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Abstract 

This thesis aims to develop an efficient, deep network based method for Magnetic 

Resonance Imaging (MRI) acceleration through undersampled MR image reconstruction. Deep 

Neural Networks, particularly Deep Convolutional Networks, have been demonstrated to be highly 

effective in a wide variety of computer vision tasks, including MRI reconstruction. However, 

modern highly efficient encoder structures, such as the EfficientNet can potentially reduce 

reconstruction times further while improving reconstruction quality. To that end, we have 

developed a multi-channel U-Net MRI reconstruction network which uses an EfficientNet encoder 

and a custom asymmetric. The network was trained and tested using 5x undersampled multi-

channel brain MR image data from the Calgary Campinas dataset and was found to outperform 

comparable traditional U-Net structures in terms of image quality metric analysis and basic visual 

comparison while achieving a four-fold reduction in inference time. 
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Chapter 1: Introduction 

Magnetic resonance imaging (MRI) is a medical imaging technique that uses magnetic 

field gradients to generate images of the organs in the body. It is considerably ‘safer’ than other 

comparable non-invasive imaging techniques such as X-rays, Computed Tomography (CT) or 

Positron-Emission Tomography (PET), all of which involve subjecting the patient to potentially 

harmful radiation. 

MRI has a wide range of applications in medical diagnosis and is an invaluable tool for 

neurological, cardiovascular and musculoskeletal imaging. Aside from cost, the biggest downside 

of MR imaging is the long acquisition time. Since the patient is expected to lie perfectly still during 

the entire duration of the scan to get the best possible image, 30 minute plus scan times almost 

guarantee unwanted patient motion which causes motion artifacts in the image. Hardware and 

software improvements in the last 40 years have constantly sought to bring the acquisition time 

down, with Parallel MRI bringing in some significant accelerations. 

Over the last decade, post processing techniques such as Compressed Sensing (CS), and 

more recently Deep Learning (DL), combined with Parallel Imaging have been proven to be able 

to accelerate MR Image acquisition by a factor of 8 [1] or more by reconstructing diagnostic quality 

images from input data sampled at sub-Nyquist rates. While sparsifying transform based CS 

methods for MRI reconstruction are more interpretable and can operate with only a small amount 

of data, they require lengthy computation due to the necessity of going through a large number of 

optimization iterations every time a new output needs to be calculated. 

Deep Learning, one of the newest and most promising sub-fields of Machine Learning 

(ML), on the other hand, can produce outputs much faster than CS alternatives and open up 

exciting possibilities for real-time image processing, classification and even diagnosis. Over the 
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last couple of years, the release of large, high quality MRI datasets by medical institutes [2] and 

new research on improving the interpretability of Deep Networks [3] has sparked a renaissance in 

DL research for MRI reconstruction. 

In this thesis, a U-Net based efficient deep reconstruction network is proposed for fast 

undersampled MRI reconstruction. The output of the network is compared with CS and standard 

U-Net based approaches in terms of widely used image comparison metrics. The organization of 

the remainder of the thesis is as follows: 

In Chapter 2, we take a look at some fundamental DL concepts along with the relevance of 

DL in image processing tasks. In particular, we study the EfficientNet, a cutting-edge CNN 

architecture which uses depthwise convolutions in a highly optimized network structure. 

In Chapter 3, some basic concepts of MRI imaging and MRI acceleration are explored. 

Different existing approaches to MRI reconstruction and acceleration are discussed along with the 

image quality metrics most widely used for MR image quality comparison. 

In Chapter 4, we discuss our proposal for an Efficient U-Net optimized for MRI 

reconstruction and highlight two different approaches for building a U-Net using an EfficientNet 

encoder. The details of the dataset that we have used for our experiments are also discussed. 

Chapter 5 details the experimental work that was performed along with our findings in 

terms of visual and metric based comparison of the different reconstruction approaches. 

Chapter 6 contains concluding remarks and possible avenues of future work. 

 

 



3 

Chapter 2: Deep Learning and Efficient Architectures in Image Processing 

Machine Learning and Deep Learning are becoming ubiquitous terms in nearly every data 

driven research area today. This entire field is concerned with developing elaborate algorithms that 

can ‘learn’ how to solve problems in a way similar to how humans can learn to become proficient 

at certain tasks. In their simplest form, ML algorithms, or ‘models’ as they are frequently called, 

can classify data or predict new target values once they have been adequately ‘trained’ to detect 

important features in similar datasets. Artificial Neural Networks (ANNs) take this one step further 

by having the model itself decide which features in the data are important along with how to detect 

them. This is particularly helpful for input data such as images for which manually handcrafting 

features is prohibitively difficult for anything but the simplest examples. Deep Learning is 

essentially the use of ‘deep’ ANNs where the depth is a measure of the number of layers of 

processing units, or neurons, inside the network. Deep ANNs, particularly Deep Convolutional 

Networks, are now at the forefront of performance in most ML tasks, especially in computer vision 

and image processing, where they are unparalleled [4]. 

In this chapter, we take a look at the basic building blocks of Deep Neural networks, the 

relevance of Deep Convolutional Networks in modern computer vision and image processing, as 

well as the current interest in building lightweight and computationally efficient deep networks. 

As a leading example of an efficient architecture, we study the EfficientNet [5] and take a look at 

current efforts to modify the network for regression tasks such a MRI reconstruction. 
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2.1 Neural Networks and Convolutional Neural Networks in Image 

Processing  

2.1.1 Machine Learning and Supervised Learning 

A big part of statistical analysis of data is to derive decisions or patterns based on a given 

set of data points. With the gradual rise in the volume and complexity of data over the last century, 

ML approaches for data analysis, where a ‘machine’ (essentially numerical algorithms or models) 

is tasked with analyzing data and deriving or learning decision-making capabilities to achieve 

certain tasks have become more and more popular. In essence, ML revolves around the 

development and study of methods that give computers the ability to solve problems by learning 

from past experience. The goal is to create mathematical models that can be trained to produce 

useful outputs when fed input data. Machine learning models are provided with training data and 

are tuned to produce accurate predictions for these data using an optimization algorithm. The 

learning process allows for generalization of the expertise of the model so that it may be used to 

deliver correct predictions for new, unseen data.  

There are several kinds of ML, categorized according to how the models utilize their input 

data during training. In reinforcement learning, the model learns from its environment through trial 

and error while optimizing some objective function. In unsupervised learning, such as clustering 

analysis, the computer is tasked with uncovering patterns in the data without expert guidance. 

However, the most popular ML systems today belong to the class of supervised learning. Here, the 

computer is given a set of already labeled or annotated data, and asked to produce correct labels 

on new, previously unseen data sets based on the rules discovered in the labeled data set. 

Commonly used supervised ML algorithms include linear or logistic regression, random forest, 
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support vector machines, and ANNs, of which ANNs are recently experiencing a surge of 

popularity, particularly for image processing tasks. 

2.1.2 Artificial Neural Networks 

In traditional Machine Learning techniques, most of the applied features need to be 

identified by a domain expert in order to reduce the complexity of the data and make patterns more 

visible to learning algorithms for them to work. ANNs [6] [7] were introduced as a ML approach 

where this feature extraction step is completely performed by the learning algorithm. This 

significantly reduces or even eliminates the need of domain expertise and manual feature 

extraction. 

In broad strokes, a neural network consists of a number of connected computational units, 

called neurons, arranged in layers. In the basic form of a neural network, which is the feedforward 

neural network as shown in Figure 1, there is an input layer where data enters the network, 

followed by one or more internal or ‘hidden’ layers transforming the data as it flows through, 

before ending at an output layer that produces the neural network’s predictions. In a traditionally 

defined fully-connected neural network, each neuron in a particular layer will receive the output 

from each neuron in the preceding layer and its own output will be propagated to every neuron in 

the following layer.  

The network is trained to output useful predictions by identifying patterns in a set of labeled 

training data, fed through the network while the outputs are compared with the actual labels by an 

objective function. During the training phase, the strength of each neuron, i.e. is the factor with 

which a neuron multiplies its input and is commonly referred to as its weight, is uncalibrated until 

the patterns identified by the network result in good predictions for the training data. Once the 

patterns are learned, the network can be used to make predictions on new, unseen data. 
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Figure 1: A Feedforward Neural Network 

Each neuron inside a neural network takes a bias w0 and a weight vector 𝑤 = (𝑤1, … , 𝑤𝑛) 

as parameters to model a decision based on the input 𝑥 using a non-linear activation function ℎ(𝑥) 

(Eqn. 1). 

𝑓(𝒙) = ℎ(𝒘𝑇𝒙 + 𝑤0) (1) 

As classically defined, an activation function is chosen such that it is monotonic, bounded, 

and continuous. In this case, the maximum and the minimum can be interpreted as a decision for 

the one or the other class. Typical representatives for such activation functions in classical 

literature are the signum function 𝑠𝑖𝑔𝑛(𝑥) resulting in Rosenblatt’s perceptron, the sigmoid 

function (Eqn. 2) and the tangens hyperbolicus (Eqn. 3). 

𝜎(𝑥) =
1

1 +  𝑒−𝑥
(2) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
(3) 
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Individual neurons, however, can only model linear decision boundaries, an issue widely 

known as the XOR problem. The problem can be overcome by using multiple neurons. With only 

a single layer of neurons, neural networks can approximate any continuous function 𝑓(𝒙) on a 

compact subset of ℝ𝑛 [8]. A single layer network is conveniently summarized as a linear 

combination of 𝑁 individual neurons using combination weights 𝑣𝑖  (Eqn. 4). 

𝑓(𝒙) = ∑ 𝑣𝑖ℎ(𝒘𝑖
𝑇𝒙 + 𝑤0,𝑖)

𝑁−1

𝑖=0

(4) 

All trainable parameters of this network can be summarized as 𝜽 (Eqn. 5). 

𝜽 = (𝑣0, 𝑤0,0, 𝒘0, … , 𝑣𝑁 , 𝑤0,𝑁, 𝒘𝑁) (5) 

The predictions of the network will only be valid for samples that are drawn from the same 

distribution as the compact set on which the network was trained. Therefore, an additional practical 

requirement for an approximation is that the training set is representative and future observations 

will be similar.  

During the training phase, the training data set is processed, and meaningful features are 

extracted. To do so, a training data point (or, typically, a small batch of training points) is fed to 

the network, the outputs and local derivatives at each node are recorded, and the difference 

between the output prediction and the true label is measured by an objective function, such as 

mean absolute error (L1 norm), mean squared error (squared L2 norm), or cross-entropy loss, 

depending on the application. The derivative of the objective function with respect to the weights 

is calculated and used as a feedback signal. For networks with multiple hidden layers, the 

discrepancy is propagated backwards through the network and all the weights are updated to reduce 

the error. This is achieved using backward propagation, which calculates the gradient of the 
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objective function with respect to the weights in each node using the chain rule together with 

gradient descent. 

Multiple training runs are performed with different initialization techniques in order to 

estimate a mean and a standard deviation for the model performance. Furthermore, it is very 

common to use typical regularization terms on parameters, such as L1 and L2 regularization or 

techniques such as Dropout. Dropout is an averaging method based on stochastic sampling of 

neural networks. By randomly removing neurons during training slightly different networks are 

used for each batch of training data, and the weights of the trained network are tuned based on 

optimization of multiple variations of the network. 

In addition to the training data set, a validation set is used to safeguard against over-fitting. 

In contrast to the training set, the validation set is never used to directly update the parameter 

weights. Hence, the loss of the validation set allows an estimate for the error on unseen data. 

Hyper-parameter tuning, which refers to the typically user-defined parameters of the network such 

as learning rate and training batch size, has to be done on validation data before actual test data is 

employed. In principle, test data should only be looked at once architecture, parameters, and all 

other factors of influence are fixed. Only then the test data is to be used. Otherwise, repeated testing 

will lead to overly optimistic results and the system’s performance will be over-estimated. During 

optimization, the loss on the training set will continuously fall. However, as the validation set is 

independent, the loss on the validation set will increase at some point in training. This is typically 

a good point to stop updating the model before it overfits to the training data. 
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2.1.3 Deep Neural Networks and Deep Learning 

Typically, ANNs with more than one hidden layer of neurons are referred to as Deep 

Networks. While a neural network containing a single hidden layer can, in theory, approximate 

any function, many researchers, most notably Goodfellow et al. [9], empirically demonstrated that 

greater network depth, i.e., having multiple hidden layers, leads to better generalization for a wide 

variety of tasks. As the number of hidden layers in a network is increased, however, exponentially 

more resources in terms of memory and computation ability are required to perform all the 

operations required to train the network and more training data is required to obtain sufficient 

convergence of the weight values.  

The rapid spread of the application of Deep Learning to virtually every applicable ML 

problem is partly due to the present widespread availability of GPU-based compute resources and 

partly due to the proliferation of the open-source software movement in the cutting-edge 

computing community. Computer vision challenges in particular have attracted the use of deep 

networks in recent decades due to the availability of datasets like the ImageNet which allow for 

the training of very deep networks. In case of medical imaging, privacy and patient confidentiality 

issues have historically restricted open access to the huge amounts of labelled data required to train 

deep networks. Thanks to the release of large, anonymized, medical imaging datasets in recent 

years, Deep Learning has suddenly become viable in this field. 

Aside from requiring very large datasets, DL implementations tend to use novel, 

unbounded activation functions in the hidden layers, such as the immensely popular Rectified 

Linear Unit (ReLU) (Eqn. 6), the Leaky ReLU (LReLU) (𝛼 = 0.01), or the Parametric ReLU 

(PReLU), in which 𝛼 is a learnable parameter (Eqn 7). 
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𝑅𝑒𝐿𝑈(𝑥) = {
𝑥  𝑖𝑓  𝑥 > 0

   0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(6) 

𝑃𝑅𝑒𝐿𝑈(𝑥)/𝐿𝑅𝑒𝐿𝑈(𝑥) = {
𝑥  𝑖𝑓  𝑥 > 0

   𝛼𝑥  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(7) 

More recently, automated search techniques have been used to discover new, more 

effective activation functions, such as the Swish [10] (Eqn. 8), which in its simplest form (𝛽 = 1) 

is a sigmoid-weighted linear unit. 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥𝜎(𝛽𝑥) (8) 

Contrary to the classical activation functions, many of the new activation functions are 

convex and have large areas with non-zero derivatives. As the computation of the gradient of 

deeper layers using the chain rule requires several multiplications of partial derivatives, the deeper 

the net, the more multiplications are required. If several elements along this chain are smaller than 

1, the entire gradient decays exponentially with the number of layers. Hence, non-saturating 

derivatives are important to solve numerical issues, which were historically the reasons why 

vanishing gradients [11] did not allow training of networks that were too deep.  
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2.1.4 Convolutional Neural Networks 

Convolutional Neural Networks or CNNs [12], employ the mathematical convolutional 

operation in order to more effectively process data that has a known, grid-like topology, such as 

image data which can be thought of as a 2D grid of pixels. Convolutional Networks are typically 

made to have sparse connections by making the convolution kernel much smaller than the feature 

map. As a result, each neuron in a layer is only affected by (or connected to) a small set of 

neighboring neurons in the previous layer, drastically reducing the memory footprint of the 

network. This is particularly important for input data such as images which might have thousands 

or millions of pixels being fed into the input layer. For most practical purposes, a deep, fully-

connected network for large images would currently be prohibitively expensive in term of 

computational complexity and memory requirements. 

CNNs that are applied to image data generally have a very similar basic structure. A typical 

CNN will have an input layer of neurons that is of the same shape as the input images in terms of 

resolution (height and width of the image), and the number of channels. Successive layers in the 

network generally increase the number of channels, which represent the number of feature planes 

(the depth of the layer) and reduce the spatial resolution. The depth of the network is a measure of 

the number of layers of neurons in the network. 

Figure 2 shows how a typical 2D convolution operation works in a CNN. A parameterized 

3D filter comprised of a stack of small 3x3 convolution kernels, which can have different values 

along the channel dimension, and the same number of channels as the input of the layer (Din) is 

used to summarize the information across all channels in the receptive field into a single value. 

The filter is then moved along the spatial dimensions in order to produce a single channel of the 

output volume. The number of such filters to be used is equal to the required number of output 
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channels of that layer (Dout). Such convolutional layers in a CNN summarize the presence of local 

features in an input image. By having each filter share the exact same weights across the whole 

input domain, i.e., translational equivariance at each layer, the number of weights that need to be 

learned is drastically reduced. 

 

 

(a) (b) 

Figure 2: 2-dimensional Convolution Operation[13]  

Another important type of operation in a CNN structure is pooling. Pooling layers provide 

an approach to down-sampling feature maps by summarizing the presence of features in patches 

of the feature map. For images, typically areas of 2×2 or 3×3 are analyzed and summarized to a 

single value. Two common pooling methods are average pooling and max pooling that summarize 

the average value and the largest value respectively of a feature in the pooling region. The 

operations are summarized in Figure 3. 

CNNs used for classification tasks can also have one or several fully connected layers right 

before the output in order to optimally classify the features extracted by the convolutional layers. 

It is possible, however, to replace the terminal fully connected layers with convolutional layers 

resulting in what is called a Fully Convolutional Network (FCN). FCN structures have been shown 

to be ideal for tasks such as semantic segmentation [14]. 
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Upsampling or Transposed Convolutions are used in some types of CNNs, particularly for 

image-to-image translation tasks such as super resolution, in order to increase the spatial size of 

the image, usually by powers of 2. An upsampling operation, which usually employs nearest 

neighbor or bilinear upsampling to the input, is typically followed by a convolution since the 

upsampling layer itself usually has no learnable parameters. A Transposed Convolution uses the 

transpose of a parameterized convolution kernel to generate the spatially higher dimensional 

output. Figure 4 shows an intuitive breakdown of the transposed convolution operation. 

Recently, a number of researchers have revealed the tremendous performance of CNNs on 

image related tasks. Spurred by the success of AlexNet [16] in the ImageNet ILSVRC challenge 

in 2012, researchers are now in a constant race to develop the best possible network for general 

image classification. The 2014 winner of the challenge, GoogleNet [17], proved the merits of the 

fully convolutional architecture and introduced the inception block resulting in a dramatic 

  

(a) (b) 

Figure 3: 2D Max Pooling (a) and Average Pooling (b) Operations 

 

Figure 4: Transposed Convolution Operation [15] 
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reduction in the number of parameters of the network. The 2014 runner-up VGGNet [18], 

demonstrated the importance of network depth by having a deep but simple and homogeneous 

architecture that is still used as a baseline CNN for comparisons today. The ResNet architecture 

[19], which won the challenge in 2015, popularized the concept of adding skip connections to 

address the vanishing gradient problem of very deep networks as well as Batch Normalization 

[20]. In 2016, the ResNeXt architecture [21] incorporated into ResNet the Inception model idea of 

having branched paths within a block (known as the split-transform-merge strategy [17]). The 

SENet [22], which won the challenge in 2017, popularized the attention mechanism in mainstream 

image classification through the Squeeze-and-Excitation block (SE block) mechanism which first 

pools the input in the spatial dimensions and then squeezes the number of channels by a factor 𝑟 

to obtain a set of channel attention weights through fully connected layers. 

Although the official challenge ended in 2017, the ImageNet dataset is still being used as 

the de facto standard for training and comparing modern CNN classification architectures, many 

of which are offshoots and improvements over past winning networks. Two of the most popular 

architectures in use today, ResNeSt [23] and EfficientNet [5], are modern adaptations of the 

ResNet and GoogleNet, respectively which can achieve state of the art test accuracy while 

massively improving on the time required for a trained network to produce an output (typically 

referred to as inference latency) by incorporating techniques such as split-attention and depthwise 

convolutions. A detailed look at the depthwise convolution technique and how it is used in the 

EfficientNet is provided later in this chapter when we review the EfficientNet architecture. 
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2.2 U-Net 

CNNs have also been employed widely for image-to-image translation tasks. Different 

from those for image classification, a CNN in an image translation task outputs an image that has 

a one-to-one pixel correspondence with the input. One of the common uses of such CNNs is for 

image segmentation, where the output is the segmented region maps. The most popular 

architecture designed for this task is the fully convolutional U-net [24], and its 3D variant, the V-

net [25], which for the first time introduced the Dice loss layer widely incorporated nowadays. 

 

Figure 5: Ronneberger’s U-Net [24] 

  

The original structure of the U-Net architecture as proposed by Ronnerberger is depicted 

in Figure 5. A typical U-Net consists of a contracting or down-sampling path which follows the 
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typical encoder architecture of a convolutional network and an expansive or up-sampling path, 

often referred to as the decoder path. In the originally proposed configuration, the down-sampling 

path on the left consists of two 3x3 convolutions with ReLU activation, and a 2x2 max pooling 

operation to halve the spatial dimensions. At each down-sampling step the number of feature 

channels is doubled. Every step in the decoder path consists of an upsampling of the feature map 

to double the spatial resolution followed by a 2x2 convolution. The upsampled output is then 

concatenated with the correspondingly cropped feature map from the encoder path through a skip 

connection, followed by two 3x3 convolutions with ReLU activation. At the final layer, a 1x1 

convolution is used to reduce the number of channels to the number of channels in the 

segmentation map without changing the spatial resolution. 

Because of the multiple layers of convolutions at different spatial resolutions in both the 

encoder and decoder paths, U-net’s and V-net’s architectures allow effective calculation and 

combination of both local and global features. The skip connections from the high resolution 

encoder layers allow fine-grained details to be recovered more effectively [24].  

In recent years, many modifications have been made to this basic U-Net structure in order 

to improve its efficacy, starting from the use of skip connections within the layers and developing 

asymmetric U-Nets [26] with swappable or even multiple encoder paths [27], to connecting 

multiple U-Nets in series [28] or parallel [29] with dense skip connections [30] and attention 

mechanisms [26]. Originally used for image segmentation, the U-Net has now gained immense 

popularity in other image-to-image translation tasks, one of which is MR image reconstruction. 
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2.3 Efficient Architectures and EfficientNet 

2.3.1 MobileNets 

There has been rising interest in building small and efficient neural networks in the recent 

literature [31][32][33], primarily from the growing need to deploy neural networks in low powered 

edge devices, such as smartphones and IoT nodes. While the training of cutting-edge deep 

networks still requires the use of massively powerful and parallelized compute clusters, they can 

be designed to have very low inference latency. Model compression [34], [35], which exploits the 

fact that deep convolutional networks are often overparameterized, is a common approach to 

reduce model size in order to improve computational efficiency. Another approach is to directly 

design networks using computationally efficient blocks and operations. MobileNets [36], is a class 

of network architectures that allows a model developer to specifically choose a small network that 

matches the resource restrictions (latency, size) for their application. MobileNets primarily focus 

on optimizing for latency but also yield small networks.  

At the core of the MobileNet architecture is the Depthwise Separable Convolution [37], a 

form of factorized convolution which factorizes a standard convolution into a depthwise 

convolution (Figure 6 (a)) and a 1×1 convolution called a pointwise convolution (Figure 6 (b)). In 

order to perform a depthwise convolution, the 3-dimensional convolution filter is split in the 

channel direction into a set of 2-dimensional filters each of which acts on a single channel of the 

input. The outputs for the depthwise convolutions are then stacked together and a 1x1 convolution 

filter, also with the same number of channels as the input, is used to combine the results of the 

depthwise convolutions into one channel of the output. The number of feature channels in the final 

output is determined by the number of filters used for the pointwise convolution. This factorization 

leads to drastically reduced computation complexity and model size [36]. 



18 

While the first proposed MobileNet was handcrafted, subsequent iterations have taken 

advantage of Network Architecture Search [38] and the idea has been expanded to other types of 

networks such as the MnasNet [39] which uses a factorized hierarchical search space that factorizes 

a CNN model into groups of unique operations called ‘blocks’, and then searches for the operations 

and connections per block separately. This acts to balance the diversity of layers and the size of 

the total search space and allowing for different layer architectures in different blocks. 

2.3.2 EfficientNet 

One of the latest approaches to build highly efficient networks is the EfficientNet [5]. It is 

the result of a multi-objective factorized neural architecture search similar to the one performed 

for MnasNet that optimizes both accuracy and FLOPS. Its main building block is the mobile 

inverted residual bottleneck MBConv [5], [40], to which squeeze-and-excitation (SE) optimization 

[22] is added. 

The MBConv Block shown in Figure 7, which is the basic building block of the 

EfficientNet, consists of an initial expansion convolution which increases the number of input 

feature channels by a predefined factor 𝑒, followed by a Depthwise Separable Convolution, each 

of which is accompanied by a Batch Normalization layer and a Swish activation layer. Following 

the activation layer is the SE Block which serves as a channel attention module for the expanded 

 

(a) (b) 

Figure 6: Depthwise Separable Convolution [13] 
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feature channels. In the SE block, average pooling is first performed in the spatial dimensions to 

reduce them to 1x1. Two 1x1 convolution layers are then used in succession, the first of which 

squeezes, or reduces the number of channels by a factor 𝑟, while the second expands the number 

of channels to the original value. The resultant set of channel weights are then multiplied with the 

input of the SE block and a final convolution (followed by Batch Normalization) is performed in 

order to produce the output of the MBConv block. For repeated MBConv blocks, in which case 

the number of input and output channels of the block remain the same, the input is added to the 

final output through a skip connection. 

What makes the EfficientNet so powerful is the way the MBConv blocks are combined 

and how the parameters of each block, such as the expansion ratios, output channel sizes and 

convolution kernel sizes, are tuned to achieve the best possible performance. The optimal set of 

parameter values were obtained as result of a network architecture optimization search focusing 

on efficiency and performance [5]. The network obtained by using the parameter values from the 

result of this search is called the EfficientNet B0 network. The structure of the EfficientNet B0 is 

listed in Figure 8. 

 

Figure 7: Diagram Showing the Internal Layers of the MBConv Block 
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Here, the number after MBConv denotes the expansion ratio for the expansion convolution 

and the values after ‘𝑘’ denote the kernel size for the depthwise convolution. �̂�𝑖 is the number of 

output channels for any layer in that particular stage and �̂�𝑖 denotes how many times a layer in 

each stage is repeated. Instead of using pooling layers for spatial resolution reduction, the 

EfficientNet utilizes 2x2 strided depthwise convolutions where necessary. 

This network can then be further scaled up using the compound scaling method proposed 

by the authors in order to create a class of EfficientNets from B0 to B7. This method uniformly 

scales the resolution, ‘width’ (layer depths) and ‘depth’ (number of layers) using a common 

compound coefficient φ.  

 

Figure 8: Parameters and Structure of EfficientNet B0 [5] 

 

2.3.3 Efficient U-Net for Image Processing 

While the main focus of the EfficientNet architecture is to build computationally efficient 

networks, EfficientNets have also proven themselves to be very powerful CNN encoder structures 

capable of achieving state-of-the-art accuracy in classification tasks. Researchers have therefore 

recently started to harness the superb feature resolution capability of the EfficientNet for image-
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to-image translation tasks by using the full EfficientNet (without the terminal fully-connected 

layers) as an encoder in U-Net structures. This Efficient U-Net structure has been successfully 

used for diverse tasks ranging from cloud image classification [41] to natural environment [42] 

and blood vessel segmentation [43]. The success of these approaches indicates that just like a 

regular U-Net, the Efficient U-Net can prove to be effective at regression tasks such as MRI 

reconstruction while being immensely more conservative in terms of resource usage. The 

improved inference latency of such a network would be an added benefit for MRI acceleration. 

The methodology behind developing an Efficient U-Net structure for MRI reconstruction is 

discussed in detail in Chapter 4. 



22 

Chapter 3: MR Imaging and Acceleration 

In this chapter, seminal aspects of the MR imaging process relevant to our work are first 

discussed. The need and basic approach for MRI acceleration is then explained and a literature 

review of the current state of MRI acceleration using deep CNN based techniques is presented. 

Finally, the issue of quantitative image quality assessment and comparison in the context of MR 

images is discussed and relevant metrics explored. 

3.1 MR Imaging Process 

 
 

Figure 9: The Fundamental Components of an MRI [44] 

 

In this section, we take a brief look into the MR data acquisition and image formation 

process. Detailed breakdowns of MR imaging principles and acquisition methods can be found in 

MRI textbooks, e.g., [45]. 

Proposed and developed by Paul Lauterbur in the 1970s [46], Magnetic Resonance Imaging 

is an indirect imaging process which works on biological organisms by creating a strong magnetic 

field around the body to align the spin axes of the hydrogen nuclei that are present throughout our 

bodies due to the abundance of water. During a clinical scan, a person is placed inside a large 
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cylindrical bore which houses all the imaging components including the main magnet which 

produces the strong homogeneous magnetic field. Additional RF energy, in the form of a sequence 

of spatially and temporally varying magnetic fields called a “pulse sequence”, is then applied using 

an RF transceiver coil and a set of orthogonal gradient coils to make the aligned hydrogen protons 

resonate. This can be done along 2D “slices” or planes determined using the gradient coils or 

across an entire 3D volume at once. When the RF pulse is switched off, the excited protons return 

to their resting state causing an RF signal to be emitted. This signal is picked up as a set of 

frequency and phase measurements by the RF transceiver coil. The acquired signal corresponds to 

points on the multidimensional Fourier-space representation, commonly known as ‘k-space’, of an 

imaged body. An inverse Fourier transform is then performed on the acquired k-space data to 

generate grayscale magnitude images of the anatomy for evaluation by a medical expert.  

For many clinical applications, the patient is also injected with a contrast agent with special 

magnetic properties, such as gadolinium, to intensify signals from certain regions of the anatomy 

or abnormalities such as tumors. Specific combinations of RF and gradient pulse intensities and 

timings, along with the usage of different contrast agents, form what are known as MRI sequences. 

Different MRI sequences are used for highlighting different types of tissue, fluids, or 

abnormalities, producing high temporal resolution sequences (e.g. in cardiac MRI videos), and 

even for neural activity tracking through functional MRI (fMRI). 
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3.2 Parallel Imaging 

In parallel MR imaging, multiple receiver coils are used, each of which produces a separate 

k-space measurement matrix. Each of these matrices is different, since the view each coil provides 

of the imaged volume is modulated by the differential sensitivity that coil exhibits to MR signal 

arising from different regions. In other words, each coil measures Fourier components of the 

imaged volume multiplied by a complex-valued position-dependent coil sensitivity map. The 

measured k-space signal 𝑦𝑖 for coil 𝑖 in an array of 𝑛𝑐 coils is given by 

𝑦𝑖  =  𝐹(𝑆𝑖𝑚)  +  noise 

Each coil is typically highly sensitive in one region, and its sensitivity falls off significantly 

in other regions. If the sensitivity maps are known, and the k-space sampling is full (i.e., satisfying 

the Nyquist sampling condition), then the set of linear relations between 𝑚 and each 𝑦𝑖 defines a 

linear system that is overdetermined by a factor of 𝑛𝑐. It may be inverted using a pseudoinverse 

operation to produce a reconstruction of 𝑚, as long as the linear system is full rank. The quality of 

this reconstruction will depend on the measurement noise, since the signal-to-noise ratio is poor in 

parts of the volume where the coil sensitivity is low. 

For most practical purposes, the individual coil images are combined into a single 

magnitude image using the complex images and their respective sensitivity maps or through a 

more direct root-sum-of-squares combination of the individual magnitude images. 
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Figure 10: Parallel MRI - Individual Channel Images from a 12 Coil Acquisition 
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3.3 Sampling in MRI 

 
 

(a) (b) 

  

(c) (d) 

Figure 11: K-space Sampling Patterns (a) Cartesian 1D Uniform (b) Cartesian Poisson Disc (c) Radial (d) 

Spiral 

A variety of different k-space trajectories may be used for MR image acquisition, as shown 

in Figure 11, with the Cartesian trajectory (sampling points that fall on a rectangular grid) being 

the most popular in clinical practice. Sampling in the Cartesian trajectory typically takes place 

along parallel lines of sampling points, but it is also possible to effectively sample random points 

on the 2D slices if the acquisition is being made in 3D. Some of the other possible trajectories 

include radial acquisitions, which are less susceptible to motion artifacts than Cartesian trajectories 

and spiral acquisitions which make the most efficient use of the MRI hardware and are used in 
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real-time and rapid imaging applications. Efficient reconstruction from such non-Cartesian 

trajectories requires using filtered back-projection or interpolation schemes (e.g., gridding). 

3.4 MRI Acceleration Through Undersampled MRI Reconstruction 

MRI is a comparatively slow imaging modality, limited traditionally by Nyquist sampling 

requirements. The long acquisition times for MR images results in increased motion artifacts in 

the images, decreased patient comfort, and increased cost of scans which restricts accessibility at 

a population level. Research on accelerating MRI data acquisition has therefore been an active 

area of study since the early days of MRI. 

One possible approach to accelerating MRI data acquisition is to conduct k-space sampling 

at a rate below the Nyquist–Shannon sampling rate [47]. For this approach, the acceleration rate 

achieved is proportional to the undersampling ratio, i.e., acquiring one-fourth the number of data 

points compared to the fully sampled case (referred to as 4x undersampling) typically requires one-

fourth the time, which results in 4x acceleration. As is true for most natural images, the power of 

the MRI data collected in the frequency domain (k-space) is highly concentrated toward the center 

of the k-space grid (low frequency components) and falls off toward the edges (high frequency 

components). However, only sampling the center of the k-space, produces images of lower spatial 

resolution that lacks the fine details which are often the key to making diagnostic inferences from 

an MR image. A more balanced approach is to fully sample a small section of the central region 

of the k-space and sparsely sample the outer regions. Various undersampling patterns that utilize 

this approach in different ways can be used to collect k-space data, depending on the acquisition 

type. For Cartesian 2D acquisitions, 1D undersampling with a certain number of fully sampled 

central lines, typically in the phase encoding direction, is commonly used, whereas Cartesian 3D 
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acquisitions can be undersampled using a 2D pattern, with a small fully sampled center and a 

Gaussian or Poisson distribution of sampling points elsewhere. 

 

(a) (b) 

Figure 12: Examples of 5x K-space Undersampling Patterns (a) 2D Poisson Disc with Fully Sampled 

Center of Radius 18 (b) 1D Random Sampling with Fully Sampled Center of Width 11 

However, conventional linear reconstruction from the sub-Nyquist undersampled k-space 

using two-dimensional (2D) inverse Fourier transform (IFT) with zero filling can result in severe 

aliasing artifacts and noise in reconstructed images. Therefore, various reconstruction algorithms 

have been proposed to predict the missing k-space data and/or reduce the presence of image 

artifacts due to undersampling. 

One such method is accelerated parallel imaging, in which each coil's k-space signal is 

undersampled. As long as the total number of measurements across all coils exceeds the number 

of image voxels to be reconstructed, an unregularized least squares solution can still be used, 
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leading to a theoretical 𝑛𝑐-fold speedup over fully-sampled single-coil imaging where 𝑛𝑐 is the 

number of coils. Each extra coil effectively produces an additional “sensitivity-encoded" 

measurement of the volume, which augments the frequency and phase encoded measurements 

obtained from the sequential application of magnetic field gradients in the MR pulse sequence. 

Estimates of coil sensitivity patterns, required for inversion of the undersampled multi-coil linear 

system, may be generated from separate low-resolution calibration scans or derived directly from 

the k-space measurements by fully sampling a comparatively small central region of k-space, 

which corresponds to low spatial frequencies. 

The image domain sensitivity encoding (SENSE) technique developed by Prussemann et 

al. [48] exploited the spatial diversity information from coil sensitivity maps for fast MRI 

acquisition and led to the development of algorithms such as Generalized Autocalibrating Partially 

Parallel Acquisitions (GRAPPA) by Griswold [49] in which missing k-space points are directly 

interpolated.  
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3.5 Compressed Sensing Reconstruction 

In practice, the use of sub-sampling results in significant amplification of noise and the 

introduction of undersampling artifacts. CS, which is one of the most successful modern 

approaches for reconstructing high-quality artifact-free MR images from undersampled data, is a 

signal processing technique that focuses specifically on exploiting the ‘sparsity’ in signals, 

typically in a transform domain. Ever since the first demonstration of CS MRI by Lustig et al., 

[50], it has become an essential tool in modern MR imaging research.  

MRI obeys two key requirements for successful application of CS. Firstly, MR images, 

like most medical imagery are naturally compressible by sparse coding in an appropriate transform 

domain (e.g., by wavelet transform). Some types of MR images, such as those obtained from MR 

angiography, are quite sparse even in the pixel representation as well. They can be made sparser 

by spatial finite differencing. More complex imagery, such as brain images, can be made sparse in 

more sophisticated domains, such as the wavelet domain. Secondly, MRI scanners naturally 

acquire encoded samples, rather than direct pixel samples (e.g., in spatial-frequency encoding). 

In general, CS reconstruction tries to solve the following constrained optimization problem 

for the reconstructed complex image 𝑚: 

𝑚∗ =  argmin  ‖Ψ𝑚‖1 [1] 

subject to  ‖𝐷ℱ𝑚 −  𝑦‖2 < 𝜖   

Here, Ψ is an appropriate basis which converts the image m into a sparse representation, 𝐷 

is the undersampling pattern, ℱ represents the Fourier transform 𝑦 is the measured k-space data 

and 𝜖 is the error threshold. The 𝑙1 norm in the objective is what enforces the sparsity. 
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Compressed sensing theory exploits this sparsity to reconstruct the signal with good 

accuracy from relatively few measurements by a nonlinear procedure. As such, CS can be used to 

make accurate reconstructions from a small subset of k-space, rather than an entire k-space grid. 

For CS to be applied successfully, the MR images, in addition to being sparse in some domain, 

must have incoherent undersampling artifacts and should be reconstructed by a nonlinear method 

that enforces both sparsity of the image representation and consistency of the reconstruction with 

the acquired samples. The low coherence can be guaranteed through a random sampling of the k-

space. Since most energy in MR imagery is concentrated close to the center of k-space and rapidly 

decays towards the periphery, uniform sampling yields poorer results compared to variable density 

sampling strategies with denser sampling toward the center.  

However, as random sampling techniques may be subject to MRI hardware limitations, 

Hyun et al., [51] demonstrated that uniform subsampling along with some dense low-frequency 

sampling toward the center can deal with anomaly location uncertainty in the uniform sampling 

for a CS reconstruction approach. 

The sparsity of a signal is closely related to signal redundancies as redundant signals can 

be easily converted to sparse signals using some transforms. Apart for coil redundancy, which 

forms the basis for acceleration through parallel imaging, two other major sources of redundancy 

have been investigated in compressed sensing MRI. First and foremost, it is the spatial domain 

redundancy which allows MR images to be sparsely represented in finite difference or wavelet 

transform domain. As a result, total variation (TV) [52], where finite-difference is used as the 

sparsifying transform and wavelet transform have been extensively used in most of the early CS 

MRI research approaches. Adding a Total Variation penalty to force the image to be sparse in 

finite-difference and Ψ, modifies the objective equation to: 
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 𝑚∗ = argmin  TV(𝑚) [2]  

subject to ‖𝐷ℱ𝑆𝑚 −  𝑦‖2  <  𝜖 

where 𝑆 defines the sensitivities of the coils in a multi-coil acquisition and TV(𝑚) can be expressed 

as: 

TV(𝑚) = ‖𝛻𝑚‖1 [3] 

𝛻𝑚 here represents the gradient. 

On the other hand, dynamic MR images such as cardiac cine, functional MRI, and MR 

parameter mapping have significant redundancy along the temporal dimension as well. For 

example, if the image is perfectly periodic, then temporal Fourier transform may be the optimal 

transform to sparsify the signal. However, in many dynamic MR problems, the temporal variations 

are dependent on the MR physics as well as specific motion of organs, so the analytic transform 

such as Fourier transform may not be an optimal solution, but more data-driven approaches such 

as PCA or dictionary learning are better options.   

 

3.6 MRI Reconstruction Through Deep Learning 

A large drawback of using PI and CS for MRI Acceleration is the time-consuming nature 

of the reconstruction problems that these methods are designed to solve. This is due in part to the 

fact that PI and CS approaches treat every examination and reconstruction task as a new, 

independent optimization problem. While reconstruction can be done offline, clinical scenarios 

ultimately require speed for the reconstruction of individual scans. Deep learning methods are 

useful because they perform the optimization over many training images prior to solving the 

reconstruction for any particular given image. They can take advantage of common features of 
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anatomy as well as the structure of undersampling artifacts that are present across the training 

images. With deep-learning reconstruction, the optimization process is then effectively decoupled 

from the time-sensitive image reconstruction process for each individual study. Thus, for a new 

scan, unlike CS reconstructions, which each require lengthy computation time, deep-learning- 

based models can complete the reconstruction in seconds. It is for these reasons that several groups 

are now investigating the use of deep-learning-based approaches to achieve accelerated, high-

quality MRI reconstruction. Several techniques use DL to learn more effective regularization terms 

(prior information), and the approaches are derived from the concepts of GRAPPA, SENSE, and 

CS. Like PI, DL techniques for reconstruction of sparsely sampled data can be applied both in k-

space and in image space. 

Current approaches to using DL for MRI Acceleration fall into two broad categories: Deep 

learning based MRI reconstruction, which utilizes complex multi-coil data (in k-space or image 

space) to generate an output image [28], and DL based MRI post-processing which aims to 

improve the quality of coil-combined images [53]. 

The first approach can be used to train powerful deep networks to exploit phase and coil 

information present in the raw data. However, such raw MRI datasets are still rare, and have to be 

deliberately acquired for research purposes since the extraction and curation of complex k-space 

data is not part of the regular MRI diagnostic process. The strength of the second approach lies in 

the more widespread availability of magnitude MRI data and the relative ease with which general 

DL based computer vision techniques and insights can be applied to magnitude images. 

Now, depending on how the deep network is being used in the reconstruction process, DL 

based MRI reconstruction approaches can be further divided into four broad categories as shown 

in Figure 13 
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The simplest approach (as shown in Figure 13(a)) is complete end-to-end recovery as 

proposed in the AUTOMAP system [54]. The undersampled complex k-space coil data is fed into 

a fully-connected network which produces the final output image. However, the excessive 

 

(a) End-to-end Reconstruction 

 

(b) K-space Reconstruction 

 

(c) Magnitude Image Domain Reconstruction 

 

(d) Complex Image Domain reconstruction with Data Consistency (DC) 

Figure 13: Different Approaches to Using Deep Neural Networks for MRI Reconstruction 

DC 
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computational requirements due to the large number of necessary fully-connected layers largely 

restrict the maximum size of the images that can be handled by this network. Since then, in an 

effort to reduce the resource requirements for the domain transform learning process, Schempler 

et al [55] have proposed a decomposed AUTOMAP and Eo et al., [56] have proposed an alternative 

approach which restricts the undersampling to 1D so that the fully connected layers only need to 

learn a 1D global transform. 

The second approach (Figure 13(b)) is using the deep network for direct k-space 

interpolation. Akçakaya et al., [57] introduced the use of neural networks for k-space interpolation 

inspired by parallel imaging methods such as GRAPPA. Although a convolutional network is used 

in the process, it is a non-traditional implementation of deep networks as it is a scan-specific 

process that trains on ACS data. LORAKI, which uses a recurrent neural network, was 

subsequently developed by Kim et al [58] in an effort to translate the parallel imaging method AC-

LORAKS into a nonlinear DL method. The first ground up DL k-space interpolation technique 

came from Han et al [59] who used a U-Net to implement a structured low-rank Hankel matrix 

approach. Recently, this approach was enhanced by Du et al., [60] through the addition of weight 

sharing, frequency attention and integrating information from slices in the spatial neighborhood 

into the reconstruction process. 

Wang et al [61] proposed the usage of CNNs for MRI reconstruction in a more 

conventional way, i.e., in the image domain as shown in Figure 13(c). In their work, a 3-layer CNN 

is used to learn the mapping between the zero-filled aliased image and the ground truth image. 

This approach was then extended by Schlemper et al [62] into a cascade of CNNs interleaved with 

Data Consistency steps which restore known k-space values. Aside from CNNs, many other deep 

network architectures have been used for image domain MRI reconstruction including multi-layer 
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perceptrons [63], variational networks [64] [65], recurrent networks [66] [67], U-Nets [68] [51], 

and Generative Adversarial Networks (GANs) [69]. Enforcement of data consistency can be 

incorporated into this approach (Figure 13(d)) by replacing data from the originally acquired k-

space into the reconstructed images. 

These methods can also be combined to create hybrid methods where cascaded or parallel 

deep networks, each focusing on data in a different domain, are trained together on k-space and 

image data. Eo et al [70] and Souza et al [28] independently explored different combinations of 

cascaded k-space and image domain networks with interleaved data consistency steps and found 

the approach to be promising. 
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3.7 U-Nets for MRI Reconstruction 

Encoder-decoder CNN architectures are one of the most popular approaches to solving 

inverse problems in imaging with deep networks. The encoder part spatially down-samples the 

input in several stages and acts as a compressive element which learns an abstract representation 

of the input image. The decoder part expands the abstract representation to form an output image 

through a number of up-sampling steps. 

One issue with this approach is that a significant amount of detail from the input is lost as 

the spatial information is compressed by the encoder. This loss is mitigated in structures such as 

the U-Net through the use of skip-connections between encoder and decoder layers at the same 

network depth. The skip-connections act to reintroduce high resolution spatial features that may 

have been lost due to encoder compression.   

U-Net, or architectures derived from the U-Net, have successfully been applied to many 

different inverse problems for imaging such as image denoising [71], and CT reconstruction [72]. 

In 2016, Jin et al. [72] first demonstrated the feasibility of using a residual U-Net for X-Ray CT 

and MRI reconstruction and highlighted the benefit of residual learning, an approach where the 

network only learns the difference between the input and the output, in the same study. Since then, 

many U-Net based approaches for MRI reconstruction have been proposed. 

Inspired by the hybrid cascade of k-space and image domain CNN KIKI-net developed by 

Eo et al., [73], Souza et al proposed, and then improved upon a cascade of U-Nets for MRI 

reconstruction [74][75]. 
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3.8 Image Quality Metrics (IQMs) for MRI Assessment 

Today, the most widespread usage of MRI output images is for qualitative assessment by 

a radiologist. While automated segmentation and classification of MRI data is becoming 

commonplace in research settings, in practice, only a doctor or expert in MR image analysis can 

look at the test set output for a truly undersampled input sequence and provide the final verdict 

about the quality of reconstruction. However, the validation data may be compared quantitatively 

with the available ground truth using different Image Quality Metrics (IQMs) to compare the 

performance of two networks or to conduct hyperparameter tuning without the need for constant 

expert evaluation. 

The simplest way to directly compare the similarity of two images is to determine their 

overall pixel-wise intensity difference through a metric such as the Mean Squared Error (MSE) or 

the Root Mean Squared Error (RMSE). For two images 𝐴(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) of width 𝑤 and height 

ℎ, the MSE and RMSE are defined as follows: 

MSE(𝐴, 𝐵)  =  
1

𝑤ℎ
∑ ∑[𝐴(𝑥, 𝑦) − 𝐵(𝑥, 𝑦)]2

ℎ

𝑦=1

𝑤

𝑥=1

 

RMSE(𝐴, 𝐵)  =  √MSE(𝐴, 𝐵) 

Thanks to its computational simplicity, the squared error is widely used as a loss function 

in image reconstruction. 

The Peak Signal to Noise Ratio (PSNR) metric is also widely used for quantitative image 

quality comparison. It is the ratio of peak signal power to average noise power (typically 

represented with the MSE) and is expressed as: 
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𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
‖𝐵‖∞

2

𝑀𝑆𝐸(𝐴, 𝐵)
) 

However, pixel-wise-difference-based metrics have been shown to not be reliable 

indicators of perceived image quality. The performance of objective IQMs with respect to how 

well they correlate with human perceptions of image quality (usually represented by Mean Opinion 

Scores or MOS) is a vigorously contentious area of research in computer vision that has seen 

numerous metrics being developed over the last few decades. In limited studies, metrics such as 

the Visual Information Fidelity (VIF), Feature Similarity Measure (FSIM), Noise Quality Measure 

(NQM) and High-Frequency Error Norm (HFEN) have been shown to correlate to MOS to various 

degrees depending on the type of image degradation, but their high computation costs along with 

a lack of universal consensus about their efficacy is preventing widespread adaptation of these 

metrics. Due to its relative simplicity among perceptual image quality metrics, the Structural 

Similarity Index Measure (SSIM), developed by Wang et al., in 2004 [76], is still the most widely 

used IQM for MR image quality comparison and evaluation. 

SSIM compares the luminance, contrast, and structure of two images to provide a measure 

of the similarity of the images on a scale of 0 to 1. The SSIM for two images 𝐴(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) 

is given by: 

SSIM(𝐴, 𝐵) =  
(2𝜇𝐴𝜇𝐵 +  𝐶1)(2𝜎𝐴𝐵 +  𝐶2)

(𝜇𝐴
2 + 𝜇𝐵

2 + 𝐶1)(𝜎𝐴
2 + 𝜎𝐵

2 + 𝐶2)
 

Here, 𝜇𝐴 is the mean intensity of 𝐴, 𝜎𝐴
2 is a variance of 𝐴 and 𝜎𝐴𝐵 is a covariance of 𝐴 and 

𝐵.  𝐶1 and  𝐶2 are two variables included to avoid instability when 𝜇𝐴
2 + 𝜇𝐵

2  is very close to zero. 

They are defined as 𝐶1  =  (𝐾1𝐿)2 and  𝐶2  =  (𝐾2𝐿)2 where L is the dynamic range of the pixel 
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intensities and 𝐾1 and 𝐾2 are small constants typically set to 0.01 and 0.03, respectively, for most 

standard implementations. 

For most image quality assessment tasks, SSIM is usually calculated locally using a square 

window which moves pixel-by-pixel to generate a pixel-wise SSIM index map of the entire image. 

Depending on the implementation, this window size typically varies from 7 to 11 pixels. This 

SSIM index map is usually averaged over the entire image and the Mean SSIM (MSSIM) value 

used as a comparison metric for the images in question. The MSSIM for two images 𝐴(𝑥, 𝑦) and 

𝐵(𝑥, 𝑦) each with dimensions 𝑤 and ℎ can be represented as: 

MSSIM(𝐴, 𝐵) =
1

𝑤ℎ
∑ ∑ SSIM(𝑥, 𝑦)

𝑦𝑥

 

where SSIM(𝑥, 𝑦) is the SSIM for window position (𝑥, 𝑦). 
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Chapter 4: Developing an Efficient U-Net for MRI Acceleration 

In this chapter, we investigate two methods of creating a U-Net with an EfficientNet 

encoder. The Calgary-Campinas multi-coil dataset that is used to train and evaluate the Efficient 

U-Nets is also explored, as well as the full reconstruction pipeline which delineates how raw MR 

k-space data is processed and reconstructed using a multi-channel Efficient U-Net. 

4.1 Decoder Design for the Efficient U-Net 

While a U-Net can be created by designing the encoder and decoder parts as a whole [28], 

a common approach is to take an existing CNN classifier architecture, remove any fully-connected 

layers, and use the resulting fully convolutional network as the encoder part of the U-Net [77]. The 

decoder half is then designed to either mirror the encoder (with upsampling layers instead of 

pooling) or designed iteratively through empirical evaluation of the full network. The latter 

approach often ends up producing asymmetric U-Nets [42]. 

4.1.1 Symmetric Decoder 

Figure 14 shows a fully symmetric approach to the decoder design. In this approach, a 

decoder block is used for every unique MBConv Block in the encoder. Successive MBConv 

Blocks that have the same number of output channels are ignored. Depending on whether MBConv 

Block downsamples the input (pink encoder blocks in the diagram) or retains the input spatial 

dimension size (yellow encoder blocks), an UpBlock or a Feature Block is used as the next 

corresponding decoder block. The main difference between these two decoder blocks is that, as 

the name suggests, the UpBlock begins with an upsampling operation in the form of a 2D 

Transposed Convolution whereas the Feature Block begins with a regular 2D Convolution. Both 

blocks follow the initial operation with a concatenation of the feature maps with encoder feature 

maps obtained through the skip connection and two convolution operations. A skip connection is 
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provided from the first operation to the last convolution of the block to make the network robust 

against vanishing gradients. This approach allows us to extract the maximum number of unique 

feature maps from the encoder layers through the skip connections.  

 

Figure 14: Efficient U-Net with Symmetric Decoder. The Encoder spatially downsamples the images 

while increasing the number of feature channels (in parenthesis) and the Decoder reverses the process 

to obtain an image of the original spatial dimensions. 

 

4.1.2 Asymmetric Decoder 

A more refined approach to the decoder design is one that takes into account the fact that 

Deep CNNs are very effective at quickly recovering low frequency information compared to high 

frequency information [78][79]. The deeper layers of the EfficientNet encoder, which was 

originally designed as a classifier, create feature maps from an input that is already heavily 

downsampled and so do not contribute as significantly to the recovery of high frequency 

information. It is therefore beneficial for the decoder to focus more on the feature maps from the 

Shallower layers 

Deeper layers 
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upper layers for detail recovery. A problem that arises at this point is that the upper layers of the 

EfficientNet encoder, by design, have relatively few feature channels compared to spatially similar 

layers in comparable networks. Deep CNN encoders typically double the number of feature 

channels every time the input is pooled or downsampled [28], but in case of the EfficientNet, the 

number of output feature channels at each depth level has been chosen from the result of the neural 

architecture search which has FLOPS efficiency as one of its priorities. Having a large number of 

feature maps at higher spatial resolutions results in convolution operations with large numbers of 

parameters and floating-point operations which results in the architecture search choosing small 

numbers of output channels instead. 

In order to mitigate this deficiency of the encoder with respect to our purpose, we add a 

feature expansion step in the decoder blocks and exploit the high frequency information crossing 

over to the decoder through the skip connections. An expansion factor ‘M’ is used to expand the 

number of channels through successive convolutions within a decoder block after the upsampled 

image is concatenated with the skip input. An output convolution is then used to bring the number 

of channels down to make the decoder and skip features have the same number of channels in the 

next layer. 

This approach, however, introduces a large number of new floating point operations into 

the network, reducing the overall efficiency. This issue can be mitigated by removing some 

redundant layers from the decoder. Since the EfficientNet is a very powerful encoder, we can 

expect the final compressed feature representation from the deepest point in the network, the 

‘Encoder Head’, to very effectively convey high-level features to the decoder making some of the 

deeper skip connections and decoder layers redundant. This idea also applies to successive 

MBConv blocks that output feature maps at the same spatial resolution. If a skip connection is 
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already obtained from a deeper MBConv block within the encoder, skip connections from 

shallower blocks at the same spatial resolution might be ignored because the encoded features at 

that particular spatial resolution has already been processed by the decoder by that point. 

Figure 2 shows a complete Efficient U-Net using the asymmetric decoder design. The 

modified UpBlock (v2) has an extra convolution step with both internal convolution layers 

expanding the channels by a factor of ‘M’. M is increased in the shallower layers to make more 

filter parameters available for the network to effectively learn low level features in the input.  

 

4.2 Dataset Details 

The MRI dataset used for the purposes of evaluating the Efficient U-Net is the 12-Channel 

Coil (k-space) brain dataset released as part of the Calgary-Campinas Public Dataset [80]. It 

 

Figure 15: Efficient U-Net with Asymmetric Decoder 

Shallower layers 

Deeper layers 



45 

consists of 67 volumes of 3D, T1-weighted, gradient-recalled echo, 1 mm isotropic sagittal 

acquisitions collected on a clinical MR scanner. The acquisition and dataset details are as follows: 

 Scanner: Discovery MR750; General Electric (GE) Healthcare, Waukesha, WI 

 Subjects: Healthy subjects (age: 44.5 years ± 15.5 years; range: 20 years to 80 years) 

 Acquisition parameters: TR/TE/TI = 6.3 ms/2.6 ms/650 ms and TR/TE/TI = 7.4 ms/3.1 

ms/400 ms  

 Average scan duration: ~341 seconds 

 Slices: 170 to 180 contiguous 1.0-mm slices 

 Field of view: 256 mm x 218 mm 

The acquisition matrix size for each channel was 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 256 × 218 ×

[170,180]. In the slice-encoded direction (𝑘𝑧), data was partially collected up to 85% of its matrix 

size and then zero filled to 𝑁𝑧 = [170,180]. The inverse Fourier transform was applied by the 

scanner to the frequency-encoded direction and a hybrid 𝑥 − 𝑘𝑦 − 𝑘𝑧 dataset was saved. As a 

result, the k-space can be undersampled in the phase encoding and slice encoding directions to 

simulate 1D or 2D undersampled reconstruction problems. 

 Figure 3 shows some sample axial slices from a volume in the dataset. The data is stored 

as HDF5 volumes. The 12 complex k-space coil value arrays are stored as separate channels of 

64-bit floating point real and imaginary components, resulting in 24 channels of data per slice.  

 

Figure 16: Sample Slices from the Calgary-Campinas Multi-coil Dataset 
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4.3 Reconstruction Pipeline 

 

Figure 17: Efficient U-Net MRI Reconstruction Pipeline 

The full reconstruction pipeline for the Efficient U-Net is shown in Figure 17. Red ovals 

represent data in the frequency domain (k-space) and blue ones represent data in the image domain. 

The EfficientNet encoder output is a set of compressed image feature maps represented by the 

yellow oval. Rectangular blocks represent operations with green rectangular blocks representing 

operations with learnable parameters (the core of the network). 

The fully sampled k-space from the dataset is first masked with a 2D Poisson disc Boolean 

undersampling mask (Figure 18) to achieve 5x undersampled k-space. A 2D inverse Fourier 

transform is used to convert the k-space data to the ground truth image data. The complement of 
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the undersampling mask, the undersampled k-space, and the ground truth image is then passed into 

the network.  

 

Figure 18: 2D Poisson Disc 5x Undersampling Mask (Center R = 18) 

The deep network based learning process is performed entirely in the image domain. Inside 

the network, the undersampled k-space is converted to aliased images without any type of channel 

combination so that the coil-wise images (split into real and imaginary components) can be used 

as the input for the learnable section of the network. The images are then zero-padded in each 

spatial dimension just enough to make sure that they can be repeatedly downsampled by factors of 

2 up to the deepest layer of the network and still maintain integer spatial dimension values. 

The zero-padded images are then passed onto the first section of the Efficient U-Net, which 

is the standard EfficientNet Encoder. The output of the encoder, along with feature maps form 

shallower layers, are passed onto the custom decoder section which, through the use of UpBlocks, 

gradually reconstructs the image until it is back to the same spatial resolution and number of 

channels as the encoder input. 
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A data consistency step in the frequency domain is then performed on the decoder output. 

The decoder output, initially in the image domain, is cropped so that the spatial resolution matches 

the original data and then a Fourier transform is performed to convert it back to the k-space. This 

output k-space is then masked using the complement of the original undersampling mask to only 

retain points at which the input masked k-space did not have any data. The input undersampled k-

space is then added to this complement-masked output k-space to generate the final output k-space 

which is converted to the image domain through an inverse Fourier transform. The reconstruction 

error between this final image domain output and the input ground truth image is calculated 

through a loss function and backpropagated through the network to update the filter weights in the 

encoder and decoder. 
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Chapter 5: Experiments and Results 

5.1 Efficient U-Net Implementation Details 

The details for the Efficient U-Net as implemented in this work are given below: 

 All networks were implemented in TensorFlow using the Keras API on Ubuntu Linux 

workstation 

 Learning Rate of 1 × 10−3 was used for the first 20 epochs and then reduced to 1 × 10−4 

till convergence 

 A batch size of 4 was used for all training sessions 

 Adam optimizer was used with default parameters and Mean Squared Error loss 

 Training set: 47 volumes from the Calgary Campinas Dataset 

 Validation set: 19 volumes from the Calgary Campinas Dataset 

 MRI Acceleration was simulated through 2D 5x Poisson Disc undersampling of the data 

with a fully sampled center of radius 18 

 

5.2 Deep Learning Baseline – U-Net  

The chosen DL baseline was a traditional multi-channel symmetric U-Net of depth 5 layers 

and 256 feature channels at the deepest layer with Data Consistency steps as implemented in our 

Efficient U-Net reconstruction pipeline. This baseline U-Net was trained with the same 12-channel 

complex image training and validation data, as well as the same set of hyperparameters as the 

Efficient U-Net. 2D convolutions were used in the encoder path along with ReLU activation and 

2x2 MaxPooling. Upsampling2D was used for upsampling operations in the decoder path followed 

by 2D convolutions and ReLU activation.  

 



50 

5.3 Compressed Sensing Baseline – Total Variation Minimization 

The BART toolkit, developed by Lustig et al. [81], was used to perform Compressed 

Sensing reconstruction on 5x Poisson Disc undersampled test images using a total variation 

regularizer. A grid search was used to find optimum values for regularization strength and number 

of iterations. Based on the results, a regularization strength of 0.001 was used for the final test data 

and the optimization was performed over 100 iterations. 

5.4 ROI Evaluation of IQMs 

The main goal of the neural networks used for MRI reconstruction is to accurately 

reconstruct anatomical detail. However, in most slices of MR images, there is an empty region 

around the anatomy since imaged anatomy is irregularly shaped and the data is typically saved as 

a multi-dimensional Cartesian array. This ‘empty’ region consists of random noise caused by 

artifacts and incoherent magnetic field measurements in the k-space. Therefore, it is difficult for 

CNN-based image-domain neural networks, which attempt to learn features in the form of visual 

structures, to learn how to faithfully generate these regions that are devoid of anatomy. It follows 

then, that for a more truthful evaluation of a deep network’s ability to reconstruct coherent visual 

structures through an IQM such as the SSIM, performing the metric calculation over a region of 

interest (ROI) that mainly includes anatomical structures may be advantageous. 

In order to do so, coarse ROI masks were generated for the test datasets by thresholding 

out regions where the signal value is less than the average noise value and then using 

morphological processing to fill gaps and generate binary masks that encompass any region with 

anatomy present. The SSIM and PSNR metrics shown in this work were evaluated over the 

generated ROI of the images to better isolate the performance of the reconstruction process in 
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structured regions in the images. Figure 19 shows some slices along with corresponding ROI 

masks. 

 

 

Figure 19: Sample Images and Corresponding ROI Masks. Slice Number Shown in Parentheses. 

5.5 IQM Comparison 

Table 1: MSSIM and PSNR Comparison of the Different Reconstruction Techniques 

 
MSSIM PSNR 

Min Max Mean Std. Min Max Mean Std. 

Zero-filled 

Reconstruction 
0.5934 0.7821 0.6634 0.0373 11.5871 25.5846 17.2815 3.5456 

CS Baseline 0.6113 0.7419 0.6429 0.0290 18.2295 29.7100 21.5590 2.3551 

Baseline U-Net 0.8418 0.9350 0.8923 0.0221 23.7158 32.0591 28.9922 1.7102 

Efficient U-Net 

1 (Symmetric) 
0.7873 0.9196 0.8322 0.0265 17.0242 29.0235 23.8891 2.0071 

Efficient U-Net 

2 (Asymmetric) 
0.8548 0.9383 0.9018 0.0207 24.4798 32.3598 29.7709 1.5690 

 

Table 1 shows the IQM values obtained from an analysis of the outputs of the various 

reconstruction techniques when subjected to the test data. Both the PSNR and Mean SSIM metrics 
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were calculated over the ROIs described in the previous section. It is clearly evident what while 

the symmetric approach to producing an Efficient U-Net struggles to reach the reconstruction 

quality of the baseline which uses regular convolutions, making the network asymmetric by adding 

more learnable parameters in the decoder at larger spatial resolution levels overcomes these issues 

and produces a network which outperforms the baseline and all other reconstruction methods tested 

while still being highly computationally efficient. The average reconstruction time for all three 

deep networks is shown in Table 2: Reconstruction Time Comparison where we can see that 

despite the small added penalty for introducing more parameters in the asymmetric network, it is 

still roughly 4 times faster at inference compared to the baseline. 

Compared to the DL approaches, the CS total variation regularization technique, while 

managing to boost the PSNR of the input images compared to the zero-filled reconstruction, 

actually resulted in a reduction in the Mean SSIM as it failed to enhance structural detail. 

Table 2: Reconstruction Time Comparison 

 
Baseline U-Net 

Efficient U-Net 1 

(Symmetric) 

Efficient U-Net 2 

(Asymmetric) 

Average 

reconstruction time 

per slice (ms) 

159 25 37 
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5.6 Visual Comparison of Results 

 

Figure 20: Compressed Sensing Reconstruction Results 

From a visual analysis of the results, it is evident that simple compressed sensing 

reconstruction using total variation regularization struggles with MRI data undersampled at high 

acceleration factors. This finding is consistent with the views expressed in relevant literature and 

the IQM results that were obtained. In our tests, total variation regularization was able to ‘denoise’ 

the data to a certain extent and remove some artifacts which resulted in an increase in the PSNR, 

but from a visual comparison of the images and the MSSIM value of the reconstruction, we can 

see that this technique was not very effective at recovering structural detail within the anatomy 

that is lost as a result of undersampling. 

 

 
Figure 21: Deep Learning Reconstruction Results for Two Different Slices from the Test Set 
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Figure 22: Detailed Look at Reconstruction Quality and Errors. The Second Row of Figures Show 

Zoomed-in Views of the Rectangular Region Highlighted in Red. 

Figure 21 shows a comparison of the reconstruction quality of the deep networks for two 

different slices from the test set. As reflected by the IQMs, the asymmetric Efficient U-Net 

manages to produce results that are visually closer to the ground truth compared to the symmetric 

approach. However, the visual difference between the reconstruction quality of the asymmetric 

Efficient U-Net and the baseline U-Net is difficult to ascertain by casual inspection. Both networks 

manage to produce results that are strikingly similar to the ground truth. 

A closer look at the images, as shown in Figure 22, reveals that both networks are prone to 

producing errors when reconstructing small structural details. The red arrow highlights a region 

where the Asymmetric Efficient U-Net successfully reproduced a structure but the baseline 

network could not. On the other hand, the green arrow highlights a region where a small structure 

was not properly reproduced by the Asymmetric Efficient U-Net. While the baseline network 
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managed to create that particular structure, it ‘hallucinated’ extra detail resulting in an overall 

unfaithful reproduction. The relevance of these tiny structures in the anatomy is beyond the scope 

of this thesis and belongs in the realm of subjective analysis by trained radiologists. However, the 

capability of truthfully reproducing tiny structural details is one the major goals of MRI 

acceleration strategies and it is encouraging to see the Efficient U-Net being on the conservative 

end of the spectrum when it comes to creating detail that was not present in the undersampled 

image. 
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Chapter 6: Conclusion and Future Work 

6.1 Summary 

The objective of this Thesis was to explore Deep Learning based undersampled MRI 

reconstruction for MRI acceleration. The highly effective U-Net structure was chosen as the basis 

for the deep network and was combined with the EfficientNet CNN which uses depthwise 

convolutions to construct a highly effective network which promises powerful feature learning 

capabilities while being greatly computationally efficient thanks to the use of depthwise 

convolutions. 

Two approaches to the decoder design (symmetric and asymmetric) were tested and the 

asymmetric network, when compared with Total Variation Compressed Sensing and standard U-

Net baselines and was found to generate higher quality results in terms of the SSIM and PSNR 

metrics while having greatly reduced inference time compared to a standard U-Net. 

 

6.2 Proposal for Future Work 

The complex nature of the MRI reconstruction problem along with the fast-paced nature 

of DL research leaves a wide variety of avenues for future work in this area. Newer versions of 

the EfficientNet can be incorporated into this framework along with efficient decoder designs to 

further increase reconstruction speed and accuracy, and the model could be trained and tested using 

a variety of other datasets and acceleration factors, as well as different, possibly learnable 

undersampling patterns to better study its learning and generalization capabilities. Further work 

can also be done on developing an in-depth understanding of feature extraction by deep networks 

for multi-channel MRI reconstruction to improve network reliability. 
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