,

with the homogeneous Dirichlet boundary conditions on

ΓD := {0}× [−1, 0] ∪ [0, 1]× {0}

and inhomogeneous Neumann boundary conditions on

ΓN := ∂Ω \ ΓD.

The inhomogeneous Neumann boundary data g are chosen such that

u(r, ψ) = r
2
3 sin(

2ψ

3
)

is the exact solution of the problem in polar coordinates (r, ψ). The solution to the problem

is in H1+ 2
3
−ε(Ω) for any ε > 0, and we expect its convergence rate to be approximately 2

3
.

The reason for this observation is because the gradient has a singularity at the origin. This

matches a theoretical predictions for a domain with a re-entrant corner and an interior

angle of 3π
2

. Below we present the performance of the finite element method on uniformly

refined meshes and on the uniformly refined meshes we expect the convergence rate to be 2
3
.

We present similar table for adaptive mesh refinement driven by residual based estimator

and gradient recovery estimator as well. Our algorithm selects the residual based estimator

for refinement.

76

Table 6.4: L-Shape Problem: Uniform mesh refinement

level Dofs ηh ηGR H1− Error RoC

1 00075 0.759915 0.2232191 2.232191e-01 -

2 00321 0.4974086 0.142589 1.455890-01 0.761945

3 01401 0.313052 0.089682 8.968227e-02 0.728929

4 05601 0.197711 0.056463 5.646320e-02 0.698668

5 26401 0.124148 0.035562 3.556230e-02 0.683353

6 131001 0.078202 0.022401 2.240109e-02 0.675519

Figure 6.4: L-Shaped Domain: Uniformly Refined Mesh

77

Table 6.5: L-Shape Problem: Residual error estimate adaptive mesh refine-

ment.

level Dofs ηh ηGR H1− Error RoC

1 00075 0.7599155 0.2232191 2.232191e-01 -

2 00145 0.5547176 0.147487 1.474876e-01 1.717890

3 00253 0.354050 0.093685 9.368572e-02 1.765290

4 00351 0.233874 0.061012 6.101256e-02 2.798389

5 00447 0.163372 0.041477 4.147717e-02 3.260335

6 00545 0.124833 0.030432 3.043230e-02 3.204467

Figure 6.5: L-Shaped Domain: Residual Based Refined Mesh

78

Table 6.6: L-Shape Problem: Gradient recovery estimate adadptive mesh

refinement.

level Dofs ηh ηGR H1− Error RoC

1 00075 0.7599155 0.2232191 2.232191e-01 -

2 00145 0.5547176 0.1474876 1.474876e-01 1.717890

3 00237 0.360361 0.0936857 9.470750e-02 1.996711

4 00325 0.246257 0.062862 6.286266e-02 2.823021

5 00413 0.182430 0.044333 4.433312e-02 3.072927

6 00501 0.149861 0.034324 3.432473e-02 2.737314

Figure 6.6: L-Shaped Domain: GR estimator Based Refined Mesh

79

6.1.3 Interface Problem (Discontinuous Coefficient Problem)

The following problem represents a domain Ω = (−1, 1)2 with discontinuous diffusion

coefficient λ defined as:

λ = −10 if x < 0,

λ = 10 otherwise.

The problem is to find u in V satisfying∫
Ω

λ∇u · ∇v =

∫
Ω

fv

for all v ∈ V with homogeneous Dirichlet boundary conditions and f = 1.

Here, we do not have any information about the exact solution. However, through the

tables and figures below, we can see that the estimators accurately capture the interface

of discontinuity although the performance of the GR estimator is better than the residual

estimator.

80

Table 6.7: Interface Problem: Uniform mesh refinement

level Dofs ηh ηGR RoC RoC

of ηh of ηGR

1 00025 0.9132653061217371 0.003911564625843614 - -

2 00081 6.294394351142967e+56 2.9469009829382793e+54 -222.6575 -222.809

3 00289 2259.0325329307734 6.98513191803405 193.4967 194.1489

4 01089 0.339981183032501 0.0016699330906267576 13.2694 12.5717

5 04225 0.07367708108499874 0.0006148004909422946 2.2558 1.474068

6 16641 0.014637588580174497 0.00012054484848106703 2.3578 2.3770

7 66049 2.1970363870689945e-06 1.8122566871918527e-08 12.7733 12.771

Figure 6.7: Interface Problem: Uniformly Refined Mesh

81

Table 6.8: Interface Problem: Adaptive-GR mesh refinement

level Dofs ηh ηGR RoC RoC

of ηh of ηGR

1 00025 0.9132653061217371 0.003911564625843614 - -

2 00065 0.18755740207210225 0.0017729387500243139 3.31327 1.6562

3 00131 0.052578749119149136 0.000441506073477245 3.6294 3.9674

4 00249 0.02888131151997364 0.00011209433301554814 1.8656 4.2688

5 00545 0.028893190979869178 2.814221473347642e-05 -0.0010 3.5286

6 01001 0.028893151497329468 7.042505474137851e-06 4.4952e-06 4.5571

7 02009 0.02889338301881942 1.994297748169939e-06 -2.3004e-05 3.6221

8 03909 0.0288933856449429 6.004738900605176e-07 -2.7308e-07 3.6065

9 07783 0.028893385530551062 1.6349018542162132e-07 1.1497e-08 3.7782

10 15389 0.028893385577928487 4.258039331688478e-08 -4.8106e-09 3.9470

11 30713 0.028893385597913615 1.0856720204005415e-08 -2.0018e-09 3.9552

Figure 6.8: Interface Problem: GR estimator Based Refined Mesh
82

Table 6.9: Interface Problem: Adaptive-Res mesh refinement

level Dofs ηh ηGR RoC RoC

of ηh of ηGR

1 00025 0.9132653061217371 0.003911564625843614 - -

2 00078 0.18785729188748698 0.0017791307231402168 2.7795 1.3847

3 00142 0.052631893883249264 0.00044181629538253336 4.2474 4.650

4 00333 0.013437065497157922 0.00011208565460063582 3.2037 3.2185

5 00601 0.0033749624479377407 2.813064565392496e-05 4.6799 4.6825

6 01178 0.0008444302229777924 7.037285215261504e-06 4.1174 4.1179

7 02358 0.0002344376325161656 2.0055764313611927e-06 3.6930 3.6175

8 04453 7.193592048480034e-05 6.126648738752348e-07 3.7165 3.7305

9 08869 2.265154950257648e-05 1.9524113666763506e-07 3.3543 3.3196

10 17340 7.040205691541692e-06 5.9007571709311796e-08 3.4859 3.5694

11 32524 2.022375136357052e-06 1.75244902772016e-08 3.9664 3.8605

Figure 6.9: Interface Problem: Residual Based Refined Mesh

83

6.2 Applying Q-Learning Algorithm

In this section we provide details of the training of the Q learning algorithm.

Recall the learning algorithm recursively performs the following steps for each episode:

1. Initialize all the Q-values to zero or a random initial value.

2. For each time step t in each episode:

(a) Choose an action keeping the exploration-exploitation trade-off.

(b) Observe the reward and next state Rt+1, St+1.

(c) Update the Q-value function.

The computations were carried out for the chip problem using OpenAIgym with the following

choice of parameters:

1. Episodes = 20 Total training episodes

2. Steps = 3 (Maxsteps per episode)

3. min. alpha = 0.06 (learning rate)

4. min epsilon = 0.01 (exploration rate)

5. gamma = 0.91 (discount factor)

6. Decay epsilon = 3 (decay rate parameter for epsilon)

7. Decay alpha = 23 (decay rate parameter for alpha)

84

The choice of parameters described above were heuristically determined. We note that the

optimal choice of the parameters in the Q-learning algorithm is an open question and will

be addressed in the future research.

Figure 6.10: Outcome of the training Algorithm

The above figure indicates the cumulative reward earned over the 20 episodes. The

total reward return on average is about 2 which is the expected convergence rate.

85

Chapter 7

Conclusion and Future work

7.1 Significance of the Results

In this thesis, we present the performance of two error estimators namely residual-based

type and gradient recovery type illustrating the suitability of these estimators for different

problems at hand. We also provide the foundation for data-driven adaptive mesh refinement

strategies based on Reinforcement learning (RL) with a focus on the Q-learning algorithm

which is a fundamental learning algorithm in RL.

Data-driven adaptive mesh refinement has been proposed and studied within the neural

network framework [8, 23] however, to the best of the author’s knowledge, this serves as

the first work in the unsupervised learning paradigm.

7.2 Future Work

The choice of algorithm parameters in the reinforcement learning algorithm requires a more

careful analysis and this is the topic of our future research. Another subject of our future

investigation is the applicability of the algorithm to more challenging problems such as time

dependent nonlinear higher order pdes (involving the Cahn-Hilliard equations) arising in

material science where the dynamics of the problem occur at a very fast time scale and

hence there is a need for time adaptivity in addition to spatial adaptivity.

86

References

[1] Adrian Amor-Martin and Luis E Garcia-Castillo. Adaptive semi-structured mesh re-

finement techniques for the finite element method. Applied Sciences, 11(8):3683, 2021.

[2] Randolph E Bank and R Kent Smith. Mesh smoothing using a posteriori error esti-

mates. SIAM Journal on Numerical Analysis, 34(3):979–997, 1997.

[3] AG Barto, RS Sutton, and CJCH Watkins. Learning and sequential decision mak-

ing, learning and computational neuroscience: Foundations of adaptive networks, m.

gabriel and j. moore, eds, 1990.

[4] R Bellman. Dynamic programming princeton university press princeton. New Jersey

Google Scholar, 1957.

[5] Richard Bellman and Stuart Dreyfus. Functional approximations and dynamic pro-

gramming. Mathematical Tables and Other Aids to Computation, pages 247–251, 1959.

[6] Marshall W Bern and Paul E Plassmann. Mesh generation. Handbook of computational

geometry, 38, 2000.

[7] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena

Scientific, 1996.

[8] Jan Bohn and Michael Feischl. Recurrent neural networks as optimal mesh refinement

strategies. Computers & Mathematics with Applications, 97:61–76, 2021.

[9] J David Brown and Lisa L Lowe. Multigrid elliptic equation solver with adaptive mesh

refinement. Journal of Computational Physics, 209(2):582–598, 2005.

[10] WESLEY A Clark and Bernard G Farley. Generalization of pattern recognition in a

87

self-organizing system. In Proceedings of the March 1-3, 1955, western joint computer

conference, pages 86–91, 1955.

[11] L Demkowicz, JT Oden, and Tf Strouboulis. An adaptive p-version finite element

method for transient flow problems with moving boundaries. Finite elements in fluids,

6:291–305, 1985.

[12] Liu Du and Ningning Yan. Gradient recovery type a posteriori error estimate for

finite element approximation on non-uniform meshes. Advances in Computational

Mathematics, 14(2):175–193, 2001.

[13] HA Dwyer. Grid adaption for problems in fluid dynamics. AIAA journal, 22(12):1705–

1712, 1984.

[14] BWAC Farley and W Clark. Simulation of self-organizing systems by digital computer.

Transactions of the IRE Professional Group on Information Theory, 4(4):76–84, 1954.

[15] Ralf Hartmann, Joachim Held, and Tobias Leicht. Adjoint-based error estimation and

adaptive mesh refinement for the rans and k–ω turbulence model equations. Journal

of Computational Physics, 230(11):4268–4284, 2011.

[16] Ronald H.W. Hoppe. Lectures a posteriori error estimates for finite element approxima-

tions. url: https://www.math.uh.edu/~rohop/spring_05/downloads/Chapter6.

pdf, 2005.

[17] Ronald HW Hoppe and N Sharma. Convergence analysis of an adaptive interior

penalty discontinuous galerkin method for the helmholtz equation. IMA Journal of

Numerical Analysis, 33(3):898–921, 2013.

[18] Ronald A Howard. Dynamic programming and markov processes. 1960.

[19] KD Lee, JM Loellbach, and MS Kim. Adaptive control of grid quality for computa-

tional fluid dynamics. Journal of aircraft, 28(10):664–669, 1991.

88

https://www.math.uh.edu/~rohop/spring_05/downloads/Chapter6.pdf
https://www.math.uh.edu/~rohop/spring_05/downloads/Chapter6.pdf

[20] Shengtai Li. Comparison of refinement criteria for structured adaptive mesh refine-

ment. Journal of computational and applied mathematics, 233(12):3139–3147, 2010.

[21] Dimitri J Mavriplis. Unstructured mesh generation and adaptivity. Technical report,

institute for computer applications in science and engineering hampton va, 1995.

[22] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,

1961.

[23] Maciej Paszyński, Rafa l Grzeszczuk, David Pardo, and Leszek Demkowicz. Deep

learning driven self-adaptive hp finite element method. In Maciej Paszynski, Dieter

Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot,

editors, Computational Science – ICCS 2021, pages 114–121, Cham, 2021. Springer

International Publishing.

[24] Darrell W Pepper and David B Carrington. Application of h-adaptation for environ-

mental fluid flow and species transport. International journal for numerical methods

in fluids, 31(1):275–283, 1999.

[25] Kévin Pons and Mehmet Ersoy. Adaptive mesh refinement method. part 1: Automatic

thresholding based on a distribution function. 2019.

[26] Sujata Prakash. Adaptive mesh refinement for finite element flow modeling in complex

geometries. Unpublished PhD Thesis. University of Toronto, 1999.

[27] David Silver. Lectures on reinforcement learning. url: https://www.davidsilver.

uk/teaching/, 2015.

[28] Endre Süli. Lecture notes on finite element methods for partial differential equations.

Mathematical Institute, University of Oxford, 2012.

[29] Richard S Sutton. Sutton & barto book: Reinforcement learning: An introduction. In

A Bradford Book. MIT Press Cambridge, MA, 1998.

89

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

[30] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[31] Barna A Szabo. Estimation and control error based on p-convergence. Technical

report, washington univ st louis mo center for computational mechanics, 1984.

[32] William R Thompson. On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[33] Marcos Vanella, Antonio Posa, and Elias Balaras. Adaptive mesh refinement for im-

mersed boundary methods. Journal of Fluids Engineering, 136(4), 2014.

[34] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[35] Paul J Werbos. Building and understanding adaptive systems: A statistical/numerical

approach to factory automation and brain research. IEEE Transactions on Systems,

Man, and Cybernetics, 17(1):7–20, 1987.

[36] Ian H Witten. An adaptive optimal controller for discrete-time markov environments.

Information and control, 34(4):286–295, 1977.

[37] Robert S Woodworth and Harold Schlosberg. Experimental psychology. new york:

Henry holt and company. 1938.

[38] Qingluan Xue and Song-Charng Kong. Development of adaptive mesh refinement

scheme for engine spray simulations. Computers & fluids, 38(4):939–949, 2009.

[39] Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir

Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, et al. Rein-

forcement learning for adaptive mesh refinement. arXiv preprint arXiv:2103.01342,

2021.

90

Appendix

Operators and Functional Spaces Operators

Table 1: Operators and Function Spaces

Notations

Chapters S/No Operators Function Spaces

1 Ω ⊂ Rd; d = 1, 2 : bounded

polygonal domain

L2(Ω): Hilbert Space of square inte-

grable functions on Ω endowed with the

norm: ‖f‖p =
(∫

Ω
|f |p
) 1

p

2 Th = be a partition of
−
Ω into

non-overlapping cells, either

triangles or quadrilaterals

3 hh: Diameter of cell K(h =

max
k∈Th

hk)

H1
0,ΓD

(Ω) = V :Sobolev space of order

‘1’ on Ω = Γ = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅

4 |K| = Area of the cell K S1,ΓD
(Ω; Th) = Vh :V ∈ C(

−
Ω) : V |ki is a

linear polynomial i = 1, 2

Chapter 3 5 PN(K) =is the space of

polynomials on cell K hav-

ing degree at most N

6 E ih =the set of all the edges

of the interior cells in Th
7 EDh = the set of all the

edges of the cells inTh ex-

cluding edges which inter-

sect the boundary ΓN

91

Table 2: Operators and Function Spaces

Notations

Chapters S/No Operators Function Spaces

7 EDh = the set of all the

edges of the cells inTh ex-

cluding edges which inter-

sect the boundary ΓN

8 ENh = the set of all the edges

of the cells inTh which inter-

sect the boundary ΓN

9 e = the edge of a cell

10 he = length of an edge.

11 (u, v)s = is the L2inner

product of u and v on S ⊂

Rd, d = 1; 2..

12 (u, v)Th =
∑

T∈Th(∇u,∇v)T

and ||u||2Th

92

Table 3: Operators and Meaning

Notations

Chapters S/No Operator Meaning

1 s, s
′

States(Actual State and Successor

State respectively)

2 a Action

3 r Reward

4 At action at time t

Chapter 4 5 St state at time t, typically due, stochas-

tically, to St−1 and At−1

6 Rt Reward at time t, typically due,

stochastically, to St−1 and At−1

7 π policy (decision-making rule)

8 π(s) action taken in state s under determin-

istic policy π

9 π(a|s) probability of taking action a in state s

under stochastic policy π

10 vπ(s) value of state s under policy π (ex-

pected return)

11 v∗(s) value of state s under the optimal pol-

icy

12 qπ(s, a) value of taking action a in state s under

policy π

13 q∗(s, a) value of taking action a in state s under

the optimal policy

93

Curriculum Vitae

Augustine Twumasi was born on August 3, 1993 to Noah Fosu Manu and Dora Okyere.

He entered Kwame Nkrumah University of Science and Technology (KNUST) after High

school in 2014 for his undergraduate studies in BSc Mathematics. He graduated in 2018

and was privileged to serve as a research and teaching Assistant. While pursuing his degree

at KNUST he served at various leadership position including Financial Secretary of Sci-

ence Students’ Association(SCISA) and Treasurer for National Union of Ghana Students’

(NUGS).

In pursuit of becoming a research scientist and academician in the field of computational

and applied mathematics, he entered the Graduate School at The University of Texas at

EL Paso in the fall of 2019 for his masters degree in Mathematical Sciences to lay a foun-

dation for a PhD in Computational Science. He was a regular contributor and participant

in a number of workshops and seminars under Mathematics, Computational Science, Data

Science and Statistics.

While pursuing a master’s degree in Mathematics he worked as a Teaching and Research

Assistant. He was elected as Treasurer for the African Student Organization whiles pursu-

ing his graduate studies at UTEP.

His research interests are Partial Differential Equations, Numerical Analysis, Optimiza-

tion, Scientific Computing, Artificial Intelligence.

Augustine will be pursing his PhD in Computational Science at The University of Texas,

El Paso in the fall of 2021. kwabenatwumasi94@gmail.com

94

	Towards Reinforcement Learning Driven Mesh Adaptivity For Second Order Elliptic Problems
	Recommended Citation

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Description
	Thesis Outline

	Related Literature
	Overview of Adaptive Mesh refinement
	Mesh
	Types of Meshes
	Mesh Adaptation Procedures
	Adaptive Mesh Refinement(AMR)

	Reinforcement Learning
	Elements of Reinforcement Learning
	History of Reinforcement Learning

	A Posteriori Error Estimates for Finite Element Approximations
	 A Posteriori Error Estimators
	Residual Based a Posteriori Error Estimators
	Upper Bound for the Total Error

	Gradient Recovery Estimator
	Upper Bound for the a Posteriori Error Estimates
	Lower Bound for the a Posteriori Error Estimates

	Markov Decision Process
	The Agent-Environment Interface
	History and State

	Markov Process
	Markov Property
	State Transition Matrix
	Example:Student Markov Chain

	Markov Reward Process
	Example: Student Markov Reward Process
	Why Discounted
	Bellman Equation for MRPs
	Bellman Equation in Matrix Form
	Solving the Bellman Equation

	Markov Decision Process
	Policies and Value Functions
	Bellman Expectation Equation for Policy and Value functions
	Optimal Value Function
	Optimal Policy

	Learning Algorithm
	The Set Up: Key Elements of RL
	Q-Learning Algorithm: Storage of Q-values in a Q-Table

	Adaptive Mesh Refinement Implementation
	Adaptive Strategy
	Refinement by the Newest Vertex Bisection.
	Marking Strategy

	Numerical Experiments and Results
	Benchmark Problems
	The Smooth Problem
	The L-Shaped Domain Problem
	Interface Problem (Discontinuous Coefficient Problem)

	Applying Q-Learning Algorithm

	Conclusion and Future work
	Significance of the Results
	Future Work

	References
	Appendix
	Curriculum Vitae

