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Abstract 
 
Francisella tularensis is intracellular bacteria which is the causative agent of the disease 

Tularemia. Highly virulent in both humans and animals, it takes only as few as 10 microorganisms 

to cause a lethal infection. The bacteria can enter via direct or indirect routes causing the 

activations of the host innate inflammatory response to ensue. The bacteria invade host dendritic 

cells and neutrophils but predominately macrophages. This causes a mass inflammatory response 

resulting in the cytokine storm. Activation of Natural Killer T (NKT) cells has been shown to 

suppress inflammation in in vivo studies. Development and optimization of an in vitro co-culture 

assay were used to isolate NKT cell bulk purified populations from other cell types. Bulk purified 

NKT cells directly suppressed the production of inflammatory cytokines from Francisella 

tularensis-infected macrophages. This was attributed to a cell contact dependent mechanism that 

seemed in involve CD40/CD40L interactions. The bulk NKT cell population contains two subsets 

described by their antigen recognition and effector mechanism. Further separations showed that 

the type I NKT subset inhibited Il-6 secretion and suppressed inflammation in a dose dependent 

manner in vitro. Further studies are needed to fully characterize the inhibitory properties of type I 

and type II NKT cell subsets in Francisella tularensis immunity. 
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Chapter 1. Introduction 
 

1.1 Francisella tularensis and Tularemia Disease 

Francisella tularensis (F. tularensis) is a zoonotic disease and the causative agent for the disease 

tularemia. The CDC has classified F. tularensis as a category A gram-negative coccobacilli. The 

bacterial colonies can be sustained in various environments. It takes less than 10 microorganisms 

to cause a severe lethal infection. The bacteria can live in an aqueous environment and still retain 

its full virulent pathogenicity. 

 It was first isolated from ground squirrels in 1911 

in Tulare County, California (USA), and from a 

human tularemia case in 1914 in Ohio (USA). The 

name “Francisella tularensis” was coined in 1959 

to honor Dr. Edward Francis, who greatly 

contributed to improve the knowledge on human 

tularemia. [24] 

There are four strains of Francisella that have been categorized into two forms: Type A and 

Type B. Francisella tularensis subsp. tularensis is a Type A strain that is native to North 

America and transmitted mainly through ticks and rabbits with high virulence that affects 

humans and animals. The Type B strain is commonly found throughout Europe and Asia. It is 

typically transmitted through mosquitos and is not considered as virulent as the Type A Strain. 

The less virulent strains are more F. tularensis holartica, F. tularensis novicia, and F. tularensis 

medistatica. An attenuated strain of F. tularensis holartica was live vaccine strain (LVS) used 

for research purposes. [1] 

Figure1. Reported cases of Tularemia in the USA [1] 
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Tularemia is a disease that has a high lethality rate if not properly diagnosed, up to 35%. The 

disease is contact dependent from a direct or indirect vector that is an infected carrier. The 

person can also contract disease by  

aerosolizing or eating/drinking contaminated water and uncooked meat. [2] Currently, tularemia 

is not known to be transferable from human to another human.  

 

 
 
 
 
 
 
 
There are six different forms of tularemia disease: 

1. Ulceroglandular is considered by the CDC to be the most common form of Tularemia. This 

form of the disease is the result from a direct bite from an infected vector. At the site of contact, 

the ulcer will form along with swelling in the lymphatic system pending the site of bacterial 

contact.   

2. Glandular is similar in form to Ulceroglandular without the bacteria-induced ulcer at the site 

of contact. This form will have swelling in the lymphatic areas commonly in the groin or armpit. 

Often contact with this form is due to handling infected carcasses of animals.  

Table1. Characterizes F. tularensis Sub -strains Virulence in 
Humans and Animals   
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3. Oculoglandular is the bacteria entering through the mucous membranes through the eyes. 

Contact is through direct route of a person touching an infected animal and transferring the 

bacteria by touching their face. Inflammation, irritation and ulcer in the eye will occur.  

Figure 2. | Sylvatic cycle of Francisella tularensis, illustrating the transmission cycles and the relevant biting 
insects depending on the region (Art by Brad Gilleland, UGA College of Veterinary Medicine. © 2004 -2019 
University of Georgia Research Foundation, Inc.).[3] 
 

4. Unlike the other forms of tularemia of direct infection from an infected vector, Oropharyngeal 

is caused by eating or drinking contaminated water or uncooked meats. It will have symptoms 

that consist of swelling, inflammation, irritation, sore throat, and swelling of the lymphatic 

systems.  

5. Typhoidal tularemia is the rarest case of the disease because the difficulty in pinpointing 

physical manifestations. The disease comprises of any of the common tularemia symptoms 

without manifesting any one form.  

6.  Pneumonic tularemia is the most serious form of the disease. It is caused by inhaling 

aerosolized bacteria. The bacteria in the lungs will induce troubled breathing, cough, severe chest 

pain. It can cause secondary infections in the lungs and if left untreated can become septic 

spreading throughout the blood stream. [4]  
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Figure. 3-7 The images are the clinical manifestations of different routes of exposure to Tularemia. Oculoglandular formation of 
an ulcer in the eye [5] Ulceroglandular from a direct bite from an infected vector [2] Lungs that are infected with Pneumonic 
Tularemia [6], Glandular tularemia causing a lymphatic infection [7] 

 

Incubation times for symptoms to manifest is 3-5 days following exposure. [4] Lethality 

rates for tularemia that have lymphatic inflammation are 30-60% lethal. [8] Currently treatment 

for tularemia disease is limited to administration of antibiotics, particularly gentamicin and 

streptomycin. New approaches to tularemia treatments have been studied and characterized in 

different ways to avoid relapse or resistant replication 

of the bacteria. Quinolones (ciprofloxacin) have 

demonstrated to achieve adequate blood levels with 

high intracellular penetration after oral administration 

to be used as a potential additional drug. [9] The 

ketolide compounds (telithromycin and cethromycin) 

are a subclass of macrolide antibiotics which have been designed to address the problem of 

macrolide resistance in respiratory pathogens such as Streptococcus pneumoniae. Telithromycin 

Figure 8. All Reported Cases of Male to Female Age Range of  
 Exposure to Tularemia until 2017 (1) 
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was more effective in vitro against French isolates of F. tularensis subsp. holarctica than 

erythromycin. [10] The symptoms of the disease can be easily misdiagnosed if not ascertained 

early on. Depending on the route of exposure physical manifestations can vary. In general, all 

forms of tularemia have symptoms of a high fever of 104 °C. [1] Other symptoms of tularemia 

are flu-like symptoms that consist of malaise, coughing, fatigue, and secondary infection in the 

lungs such as pneumonia. If left untreated, tularemia can cause inflammation in the lungs and the 

heart, including the pericardia sac around the heart. In severe cases, tularemia can cause 

meningitis and bone infections (osteomyelitis). The documented cases are more likely to be 

male, the premise is that there are more males likely to be exposed because of hunting and 

outdoorsman who are most likely to be exposed by touching a contaminated animal or by 

drinking contaminated water.[4] 

              
Biological Weapon 

During World War II in the 1960s F. tularensis was kept and studied as a biological 

weapon of war. The United States Department of Biodefense, as well the US Allies, studied 

alternating the genetics of F. tularensis to be used as a bioweapon. The United Stated later 

destroyed its F. tularensis stocks in 1973 and discontinued all state-sponsored biological warfare 

programs. The Soviet Union continued to work on bioweapons up until the early 1990s. F. 

tularensis was categorized as a bioweapon because of its ability to survive in various types of 

environments, including water at low temperatures, while retaining its fully virulent integrity. 

During the 1970s, an expert from the World Health Organization approximated, “if 50 kg of 

virulent F. tularensis were dispersed as an aerosol over a metropolitan area with a population of 

5 million, there would be an estimated 250,000 incapacitating casualties, including 19,000 
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deaths.” By aerosolizing the bacteria, it would result in inhalation the of organism and cause 

pneumonic respiratory tularemia, the most severe form of the disease. [1, 8, 11] 

 

1.2 Mechanism. 

 Once F. tularensis enters the host, it infects a set of host cells such as macrophages, dendritic 

cells (DC), hepatocytes, neutrophils and type II alveolar lung epithelial cells, with the primary 

host cell being macrophages. The bacterial survival in the host depends on entry into the host 

cell, replication and proliferation. (11) Indeed, mutant bacteria unable to escape the phagosome 

into the cytosol, where it replicates, are rapidly cleared from the host. In order for the bacteria to 

enter the cell, it will bind to different immune receptors, that play a functional role in the uptake 

of the bacteria, the mannose receptor (CD206), complement receptor (CD11b), scavenger 

receptor- A (SR-A), and Fcγ receptor (CD16/32), all of which activate phagocytosis. [12],[13] Of 

these, Fcγ is the main receptor which plays a critical role in the uptake the bacteria. [12]  

After successful completion of the uptake of bacteria, the bacteria residing within the 

phagosome, now referred to as the Francisella-containing phagosome (FCP).  [11]Upon 

maturation, the FCP, acquires surface markers for early to late endosomes such as EEA-1, 

LAMP-1 and LAMP-2 and CD63. [14] However, the FCP will not fuse with the lysosome 

instead the bacteria will seek to disrupt the phagosomal membrane to escape into the host cell 

cytosol. [15]The transcription factor MglA is a master transcription factor which regulates genes 

responsible for phagosomal escape. It is a critical component for intracellular survival 

proliferation. [14] The bacteria complete its phagosomal escape utilizing a Type-VI secretion 

system that aids in finalizing the disruption of the membrane. [16]  
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 The presence of F. tularensis in the cytosol is recognized by several receptors, the innate 

pattern-recognition receptors (PRRs), Toll-receptors (TLRs), and Nod-like receptors (NLRs). 

[11] The PPRs recognize Pathogen-associated molecular patterns (PAMPs) and Danger-

associated molecular patterns (DAMPs) that trigger initiation of the innate immune response in 

the host. [17] This activation is initiated by the inflammasome and result in production of the 

Proinflammatory cytokines, IL-18 and IL-1β. [18] Once these pro-inflammatory cytokines are 

activated, a cascade of signaling events leads to the production of the pro-inflammatory 

cytokines IFN-γ, IL-6, and TNF-α, the main effector cytokines of the innate immune system. 

[19] Continuing production of the inflammatory cytokines causes an overproduction of pro-

inflammatory, and anti-inflammatory cytokines, resulting in a dysregulated cytokine response, 

referred to as a cytokine storm. This severe inflammatory response results in pneumonia, 

hypovolemia, edema, and in many cases, it will result in death. [20] 
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1.3 Type I and Type II NKT Cell 

NKT cells are a relatively small subset of immune cells [[21] that share properties of both 

innate Natural Killer (NK) cells and adaptive T cells. NKT cells are activated within 24 hours of 

infection responding to infectious diseases by recognizing lipids presented by the MHC-like 

protein CD1d. Collectively and individually, NKT cells respond to activation through a wide 

variety of effector mechanism that result in activation or inhibition of immune cells, as 

necessary. Two subsets of NKT cells have described that are generally considered to have 

inflammatory (type I) and regulatory (type II) properties. However, there is still a vast amount of 

knowledge that is unknown regarding the type I and type II NKT cell subpopulations.  

More specifically NKT cells have been suggested to contribute to a large range of autoimmune 

disease and the murine model that would include type I diabetes, multiple sclerosis, rheumatoid 

arthritis, systemic lupus erythematosus, autoimmune hepatitis, and sarcoidosis. [22]  

CD1 family members are surface immune receptor proteins that share functional and 

structural characteristic of the classic MHC Class I and Class II proteins. All CD1 proteins 

contain three extracellular domains α1, α2, α3, a transmembrane domain and a C-terminal 

domain and pair with β2-microglobulin. NKT cells specifically bind to the CD1d member of the 

family.  While MHC proteins present degraded proteins to T cells, CD1d presents lipids.  

While NKT cells do utilize a T cell receptor (TCR), they have a severely limited diversity 

of sequences, with a large majority possessing the TCRα chain rearrangement Vα14/Jα18. This 

arrangement of T cell receptor genes is specifically expressed by type I NKT cells while type II 

NKT cells express a slightly wider diversity of T cell receptor genes. Both subsets also express 

the NK cell marker NK1.1 (CD161). The recognition and activation of type I NKT cells relies on 

the recognition of the lipid α-galactosylceramide (α-GalCer) presented by CD1d. This specific 

lipid has been identified in both human and animal host as the recognition ligand for type I NKT 

activation. Indeed, these type I NKT cells can be distinguished from type II NKT cells by their 

ability to bind to tetramers composed of the CD1d protein presenting α-GalCer while type II 

NKT cells do not bind this reagent.  

The activation that occurs with the NKT cells by the α-GalCer lipid has a robust response 

that is marked by upregulation of surface proteins and cytokine production. With this activation, 

individual NKT cells have been shown to secrete both Th1 and Th2 cytokines, IFNγ and IL-4, 
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respectively. [21] In general, type II NKT cells show inhibition for the pro-inflammatory 

functions of the type I NKT cells, as well as the dendritic cell and T cell populations. [23] It is, 

therefore, important to define the parameters and characteristics of these two cell types in 

Francisella immunity.   
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1.4 Preliminary Data 
 

        Figure 9a. 
 
                  
                   
 

 
                  
 
 
 
 
 
 
   
 
 
 
                     
 

Figure 9a. NKT cell sufficient (C57BL/6J) and deficient (CD1d-/-) mice were infected with Francisella 
tularensis LVS and monitored over the subsequent 14 days. Mice deficient in NKT cells demonstrated a much 

poorer survival compared with mice possessing NKT cells. Mantel Cox Test, P-Value <0.002 
 
 
            Figure 9b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 9b. Serum cytokine levels of TNFα, Il-6, IFN-γ  from LVS-inoculated wildtype and NKT cell deficient mice. 

The presence of NKT cells controlled the levels of the cytokine storm. T-test, P-Value <0.05 
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Mice sufficient and deficient in NKT cells were infected with F. tularensis and their survival and 

cytokine response was compared. Preliminary data suggest that mice lacking NKT cells are more 

sensitive to the infection (Figure 9a) and produce higher cytokine levels (Figure 9b) than mice 

having NKT cells. The wildtype mice that contain NKT cells showed lower levels of the 

cytokine secretion, as opposed to the NKT deficient mice which were lacking the NKT cells. 

These data suggest a regulatory role for NKT cells in controlling the F. tularensis-directed 

immune response. Due to their effector mechanism, activated NKT cells may attack and destroy 

the bacterial infection while also preventing an overactive cytokine response culminating in 

reduced lethality.   
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1.5 Hypothesis 

F. tularensis induces inflammation through cytokine storm signaling to cause disease. Our 

preliminary data suggested that at least one population of NKT cells can suppress the cytokine 

storm after infection. Based on previous experimentation in the lab, we hypothesized that type I 

NKT cells will be able to directly suppress inflammation through a cell contact dependent 

mechanism.  
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Chapter 2. Specific Aims 

Francisella tularensis is an emerging pathogen stimulating an overactive pro-

inflammatory response from the immune system leading to death of the host. The lethality of the 

bacteria takes as little as ten cells to cause a lethal infection. F. tularensis is a gram-negative 

coccobacilius bacteria. It has been classified as a potential biological weapon. Despite having a 

low bacterial load, it can cause a high lethality rate if the bacteria is contracted by hosts due to its 

stimulation of high inflammation in the host, otherwise known as a cytokine storm. The cytokine 

storm induces over-activation of immune cells resulting in host cell damage and in many cases, 

can even lead to death. Therefore, control of the excessive inflammation is critical to allowing 

infected individuals to recover. NKT cells are a subset of white blood cells with regulatory 

functions that could potentially control this lethal response. Ultimately, these investigations will 

lead to a better understanding of the role of NKT cells in this and other pro-inflammatory 

infections. 

Aim 1.  The Role of NKT Cells in F. tularensis Mediated Immunity  

Through an in vitro assay I established and characterized the independent roles of the NKT cells 

induced by F. tularensis-mediated infected. The NKT cells have the capacity, whether in bulk 

purified or individual subsets, to suppress inflammation. Isolating the NKT cell populations and 

culturing them with infected macrophages, I quantified the secreted inflammatory cytokines and 

chemokines. By fixation and neutralizing surface protein interactions we gained insight into the 

suppressive mechanism. If these molecules are involved in mediating the suppression, we should 

see a reversal of inhibition in the presence of the antibody. 
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Aim 2. The Independent Role of Type I and Type II NKT Cells 

Bulk NKT cells were separated into the type I and type II NKT cells. With the isolation of the 

cell populations, I investigated their ability to inhibit IL-6 production. By independent co-culture 

of type I and type II NKT cells with infected macrophages we determined their relative ability to 

suppress IL-6 production.  
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Chapter 3 - Methods and Materials 
 
Cell Line  

Murine Macrophage Cells are derived from C57BL/6 adherent Bone Marrow Derived 

Macrophages that has been immortalized by the retrovirus J2. 

Origin: Mouse  

Purchased from BEI Resources: NR-9456  

Preservation and Culture Information 

Growth Media: DMEM with additives  

Serum Media: Fetal Bovine Serum purchased from CORNING USDA Approved Origin Ref: 35-

010-CV 

Cultured in a T75 flask passaging every 2-3 days and supplementing the media with 21ml of Cell 

Growth DMEM Media with Ciprofloxacin until 80% of confluency is observed. 

 

Bacteria Culture 

Francisella tularensis subsp. holarctica CDC LVS (BEI Resources, catalog #NR-646) is a 

categorized risk group 2 bacteria.  

Culturing bacteria is first inoculated on Mueller-Hinton plates. Necessary supplements used in 

growth media includes IsovitaleX 1% and Defibrinated Sheep Blood 5% with an incubation 

period of 48 hours at 37°C. Post incubation period the bacteria will be aliquoted, diluted and 

prepared for long term storage using a 15% glycerol/PBS solution. Bacteria must be stored at -

80°C until ready to use. 

 

In Vitro Assay 

Day 1: Using the C57BL/6 cells they will be plated in a 96 well round bottom plate at 2e5/ml at 

200ul/well, with a 24-hour incubation period for the cells to adhere.  

Day 2: After cell adherence F. tularensis (LVS) is used at 1e10 CFU/ml at 100ul/well is used to 

infect the macrophages for 2 hours. Post two-hour infection two rounds of liquid gentamicin 

(15750060 Thermo Fischer) is treated in two rounds a high dose and low dose. Ratio used 1:1 

Gentamicin is used within this assay to treat and exterminate any external bacteria from being 

internalized which will cause activation of the pathways that we are not interested in. High dose 
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treatment 100ul/well, with an incubation period of 96min and low dose 100ul/ well with an 

incubation period of 24hrs at 37°C.  

Male Mice Spleens are used and grounded with 1x sterile PBS all supernatant is collected and 

centrifuged at 1500 RPM for 10 minutes   

RBC lysis buffer is used to lyse primarily all red blood cells 30 secs which is neutralized with a 

FBS based media, after centrifuging 1500 RPM for 10 minutes. Cells are washed with 

supplemented media and centrifuged. The cell suspension will continue to be labeled with filter 

purified antibodies (refer to antibody section). Total incubation period of 90 min for the 

antibodies to bind to the cells and the lipids, the cells are prepared to process through the 

Beckman Fluorescent Activated Cell Sorter. The target population for the sorting is NKT type I 

and type II. After completion of the sorting the both type I and type II NKT subsets will be added 

into the In Vitro Assay at 1e5/well. They will be left for 24 hours in an incubator at 37°C.  

Day 3: At the collection time point all supernatant including the controls and the treatments will 

be collected and transferred to a 96 well plate and stored in the -80°C until ready to use. 

Following this assay an ELISA will be used to quantify how much IL-6 is being produced 

 

Fixed NKT Cell Protocol  

The fixed NKT protocol is designed to stop and inhibit the secretion of the NKT cell production. 

This will allow for only surface proteins to remain active. 

(100ul) 0.15% Glutareldahyde incubate for 30 seconds 

Add 100ul of 0.2M Lysine 

Wash 2x with Media No Ciprofloxacin  

 

Buffers 

1. Cell Growth Media with Ciprofloxacin – Total Volume 500ml  

• 10% Fetal Bovine Serum (CORNING USDA Approved Origin Ref: 35-010-CV)  

• 1% 1 M Hepes in 0.65% NaCl (Lonza Catalog No: 17-737E) 

• 1% L-Glutamine 200mM (100x solution) purchased from GE Lifescience/Hyclone 

• 1 % Amphotericin B (Thermo Fischer 15290018)  

• Completed with (DMEM) Dulbecco’s Modification of Eagle’s Medium with 4.5 g/L 

glucose, L-glutamine & Sodium Pyruvate (Corning 10-013-CM) 
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• 500ul of Ciprofloxacin 10 mg/1ml (Aeros 449620250)  

 

2. Cell Growth Media without Ciprofloxacin- Total Volume 500ml  

• 10% Fetal Bovine Serum (CORNING USDA Approved Origin Ref: 35-010-CV)  

• 1% 1 M Hepes in 0.65% NaCl (Lonza Catalog No: 17-737E) 

• 1% L-Glutamine 200mM (100x solution) purchased from GE Lifescience/Hyclone 

• 1 % Amphotericin B (Thermo Fischer 15290018)  

• Completed with (DMEM) Dulbecco’s Modification of Eagle’s Medium with 4.5 g/L 

glucose, L-glutamine & Sodium Pyruvate (Corning 10-013-CM 

 

 

3. Cell Sorting Media – Total Volume 500ml  

• 5% Fetal Bovine Serum (CORNING USDA Approved Origin Ref: 35-010-CV)  

• 1% Penicillin/Streptomycin  

• Completes with 470 ml of Media with no phenol red (Corning) 

Media with no phenol red is used due to the color altering the laser reading on the  

   Beckman Cell Sorter Machine 

 

4. Enriched media at 15% FBS – Total Volume 250ml (exact volumes are used)  

• 37.5 ml Fetal Bovine Serum (CORNING USDA Approved Origin Ref: 35-010-CV) 

• 2.5 ml 1 M Hepes in 0.65% NaCl (Lonza Catalog No: 17-737E) 

• 2.5 ml Non-Essential Amino Acids 

• 2.5 ml Amphotericin B (Thermo Fischer 15290018) 

• 2.5 ml Penicillin/Streptomycin 

• 200ml DMEM) Dulbecco’s Modification of Eagle’s Medium with 4.5 g/L glucose, L-

glutamine & Sodium Pyruvate (Corning 10-013-CM) 

 

5. Neutralizing Media – 250 Volume (exact volumes are used) 

• 37.5 ml Fetal Bovine Serum (CORNING USDA Approved Origin Ref: 35-010-CV) 
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• 200ml (DMEM) Dulbecco’s Modification of Eagle’s Medium with 4.5 g/L glucose, L-

glutamine & Sodium Pyruvate (Corning 10-013-CM) 

 

6. RBC Lysis Buffer  

• Ammonium (Sigma-Aldrich 294993)  

• Chloride      (Sigma-Aldrich S9888) 

• Potassium buffer in Ix sterile PBS  

Cell Sorter  

 Beckman Cell MoFlo Astrios Cell Sorter - Fluorescence Activated Cell Sorting. Labeling and 

preparing the cells is key to a successful separation. Individually labeled cells are exposed one at 

a time in a liquid stream onto a laser beam.  The light that is emitted from the laser is collected 

by a set of PMT’s after passing through several filters which will assign a physical charge to the 

cell. The stream overview has an influx of 100um stream, the amplitude of approximately 35,000 

with a pressure maximum of 24 PSI.  After preparing the labeled cells from the splenocytes. The 

particle enters the stream, which will trigger the laser. The progression of the particle will 

progress down the stream, the cell will enter the last droplet before breaking from the stream. At 

this point the stream is charged with magnetic plates on the outside the stream flow. Before the 

cell can retain a charge the drop delay which is the point of cell analysis will “interrogate” 

whether the targeted cell in every three drops contains the population. Adjusting the events per 

seconds one out three droplets will contain the cell needed at the drop breakoff point. The 

droplets that contain the target particle will separate from the stream and will retain the charge. 

Based on the physical charge of the droplet the cell will be pulled and deflected into the assigned 

conical tube. With the use of six spleens consistently after replicated studies the approximate 

yield for the NKT cell type I population is 3e5 cells/ml and NKT cells type II population is 3e5 

cells/ml. 

 

Mice Protocol  

All animal procedures were carried out in accordance with the Guide for the Care and Use of 

Laboratory Animals following OLAW guidance and animal protocol (A-201208-1), with 

approved by the Institutional Animal Care and Use Committee. Per established protocol four to 

seven male mice from the C57BL/6 lines at the age between six to eight weeks were euthanized 
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and their spleens were extracted and placed in Media without Ciprofloxacin on ice. With only 

approximately a twelve to sixteen-hour timespan can the spleens be kept on ice in the 2°C 

without losing the integrity of the tissue.  

 

ELISA  
Mouse IL-6 Uncoated ELISA Kit  

Enzyme linked immunosorbent assay for the quantitative detection of Mouse IL-6  

(Thermo Fischer Scientific Invitrogen   Ref 88-7064-88)  

All reagents and antibodies were used in accordance with protocol provided by the kit.  

 
Antibodies  

• mCD1d- PBS 57- PE (Bioscience 50-4317-U500)  
- Purpose of this antibody is the Lipid will bind to the NKT cell  

• Empty Tetramer APC mCD1D unloaded – APC (Bioscience 20-4317-U500)  
-    Non-Specific, No lipid present incapable of binding to target cell population   

• Anti-Mouse CD16 / CD32 “FC Shield” (Bioscience 70-0161-M001)  
- Fc Shield is used for the detection of NK Cells. The Purpose is to block the FC 

receptors CD16 and CD32 from binding.  
• BV510 Rat Antibody B220/CD45R (BD Bioscience 563103) 

- Used for labeling all B cells  
• Anti-Mouse NK1.1 PerCP – Cy5.5 (TONBO Sciences 65-594-U100)  

- Labels NK and NKT cells  
• Anti-Mouse CD3 violet Fluor 450 (TONBO Sciences 75-0032-U100)  

- T cell markers for activation 
Antibodies are used in In Vitro Assay to label non-targeted cells and the targeted subset NKT 
cells populations. Antibodies are sterilized and incubated with the cells 90mins before being 
sorted with the Beckman Cell Sorter 
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3.1 Experimental Design 
 
The overall strategy of the experimental design is to culture purified NKT cell subsets with 

infected macrophages. The protocol has been optimized and designed for the efficacy of this 

procedure. The initial setup is key to the long-term success of the experiment. Using the 

C57BL/6 macrophages after 80% confluency and morphology is correct. The macrophages will 

be plated at 2e5/ml in a round bottom 96 well culture plate. This number has been previously 

optimized to allow for the infection to be maintained throughout the three-day procedure. The 

number of cells is kept consistent to avoid any overgrowth of cell proliferation after the cells 

have phagocytized by the bacteria from infection. The plated cells are incubated for 

approximately 12-14 hours to allow the cells to adhere to the plate. F. tularensis LVS is used to 

infect the cells at an MOI of 30 with the concentration of 3e7 in 200ul/well. The bacteria will be 

incubated and co-cultured with the macrophages for 2 hours. This allows enough time for the 

macrophages to undergo phagocytosis and initiate cytokine secretions. 

After the infection period the media is removed and a series of gentamicin treatments is added to 

kill extracellular bacteria and prevent overgrowth. The treatment includes a high and low dose. 

The high dose of gentamicin is incubated for 1 hour. The media is replaced with a low dose of 

gentamicin which is present throughout the co-culture period to prevent shedding of the bacteria.  

 During this time, male C57BL/6 mice splenocytes have been collected and are kept in 

suspension within cell growth media without ciprofloxacin on ice until ready to use. For this, the 

spleens are dissected and are ground into a single cell suspension and red blood cells lysed using 

RBC lysis buffers. The addition of the neutralizing media stops the lysis; the cells are ready for 

labeling. (Please see “Antibody” section in methods) The antibodies will be sterilized by 

filtration before being added to the splenocytes and incubated at 4°C for 90min. The buffer used 
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for the labeling of the splenocytes is the Cell Sorting Media. This media is used purposely with 

no phenol red to reduce refraction because of the color engaging with the laser. At this point, the 

FACS sorter is setup to isolate and separate the NKT type I and type II cell populations.  

 

 

                                           Table 2. Gating Strategy 

The gating strategy defines a series of populations for the isolation and separation of the NKT 
subset populations is setup in the following way. 
 
 
All Lymphocytes  
Entire Cell Population 
Identified  

 
 
 
Non-B Cell Populations Identified  

 
 
T cell Population 
Identified 

 
 
NKT Cells Identified 

 
 
NKT Type I and Type II Separated and 
Collected 

 
The cells are collected in Enriched media with 15% FBS to help stabilize the cells after the 

interrogation by the cell sorter. Once the NKT cell type I and type II are collected they will be 

added to the in vitro assay at 1e5/ml at 100ul/per well. The assay will be incubated for 24 hours 

and all supernatant is collected. The mouse IL-6 ELISA will be used to quantify how much pro-

inflammatory marker is being secreted in the presence of the NKT type I and type II cells.  
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Chapter 4. Results 

In the in vitro assay we designed, C57BL/6 macrophages infected with LVS alone secrete a large 

amount of the inflammatory cytokines IL-6 and IL-1β while uninfected macrophages do not 

produce much of either cytokine (Figure 10). Addition of a purified total NKT cell population to 

the infected macrophages showed a drastic suppression of both IL-6 and IL-1β. This 

demonstrates that bulk purified NKT cells can directly suppress inflammation. The data was 

analyzed with Graphpad Prism Software 9th Version using t-test resulting in p-value = 0.01. 

      

 Figure 10.                 

           

Figure 10. In vitro co-culture assay. Quantification of IL-6 and IL-1β in the supernatant by ELISA showed that NKT 
cells could suppress LVS-induced inflammation. P-Value =0.01 by T-test. 
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Figure 11. 

 
 
  

 

 

 

 

 

 

 

 

Since total NKT cells could inhibit IL-6 and IL-1β, we sought to determine the mechanism 

resulting in this suppression (Figure 11). Culture supernatant from wells in which NKT cells 

demonstrated the ability to inhibit IL-6 were transferred to freshly infected macrophages. 

Addition of culture supernatant did not result in suppression of IL-6 in the recipient cultures. On 

the other hand, fixation of the NKT cells with glutaraldehyde to prevent secretion of cytokine 

while maintaining cell surface protein structure could inhibit IL-6 production. This led us to 

conclude that the suppressive mechanism of NKT cells was cell-contact dependent. The data was 

analyzed with Graphpad Prism Software 9th Version using an ANOVA and post-test Bonferroni. 

p-value < 0.002 for the ANOVA and < 0.005 for the post-test. 

Figure 11. Supernatant transfer to freshly infected macrophages did not transfer the suppressive activity of the 
NKT cells. Glutaraldehyde fixation of surface effector molecules maintained NKT cell-ediated inhibition. 

**ANOVA was p-value = 0.0002 and *** Bonferroni post test showed  p-value < 0.002 for ** and < 0.0005 
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Figure 12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     

Figure 12. Addition of neutralizing antibodies demonstrate the role of surface proteins in NKT cell-
mediated suppression of inflammation. Anti-CD40L demonstrated the most profound effect in preventing IL-6 

inhibition by NKT cells with anti-GITR also showing some mild effect. ANOVA analysis showed an overall effect 
p-value of 0.016 and the Bonferroni post test showed a p-value of 0.0249 for CD40L. 

 
 

Next, we sought to narrow the proteins potentially mitigating the suppression of IL-6. NKT cells 

express a number of NKT and T- cell surface receptors. Using neutralizing antibodies, we 

targeted known regulatory proteins on NKT cells to disrupt their interaction with ligands on the 

infected macrophage (Figure 12). With the addition of NKT cells this resulted in a 30% 

inhibition of the production of IL-6.  The neutralization of the CD40/CD40L interaction during 

the NKT cell – macrophage interaction eliminated the ability of the NKT cells to inhibit IL-6 

production. Secondly, neutralization of GITR also blocked the ability of NKT cells to inhibit IL-

6 but only by about 50%. We can conclude that the CD40L is the primary surface protein used 

by NKT cells to inhibit IL-6. 
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Figure 13.  

  

 

 

 

 

 

 

 

 

 

Figure 13. Wildtype mouse spleen stained for NK and T cell populations identify type I and type I NKT 
cell subsets. 

 

Since the NKT cell population is comprised of two distinct subsets, we sought to determine the 

role of type I and type II NKT cells independently in the suppression of inflammation. Utilizing 

FACS sorting, we isolated and recovered these two subsets separately based on their flow 

cytometric staining (Figure 13).  
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Figure 14.  
 
 
 
 
 
 
 
 
 
 
  
 
Figure 14. Co-culture of type I and type II NKT cells with LVS-infected macrophages revealed that type I 

NKT cells are able to inhibit IL-6. 
 

These two populations were purified using the Beckman Coulter MoFlo Astrios cell sorter and 

independently cultured with LVS-infected macrophages (Figure 14). The inflammatory cytokine 

IL-6 secreted into the supernatant was measured by ELISA. Infection of macrophages resulted in 

high production of IL-6. Addition of type I NKT cells suppressed the IL-6 production by about 

50% while addition of the type II NKT cells did not suppress the IL-6 production. Therefore, our 

results showed inhibition of IL-6 in the presence of the type I NKT cells but not type II NKT 

cells. This result reinforces our earlier result that NKT cells can directly suppress inflammation.  
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Figure 15. 

 

 

 

 

 

 

 

 

 
 

Figure 15. Dose titration of type I and type II NKT cells. Type I NKT cells demonstrated a dose-dependent 
inhibition of IL-6 secretion. Overall ANOVA p-value < 0.05 and individual p-values < 0.05 by Benjamini, Krieger 

and Yekutieli False Discovery. 
 

To further demonstrate that this suppression of IL-6 production from infected macrophages was 

due to the purified NKT cells, we performed a titration of the type I and type II NKT cells 

(Figure 15). Increasing numbers, 0.5e5/well, 1e5/well, and 2e5/well of separately purified type I 

or type II NKT cells were added to infected macrophage cultures. The resultant titration showed 

a dose-dependent inhibition of IL-6 with the highest dose of 2e5/well showing the most 

suppression, indicating a direct correlation between the type I NKT cell number and inhibition of 

cytokine secretion. Alternatively, the addition of type II NKT cells did not show any inhibition, 

although, due to limited numbers of type II NKT cells recovered, we could not test 2e5/well 

dose.  
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Chapter 5. Discussion 

 
 We know that NKT cells do play a role in suppressing inflammation in vivo. To investigate the 

role of NKT cells in suppressing inflammation, we developed an in vitro co-culture assay in 

which purified NKT cells are cultured with infected macrophages. While this is a reductionist 

examination of the functioning on NKT cells, it is clear that NKT cells do not normally function 

in isolation. It is possible that this system lacks important factors provided by other immune cells 

or responses that may influence the functioning of the NKT cells in vitro compared with their 

functional role in vivo. However, this assay showed that NKT cells could directly suppress the 

production of inflammatory cytokines by macrophages in response to infection. 

 To further investigate and derive a deeper understanding of the NKT cell activation, it 

was necessary to further identify the mechanism of activation within an in vitro assay study. 

Fixation of cells prevents secretion of cytokines and is an accepted method for demonstrating 

reliance on cell surface receptors. Fixation of NKT cells prior to co-culture with infected 

macrophages did not affect the ability of bulk purified NKT cells from suppressing Il-6 

production. We concluded thence that the suppressive activity is due to surface receptor 

interactions. However, it is possible that there remains a contribution by secreted cytokines that 

enhances the suppression of inflammation. Alternatively, it is possible that multiple mechanisms 

are utilized by different subsets of NKT cells and that only some of these are dependent on 

surface receptor interaction. Regardless, at least one of these potentially complementary 

mechanisms is dependent on surface receptor interactions. Through antibody blocking 

experiments, there is a large dependence on the CD40/CD40L pathway. Future experiments will 
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need to confirm its involvement as we have not seen an upregulation of CD40L on activated 

NKT cells in vivo (data not shown, CT). 

 NKT cells can be broadly categorized into two groups: type I or invariant NKT (iNKT) 

cells and type II NKT cells Both groups are activationally restricted by the MHC class I-like 

molecule called CD1d. CD1d is a member of a family of CD1 glycoprotein molecules expressed 

on various antigen-presenting cells (APCs) associated with β 2-microglobulin. In the absence of 

physiological ligands, alpha-galactosyl-ceramide (α-GalCer), a synthetic glycosphingolipid 

(GSL) derived from marine sponges, is the most potent known agonist of iNKT cells and an 

indispensable tool in studying the impact of NKT cell activation on microbial immunity. In 

contrast to iNKT cells, type II NKT cells are nonresponsive to α-GalCer. Since very little is 

known of the independent mode of action of the effect of the type I and type II NKT cells in 

infectious diseases, my results indicate an important role on microbial immunity.  [26]  

 To further investigate and characterize the independent role of the Type I and Type II 

NKT cells, we isolated the NKT cell subset populations. Using the cell sorter and fluorescent 

labeling, I isolated the populations and cultured type I and type II NKT cells with infected 

macrophages. The results show that Type I NKT cells show significant inhibition of Il-6 and 

would suggest suppression of inflammation. While we did not see significant level of 

suppression with the type II NKT cells, it is possible that there is a synergistic effect between the 

Type I and Type II NKT cells. Further Research into understanding type II could possibly reveal 

this synergy. 

 To further understand the importance of type I and type II NKT cells in suppression of 

inflammation, I performed a titration of the type I NKT cells compared with type II NKT cells. 

Using three different concentrations 0.5e5/ml, 1e5/ml, and 2e5/ml, the increasing titer showed a 
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dose dependent suppression of the inflammatory marker IL-6. In comparison, the type II NKT 

cells showed very little suppression, confirming that within the isolated subset, there is no 

independent suppression of IL-6. As stated earlier, there remains a possibility that any activity of 

type II NKT cells is dependent on the presence of either type I NKT cells or some other 

interaction which is not provided in this isolation. 

NKT cells can be activated in a TCR-dependent or independent pathway. The TCR-

independent pathway is triggered by the simultaneous stimulation of IL-12 and IL-18. It is 

possible that the TCR-independent activation of type II NKT cells may play a larger role in vivo 

whereas in vitro these cytokines are not present (data not shown). It has been suggested that TLR 

activation of DC may upregulate type II NKT cell ligands presented by CD1d. It therefore seems 

feasible that like type I NKT cells, type II NKT cells are not limited to activation by TCR-

engagement but can also be activated independently of TCR in a pro-inflammatory cytokine 

milieu. However, this needs to be directly addressed. Thus, type II NKT cells can be activated 

through the TCR by exogenous antigens, such as microbial lipids, or self-lipids that may be 

upregulated on CD1d in activated DC. Moreover, they can likely be activated indirectly by 

pathogen derived or endogenous TLR-ligands acting on DC, or by inflammatory cytokines 

independently of the TCR. It is likely that under most circumstances, both TCR-engagement and 

TCR-independent stimulatory signals contribute to type II NKT cell activation. [27] 

 Transcription factors play an important role in the development of MHC-restricted 

conventional T cells and their combinations guide the functional profile of these cells. The 

transcription factor promyelocytic leukemia zinc finger (PLZF), induced by TCR signaling by 

agonist self-ligands after positive selection, is crucial for the development of type I NKT cells. 

Type I NKT cells can be sub-grouped into distinct functional subsets based on the combinations 
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of transcription factors such as PLZF, T-bet and RORγt: NKT1 (PLZFlowT-bet+), NKT2 

(PLZFhiT-bet−) and NKT17 (RORγt+) cells that secrete TH1-, TH2-, and TH17-like cytokine 

patterns, respectively, upon activation. Whether type II NKT cells follow similar developmental 

pathways and can be sub-grouped in similar functional subsets is not yet clearly understood. 

Studies have found that at least a subset of type II NKT cells have a constitutive production of Il-

4 like type I NKT cells and these type II NKT cells could be identified as Il-4-reporter+ cells that 

did not bind the α-GalCer/CD1d-tetramer. [27] Interestingly, we observed the production of Il-4 

specifically from co-culture wells containing type I NKT cells that were associated with 

suppression. However, direct addition of Il-4 to infected macrophages has yet to show any effect 

on the production of Il-6. It is possible that this NKT cell-produced Il-4 contributes to the 

suppression or biasing of the macrophage response that is dependent on cell-cell interactions. 
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5.1 Significance 

This research has allowed us to establish the involvement of NKT cell subsets in the suppression 

of inflammation. To understand the mechanism of suppression, we sought to determine the 

subset of NKT cells responsible for suppression of inflammation and whether it is dependent on 

cell-cell contact or secreted effector molecules. My studies have shown the type I NKT cells 

directly suppress the ability of infected macrophages to produce IL-6. This suppression utilizes 

cell-cell contact dependent mechanism, in a bulk purified population. Having determined how 

NKT cells suppress inflammation induced by F. tularensis infection, future research will seek to 

specifically activate these suppressive NKT cell subsets to control inflammation. Since this 

future immunotherapeutic therapy would focus on controlling inflammation, it should be 

applicable to other inflammatory conditions as well. These findings will eventually lead to 

further development of treatment who have chronic inflammation and auto immune diseases. 

Overall it will lead to a person life span being elongated with a better quality of life in that 

duration of chronic illness. 
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