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Abstract

The theory of arithmetic functions and the theory of formal power series are classical and

active parts of mathematics. Algebraic operations on sets of arithmetic functions, called

convolutions, have an important place in the theory of arithmetic functions. The theory of

formal power series also has its place firmly anchored in abstract algebra.

A first goal of this thesis will be to present a parallelism of known characterizations

of the concepts of multiplicative and additive for arithmetic functions (Theorems 2.1.2

and 2.2.3) on the one hand and for formal power series on the other (Theorems 3.4.3 and

3.4.4). Therefore, in Chapter 1 and in the first part of Chapter 3 are listed notions and

properties that make possible the transposition from arithmetic functions to formal power

series. Further, an approach in which formal power series brought to the fore (Sections

3.1 and 3.2) will add new elements in our study on multiplicative arithmetic functions

(Section 3.3). So, if mainly, our presentation of Section 3.3 follows P.J. McCarthy’s book

[6], the proofs of some main results on completely and specially multiplicative functions has

been replaced with new proofs (Theorems 3.2.6, 3.2.7, 3.3.3, 3.3.4) using Bell series. This

was a second goal of giving new proofs using Bell series, and so we bring the two topics

(arithmetic functions and formal power series) closer together. If in the achievement of the

first goal a significant role was played by the embedding of the ring of formal power series

in the unitary ring of arithmetic functions, in the case of the second goal, Theorem 2.24

and 2.25 of T.M. Apostol’s book [1] influenced me to use the Bell series in proofs.
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Chapter 1

Arithmetic Functions and Convolutions

1.1 Arithmetic Functions

The theory of Arithmetic Functions has always been a vital part of Number Theory. An

arithmetic, arithmetical or number-theoretic function is any function defined on the set

of positive integers (natural numbers) N = {1, 2, 3, ...} with values in the set of complex

numbers C. We will focus on the ring of arithmetic functions with the standard addition

of functions and the Dirichlet convolution or unitary convolution as the multiplicative

operation. The following definitions and arithmetic functions of this chapter can be found

in Sivaramakrishnan [12], Burton [2], McCarthy [6] and Niven [8]. However, notations may

be different.

Definition 1.1.1. A function f : N→ C is said to be an arithmetic function .

Notation 1.1.2. The set of all arithmetic functions will be denoted by

A = {f : N→ C}.

We give some examples of the arithmetic functions that will be used and discussed

throughout this paper.

• τ(n) =
∑
d|n

1, for all n ∈ N, is the number of positive divisors of n

• σ(n) =
∑
d|n
d, for all n ∈ N, is the sum of all positive divisors of n

1



• µ(n) =


1 if n = 1

0 if there exists a prime such that p2|n

(−1)k if n = p1 · p2 · · · pk with distinct primes
(The Möbius Function)

• o(n) = 0 for all n ∈ N

Lastly, let us define Euler’s totient function

• φ(n) is the number of positive integers less than or equal to a natural number n and

relatively prime to n (for all n ∈ N)

Example of the first few positive integer values are the following

φ(1) = 1 φ(2) = 1 φ(4) = 2 φ(12) = 4

φ(5) = 4 φ(6) = 2 φ(7) = 6

When p is a prime number we have:

φ(p) = p− 1

With this brief introduction of arithmetic functions, we can introduce one of the fun-

damental structures which will be used in the thesis: the ring of arithmetic functions.

2



1.2 Dirichlet Convolution and Unitary Convolution

Definition 1.2.1. Let f and g be arithmetic functions, then the Dirichlet Convolution

is defined as

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
∀n ∈ N

.

Before we discuss the properties of the structure (A, ∗), it would be quite helpful to

illustrate this operation through example. So, if we take two arithmetic functions f, g and

the integer 12, we obtain:

(f ∗ g)(12) = f(1)g(12) + f(2)g(6) + f(3)g(4) + f(4)g(3) + f(6)g(2) + f(12)g(1)

More concretely, let us take τ, σ and the integer 12, we obtain

(τ ∗ σ)(12) = τ(1)σ(12) + τ(2)σ(6) + τ(3)σ(4) + τ(4)σ(3) + τ(6)σ(2) + τ(12)σ(1)

= 1 · 28 + 2 · 9 + 2 · 7 + 3 · 4 + 4 · 3 + 12 · 1 = 96

Also, we can notice

τ(1) = 1 and σ(1) = 1

We will discuss the significance of this result later. Now, let us examine the properties of

the structure (A, ∗).

Theorem 1.2.2. The structure (A, ∗), is a commutative monoid.

Proof. It needs to be shown that the operation is commutative, associative, and has identity.

To show that this structure is commutative, we need to verify this property

f ∗ g = g ∗ f

3



for all arithmetic functions f, g in A. So

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
=
∑

d1d2=n

f(d1)g(d2)

=
∑

d1d2=n

g(d2)f(d1) =
∑
d|n

g(d)f
(n
d

)
= (g ∗ f)(n)

Now we will verify the associative property

(f ∗ g) ∗ h = f ∗ (g ∗ h) for any f, g, h ∈ A

So

[(f ∗ g) ∗ h](n) =
∑
dd3=n

[(f ∗ g)(d)]h(d3)

=
∑
dd3=n

[ ∑
d1d2=d

f(d1)g(d2)

]
h(d3)

=
∑

d1d2d3=n

f(d1)g(d2)h(d3)

By a similar calculation, it can be shown

[f ∗ (g ∗ h)](n) =
∑

d1d2d3=n

f(d1)g(d2)h(d3)

which implies this structure is associative. To determine the identity element, we need to

identify e ∈ A with the property

f ∗ e = e ∗ f = f for all f ∈ A

To do this, consider the arithmetic function

e(n) =

 1 if n = 1

0 if n > 1

Then it follows

(f ∗ e)(n) =
∑
d|n

f(d)e
(n
d

)
= f(1)e(n) + ...+ f(n)e(1) = 0 + 0 + ...+ 0 + f(n) = f(n)

This implies that the arithmetic function e is the Dirichlet identity. With this, we have

shown that (A, ∗) is a commutative monoid.

4



Now that the properties of this structure have been identified, it would be beneficial to

determine what it’s inverses are.

Notation 1.2.3. The set of units/ invertible elements of the structure (A, ∗) will be de-

noted by

U(A) = {f ∈ A | f is invertible}.

The question then becomes, “Which are these elements?”

Theorem 1.2.4. The invertible elements of the structure (A, ∗) are exactly those arithmetic

functions with the property f(1) 6= 0, or

U(A) = {f ∈ A | f(1) 6= 0}.

Proof. To prove this, it must be shown that f ∈ U(A) implies and is implied by f(1) 6= 0.

So, let f ∈ U(A). This implies that there exists an arithmetic function f̃ ∈ A with the

property

f ∗ f̃ = e

Recall that

e(1) = 1

Then

e(1) = (f ∗ f̃)(1) = f(1)f̃(1) = 1

This implies f(1) 6= 0.

Conversely, let us assume f(1) 6= 0. Now, we will define the following arithmetic func-

tion recursively such that

f̃(n) =


1

f(1)
if n = 1

− 1
f(1)

∑
d|n
f(d)f̃

(
n
d

)
if n > 1

5



So, for n = 1 we have

(f ∗ f̃)(1) =
∑
d|1

f(d)f̃

(
1

d

)
= f(1)f̃(1) = f(1) · 1

f(1)
= 1 = e(1)

For n > 1 we have

(f ∗ f̃)(n) =
∑
d|n

f(d)f̃
(n
d

)
= f(1)f̃(n) +

∑
d|n
n>1

f(d)f̃
(n
d

)

Notice

f̃(n) = − 1

f(1)

∑
d|n
n>1

f(d)f̃
(n
d

)
Therefore ∑

d|n

f(d)f̃
(n
d

)
= −f̃(n)f(1)

Then this is what follows

f(1)f̃(n) +
∑
d|n
n>1

f(d)f̃
(n
d

)
= f(1)f̃(n)− f(1)f̃(n) = 0 = e(n)

So, we can say

(f ∗ f̃)(n) = e(n)

for all natural numbers n. This implies, f̃ is the inverse of f . Therefore, arithmetic

functions with the property, f(1) 6= 0, are inverse elements of (A, ∗)

It is of consequence to note that U(A) is a subset of A. Moreover, U(A) is a subgroup

of A. This implies that (U(A), ∗) is an abelian group.

Definition 1.2.5. Let f be an arithmetic function, then f is called multiplicative if

f(mn) = f(m)f(n)

when (m,n) = 1.

6



Notation 1.2.6. The set of all non-zero multiplicative arithmetic functions will be denoted

by

M = {f ∈ A− {o} | f is multiplicative}.

In what follows, we will show that structure formed by this set and the Dirichlet Con-

volution is an abelian group.

Theorem 1.2.7. The structure (M, ∗), is an abelian group.

Proof. It is sufficient to prove thatM is a subgroup of U(A), since (U(A), ∗) is an abelian

group. It needs to be shown that

1. The setM is a nonempty subset of U(A)

2. If arithmetic functions f and g are multiplicative, then their convolution, f ∗ g, is

a multiplicative arithmetic function

3. If f is a multiplicative arithmetic function, then its inverse, f̃ , is a multiplicative

arithmetic function

1. Assume f ∈M. Then, it follows that f is not the zero function. This implies that there

exists a positive integer k, with the property

f(k) 6= 0

So

f(k) = f(1 · k) = f(1) · f(k)

This implies

f(1) = 1 6= 0

7



Therefore, this multiplicative function, f , is an element of U(A). It can be concluded

thatM is a subset of U(A). Let us digress for a moment and recognize a consequence of

the result we have just proved.

• If f is a multiplicative arithmetic function, then f(1) = 1

• The Dirichlet identity, e, is a multiplicative arithmetic function

2. Next, let f, g ∈M and (m,n) = 1, then

(f ∗ g)(nm) =
∑
d|nm

f(d)g
(nm
d

)
It should be noted if d|nm and (n,m) = 1 then

d = d1 · d2

such that d1|n and d2|m. Also

(d1, d2) = 1 and
(
n

d1

,
m

d2

)
= 1

With this, it can be said∑
d|nm

f(d)g
(nm
d

)
=
∑
d1|n
d2|m

f(d1d2)g

(
n

d1

m

d2

)
=
∑
d1|n
d2|m

f(d1)f(d2)g

(
n

d1

)
g

(
m

d2

)

=

∑
d1|n

f(d1)g

(
n

d1

)∑
d2|m

f(d2)g

(
n

d2

) = (f ∗ g)(n)(f ∗ g)(m)

This implies, f ∗ g ∈M

8



3. Finally, we will show if f is a multiplicative function, then its inverse f̃ , is as well.

We will do this by letting the arithmetic function g be defined as

g(n) =

 1 if n = 1

f̃(pα1
1 ) · f̃(pα2

2 ) · · · f̃(pαkk ) if n > 1

Where n = pα1
1 · pα2

2 · · · p
αk
k is the factorization of n into powers of distinct primes.

It will be shown that g is multiplicative and g = f̃ . Take (m,n) = 1 and g(m · n) such

that m,n > 1. Now

m = qβ11 · q
β2
2 · · · qβss and n = pα1

1 · pα2
2 · · · p

αk
k

Then we can say, since (m,n = 1), that q1, ..., qs, p1, ..., pk are distinct primes. Therefore

g(m · n) = f̃(qβ11 ) · f̃(qβ22 ) · · · f̃(qβss ) · f̃(pα1
1 ) · · · f̃(pαkk )

=
s∏
i=1

f̃(qβii ) ·
k∏
i=1

f̃(pαii ) = g(m) · g(n)

This means, g ∈M. Now, it must be shown that, for all natural numbers n

(f ∗ g)(n) = e(n)

For n = 1 we can clearly see that this holds. We will verify that this is true for an arbitrary

prime, p, with power α ≥ 1. It is clear to see that the set

D(pα) = {1, p, p2, ..., pα}

contains all of the positive divisors of pα. This means if d|pα then

d = pi; i = 0, ..., α

which implies
pα

d
= pα−i

So

(f ∗ g)(pα) =
α∑
i=0

f(pα)g(pα−i) =
α∑
i=0

f(pα)f̃(pα−i) = (f ∗ f̃)(pα) = e(pα)

9



Now for the prime factorization, n = pα1
1 · pα2

2 · · · p
αk
k , we have

(f ∗ g)(n) = (f ∗ g)(pα1
1 · pα2

2 · · · p
αk
k ) = (f ∗ g)(pα1

1 ) · (f ∗ g)(pα2
2 ) · · · (f ∗ g)(pαkk )

= e(pα1
1 ) · e(pα2

2 ) · · · e(pαkk ) = e(pα1
1 · pα2

2 · · · p
αk
k ) = e(n)

This implies

(f ∗ g)(n) = e(n) for all n ∈ N

We can then say g = f̃ , which means this inverse function f̃ is a member ofM. Therefore,

M is a subgroup of U(A). With the above satisfied, we can conclude that (M, ∗) is an

abelian group.

Definition 1.2.8. Let f and g be arithmetic functions, then

(f + g)(n) = f(n) + g(n) ∀f, g ∈ A

Theorem 1.2.9. The algebraic structure (A,+, ∗) is an integral domain.

Proof. It is trivial to verify that (A,+) is an abelian group. (A,+) is associative and

commutative. The arithmetic function o(n) = 0 is the additive identity. For all arithmetical

functions f , the additive inverse is −f . We also know (A, ∗) is a commutative monoid.

What must be shown is that the distributive property holds, and there are no zero divisors.

For the distributive property we have

[f ∗ (g + h)](n) =
∑
d|n

f(d)(g + h)
(n
d

)
=
∑
d|n

f(d)
[
g
(n
d

)
+ h

(n
d

)]
=
∑
d|n

f(d)g
(n
d

)
+
∑
d|n

f(d)h
(n
d

)
= (f ∗ g)(n) + (f ∗ h)(n)

10



So the distributive property holds. Finally, it must be shown that this structure has no

zero divisors. Let

f, g 6= o

then we must show

f ∗ g 6= o

Let us take f, g 6= o. Let m be the smallest value for which f(m) 6= 0 and let n be the

smallest value for which g(n) 6= 0. Then we have

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑
d|mn
d<m

0 · g
(mn
d

)
+ f(m)g(n) +

∑
d|mn
d<n

f(d) · 0

= f(m)g(n) 6= 0

So, f ∗ g 6= o which implies that (A,+, ∗) has no zero divisors. Therefore, (A,+, ∗) is

an integral domain.

So far, our concern has been with the Dirichlet convolution, which takes the sum over

all divisors of a particular n. But what kind of structure can be made if we take the sum

of only the divisors of n which have the property
(
d, n

d

)
= 1? We will briefly discus this

type of structure, however, let us first define this property.

Definition 1.2.10. Let n be a positive integer. Then d, a divisor of n, with the property(
d,
n

d

)
= 1

is called a unitary divisor of n.

Definition 1.2.11. Let f and g be arithmetic functions, then the Unitary Convolution

is defined as

(f ⊕ g) =
∑
d||n

f(d)g
(n
d

)
∀n ∈ N

where d||n means that d runs through the unitary divisors of n.

11



Theorem 1.2.12. (A,+,⊕) is a commutative ring with unity.

Proof. We know (A,+) is an abelian group and it can be shown that (A,⊕) is associative

and commutative by similar means to the Dirichlet convolution and ⊕ distributes over +.

Also, e, the Dirichlet identity, is the unitary convolution identity.

We introduce this structure, because we will be using it later in Chapter 3. However,

let us now discuss some applications to the theorems we have introduced

12



1.3 More on σ, τ and φ

First, let’s introduce a few more arithmetic functions.

• ζ(n) = 1 ∀n ∈ N

• i(n) = n ∀n ∈ N

It is important to note that:

• ζ(mn) = 1 = 1 · 1 = ζ(m)ζ(n)

• i(mn) = m · n = i(m)i(n)

This implies that the arithmetic functions ζ and i are both multiplicative. We introduce

these functions here because they have a special relationship with some of the arithmetic

functions we have already discussed. Before we explore that relationship, we should intro-

duce this concept.

Definition 1.3.1. Let f be an arithmetic function, then

F (n) =
∑
d|n

f(d)

is called the summation of f.

This summation function will allow us to verify some important properties concerning

the arithmetic functions we have discussed. One of those properties is determining multi-

plicative functions. The following results of this section are classical in the field of Number

Theory and in some proofs we use the properties of the group (M, ∗).

Theorem 1.3.2. If f is a multiplicative arithmetic function, then the summation of f is

a multiplicative arithmetic function.

Proof. Let f ∈M and let F be the summation of f , then

F (n) =
∑
d|n

f(d) =
∑
d|n

f(d) · 1 =
∑
d|n

f(d)ζ
(n
d

)

13



So

F = f ∗ ζ

We should note that f and ζ are both multiplicative arithmetic functions. This implies

F is a multiplicative arithmetic function, because, as we have shown, (M, ∗) is a closed

structure

Theorem 1.3.3. We have

∑
d|n
µ(d) = e(n)

for all n ≥ 1.

Proof. Let n = 1, then ∑
d|1

µ(d) = 1 = e(1)

Now, let n = p be prime. Therefore∑
d|p

µ(d) = µ(1) + µ(p) = 1− 1 = 0 = e(p)

If n = pα where α ≥ 2, then∑
d|pα

µ(d) = µ(1) + µ(p) + µ(p2) + ...+ µ(pα) = 1− 1 + 0 + ...+ 0 = 0 = e(pα)

So for the prime factorization, n = pα1
1 · pα2

2 · · · p
αk
k , we have∑

d|n

µ(d) = 0 = e(n)

Therefore for any n ∈ N we have ∑
d|n

µ(d) = e(n).

14



With this we come to a nice corollary.

Corollary 1.3.4. µ is the Dirichlet inverse of ζ.

Proof. Let the above equation hold, then for any natural number n we have

e(n) =
∑
d|n

µ(d) =
∑
d|n

µ(d) · 1 =
∑
d|n

µ(d)ζ
(n
d

)
= (µ ∗ ζ)(n)

This implies

µ = ζ̃ .

This corollary gives us the following theorem which is called the Möbius Inversion

Formula

Theorem 1.3.5. Let f be an arithmetic function, then

F (n) =
∑
d|n

f(d) if and only if f(n) =
∑
d|n

F (d)µ
(n
d

)
.

Proof. Let F = f ∗ ζ ⇐⇒ F ∗ ζ̃ = f ∗ ζ ∗ ζ̃ ⇐⇒ F ∗ ζ̃ = f ∗ e ⇐⇒ f = F ∗ µ.

This result lead to the converse of Theorem 1.3.2.

Corollary 1.3.6. An arithmetic function, f , is multiplicative if and only if the summation

of f is multiplicative.

The next theorem points out the summation function of the Euler function which was

originally noticed by Gauss (see [2] pg 141).
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Theorem 1.3.7. We have ∑
d|n
φ(d) = n

for all n ≥ 1.

Proof. Let us take the set of divisors d over n and denote it by

Sd = {m : 1 ≤ m ≤ n and (m,n) = d}

Now (m,n) = d which implies
(
m
d
, n
d

)
= 1, giving us this equality

|Sd| = φ
(n
d

)
So, we can say

n =
∑
d|n

|Sd| =
∑
d|n

φ
(n
d

)
=
∑
d|n

φ(d).

With Theorem 1.3.7 and Corollary 1.3.6, we see the following result

Corollary 1.3.8. φ, τ and σ are multiplicative arithmetic functions.

Proof. Let the equation from Theorem 1.3.7 hold, then

n = i(n) =
∑
d|n

φ(d)ζ
(n
d

)
= (φ ∗ ζ)(n)

and

φ(n) = (i ∗ ζ̃)(n) = (i ∗ µ)(n)

Which shows us that φ is multiplicative. Now let’s look at the sum of divisors function

τ(n) =
∑
d|n

1 =
∑
d|n

1 · 1 =
∑
d|n

ζ(d)ζ
(n
d

)
= (ζ ∗ ζ)(n)

This implies that τ is a multiplicative function

Also

σ(n) =
∑
d|n

d =
∑
d|n

d · 1 =
∑
d|n

i(d)ζ
(n
d

)
= (i ∗ ζ)(n)

Similarly, σ can be said to be a multiplicative function.
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Showing that τ, φ and σ are a multiplicative function, we can find the formulas of τ, φ

and σ.

Theorem 1.3.9. If n > 1 with the prime factorization n = pα1
1 · · · p

αk
k , then

τ(n) =
k∏
i=1

(αi + 1).

Proof. Let p be prime and α ≥ 1. The set

D(pα) = {1, p, p2, ..., pα}

is the set of all positive divisors of pα. Therefore

τ(pα) = α + 1

We will now consider the prime factorization, n = pα1
1 · · · p

αk
k . Since, we have just shown

that τ is multiplicative, it follows that

τ(n) = τ(pα1
1 · · · p

αk
k ) = τ(pα1

1 ) · · · τ(pαkk ) = (α1 + 1) · · · (αk + 1) =
k∏
i=1

(αi + 1).

Theorem 1.3.10. If n > 1 with the prime factorization n = pα1
1 · · · p

αk
k , then

φ(n) = n
k∏
i=1

(
1− 1

pi

)
.

Proof. Let n = p be prime. Then

φ(p) = p− 1 = p

(
1− 1

p

)
Now, let n = pα where α ≥ 1. We desire those integers who are relatively prime to pk. It

can be seen that the integers who are not relatively prime are those of the form

p, 2p, 3p, ..., pα−1 · p = pα.
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Therefore, there are pα−1 integers who are not relatively prime to pα, so we can say

φ(pα) = pα − pα−1 = pα
(

1− 1

p

)
If we let n = pα1

1 · · · p
αk
k , the prime factorization of n, then it follows from φ being multi-

plicative that

φ(pα1
1 · · · p

αk
k ) = φ (pα1

1 ) · · · φ (pαkk ) = pα1
1

(
1− 1

p1

)
· · · pαkk

(
1− 1

pk

)
= n

(
1− 1

p1

)
· · ·
(

1− 1

pk

)
= n

k∏
i=1

(
1− 1

pi

)
.

Theorem 1.3.11. If n > 1 with the prime factorization n = pα1
1 · · · p

αk
k , then

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
.

Proof. Let n = pα where p is prime and α ≥ 1, then

σ(pα) = 1 + p+ p2 + ...+ pα =
pα+1 − 1

p− 1

Therefore, for n = pα1
1 · · · p

αk
k , the prime factorization of n, we have

σ(pα1
1 · · · p

αk
k ) = σ(pα1

1 ) · · · σ(pαkk ) =
pα1+1

1 − 1

p1 − 1
· · · p

αk+1
k − 1

pk − 1
=

k∏
i=1

pαi+1
i − 1

pi − 1
.

Theorem 1.3.12. If f and g are multiplicative arithmetic functions with positive values

and n > 1, then n is prime if and only if

(f ∗ g)(n) = (f + g)(n).

Proof. Let n be prime, then

(f∗g)(n) =
∑
d|n

f(d)g
(n
d

)
= f(1)g(n)+f(n)g(1) = 1·g(n)+f(n)·1 = f(n)+g(n) = (f+g)(n)

18



Conversely, let us suppose (f ∗ g)(n) = (f + g)(n) and n is not prime. Then∑
d|n

f(d)g
(n
d

)
= f(n) + g(n)

This implies ∑
d|n
d 6=1,n

f(d)g
(n
d

)
+ f(1)g(n) + f(n)g(1) = f(n) + g(n)

Thus we can conclude ∑
d|n
d6=1,n

f(d)g
(n
d

)
= 0

This leads to a contradiction, since it is assumed that f, g > 0 for any positive integer n.

So, we can conclude that n must be prime.

This theorem leads to nice characterizations of primes with τ, φ and σ.

Corollary 1.3.13. Let n > 1, then n is prime if and only if

σ(n) + φ(n) = n · τ(n).

Proof. Let n be prime. We also know

(σ ∗ φ)(n) = (σ + φ)(n)

So, all that needs to be shown is

(σ ∗ φ)(n) = n · τ(n)

Notice

σ ∗ φ = (i ∗ ζ) ∗ φ = i ∗ (ζ ∗ φ) = i ∗ i

Now

(i ∗ i)(n) =
∑
d|n

i(d)i
(n
d

)
=
∑
d|n

d · n
d

= n ·
∑
d|n

1 = n · τ(n)
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Corollary 1.3.14. Let n > 1, then n is prime if and only if

τ(n) + φ(n) = σ(n).

Proof. Let n be prime, then

(τ + φ)(n) = (τ ∗ φ)(n)

Therefore

τ ∗ φ = (ζ ∗ ζ) ∗ φ = ζ ∗ (ζ ∗ φ) = ζ ∗ i = σ.
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Chapter 2

Characterization of Completely

Multiplicative and Additive Arithmetic

Functions

As of now we have only seen arithmetic functions and multiplicative arithmetic functions.

This chapter will discuss new concepts of arithmetic functions, those of which were studied

by Carlitz and Niederreiter [3], Lambek [4], and Schwab [10].

2.1 Completely Multiplicative Functions

In the previous chapter we discussed the concept of multiplicative functions. However,

our previous definition was only concerned with relatively prime elements of non-negative

integers. Now we will expand this property to any two non-negative integers.

Definition 2.1.1. An arithmetic function, f , is said to be completely multiplicative if

f(n ·m) = f(n) · f(m)

for all n,m positive integers.

With this, we can show some properties that these types of functions will possess. Recall,

that we are working with the structure (A, ∗), and we have the following characterizations

of completely multiplicative arithmetic functions from Lambeck and Carlitz.
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Theorem 2.1.2. If f is an arithmetic function then the following statements are equivalent

1. f is completely multiplicative

2. f(g ∗ h) = fg ∗ fh for all arithmetic functions g and h

3. f(g ∗ g) = fg ∗ fg for all arithmetic functions g

4. fτ = f ∗ f .

Proof. (1) =⇒ (2)

Let f be completely multiplicative, then

[f(g ∗ h)](n) = f(n)

∑
d|n

g(d)h
(n
d

) =
∑
d|n

f(n)g(d)h
(n
d

)
=
∑
d|n

f
(
d · n

d

)
g(d)h

(n
d

)
=
∑
d|n

f(d)f
(n
d

)
g(d)h

(n
d

)
=
∑
d|n

[f(d)g(d)][f
(n
d

)
h
(n
d

)
] = [fg ∗ fh](n).

(2) =⇒ (3)

Assume

f(g ∗ h) = fg ∗ fh

for all g, h ∈ A

Then, it immediately follows that

f(g ∗ g) = fg ∗ fg.

(3) =⇒ (4)

Assume

f(g ∗ g) = fg ∗ fg
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Then, for all g

fτ = f(ζ ∗ ζ) = fζ ∗ fζ = f · 1 ∗ f · 1 = f ∗ f .

(4) =⇒ (1) [3]

Suppose f ∗ f = τf . We will show inductively that f is completely multiplicative. Now

take n = 1, then

(f ∗ f)(1) = f(1)f(1) = τ(1)f(1) = 1 · f(1)

Therefore, f(1) = 1 or f(1) = 0.

Now take n ≥ 2 and let n = pe11 · · · pemm , which is the canonical factorization of n, and

let α(n) = e1 + ...+ em. Then, it is enough to show

f(n) = f(1)f(p1)e1 · · · f(pm)em

So, let α(n) = 1, then n is prime, say n = p, which implies

2f(p) = τ(p)f(p) = f(1)f(p) + f(p)f(1) = 2f(1)f(p)

Suppose this is true for all n with α(n) ≤ k and k ≥ 1. Then, we can take an n with

α(n) = k + 1 which gives

τ(n)f(n) =
∑
d|n

f(d)f
(n
d

)
= 2f(1)f(n) +

∑
d|n,d 6=1,n

f(d)f
(n
d

)
Now, let d = d1 and n

d
= d2, so d1 · d2 = n. Also, α(d1), α(d2) ≤ k. Then

τ(n)f(n) = 2f(1)f(n) +
∑

d|n,d 6=1,n

f(d1)f(d2)

Now, this fulfils the inductive step, so

τ(n)f(n) = 2f(1)f(n) + (τ(n)− 2)f(1)2f(p1)e1 · · · f(pm)em

Since n is not prime, it is clear to see that τ(n) > 2. So, for both f(1) = 1 and f(1) = 0

we get the desired result.
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2.2 Completely Additive Functions

Now, we will introduce a set of functions which have a similar property to the multiplicative

functions, however, the functions are not split by multiplication, but by addition.

Definition 2.2.1. An arithmetic function, f , is said to be completely additive if

f(n ·m) = f(n) + f(m)

for all n,m positive integers.

A familiar example of a completely additive function is the logarithmic function, as it

is well known that

log(n ·m) = log(n) + log(m) ∀n,m ∈ N

Also, an immediate consequence of this property is, if f ∈ S then

f(1) = f(1 · 1) = f(1) + f(1)

This implies, f(1) = 0.

Another example comes from the following function.

• Ω(n) =
∑
pα||n

α is the sum of prime powers α where pα exactly divides n

Some examples of this function are

Ω(12) = Ω(22 · 3) = 2 + 1 = 3, Ω(30) = Ω(2 · 3 · 5) = 1 + 1 + 1 = 3

We should also notice that when n = 1 we get

Ω(1) = 0

because, 1 has no prime divisors.
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If we take arbitrary n = pα1
1 · · ·p

αk
k , m = qβ11 · · ·q

βl
l both being the canonical factorization

of natural numbers n,m then we have

Ω(n ·m) = Ω(pα1
1 · · · p

αk
k · q

β1
1 · · · q

βl
l ) = α1 + ...+ αk + β1 + ...+ βl = Ω(n) + Ω(m)

This means that Ω is completely additive. Now with this we can define a function which

we can show to be completely multiplicative.

• λ(n) = (−1)Ω(n)

Following the fact that Ω(1) = 0 we see that λ(1) = 1 and since Ω is completely additive

we get for any natural number n,m we get

λ(n ·m) = (−1)Ω(n·m) = (−1)Ω(n)+Ω(m) = (−1)Ω(n) · (−1)Ω(m) = λ(n) · λ(m)

This function is known as the Louiville Lambda function. Before we discuss additional

properties of this function, it would be beneficial to introduce another arithmetic function,

but first we must add a restriction to our definition of the completely additive arithmetic

function.

Definition 2.2.2. An arithmetic function, f , is said to be additive if

f(n ·m) = f(n) + f(m)

when (n,m) = 1.

Additive arithmetic functions, much like multiplicative arithmetic functions, only satisfy

this “splitting” property for relatively prime natural numbers. The following function gives

an example of this property.

• ω(n) =
∑
p′|n

1 is the number of distinct primes, p′, which divide n

It is important to note the different values of ω. Let p be prime, then

ω(1) =
∑
p′|1

1 = 0, ω(p) =
∑
p′|p

1 = 1
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It follows that when α ≥ 1, we have

ω(pα) =
∑
p′|pα

1 = 1

This implies that when n = pα1
1 · · · p

αk
k , the prime factorization of n, that

ω(n) = ω(pα1
1 · · · p

αk
k ) =

∑
p′|pα11 ···p

αk
k

1 = k

Notice, if n = pα1
1 · · · p

αk
k and m = qβ11 · · · q

βl
l , the prime factorization of n and m, where

(n,m) = 1 then

ω(n) + ω(m) = k + l = ω(n ·m)

This implies that ω is additive. We will now discuss some of the properties of completely

additive functions.

Theorem 2.2.3. If f is an arithmetic function, then the following statements are equivalent

1. f is completely additive

2. f(g ∗ h) = fg ∗ h+ g ∗ fh for all arithmetic functions g and h

3. f(g ∗ g) = 2(fg ∗ g) for all arithmetic functions g

4. fτ = 2(f ∗ ζ).

The proof of this theorem is found in the article written by Schwab [10].

Proof. (1) =⇒ (2)

Let f be completely additive, then

[f(g ∗ h)](n) = f(n)

∑
d|n

g(d)h
(n
d

) =
∑
d|n

f(n)g(d)h
(n
d

)
=
∑
d|n

f
(
d · n

d

)
g(d)h

(n
d

)
=
∑
d|n

[
f(d) + f

(n
d

)]
g(d)h

(n
d

)
=
∑
d|n

f(d)g(d)h
(n
d

)
+
∑
d|n

f
(n
d

)
g(d)h

(n
d

)
= [fg ∗ h+ g ∗ fh](n)
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(2) =⇒ (3)

Let

f(g ∗ h) = fg ∗ h+ g ∗ fh

for all g, h ∈ A. Then we have

f(g ∗ g) = fg ∗ g + g ∗ fg = fg ∗ g + fg ∗ g = 2(fg ∗ g).

(3) =⇒ (4)

Let f(g ∗ g) = 2(fg ∗ g)

then, fτ = f(ζ ∗ ζ) = 2(fζ ∗ ζ) = 2(f · 1 ∗ ζ) = 2(f ∗ ζ).

(4) =⇒ (1) [10]

Suppose fτ = 2(f ∗ ζ) and let n = p. Then,

f(p)τ(p) = 2f(p) = 2(f ∗ ζ) =⇒ f(p) = f(1) + f(p) =⇒ f(1) = 0

Now, let n ∈ N, n > 1 and n = pk11 · · · pktt . Then, it will be shown, when m = k1 + ...+ kt,

that

f(n) = k1f(p1) + ...+ ktf(pt)

So, if Mi = {0, 1, 2, ..., ki} for i = 1, 2, ..., t and M = M1 ×M2 × ...×Mt, then

1

2
f(n)τ(n) =

∑
(i1,...it)∈M

f(pi11 · · · pitt ) = f(n) +
∑

(i1,...it)∈M
i1+...+it 6=m

f(pi11 · · · pitt )

by induction
1

2
f(n)τ(n) = f(n) +

∑
(i1,...it)∈M
i1+...+it 6=m

[i1f(p1) + ...+ itf(pt)]
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Now,

∑
(i1,...it)∈M
i1+...+it 6=m

[i1f(p1) + ...+ itf(pt)] =
1

2

[
t∏
i=1

(ki + 1)

][
t∑
i=1

kif(pi)

]
−

t∑
i=1

kif(pi)

This implies

f(n) =
t∑
i=1

kif(pi).
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Chapter 3

Multiplicative and Additive Power

Series

In this chapter we will discus a relationship between formal power series and arithmetic

functions. However, we will need to first define the concept of formal power series.

3.1 The Formal Power Series

We will take a classical approach to defining the formal power series.

Definition 3.1.1. Let R be a commutative ring with unity and N0 = {0, 1, 2, ...} with

f : N0 → R such that f = (a0, a1, a2, ..., ai, ...) = (ai)i∈N0 and ai ∈ R.

Then define R′ = {f | f = (ai)i∈N0} and

f = (ai)i∈N0 , g = (bi)i∈N0

with the properties

• f + g = (ai + bi)i∈N0

• f · g = (ck)k∈N0 ; ck =
∑

i+j=k

aibj.

We will show that R′ with addition and multiplication forms a commutative ring with

unity, see [9].
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Theorem 3.1.2. (R′,+, ·) is a commutative ring with unity.

Proof. We will first show that (R′,+) is an abelian group and will start with the associative

property. To show it is associative we have

f + (g + h) = (a0, a1, a2, ...) + [(b0 + c0, b1 + c1,+b2 + c2, ...)] = (a0 + b0 + c0, a1 + b1 + c1, ...)

= [(a0 + b0, a1 + b1,+a2 + b2, ...)] + (c0, c1, c2, ...) = (f + g) + h

To show this structure is commutative

f + g = (ai + bi)i∈N0 = (bi + ai)i∈N0 = g + f

The additive identity of R′ is the function o ∈ R′ with the property

o : N0 → R such that o = (0, 0, 0, ...)

Where 0R is the additive identity of R. And finally, the additive inverse is shown by

−f = (−ai)i∈N0

Now, to show (R′, ·) is commutative monoid, we first show the commutative property holds.

So

f · g =

(∑
i+j=k

aibj

)
k∈N0

=

(∑
i+j=k

bjai

)
k∈N0

= g · f

Then the associative property is shown by

f ·(g·h) = (ai)i∈N0·

( ∑
n+m=j

bncm

)
j∈N0

=

(∑
i+j=k

ai ·
∑

n+m=j

bncm

)
k∈N0

=

( ∑
i+n+m=k

aibncm

)
k∈N0

Then likewise

(f · g) · h =

(∑
i+n=j

aibn

)
j∈N0

· (cm)m∈N0 =

( ∑
i+n+m=k

aibncm

)
k∈N0
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The multiplicative identity of R′ is:

i : N0 → R such that i = (1, 0, 0, ...)

Where 1R is the multiplicative identity in R. With this all we have to show now is that the

distributive property holds. So

f(g + h) = (ai)i∈N0 · (bj + cj)j∈N0 =

(∑
i+j=k

ai · (bj + cj)

)
k∈N0

=

(∑
i+j=k

ai · bj +
∑
i+j=k

ai · cj

)
k∈N0

=

(∑
i+j=k

ai · bj

)
k∈N0

+

(∑
i+j=k

ai · cj

)
k∈N0

= fg + fh

Therefore, (R′,+, ·) is a commutative ring with unity.

Let us formalize this concept by introducing some notation.

(1, 0, 0, 0, ...) = x0

(0, 1, 0, 0, ...) = x1

Also,

(0, 0, 0, ..., 1, ...) = xk

where there are k many terms before 1. For example,

(a, b, 0, 0, ...) = ax0 + bx1

We will call these a, b ∈ R coefficients of x. With this we can say

R′
notaion

= R[[x]] =

{
f =

∞∑
k=0

akx
k

}

Now we can define the following.
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Definition 3.1.3. The ring R′ is called the formal power series in x with coefficients in

R is denoted by R[[x]]. The elements of R[[x]] are infinite expressions of the form

f(x) = a0x
0 + a1x

1 + ...+ akx
k + ... =

∞∑
k=0

akx
k

and addition and multiplication are defined as

∞∑
k=0

akx
k +

∞∑
k=0

bkx
k =

∞∑
k=0

(ak + bk)x
k

∞∑
k=0

akx
k ·

∞∑
k=0

bkx
k =

∞∑
k=0

(∑
i+j=k

aibj

)
xk

A few well known examples of formal power series include the geometric series

S(x) =
∞∑
k=0

xk =
1

1− x

and

exp(x) =
∞∑
k=0

xk

k!
and log

(
1

1− x

)
=
∞∑
k=0

xk

k

where exp(x) represents the traditional exponential function and k! = k · (k − 1) · · · 1.

An interesting observation can be made regarding the power series of exp(x). A known

property of the exponential function is sort of a reverse additive property

exp(z + w) = exp(z) · exp(w) ∀z, w ∈ C

So, if we have exp(ax), where a ∈ N0, then we obtain

∞∑
k=0

(ax)k

k!
= exp(ax) = exp(x+ ...+ x) = exp(x) · exp(x) · · · exp(x)

=
∞∑
k=0

xk

k!
· · ·

∞∑
k=0

xk

k!
=

(
∞∑
k=0

xk

k!

)a

.

Let us introduce a type of power series which gives an immediate connection to arithmetic

functions.
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3.2 Bell Series

In this section and the following, we will be addressing the known results found in Apostol

[1] regarding the concept of Bell Series and their connection to arithmetic functions. Then,

we will come to results proposed by McCarthy [6]. However, we will verify them using Bell

Series.

Definition 3.2.1. Let f be an arithmetic function and p be a prime. Then the formal

power series

fp(x) =
∞∑
k=0

f(pk)xk

is called the Bell Series of f modulo p.

This concept was first studies by E. T. Bell in order to observe multiplicative properties

of arithmetic functions with power series. To illustrate an example of this type of series,

recall the Möbius function. It can be observed that

µp(x) =
∞∑
k=0

µ(pk)xk

Remember, the Möobius function is defined as follows

µ(n) =


1 if n = 1

0 if there exists a prime such that p2|n

(−1)k if n = p1 · p2 · · · pk with distinct primes

Therefore it is clear to see

µp(x) =
∞∑
k=0

µ(pk)xk = 1 · x0 + (−1)x1 + 0 · x2 + ...+ 0 · xk + ...

= 1− x

Also, we can see the Bell series representation of the Dirichlet identity function by

ep(x) =
∞∑
k=0

e(pk)xk = 1 + 0 + .... = 1
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This gives us a good representation of the mobius and identity function, but how would

we define the other arithmetic functions we have discussed? Let us recall the completely

multiplicative function, then this result and proof from Apostol [1] follows immediately.

Theorem 3.2.2. If f is a completely multiplicative arithmetic function, then

fp(x) =
1

1− f(p)x
.

Proof. Let f be completely multiplicative and p prime with k ≥ 1, then

f(pk) = f(p) · · · f(p) = f(p)k

So,

fp(x) =
∞∑
k=0

f(pk)xk =
∞∑
k=0

f(p)kxk =
∞∑
k=0

1 · (f(p)x)k

Note, that the above expression yields a geometric power series, meaning

∞∑
k=0

1 · (f(p)x)k =
1

1− f(p)x
.

We have studied quite a few completely multiplicative functions in this paper so their

power series representations are the following [1].

• ζp(x) = 1
1−ζ(p)x = 1

1−x

• ip(x) = 1
1−i(p)x = 1

1−p·x

• iαp (x) = 1
1−i(pα)x

= 1
1−pα·x

• λp(x) = 1
1−λ(p)x

= 1
1+x

Before we continue it is important to discuss the following theorem.
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Theorem 3.2.3. If f and g are multiplicative arithmetic functions, then f = g if and only

if

fp(x) = gp(x)

for all primes p.

The proof can be found in [1].

Proof. First, let us assume that f = g. Then we see that

f(pk) = g(pk) for any prime, p, and k ≥ 1

Therefore, it is clear to see

fp(x) = gp(x) for all p

Conversely, let fp(x) = gp(x) for all p. Then

∞∑
k=0

f(pk)xk =
∞∑
k=0

g(pk)xk

This means, f(pk) = g(pk) for any power k. Also, f and g are assumed to multiplicative,

therefore, we can say for any prime p

f = g

As we move on, it is interesting to note that

ζp(x) · µp(x) = ep(x)

This comes from the fact that µ is the Dirichlet inverse of ζ, and this revelation leads us

to our next theorem from Apostol [1].
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Theorem 3.2.4. If f, g and h are arithmetic functions and h = f ∗ g, then

hp(x) = fp(x)gp(x).

Proof. Let p be prime and k ≥ 1. Recall that the divisors of pk are

D = {1, p, p2, ..., pk}

So,

h(pk) = (f ∗ g)(pk) =
∑
d|pk

f(d) · g
(
pk

d

)
=
∑
i+j=k

f(pi)g(pj)

Then, following our definition of formal power series multiplication, we can say

hp(x) =
∞∑
k=0

(∑
i+j=k

f(pi)g(pj)

)
xk = fp(x) · gp(x).

With this result we can determine the Bell series representation of some arithmetic

functions.

Application 3.2.5. Recall

φ = i ∗ µ

Therefore, we can say

φp(x) = ip(x) · µp(x) =
1

1− p · x
· (1− x) =

1− x
1− p · x

This is quite significant, since with this we can determine the formula representation of the

Euler totient function.

φp(x) =
1− x

1− p · x
= (1− x) ·

∞∑
k=0

pkxk =
∞∑
k=0

pkxk − x
∞∑
k=0

pkxk

= 1 +
∞∑
k=1

pkxk −
∞∑
k=1

pk−1xk = 1 +
∞∑
k=1

(pk − pk−1)xk
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Thus, we can say for k ≥ 1

φ(pk) = pk − pk−1 = pk
(

1− 1

p

)
Extending this to any natural number n = pα1

1 · · · p
αk
k and recalling the fact that φ is

multiplicative we obtain

φ(n) = φ(pα1
1 · · · p

αk
k ) = φ(pα1

1 ) · · · φ(pαkk ) = pα1
1 (1− 1

p1

) · · · pαkk (1− 1

pk
) = n

k∏
i=1

(1− 1

pi
)

This gives us a new way of determining the formula for the totient function, using what

was learned from Apostol [1]. This gives us reason to believe that there are potentially

more formulas of arithmetic functions which can be derived using Bell Series. Another

application of this theorem comes from the arithmetic function, σα = iα ∗ ζ.

σαp(x) = iαp (x) · ζp(x) =
1

1− pαx
· 1

1− x
=

1

(1− pαx)(1− x)

Using this theorem we can construct this table of arithmetic functions.

Bell Series of Arithmetic Functions

Arithmetic function Bell Series Representation

µ µp(x) = 1− x

e ep(x) = 1

ζ ζp(x) = 1
1−x

i ip(x) = 1
1−px

λ λp(x) = 1
1+x

φ = µ ∗ i φp(x) = 1−x
1−px

σ = ζ ∗ i σp(x) = 1
(1−x)(1−px)

τ = ζ ∗ ζ τp(x) = 1
(1−x)2

The following theorem, which comes from McCarthy [6], has significant application in

regards to Bell Series.
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Theorem 3.2.6. If f is a multiplicative arithmetic function, then f is completely multi-

plicative if and only if

f̃ = µf .

McCarthy verifies this proof rigorously using the Dirichlet Convolution [6]. However,

as we will see, the proof becomes much simpler using Bell Series.

Proof. First we will assume that f is completely multiplicative. Then, we can say

fp(x) =
1

1− f(p)x

Now

(µf)p(x) =
∞∑
k=0

(µf)(pk)xk =
∞∑
k=0

µ(pk)f(pk)xk

Recalling a multiplicative property, we can say f(1) = 1. Therefore

∞∑
k=0

µ(pk)f(pk)xk = 1− f(p)x

Also, we can clearly see

ep(x) = (µf)p(x) · fp(x)

This is only the case if µf is Dirichlet inverse of f . Conversely, assume µf = f̃ , then we

have

f̃p(x) = (µf)p(x) = 1− f(p)x

If µf is the inverse, it must be that

µf ∗ f = e

which implies

1 = (1− f(p)x) · fp(x)
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This implies

fp(x) =
1

1− f(p)x

meaning, f must be completely multiplicative.

This immediately leads us to a nice result from McCarthy [6].

Theorem 3.2.7. If f is a multiplicative arithmetic function, then f is completely multi-

plicative if and only if

f̃(pα) = 0 for all α ≥ 2

By using Bell Series, the proof of this result becomes quite obvious. Observing the

proof of the previous theorem and using the fact that µ(pα) = 0 when α ≥ 2, this result is

immediately apparent.

The following applications are found in Apostol [1]. However, in the first of the pro-

ceeding applications, we use a different approach also using Bell Series.

Application 3.2.8. Since

λ̃ = µλ

Then we have

λ̃p(x) = (µλ)p(x) =
∞∑
k=0

µ(pk)λ(pk)xk = 1 + x =
∞∑
k=0

µ(pk)µ(pk)xk = µ2
p(x)

So we can see that

λ̃ = µ2

Application 3.2.9. Let f(n) = 2ω(n). Then

fp(x) =
∞∑
k=0

2ω(pk)xk = 1 +
∞∑
k=1

2xk = 1 +
2x

1 + x
=

1 + x

1− x
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Therefore, we have

fp(x) = µ2
p(x) · ζp(x)

Meaning we have a formalization for this function

2ω(n) = µ2 ∗ ζ =
∑
d|n

µ2(d)

Therefore, the arithmetic function 2ω is the summation of µ2.
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3.3 Bell Series and Specially Multiplicative Functions

In this section we will use Bell Series to verify results shown in the work of McCarthy [6],

in regards to the concept of specially multiplicative arithmetic functions.

Definition 3.3.1. Let f be a multiplicative arithmetic function, then f is said to be

specially multiplicative if

f = g ∗ h

where g and h are completely multiplicative arithmetic functions.

The following result comes from McCarthy [6].

Theorem 3.3.2. If f is a multiplicative arithmetic function, then it is specially multiplica-

tive if and only if

fp(x) =
1

1− bx+ cx2

where b, c ∈ C

Proof. Let f be specially multiplicative and p be prime, then we have the following

f = g ∗ h

where g, h are completely multiplicative. Also we have

gp(x) =
1

1− g(p)x
and hp(x) =

1

1− h(p)x

It is also known, that

fp(x) =
1

1− g(p)x
· 1

1− h(p)x
=

1

1− [g(p) + h(p)]x+ [g(p)h(p)]x2

Notice that [g(p) + h(p)] and [g(p)h(p)] are elements of C, so we can see the condition is

satisfied.
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Conversely, assume

fp(x) =
1

1− bx+ cx2

where b, c ∈ C. Then we have

fp(x) =
1

1− bx+ cx2
=

1

1− a1 · x
· 1

1− a2 · x

with a1 and a2 being the roots of quadratic equation,

x2 − bx+ c = 0.

Now, we can say there exists two arithmetic functions g and h where g(p) = a1 and

h(p) = a2. Therefore

gp(x) =
1

1− g(p)x
and hp(x) =

1

1− h(p)x

meaning, g and h are completely multiplicative. With this, we can conclude

fp(x) = gp(x)hp(x)

which implies

f = g ∗ h

therefore, f is specially multiplicative.

As an illustration of this type of function consider

g(n) = 2Ω(n) and h(n) = 3Ω(n)

Both functions are completely multiplicative, so the function

f(n) = 2Ω(n) ∗ 3Ω(n)

is a specially multiplicative function. Also, recall ζ and i are completely multiplicative, and

τ = ζ ∗ ζ and σ = ζ ∗ i.
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Therefore we can say τ and σ are specially multiplicative.

Now we should recall the property of completely multiplicative functions, that being if

f is completely multiplicative then

f̃(pα) = 0 for all α ≥ 2

We can observe a similar result from McCarthy [6] for specially multiplicative functions.

Theorem 3.3.3. If f is a multiplicative arithmetic function, then f is specially multiplica-

tive if and only if

f̃(pα) = 0 for all α ≥ 3

Bell Series will be used once again to make a quite rigorous proof much simpler.

Proof. Let f be specially multiplicative. Then we have

f = g ∗ h

where g, h are completely multiplicative. Then, it is the case that

f̃ = g̃ ∗ h̃ = µg ∗ µh

which gives us

f̃p(x) =

(
∞∑
k=0

µ(pk)g(pk)xk

)(
∞∑
k=0

µ(pk)h(pk)xk

)
= (1− g(p)x)(1− h(p)x)

Now, this implies f̃(pα) = 0 for all α ≥ 3. Conversely, we will say

f̃(pα) = 0 for all α ≥ 3

then it follows that

f̃p(x) =
∞∑
k=0

f̃(pk)xk = 1 + f̃(p)x+ f̃(p2)x2.

Therefore, we have

fp(x) =
1

1 + f̃(p)x+ f̃(p2)x2
=

1

1− (−f̃(p))x+ f̃(p2)x2
.
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So by the previous theorem we see that it must be the case that f is specially multiplicative.

Specially multiplicative functions have a variety of interesting properties.

Theorem 3.3.4. If f is a multiplicative arithmetic function, then f is specially multiplica-

tive if and only if

f(pα+1) = f(p)f(pα) + f(pα−1)[f(p2)− f(p)2]

for all primes, p, and for all α ≥ 1.

This theorem comes from McCarthy [6]. However, we will verify it differently here.

Proof. Let f be specially multiplicative, then

f = g ∗ h

where g and h are completely multiplicative. Then we have

fp(x) = gp(x)hp(x).

This gives us,
∞∑
k=0

f(pk)xk =
∞∑
k=0

(∑
i+j=k

g(pi)h(pj)

)
xk

So for k = 1 we obtain

f(p)x = [g(p)h(1) + g(1)h(p)]x = [g(p) + h(p)]x

and for k = 2 we obtain

f(p2)x2 =
∑
i+j=2

g(pi)h(pj)x2 = [h(p2) + g(p)h(p) + g(p2)]x2
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Notice, since g and h are completely multiplicative we see

f(p2)− f(p)2 = [h(p2) + g(p)h(p) + g(p2)]− [g(p2) + 2g(p)h(p) + h(p2) = −g(p)h(p)

Then

f(p)f(pα) + f(pα−1)[f(p2)− f(p)2] =

= [g(p) + h(p)]

[ ∑
i+j=α

g(pi)h(pj)

]
+

[ ∑
i+j=α−1

g(pi)h(pj)

]
[−g(p)h(p)]

=
∑
i+j=α

g(pi+1)h(pj) +
∑
i+j=α

g(pi)h(pj+1)−
∑

i+j=α−1

g(pi+1)h(pj+1)

=

[ ∑
i+j=α

g(pi+1)h(pj)−
∑
i+j=α

g(pi)h(pj)

]
+
∑
i+j=α

g(pi)h(pj+1)

= g(pi+1)h(1) +
∑
i+j=α

g(pi)h(pj+1) =
∑
i+j=α

g(pi+1)h(pj+1)

=
∑

i+j=α+1

g(pi)h(pj) = f(pα+1)

Conversely, let us assume that, for all α ≥ 1, we have

f(pα+1) = f(p)f(pα) + f(pα−1)[f(p2)− f(p)2]

Now, f ∈M, so f(1) = 1. Also, for any prime p we have

0 = e(p) = (f ∗ f̃)(p) = f(1)f̃(p) + f(p)f̃(1)

This gives us

f̃(p) = −f(p)

Following for p2 we obtain

0 = e(p2) = (f ∗ f̃)(p2) = f(1)f̃(p2) + f(p)f̃(p) + f(p2)f̃(1)

which implies

f̃(p2) = f(p)2 − f(p2)

45



Also, for p3 we obtain

0 = e(p3) = (f ∗ f̃)(p3) = f(1)f̃(p3) + f(p)f̃(p2) + f(p2)f̃(p) + f(p3)f̃(1)

This implies the following

f̃(p3) = −f(p)f̃(p2)− f(p2)f̃(p)− f(p3)

= −f(p)(f(p)2 − f(p2))− f(p2)(−f(p))− f(p3)

= −f(p)3 + 2f(p)f(p2)− f(p3)

Recall

f(pα+1) = f(p)f(pα) + f(pα−1)[f(p2)− f(p)2] for all α ≥ 1

Then we can say for α = 2

f(p3) = f(p)f(p2) + f(p)[f(p2)− f(p)2] = 2f(p)f(p2)− f(p)3

So

f̃(p3) = −f(p)3 + 2f(p)f(p2)− f(p3)

= −f(p)3 + 2f(p)f(p2)− [2f(p)f(p2)− f(p)3] = 0

Next, let us assume that it is the case

f̃(pα) = 0 when 3 ≤ α ≤ n

If this is true, then what follows is

0 = e(pn+1) = (f ∗ f̃)(pn+1) = (f̃ ∗ f)(pn+1) =
n+1∑
i=0

f̃(pi)f(pn+1−i)

= f̃(1)f(pn+1) + f̃(p)f(pn) + f̃(p2)f(pn−1) + f̃(pn+1)f(1)

= f(pn+1)− f(p)f(pn) + [f(p)2 − f(p2)]f(pn−1) + f̃(pn+1)
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Therefore

f̃(pn+1) = −f(pn+1) + f(p)f(pn)− [f(p)2 − f(p2)]f(pn−1)

= −(f(p)f(pn) + f(pn−1)[f(p2)− f(p)2]) + f(p)f(pn)− [f(p)2 − f(p2)]f(pn−1) = 0

So f must be specially multiplicative.

The following results and proofs come from McCarthy [6].

Theorem 3.3.5. If f is a multiplicative arithmetic function, then f is specially multi-

plicative if and only if there exists a multiplicative function, F , such that for all m and

n

f(mn) =
∑
d|(m,n)

f
(m
d

)
f
(n
d

)
F (d).

Proof. Let us assume f is specially multiplicative. If (mn,m′n′) = 1, then ((m,n), (m′, n′)) =

1 and (mm′, nn′) = (m,n)(m′, n′). It must be shown that there exists some multiplicative

function F which satisfies

f(pα+β) =

min(α,β)∑
i=0

f(pα−i)f(pβ−i)F (pi) for all α, β ≥ 1

Now, let F = µG where G is a completely multiplicative function and for each prime p

G(p) = f(p)2 − f(p2)

Then, for β ≤ α and β = 1 we have since, f is specially multiplicative

f(pα+1) = f(p)f(pα) + f(pα−1)[f(p2)− f(p)2] = f(p)f(pα)G(1)− f(pα−1)G(p)

= f(p)f(pα)µ(1)G(1) + f(pα−1)µ(p)G(p) = f(p)f(pα)F (1)− f(pα−1)F (p)

which satisfies the sum. Now assume for β > 1 that the equation holds for β − 1 for all

α ≥ β − 1. Also, by Theorem 3.2.7

F (p2) = F (p3) = ... = 0
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Therefore we obtain the following

f(pα+β) = f(pα+1+β−1) = f(pα+1)f(pβ−1) + f(pα)f(pβ−2)F (p)

= [f(p)f(pα)− f(pα−1)G(p)]f(pβ−1) + f(pα)f(pβ−2)µ(p)G(p)

= f(pα)[f(p)f(pβ−1)− f(pβ−2)G(p)]− f(pα−1)f(pβ−1)G(p)

= f(pα)f(pβ)F (1) + f(pα−1)f(pβ−1)F (p)

This is what we needed to show. Conversely assume the equation defined above holds. Let

p be a prime with m = pα and n = p where α ≥ 1. Then

f(pα+1) = f(p)f(pα)F (1) + f(1)f(pα−1)F (p)

If we let α = 1, then

f(p2) = f(p)2 + F (p)

which implies

F (p) = f(p2)− f(p)2

With the equation from Theorem 3.3.4 satisfied, we can say f is specially multiplicative.

Theorem 3.3.6. If f is a multiplicative arithmetic function, then f is specially multiplica-

tive if and only if there exists a completely multiplicative function, G, such that for all m

and n

f(m)f(n) =
∑
d|(m,n)

f
(mn
d2

)
G(d).

Proof. Assume f is specially multiplicative. Then the equation from Theorem 3.3.5 holds.

So ∑
d|(m,n)

f
(mn
d2

)
G′(d) =

∑
d|(m,n)

f
(m
d
· n
d

)
G′(d)

=
∑
d|(m,n)

∑
D|(md ,

n
d )

f

( m
d

D

)
f

( n
d

D

)
µ(D)G′(D)B(d)
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Continuing we obtain∑
d|(m,n)

∑
k|(m,n)

d|k

f
(m
k

)
f
(n
k

)
µ

(
k

d

)
G′
(
k

d

)
G′(d) =

∑
d|(m,n)

∑
k|(m,n)

d|k

f
(m
k

)
f
(n
k

)
µ

(
k

d

)
G′(k)

=
∑

k|(m,n)

f
(m
k

)
f
(n
k

)
G′(k)

∑
d|k

µ

(
k

d

)
= f(m)f(n)

Conversely, assume the above equation holds. Let p be a prime and p = m = n, then

f(m)f(n) = f(p)2 = f(p2) +G(p)

Therefore,

G(p) = f(p)2 − f(p2)

If m = pα and n = p with α ≥ 1, we obtain

f(pα)f(p) =
∑

d|(pα,p)

f

(
pα+1

d2

)
G(d) = f(pα+1) + f(pα−1)[f(p)2 − f(p2)]

Therefore

f(pα+1) = f(pα)f(p) + f(pα−1)[f(p2)− f(p)2]

This means, by Theorem 3.3.4, f is specially multiplicative
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3.4 Multiplicative and Additive Power Series

This section will discus the embedding of the formal power into the unitary ring of arith-

metic functions. This work can be found in [11]. Let us recall that (A,+,⊕) is the unitary

ring and let us consider the formal power series ring C[[x]]. Then this result can be observed

Theorem 3.4.1. The ring C[[x]] can be embedded in the unitary ring of arithmetic func-

tions

The proof of this result can be found in [11].

Proof. Consider the map η : C[[x]]→ A such that

η

(
∞∑
k=0

akx
k

)
(n) = ω(n)!aω(n)

Let n = pα1
1 · · · p

αk
k , where p1, ..., pk are distinct primes and α ≥ 1, then

η

(
∞∑
k=0

akx
k

)
(n) + η

(
∞∑
k=0

bkx
k

)
(n) = ω(n)!aω(n) + ω(n)!bω(n) = k!ak + k!bk

= k!(ak + bk) = η

(
∞∑
k=0

(ak + bk)x
k

)
(n) = η

(
∞∑
k=0

akx
k +

∞∑
k=0

bkx
k

)
(n)

Also

η

(
∞∑
k=0

akx
k

)
(n)⊕ η

(
∞∑
k=0

bkX
k

)
(n) = ω(n)!aω(n) ⊕ ω(n)!bω(n) = k!ak ⊕ k!bk

=
∑
d||k

(d)!ad ·
(
k

d

)
!b k
d

= k!
∑
d||k

adb k
d

= η

(
∞∑
k=0

(∑
i+j=k

aibj

)
xk

)
(n) = η

(
∞∑
k=0

akx
k ·

∞∑
k=0

bkx
k

)
(n)

Therefore, η is a homomorphism. We can also show that this mapping is injective.

Let

η

(
∞∑
k=0

akx
k

)
(n) = η

(
∞∑
k=0

akx
k

)
(m)
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This implies

ω(n)!aω(n) = ω(m)!aω(m)

Now this is only the case when ω(n) = ω(m). Therefore, n and m must a product of

primes, both with k factors, meaning η is injective. So C[[X]] can be embedded in A.

This is a powerful result. Now, we can determine the characteristics of a formal power

series in C[[x]] as if it were an arithmetic function.

Definition 3.4.2. A formal power series
∞∑
k=0

akx
k ∈ C[[x]] is called multiplicative if the

arithmetic function η
(
∞∑
k=0

akx
k

)
is multiplicative. A formal power series

∞∑
k=0

akx
k ∈ C[[x]]

is called additive if the arithmetic function η
(
∞∑
k=0

akx
k

)
is additive.

The binary operation

∞∑
k=0

akx
k �

∞∑
k=0

bkx
k =

∞∑
k=0

k!akbkx
k

will give us the opportunity to create analogues for the properties studied in chapter 2 with

multiplicative and additive formal power series. The results and proofs of the following

results can be found in [11].
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Theorem 3.4.3. Let
∞∑
k=0

akx
k ∈ C[[x]] be a non-zero power series. Then the following are

equivalent

1.
∞∑
k=0

akx
k is multiplicative

2. ak =
ak1
k!

for all n ∈ N

3.
∞∑
k=0

akx
k �

(
∞∑
k=0

bkx
k ·

∞∑
k=0

ckx
k

)
=

(
∞∑
k=0

akx
k �

∞∑
k=0

bkx
k

)(
∞∑
k=0

akx
k �

∞∑
k=0

ckx
k

)

for all
∞∑
k=0

bkx
k,
∞∑
k=0

ckx
k ∈ C[[x]]

4.
∞∑
k=0

2kakx
k =

∞∑
k=0

akx
k ·

∞∑
k=0

akx
k

Proof. (1) =⇒ (2)

Let
∞∑
k=0

akx
k be multiplicative. Then

1 = η

(
∞∑
k=0

akx
k

)
(1) = ω(1)!aω(1) = a0

a1 = ω(pα)!aω(pα) = η

(
∞∑
k=0

akx
k

)
(pα)

So we can say

ak1 = η

(
∞∑
k=0

akx
k

)
(pα1

1 ) · · · η

(
∞∑
k=0

akx
k

)
(pαkk )

= η

(
∞∑
k=0

akx
k)(pα1

1 · · · p
αk
k

)
= k!ak
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(2) =⇒ (1)

Let ak =
ak1
k!

for all n ∈ N, and let m,n ∈ N such that (m,n) = 1. Then

η

(
∞∑
k=0

akx
k

)
(m · n) = η

(
∞∑
k=0

ak1
k!
xk

)
(m · n) = a

ω(m·n)
1

= a
ω(m)+ω(n)
1 = a

ω(m)
1 · aω(n)

1 = η

(
∞∑
k=0

akx
k

)
(m) · η

(
∞∑
k=0

akx
k

)
(n)

(2) =⇒ (3)

Let ak =
ak1
k!

for all n ∈ N. Then(
∞∑
k=0

ak1
k!
xk �

∞∑
k=0

bkx
k

)(
∞∑
k=0

ak1
k!
xk �

∞∑
k=0

ckx
k

)
=

(
∞∑
k=0

k!
ak1
k!
bkx

k

)(
∞∑
k=0

k!
ak1
k!
ckx

k

)

=

(
∞∑
k=0

ak1bkx
k

)(
∞∑
k=0

ak1ckx
k

)
=
∞∑
k=0

ak1

(∑
i+j=k

bicj

)
xk

=
∞∑
k=0

ak1
k!
xk �

∞∑
k=0

(∑
i+j=k

bicj

)
xk =

∞∑
k=0

ak1
k!
xk �

(
∞∑
k=0

bkx
k ·

∞∑
k=0

ckx
k

)

(3) =⇒ (4)

Let the distributive property hold. Then

∞∑
k=0

2kakx
k =

∞∑
k=0

akx
k �

∞∑
k=0

2k

k!
xk

Recall

exp(x) =
∞∑
k=0

1

k!
xk

This would imply

∞∑
k=0

2k

k!
xk =

∞∑
k=0

1

k!
(2x)k = exp(2x) = exp(x) · exp(x) =

(
∞∑
k=0

1

k!
xk

)(
∞∑
k=0

1

k!
xk

)
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So
∞∑
k=0

akx
k �

∞∑
k=0

2k

k!
xk =

∞∑
k=0

akx
k �

(
∞∑
k=0

1

k!
xk ·

∞∑
k=0

1

k!
xk

)

=

(
∞∑
k=0

akx
k �

∞∑
k=0

1

k!
xk

)(
∞∑
k=0

akx
k �

∞∑
k=0

1

k!
xk

)
=
∞∑
k=0

akx
k ·

∞∑
k=0

akx
k

(4) =⇒ (2)

This immediately follows by induction.

Theorem 3.4.4. Let
∞∑
k=0

akx
k ∈ C[[x]] be a non-zero power series. Then the following are

equivalent

1.
∞∑
k=0

akx
k is additive

2. a0 = 0 and ak = a1
(k−1)!

for all n ∈ N

3.
∞∑
k=0

akx
k �

(
∞∑
k=0

bkx
k ·

∞∑
k=0

ckx
k

)
=

=

[(
∞∑
k=0

akx
k �

∞∑
k=0

bkx
k

)
·
∞∑
k=0

ckx
k

]
+

[(
∞∑
k=0

akx
k �

∞∑
k=0

ckx
k

)
·
∞∑
k=0

bkx
k

]

for all
∞∑
k=0

bkx
k,
∞∑
k=0

ckx
k ∈ C[[x]]

4.
∞∑
k=0

2kakx
k =

∞∑
k=0

2
k!
xk ·

∞∑
k=0

akx
k

Proof. (1) =⇒ (2)

Let
∞∑
k=0

akx
k be additive. Then

0 = η

(
∞∑
k=0

akx
k

)
(1) = ω(1)!aω(1) = a0

a1 = ω(pα)!aω(pα) = η

(
∞∑
k=0

akx
k

)
(pα)
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Then we can say

ka1 = η

(
∞∑
k=0

akx
k

)
(pα1

1 ) + ...+ η

(
∞∑
k=0

akx
k

)
(pαkk )

= η

(
∞∑
k=0

akx
k

)
(pα1

1 · · · p
αk
k ) = k!ak

Therefore

ak =
a1

(k − 1)!

(2) =⇒ (1)

Let ak = a1
(k−1)!

for all n ∈ N, and let m,n ∈ N such that (m,n) = 1. Then

η

(
∞∑
k=0

akx
k

)
(m · n) = η

(
∞∑
k=0

k · a1

k!
xk

)
(m · n) = ω(m · n)a1

= a1ω(m) + a1ω(n) = η

(
∞∑
k=0

k · a1

k!
xk

)
(m) + η

(
∞∑
k=0

k · a1

k!
xk

)
(n)

= η

(
∞∑
k=0

akx
k

)
(m) + η

(
∞∑
k=0

akx
k

)
(n)

(2) =⇒ (3)

Let ak = a1
(k−1)!

for all n ∈ N. Then[(
∞∑
k=0

k · a1

k!
xk �

∞∑
k=0

bkx
k

)
·
∞∑
k=0

ckx
k

]
+

[(
∞∑
k=0

k · a1

k!
xk �

∞∑
k=0

ckx
k

)
·
∞∑
k=0

bkx
k

]

=
∞∑
k=0

ka1bkx
k ·

∞∑
k=0

ckx
k +

∞∑
k=0

ka1ckx
k ·

∞∑
k=0

bkx
k

=
∞∑
k=0

(∑
i+j=k

ia1bicj

)
xk +

∞∑
k=0

(∑
i+j=k

ia1cibj

)
xk =

∞∑
k=0

[ ∑
i+j=k

ia1(bicj + cibj)

]
xk

=
∞∑
k=0

[
ka1

∑
i+j=k

(bicj)

]
xk =

∞∑
k=0

k · ak1
k!

xk �

(
∞∑
k=0

bkckx
k

)
=
∞∑
k=0

k · ak1
k!

xk �

(
∞∑
k=0

bkx
k ·

∞∑
k=0

ckx
k

)
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(3) =⇒ (4)

Let the distributive property hold. Then

∞∑
k=0

2kakx
k =

∞∑
k=0

ak �
∞∑
k=0

2k

k!
xk =

∞∑
k=0

ak �

(
∞∑
k=0

1

k!
xk ·

∞∑
k=0

1

k!
xk

)

=

[(
∞∑
k=0

ak �
∞∑
k=0

1

k!
xk

)
·
∞∑
k=0

1

k!
xk

]
+

[(
∞∑
k=0

ak �
∞∑
k=0

1

k!
xk

)
·
∞∑
k=0

1

k!
xk

]

=
∞∑
k=0

akx
k ·

∞∑
k=0

2

k!
xk

(4) =⇒ (2)

This immediately follows by induction.
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