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Abstract

Hypothesis testing and Confidence Interval (CI) estimates are key statistics in predicting

future values in data analysis. Most often, CI estimates are directly obtained from the

summary statistics of a particular statistical methodology output. However, when it comes

to the summary of decision tree outputs, these CI estimates are not directly obtained. So

a näıve way of making node-level inference is to construct a (1 − α) × 100% confidence

interval for a node mean ȳt using the relation: ȳt ± z1−α/2
st√
nt

, where ȳt is the node mean

and st is the standard deviation estimates from the decision tree summary. Nevertheless,

these sets of intervals tend to be over-optimistic owing to the very adaptive nature of tree

modeling, in other words, they are too narrow to have the desired coverage. This challenge

with CI in tree summary stands as one of the most common requests from the users of

decision trees that are however rarely fulfilled in practice. In this research, we make a

strong effort to nail out the source of over-optimistic and correct it accordingly. We began

by treating this issue with an existing method known as the Bootstrap Calibration (BC)

on the α. Statistically, this BC method is also plagued with overfitted estimates. We then

resorted to our approach (Bootstrap Bias Correction), an approach that seeks to correct

a downwards biasedness in the st estimates to obtained bias-corrected SD estimates (s
′′
t ).

Now ,the node mean ȳt, the node sample size nt, a fixed α value together with the BBC

estimate s
′′
t was then used to obtain a more accurate CI intervals for ȳt through the relation:

ȳt ± z1−α/2s
(′′)
t /
√
nt. The CI estimates from the proposed method (BBC) were empirically

assessed and illustrated through simulation studies and validated via real data exploration.
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Chapter 1

Introduction

1.1 Background

Decision trees are a well known statistical tool in machine learning and statistics for pre-

dictive analysis (e.g. classification and regression) (Lakshminarayanan, 2016). According

to Lakshminarayanan (2016) learning a decision tree from training data involves training

the tree structure T , estimating the leaf node parameters Ω, and predicting a label within

each leaf node. Well-known decision tree algorithms include CART (Breiman et al., 1984)

and C4.5 (Quinlan, 1993). Decision trees come with several advantages in practical appli-

cations such as the ability to be well-suited for datasets with mixed attribute types (e.g.

binary, categorical, real-valued attributes) and interpretability (at least on simple prob-

lems) (Lakshminarayanan, 2016). Although decision trees are powerful and advantageous

in some way, they are prone to over-fitting ( over-optimism) and require several studies to

limit their complexity in order to minimize their generalization predictive error. Obtaining

a decision tree model T consists of three components: a method of splitting data, a method

of determining the best tree model, and a method of summarizing the terminal node. With

regards to the third component, it is common that only the node size and the mean re-

sponse, i.e., {nt, ȳt}, are included as node summary at each terminal node t ∈ T̃ , where T̃

denotes the set of all the terminal nodes of T . Note that ȳt amounts to the proportion of 1’s

in the case of classification trees, on which basis the majority rule can be used to produce

the 0/1 summary. One difficulty with this summarizing method is that it does not allow

for statistical inference such as a confidence interval for the true node mean µt,. Though

inference stands as one of the most common requests from the users of decision trees, this
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issue has rarely been fulfilled in practice.

1.2 Problem Statement

A näıve way of making node-level inference is to construct a (1 − α) × 100% confidence

interval (CI)

ȳt ± z1−α/2
st√
nt

(1.1)

for each terminal node t ∈ T̃ , where z1−α/2 is (1−α/2)-th percentile of the standard normal

N (0, 1) distribution and st denotes the standard deviation (SD) of responses in node t and

nt for the node size. Nevertheless, these sets of intervals are over-optimistic owing to the

very adaptive nature of tree modeling, in other words, they are too narrow to have the

desired coverage .

1.3 Overview of Thesis

Chapter 1 talks briefly about the decision trees, their derivation process, and the over-

optimism problem when used for prediction purposes, which has been a long-standing issue

for scientists. Chapter 2 further elaborates on decision trees including their history, types,

extensions, and recent developments such as interaction trees and oblique decision trees

and their problem with statistical inference or prediction. In subsequent chapters, we

describe in detail the source of the prediction problem and available methods in treating

that. Specifically, chapter 3 discusses source of overoptimism, available approaches in

treating this issue and our proposed method or algorithm which seeks to outperform the

existing method. A simulation study on decision tree modeling is carried out in chapter

4, where we further elaborate the optimism problem given the three models, investigate

the performance of our proposed method and compare it with competitive approaches.

In chapter 5 we perform an illustrative example using real data on the obtained accurate

2



proposed method to illustrate the use of our method in a practical setting. Chapter 6 which

is the final chapter summarizes the thesis and discusses possible future research directions.
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Chapter 2

Literature Review

A tree-based method (or recursive partitioning) divides data recursively to attain multiple

mutually exclusive sub-groups. Tree-based methods are very effective in handling mul-

tifaceted data and acquiring acknowledgment as a sound technique for addressing data

complexity, which renders them attractive in different application fields. The proposal of

Classification and Regression Tree (CART) (Breiman et al., 1984) made the tree models

more popular and widely accepted in applications and the current norm of tree modeling.

2.1 Decision Trees

A decision tree is a graphical representation of specific decision situations that are used

when complex branching occurs in a structured decision (Njoku, 2019). While in data

mining a decision tree is a predictive model which can be used to represent both classifiers

and regression models, in operations research decision trees refer to a hierarchical model

of decisions and their consequences (Maimon and Rokach, 2014). The implementation of

decision trees originated from decision theory and statistics. One of the best and most

applied supervised learning algorithm in predictive modeling is decision trees which also

works in connection with ensemble methods for more accurate results. Decision trees are

general purpose prediction and classification mechanisms that were among the first statisti-

cal algorithms to be implemented in electronic form during the adoption of digital circuitry

to electronic computations in the latter decades of the 20th century (de Ville, 2013). Ac-

cording to Hu et al. (2019), Decision trees are one of the leading forms of interpretable

models and despite several attempts over the last several decades to improve the opti-

4



mality of decision tree algorithms, the CART (Breiman et al., 1984) and C4.5 (Quinlan,

1993) decision tree algorithms (and other greedy tree-growing variants) have remained as

dominant methods in practice. Obtaining a decision tree model according to the CART

(Breiman et al., 1984) convention involves growing a large initial tree, a pruning algorithm

for reducing the tree size, and a validation method for determining the best tree. Tree

methods are also an excellent tool for grouping. Once a final tree structure is obtained, the

groups are naturally induced by its terminal nodes.

The decision tree consists of three types of nodes that are a root node that has no

incoming edge, an internal or test node that has exactly one incoming edge, and outgoing

edges and leaves (terminal or decision nodes). According to a given function of the input

attributes values, each internal node splits an instance space into two or more sub-spaces

on a decision tree.
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Figure 2.1: Decision tree presenting response to direct mailing. Sourced from De-
cision trees in Data mining and knowledge discovery handbook (pages
165–192), by Rokach, L. and Maimon, O. (2005) Springer.

Figure 2.1 presents a decision tree that shows whether or not a potential customer will

respond to a direct mailing. Given Figure 2.1, one can predict the response of a potential

customer by sorting it down the tree and understand the behavioral characteristics of the

entire potential customers population regarding direct mailing (Rokach and Maimon, 2005).

2.2 Types of Decision Trees

There are basically two types of trees;

• Regression trees when the outcome or response variable is continuous, for example

6



determing the price of a newly manufactured product by considering the various

inputs and contraints.

• Classification trees (also known as decision trees) when the outcome is binary or

categorical. A classical example is a toss of a coin which has only two outcomes

whether a head or tail.

From a statistical perspective, regression as a whole is a broader concept that incorporates

the classification problem as a special case.

2.3 Extension of Decision Trees and Recent develop-

ment

Decision trees as originally coined from tree models have undergone several recent develop-

ments. Oblique decision trees according to Murthy and Salzberg (1995) produce polygonal

(polyhedral) partitionings of the attribute space, while conventional axis-parallel trees pro-

duce partitionings in the form of hyper-rectangles that are parallel to the feature axes.

A general-purpose data structure for addressing the behaviors of recursive programs that

interact with their surroundings is known as interaction trees (ITrees) (Xia et al., 2019).

Interaction trees (ITrees) were employed by Su et al. (2008) in their article, where ITrees

was to optimize a subgroup analysis in comparative studies. Specifically, the IT method

recursively partitions the data into two subsets that show the greatest interaction with the

treatment, which results in a number of objectively defined subgroups (Su et al., 2008).

Decision trees have as well generated several extensions. Noticeable amongst them are

Multivariate Adaptive Regression Splines (MARS), Hierarchical Mixture Model (HMM),

and the Ensemble Methods (EM). Multivariate Adaptive Regression Splines (MARS) (Fried-

man, 1991) is a new method presented for flexible regression modeling of high dimensional

data and this procedure is motivated by the recursive partitioning approach to regression

and shares its attractive properties. While CART does piecewise constant modeling, MARS

7



fits piecewise linear models. Also, Jordan and Jacobs (1994) presented a tree-structured

architecture for supervised learning and the statistical model underlying the architecture is

a hierarchical mixture model in which both the mixture coefficients and the mixture com-

ponents are generalized linear models (GLIM’s). Ensemble methods are machine learning

technique that produces one optimal predictive model by combining usually hundreds or

thousands base learners. By considering one decision tree and guessing to make the right

decision at each split, ensemble methods make provision to take into consideration a sam-

ple of decision trees, evaluate which characteristics to employ or questions to enumerate at

each split, and then make a final prediction as a result of the aggregated results of the sam-

pled decision trees. Noticeable ensemble methods used in obtaining an optimal outcome

in decision trees are Boosting, Bagging and Random Forests(RF). Bagging is a method

used to improve on unstable estimators or classifiers in a learning model. Specifically by

generating multiple versions of the classifier and using these to get an aggregated classifier

to obtain the new model (Breiman, 1996). Boosting (Freund et al., 1996) serves as a tool

to significantly minimize the error of any learning algorithm that consistently generates

classifiers that are better than guessing randomly. Random Forest (RF) is a combination

of trees such that each tree depends on independently random sampled vector values of the

same distribution Breiman (2001).

2.4 Problem with Inference

One major difficulty in summarizing decision trees is that it does not allow for statistical

inferences such as confidence interval or hypothesis testing for the true node mean µt. A

naive approach in making a node inference is therefore to construct a (1 − α) × 100%

confidence interval (CI) or perform a hypothesis test using the two stochastics components

ȳt and st from the tree summary. This approach, however, leads to an over-optimism of

the estimates or too narrow confidence intervals. An accurate or prudent way of making a

valid inference within terminal nodes of decision trees has been a long-standing challenge

8



for statisticians. Among few works that have been done to overcome this challenge, Loh

et al. (2018) proposed using the bootstrap calibration (BC) approach (Loh, 1987, 1991) to

tune the confidence level. Particularly a best α′ is sought such that (1 − α′) intervals of

the same form as (1.1) has the (1− α) coverage for each terminal node.

9



Chapter 3

Methodology

3.1 Motivation

We began by first making efforts to understand the influence of tree modeling as a data-

adaptive approach on statistical inference and identify the source of overoptimism. The

näıve confidence interval (CI) estimates in (1.1) involves two stochastic components ȳt and

st, the sample mean and sample standard deviation computed with observations in the

training data D that fall into terminal node t. In the following, we designed a study to

investigate the performance of these two components in estimating the true node mean

and node SD.

We generate training data D of size n = 500 from one nonlinear model (Friedman,

1991):

y = −6 + 0.1 exp(4x1) + 4 exp{20(x2 − 0.5)}+ 3x3 + 2x4 + x5 + ε (3.1)

with ε ∼ N (0, 1) and the Xi’s are generated independently from random uniform[0,1]

distribution of size n = 500. A best-sized tree T is then constructed via pruning and

cross-validation with the 1-SE rule (Breiman et al., 1984). For each terminal node, ȳt and

st are computed and recorded. Then we generate another independent test data set D′ of

size n′ = 10, 000. We send D′ down to tree T and recompute the node mean and SD (ȳ′t, s
′
t).

10
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Figure 3.1: Influence of tree modeling on inference: (a) node averages ȳt and (b)

node SD st for t ∈ T̃ computed with training data D and test data D′.
The green reference line is y = x.

Figure 3.1 plots ȳt vs. ȳ′t in Panel (a) and st vs. s′t in Panel (b). It can be seen that ȳt

and ȳ′t match well with each other, indicating the node averages can be used for prediction

purposes. Nevertheless, st from the training data D are generally smaller than s′t from the

test data D′, highlighting a systematic downward bias. Part of the reason accounting for

the underestimated st is that data is split with greedy search by minimizing the within-node

impurity or variation when building up the tree model. Using st directly would inevitably

lead to inflated Type I error rates that hold accountable for the over-optimism. This

observation in the st bias distribution motivates us to correct the bias in the SD estimator

st.

3.1.1 Bias Correction Approach

There are several techniques and approaches in dealing with bias correction. According

to Jiao and Han (2017) some general approaches to bias correction are the bootstrap,

the jackknife, and the Taylor series. The jackknife uses a subsampling approach where

11



the biases of estimators with different sample sizes are made to cancel each other while

the bootstrap bias correction on the other hand uses the plug-in rule to estimate the

bias. Taylor series is used to create an estimate (guess) of what a function or population

parameter looks like through a derivative at a single point. However, the Taylor series

according to (Jiao and Han, 2017) is a less versatile method compared to the bootstrap

and jackknife owning to its applicability to functions with specific global differentiability

conditions. Given the natural grouping at each terminal node of decision trees, a small

disturbance to the data set leads to different node membership observations. With this

underlying behavior of trees and these methods discussed, bootstrapping (Tibshirani and

Efron, 1993) was chosen for our study.

3.1.2 Bootstrapping

The bootstrapping approach was introduced by Efron (1979) among others with the motive

of determining the variations in statistics when a theoretical variance is either unknown or

not estimable and also correcting some forms of biasedness. The bootstrap methodology or

concept is to simulate from an empirical distribution of a given data by means of resampling

with replacement to obtain an approximation of the sampling distribution of the statistics.

The bootstrap methodology estimates the sampling distribution of a given function Θ

by recalculating its overall bootstrap samples B1, . . . , Bn to obtain a set of bootstrapped

statistics Θ1,Θ2, . . . ,ΘB, where B is the number of bootstrap samples for a given set of

data and a statistic of importance Θ. The required approximate estimate can then be

estimated by using Θ1, . . . , ΘB. The bias is obtained by taking the difference between

the average of the bootstrapped statistics Θ1, . . ., ΘB and the given statistic Θ. Let Θb

represent the set of Θ1,Θ2, . . . ,ΘB, then;

Bias = (
1

B

B∑
b=1

Θb)−Θ (3.2)

12



Bias-corrected statistic is Θc now derived as:

Θc = Θ−Bias

= 2Θ− (
1

B

B∑
b=1

Θb)

Algorithm 1 shows the iteration for a simple learning algorithm for a bootstrap-bias cor-

rection problem.

input : data Xi ∈ Rp, size = n, Θ

output: Acquire bias-corrected estimate Θc

1 begin

2 for 1→ b to B do

3 Derive X1,...,XB by resampling Xi with replacement.

Calculate Θ1, . . . , ΘB

4 Estimate Θc, with Θ1, . . . , ΘB

5 end

6 Acquire the bias-corrected estimate:

7 Θc= 2Θ - ( 1
B

∑B
b=1 Θb) , where Θb ∈ (Θ1, . . . , ΘB)

8 end

Algorithm 1: Bootstrap Method

3.2 Exiting Methods

3.2.1 Bootstrap Calibration on α

Given that scientists and investigators are often interested in making simultaneous infer-

ences across all terminal nodes of T , e.g., construct simultaneous confidence intervals for

the node means. To deal with the multiplicity issue and over-optimism of tree modeling,

Loh et al. (2018) proposed using the bootstrap calibration (BC) approach (Loh, 1987, 1991)
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to tune the confidence level. Specifically, a constant 0 < α′ < 1 is sought such that (1−α′)

intervals of the same form as (1.1) has the (1−α) coverage for all terminal nodes. The BC

algorithm in Loh et al. (2018) was originally designed for tree-structured subgroup analysis

(see, e.g., Su et al., 2009), where differential treatment effects are of the major concern.

Applying the same procedure to ordinary regression trees leads to Algorithm 2.
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input : data D = {(xi, yi) ∈ Rp × R}ni=1 and 0 < α1 < · · · < αK < α < 1 for

a given α.

output: calibrated confidence coefficient (1− α′).

1 initialize B – # bootstrap samples;

2 begin

3 Set coverage γk = 0 for k = 1, . . . , K ;

4 for b← 1 to B do

5 draw a bootstrap sample Db ;

6 construct a best-sized tree Tb from Db via pruning and cross validation;

7 summarize terminal nodes of Tb as {(nt, ȳt, st) : t ∈ T̃b} ;

8 send D down to Tb and recompute the mean response ȳ′t on basis of D ;

9 set counters ck = 0 for k = 1, . . . , K ;

10 for t ∈ T̃b do

11 for k ← 1 to K do

12 construct (1− αk)× 100% CI in node t:

(Ltk, Utk) ← ȳt ± z1−αk/2
st√
nt

, if ȳ′t ∈ (Ltk, Utk), ∀t then

13 ck := ck + 1;

14 end

15 end

16 end

17 update γk := γk + ck
|T̃b|

and average γk := γk/B for k = 1, . . . , K;

18 end

19 find k? ← smallest k such that γk < (1− α), implying that γk?−1 ≥ (1− α)

and obtain α′ via linear interpolation

α′ = αk?−1 +
(1− α)− γk?
γk?−1 − γk?

(αk? − αk?−1).

20 end

Algorithm 2: Boostrap Calibration (BC)
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Now, given D as the data set and Db to be a random bootstrap sample from D. Let

Tb be the set of all terminal nodes obtained from Db. For any t ∈ T̃b, let ȳ′t be the node

mean. We construct (1− α′) confidence intervals for ȳ′t such that, the coverage probability

of (D,Db, t, α′), averaged over the terminal nodes in the tree constructed from Db has

expected value (1− α).

Let γk denote the set coverage that encompasses a terminal node of T of each observation

in dataset D, such that P (ȳ′t ∈ CIγk)= (1−α) ∀ t ∈ T̃b, initializing γk = 0 for k = 1, . . . , K.

We take B bootstrap samples {Db : b = 1, . . . , B}. For each bootstrap sample Db, a best-

sized tree Tb is constructed via prunning and cross validation to obtain the estimates of

Tb such as {(nt, ȳt, st) : t ∈ T̃b} for all terminal nodes of Tb. Sending D down to Tb and

recomputing {ȳ′t : t ∈ T̃b} for all terminal nodes of Tb. A counter coverage ck = 0 for

k = 1, . . . , K for each terminal node is set and we construct (1 − αk) × 100% CI in node

t for ȳt based on set coverage αk in Algorithm 2 . If ȳ′t ∈ (Ltk, Utk) ∈ (ȳ′t ± z1−αk/2
st√
nt

),

then we update the set coverage ck = ck + 1 for every mean node. We further update the

γk by averaging ck over the total number of trees and adding it to the initial coverage set

γk as outlined in line 18 of Algorithm 2. Subsequently we average γk over the number of

bootstrap samples to obtain the smallest K(k?), such that γk < (1 − α), implying that

γk?−1 ≥ (1 − α). Now with the smallest k and its corresponding γk and αk values our

desired boostraped calibrated α′ is obtained via linear interpolation.

3.3 Proposed Method

A statistically obtained prediction interval relies on the data D. Making an reliable (1 −

α)×100% confidence prediction base on the data relies on the stochastic estimates ȳt and st

from the summary of decision tree output. However, directly constructing this confidence

interval with these estimates most especially the st turns to be over-optimistic as shown

in Figure 3.1. Therefore we propose a method that keeps the α constant and corrects

the downward biasedness in st through bootstrapping to obtain a more honest unbiased
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estimate.

3.3.1 Bootstrap Bias Correction on st

In the bootstrap bias correction approach discussed, the estimates from bootstrap samples

are compared to the original estimate and the averaged difference furnishes an estimator of

the bias. However, there is one major obstacle with tree modeling. Trees are unstable in

the sense that a small perturbation to the data often results in a substantially different tree

model structure at the end. As a result, the tree models obtained with bootstrap samples

are different from each other and from the final tree model constructed with the original

sample. Hence to tackle this problem, we note that every tree model forms a natural

grouping of the entire data. With two tree structures, observations in a node from one tree

can be distributed into different nodes of the other tree. Utilizing this property, we put

forward this feasible bootstrap bias correction procedure for the underestimated standard

deviation st as outlined in Algorithm 3.
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input : data D = {(xi, yi) ∈ Rp × R}ni=1.

output: A tree model T with bias corrected SD st for each t ∈ T̃ .

1 initialize B – # bootstrap samples;

2 begin

3 construct a best-sized tree T from D via pruning and cross validation;

4 obtain node membership vector m0 ∈ Rn for all observations in D

w.r.t. T ;

5 compute st for each t ∈ T̃ based on D;

6 set bias bt = 0 for t ∈ T̃ ;

7 for b← 1 to B do

8 draw a bootstrap sample Db;

9 construct a best-sized tree Tb from Db via pruning and cross

validation;

10 compute SD {sbt′ : t′ ∈ T̃b} based on Db;

11 send D down to Tb and recompute SD {s0t′ : t′ ∈ T̃b} on basis of D;

12 compute bias bbt′ = s0t′ − sbt′ for t′ ∈ T̃b;

13 obtain node membership vector mb ∈ Rn for all observations in D

w.r.t. Tb;

14 form two-way contingency table {mtt′ : t ∈ T̃ and t′ ∈ T̃b} with m0

and mb;

15 compute row proportions ptt′ = mtt′/mt·;

16 for t ∈ T̃ do

17 update bt := bt +
∑

t′∈T̃b ptt′bbt′ ;

18 end

19 end

20 average bias bt := bt/B for t ∈ T̃ ;

21 bias correction s
′′
t := st + bt for t ∈ T̃ .

22 end

Algorithm 3: Bias correction for SD in tree modeling.
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Let m0 ∈ Rn denote the node membership vector that assigns a terminal node of T

to each observation in D. We take B bootstrap samples {Db : b = 1, . . . , B}. For each

bootstrap sample Db, a best-sized tree Tb is constructed via prunning and cross validation

to obtain the standard deviation estimates {sbt′ : t′ ∈ T̃b} for all terminal nodes of Tb.

Also we began by initially setting the bias bt = 0 for t ∈ T̃ . Sending D down to Tb and

recomputing {s0t′ : t′ ∈ T̃b} based on D yield bias estimates {bbt′ = s0t′ − sbt′ : t′ ∈ T̃b} for

each terminal node of Tb. Our goal, however, is to obtain bias estimates bt for each st in

{st : t ∈ T̃ }. We do so with a weighted average of bbt′ by looking at how observations in

t ∈ T̃ are distributed over T̃b. To proceed, let mb ∈ Rn denote the node membership vector

that assigns a terminal node of Tb to each observation in D. The two categorical vectors m0

and mb form a |T̃ |× |T̃b| two-way contingency table with counts {mtt′ : t ∈ T̃ and t′ ∈ T̃b}.

Let ptt′ = mtt′/mt· be the row marginal proportions, where mt· =
∑

t′mtt′ is the t-th

row total. Then an estimate of the bias from the bth bootstrap sample Db is given by∑
t′∈T̃b ptt′bbt′ . Averaging over B bootstrap samples leads to a bias estimate for st and bias

correction on st can be made accordingly. Put together, the bias-corrected SD s”
t is given

by

s
′′

t := st +
1

B

B∑
i=1

∑
t′∈T̃b

ptt′(s0t′ − sbt′). (3.3)

With valid s
′′
t values from equation3.3, one convenient way of summarizing terminal nodes

could be simply to state {nt, ȳt, st} and leave the subsequent inferences (individual or

simultaneous) to the users. Individual CI’s, formula (3.4) with bias corrected s
′′
t would

suit.

ȳt ± z1−α/2
s
′′
t√
nt

(3.4)

For simultaneous inferences, Bonferroni, FDA (false discovery rate), and other types of ad-

justment can be applicable. Especially if |T̃ | is small or moderate, Bonferroni is appealing.
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Chapter 4

Simulations Study

This section outlines simulation studies performed to analyze and investigate the source

of overoptimism and how well the proposed methodology works in elevating this problem.

To better understand the influences of adaptive methods on each stochastic components ȳt

and st, we generate training data D of size n = 500 and test data set D′ of size n′ = 10, 000

from two nonlinear models in (Friedman, 1991) and one true tree model;

y = −6 + 0.1 exp(4x1) + 4 exp{20(x2 − 0.5)}+ 3x3 + 2x4 + x5 + ε (4.1)

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + x5 + ε (4.2)

y = 2 + 2× sign(x1 ≤ 0.5)× sign(x2 ≤ 0.5) + ε (4.3)

with ε ∼ N (0, 1). and the Xi’s are generated independently from random uniform[0,1]

distribution of size n = 500.

Model (4.1) has a nonlinear additive structure on the first two variables and a linear

term on the last three variables (Friedman, 1991). Model (4.2) has a nonlinear additive

with the first two variables having a multiplicative parabolic interaction term, the third

variable with a quadratic relation, and the final two variables with a linear dependence

(Friedman, 1991) and the true tree model is given by model (4.3). For simplicity, model

equations 4.1, 4.2, and 4.3 would be denoted as models A, B, and C respectively.

With each given model, a best-sized tree T is then constructed via pruning and cross-

validation with the 1-SE rule (Breiman et al., 1984). For each terminal node, ȳt and st

are extracted. Then we generate another independent test data set D′ of size n′ = 10, 000.

Send D′ down to tree T and recompute the node mean and SD (ȳ′t, s
′
t). Mean values of ȳt,
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st, ȳ
′
t and s′t are computed as indicated in Table 4.1

Table 4.1: Mean values, Influence of tree modeling on inference on node averages
ȳt and node SD st for t ∈ T̃ computed with training data D and test
data D′.

Tree ȳt st ȳ′t s′t

1 7.05608 1.328307 7.089057 1.50636

2 6.813485 1.335768 6.785658 1.471886

3 6.559332 1.226844 6.597213 1.43782

4 6.72372 1.220396 6.691766 1.437119

5 6.990564 1.362192 6.88289 1.480317
...

...
...

...
...

96 6.818623 1.232034 6.895311 1.457672

97 6.435047 1.206669 6.425234 1.467036

98 7.006038 1.285327 6.986894 1.503891

99 6.904065 1.218327 6.846934 1.422443

100 6.878547 1.219453 6.752506 1.379429

It is observed from Table 4.1 given by equation model 4.1 that, on average ȳt and ȳ′t

has a correspondence to each other that is to say they match well in figures. However, the

SDs exhibits some variations in figures, i.e, s′t from the test data is much greater than that

of the training data as indicated in Table 4.1. These average st values clearly support the

vast variation in the standard deviations resulting in the downwards biasedness as depicted

in figure 3.1. This observation further strengthened our motivation for the study.
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4.1 Bootstrap Calibration (BC)

With the existing methodology BC and its outlined algorithm. We simulated data from

the three models and use Algorithm 2 to obtain the coverage probabilities. Even though

the population α is rarely known in practice, by simulation we exploit the luxury of data

availability in the simulation setting and obtain an estimate of α by generating large test

samples evaluation of the bootstrap calibration approach to aid our evaluation of the boot-

strap calibration approach.

For each model configuration, we started by generating a training data D of size n = 500

and also test data set D′ of size n′ = 500. A set of α ∈ [1 : 0.005] are chosen. With the

training data D, a best-sized tree T is then constructed via pruning and cross-validation

with the 1-SE rule (Breiman et al., 1984) and the estimates {(nt, ȳt, st) : t ∈ T̃ } for all

terminal nodes of T are recorded. Send D′ down to T and recomputing {ȳ′t : t ∈ T̃ } for

all terminal nodes of T . Now are we construct (1−αk)× 100% CI in node t for ȳt based on

set coverages α. If ȳ′t ∈ (Ltk, Utk) ∈ (ȳ′t±z1−α/2
st√
nt

), then we record the α′s for which ȳ′t ∈

(Ltk, Utk) ∈ (ȳ′t±z1−α/2
st√
nt

) for every mean node as the population coverage probabilities.

Similarly, we take B bootstrap samples {Db : b = 1, . . . , B}, such that for each bootstrap

sample Db, a best-sized tree Tb is constructed via prunning and cross validation to obtain

the estimates of Tb as {(nt, ȳt, st) : t ∈ T̃b} for all terminal nodes of Tb.

Sending D down to Tb and recomputing {ȳ′t : t ∈ T̃b} for all terminal nodes of Tb,

a (1 − αk) × 100% CI in node t for ȳ′t based on set coverages α is then constructed. If

ȳ′t ∈ (Ltk, Utk) ∈ (ȳ′t ± z1−α/2
st√
nt

), then we record the α′s for which ȳ′t ∈ (Ltk, Utk) ∈

(ȳ′t ± z1−α/2
st√
nt

) for every mean node as the bootstrap coverage probabilities. A plot of

comparison for the population and bootstrap coverage probailities obtained in Figure 4.1.
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Figure 4.1: Coverage plot of the calibrated alpha against population alpha.

From Figure 4.1, the dash line serves as a reference line with (1−α) = 0.95. Given the

plot, our goal is that the calibrated (bootstrapped) alpha (α′) should mimic that of the

unknown population alpha (α) and their intersection points with the reference line should

be close to each other. The graphical output indicates that model A and model B do not

show our desire result, thus the bootstrap calibrated alpha is too liberal compared to the

population alpha which is not good. The third model which is the true tree model shows

good results, this is because its a true classification model. Hence the existing methodology

BC becomes too radical to tackle the issue of making a valid inference with decision trees.

A more conservative approach than BC is needed.
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4.2 Proposed Method

4.2.1 Bias Correction on SD

Here we experimented again with the bootstrap correction approach in algorithm(3) using

the three model configurations. With each given model, we generated training data D of

size n = 500 and test data set D′ of size n′ = 10, 000 with bootstrap sample B=500.

Model A

Table 4.2: Table of result for biased corrected SD computed with training data D
and test data D′.

Tree node n ȳt st n′t ȳ′t s′t Bias s
′′
t

1 4 71 2.9092 1.0897 1307 2.8963 1.3485 0.13048 1.2202

1 5 88 4.0702 1.38991 1834 4.3482 1.4219 0.17872 1.5686

1 8 42 4.7341 1.0273 734 4.9273 1.6052 0.17917 1.2064

1 9 42 6.3611 1.3996 759 6.4625 1.6082 0.2453 1.6449
...

...
...

...
...

...
...

...
...

...

100 34 10 10.7390 1.1267 172 9.7006 1.2046 0.2476 1.3744

100 37 18 9.2502 1.1510 420 9.3260 1.4322 0.3336 1.4847

100 38 12 11.2736 1.4251 243 10.8681 1.3455 0.3083 1.7334

100 39 19 12.2764 1.4389 416 11.3965 1.5548 0.3025 1.7414
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Figure 4.2: Illustration of bias correction on SD st through model A. The green
reference line is y = x.
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Model B

Table 4.3: Table of result for biased corrected SD computed with training data D
and test data D′.

Tree node n ȳt st n′t ȳ′t s′t Bias s
′′
t

1 4 47 5.3015 1.9158 821 5.6932 2.4249 0.3951 2.3109

1 6 17 6.1179 2.4292 424 6.6783 2.8131 0.4321 2.8613

1 7 12 12.0097 2.0447 290 10.9269 2.4160 0.4348 2.4795

1 10 15 5.8375 2.4362 345 5.6767 2.3768 0.3716 2.8078
...

...
...

...
...

...
...

...
...

...

100 24 32 14.5282 1.9469 451 14.7844 2.6364 0.3773 2.3243

100 27 22 14.4614 2.6309 361 14.4363 2.6073 0.3626 2.9936

100 28 86 16.8107 2.5779 1628 16.4838 2.7446 0.2833 2.8612

100 29 44 19.6521 2.6006 1011 19.1129 2.6582 0.3104 2.9111
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Figure 4.3: Illustration of bias correction on SD st through model B. The green
reference line is y = x.
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Model C

Table 4.4: Table of result for biased corrected SD computed with training data D
and test data D′.

Tree node n ȳt st n′t ȳ′t s′t Bias s
′′
t

1 2 246 1.9491 0.9745 4690 2.0194 1.0145 0.04018 1.0147

1 4 126 1.8623 1.0429 2653 2.0107 1.0215 0.0410 1.0839

1 5 128 3.8070 0.9621 2657 3.8951 1.0985 0.0498 1.0119

2 2 228 1.9911 1.0627 4991 2.0207 0.9981 0.0394 1.1021
...

...
...

...
...

...
...

...
...

...

99 5 136 3.9981 1.0126 2543 3.9879 1.0232 0.0455 1.0581

100 2 267 2.0381 0.9767 5177 2.0212 1.0371 0.0400 1.0168

100 4 128 2.0268 1.0449 2424 1.9882 0.9991 0.0429 1.0878

100 5 105 3.8462 1.1190 2399 3.9983 0.9951 0.0589 1.1779
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Figure 4.4: Illustration of bias correction on SD st through model C. The green
reference line is y = x.

The best-sized tree T is constructed with the simulated train data D via pruning and

cross-validation with the 1-SE rule (Breiman et al., 1984). The tree (Tree), the node, the

total number of observations in each node (n) and the estimates {(nt, ȳt, st) : t ∈ T̃ } for

all terminal nodes of T are extracted and recorded in Tables 4.2, 4.3, and 4.4. Now on

the basis of our simulated test data D′, the estimates {(n′t, ȳ′t, s′t) : t ∈ T̃ } for all terminal

nodes of T are also extracted and recorded accordingly. Similarly, the bias estimates (Bias)

and the bias-corrected SD (s
′′
t ) in reference to Algorithm 3 our proposed method are as

well recorded in each given table. Table 4.2, 4.3 and 4.4 present results from Model 4.1,

4.2 and 4.3 respectively.

Results from Table 4.2 and 4.3 show that st which is the naive standard error is lower
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than that of s′t obtained from the test sample. Hence using st directly to construct (1−α)

coverage for each terminal node will be over-optimistic. Specifically we estimated bias and

added it to the st leading to the s
′′
t which corrects the downwards biasedness of the st.

Also, Figures 4.2 and 4.3 are density contours that show the uncorrected SD st, corrected

SD s
′′
t and the SD s′t estimates from a large test sample D′. We can see that the bias

correction procedure really helps bring st up close to what they should be, namely, around

s′t computed from the test data. This is indicated by the line of reference from each plot.

The reference line y=x passes right through the center of density contours of (s′t.s
′′
t ), but

way above the density contours of (s′t, st). But model C which is the tree model has a

perfect correspondence between the standard errors. Hence the simulated results show

that our proposed methods work well in correcting the downwards biasedness of the st.

The bias-correct SD estimates s
′′
t are more reliable for summarizing each terminal node.

4.2.2 Empirical Coverage

Now given the boostrap bias corrected SD from the three models. We construct (1− α)×

100% CI in node t for ȳ′t based on st, s
′
t and s

′′
t estimates with confidence level 95% to check

whether or not the confidence bounds captures ȳ′t estimate with appropriate coverages.

(a) Naive: ȳt ± z1−α/2st/
√
nt;

(b) BBC: ȳt ± z1−α/2s
′′
t /
√
nt;

(c) Oracle: ȳt ± z1−α/2s
′
t/
√
nt.
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Model A

Table 4.5: Confident intervals using the st, s
′′
t and s′t from data generated by Model A

Tree node n ȳ′t ȳt ± z1−α/2st/
√

nt ȳt ± z1−α/2s
′′
t /
√
nt ȳt ± z1−α/2s

′
t/
√
nt

1 4 71 2.896311 (2.655751, 3.162678) (2.625402, 3.193028) (2.595555, 3.222874 )

1 5 88 4.348171 (3.779818, 4.360616) (3.742478, 4.397956) (3.773123, 4.367311)

1 8 42 4.927321 (4.423404, 5.044764) (4.369219, 5.098949) (4.24862, 5.219548)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

100 37 18 9.325968 (8.718481, 9.781969) (8.564353, 9.936098) (8.588573, 9.911878)

100 38 12 10.86807 (10.467292, 12.07993) (10.292874, 12.254349) (10.512354, 12.034869)

100 39 19 11.39645 (11.629448 , 12.923406) (11.49341, 13.059443) (11.577314, 12.975539)

Model B

Table 4.6: Confident intervals using the st, s
′′
t and s′t from data generated by Model B

Tree node n ȳ′t ȳt ± z1−α/2st/
√

nt ȳt ± z1−α/2s
′′
t /
√
nt ȳt ± z1−α/2s

′
t/
√
nt

1 4 47 5.693237 (4.753805, 5.849232) (4.640852, 5.962185) (4.608278, 5.99476)

1 6 17 6.678329 (4.963116, 7.272624) (4.757708, 7.478032) (4.78061, 7.455129)

1 7 12 10.926954 (10.8528, 13.166542) (10.606772, 13.412569) (10.642701, 13.37664)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

100 27 22 14.43631 (13.362, 15.56074) (13.21046, 15.71228) (13.37188, 15.55086 )

100 28 86 16.48383 (16.26586, 17.35552) (16.20599, 17.4154) (16.23062, 17.39076)

100 29 44 19.11286 (18.88374, 20.42058) (18.79201, 20.51231) (18.86674, 20.43759)

Model C

Table 4.7: Confident intervals using the st, s
′′
t and s′t from data generated by Model C

Tree node n ȳ′t ȳt ± z1−α/2st/
√

nt ȳt ± z1−α/2s
′′
t /
√
nt ȳt ± z1−α/2s

′
t/
√
nt

1 2 246 2.019431 (1.827346, 2.070895) (1.822325, 2.075915) (1.822342, 2.075898)

1 4 126 2.010694 (1.680181, 2.044396) (1.67303, 2.051546) (1.683922, 2.040655)

1 5 128 3.895063 (3.640335, 3.973686) (3.631699, 3.982321) (3.616707, 3.997313)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

100 2 267 2.021208 (1.920895, 2.155209) (1.916093, 2.160011) (1.91366, 2.162444)

100 4 128 1.988171 (1.845818, 2.207855) (1.838386, 2.215287) (1.853749, 2.199924)

100 5 105 3.998295 (3.63215, 4.060223) (3.620883, 4.07149) (3.655842, 4.036531)

From Tables 4.5, 4.6 and 4.7 show 95% confidence intervals constructed with different SD

estimates for each terminal of the final tree in each simulation run. A total of 100 simulation
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runs are used.

4.2.3 Percentage Coverage Estimates

We send 1000 test samples of size 500 down each tree and check if the test sample means

within each terminal node is covered by each 95% CI. The empirical coverage is essentially

the relative frequency of when the 95 CI includes the test sample mean.

Table 4.8: Coverage Probabilities by BBC

Case Naive (st ) BBC (s
′′
t ) Oracle(s′t)

Model A 0.8526 0.9117 0.9036

Model B 0.8509 0.9144 0.9283

Model C 0.9077 0.9240 0.9142

Values from Table 4.8 clearly indicate that the empirical coverage from the naive ap-

proach is far below the nominal level, i.e., 95%. Comparatively, the BBC approach, similar

to the oracle approach, yields a coverage that is much closer.

32



Chapter 5

Real Data Analysis

5.1 Real Data Exploration

5.1.1 Data Source and Preparation

In this chapter, we apply our proposed method to real-life data as an illustration. For

instance, as a statistical consultant or data scientist, you are tasked to provide statistical

advice on how to estimate the salary of a particular player in a baseball team by prediction.

The baseball team in question does not want to suggest a salary that is too high or too

low. However, they know some of the characteristics of a previous team that influences

their salary structure but would like an objective way of estimating the current and future

salaries. The goal, therefore, is to develop accurate confidence bound estimates that can be

used to determine a value within these bounds that can be used to predict a player’s salary

on the basis of the previous team’s characteristics. Using data which provides information

on Major League Baseball from the 1986 and 1987 seasons by Hitters, sourced from http:

//lib.stat.cmu.edu/datasets/baseball.data and also available from the ISLR package

in R. The StatLib library at Carnegie Mellon University was the original host of this data

set, which was also used in the 1988 ASA Graphics Section Poster Session. Essentially, this

salary data was originally from Sports dated April 20, 1987, which captured excerpts on

the 1986 and career statistics which were obtained from The 1987 Baseball Encyclopedia

Update published by Collier Books, Macmillan Publishing Company, New York.(James

et al., 2017).

The data contains the 1987 annual salary of baseball players (in thousands of dollars) on
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the opening day of the season. It has 263 rows (observations) and 25 columns (variables).

A brief description of the variables is provided in Table 5.1
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Table 5.1: 1987 Baseball Salary Data for Hitters

Variable Description

name hitter’s name

bat86 number of times at bat in 1986

hit86 number of hits in 1986

hr86 number of home runs in 1986

run86 number of runs in 1986

rb86 number of runs batted in in 1986

wlk86 number of walks in 1986

yrs number of years in the major leagues

batcr number of times at bat during his career

hitcr number of hits during his career

hrcr number of home runs during his career

runcr number of runs during his career

rbcr number of runs batted in during his career

wlkcr number of walks during his career

leag86 player’s league at the end of 1986

div86 player’s division at the end of 1986

team86 player’s team at the end of 1986

pos86 player’s position(s) in 1986

puto86 number of put outs in 1986

asst86 number of assists in 1986

err86 number of errors in 1986

salary 1987 annual salary on opening day in thousands of dollars

leag87 player’s league at the beginning of 1987

team87 player’s team at the beginning of 1987

Data preparation and validation were carried out. First, a salary which is the response
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variable was transformed through log-transformation to make it less skewed. Again highly

concentrated categorical and string independent variables such as name, team86, team 87,

and pos86 were removed and less concentrated ones were recoded into 0’s and 1’s for further

analysis.

5.1.2 Obtaining the best Tree from the data set

Figure 5.1: Plot of the best tree via pruning and cross validation.

Using the prepared data and the CART function. Tree analysis was performed through

pruning and cross-validation. By the 1-SE rule (Breiman et al., 1984), the best tree was

obtained as plotted in Fig( 5.1).
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5.1.3 Estimates of st and sct from the best tree

Table 5.2: Table values of st and s
′′
t using the baseball salary data.

node n ȳt st Bias s
′′
t

3 39 4.548878 0.2439172 0.03598723 0.2799044

4 51 5.283612 0.3136554 0.06161825 0.3752736

6 112 6.256974 0.4964537 0.07495183 0.5714055

7 61 6.81953 0.4862067 0.08187276 0.5680795

Also, we applied the proposed BBC method with B = 500 bootstrap samples to estimate

the biases and obtain the bias-corrected SD (s
′′
t ) for each of the four terminal nodes. The

results are tabulated in Table 5.3.

5.1.4 Empirical Coverage from the best tree

Table 5.3: Confidence estimates of the mean salary via BBC: ȳt ± z1−α/2s
′′
t /
√
nt

node n ȳt Lȳt Uȳt eȳt Leȳt Ueȳt

3 39 4.548878 4.461031 4.636724 94.52626 86.57672 103.2057

4 51 5.283612 5.180618 5.386605 197.08035 177.79261 218.4605

6 112 6.256974 6.151151 6.362798 521.6383 469.257 579.8667

7 61 6.81953 6.676972 6.962089 915.55493 793.91162 1055.8365

Table (5.3) show the 95% confidence interval for the node mean using our bias-corrected

SD for all terminal nodes obtained from the best tree through our proposed method BBC:

ȳt±z1−α/2s
′′
t /
√
nt ,where alpha was chosen to be α = 0.05, nt is the total number of samples

in each individual terminal node, ȳt is logsalary (log of the mean salary) and s
′′
t is the BBC

SD estimates for each terminal node. For better interpretability, confidence intervals for
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mean salary on its original scale are also obtained by taking the exponential. These are

also shown in Table 5.3.

Figure 5.2: Plot of the Confident Estimates of the Mean Salary

.

Figure(5.2) is an error bound plot depicting table (5.3) estimates ( Leȳt , Ueȳt ) graphically.

Node 3 defines a group of players who have the lowest average salary. These players are

characterized by the number of bats less than 1322 and the number of runs batted less than

56 in their career. Node 7 is characterized by players with the number of bats greater than

1322 and number of walks in 1986 greater than 53 in career having the highest average

salary.
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Chapter 6

Discussion and Conclusion

6.1 Significance of the Result

This research aimed to identify and correct the issue when a node-level inference is naively

constructed with a (1 − α) × 100% confidence interval (CI) through Model (1.1). An

interesting observation of downward biasedness is made concerning SD from the summary

of the decision tree in Figure 3.1. Numerical and graphical results from our simulation

study show that the BBC SD estimates are more reliable because they match well with

the ‘gold’ SD estimates obtained from test data. Revealing that directly using SD (st) in

Model (1.1) leads to an over-optimism of the CI estimates. However, we have been able

to use a biased correction approach via bootstrapping to make correction. On this basis,

a corrected SD (sct) can now be used directly as indicated in Model (3.4). Hence, the

bootstrap bias-corrected SD estimates become more convienent and applicable to use.

Another interesting observation is made in Table 4.8 which reveals that the bootstrap

bias-corrected SD’s confidence interval estimate provides the highest coverage probability

and that using the SD corrected obtained via bootstrapping yields a good confident bounds,

this is further assesed in Table 5.3 of our real data analysis.

Therefore, making statistical inference on the confidence interval for the true node mean

µt, from a decision tree model, which is the most common requests from users of decision

trees, has been partly fulfilled in this research. We have focused on correction of the bias

in the SD estimate. Constructing the confidence interval estimates from a tree model aids

in predicting future values. However, one common issue is that constructing CI’s using

relation 3.4 does not involve only the estimates from the summary of decision tree but also
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a constant α and the choice of this α also plays an important role.

6.2 Recommendation

The primary aim of this project was to obtain more reliable and valid CI estimates for a

tree model. As a result bootstrap bias correction approach was employed and the coverage

probabilities were obtained. These coverage probabilities were obtained with regards to

the coverage of each individual terminal node of the best tree summary. In effect, coverage

across all terminal nodes was ignored. Even though our proposed method works better rel-

ative to the näıve method, the percentage coverage was not too convincing. We, therefore,

recommend that, in future work, the multiplicity issues associated with the derivation of

the CI estimates across all terminal nodes be addressed. Hence, we would like to explore

the use of our proposed method combined with Scheffe or Tuckey’s method within the

one-way ANOVA setting or the bootstrap calibration (BC) method to handle the multiple

comparisons across all terminal nodes in future research. Also, in future work, we rec-

ommend an extension of our approach to classification trees as well as the estimation of

prediction intervals at each terminal node.

40



Appendix

R Codes

A # #########################################

# #########################################

# FUNCTION

# #########################################

# #########################################

library(rpart)

# ====================

# GENERATE SOME DATA

# ====================

rdat.MARS <- function(n, p=5, model="A")

{

X <- NULL

for (j in 1:p) {

x <- runif(n)

assign(paste("x", j, sep=""), x)

X <- cbind(X, x)

}

if (model=="A") mu <- 0.1*exp(4*x1) + 4/(1+exp(-20*(x2-0.5))) + 3*x3 + 2*x4 + x5

else if (model=="B") mu <- 10*sin(pi*x1*x2) + 20*(x3-0.5)^2 + 10*x4 + x5

else if (model=="C") mu <- 2 + 2*sign(x1 <= 0.5)*sign(x2 <=0.5)

else stop("The arugment model= needs to be either A or B.")

y <- mu + rnorm(n)

dat <- data.frame(cbind(y, X))

names(dat) <- c("y", paste("x", 1:p, sep=""))

return(dat)

}

# ===================================================================
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# FUNCTION cart() WRAPS UP STEPS FOR OBTAINING BEST TREE WITH rpart

# YET WITH FOCUS ON THE TERMINAL NODES ONLY

# ===================================================================

cart <- function(formula, data, method="anova", control=NULL,

size.selection=c("0SE", "1SE"), plot.it=FALSE){

if (is.null(control)) control <- rpart.control(minsplit=20, minbucket=10,

maxdepth=5, cp=0, maxcompete=0, # NUMBER OF COMPETITIVE SPLITS

maxsurrogate=0, usesurrogate=2, surrogatestyle=0, # SURROGATE SPLITS FOR MISSING DATA

xval=10)

tre0 <- rpart(formula=formula, data=data, method=method, control=control);

if (size.selection=="0SE") {

opt <- which.min(tre0$cptable[,"xerror"])

best.cp <- tre0$cptable[opt, "CP"]; # print(cp.best)

best.tree <- prune(tre0, cp = best.cp)

} else if (size.selection=="1SE") {

if (plot.it) plotcp(tre0, minline = TRUE) # 1SE

cv.error <- (tre0$cptable)[,4]

SE1 <- min(cv.error) + ((tre0$cptable)[,5])[which.min(cv.error)] # 1SE; CAN BE EASILY MODIFIED AS aSE FOR SOME a

position <- min((1:length(cv.error))[cv.error <= SE1]); # print(position)

# n.size <- (tre0$cptable)[,2] + 1 #TREE SIZE IS ONE PLUS NUMBER OF SPLITS.

# best.size <- n.size[position]; # best.size

best.cp <- sqrt(tre0$cptable[position,1]*tre0$cptable[(position-1),1]); # print(best.cp)

# best.cp <- tre0$cptable[position,1]; print(best.cp)

best.tree <- prune(tre0, cp=best.cp)

}

else stop("The values of size.selection= must be either 0SE or 1SE")

leaf.info <- best.tree$frame[best.tree$frame$var=="<leaf>", c(2, 4:5)]

leaf.info$sd <- sqrt(leaf.info$dev/(leaf.info$n -1))

# THE ROW NAMES DON’T MATCH WELL WITH TERMINAL NODES

n.leaf <- aggregate(dat$y, by=list(best.tree$where), FUN=length); n.leaf

leaf.info <- cbind(node=n.leaf$Group.1, leaf.info)

# OUTPUT

btree.size <- NROW(leaf.info)

list(leaf=leaf.info, btree=best.tree, cp=best.cp, size=btree.size, tree0=tre0)

}

# =========================================

# SEND A TREE DOWN A DATASET AND RECOMPUTE
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# =========================================

# LEAF INFO FROM fit.cart IS EXPANDED TO INCLUDE TEST SAMPLE INFO

send.down <- function(fit.cart, data, yname="y"){

leaf <- fit.cart$leaf

tree <- fit.cart$btree

node <- rpart:::pred.rpart(tree, x=rpart:::rpart.matrix(data));

data$node <- node

dat.tmp <- data[order(node), c(yname, "node")]

leaf.test <- aggregate(dat.tmp$y, by=list(dat.tmp$node), FUN=length)

yval.test <- aggregate(dat.tmp$y, by=list(dat.tmp$node), FUN=mean)$x

sd.test <- aggregate(dat.tmp$y, by=list(dat.tmp$node), FUN=sd)$x

# SUMMARIZE RESULTS

leaf.test <- cbind(leaf.test, yval.test, sd.test)

names(leaf.test) <- c("node", "n.test", "ybar.test", "sd.test")

leaf.info <- merge(leaf, leaf.test, by="node", all.x = FALSE)

return(leaf.info)

}

B

# ##########################################################################

# TRIAL I: CHECK IF BOOTSTRAP CALIBRATION REALLY WORKS

# ##########################################################################

rm(list=ls(all=TRUE))

source("R-FunctionsBC.R")

# set.seed(123)

nrun <- 3; B <- 500

n <- n.test <- 500; p <- 5; Model <- "A"

# n.test <- 2000;

alpha <- c(1:200/10000);

z0 <- qnorm(1-alpha/2); n.alpha <- length(alpha)

Alpha.True <- Alpha.Boots <- matrix(0, nrow=n.alpha, ncol=nrun)

for (i in 1:nrun){

print(paste("============== run ", i, " =================", sep=""))
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dat <- rdat.MARS(n=n, p=p, model=Model)

fit.tree <- cart(y~., data=dat, method="anova", size.selection="1SE");

best.tree <- fit.tree$btree

leaf <- fit.tree$leaf

P.True <- P.Boots <- matrix(0, nrow=n.alpha, ncol=B)

# POPULATION VERSION

for (b in 1:B){

test <- rdat.MARS(n=n.test, p=p, model=Model)

test.info <- senddown(tree=best.tree, data=test, yname="y")

for (k in 1:n.alpha){

LB <- leaf$yval - z0[k]*leaf$sd/sqrt(leaf$n)

UB <- leaf$yval + z0[k]*leaf$sd/sqrt(leaf$n)

lb <- ub <- factor(test.info$node, levels=leaf$node, ordered=TRUE)

levels(lb) <- LB; levels(ub) <- UB

lb <- as.numeric(as.character(lb)); ub <- as.numeric(as.character(ub))

P.True[k, b] <- mean((test.info$y >= lb) & (test.info$y <= ub))

}

}

# print(P.True)

Alpha.True[, i] <- apply(P.True, 1, mean)

# BOOTSTRAP CALIBRATION

for (b in 1:B){

id.b <- sample(1:n, size=n, replace=TRUE)

dat.b <- dat[id.b,]

fit.b <- cart(y~., data=dat.b, method="anova", size.selection="1SE");

btree.b <- fit.b$btree

leaf.b <- fit.b$leaf

info.b <- senddown(tree=btree.b, data=dat, yname="y")

for (k in 1:n.alpha){

LB <- leaf.b$yval - z0[k]*leaf.b$sd/sqrt(leaf.b$n)

UB <- leaf.b$yval + z0[k]*leaf.b$sd/sqrt(leaf.b$n)

lb <- ub <- factor(info.b$node, levels=leaf.b$node, ordered=TRUE)

levels(lb) <- LB; levels(ub) <- UB

lb <- as.numeric(as.character(lb)); ub <- as.numeric(as.character(ub))

P.Boots[k, b] <- mean((info.b$y >= lb) & (info.b$y <= ub))

}

}

# print(P.Boots)
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Alpha.Boots[, i] <- apply(P.Boots, 1, mean)

}

apply(Alpha.True, 1, mean)

apply(Alpha.Boots, 1, mean)

save(Alpha.True, Alpha.Boots, file="Out-Trial-IA.Rdata")

# =========================

# PLOTTING THE RESULTS

# =========================

rm(list=ls(all=TRUE))

alpha <- c(1:50/10000);

postscript(file="fig-Trial-I.eps", horizontal=TRUE)

par(mfrow=c(1, 3), mar=c(8, 4, 8, 4))

# MODEL A

load("Out-trial-IA.Rdata")

M0 <- Alpha.Boots; dim(M0)

avg1.a <- apply(Alpha.Boots, 1, mean)

plot(x=range(alpha), y=c(.78, 1), type="n", xlab=expression(alpha),

ylab="Coverage Probability", main="Model A")

for (j in 1:NCOL(M0)){

a0 <- M0[,j]

lines(alpha, a0, lwd=0.005, col="orange")

}

M1 <- Alpha.True

avg2.a <- apply(M1, 1, mean)

for (j in 1:NCOL(M1)){

a0 <- M1[,j]

lines(alpha, a0, lwd=0.005, col="lightblue")

}

lines(alpha, avg1.a, lwd=1.5, col="brown")

lines(alpha, avg2.a, lwd=1.5, col="blue")

abline(h=0.95, col="gray50", lwd=0.8, lty=2)

legend(0.001, 1.00, legend=c("Bootstrap", "Population"), lty=1,
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col=c("orange", "blue"), lwd=1)

# MODEL B

load("Out-trial-IB.Rdata")

M0 <- Alpha.Boots; dim(M0)

avg1.a <- apply(Alpha.Boots, 1, mean)

plot(x=range(alpha), y=c(.76, 1), type="n", xlab=expression(alpha),

ylab="Coverage Probability", main="Model B")

for (j in 1:NCOL(M0)){

a0 <- M0[,j]

lines(alpha, a0, lwd=0.005, col="orange")

}

M0 <- Alpha.True

avg2.a <- apply(M0, 1, mean)

for (j in 1:NCOL(M0)){

a0 <- M0[,j]

lines(alpha, a0, lwd=0.005, col="lightblue")

}

lines(alpha, avg1.a, lwd=1.5, col="brown")

lines(alpha, avg2.a, lwd=1.5, col="blue")

abline(h=0.95, col="gray50", lwd=0.8, lty=2)

# MODEL C

load("Out-trial-IC.Rdata")

M0 <- Alpha.Boots; dim(M0)

dat.tmp <- data.frame(cbind(alpha, M0))

library(tidyverse)

dat.tmp

avg1.a <- apply(Alpha.Boots, 1, mean)

plot(x=range(alpha), y=c(.74, 1), type="n", xlab=expression(alpha),

ylab="Coverage Probability", main="Model C")

for (j in 1:NCOL(M0)){

a0 <- M0[,j]

lines(alpha, a0, lwd=0.005, col="orange")

}

M0 <- Alpha.True
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avg2.a <- apply(M0, 1, mean)

for (j in 1:NCOL(M0)){

a0 <- M0[,j]

lines(alpha, a0, lwd=0.005, col="lightblue")

}

lines(alpha, avg1.a, lwd=1.5, col="brown")

lines(alpha, avg2.a, lwd=1.5, col="blue")

abline(h=0.95, col="gray50", lwd=0.8, lty=2)

dev.off()

C ###########################################

# BIAS-CORRECTION OF SD IN DECISION TREES

###########################################

# -----------

# MODEL A

# -----------

rm(list=ls(all=TRUE))

source("Functions-BBC.R")

set.seed(111)

nrun <- 100

B <- 200; n <- 500; Model <- "A";

# positive.bias <- FALSE

positive.bias <- TRUE

p <- 5; n0 <- 10000;

OUT <- NULL

TREE <- as.list(1:nrun)

for (i in 1:nrun) {

dat <- rdat.MARS(n=n, p=p, model=Model)

fit.cart <- cart(y~., data=dat, method="anova", size.selection="1SE", plot.it=FALSE);

TREE[[i]] <- fit.cart$btree

node.0 <- rpart:::pred.rpart(fit.cart$btree, x=rpart:::rpart.matrix(dat));

test <- rdat.MARS(n=n0, p=p, model=Model)

info.0 <- send.down(fit.cart, data=test, yname="y");

sd.un <- info.0$sd
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# BOOTSTRAP CORRECTION

bias <- rep(0, length(sd.un))

for (b in 1:B){

print(cbind(run=i, boots=b))

id.b <- sample(1:n, size=n, replace=TRUE)

dat.b <- dat[id.b,]; dat.oob <- dat[-unique(id.b),]

fit.b <- cart(y~., data=dat.b, method="anova", size.selection="1SE", plot.it=FALSE);

info.b <- send.down(fit.b, data=dat, yname="y") ## SHOULD USE dat.oob?

bias.b <- info.b$sd.test - info.b$sd

if (positive.bias) bias.b <- pmax(bias.b, 0) ### NECESSARY?

node.b <- rpart:::pred.rpart(fit.b$btree, x=rpart:::rpart.matrix(dat));

tab <- table(node.0, node.b)

M.prop <- prop.table(tab, 1)

bias.b <- M.prop%*%bias.b

bias <- bias + bias.b

}

bias <- bias/B

sd.co <- sd.un + bias

out <- cbind(tree=i, info.0,bias, sd.co)

OUT <- rbind(OUT, out)

}

OUT <- as.data.frame(OUT)

colnames(OUT) <- c("tree", "node", "n", "dev", "ybar", "sd.uncorrected",

"n.test", "ybar.test", "sd.test",

"bias", "sd.corrected")

head(OUT)

save(OUT, TREE, file="result-ModelA.Rdat")

# -----------

# MODEL B

# -----------

rm(list=ls(all=TRUE))

source("Functions-BBC.R")

set.seed(111)

nrun <- 100

B <- 200; n <- 500; Model <- "B";
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# positive.bias <- FALSE

positive.bias <- TRUE

p <- 5; n0 <- 10000;

OUT <- NULL

TREE <- as.list(1:nrun)

for (i in 1:nrun) {

dat <- rdat.MARS(n=n, p=p, model=Model)

fit.cart <- cart(y~., data=dat, method="anova", size.selection="1SE", plot.it=FALSE);

TREE[[i]] <- fit.cart$btree

node.0 <- rpart:::pred.rpart(fit.cart$btree, x=rpart:::rpart.matrix(dat));

test <- rdat.MARS(n=n0, p=p, model=Model)

info.0 <- send.down(fit.cart, data=test, yname="y");

sd.un <- info.0$sd

# BOOTSTRAP CORRECTION

bias <- rep(0, length(sd.un))

for (b in 1:B){

print(cbind(run=i, boots=b))

id.b <- sample(1:n, size=n, replace=TRUE)

dat.b <- dat[id.b,]; dat.oob <- dat[-unique(id.b),]

fit.b <- cart(y~., data=dat.b, method="anova", size.selection="1SE", plot.it=FALSE);

info.b <- send.down(fit.b, data=dat, yname="y") ## SHOULD USE dat.oob?

bias.b <- info.b$sd.test - info.b$sd

if (positive.bias) bias.b <- pmax(bias.b, 0) ### NECESSARY?

node.b <- rpart:::pred.rpart(fit.b$btree, x=rpart:::rpart.matrix(dat));

tab <- table(node.0, node.b)

M.prop <- prop.table(tab, 1)

bias.b <- M.prop%*%bias.b

bias <- bias + bias.b

}

bias <- bias/B

sd.co <- sd.un + bias

out <- cbind(tree=i, info.0,bias, sd.co)

OUT <- rbind(OUT, out)

}

OUT <- as.data.frame(OUT)

colnames(OUT) <- c("tree", "node", "n", "dev", "ybar", "sd.uncorrected",

"n.test", "ybar.test", "sd.test",

"bias", "sd.corrected")

head(OUT)

49



save(OUT, TREE, file="result-ModelB.Rdat")

# ----------------------

# MODEL C (TRUE TREE)

# ----------------------

rm(list=ls(all=TRUE))

source("Functions-BBC.R")

set.seed(111)

nrun <- 100

B <- 200; n <- 500; Model <- "C";

# positive.bias <- FALSE

positive.bias <- TRUE

p <- 5; n0 <- 10000;

OUT <- NULL

TREE <- as.list(1:nrun)

for (i in 1:nrun) {

dat <- rdat.MARS(n=n, p=p, model=Model)

fit.cart <- cart(y~., data=dat, method="anova", size.selection="1SE", plot.it=FALSE);

TREE[[i]] <- fit.cart$btree

node.0 <- rpart:::pred.rpart(fit.cart$btree, x=rpart:::rpart.matrix(dat));

test <- rdat.MARS(n=n0, p=p, model=Model)

info.0 <- send.down(fit.cart, data=test, yname="y");

sd.un <- info.0$sd

# BOOTSTRAP CORRECTION

bias <- rep(0, length(sd.un))

for (b in 1:B){

print(cbind(run=i, boots=b))

id.b <- sample(1:n, size=n, replace=TRUE)

dat.b <- dat[id.b,]; dat.oob <- dat[-unique(id.b),]

fit.b <- cart(y~., data=dat.b, method="anova", size.selection="1SE", plot.it=FALSE);

info.b <- send.down(fit.b, data=dat, yname="y") ## SHOULD USE dat.oob?

bias.b <- info.b$sd.test - info.b$sd

if (positive.bias) bias.b <- pmax(bias.b, 0) ### NECESSARY?

node.b <- rpart:::pred.rpart(fit.b$btree, x=rpart:::rpart.matrix(dat));

tab <- table(node.0, node.b)

M.prop <- prop.table(tab, 1)
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bias.b <- M.prop%*%bias.b

bias <- bias + bias.b

}

bias <- bias/B

sd.co <- sd.un + bias

out <- cbind(tree=i, info.0,bias, sd.co)

OUT <- rbind(OUT, out)

}

OUT <- as.data.frame(OUT)

colnames(OUT) <- c("tree", "node", "n", "dev", "ybar", "sd.uncorrected",

"n.test", "ybar.test", "sd.test",

"bias", "sd.corrected")

head(OUT)

save(OUT, TREE, file="result-ModelC.Rdat")

#############################

# EXPLORING THE REULSTS

#############################

rm(list=ls(all=TRUE))

library(tidyverse)

load("result-ModelA.Rdat")

#load("result-ModelA-0SE.Rdat")

#load("result-ModelB.Rdat")

#load("result-ModelC.Rdat")

ls()

names(OUT); head(OUT)

tail(OUT)

OUT %>%

select(tree, node, sd.uncorrected, sd.test, sd.corrected) %>%

ggplot() +

geom_point(aes(x=sd.test, y=sd.uncorrected, colour="sd.uncorrected"), alpha=0.1) +

#xlab("SD based on Test Samples") + ylab("SD") +

geom_point(aes(x=sd.test, sd.corrected, colour="sd.corrected"), alpha=0.1) +

geom_density_2d(aes(x=sd.test, y=sd.uncorrected, colour="sd.uncorrected") ) +
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geom_density_2d(aes(x=sd.test, y=sd.corrected, color="sd.corrected") ) +

geom_abline(slope=1, intercept = 0, colour="green4", size=1)+

labs(

x = "SD based on Test Samples",

y = "SD",

#title = "Plot of the Uncorrected and Bias-Corrected SD",

color ="Legend")+ theme(

legend.position = c(0.95, 0.95),

legend.justification = c("right", "top"),

legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6)

)

D # ==================

# COVERAGE

# ==================

rm(list=ls(all=TRUE))

#source("Functions-BBC.R")

#load("result-ModelA.Rdat")

#load("result-ModelB.Rdat")

load("result-ModelC.Rdat")

TREE <- BTREE

conf.level <- 0.95

alpha <- (1-conf.level)

OUT %>%

#na.exclude() %>%

mutate(L.naive = ybar - qnorm(1-alpha/2) * sd.uncorrected/sqrt(n),

U.naive = ybar + qnorm(1-alpha/2) * sd.uncorrected/sqrt(n),

L.BBC = ybar - qnorm(1-alpha/2) * sd.corrected/sqrt(n),

U.BBC = ybar + qnorm(1-alpha/2) * sd.corrected/sqrt(n),

L.oracle = ybar - qnorm(1-alpha/2) * sd.test/sqrt(n),

U.oracle = ybar + qnorm(1-alpha/2) * sd.test/sqrt(n)) %>%

select(tree, node, n, L.naive, U.naive, L.BBC, U.BBC, L.oracle, U.oracle) -> CI

CI %>% tail()
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n.trees <- 10

n.sample <- 1000

n0 <- 10000; p <- 5

Model <- "C"

yname <- "y"

COVER <- NULL

for (i in 1:n.trees){

tree.i <- TREE[[i]]

CI.i <- CI %>% filter(tree==i)

cover.naive <- cover.BBC <- cover.oracle <- rep(0, NROW(CI.i))

for (j in 1:n.sample) {

print(cbind(tree=i, sample=j))

dat <- rdat.MARS(n=n0, p=p, model=Model)

node <- rpart:::pred.rpart(tree.i, x=rpart:::rpart.matrix(dat));

dat$node <- node

dat.tmp <- dat[order(node), c(yname, "node")]

ybar.test <- aggregate(dat.tmp$y, by=list(dat.tmp$node), FUN=mean)$x

cover.naive <- cover.naive + sign(ybar.test >= CI.i$L.naive & ybar.test <= CI.i$U.naive)

cover.BBC <- cover.BBC + sign((ybar.test >= CI.i$L.BBC) & (ybar.test <= CI.i$U.BBC))

cover.oracle <- cover.oracle + sign(ybar.test >= CI.i$L.oracle & ybar.test <= CI.i$U.oracle)

}

CI.i %>% mutate(cover.naive=cover.naive/n.sample,

cover.BBC=cover.BBC/n.sample,

cover.oracle=cover.oracle/n.sample) -> CI.i

COVER <- rbind(COVER, CI.i)

}

apply(COVER, 2, mean)

E

###### Real Data Exploration #################################

rm(list=ls(all=TRUE))

#setwd("~/Desktop/THESIS U/Updated/real data")

source("Functions-BBC.R")

baseball <- read.table("bb87.dat", header = F,

col.names=c("id", "name", "bat86", "hit86", "hr86", "run86", "rb86", "wlk86",

"yrs", "batcr","hitcr", "hrcr", "runcr","rbcr", "wlkcr", "leag86", "div86",
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"team86", "pos86", "puto86", "asst86", "err86","salary", "leag87", "team87",

"logsalary"))

apply(baseball, 2, FUN=function(x) length(unique(x)))

dat <- baseball %>%

mutate(y=logsalary, team.change=sign(team86!=team87),

leag86=sign(leag86=="A"),

leag87=sign(leag87=="A"),

div86=sign(div86=="W")) %>%

select(-salary, -id, -name, -logsalary, -team86, -team87, -pos86) %>%

select(y, everything()) %>%

as.data.frame()

head(dat)

anyNA(dat)

##############################################################################

fit.cart <- cart(y ~., data=dat, method="anova",

size.selection="1SE", plot.it=TRUE,model= TRUE);

btree <- fit.cart$btree

node.0 <- rpart:::pred.rpart(btree, x=rpart:::rpart.matrix(dat));

info.0 <- fit.cart$leaf

sd.un <- info.0$sd

#### Exploring the btree via a plot ############################

library(rpart.plot)

library(RColorBrewer)

rpart.plot(btree, shadow.col="gray", extra=1,

main="Final (1SE) Tree Model for 1987 Baseball Data")

# BOOTSTRAP CORRECTION

B <- 500

n <- nrow(dat)

positive.bias <- TRUE

bias <- rep(0, length(sd.un))

for (b in 1:B){

print(paste("=========== ", b, " ============", sep=""))

id.b <- sample(1:n, size=n, replace=TRUE)
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dat.b <- dat[id.b,]

fit.b <- cart(y ~., data=dat.b, method="anova",

size.selection="1SE", plot.it=FALSE);

info.b <- send.down(fit.b, data=dat, yname="y")

bias.b <- info.b$sd.test - info.b$sd

if (positive.bias) bias.b <- pmax(bias.b, 0)

node.b <- rpart:::pred.rpart(fit.b$btree, x=rpart:::rpart.matrix(dat));

tab <- table(node.0, node.b)

M.prop <- prop.table(tab, 1)

bias.b <- M.prop%*%bias.b

bias <- bias + bias.b

}

bias <- bias/B

sd.co <- sd.un + bias

out <- cbind(info.0,bias, sd.co)

OUT <- as.data.frame(out)

colnames(OUT) <- c("node", "n", "dev", "ybar", "sd.uncorrected","bias", "sd.corrected")

save(OUT, file="result-bb.Rdat")

# ======================

# COVERAGE #

# ======================

# load("result-bb.Rdat")

conf.level <- 0.95

alpha <- (1-conf.level)

OUT %>%

mutate(L.naive = ybar - qnorm(1-alpha/2) * sd.uncorrected/sqrt(n),

U.naive = ybar + qnorm(1-alpha/2) * sd.uncorrected/sqrt(n),

L.BBC = ybar - qnorm(1-alpha/2) * sd.corrected/sqrt(n),

U.BBC = ybar + qnorm(1-alpha/2) * sd.corrected/sqrt(n),

ybar.sal = exp(ybar),

L.sal = exp(L.BBC),

U.sal=exp(U.BBC))%>%

select(node, n, ybar, L.BBC, U.BBC, ybar.sal, L.sal, U.sal) -> CI

CI

save(CI, file="CI-bb.Rdat")
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CI %>%

mutate(node=factor(node))

ggplot(CI, aes(x=node, y=ybar.sal,group = node)) +

geom_errorbar(aes(ymin=L.sal, ymax=U.sal), color="blue") +

geom_point(size=5, color="tomato")

pd <- position_dodge(0.70)

ggplot(CI, aes(x=node, y = ybar.sal, group = node)) +

geom_point(position=pd) +

geom_errorbar(data=CI, aes(ymin=L.sal, ymax=U.sal,

color=node), width=1, position=pd)
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