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Abstract 

Fast and accurate calculations of the electrostatic features for highly charged biomolecules 

such as DNA, RNA, highly charged proteins, are crucial but challenging tasks. Traditional implicit 

solvent methods calculate the electrostatic features fast, but they are not able to balance the high 

net charges in the biomolecules effectively. Explicit solvent methods add unbalanced ions to 

neutralize the highly charged biomolecules in molecular dynamic simulations, which require more 

expensive computing resources. Here we developed a novel method, the Hybridizing Ions 

Treatment (HIT) method, which hybridizes the implicit solvent method with the explicit method 

to realistically calculate the electrostatic potential for highly charged biomolecules. This HIT 

method utilizes the ionic distribution from an explicit method to predict the bound ions. Such 

bound ions are then added in the implicit solvent method to perform the electrostatic potential 

calculations. In this study, two training sets were developed to optimize the parameters for the HIT 

method. The performance on the testing set demonstrates that the HIT method significantly 

improves the electrostatic calculations. The results on two molecular motors, myosin, and kinesin, 

reveal some mechanisms for the two molecular motor proteins and explain some previous 

experimental findings well. This HIT program can be widely used to study highly charged 

biomolecules, including DNA, RNA, molecular motors, and other highly charged biomolecules. 

The HIT package is available at http://compbio.utep.edu/static/downloads/download_hit.zip. 

The SARS-CoV-2 that caused Covid-19 has spread since the end of 2019. Its major effects 

resulted in nearly half a million deaths around the whole world. Therefore, understanding virulence 

mechanisms is important to prevent future outbreaks and for COVID-19 drug development. The 

envelope protein is an important structural protein affecting virus assembly and budding. The E 

protein pentamer is a viroporin, serving as ions transferring channel in cells. In this work, we 

applied MD simulations, topological and electrostatic analyses to study the effects of 

palmitoylation on the E protein pentamer. The results indicate the cation transferring direction is 

more like lumen to the cytosol. The structure of palmitoylated E protein pentamer is more stable 

while the loss of palmitoylation caused the pore radius to reduce and even collapse. The 

electrostatic forces on the two sides of palmitoylated E protein pentamer are more beneficial to 

attract cations in the lumen and to release cations into the cytosol. The results indicate the 

importance of palmitoylation, which can help the drug design for the treatment of COVID-19. 
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Chapter 1:  Hybrid method for representing ions in implicit solvation calculations. 

1.1 Introduction  

In computational biology, the electrostatic calculation of biomolecules is fundamental and 

challenging. The electrostatic interactions play significant roles in protein folding(Ganguly et al., 

2012), protein stability(Stigter, Alonso, & Dill, 1991; Strickler et al., 2006), protein-protein 

interactions(L. Li, Jia, et al., 2017; L. Li, Wang, & Alexov, 2015; Zondlo, 2013), protein-

DNA/RNA interactions(Akhtar, Zink, & Becker, 2000; Richardson, Richardson, & Bioinformatics, 

1988), and many other fields. However, in vivo, the water, ions, and small biomolecules, make the 

environment of protein extremely complicated for electrostatic calculations. The highly charged 

biomolecules, including DNAs, RNAs, motor proteins, utilize ions surrounding their surfaces to 

balance the net charges so that they can well interact with other molecules. The trapped ions 

directly affect the electrostatic surfaces, which have significant impacts on the interactions 

between biomolecules. Currently, there are two types of models to handle the ions and water 

molecules surrounding biomolecules: implicit solvent models and explicit solvent models. The 

most popular implicit solvent methods include the Poisson-Boltzmann (PB) model(Nicholls & 

Honig, 1991) and Generalized Born (GB) model(Jayaram, Sprous, & Beveridge, 1998). In implicit 

solvent models, the electrostatic features are calculated for biomolecules by treating ions 

implicitly(Jia, Li, Chakravorty, & Alexov, 2017; Klapper et al., 1986; Nicholls & Honig, 1991). 

On the other side, explicit solvent models such as TIP3P, TIP4P, with explicit ions, are widely 

used in Molecular Dynamic (MD) simulations by handling ions and molecules explicitly(Florová, 

Sklenovsky, Banáš, Otyepka, & Computation, 2010). Explicit solvent models can neutralize the 

highly charged biomolecules by adding unbalanced amounts of positive and negative ions into a 

system. Implicit models, such as DelPhi(L. Li et al., 2012; L. Li, Li, Zhang, Alexov, & computation, 

2013), are widely used to calculate the electrostatic potential, electric field lines, and electrostatic 

surfaces for biomolecules. However, traditional implicit solvent models treat the solvation as 

neutral with the same amounts of positive and negative ionic charges, which causes troubles in the 

electrostatic calculations of highly charged biomolecules and results in unrealistic interaction 

analyses. Under this circumstance, how to improve the implicit models to handle the highly 

charged biomolecules is a challenging problem to be solved. 
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The highly charged biomolecules have been studied for decades for their special functions, such 

as the motion of motor proteins(L. Li, Alper, & Alexov, 2016a; M. Li & Zheng, 2013; Wei, Yang, 

& disease, 2019), tRNA binding of ribosomes(Korennykh, Correll, & Piccirilli, 2007), and roles 

of cells aging-related proteins(De Graff, Hazoglou, & Dill, 2016; Lee, Fitch, Lecomte, & García-

Moreno E, 2002). In living cells, the binding of oppositely charged ions by proteins is a common 

but principal phenomenon, related to enzyme-activations(Dayton, Reville, Goll, & Stromer, 1976) 

and conformational changes of proteins(Yamada, Namba, & Fujii, 2020). The classic implicit 

model does not consider those bound ions and thus cannot balance the net charges of the highly 

charged biomolecules. The loss of bound ions not only causes the net charge of the system 

unbalanced but also leads to biased electrostatic calculations surrounding the ionic binding sites. 

To perform realistic electrostatic calculations of highly charged biomolecules, we developed a 

novel method, which adds the bound ions explicitly and hybridizes with implicit ions to 

compensate the net charges in highly charged biomolecular systems.  

The bound ions in binding sites are crucial for electrostatic calculations of highly charged 

biomolecules. Such bound ions are not represented in the implicit solvent models. Many methods 

have been developed to predict such bound ions or the corresponding cavities: Variational Implicit-

Solvent Model (VISM) successfully captures the surface of local hydrophobic cavities for ligand-

receptor bindings(Zhou et al., 2014; Zhou et al., 2015; Zhou et al., 2019); BION 

program(Shashikala, Chakravorty, Panday, & Alexov, 2021) implements electrostatic features and 

geometric information to predict the bound ions. Here we developed a novel algorithm that utilizes 

information from MD simulations to identify the ion-binding sites. The explicit solvent models 

treat the ions explicitly in calculations such as MD simulations. Therefore, the trajectories from 

MD simulations with explicit models contain the dynamic information of the bound ions. However, 

it is difficult to determine which ions are bound ions based on a single frame from simulations. 

Combining all the frames from a simulation trajectory into an ionic cloud distribution and properly 

analyzing the ionic cloud distribution may lead to the identification of the binding sites and explicit 

ions adding. In this work, we introduce a novel method that uses the information from the explicit 

solvation modeled MD simulations to identify the binding sites around the highly charged 

biomolecules. This method hybridizes the explicit ions on binding sites and implicit solvent 

models to calculate the electrostatic potentials of the highly charged biomolecules, so it is named 

Hybridizing Ions Treatment (HIT). We tested this method by using NAMD(Phillips et al., 2005) 
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and Delphi to do the explicit solvent simulations and implicit solvent calculations respectively, 

which proves that it significantly improves the performance of pure implicit models on highly 

charged biomolecules. 

The method was optimized against two training sets and applied to the testing set with two 

biological applications. One of the biological applications is the cardiac myosin-actin complex 

with the net charge of -77e, while the other is a kinesin-5 (cut7)-αβ-tubulin complex with the net 

charge of -36e. Both net charges are calculated by pdb2pqr(Dolinsky, Nielsen, McCammon, & 

Baker, 2004). The myosin is a superfamily of motor proteins, and it is famous for its role in muscle 

contraction(Houdusse & Sweeney, 2016), especially on heart diseases(Burghardt & Sikkink, 2013; 

Geisterfer-Lowrance et al., 1990; Inchingolo, Previs, Previs, Warshaw, & Kad, 2019). Here the 

type of myosin-actin complex we studied is β cardiac myosin(Robert-Paganin, Auguin, & 

Houdusse, 2018) with a part of cardiac actin filament(Risi et al., 2017). Usually, an actin filament 

is assembled by globular-actin (G-actin), tropomyosin (TM), the troponin complex (Tn)(Al-

Khayat & Practice, 2013), and myosin-binding protein C (MyBP-C)(Luther et al., 2011). In this 

study, the TM, G-actin, and myosin motor domain were assembled and applied for MD simulations 

and related analysis by HIT. The kinesin, a type of well-studied molecular motors(L. Li, Alper, & 

Alexov, 2016b; L. Li, Jia, et al., 2017), is a superfamily of motor proteins moving along 

microtubules, which is crucial for mitosis(Kapitein et al., 2005). It is recently identified as an 

important target for cancer treatments(Huszar, Theoclitou, Skolnik, Herbst, & Reviews, 2009). 

The yeast kinesin-5 (cut7) motor domain with an αβ-tubulin heterodimer complex was selected in 

this study(von Loeffelholz, Peña, Drummond, Cross, & Moores, 2019). The success of the testing 

set reveals that our method can be widely applied to highly charged biomolecules and can obtain 

reliable electrostatic calculations. By taking advantage of explicit and implicit solvent models, this 

novel approach utilizes a hybrid method to realistically simulate the solution environment 

surrounding biomolecules, which is a promising direction for simulations of highly charged 

biomolecules. Such a method paves the way for future drug design, DNA/RNA simulations, 

protein-protein interactions, and other computational biophysics research fields. 
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1.2 Methodology  

1.2.1 Dataset  

1.2.1.1 training sets  

To optimize our program, two training sets were designed to mimic the sodium distribution 

surrounding biomolecules in saline solution (150 mM NaCl). One of the training sets was 

generated by a random generation algorithm (Random ions training set), the other was achieved 

by MD simulation (NAMD training set). 

Random ions training set: To model this 150 mM NaCl concentration into the training dataset, 90 

randomly generated sodium were placed in a 100 Å × 100 Å × 100 Å box (Fig. 1.1 A), which 

includes 8 bound sodium ions (8/90 < 10% for a bigger solvent box). In the generation process, 

the minimal distance between sodium ions was set as 5 Å due to the exclusion of the same charged 

ions. 82 randomly generated ions represented free ions while the 8 bound ions represented the ions 

that were trapped on the surface or in the cavities of the biomolecules. After this, the simulation 

started for 1000 steps. Each step allowed free ions to move anywhere in the box and restrained 

bound ions in 5 Å × 5 Å × 5 Å cubic binding sites. The frames for every step were saved (Fig. 1.1 

A). All of 1000 frames were combined into an ionic cloud distribution for further analysis (Fig. 

1.1 B and Fig. 1.2 C and D), where the binding sites were marked by black circles. This ionic cloud 

distribution is the Random ions training set. 
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Figure 1.1 A: Schematic presentation of 1000 frames of ions; B: Ionic cloud distribution of the 

combination of 1000 frames from A; binding sites are marked by black circles; C: Cubic 

partition of the ionic 

NAMD training set: In Visual Molecular Dynamics (VMD)(Humphrey, Dalke, & Schulten, 1996), 

100 Å × 100 Å ×100 Å solvated box with 150 mM NaCl were generated, which included 90 sodium 

ions and 90 chlorine ions. In this model, 8 sodium ions were randomly selected to be restrained, 

simulating 8 bound ions in 8 binding sites. After that, MD simulation was achieved by 1000 steps 

minimization and 0.5 ns (2fs/step) MD simulation. The temperature was set as 300K and the pH 

was set as 7.0. The CHARMM(Vanommeslaeghe et al., 2010) was used for the force field and the 

periodic boundary conditions were applied to the system. The frames were saved per 100 fs. After 

simulations, the ionic cloud distribution for all ions was saved as the NAMD training set.  
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1.2.1.2 Myosin and kinesin testing sets 

In the myosin testing set, five G-actins, a TM (PDB: 5NOJ), and a β-cardiac myosin motor domain 

(PDB: 6FSA) were assembled based on the rigor-like state model (PDB: 5JLH) (Fig. 1.2 A). The 

hydrogen atoms were added by VMD. The myosin-actin complex was immersed in a rectangular 

solvated box (TIP3P). The net charge of the myosin-actin complex model is -77 e. To ensure 150 

mM NaCl and to neutralize the system, 570 Na+ and 493 Cl- were added into the system. In NAMD 

simulations, the pH was set as 7.0 and the temperature was set as 300K. The CHARMM was used 

for the force field and the periodic boundary conditions were applied to the system. The number 

of steps for energy minimization was 20,000, and the MD simulation was run for 10 ns (1fs/step). 

After simulation, the sodium ions within 10 Å from proteins in 2000 frames (5000 steps/frame) 

were assembled as an ionic cloud distribution in the myosin testing set (Fig. 1.2 C). 

 

Figure 1.2 Myosin-actin complex (A) and Kinesin-tubulin dimer complex (B) and their sodium 

ionic cloud distribution. C and D are the sodium ionic cloud distribution of myosin complex (A) 

and kinesin complex (B) within 10 ns simulation (1000 frames). 
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Similarly, a complex formed by an αβ-tubulin heterodimer and a kinesin motor domain (kinesin-

5 cut7) was selected as a kinesin testing set (PDB: 5MLV) (Fig. 1.2 B). The hydrogen atoms were 

added by VMD. The complex was immersed in an explicit solvated box (TIP3P). To ensure 150 

mM NaCl and to neutralize the system, 143 Na+ and 107 Cl- were added into the system. The MD 

simulation setting is the same as that of the myosin testing set. After simulation, the sodium ions 

within 10 Å from proteins in 2000 frames (5000 steps/frame) were assembled as an ionic cloud 

distribution in the kinesin dataset (Fig. 1.2 D)  

The reason why only the sodium ions within 10 Å of protein were selected is that some ions located 

far away from biomolecules are relatively rigid due to the lack of strong electrostatic forces. If all 

ions were selected, they could generate a lot of noise, affecting the accuracy of the calculation. 

 

1.2.2 Algorithm  

Our Hybridizing Ions Treatment (HIT) method utilizes the frequency of ions occurrence around 

biomolecules to identify possible binding sites and, to place explicit ions at the centroids of 

calculated binding sites to compensate the net charge. Ion binding sites are around the molecule 

surfaces or inside the molecule cavities, where ions will be trapped. After MD simulation, 

overlapping the frames of ions (Fig. 1.1 A and B) into ionic cloud distribution generates some 

dense positions, which represent the binding sites with the high frequency of bound ions 

occurrence (Fig. 1.1 B, Fig. 1.2 C and D). The centroids in the dense positions are the locations 

for placing explicit ions. The whole process included 4 steps: preparation step, the initial step, 

clustering step, and optimal step, where the clustering step is the supplement for the initial step 

while the optimal step is the supplement for the clustering step. The training sets were generated 

by uniform distribution (random ions training set) and MD simulation (NAMD training set) 

respectively for accuracy testing and parameters optimization while the testing sets were generated 

by MD simulations of myosin-actin complex and kinesin-tubulin complex.  

1.2.2.1 preparation: the combination of all frames and the solvate box cutting.  

First, the target ions in each frame were assembled as ionic cloud distribution. To find the 

frequency of occurrence in the different areas, the ionic cloud distribution was randomly and 

equally divided into cubes (Fig. 1.1 B). 
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1.2.2.2 initial step: ions counting and cube sorting.  

The ions are counted in all cubes, and the number of ions is used to sort the cubes from the 

maximum to the minimum. Then, all cubes are marked following the rank, as the 1st, 2nd, 3rd, …… 

cube (Fig. 1.3 (ions counting and cube sorting)).  

 

Figure 1.3 Diagram of ion counting, cube sorting, and clustering process. The number indicates 

the ions contained in the cube. Note that all numbers are invented for demonstration, and the 4 × 

4 × 4 cutting of the solvate box is for better visualization. 

A certain number of top cubes after sorting are selected. Cubes with a high average number of ions 

(Eq. 1.1) indicate binding sites. The number of selected cubes is determined by the net charge of 

the protein and the charge of target ions (Eq. 1.5). The centers of top cubes are the positions for 

explicit ions placement based on the initial step.  

Nions_i = ni
Nframe

                                              (1.1)  

Where the Nion_i represents the average number of ions in the ith cube and the ni, Nframe represents 

the total number of ions in ith cubes and the number of frames respectively.  
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1.2.2.3 clustering step: clustering 

However, if the binding site selection is purely based on the initial step, it might cause a potential 

problem. A single binding site may cover multiple close cubes, which need to be clustered, as 

shown in Fig. 1.5 A. Otherwise, redundancy and incorrect calculations will happen (Fig. 1.5 A). 

The redundancy is two or more calculated binding sites nearby one original binding site while the 

incorrect calculation is the wrong calculated binding site. To solve this problem, the clustering 

method was implemented. The close cubes are clustered into a cluster, which contains 1-27 (3 × 3 

× 3) cubes, where the first cube in a new cluster is the initial cluster cube (Rule 1). The clustering 

complies with the following rules and runs based on the rank of the cubes (Fig. 1.3 (clustering)). 

Rule 1: If the cube is not close to any previous initial cluster cubes of previous clusters, a new 

cluster will be generated, and this cube will be the initial cluster cube in the new cluster. For 

example, the first cube in the rank is the initial cluster cube in the first cluster. 

Rule 2: If the cube is close to previous initial cluster cubes of previous clusters, it will be clustered 

into the corresponding cluster, which contains the highest-average-number-of-ions initial cluster 

cube. 

Rule 3: The clustering will stop when the average number of ions is lower than the average of all 

cubes. 

After clustering, clusters are sorted based on the average number of ions (Eq. 1.2) from maximum 

to minimum and marked following the rank. The initial cluster cubes of top clusters are selected 

as binding sites, where the explicit ions will be placed at the center. 

                      Nion_j = nj
Nframe

                                                                                               (1.2) 

Where the Nion_j represents the average number of ions in the jth cluster, and the nj and Nframe 

represent the number of ions in the jth clusters and the number of frames respectively. 

The centers of the top initial cluster cubes are the positions for placing explicit ions based on the 

clustering step (Fig. 1.4). 
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Figure 1.4 Diagram of the differences between the center of the initial cluster cube and the 

centroid of the clusters 

1.2.2.4 optimal step: centroid optimization 

Using the centroids of top clusters is a better option than the center of initial cluster cubes. The 

calculation of the centroid of the cluster is the optimal step, which is based on the weight ratio of 

cubes in clusters. 

The centroid of the cluster is calculated based on the weight ratio R (Eq. 1.3). The centroid of the 

cluster (X, Y, Z) is calculated by equation (1.4) 

                     Ri =  ni
Nt 

    i ∈ [1,27]                                                                                        (1.3) 

Where Ri is the weight ratio of the ith cube in the cluster while the ni, Nt represent the number of 

ions in the ith cube and the total number of ions in the cluster. 

                    X =  ∑ RiXin
i=0 ;  Y =  ∑ RiYin

i=0 ;  Z =  ∑ RiZin
i=0   n∈ [1,27]                               (1.4) 

Where X, Y, Z are the coordinates of the centroid of the cluster. The Ri is the weight ratio of the 

ith cube in the cluster while the Xi, Yi, Zi are the coordinates of the center of the ith cube belonging 

to the cluster. The centroids of top clusters are the positions for placing explicit ions based on 

optimal step (Fig. 1.4). 
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Figure 1.5 The original binding sites are marked as red (A, B and C) while the calculated binding 

sites after initial (A), clustering (B), and optimal (C) steps are marked as green, pink, and blue. 

Average error (D) is calculated by the average distance. 

1.2.2.5, The number of clusters selection. 

Due to their sizes and charge distributions, the ionic binding sites may attract different numbers of 

ions. The distribution curves of an average number of ions on the testing set (Fig. S2) were not 

always as distinct as that of the training set (Fig. 6 A) when classifying clusters into two groups: 

true binding site predictions (high average number of ions) and false binding site predictions (low 

average number of ions). In this case, the net charge compensation is satisfied preferentially. It 

means the number of selected clusters multiplied by the charge of the target ion should equal the 

opposite net charge of the system (Eq. 1.5). The average number of ions represents the possibility 

of the occurrence of ions. The cluster selection should follow the rank of the average number of 

ions of clusters from the maximum to the minimum. 

                        nei = Ntc
Nti

                                                                                                         (1.5) 
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Where the nei is the number of explicit ions. In another word, it is the number of clusters that should 

be selected. Ntc and Nti are the net charges of the system and the charge of the target ions, 

respectively. However, the number of bound ions sometimes is smaller than the nei. Because when 

the surface of the protein is nearly neutral, some of the “bound” ions may be semi-bound ions, 

which are not always bound at their binding sites. The HIT method provides the average number 

of ions (occupancy) in each binding position (clusters), which can be utilized for users to set 

thresholds and to select the certain number of bound ions. 

 

Figure 1.6 Average number of ions of top 20 clusters per frame with different cube sizes of 2.0 

Å, 2.5 Å, 2.7 Å, 3.0 Å, 3.3 Å, 3.5 Å, 4.0 Å, 4.5 Å, 5.0 Å, 5.5 Å, and 6.0 Å, and the average error 

(B) based on different cube size of the range from 2.0 Å to 6.0 Å. 

1.2.3 Training 

1.2.3.1, The cube size optimization 

The selection of cube size was tested from 2 Å to 6 Å with the interval of 0.1 Å in a random ion 

training set. The distance between the calculated binding site and the corresponding original 

binding site was regarded as the error. The average error of eight binding sites based on different 

cube sizes was used for comparison to determine the optimal cube size in HIT. The optimal cube 

size was analyzed, and the explanatory equation was discussed. 
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1.2.3.2, The simulation time and accuracy. 

The sensitivity of HIT on MD simulation time was trained by the NAMD training set and kinesin 

dataset. The NAMD training set was split into 0.1 ns, 0.2 ns, 0.3 ns, 0.4 ns, and 0.5 ns simulations 

to test the minimal simulation time for the HIT method to successfully find all binding sites. The 

result of HIT on 10 ns MD simulation of kinesin dataset was used as the reference to compare the 

result of HIT on 1 ns, 2 ns, …… 8ns, 9ns simulation of kinesin. This experiment was applied to 

show the stability of HIT on MD simulation time and minimal necessary simulation time for HIT 

in real cases. 

1.2.4 Testing 

After the training, the optimized program was applied to the testing set to verify its functions in 

real biological cases. For the myosin dataset with the net charge of -77e, 77 sodium ions were 

placed at the centroids of the top 77 sodium clusters to neutralize the net charge. The myosin motor 

domain together with surrounding explicit ions was separated from actin filament by 20 Å for 

better visualization of electrostatic surface and electrostatic field lines(C. Li et al., 2019; C. Li, Li, 

Zhang, & Alexov, 2012; C. Li, Petukh, Li, & Alexov, 2013; L. Li et al., 2012). Similarly, the 36 

sodium ions were placed at the centroids of the top 36 sodium clusters in the kinesin dataset. The 

following steps are as same as that of the myosin dataset.  

The electrostatic potential maps of myosin-actin complex and kinesin-tubulin complex were 

generated by Delphi. The electrostatic potential on the surface was visualized by 

Chimera(Pettersen et al., 2004). To visualize interactions, electric field lines were rendered by 

VMD(Humphrey et al., 1996). 

1.3. Results and discussion 

1.3.1 Accuracy  

The program is optimized based on the training set. 

1.3.1.1 Comparison among initial, clustering, optimal steps based on Random ions training set. 

In Fig. 1.5 A, B, and C, the red balls represent the center of the original binding sites while the 

green, pink and blue balls represent the calculated binding sites based on the results after the initial 

step, clustering step, and optimal step respectively. There were eight binding sites in the training 
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set, where the distance between each calculated binding site and the corresponding original binding 

site is regarded as the error of this binding site. Fig. 1.5 D demonstrates the average errors of the 

8 binding sites after the initial, clustering, and optimal steps.  

The initial step (Fig. 1.5 A) has two problems: redundancy and incorrect calculation. The 

redundancy is two or more calculated binding sites nearby one original binding site while the 

incorrect calculation is the wrong calculated binding site. Both redundancy and incorrect 

calculation problems are caused by the unexpected partition of binding sites in the ionic cloud 

distribution. When the ionic cloud was cut into cubes, some original binding sites were 

approximately equally divided into several cubes. In this case, these cubes yielded a similar 

average number of ions for each cube (Eq. 1.1) and were comparable in rank. The initial step took 

these cubes as several binding sites, which should be a single binding site. This is the reason for 

the redundancy problem (Fig. 1.5 A). Besides, the redundant cubes also took the spot of other 

binding sites with a lower average number of ions in each cube, causing incorrect calculations (Fig. 

1.5 A). In detail, some binding sites were divided into too many cubes, diluting the average number 

of ions, causing the low-ranking situation, resulting in incorrect calculations. Thus, clustering 

adjacent cubes into clusters to represent binding sites is a necessary step to avoid such problems.  

The clustering step successfully recognized all 8 binding sites, as shown in Fig. 1.5 B. Because the 

clustering step combined adjacent cubes, covering each binding site into an individual cluster. 

After that, using the initial cluster cube (the first cube in a new cluster) of its cluster to represent 

the corresponding binding site avoided redundancy and incorrect calculations. Additionally, the 

clustering step was stopped when the average number of ions in cubes was lower than the average, 

avoiding over-clustering. However, there is still a distance between each calculated binding site 

and the corresponding original binding site. It was further optimized to reduce the error by the 

optimal step. 

The optimal step is based on the ion’s distribution in clusters, to use the centroids of clusters to 

represent the calculated binding sites. The ions distribution in clusters is represented by the weight 

ratio of cubes. The original binding sites are fully covered by calculated binding sites after the 

optimal step (Fig. 1.5 C). In Fig. 1.5 D, the average error after the optimal step (0.18 Å) is far 

smaller than that after the clustering step (1.33 Å), which demonstrates that this optimal step 

significantly improves the accuracy of the method. 
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1.3.1.2 cube size optimization based on Random ions training set. 

The cube size is an important parameter for cutting the ionic cloud. The average error was 

benchmarked based on the cube sizes from 2.0 Å to 6.0 Å with the interval of 0.1 Å (Fig. 1.6 B). 

The cube sizes of 2.0 Å, 2.5 Å, 2.7 Å, 3.0 Å, 3.3 Å, 3.5 Å, 4.0 Å, 4.5 Å, 5.0 Å, 5.5Å and 6.0 Å 

were selected to show the average number of ions in the top 20 clusters (Fig. 1.6 A). From figure 

6 A, the average number of ions of the first 8 clusters is far higher than the others. The pattern 

classified the clusters into true binding site predictions (high average number of ions) and false 

binding site predictions (low average number of ions). The average number of ions of the top 8 

clusters is close to 1.0 (Fig. 1.6 A), revealing that each of these clusters, representing its 

corresponding binding site, always contains at least an ion trapped in the area, which is consistent 

with our setting in the training set. By contrast, clusters with a much lower average number of ions 

(the tail of curves (Fig. 1.6 A), clustering the non-binding-site-related cubes, should be abandoned. 

The ideal cube size should satisfy the full coverage of the binding site by clusters. In another word, 

the average number of ions in each cluster of calculated binding sites should be 1.00 and the area 

should be the same as binding sites. In the experiment, the minimal average error appeared during 

the cube sizes from 2.6 Å to 3.5 Å (Fig. 1.6 B). In the training set, the minimal distance between 

ions is 5 Å, so the side length of a cubic binding site is 10 Å, thus the best selection of cube size 

should be 3.3 Å (Fig. 1.7) to satisfy the full coverage of binding sites by clusters, leading to the 

optimal cube size selection equation (Eq. 1.4). 

                     L =  2×D
3

                                                                                                                (1.4) 

Where the L is the optimal length of the cube (cube size) and the D represents the minimal distance 

between ions. The theoretical optimal cube size of 3.3 Å appeared in the range from 2.6 Å to 3.5 

Å, consisting of the experiment. In Fig. 1.6 A, the average number of ions of the top 8 clusters 

with cube sizes from 2.7 Å to 5.0 Å show stable lines slightly over 1.0, while the curves of cube 

size smaller than 2.5 Å or over 5 Å are very unstable. The instability is caused by defective 

clustering, due to the improper cube sizes. In summary, the cube size of 3.3 Å is the optimal 

selection, which was used for the analysis of the testing set. 
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Figure 1.7 The diagram of binding area and cube size selection (Eq. (1.6)). 

1.3.1.3 Effects of simulation time on the accuracy 

Since the HIT is based on the ionic information from MD simulation, the running time of MD 

simulation is crucial for HIT to get reliable results. In theory, the MD simulation should be as long 

as possible to get accurate results for applying HIT. However, running an infinite MD simulation 

is impossible and impractical. Hence, the necessary simulation running time is demanded applying 

HIT. Here NAMD training set was applied to test how long the MD simulations can provide 

enough information for HIT to successfully identify all binding sites. The number of successfully 

identified binding sites divided by the total number of original binding sites is the accuracy (Fig 

1.8). The wrong calculated binding sites are regarded as incorrect calculations (Fig. 1.9). In the 

real case of the kinesin dataset, we used the 36 calculated binding sites from HIT based on 10 ns 

simulations of kinesin as references (Fig. 1.10). The number of calculated binding sites from HIT 

based on certain simulation running time, divided by total number of original binding sites is the 

coverage (Fig. 1.10).   
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Figure 1.8 The average error of the calculated 8 binding sites for different simulation times of the 

NAMD training set. 

It is obvious that two incorrect calculations happened in the 0.1 ns simulation while one incorrect 

calculation happened in the 0.2 ns simulation (Fig. 1.9 A and B). After 0.3 ns simulation, all 

binding sites were identified correctly by the HIT method (Fig. 1.9 C, D, and E). The average error 

was reduced from 11 Å to 0.73 Å (Fig. 1.8) with the simulation time from 0.1 ns to 0.5 ns. This 

result shows that the HIT method only needs 0.3 ns simulation to achieve 100% accuracy. In the 

real case (Fig. 1.10), the HIT method achieved stable results (70%-75% coverage) when the 

simulation is longer than 4 ns (Fig. 1.10). The 25%-30% coverage loss is because that when the 

surface of the protein is nearly neutral, some of the “bound” ions may be semi-bound ions, which 

are not always bound at their binding sites. Before 4 ns, the coverage increased with the simulation 

time while the coverage kept stable after 4 ns. It means that the HIT method is non-sensitive to 

simulation time after 4 ns. Note that the necessary simulation running time of the kinesin dataset 
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(4 ns) is different from that of the NAMD training set (0.3 ns). Because the binding sites in the 

NAMD training set are stable and strong binding sites. However, in real cases such as the kinesin 

dataset, not all the binding sites are stable and strong. Although there are weak binding sites in real 

cases, the HIT still achieved 70%-75% coverage and stabilized after 4 ns. In a nutshell, to get 

reliable results from the HIT method, a 4 ns simulation is enough, but the longer simulation is 

always recommended.    

 

Figure 1.9 The figures of the NAMD training set for different simulation running times where 

the red balls represent the original binding sites, and the yellow balls represent the calculated 

binding sites. A, B, C, D, and E represent the original binding sites vs calculated binding sites. 
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Figure 1.10 The sensitivity study of the calculated binding sites based on the Kinesin dataset. 

The coverage is the ratio of the number of correctly identified calculated binding sites (Distance 

smaller than the length of the side of binding sites) divided by the number of total calculated 

binding sites. Reference is the result of HIT based on 10ns simulation. 

1.3.2. Testing and applications 

Two biological applications were tested by HIT, including a myosin-actin complex and a kinesin-

tubulin complex. In the MD simulations, even though no atoms were constrained or fixed, both 

complexes were still relatively rigid in the simulations (Fig. 1.11). The movement of the centers 

of the myosin-actin complex was 4.78 Å and that of the kinesin-tubulin complex was only 4.14 Å, 

respectively (Fig. 1.11), which is much smaller than the side length of the expected binding sites 

(10 Å Fig 1.7). Before the electrostatic calculation, the 20 Å separation on the interface (Fig. 1.13, 

1.14, 1.15, and 1.16) was applied on both myosin-actin complex and kinesin-tubulin complex. The 

figures were visualized by Chimera(Pettersen et al., 2004). 



 

20 

 

Figure 1.11 The comparisons of the proteins’ position and structure before and after 10ns 

simulation of both myosin-actin complex and kinesin-tubulin complex (The red represents the 

position of proteins before simulation while the blue represents that after simulations). 

1.3.2.1 The compensation of net charge.  

As shown in Fig. 1.13 and Fig. 1.14, the comparison between the electrostatic surfaces calculated 

by the traditional method and the HIT method shows that the HIT method significantly improves 

the electrostatic calculations. In Fig. 1.13 A and C, the actin filament is highly negatively charged, 

where some positive ions should be bound surrounding the actin filament. The lack of bound 

positive ions causes unpredictable errors and bias in electrostatic calculations. By contrast, the HIT 

method (Fig. 1.13 B and D) added the bound ions based on the ionic cloud distribution, neutralizing 

the actin filament. Similarly, as shown in Fig. 1.14, the HIT method improved the electrostatic 

calculation of a highly negatively charged tubulin dimer. Without the HIT calculations, the 

electrostatic potential was calculated without any bound ions compensating the highly charged 

system. For such highly charged systems, it is unrealistic to have no bound ions. Additionally, we 

selected five positions (Fig. 1.12) to quantitatively compare the electrostatic potential calculations 

without and with HIT. These five points’ potential values were calculated by DelphiForce(L. Li, 

Chakravorty, & Alexov, 2017). The results show that the average potential error was reduced from 
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0.93 to 0.53 kT/e in kinesin testing set by HIT (Fig. 1.12). Such bound ions added by HIT improve 

the electrostatic potential calculations and make them more realistic.  

 

Figure 1.12 The errors of five testing positions’ potential values without HIT and with HIT in the 

kinesin testing set. The testing positions for potential testing are 10 Å away from calculated 

binding sites. We took the top 5 positions without clashes with protein and ions to calculate 

potentials by DelphiForce. The potential of the five positions was tested based on the structure 

without explicitly bound ions (without HIT) and with explicitly bound ions (with HIT) for 

comparison. The error of a certain position’s potential value is the difference between the 

potential in reference and that based on a certain method (without HIT and with HIT). The 

reference potential values are the average potential values of 200 frames (obtained from 5 ns – 

10 ns simulations), where the proteins and all ions (Na+ and Cl-) were saved as the structure. 

The concentration of salt was set as 0.00 for the potential calculation of reference while that was 

set as 150 mM for both structures without explicitly bound ions (without HIT) and with 

explicitly bound ions (with HIT). 
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Figure 1.13 Electrostatic surface representation of myosin dataset in front (A and B) and back 

side (C and D), in which A and C represent the electronic surface without explicit sodium ions 

(yellow balls) by the traditional method, and B and D represent the electronic surface with 

explicit sodium ions by the HIT. The images are rendered by Chimera with a color scale from 

−1.0 to 1.0 kT/e. 
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Figure 1.14 Electrostatic surface representation for kinesin dataset in front (A and B) and back 

side (C and D), in which A and C represent the electronic surface without explicit sodium ions 

(yellow balls) by the traditional method, and B and D represent the electronic surface with 

explicit sodium ions by the HIT. Images were rendered by Chimera with a color scale from −1.0 

to 1.0 kT/e 

Fig. 1.15 illustrates the details on the interfaces of the myosin-actin complex. The myosin-binding 

interface is positive while the actin filament binding interface is highly negative. Such electrostatic 
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distributions generate attractive forces between the myosin motor domain and actin filament. With 

the traditional method, the interface of myosin is positive, as shown in blue regions in Fig. 1.15 A 

and C. The HIT method added bound ions, which enlarge the positive area on the interface of 

myosin (Fig. 1.15 B and D). Such bound ions may enhance the binding forces between the myosin 

and actin filament. The actin filament is highly negatively charged, the HIT method added bound 

ions, therefore, shrinks the negative binding surfaces on the actin filament. In previous studies, the 

adjustment of the binding process is widely accepted and controlled by myosin-binding protein 

C(Burghardt & Sikkink, 2013). It is regarded to happen during the pre-power stroke 

state(Houdusse & Sweeney, 2016; Llinas et al., 2015). The shrunk negatively charged surface may 

be also related to the adjustment of the binding process, making the binding more specific.  

 

Figure 1.15 Electrostatic surface representation of the interface between myosin motor domain 

and actin filament in two directions. A and C represent the electronic surface without explicit 

sodium ions (yellow balls) by the traditional method, and B and D represent the electronic 

surface with explicit sodium ions by the HIT. The images are rendered by Chimera with a color 

scale from −1.0 to 1.0 kT/e. 
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Fig. 1.16 illustrates the details on the interfaces of the kinesin-tubulin dimer complex. As shown 

in the traditional method (Fig. 1.16 A and C), the interface of the kinesin motor domain is 

positively charged while that of tubulin dimer is negatively charged. The oppositely charged 

interfaces generate intensive binding forces. Like the effects on myosin, the HIT method also 

enlarged the positive area on the kinesin interface by adding bound ions (Fig. 1.16 B and D), 

strengthening the binding force on the interface. On the other hand, added bound ions shrunk the 

positively charged area of the interface of the tubulin dimer, enhancing the specificity of the 

binding site.   

 

Figure 1.16 Electrostatic surface representation for the interface between kinesin motor domain 

and tubulin dimer in two directions. A and C represent the electronic surface without explicit 

sodium ions (yellow balls) by the traditional method while B and D represent the electronic 

surface with explicit sodium ions by the HIT. The images are rendered by Chimera with a color 

scale from −1.0 to 1.0 kT/e. 
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3.2.2 The interactions between myosin motor domain and actin filament 

The myosin motor domain and actin filament were separated by 20 Å for better visualization of 

electrostatic field lines (Fig. 1.17). The electrostatic figures were rendered by VMD. The density 

of the electrostatic field lines represents the strengths of interactions between proteins. The actin 

filament includes G-actin and tropomyosin (TM). The interfaces between the myosin motor 

domain and TM have intensively attractive interactions (Fig. 1.17 Left) while the interfaces 

between the myosin motor domain and G-actin yield much weaker interactions (Fig. 1.17 Right). 

In previous TM studies(Yamada et al., 2020), the traditional opinion about the movements of TM 

includes three states: open, close, and block states. They are regulated by Ca2+ activating troponin 

(Tn) to shift the position of TM. In some studies, myosin induces another movement of TM, which 

is about 10°(Risi et al., 2017) or 23 Å(Behrmann et al., 2012), after myosin binding to the actin 

filament. The interactions between the myosin motor domain and TM provide evidence of the 

myosin-regulated movement of TM(Behrmann et al., 2012). By contrast, there are no distinct 

electrostatic interactions between the myosin motor domain and G-actins (Fig. 1.17 Right), which 

are regarded as the main binding sites for the myosin motor domain. Julian von der Ecken showed 

that the HLH motif of myosin enters the hydrophobic groove between actins to generate a strong 

binding force(von der Ecken, Heissler, Pathan-Chhatbar, Manstein, & Raunser, 2016). 

Additionally, the main binding part of cardiomyopathy loop (CM-loop) is also mainly stabilized 

by hydrophobic interactions(von der Ecken et al., 2016). With the support from the electrostatic 

studies, it is more reliable that electrostatic force does not dominate the interaction between myosin 

and G-actins. 
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Figure 1.17 Electrostatic field line for the interface of myosin motor domain with tropomyosin 

(Left enlarged view) and actin (Right enlarged view). Yellow balls represent explicit sodium ions 

added by the HIT. 

1.3.2.3 The interactions between kinesin motor domain and tubulin dimer. 

The kinesin motor domain and tubulin dimer were separated by 20 Å to better visualize the 

electrostatic field lines (Fig. 1.18). There were two intensively attractive interactions between the 

cut7 kinesin motor domain and tubulin dimer. One is on the interface of cut7/α-tubulin and the 

other is on the interface of cut7/β-tubulin. The binding strengths of cut7/α-tubulin and cut7/β-

tubulin are similar. It is consistent with the distribution of charges on the interface of the kinesin 

motor domain and tubulin dimer, as shown in Fig. 1.15 B and D. Most of the kinesins only interact 

with β-tubulin(Hunter & Allingham, 2020; Woehlke et al., 1997) while kinesin-5 (cut7) interact 

with both α- and β-tubulin. This may hint at the bidirectional characteristic of kinesin-5 (cut-7)(von 

Loeffelholz et al., 2019).  
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Figure 1.18 Electrostatic field line for the interface of kinesin motor domain with α-tubulin (Left 

enlarged view) and kinesin motor domain with β-tubulin (Right enlarged view). Yellow balls 

represent explicit sodium ions added by the HIT. 

1.4. Conclusions 

Ions are important to balance the net charges of highly charged biomolecules and bounded ions 

are crucial for the functions of highly charged biomolecules, such as DNAs, RNAs, and other 

biomolecules. In computational simulations, treating the ions properly is a challenging and 

essential task. In this work, we developed a novel method, the Hybridizing Ions Treatment (HIT) 

method, which hybridizes the implicit solvent method and explicit method to realistically calculate 

the electrostatic potential for highly charged biomolecules. 

The implementation of this HIT method on two multiprotein complexes shows that this method 

improves the electrostatic calculations significantly. It predicts the positions of bound ions and 

then utilizes the bound ions to neutralize the biomolecules, therefore provides more realistic 

electrostatic calculations. The electrostatic interaction between actin filament and myosin motor 

domain proved that the electrostatic interactions between the myosin motor domain and TM is 

stronger than that between the myosin motor domain and G-actin, revealing the mechanism of the 
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myosin-regulated motion of TM, which has been observed by experiments (Behrmann et al., 2012; 

Risi et al., 2017). The interaction between cut7 kinesin motor domain and tubulin dimer was 

calculated, which demonstrated that the binding strengths of cut7/α-tubulin and cut7/β-tubulin are 

similar. Such similar electrostatic binding interactions may be a factor of the bidirectional motility 

feature for cut7(von Loeffelholz et al., 2019).  

Besides the two applications in this work, the HIT method is also useful and helpful to be applied 

in many other studies related to highly charged biomolecules, including DNAs, RNAs, molecular 

motors, and other biomolecules. In this work, we just took Na+ as the testing case. The performance 

of HIT is independent of ion types. Because HIT utilizes the information of ions distribution from 

MD simulations to analyze which ions are bound ions. Current MD algorithms treat different types 

of ions very reliably. Therefore, the HIT can handle the other types of ions as well as Na+. However, 

the limitation of HIT is that it can only be applied to biomolecules that don’t have large 

conformational changes. For structures that have large conformational changes, more 

comprehensive algorithms are demanded to predict the bound ions. In our testing sets, the proteins’ 

conformations did not change a lot. Our future work will focus on the problems of biomolecules 

that undergo large conformational changes. The supplementary material and the data in this work 

(including training set and results) are available online. The HIT package is available at 

http://compbio.utep.edu/static/downloads/download_hit.zip 

  

http://compbio.utep.edu/static/downloads/download_hit.zip
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Chapter 2: The computational study on the function of palmitoylation on the 

envelope protein in SARS-CoV-2 

2.1 Introduction 

Coronaviruses (CoVs) are notorious as the pathogens of numerous diseases in a wide range of 

vertebrates, including human beings. In 2002, the SARS-CoV-related severe acute respiratory 

syndrome (SARS) took 4 months to overwhelm 29 countries and killed 774 reported patients, and 

it almost paralyzed the Asian economy(De Wit, Van Doremalen, Falzarano, & Munster, 2016; 

Stadler et al., 2003). After 10 years, the outbreak of a new coronavirus, named the Middle East 

Respiratory Syndrome coronavirus (MERS-CoV) spread in 27 counties, causing a 35% death 

rate(De Wit et al., 2016; Organization, 2019; Park, Jung, & Kim, 2018). In December 2019, a 

novel coronavirus named Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) was 

discovered and now has already spread across the whole world. The disease caused by it is known 

as coronavirus disease 2019 (COVID-19)(Wu et al., 2020; Yang, Wang, & immunology, 2020). 

So far, the disease has infected 106 million people and caused 2.31 million deaths in the whole 

world. In addition to severe pneumonia, the SARS-CoV-2 can also cause multi-organ damages, 

including cardiovascular disease(Madjid, Safavi-Naeini, Solomon, & Vardeny, 2020), 

reproductive risk(Hall et al., 2020), mental illness(Yao, Chen, & Xu, 2020), and smell 

disfunction(Moein et al., 2020). Thus it is urgent to understand the virulence mechanisms to 

prevent future outbreaks and to develop the remedies for COVID-19. 

The SARS-CoV-2 is a positive RNA strand virus that origins from the family 

Coronaviridae(Ramphul & Mejias, 2020; Wu et al., 2020).  The genome of coronavirus encodes 

four major structural proteins, which are the spike (S) protein, nucleocapsid (N) protein, membrane 

(M) protein, and the envelope (E) protein(Masters, 2006). The S protein mainly regulates the 

binding with the ACE2 (Angiotensin-Converting Enzyme) receptor of cells(Lan et al., 2020; Xie 

et al., 2020). The N protein and the M protein serve as RNA genome binding protein(de Haan & 

Rottier, 2005) and the most abundant structural protein of viral envelope, respectively(Neuman et 

al., 2011; Schoeman & Fielding, 2019). The E protein is the smallest among four major structural 

proteins. Other than the S, N, and M proteins, the E protein is abundantly expressed in the infected 

cells but only a small percentage is assembled into viral envelope(Venkatagopalan, Daskalova, 
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Lopez, Dolezal, & Hogue, 2015).  The majority of the protein is located at the ER (endoplasmic 

reticulum), Golgi complex, and ERGIC (ER-Golgi intermediate compartment)(Nieto-Torres et al., 

2011; Nieva, Madan, & Carrasco, 2012). The E protein is related to intracellular trafficking and 

participates in the viral assembly and budding(Venkatagopalan et al., 2015; Westerbeck & 

Machamer, 2019). The recombined CoVs which lack E protein express crippled viral maturation 

and incompetent progeny(Curtis, Yount, & Baric, 2002; DeDiego et al., 2007; Ortego, Ceriani, 

Patiño, Plana, & Enjuanes, 2007). The study about the E protein is important to understand 

virulence mechanisms. 

The SARS-CoV E protein contains a short hydrophilic terminal, a large hydrophobic 

transmembrane domain (TMD), and a long hydrophilic carboxyl end(Y. Li, Surya, Claudine, & 

Torres, 2014). Synthetic peptides of TMD of E protein can form dimers, trimers, and 

pentamers(Torres, Wang, Parthasarathy, & Liu, 2005), among which the pentametric structure is 

widely accepted and studied as viroporin(Nieva et al., 2012; Schoeman & Fielding, 2019; 

Venkatagopalan et al., 2015). Similarly, the TMD of SARS-CoV-2 E protein was also found to 

form a five-helix buddle surrounding a narrow pore(Torres et al., 2005).  The narrow pore is 

suggested as viroporin to regulate multiple stages of viral life circles. Viroporins can transport 

different ions but usually prefer positively charged ions (H+, K+, Na+, and Ca2+)(Mould et al., 2003; 

Nieto-Torres et al., 2015; Pham, Perry, Dosey, Delcour, & Hyser, 2017; Wang, Takeuchi, Pinto, 

& Lamb, 1993; Wilson, Mckinlay, Gage, & Ewart, 2004). As reported, the cell infected by 

coronavirus exhibited a remarkable increase of pH in the Golgi complex. The increased pH 

protects spike protein and promotes the release of the virus from the cell(Westerbeck & Machamer, 

2019). This finding supports that the E protein of coronavirus could be H+ channel, changing 

luminal pH and helping the release of the virus. To modulate protein functions, Post-Translational 

Modifications (PTMs) are necessary. The PTMs of the E protein of coronavirus include 

glycosylation and palmitoylation (Palm)(Fung & Liu, 2018; Schoeman & Fielding, 2019). N-

glycosylation, as reported, appears in a minor form of SARS-CoV E protein, which has both C- 

and N- terminals exposed on the luminal side(Chen, Lo, Ma, & Li, 2009; Yuan, Liao, Torres, Tam, 

& Liu, 2006). Nevertheless, the E protein with both C- and N- terminal on the cytoplasmic side is 

not modified by glycosylation. By contrast, all three cysteine residues (C40, C43, C44) in the 

SARS-CoV E protein are modified by palmitoylation(Liao, Yuan, Torres, Tam, & Liu, 2006). The 

mutant of these cysteines in E protein on mouse hepatitis virus A59 (MHV-A59) weakens the 
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ability to form virus-like particles(Boscarino, Logan, Lacny, & Gallagher, 2008; Lopez, Riffle, 

Pike, Gardner, & Hogue, 2008). Additionally, MHV was prone to degradation when carrying triple 

mutants(Lopez et al., 2008). These findings proved the importance of palmitoylation on the E 

protein, but the mechanism is still enigmatic.  

To better understand how palmitoylation affects the function of coronavirus E protein, SARS-

CoV-2 E protein pentameric structure was used as the reference (E protein without Palm). The 

palmitoylation was added on the cysteine residues 40, 43, and 44 to each monomer as the 

experimental group (E protein with Palm). Afterward, Molecular Dynamic (MD) simulations were 

run to observe the effects of palmitoylation. Besides, the topological and electrostatic studies were 

applied to analyze the function of palmitoylation. In the end, we simulated several H+ on two sides 

to detect the differences of the force on cations. These studies were summarized in the conclusion 

section to discuss the effects of palmitoylation on the function of passing ions on the E protein 

pentamer. 

 
Figure 2.1 The structure alignment and the sequence alignment of SARS-CoV2 and SARS-CoV.  
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2.2 Methodology 

2.2.1 Modeling and simulation 

The sequence of E protein monomer of SARS-CoV-2 from 2019 was used as the query sequence 

(RefSeq: YP_009724392.1) (Fig. 2.1). The 3-dimensional pentameric structure of the E protein of 

the SARS-CoV-2 structure was based on the pentameric structure of the E protein of SARS-CoV 

of the PDB 5X29(Surya, Li, & Torres, 2018) and was achieved by Robetta server(Kim, Chivian, 

& Baker, 2004). Figure 2.1 shows the sequence and structural alignment of SARS-CoV-2 and 

SARS-CoV. The sequence similarity is 96 %. The modeled pentameric structure was used as the 

initial configuration (E protein without Palm) for the MD simulation. The palmitoylation was 

attached to the cysteine residues 40, 43, and 44 to each monomer (Fig. 2.2) as the E protein with 

Palm. 

 

Figure 2.2 The diagram of E protein pentamer in the membrane. 

The CHARMM-GUI(Jo, Kim, Iyer, & Im, 2008) webserver was used to create the simulating 

system (Fig. 2.2). The two structures were then embedded in the membrane dioleoyl 

phosphatidylcholine (DOPC) around the center along the z-axis. The membrane is a square with a 

side length of 150 Å long along the x and y-axis. The system was solvated with water of type 
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TIP3(Mackerell Jr, Feig, & Brooks III, 2004) of thickness 15 Å on either side of the membrane. 

The NaCl was used to ionize the system with a concentration of 150 mM. The temperature was set 

to 300 K and pressure to 1 atm. Parameterization of the atoms in the system was attained with the 

CHARMM36 force field(Huang & MacKerell Jr, 2013). Periodic boundary condition was applied 

to the simulating box and the Particle Mesh Ewald (PME)(Essmann et al., 1995) was used for the 

long-range electrostatic interactions. The final system was then subjected to the MD simulation 

with NAMD 2.12(Phillips et al., 2005). 10,000 steps were performed for minimization and 1ns for 

equilibration where constraints were imposed to the E protein complex and the head groups of 

DOPC lipids. Finally, 50 ns of the production running time was performed after removing 

constraints. 

2.2.2 Topological study         

The transmembrane domain (α-helix) of E protein pentamer is marked from 17V to 37L (21 

residues) in five monomers for RMSF (Root-Mean-Square Fluctuations) analysis.  The diagram 

(Fig. 2.2) showed that the cytosolic side (C-terminal) is on the top while the luminal side (N-

terminal) is on the bottom.  

The RMSF of the residues (21 residues) on the transmembrane domain is achieved based on the 

50 ns simulation (500 frames) by Visual Molecular Dynamics (VMD)(Humphrey et al., 1996) (Eq. 

2.1).  

RMSFi = [1
T
∑ |ri�tj� − riref|T
tj=1 ]1/2                                                                                   (2.1)(Van 

Der Spoel et al., 2005) 

Where i represents the residue ID, the T represents the total simulation time (Here is the number 

of frames), ri(tj) represents the residues i in the time of tj position. The riref is the reference position 

of residue i, calculated by the time-average position. 

The RMSD (Root-Mean-Square Deviation) is to measure the average distance between two protein 

structures, calculated by equation 2.2(Humphrey et al., 1996) 

RMSD(t) = [ 1
WN

∑ wi|ri(t) − riref|2N
i=1 ]1/2                                                                        (2.2)(Van 

Der Spoel et al., 2005) 
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Where W = Σwi is the weighting factor, and N is the total number of atoms. The ri(t) is the position 

of atom i at time t after least square fitting the structure to the reference structure. The riref is the 

reference position of residue i defined by the reference structure (Here we used the initial structure 

as the reference). 

2.2.2.1 General comparison of the projections of the E protein’s top and bottom views  

The E protein pentamers with and without Palm were compared to show the conformational 

differences in both top and bottom views. The structures are from the last frame of the simulation. 

The observation plane is parallel to the membrane surface.      

2.2.2.2 Minimal pore radius testing 

The pore radius is tested by HOLE2(Smart, Neduvelil, Wang, Wallace, & Sansom, 1996) for the 

E protein pentamer with and without Palm in 50 ns simulation. The minimal pore radius is the 

minimum radius of the ion channel formed by the E protein pentamer. To avoid the influence from 

the C- and N- terminal residues, residues from 13I to 38Rwere extracted from the whole structure 

for the pore radius testing. To avoid the spherical probe ball running in the wrong direction, the 

moving direction is restrained to follow Z-axis(Smart et al., 1996), and the pore radius was tested 

six times for a single frame to take the maximum number of minimal pore radius.  

2.2.3 Electrostatic study 

The electrostatic potential calculations of E protein pentamer were calculated by Delphi(L. Li et 

al., 2012). The charge and the radius of atoms were calculated by the force field CHARMM36 and 

assigned by pdb2pqr(Dolinsky et al., 2007). The dielectric constants were set as 2 and 80 for 

protein and water respectively. The salt concentration was set as 150 mM, and the probe radius 

was set as 1.4 Å, and the protein filling percentage was set as 70%. The resolution was set as 1.5 

grids/Å. The electrostatic potentials on the surfaces were visualized by Chimera(Pettersen et al., 

2004) for both cytosolic (top view) and luminal sides (bottom view). The color range was set from 

-1.0 kT/e (red) to 1.0 kT/e (blue). The potential surfaces were visualized by Chimera(Pettersen et 

al., 2004) and the electric field lines were visualized by VMD(Humphrey et al., 1996) to 

demonstrate the interactions. 

To quantitively demonstrate the effects of the electrostatic force on the hydrogen ions, two sets 

of H+ are simulated. One is a series of H+ positions that were perpendicular to the membrane and 
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across the mass center of the E protein pentamer (Fig. 2.3). The other is the two layers of H+ 

which were 10 Å far away from the membrane on both sides. To simulate the two layers of H+, 

the positions of H+ at 10 Å on two sides were chosen as the center to draw several circles of H+ 

for electrostatic force testing (Fig. 2.3). The radiuses of circles are from 2 Å to 15 Å. In a certain 

circle, for every 10o, a hydrogen ion is placed. The electrostatic force on H+ was split to 

demonstrate the component force of the direction along the Z-axis. The component force 

direction was set from the bottom (luminal side) to the top (cytosolic side). The electrostatic 

force was calculated by DelphiForce(L. Li, Chakravorty, et al., 2017).  

 

Figure 2.3 The diagram of the placement of simulated H+ for electrostatic force testing. 
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2.2 Result and discussion 

2.3.1 Topological study  

From the RMSD study (Fig. 2.4), both systems have achieved stability after a 50 ns simulation. 

The structures in Fig. 2.5 were the E protein pentamers extracted from the last frame of the MD 

simulations of both systems. The structures were matched by Chimera(Pettersen et al., 2004) and 

the two sides of the ion channel were compared by the top and bottom views. The E protein with 

Palm stabilizes the pentametric structure in the larger pore size on the two sides while the loss of 

palmitoylation reduces the pore radius in the two sides and reshapes the structure into an irregular 

conformation. To further investigate the effects of palmitoylation on the whole ion channel during 

simulations, the HOLE(Smart et al., 1996) program was applied to test the minimal pore radius of 

the ion channel. As shown in Fig. 2.6, the E protein pentametric structure with Palm exhibits a 

minimal pore radius of 0.45 Å. In contrast, the non-palmitoylated E protein pentamer only has a 

0.33 Å minimal pore radius. The loss of palmitoylation directly reduces the pore radius. In theory, 

0.33 Å is impossible for ions passing, even for H+. Additionally, without palmitoylation, the 

collapse (The minimal pore radius acutely decreases 15% in 1 ns) of the ion channel happened 2 

times during the simulations (Fig. 2.7). To investigate the reason for the collapses, the RMSF and 

salt bridges were calculated for the E protein pentamers. The average salt bridge numbers for the 

E protein without Palm is around 0~1 while that with Palm is around 1~2 (Fig. 2.6). It means the 

structure of E protein without Palm is unstable compared with the E protein with Palm. However, 

the RMSF study shows the α-Carbons in the transmembrane domain residues of the palmitoylated 

E protein pentameric structure are more flexible (Fig. 2.8). The RMSF studies of the Cα proved 

the flexibility of the structure, which may be important in ion transfers. The “opposite” results 

from salt bridges and the RMSF study exactly proved that the characterization of dynamic 

equilibrium of palmitoylated E protein pentametric structure. The loss of the palmitoylation breaks 

the equilibrium, leading to the narrow pore radius and collapses of the ion channel. In previous 

studies, the palmitoylation of the E protein has also been shown with high importance in murine 

coronavirus assembling(Boscarino et al., 2008). The related palmitoylated residues have also been 

studied in the previous works(Lopez et al., 2008). However, they did not apply the mechanism 

studies. Unlike previous works, this work focused on the mechanism of how palmitoylation affects 

the E protein in computational studies. The function of palmitoylation about stabilizing proteins 
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has also been found in Rous Sarcoma Virus (RSV) transmembrane glycoprotein(Ochsenbauer-

Jambor, Miller, Roberts, Rhee, & Hunter, 2001), CCR5 Receptor(Percherancier et al., 2001), and 

TEAD proteins(Noland et al., 2016). The mechanism found in this work may be also related to the 

other palmitoylated transmembrane proteins.  

 

Figure 2.4 The RMSD of E-protein with and without Palm during 50 ns simulation 

 

Figure 2.5The general comparison of the E protein pentamer on the top and bottom view. 
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Figure 2.6 The minimal pore radius of the E-protein during the simulation. 

 

Figure 2.7 The number of salt bridges of E-protein pentamer with and without Palm during 50 ns 

simulation. 

 

 



 

40 

 

Figure 2.8 The RMSF of the residues in the transmembrane domain of E-protein. Zone A, B, C, 

D, D, and E represent transmembrane domain residues in 5 monomers of E-protein. 

2.3.2 Electrostatic study 

As shown in Fig. 2.9, the top side (cytosolic side) of the electrostatic surface of the E protein is 

positively charged while the bottom side (luminal side) of that is negatively charged. The 

distribution of surface charge is suitable for attracting cation on the luminal side and releasing 

cation on the cytosolic side. This finding is consistent with previous studies, which is that the E 

protein pentamer is a viroporin, preferring cation transfer(Wilson et al., 2004). If the cation is H+, 

the release of H+ from lumen to cytoplasm by E protein pentamer would cause higher pH in the 

lumen. This finding is also consistent with that the loss of  E protein causes the high pH in the 

Golgi complex(Westerbeck & Machamer, 2019). From the top view, the center of the E protein is 

full of palmitoylation whose surface is positively charged (Fig. 2.9). The palmitoylation on the 

cytosolic side increases the positively charged area. The enlarged area strengthens the repulsive 

force on the cation on the top side. By contrast, even the luminal side (Fig. 2.9 bottom view) of E 

protein is not palmitoylated, the surface of that also showed significant differences. Without 

palmitoylation, the center of E protein is blocked by the negatively charged surface. It is related to 

the shrunk pore radius in topology studies. When the E protein is palmitoylated, the entry of the 
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channel is stabilized and a neutral surface appears in the center, surrounded by the negatively 

charged surface. In theory, this structure not only provided opposite charges for attracting cations 

but also weakened the repulsion when the cations arrive at the exit. To better understand the 

advantages and disadvantages of this structure, more sophisticated biological and computational 

experiments are needed.  

 

Figure 2.9 The electrostatic surface of E-protein with and without palmitoylation in the top and 

bottom view 

The function of the E protein pentamer is exerted when the protein is on the membrane. The 

electrostatic surface and electric field lines of the membrane with the E protein are visualized in 

Fig. 2.10.  From the top view, the positively charged area is extended by palmitoylation. It is 

consistent with the results of the E protein pentamer in Fig 2.9. However, for the electric field line 

studies, there are no significant differences. For the bottom view of the membranes, the E proteins 

with and without Palm show no significant differences in the electrostatic potential at the surfaces. 

However, the electric field lines in the E protein with Palm show intensively interactions with the 

surrounding membrane. Compared with findings in Fig. 2.10, the palmitoylation on the top can 

enhance the interactions on the bottom. This effect may be related to charge redistribution caused 

by the protein palmitoylation.  
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Figure 2.10 The electrostatic surface and electric field line of membrane/E-protein with and 

without palmitoylation. 

2.3.3 The electrostatic force on H+  

To better analyze the electrostatic force on the cations when approaching the E protein, a column 

of H+ ions (along the Z-axis) was simulated to place on both sides of the membrane (Fig. 2.3). The 
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farthest position of H+ is 15 Å away from the membrane. The electrostatic forces were split into 

the X, Y, Z components. The Z component is the main force to attract or repel ions (Fig. 2.11). On 

the cytosolic side, the z component of the electrostatic force shows a stable increase on 

palmitoylated E protein pentamer when the H+ approaching the membrane and the direction is 

from lumen to cytoplasm. By contrast, the loss of the palmitoylation caused the reverses of the 

direction of the Z components when H+ ions are approaching the membrane. Similarly, when the 

H+ is approaching the luminal side, the palmitoylated E protein also shows a similar and stable 

increase of the Z component while the E protein without Palm shows the variational direction of 

the Z components. The direction reverse of the Z component will strongly affect the E protein to 

attract the H+ ions in the lumen and weaken the repulsive force of E protein to release the H+ in 

the cytoplasm. If the H+ ions are accumulated on the cytosolic side, the efficiency of the ion 

channel would be strongly influenced by the concentration gradient. In general, the electrostatic 

force of palmitoylated E protein is more beneficial for transferring cation from lumen to cytoplasm. 

 

Figure 2.11 The electrostatic force on H+ in both cytosolic and luminal sides of the E-protein. 

The distance is the distance with the membrane surface. 

On the 10 Å away from the membrane, several circles of H+ ions were placed on the two sides 

(Fig. 2.3) to test the fluctuation of the Z component of the electrostatic force along with the distance 

with the Z-axis which crosses the mass center of E protein. The results are shown in Fig. 2.12. On 

the cytosolic side, the Z components on H+ ions of palmitoylated E protein pentamer are around 

0.1 kT/Å, and the short error bars show that the force on H+ in each circle did not intensively vary. 



 

44 

By comparison, the Z component of the non-palmitoylated E protein pentamer at 2 Å is much 

lower than that of the palmitoylated E protein pentamer. However, it increased and drop-down 

rapidly after 9 Å. Besides, for a certain circle of H+, especially the circle of 10 Å radius, the error 

bar is huge, meaning that the force on that circle strongly varies along with the position of H+. On 

the luminal side, the Z component of the membrane with a palmitoylated E protein pentamer is 

higher than that without palmitoylation. Notably, the N-terminal (luminal sides) in both systems 

are not palmitoylated, the C-terminal palmitoylated E protein caused more intensive fluctuations 

in the luminal side (Fig. 2.12 B) but lower than that in the cytosolic side of the non-palmitoylated 

E protein pentamer. The electrostatic forces study on the simulated H+ ions proved that the 

electrostatic force on certain panels is more consistent on the C-terminal of E protein pentamer. 

The C-terminal palmitoylation also affects the force on the luminal side, enhancing the 

electrostatic force but causing force inconsistent on planes. 

   

Figure 2.12 The electrostatic force on H+ in both cytosolic and luminal sides of the E-protein. 

The distance is the distance with the Z-axis, which passes the mass center. 

2.4 Conclusion 

The E protein is an important SARS-CoV-2 structural protein. The pentameric structure of E 

protein serves as viroporin. Palmitoylation is a common and important post-translational 

modification on the E protein. MD simulations are performed on the E protein pentamers with and 

without Palm in this study. Based on the MD simulations, the topological and electrostatic studies 

on the E protein reveal how palmitoylation affects the E protein. The palmitoylation on the E 
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protein stabilizes the pentametric structure, possessing a higher number of salt bridges. Without 

the palmitoylation, the pentametric structure loses dynamic equilibrium and the pore radius was 

reduced from 0.45 Å to 0.33 Å. In the electrostatic studies, the luminal side of the E protein is 

highly negatively charged while the cytosolic side is highly negatively charged. The surface 

potential supports the attraction of cations on the luminal side and the repelling of cations on the 

cytosolic side. This finding is consistent with the finding of previous works that the viroporin 

prefer cation transfer. The palmitoylation on the E protein extends the positively charged area on 

the cytosolic side and increases the electric interaction with the membrane on the luminal side. In 

the end, we simulated H+ ions approaching the E protein on the luminal side and leaving E protein 

on the cytosolic side. The results indicate that the electrostatic force on palmitoylated E protein 

pentamer benefits cation transfer from lumen to the cytoplasm. This study reveals the importance 

of palmitoylation on the E protein, which is helpful for the treatment development of COVID-19 

and other corona virus-related diseases. The electrostatic studies indicate the cations transferring 

direction is from lumen to cytosol and palmitoylation on E protein benefits this process. To go 

further and more accurately prove the ion transferring direction, more sophisticated biological 

experiments are required.  
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Chapter 3: Future work 

3.1 Myosin project 

I will study cardiac myosin in my future research work. There are two important objects I will start 

with. First is the binding process of the myosin filament and actin filament. The second is the 

effects of mutations on myosin, which causes serious diseases in human beings. These two objects 

mutually reinforce each other. I will start the two paths together for a better understanding of 

myosin. 

3.1.1 background 

Myosin is the superfamily of motor protein and famous for its role in muscle contractions and the 

motility process. The binding and detaching process is highly associated with ATP hydrolysis and 

Ca2+ concentration in cells.  

The kinetic circle is roughly classified into 4 stages: pre-rigor, rigor stage, post-rigor stage, and 

relaxed stage(Al-Khayat & Practice, 2013). In detail, after binding with ATP, the myosin will be 

detached from the actin filament. Then it is in a relaxed stage. In the next circle, the contact with 

actin triggered the release of Pi and force generation(Llinas et al., 2015).  This process started the 

power-stroke process. When the ADP is released from the myosin cleft, the process is in the rigor 

stage, which is the most strong binding between myosin filament and actin filament(Llinas et al., 

2015). 

Additionally, the binding between myosin filament and actin filament mainly happens between the 

globular actin (G-actin) and myosin motor domain. The tropomyosin in the actin filament is an 

important “switch” to regulate the binding between the myosin motor domain and G-actin. So far, 

there are 3 phases of tropomyosin have been observed and well-accepted, which are open, close, 

and blocked phase(Risi et al., 2017). The Ca2+ regulation on myosin-binding with actin is achieved 

by the troponin to move the tropomyosin into different phases(Yamada et al., 2020). 

So far, the experimental biophysical studies on the myosin have shown a lot of high-resolution 

structures for computational studies, including the myosin motor domain in rigor (PDB: 

5JLH)(von der Ecken et al., 2016) and post-rigor states (PBD: 6FSA)(Robert-Paganin et al., 2018). 

Besides, the corresponding actin filament with 3 stages of tropomyosin have also been published 
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(PDB: 5NOJ (open), 5NOL(close), and 5NOG(block))(Risi et al., 2017). These crucial materials 

will be beneficial for my further computational work on the myosin project. 

3.1.2 Current progress and future work 

The the progress from rigor stage to the post-rigor stage of myosin is the first sub-project I am 

working on. The actomyosin models in rigor and post-rigor stages have been achieved by the 

swiss-model(Guex & Peitsch, 1997). The 20 ns simulations have been done for both models. 

Besides, the surface potential calculation (Fig. 3.1 and 3.2) has been finished. Soon, the free energy 

and binding force in two stages of actomyosin models should be finished.  

 

 

Figure 3.1 Electrostatic surfaces for the actomyosin models in rigor (A and C) and post-rigor 

state (B and D). 
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Figure 3.2 Electrostatic field line for the interface of actomyosin model in rigor (A and C) and 

post-rigor state (B and D). 

In the next two years, I will build the actomyosin model for other stages in the myosin kinetic 

circles and explain the binding and detaching mechanism by sophisticated computation in energy 

and force associated with the conformational changes. 

3.2 HIT2 project 

The current HIT program can handle most cases in MD simulation except for the highly charged 

protein with huge conformational change. This drawback will limit the application of the program 

in computational biophysics. I will further develop this software into a more user-friendly and 

accurate tool. 
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3.2.1 Background 

In computational biology, the electrostatic calculation of biomolecules is fundamental and 

challenging. The electrostatic interactions play significant roles in protein folding(Ganguly et al., 

2012), protein stability(Stigter et al., 1991; Strickler et al., 2006), protein-protein interactions(L. 

Li, Jia, et al., 2017; L. Li et al., 2015; Zondlo, 2013), protein-DNA/RNA interactions(Akhtar et 

al., 2000; Richardson et al., 1988), and many other fields. However, the trapped ions directly affect 

the electrostatic surfaces, which have significant impacts on the interactions between biomolecules. 

Currently, there are two types of models to handle the ions and water molecules surrounding 

biomolecules: implicit solvent models and explicit solvent models. In implicit solvent models, the 

electrostatic features are calculated for biomolecules by treating ions implicitly(Jia et al., 2017; 

Klapper et al., 1986; Nicholls & Honig, 1991). On the other side, explicit solvent models such as 

TIP3P, TIP4P, with explicit ions, are widely used in Molecular Dynamic (MD) simulations by 

handling ions and molecules explicitly(Florová et al., 2010). Explicit solvent models can neutralize 

the highly charged biomolecules by adding unbalanced amounts of positive and negative ions into 

a system. However, traditional implicit solvent models treat the solvation as neutral with the same 

amounts of positive and negative ionic charges, which causes troubles in the electrostatic 

calculations of highly charged biomolecules and results in unrealistic interaction analyses. Under 

this circumstance, how to improve the implicit models to handle the highly charged biomolecules 

is a challenging problem to be solved. 

The current HIT program(Sun et al., 2021) can find most bound ions with occurrence frequency 

as reference but cannot provide an accurate number of bound ions. It means the users need their 

efforts to decide the threshold for the selection of bound ions. Besides, the opposite ions should 

also be selected for the certain oppositely charged area. In this case, the HIT needs to be run twice 

to find them. It is not convenient for users. Above all, the crucial limitation of this program is that 

it cannot handle the biomolecules with significant movement or conformational change. This 

limitation is the most crucial part that should be eliminated.  

3.2.2 future work  

The limitation of the HIT program is caused by the usage of the absolute position of ions instead 

of relative positions. In the new version of the HIT (HIT2) program, the relative position to 
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residues or mass center will be tested and applied. The change will strongly improve the accuracy 

for biomolecules with movements or conformational changes. 

The number of bound ions will be predicted by deep learning, several deep learning methods, 

including but not limited, random forest, neural network, lasso (least absolute shrinkage and 

selection operator) regression, and PCA (principal component analysis), will be tested to find the 

best number of bound ions. The HIT2 will provide a more accurate suggested number of bound 

ions. Besides, the opposite bound ions would also be considered in the HIT2 program. The 

parameters for prediction include but are not limited to cube size, occurrence frequency, and charge 

of residues. 

3.3 Time Schedule of Future Research 

Table 3.1: Time Schedule 

Tasks to complete project Approximate time 

Myosin project: rigor to the post-rigor process March-August 2021 

HIT2 project: Algorithm modification August-October 2021  

HIT2 project: Dataset creation October-December 2021 

HIT2 project: HIT2 application testing January-May 2022 

Myosin project: pre-power stroke process May-August 2022 

Myosin project: Mutation analysis  August-December 2022 

Thesis Writing: Literature review  January-February 2023 

Thesis writing: Methodology February-March 2023 

Thesis writing: Results  March-August 2023 

Thesis writing: First draft  September 2023 

Thesis writing: Revising October 2023 

Defense November 2023 

Submission and publication December 2023 
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