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Abstract

With the rise of high throughput technologies in biomedical research, large volumes of ex-

pression profiling, methylation profiling, and RNA-sequencing data are being generated.

These high-dimensional data have large number of features with small number of sam-

ples, a characteristic called the “curse of dimensionality.” The selection of optimal features,

which largely affects the performance of classification algorithms in machine learning mod-

els, has led to challenging problems in bioinformatics analyses of such high-dimensional

datasets. In this work, I focus on the design of two-stage frameworks of feature selection

and classification and their applications in multiple sets of colorectal cancer data.

The first algorithm developed was a combination of resampling based least absolute

shrinkage and selection operator (lasso) feature selection (RLFS) and ensembles of regular-

ized regression models (ERRM) capable of handling data with high correlation structures.

The ERRM boosted the prediction accuracy with the top-ranked features obtained from

RLFS. The second algorithm was a modified adaptive lasso method with normalized weights

from various feature selection methods. Here, the genes were ranked based on their levels

of statistical significance. The scores of the ranked genes were normalized and assigned as

proposed weights to the adaptive lasso method to obtain the most significant genes known

to be biologically related to the cancer type and helped attain higher classification perfor-

mance. Lastly, we introduced a resampling of group lasso (glasso) feature selection method

capable of ignoring the features unrelated to the response variable considering the group

correlation among the features. These features, when applied on various classifiers, showed

an increase in the classification accuracy.

We applied the above algorithms on both simulated and real data to show that our

methods have better performance compared to existing ones. In the real data application,

we combined machine learning with various bioinformatics tools, such as STRINGdb and

Cytoscape, to explore 13 sets of microarray and RNA-seq data to identify hub genes in col-

vi



orectal cancer. The results could be useful for suggesting further studies to reveal potential

biomarkers that might lead to better cancer diagnoses and treatments.
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Chapter 1

Introduction

With the advances of high throughput technology in biomedical research, large vol-

umes of high-dimensional data have been generated by different types of omics experi-

ments. These data, including those from microarrays [Datta et al., 2007, Su et al., 2020,

Wang et al., 2008] and RNA sequencing (RNA-seq) platforms [Stark et al., 2019], as well as

DNA methylation studies [Bock, 2012, Moore et al., 2013, Sun and Wang, 2012] are being

deposited [Hrdlickova et al., 2017, Kukurba and Montgomery, 2015, Moore et al., 2013,

Sobek et al., 2006] in public databases such as gene expression omnibus (GEO) and the

cancer genome atlas (TCGA).

The most common problem among all these different biological data types is the ”curse

of dimensionality”, where the size of features becomes much larger than the number of sam-

ples (p >> n). Some of the other common challenges while dealing with high-throughput

data is that they contain many redundant and unwanted features. To address these chal-

lenges, many two-stage machine learning frameworks of feature selection and classification

have been proposed over the past few years [Elyasigomari et al., 2017, Kim and Kim, 2019,

Sun et al., 2019]. In the first stage, feature selection (FS) methods are used to remove the

redundant and unwanted noisy features, reducing the dimensionality of data. Next, signif-

icant features are given to classification algorithms which help in boosting the prediction

performance.

There are various FS methods that rank the features upon their importance based on

certain scores [Chandrashekar and Sahin, 2014, Kim and Kim, 2019, Kim and Halabi, 2016,

Li et al., 2017a]. The optimal set of features are selected using sure independence

screening (SIS) [Fan and Lv, 2008] condition. Some of the most popular rank-based

FS methods used in bioinformatics are Information Gain [Quinlan, 1993], Chi-square

1



[Iguyon and Elisseeff, 2003], Fisher score [UM, 2013], and Minimum Redundancy

Maximum Relevance [Peng et al., 2005]. Another type of FS method is called sub-

set methods [Ditzler et al., 2015]. These methods select the subset of features with

some pre-determined threshold based on some criteria. However, these methods need

more computational time in high-dimensional data settings and lead to an NP-hard

problem [Su and Yang, 2008]. Some of the popular subset methods found in litera-

ture includes Boruta [Kursa and Rudnicki, 2010], Fisher score [UM, 2013] and Relief

[Urbanowicz et al., 2018].

For the classification of high-throughput data, many popular parametric and non-

parametric algorithms can be used. The parametric methods includes regularized

regression models with different penalties such as least absolute shrinkage and selec-

tion operator (LASSO) [Tibshirani, 1996], Ridge [Marquardt and Snee, 1975], elastic net

[Wang et al., 2019], smoothly clipped absolute deviation (SCAD) [Fan and Li, 2001], and

minimax concave penalty (MCP) [Zhang, 2010]. The LASSO and Ridge methods are based

on L1 and L2 penalties, respectively. Elastic net is a combination of L1 and L2 penalties.

SCAD and MCP are based on non-concave and concave penalties. These regularized

models are predominantly common in high-throughput studies [Hastie et al., 2009]. The

non-parametric models include random forests [Breiman, 2001], AdaBoost [Freund, 2001],

support vector machines [Hearst et al., 1998], and naive Bayes [Rish, 2001]. The random

forests and AdaBoost methods were built on decision trees, and the support vector

machines were based on the idea of hyperplanes.

The above-discussed FS methods and individual classification algorithms have been

widely used in the field of machine learning, and bioinformatics

[Chandrashekar and Sahin, 2014, Hastie et al., 2009]. However, in a highly correlated gene

expression data set, most FS and classification methods do not perform well in terms

of gene selection and classification accuracy [Bourgon et al., 2010a, Kim and Kim, 2019,

Lu et al., 2011a]. Besides, there are several unique challenges associated with each

high-throughput data type. For example, DNA methylation data has group correlation

2



among the CpG sites and most of the machine learning algorithms do not perform well

[Patil et al., 2020a]. In RNA-seq data, where expression levels are in the form of counts,

many machine learning algorithms cannot be applied directly, and the observed values

needs to be transformed to a continuous form. This dissertation will focus on addressing

these various challenges in the microarray, RNA-seq, and DNA methylation data by

developing machine learning methods.

Additionally, we also aim at gaining biological insights into different stages of colorectal

cancer using various bioinformatics analyses. Here, I will first identify the hub genes, then

perform enrichment analysis, and finally build protein-protein interaction networks to look

for potential biomarkers that may help promote early diagnosis and treatment of colorectal

cancer.

1.1 Specific aims

The “curse of dimensionality” is a major issue while solving any high dimensional

problem in multi-omics research [Almugren and Alshamlan, 2019, Kumar et al., 2015,

Michiels et al., 2011]. Most of the existing machine learning algorithms do not perform

well on high-throughput data [Bourgon et al., 2010a, Lu et al., 2011a]. Choosing the

best performing gene selection and classification method on microarray and RNA-seq

experimental data becomes challenging [Kim and Kim, 2019]. This challenge prompted

me to study, investigate, and develop several gene selection and classification algorithms

that achieve best performance in terms of selecting significant genes and classification

accuracy. Three specific aims are described below to overcome the challenges in different

biological data sets.

Specific Aim 1. Development and application of machine learning algorithms

in microarray gene expression data

In my studies on cancer microarray data to attain best classification performance, the

first algorithm I developed focused on a two-stage approach of gene selection and classifica-
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tion. In the first stage, I developed a resampling technique on lasso method to identify the

most differentially expressed genes. Next, these significantly expressed genes were consid-

ered as important features and applied on the classifiers. Here, I developed the ensembles

model that was built with regularized regression models such as lasso, adaptive lasso, elas-

tic net, SCAD, and MCP. To compare the performance of the proposed methods with the

current popular machine learning models, I conducted simulation studies with different

correlation scenarios based on compound symmetry and applied the gene expression data

that was obtained from GEO.

The second algorithm I developed focused on modifying the weights of adaptive lasso

method. The traditional adaptive lasso method use the weights from ridge regression.

Previous studies have also modified the weights by using the marginal maximum likelihood

estimation method to generate weights and assign them to adaptive lasso method. These

studies have shown an increase in performance of prediction on colon cancer data. We

introduce a new variant of adaptive lasso by assigning normalized weights using the ranking-

based gene selection methods for selecting key genes. The prediction accuracy was expected

to be increased with the key genes selected in model. I generated synthetic data using the

auto-regressive correlation and also used the colon cancer microarray data to validate the

performance of the proposed models.

Specific Aim 2. Improving the classification performance in DNA-methylation

data

The DNA methylation (DNAm) data is slightly different compared to normal gene

expression data. The expression values lies between 0 and 1 and are highly correlated.

There is a lack of literature on the application of machine learning algorithms on the DNAm

data [Patil et al., 2020a, Zhuang et al., 2012]. In this part, I first analyzed the performance

of the popular machine learning algorithms on both simulation and a real prostate cancer

data set from GEO. Most of the algorithms could not perform well because of the group

correlation among the data. Therefore, I developed a resampling-based group lasso method

and applied it to both synthetic and real DNAm data to compare the performance of the
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proposed and existing models.

Specific Aim 3. Identification of hub genes and key pathways in colorectal

cancer

Colorectal cancer (CRC) is the third most common cancer that contributes to cancer-

related morbidity. However, the expression of genes in different phases of CRC is largely

unknown. There is also little known about the role of stress-survival pathways in CRC. We

sought to discover the hub genes and identify their role in several key pathways, including

oxidative stress and apoptosis in different stages of CRC. I collected eleven microarray and

two RNA-seq datasets related to the colorectal adenoma, adenocarcinoma, and carcinoma

groups. There is a need for investigation on how the genes are differentially expressed,

functionally enriched, and interact with each other. The hub DEGs revealed from this study

may be biomarkers and may explain the CRC development and progression mechanisms.

Also, to validate the performance of the resampling-based lasso feature selection (RLFS)

algorithm from specific Aim 1, I applied the RLFS algorithm on 13 datasets related to

CRC to identify the top significant genes and compared the results with the differentially

expressed genes found through traditional approach of linear models for microarray data

(LIMMA) [Ritchie et al., 2015].

1.2 Overview of dissertation

The dissertation is organized as follows. Chapter 2, describes the background information

about different types of high-throughput biological data, feature selection methods, and

classification algorithms. In Chapter 3, I will present the proposed two-stage gene selection

and classification algorithm from the article [Patil and Kim, 2020]. Another proposed al-

gorithm developed for microarray data [Patil et al., 2020c], which uses adaptive-lasso with

weights based on normalized filtering scores, is discussed in Chapter 4. Then in Chapter 5,

the proposed resampling-based group-lasso ranking algorithm for handling DNA methyla-

tion data is discussed [Patil et al., 2020b]. In Chapter 6, the identification of hub genes in
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colorectal cancer through machine learning and bioinformatics analysis is explained. Here,

the main goal is to identify potential biomarkers in colorectal cancer. Finally, in Chapter

7, overall conclusions and future research are presented.
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Chapter 2

Literature Review

This chapter first describes the types of high-dimensional biological data. Next, the popu-

lar feature selection and supervised classification algorithms used in high-dimensional data

are discussed. The various performance metrics used to evaluate the performance of var-

ious classification models are explained. Finally, we explain the various bioinformatics

approaches used for analyzing genes.

2.1 Biological data

2.1.1 Expression profiling by microarray

Expression profiling by microarray is one of the standard approaches to understand gene ex-

pression, single nucleotide polymorphisms (SNPs), and diagnosis of disease [Agapito, 2019].

It strengthens the capability by comparing the expression and regulation of more than

ten thousand genes in parallel [Agapito, 2019]. Different microarray technologies, such

as, short oligonucleotides (Affymetrix, NimblGen), long oligonucleotides (Agilent, Illu-

mina), and spotted cDNA are used to generate gene expression data [Page et al., 2007].

HG-U133 Plus 2, Agilent-014850, GPL15207 are some of the microarray platforms used

for studies in humans. These expression profiling platforms measures the mRNA ex-

pression levels of thousands of genes or the entire genome in a cell at any given mo-

ment [Metsis et al., 2004]. The expression profiling data is used to study the effects of

some treatment and diseases [Fielden and Zacharewski, 2001]. For example, the gene ex-

pression patterns can be compared between the infected cells and healthy cells or tis-

sues through the microarray-based gene expression profiling technique. Some of the key
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steps involved in analyzing the microarray data are (1) feature extraction, (2) quality con-

trol, (3) normalisation, (4) differential expression analysis, and (5) biological interpretation

[Huerta and Burke, 2016]. The expression profiling platforms yields tens of thousands of

features referred as genes on often tens of patients. A typical microarray data include

around less than hundred samples and the count of genes ranges from 28000 to 57000.

2.1.2 Methylation profiling by microarray

DNA methylation (DNAm) can be defined as the addition of a methyl (CH3) group

to DNA and it occurs specifically at the cytosine part of the cytosine-guanine dinu-

cleotides (CpG) [Moore et al., 2013, Robertson, 2005]. DNAm plays a key and active

role in regulating gene expression and modifying the function of regulatory elements

[Moore et al., 2013]. The DNAm makes the cell specialized and maintain the unique traits

throughout the life of an organism, equips a mechanism for response to external stimuli,

and represses the detrimental expression of viral genes and other non-host DNA elements

[Moore et al., 2013, Portela and Esteller, 2010]. Abnormal DNA methylation, including

hypermethylation and hypomethylation, can lead to the dysregulation of cellular processes

and its effect on gene expression values have been indicated in many diseases, including

cancers [Portela and Esteller, 2010], type 2 diabetes [Dayeh et al., 2014], and chronic kid-

ney disease [Ko et al., 2013]. The Illumina Infinium HumanMethylation27 Beadchip assay

(IIHM27K) is one of the most widely used microarrays for the genome-wide DNA methyla-

tion analysis [Baker, 2010]. It quantitatively measures 27578 CpG sites (CpG dinucleotides)

that spans over 14475 consensus coding sequence genes [Pidsley et al., 2016]. The CpG sites

maps to the promoter regions of the genes with an average coverage of 2 CpG sites per

gene and extensive coverage ranging from 3 to 20 CpG sites per gene for cancer-related

genes [Bibikova et al., 2009]. The genome-wide span of IIHM27K and the 12-sample per

array format showed a key advancement over the previously designed methods that were

low-throughput and limited to a small number of genetic loci [Pidsley et al., 2016]. The

size of the DNAm data typically includes around 27000 features known as CpG sites and
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fewer than 100 samples which leads to a high-dimensional problem.

2.1.3 Expression profiling by high throughput sequencing

Expression profiling with high-throughput sequencing is a next-generation sequencing

(NGS) technology. One of the most commonly used advanced NGS technology in ge-

nomic research is RNA sequencing (RNA-seq). Many studies have been conducted to

compare the differences between the differentially expressed genes generated from microar-

ray and RNA-seq [Xu et al., 2013, Hung and Weng, 2017, Zhao et al., 2014]. RNA-seq is

also an alternative to microarray gene expression profiling [Merrick et al., 2013]. RNA-

seq technology will be used more because it allows sequencing of whole transcriptome

while the microarray allows only predefined transcripts/gene profiles through hybridization

[Qian et al., 2014, Mantione et al., 2014]. However, the RNA-seq technology when com-

pared with microarray has several disadvantages. For example, although there are many

computational tools available there is a lack of standardized protocols available for op-

timal analysis [Rao et al., 2019, Chandramohan et al., 2013, Hayer et al., 2015]. Further-

more, RNA-seq datasets are much larger compared to microarray datasets. Therefore, the

bioinformatics analysis becomes computationally intensive [Robinson and Oshlack, 2010,

Rao et al., 2019, Esteller, 2011]. The Illumina HiSeq 2500 and MGISEQ-2000 are the most

popular sequencing technology used to perform whole genome sequencing and generate

RNA-seq data [Korostin et al., 2020]. There are several key steps carried out in RNA-

seq data generation and analysis: (1) RNA isolation and extraction, (2) RNA-seq library

preparation, (3) quality analysis and pre-processing of RNA-seq data, (4) alignment to the

reference genome, (5) Measuring transcript abundance, and finally (6) differential expres-

sion analysis [Chatterjee et al., 2018].
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2.2 Feature selection methods

Feature selection (FS) is a process of removing the noisy and redundant features from the

data. It helps in boosting the performance of a classification algorithm not just in terms

of accuracy, sensitivity, and specificity but also in reducing the computational time.

The FS methods can be divided into three different categories namely filter, embedded,

and wrapper methods.

2.2.1 Filter Methods

The filter-based approaches are independent of the classification methods; therefore, they

are computationally faster than the wrapper and embedded methods. The relevant features

are selected based on distances, entropy, and uncertainty. There are many algorithms de-

veloped. Some of the best examples include Relief [Urbanowicz et al., 2018], which uses the

distance-based metric function. The ReliefF [Kononenko, 1994], which is a modified version

of Relief, is developed to handle the multi-class problems. The minimum redundancy maxi-

mum relevance (MRMR) [Peng et al., 2005] and mutual information-based feature selection

method (MIFS) [Battiti, 1994] are the FS methods that rely on mutual information criteria.

The mutual information is calculated between the individual feature and response label.

The FS method conditional mutual information maximization (CMIM) [Fleuret, 2004] re-

cursively chooses the features that provide the maximum mutual information with the

response class. The Information gain, gain ratio, and symmetrical uncertainty are the FS

methods that are based on the entropy models [Quinlan, 1986, Quinlan, 1993].

2.2.2 Embedded Methods

Embedded methods incorporate the FS process inside the classification method, which

helps in performing the feature selection and classification simultaneously. It helps re-

duce the computational time than the wrapper method; however, it is expensive when

compared to filter-based methods. The embedded method includes the pruning method,
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built-in mechanism, and regularization methods. In the pruning method, all the features

are considered during the training phase for building the classification model. The features

with lower correlation with the response variable are removed recursively using the support

vector machines. In the built-in FS method, the important features are ranked based on

their importance. The variable importance (varImp) measure in the random forest (RF)

method is the best example of a built-in measure. In the regularized methods, the penal-

ized regression (PLR) models are based on penalties and are popular in high-dimensional

data for variable selection and classification purposes. Some of the examples of the sparse

variable selection models include lasso, adaptive lasso, elastic net, smooth clipped absolute

deviation (SCAD), and minimax concave penalty (MCP).

2.2.3 Wrapper Methods

Wrapper selects the feature subsets using classification algorithm and searching techniques.

The examples of the former approach include forward selection, backward elimination, and

recursive feature elimination. The latter approach includes hill climbing and best-first

search strategies using the decision trees and naive Bayes classifiers. The wrapper methods

are computationally expensive because the features are selected based on the performance

of the classifiers or the searching techniques, which is a recursive process.

In the following sections, I will discuss some of the popular used filter methods in

gene expression studies such as fisher score, information gain, chi-square, and minimum

redundancy maximum relevance [Pirooznia et al., 2008, Dash, 2020, Alkuhlani et al., 2017,

Hira and Gillies, 2015, Duda et al., 1998].

2.2.4 Fisher score

It is supervised FS method. It assigns ranks to each feature based on the weights that are

calculated distances between the data points and classes [UM, 2013]. The weights for the

samples from the same class types are assigned similar values, and the weights for samples
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from different categories are assigned different values [Dash, 2020]. The Fisher score for

each feature is defined below:

F (j) =

∑c
k=1 nk(µ

j
k − µj)2∑c

k=1 nk(σ
j
k)

2
(2.1)

F (j) is the calculated fisher score for each feature j, class c= 0 or 1, µjk is the mean

of k-th class, σiy is the variance of k-th class, µj is the mean and σj is the variance of the

whole dataset corresponding to feature j.

2.2.5 Information Gain

The information gain (IG) method [Quinlan, 1993] is simple, and one of the widely used

FS methods. This univariate FS method is used to assess the quantity of information

shared between the training feature set xj = (xj1, xj2, ....., xjp) for j = 1, ....., t, where t

is the number of training samples, for g = 1, 2, ....p, where g is the feature in p num-

ber of features, and the response variable yj. It provides an ordered ranking of all the

features having a strong correlation with the response variable that helps to obtain good

classification performance.

The information gain between the gth feature in xj and the response variable yj is given

as follows:

IG(xj; yj) = H(xj)− H(xj|yj), (2.2)

where H(xj) is entropy of xj and H(xj|yj) is entropy of xj given yj. The en-

tropy [Li et al., 2017b] of xj is defined by the following equation:

H(xj) =
∑
g∈xj

π(g)log(π(g)), (2.3)

where g indicates discrete random variable xj and π(g) gives the probability of g on all

values of xj.

Given the random variable yj, the conditional entropy of xj is:

H(xj|yj) =
∑
y∈yj

π(y)
∑
g∈xj

π(g|y)log(π(g|y)), (2.4)
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where π(y) is the prior probability of yj; π(g|y) is conditional probability of g in a given y

that shows the uncertainty of xj given yj.

IG(xj; yj) =
∑
g∈xj

∑
y∈yj

π(g, y)log
π(g, y)

π(g)π(y)
, (2.5)

where π(g, y) is the joint probability of g and y . IG is symmetric such that IG(xj; yj) =

IG(yj;xj), and is zero if the variables xj and yj are independent.

2.2.6 Chi-Square Test

The chi-square test (Chi2) belongs to the category of the non-parametric test, which is used

mainly in determining the significant relation between two categorical variables. As part

of the pre-processing step, we used the “equal interval width” approach to transform the

numerical variables into categorical counterparts. The “equal interval width” algorithm

first divides the data into q intervals of equal size. The width of each interval is defined

as: w = (max −min)/q and the interval boundaries are determined by: min + w,min +

2w, ....,min+ (q − 1)w.

The general rule in Chi2 is that the features have a strong dependency on the class

labels selected, and the features independent of the class labels are ignored.

From the training set, xj = (xj1, ....xjp), g = 1, 2, ....p, where g is every feature in p num-

ber of features. Given a particular feature g with r different feature values [Li et al., 2017b],

the Chi2 score of that particular feature can be calculated as:

χ̃2(g) =
r∑
j=1

p∑
s=1

(Ojs − Ejs)2

Ejs
, (2.6)

where Ojs is the number of instances with the jth feature value given feature g. In addition,

Ejs =
O∗sOj∗
O

, where Oj∗ indicates the number of data instances with the feature value given

feature g, O∗s denotes the number of data instances in r, and p is total number of features.

When two features are independent, the Ojs is closer to the expected count Ejs; conse-

quently, we will have smaller Chi2 score. On the other hand, the higher Chi2 score implies
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that the feature is more dependent on the response and it can be selected for building the

model during training.

2.2.7 Minimum Redundancy Maximum Relevance

The minimum redundancy and maximum relevance method (MRMR) is built on optimiza-

tion criteria of mutual information (redundancy and relevance); hence, it is also defined

under mutual information based methods. If a feature has uniformly of expressions or if

they are randomly distributed in different classes, its mutual information with such classes

is null [Peng et al., 2005]. If a feature is expressed deferentially for different classes, it

should have strong mutual information. Hence, we use mutual information as a measure

of the relevance of features. MRMR also reduces the redundant features from the feature

set. For a given set of features, it tries to measure both the redundancy among features

and relevance between features and class vectors.

The redundancy and relevance are calculated based on mutual information, which is as

follows: We know that, in the training set xj, g = 1, ...., p represents every feature in xj

and yj is the response variable.

I(g, y) =
∑
g∈xj

∑
y∈yj

log
π(g, y)

π(g)π(y)
, (2.7)

In the following equation, for simplicity, let us consider the training set xj as X and

response variable yj as Y . The objective function is shown below:

JMRMR(XS, Y ) =
1

|S|
∑
i∈S

I(Xi, Y )− 1

|S|2
∑
i,j∈S

I(Xi, Xj), (2.8)

where S is the subset of selected features and Xi is the ith feature. The first term is a

measure of relevance that is the sum of mutual information of all the selected features in

the set S with respect to the output Y . The second term is measure of redundancy that

is the sum of the mutual information between all the selected features in the subset S.

By optimizing the Equation (2.8), we are maximizing the first term and minimizing the

second term simultaneously.
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2.2.8 Random forest variable importance

There are several types of variable importance measures by the RF algorithm. The first is

derived based on statistical random permutation tests, and the other measure is calculated

based on the training of the RF classifier [Strobl et al., 2007, Guyon et al., 2002].

The RF classifier, while training the model, performs the feature selection process im-

plicitly by choosing a small number of important variables for classification purposes, which

leads to higher performance. The implicit feature selection measure carried out by the

RF algorithm is termed as Gini importance and is used as a symbol of feature relevance

[Menze et al., 2009]. The scores are assigned to each feature and are ranked based on the

importance measure given by the RF classifier.

At every node O in trees T , the ideal split is investigating with the Gini impurity i(O).

The Gini impurity i(O) is a computational measure of how good a ideal split is dividing the

training data samples of two classes in a given node. Among the total number of training

samples Xt, Let Rk = Sk

Xt
be the small amount of data samples Sk from class k = 0, 1 at

node O, The iO is computed as follows:

i(O) = 1−R1
2 −R0

2 (2.9)

The decrease of Gini ∆i that comes from dividing and sending the training data samples

to two sub-nodes Ol and Or where Rl = Sl

Xt
and Rm = Sm

Xt
are the corresponding fractions

and the threshold tφ on feature φ is calculated as:

∆i(O) = i(O) − Rl i(Ol) −Rm i(Om) (2.10)

During the exhaustive search conducted across all the variables φ present at the

node and on all the thresholds tφ, the pair φ, tφ that leads to a maximal ∆i is solved

[Menze et al., 2009]. The decrease in Gini impurity [Menze et al., 2009] is obtained from

this ideal split ∆iφ(O,E) and collected for all the nodes o in the binary trees E, individually

for all the features φ.
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GI(φ) =
∑
E

∑
O

∆iφ(O,E) (2.11)

2.3 Supervised classification methods

There is a broad range of algorithms that can be applied for labeled data such as tree-

based methods, discriminant analysis, and PLR models. The popular tree-based methods

include random forest and adaptive boosting [Chen and Ishwaran, 2012]. The random

forests are built on the concept of decision trees. The idea is to operate as an ensemble

method instead of relying on a single method. It is based on the concept of bagging and

majority voting. The Adaptive boosting method is an ensemble learning technique where

it improves the single weak boosting algorithm through an iterative process. The support

vector machines detect the maximum margin hyperplane by maximizing the distance be-

tween the hyperplane and the closest dot. The maximum margin indicates that the classes

are well separable and correctly classified. The PLR models are built on the concept of

penalties including L1 and L2.

In the following sub-sections, we will discuss the tree-based methods, support vector

machines, and PLR models [Bielza et al., 2011].

2.3.1 Logistic Regression

Logistic regression (LR) is perhaps one of the primary and popular models used while

dealing with binary classification problems [Liao and Chin, 2007]. Logistic regression for

dealing with more than two classes is called multinomial logistic regression. The primary

focus here is on the binary classification. Given the set of inputs, the output is a pre-

dicted probability that the given input point belongs to a particular class. The output is

always within [0, 1]. Logistic regression is based on the assumption that the original input

space can be divided into two separate regions, one for each class, by a plane. This plane

helps to discriminate between the dots belonging to different classes and is called as linear
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discriminant or linear boundary.

One of the limitations is the number of parameters that can be estimated needs to be

smaller and should not exceed the number of samples.

2.3.2 Regularized Regression Models

Regularization is a technique used in logistic regression by employing penalties to overcome

the limitations of dealing with high-dimensional data. Here, we discuss the PLR models

such as lasso, adaptive lasso, elastic net, SCAD, and MCP. These five methods are included

in the proposed ensembles of regularized regression models (ERRM) and also tested as

independent classifiers for comparing performance with the ERRM.

Let us consider the training set as xj = (xj1, xj2, ....., xjf ) for j = 1, ....., t, where t is

the number of training samples, the response variable yj for the training set. The logistic

regression equation:

log

(
π(yj = 1|xj)

1− π(yj = 1|xj)

)
= β0 + βxj, (2.12)

where xj is the training data, j = 1....t and β = (β1...βf )
T with f denoted as features in

training data.

From logistic regression Equation (2.12), the log-likelihood estimator is shown as below:

l(β, yj) =
t∑

j=1

{yjlog(π(yj = 1|xj)) + (1− yj)log(1− π(yj = 1|xj))}. (2.13)

Logistic regression offers the benefit by simultaneous estimation of the probabilities

π(xj) and 1-π(xj) for each class. The criterion for prediction is I{π(yj = 1|xj) ≥ 0.5},

where I(·) is an indicator function.

The parameters for PLR are estimated by minimizing above function:

β̂PLR = argmin
β

[
− l(β, yj) + p(β)

]
, (2.14)

where p(β) is a penalty function, l(β, yj) is the log-likelihood function.
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Lasso is a widely used method in variable selection and classification purposes in high

dimensional data. It is one of the five methods used in the proposed ERRM for classification

purposes. The lasso PLR method is defined below:

β̂lasso = argmin
β

[
− l(β, yj) + λ

f∑
j=1

|βj|

]
(2.15)

where f is the reduced number of features; λ is the tuning parameter that controls the

strength of the L1 penalty.

The oracle property [Fan and Li, 2001] has consistency in variable selection and asymp-

totic normality. The lasso works well in subset selection; however, it lacks the oracle

property. To overcome this, different weights are assigned to different coefficients: this

describes a weighted lasso called adaptive lasso. The adaptive lasso (ALASSO) penalty is

shown below:

β̂ALASSO = argmin
β

[
− l(β, yj) + λ

f∑
j=1

wj|βj|

]
, (2.16)

where f is the reduced number of features, λ is the tuning parameter that controls the

strength of the L2 penalty, and wj is the weight vector based on ridge estimator. The ridge

estimator [Marquardt and Snee, 1975] uses the L2 regularization method which obtains the

size of coefficients by adding the L2 penalty.

The elastic net (ENET) [Zou and Hastie, 2005] is the combination of lasso which uses

the L1 penalty, and ridge which uses the L2 penalty. The sizable number of variables is

obtained, which helps in avoiding the model turning into an excessively sparse model.

The ENET penalty is defined as:

β̂ENET = argmin
β

[
− l(β, yj) + λ

(
1− α

2

f∑
j=1

|βj|2 + α

f∑
j=1

|βj|

)]
, (2.17)

where λ is the tuning parameter that controls the penalty, f is the number of features, α

is the mixing parameter between ridge α = 0 and lasso α = 1.

The smoothly clipped absolute deviation penalty (SCAD) [Fan and Li, 2001] is a sparse

logistic regression model with a non-concave penalty function. It improves the properties of
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the L1 penalty. The regression coefficients are estimated by minimizing the log-likelihood

function:

β̂scad = argmin
β

[
− l(β, yj) + λ

f∑
j=1

pλ(βj)

]
. (2.18)

In Equation (2.18) the pλ(βj) is defined by:

|βi|I(|βj |≤λ) +

(
{(c2 − 1)λ2 − (cλ− |βj|)2

+}I(λ ≤ |βj|)
2(c− 1)

)
, c > 2 and λ ≥ 0 . (2.19)

Minimax concave penalty (MCP) [Zhang, 2010] is very similar to the SCAD. However,

the MCP relaxes the penalization rate immediately, while for SCAD, the rate remains

smooth before it starts decreasing. The MCP equation is given as follows:

β̂mcp = argmin
β

[
− l(β, yj) + λ

f∑
j=1

pλ(βj)

]
. (2.20)

In Equation (2.20) the pλ(βj) is defined as:(2cλ|βj| − β2
j

2c

)
I(|βj| ≤ cλ) +

(cλ2

2

)
I(|βj| > cλ), for λ ≥ 0 and c > 1. (2.21)

2.3.3 Random Forests

The random forest (RF) [Breiman, 2001] is an interpretive and straightforward method

commonly used for classification purposes in bioinformatics. It is also known for its variable

importance ranking in high dimensional data sets. RF is built on the concept of decision

trees. Decision trees are usually more decipherable when dealing with binary responses.

The idea of RF is to operate as an ensemble instead of relying on a single model. RF is a

combination of a large number of decision trees where each tree has some random subset

of features obtained from the data by allowing repetitions. This process is called bagging.

The majority voting scheme is applied by aggregating all the tree models and obtaining

one final prediction.
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2.3.4 Support Vector Machines

Support vector machines (SVM) [Hearst et al., 1998] are well known amongst most of the

mainstream algorithms in supervised learning. The main goal of a SVM is to choose a

hyperplane that can best divide the data in the high dimensional space. This helps to

avoid overfitting. The SVM detects the maximum margin hyperplane, the hyperplane

that maximizes the distance between the hyperplane, and the closest dots [Li et al., 2010].

The maximum margin indicates that the classes are well separable and correctly classi-

fied. It is represented as a linear combination of training points. As a result, the decision

boundary function for classifying points as to hyperplane only involves dot products be-

tween those points.

2.3.5 Adaboost

Adaboost is also known as adaptive boosting (AB) [Freund, 2001]. It improves the perfor-

mance of a particular weak boosting classifier through an iterative process. This ensemble

learning algorithm can be extensively applied to classification problems. The primary ob-

jective here is to assign more weights to the patterns that are harder to classify. Initially,

the same weights are assigned to each training item. The weights of the wrongly classified

items are incremented while the weights of the correctly classified items are decreased in

each iteration. Hence, with the additional iterations and more classifiers, the weak learner

is bound to cast on the challenging samples of the training set.

2.3.6 Naive Bayes

Naive Bayes is a probabilistic method that takes the benefits of probability theory and the

Bayes theorem [Patil et al., 2020a, Friedman et al., 1997]. The rule of thumb is that all the

features being classified needs to be independent. Given the reduced training data after

FS stage, Let Yt be denoted as the random variable indicating the class and Xr denotes

random variable indicating the observed values. y is response and x represents a given
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value in Xr. Given a new test sample Xk from the testing data Xt to classify, each class

probability can be accessed by using the Bayes theorem:

p(Yt = y|Xr = x) =
p(Yt = y)p(Xr = x|Yt = y)

p(Xr = x)
(2.22)

Since, p(Xr = x) is a common factor for a given sample, it can be ignored during the

classification process [Soria et al., 2011]. The Naive Bayes classifier can be obtained by

imposing the class-conditional independence among the features:

p(Xr = x|Yt = y) =
u∏
t=1

p(Xr = x|Yt = y) (2.23)

We can use the probability density value f(Xr = x|Yt = y) replacing the probability

value p(Xr = x|Yt = y). The class-conditional probability density f(.|Yt = y) for each

attribute value and prior p(Yt = y) can be obtained from the learning phase. The final

Naive Bayes classification model can be calculated based on the kernel density estimation

as follows:

nb∗ = argmax
y∈Ω

p(Yt = y)
u∏
t=1

f(Xr = x|Yt = y) (2.24)

2.4 Performance metrics

We evaluated the results of combinations of FS methods with the classifier using accuracy

and geometric mean (Gmean). The metrics are detailed with respect to true positive

(TP), true negative (TN), false negative (FN), and false positive (FP). The equations for

accuracy and Gmean are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Gmean =
√

Sensitivity× Specificity,

(2.25)
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where the sensitivity and specificity are given by:

Sensitivity =
TP

TP + FN
and Specificity =

TN

TN + FP
. (2.26)

2.5 Functional enrichment analysis

Functional enrichment analysis helps to gain mechanistic insight into the differentially

expressed gene lists and co-expressed gene sets generated from multi-omics experiments

[Müller et al., 2019, Zhang et al., 2020]. Identifying the relationship between genes in dif-

ferent function classification system allows to explore biological questions. It is impor-

tant to characterize gene-function relations by mining the functional associations among

gene sets [Zhang et al., 2020]. There are various types of databases that are designed for

identifying gene function classification. The most popular databases that provide gene-

function interpretations for the biologists are gene ontology (GO) [Carbon et al., 2019],

Kyoto encyclopedia of genes and genomes (KEGG) [Kanehisa et al., 2012], Reactome

[Fabregat et al., 2016], and DISEASE [Pletscher-Frankild et al., 2015]. There are several

analytic approaches developed to decipher the biological significance of the specific gene sets

from different gene-function databases [Zhang et al., 2020]. Over-representation analysis

(ORA) is most widely used in exploring the gene sets [Khatri et al., 2012]. Pathway analy-

sis tools are developed based on certain key statistical methods such as Fisher’s exact, Hy-

pergeometric, Chi-square, and Bayesian test [Huang et al., 2009a]. DAVID bioinformatics

is the most commonly used database for gene set enrichment analysis [Huang et al., 2009b].

There are many other tools available that are also used for enrichment analysis such

as Allenricher, Enrichr, GO-Elite, clusterProfilers, FunSet, g:Profiler, gene set enrich-

ment analysis (GSEA), Ingenuity pathway analysis (IPA), Cytoscape, EnrichmentMap

[Müller et al., 2019, Shi Jing et al., 2015, Zhang et al., 2020].
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2.6 Protein-protein interactions

Protein-protein Interactions (PPI) are used for knowing the fundamental processes and

molecular organization in living cells [Peng et al., 2017]. High-throughput experiments

such as yeast two-hybrid assay [Ito et al., 2002], affinity purification mass spectrom-

etry (AP-MS) [Köcher and Superti-Furga, 2007], genome-wide PPIs are developed for

many organisms such as, Drosophila melanogaster and Homo sapiens [Giot et al., 2003,

Rolland et al., 2014]. There are many publicly available PPI databases that collect the

interactions derived from various sources such as high-throughput experiments, low-

throughput experiments, and computational predictions [Dong and Provart, 2018]. These

methods have their own limitations. High-throughput and computational predictions

including machine learning algorithms outputs large number of PPIs quickly but are

lower quality interactions [Braun et al., 2009, Li and Ilie, 2017, Sarkar and Saha, ]. Low-

throughput experiments generally develop high quality interactions but the error-rate that

occur during curation process can also be high [Cusick et al., 2009].

The interactions collected from various sources are stored into databases. There are sev-

eral PPI databases available such as botony array resource (BAR) [Toufighi et al., 2005],

BioGrid [Stark et al., 2006], BioPlex [Huttlin et al., 2015], InnateDB [Breuer et al., 2013],

Mentha [Calderone et al., 2013], and STRING [Szklarczyk et al., 2017]. STRING is the

most widely used PPI database. The PPI networks are constructed using various compu-

tation tools that retrieve the interactions from PPI databases. Some of the computational

tools used for network construction tools includes Cytoscape [Shannon et al., 2003], igraph,

and NetworkX [Dong and Provart, 2018]. Among these tools Cytoscape is an open source

tool that is widely used for molecular visualization and analysis [Dong and Provart, 2018].
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Chapter 3

A two-stage resampling-based feature selection and

ensembles-based classification approach in

high-throughput data

The content of this chapter has been published in [Patil and Kim, 2020]

3.1 Introduction

The two-stage approach of handling gene expression data has gained popularity over the

past years [Sun et al., 2019, Kim and Kim, 2019, Elyasigomari et al., 2017]. The feature

selection (FS) approach is the first stage where most of the lowly expressed genes are

removed. The significantly expressed genes are passed on to the classifiers that help

improve the classifiers’ prediction performance. Information gain (IG) [Quinlan, 1993],

minimum redundancy maximum relevance (MRMR) [Peng et al., 2005], Chi-square (Chi2)

[Iguyon and Elisseeff, 2003] are some of the FS methods popularly used in literature to

reduce the dimensionality of the data by removing noisy and irrelevant features. There

are several non-parametric and parametric algorithms widely used for the classification

of microarray data. Some non-parametric models include random forests (RF), adaptive

boosting(AdaBoost), and support vector machines (SVM) which are non-parametric

models [Breiman, 2001, Hearst et al., 1998, Freund, 2001]. The parametric models have

gained popularity in high-throughput studies [Hastie et al., 2009]. Some of the para-

metric models include least absolute selection shrinkage selection operator (LASSO)

[Tibshirani, 1996] and ridge [Marquardt and Snee, 1975] that are based on L1 and L2

penalties. Adaptive lasso (ALASSO) which takes ridge method weights. Elastic net
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(ENET) [Wang et al., 2019] that is a combination of L1 and L2 penalty. The other two

parametric models are non-concave and concave penalty-based smooth clipped absolute

deviation (SCAD) [Fan and Li, 2001] and minimum concave penalty (MCP) [Zhang, 2010],

respectively. Although these individual FS and classification methods perform well, they

lack in achieving higher prediction accuracy. To overcome the drawbacks of these in-

dividual methods, several ensemble-based classification algorithms have been proposed

in literature [Dietterich, 2000, Opitz and Maclin, 1999]. The ensemble-based methods

are bagging and aggregating methods that are employed to improve the accuracy of

several ”weak” classifiers [Datta et al., 2010, Breiman, 1996, Freund and Schapire, 1997].

Another tree-based method of classification by ensembles from random partitions (CERP)

showed good performance but was computer-intensive [Ahn et al., 2007]. The ensembles of

logistic regression models (LORENS) for microarray data were proven to be more efficient

for classification [Ahn et al., 2007]. However, these models suffered from a decrease in

performance because of the smaller number of significant variables in high-dimensional

space due to random partitioning. To address these issues, there is a need to develop

a novel two-stage approach FS and classification algorithm and compare the proposed

two-stage method’s performance with the other combinations of popular FS and classifiers

by performing extensive simulation studies and a real data application. It is important to

filter our redundant and irrelevant features through FS methods, which further reduces

computational time and boosts classification accuracy.

This chapter introduces the combination of an ensemble classifier with an FS method—

the resampling-based lasso feature selection (RLFS) method for ranking features and en-

semble of regularized regression models (ERRM) for classification purposes. The resampling

approach was proven to be one of the best FS screening steps in a high-dimensional data

setting [Patil and Kim, 2020]. The RLFS uses the selection probability with lasso penalty,

and the threshold for selecting the top-ranked features is set using the b-SIS condition, and

these select features were applied to the ERRM to achieve the best prediction accuracy.

The ERRM uses five individual regularization models, LASSO, ALASSO, ENET, SCAD,
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and MCP. We compare the performance of two-stage RLFS-ERRM combination with other

combinations of FS and classifiers. Some of the individual FS methods include IG, Chi2,

and MRMR. The individual classifiers include LASSO, ALASSO, ENET, SCAD, MCP,

ADABOOST, RF, LR, SVM[Patil and Kim, 2020]. These individual FS and classification

methods are discussed earlier in Chapter 2

3.2 Data

3.2.1 Synthetic Data Setup

The data were generated based on a random multivariate normal distribution where the

mean was assigned as 0, and the variance-covariance matrix
∑

x adapts a compound sym-

metry structure with the diagonal items set to 1 and the off-diagonal items being ρ values.

∑
x

=


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1


p×p

. (3.1)

The class labels were generated using the Bernoulli trails with the following probability:

πi(yi = 1|xi) =
exp(xiβ)

1 + exp(xiβ)
. (3.2)

The data matrix xi ∼ Np(0,
∑

x) was generated using the random multivariate normal

distribution, and the response variable yi was generated by binomial distribution, as shown

in Equations (3.1) and (3.2) respectively. For sufficient comparison of the performance of

the model and subsidizing the effects of the data splits, all of the regularized regression

models were built using the 10-fold cross-validation procedure, and the averages were taken

over 100 partitioning times referred to as 100 iterations in this paper. The data generated

are high-dimensional in nature with the number of samples, n = 200 and total features, p

= 1000. The true regression coefficients were set to 25, which were generated using uniform

distribution with the minimum and maximum values 2 and 4, respectively.

26



With this setup of high-dimensional data, we simulated three different types of data,

each with correlation structures ρ = 0.2, 0.5, and 0.8 respectively. These values show the

low, intermediate, and high correlation structures in the datasets which are significantly

similar to what we usually see in the gene expression or others among many types of data in

the field of bioinformatics [Kim and Kim, 2019]. At first, the data were divided randomly

into training and testing sets with 75% and 25% of samples respectively; 75% of the training

data was given to the FS methods, which ranked the genes concerning their importance,

and then the top-ranked genes were selected based on b-SIS condition. The selected genes

were applied in all the classifiers. For standard comparison and mitigating the effects of the

data splitting, all of the regularized regression models were built using the 10-fold cross-

validation; the models were assessed for testing the performance with the testing data using

different evaluation metrics, and averages were taken over 100 splitting times referred to

as 100 iterations.

3.2.2 Experimental Data Setup

To test the performance of the proposed combination of ERRM with RLFS, and compare

it with the rest of the combinations of FS and classifiers, the gene expression data SMK-

CAN-187 were analyzed. The data include 187 samples and 19,993 genes obtained from

smokers, which included 90 samples from those with lung cancer and 97 samples from those

without lung cancer. This data is high-dimensional, with the number of genes being 19,993.

The preprocessing procedures are necessary to handle these high-dimensional data. At first,

the data were randomly divided into training and testing sets with 75% and 25% of samples

respectively. As the first filtering step, 75% of the training data were given to the marginal

maximum likelihood estimator (MMLE), to overcome the redundant noisy features, and

the genes were ranked based on their level of significance. The ranked significant genes

were next applied to the FS methods along with the proposed RLFS method as the second

filtering step, and a final list of truly significant genes was obtained. These significant

genes were applied to all the classification models along with the proposed ERRM classifier.
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All of the models were built using the 10-fold cross-validation. The average classification

accuracy and Gmean of our proposed framework were tested using the test data. The above

procedure was repeated for 100 times and the averages were taken.

3.3 The two-stage proposed RLFS-ERRM framework

3.3.1 The Resampling-Based Lasso Feature Selection

From [Kim and Kim, 2019], we see that the resampling-based FS is relatively more efficient

in comparison to the other existing FS methods in gene expression data. The RLFS method

is based on the lasso penalized regression method and the resampling approach employed

to obtain the ranked important features using the frequency.

The least absolute shrinkage and selection operator (LASSO) [Tibshirani, 1996] estima-

tor is based on L1-regularization. The L1-regularization method limits the size of coeffi-

cients pushes the unimportant regression coefficients to zero by using the L1 penalty. Due

to this property, variable selection is achieved. It plays a crucial role in achieving better

prediction accuracy along with the gene selection in bioinformatics.

β̂lasso = argmin
β

[
−

t∑
j=1

{yjlog(π(yj = 1|xj)) + (1− yj)log(1− π(yj = 1|xj))}+ λ

p∑
j=1

|βj|

]
.

(3.3)

The selection probability S(fm) of the features based on the lasso is shown in the below

equation.

S(fm) =
1

R

R∑
i=1

1

L

L∑
j=1

I(βijm 6= 0), for m = 1, 2, ..., p. (3.4)

The b-SIS criteria to select the top k ranked features is defined by,⌈
b× n

log(n)

⌉
, (3.5)

where R is defined by the total number of resampling, L is total number of λ values, fm

is the feature indexed as i, p is total number of features, n is total number of samples,
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and βijm is defined as regression coefficient of mth feature and I() indicator variable. Each

R number of resamples and L number of values of λ are considered to build the variable

selection model. The 10-fold cross validation is considered while building the model.

After ranking the features using the RLFS method, we employ the b-SIS approach to

select the top features based on Equation (3.5) where b is set to two. The number of true

important variables selected among the top b-SIS ranked features is calculated in each

iteration and the average of this is taken over 100 iterations.

3.3.2 The Ensembles of Regularized Regression Models

LASSO, ALASSO, ENET, SCAD, and MCP are the five individual regularized regression

models included as base learners in our ERRM. The role of bootstrapped aggregation or

bagging is to reduce the variance by averaging over an “ensemble” of trees, which will

improve the performance of weak classifiers. B = Bk
1 , ...., B

k
M is the number of random

bootstrapped samples obtained from reduced training set xr with corresponding class label

yj. The five regularized regression models are trained on each bootstrapped sample B

named sub-training data, leading to 5×B models. These five regularized models are then

trained using the 10-fold cross-validation to predict the classes on the out of bag samples

called sub-testing data where the best model fit in each of the five regularized regression

model is obtained. Henceforth, in each of the five regularized models, the best model is

selected and the testing data xk is applied to obtain the final list of predicted classes for each

of these models. For binary classification problems, in addition to accuracy, the sensitivity

and specificity are primarily sought. The E evaluation metrics are computed for each

of these best models of five regularized models. In order to get an optimized classifier

using all the evaluation measures E is essential, and this is achieved using weighted rank

aggregation. Here, each of the regularized models is ranked based on the performance of E

evaluation metrics. The models are ranked based on the increasing order of performance;

in the case of a matching score of accuracy for two or more models, other metrics such

as sensitivity and specificity are considered. The best performing model among the five
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models is obtained based on these ranks. This procedure is repeated to obtain the best

performing model in each of the tree T . Finally, the majority voting procedure is applied

over the T trees to obtain a final list of predicted classes. The test class label is applied

to measure the final E measures for assessing the performance of the proposed ensembles.

The Algorithm 1 defines the proposed ERRM procedure.

Algorithm 1 Proposed ERRM

Step 1: Obtain new training data xr with most informative features using the proposed

RLFS method.

Step 2: Draw bootstrap samples from xr and apply them to each of the regularized

methods to be fitted with 10-fold cross validation.

Step 3: Apply out of bag samples (OOB) not used in bootstrap samples to the above

fitted models to choose the best model using E evaluation metrics.

Step 4: Repeat steps 2 and 3 until getting 100 bootstrap models.

Step 5: Apply testing set xk to each of 100 models to aggregate votes of classification.

Step 6: Predict classification of each sample by the rule of majority voting in the testing

set.

The complete workflow of the proposed RLFS-ERRM framework is shown in Figure 3.1.
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Figure 1. The complete workflow depicting the proposed combination of RLFS-ERRM framework

Figure 3.1: The complete workflow depicting the proposed combination of RLFS-ERRM

framework.
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3.4 Results

3.4.1 Simulation Results

The data is generated based on a random multivariate normal distribution where the mean

is assigned as 0 and the variance-covariance matrix
∑

X adapts a compound symmetry

structure with the diagonal items set to 1 and the off-diagonal items being ρ values.

∑
X

=


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1


p×p

(3.6)

The class labels are generated using the Bernoulli trails with the following probability:

πi(yi = 1|xi) =
exp(xiβ)

1 + exp(xiβ)
(3.7)

The data matrix xi ∼ Np(0,
∑

x) is generated using the random multivariate normal

distribution and the response variable yi is generated by binomial distribution as shown in

(3.6) and (4.2) respectively. For sufficient comparison of the performance of the model and

subsidizing the effects of the data splits, all of the regularized regression models were built

using the 10-fold cross validation procedure, the averages were taken over 100 partitioning

times referred as 100 iterations in this paper. The data generated are high-dimensional

in nature with the number of samples, n = 100 and total features, p = 1000. The true

regression coefficients are set to 25 which are generated using uniform distribution with the

min and max values 2 and 4, respectively.

With this set up of high-dimensional data, we simulated three different types of data

each with correlation structures ρ = 0.2, 0.5 and 0.8 respectively. These values show the

low, medium and high correlation structures in the data sets which are significantly similar

to what we usually see in the gene expression or others among many types of data in the

field of bioinformatics [Kim and Kim, 2019].
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The prediction performance of any given model is largely dependent on the type of

features. The features having an effect on the class will help in attaining the best prediction

accuracies. In Figure 3.2 we see the RLFS method with the top-ranked features based on

the k-SIS criterion includes the more true number of important features than other existing

FS methods such as IG, Chi2, and MRMR used for comparison in this study. The proposed

RLFS is performing consistently better across low, medium and highly correlated simulated

data and the positive effect of having more number of true important variables is seen in

all three simulation scenarios and further explained in detail.

Simulation Scenario (S1): low correlation 0.2

The predictors are generated having a low correlation structure with ρ = 0.2. The pro-

posed classifier ERRM is performing better than existing classifier on all the FS methods:

proposed RLFS, IG, Chi2 and MRMR. In addition, the proposed combination of RLFS

method and ERRM classifier, with the accuracy and Gmean, each of which is 0.8606 and

0.8626 with the standard deviations (SD) of 0.049 and 0.073 respectively, is relatively

better in comparison to other combinations of FS method and classifier such as RLFS-

LASSO, RLFS-ALASSO, RLFS-ENET and the other remaining combinations as observed

in Figure 3.3. The combination of the FS method IG with proposed ERRM with accuracy

and SD of 0.8476 and 0.052 is also seen performing better than IG-LASSO, IG-ALASSO,

IG-ENET, IG-SCAD, IG-MCP, IG-ABOOST, IG-RF, IG-LR, and IG-SVM. Similarly, the

combination of Chi2-ERRM with an accuracy of 0.8538 and a SD of 0.053 is seen better

than FS method Chi2 with the other remaining classifiers. The results are reported in

Table 3.1. The combination of MRMR-ERRM has an accuracy of 0.8550 and Gmean of

0.8552 is better than the combination of FS method MRMR with the rest of the nine clas-

sifiers. The performance of proposed ERRM shows that ensembles approach is better than

using individual classifiers.
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Figure 3.2: True number of features selected among top k-SIS ranked features and the

average of this taken over 100 iterations for three different scenarios. RLFS- Resampling-

based lasso feature selection; IG- Information Gain; Chi2- Chi-square; MRMR- Minimum

redundancy maximum relevance;

All the classifiers with the features obtained from RLFS method achieved best accuracies

in comparison to other FS methods. The combination of RLFS with SVM showed the

second-best performance. It explains the characteristic of SVM working well with the

proposed RLFS as it selected the best features in comparison to other FS methods. In

general, the SVM classifier showed very competitive performance with all the FS methods.

The ENET method which is a combination of L1 and L2 penalty showed best perfor-
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mance among all the regularized regression models with all the FS methods, and the best

accuracy obtained with RLFS. This can be justified because of the known characteristic of

ENET performing well in the high dimensional setting.

In summary, when we compare the average accuracies across all the combinations of

FS method and classifiers, the proposed combination of RLFS-ERRM is having better

performance than the other existing combinations of the FS and classifier without the

proposed FS method RLFS and classifier ERRM itself. For example, the existing FS

methods IG, Chi2, and MRMR with the eight existing individual classifiers performance

are lower than the proposed RLFS-ERRM combination shown in the Table 3.1.

Simulation Scenario (S2): medium correlation 0.5

The predictor variables are generated using medium correlation structure with ρ = 0.5.

The proposed combination of RLFS method and ERRM classifier, with the accuracy and

Gmean, each of which is 0.9256 and 0.9266 with the standard deviations (SD) of 0.037 and

0.053. respectively, attained relatively better performance compared to other combinations

of FS method and classifier such as RLFS-LASSO, RLFS-ALASSO, RLFS-ENET and the

other remaining combinations. The results are shown in Table 3.2. From Figure 3.4, we

see that the proposed ensemble classifier ERRM with other FS methods such as IG, Chi2,

and MRMR is performing best compared to the other nine individual classifiers.

The SVM and ENET classifiers with the RLFS method attained accuracies of 0.9256

and 0.9244 respectively. These accuracies are almost similar to the combination of ERRM-

RLFS but the combination of ERRM-RLFS, with the Gmean of 0.9266 and SD of 0.053,

outperforms the SVM and ENET classifiers. The average SD of the proposed combination

of the ERRM-RLFS is smaller than other combination of FS method and classifier. This

shows the robustness of the proposed combination. The accuracies of SVM and ENET

with the IG method are 0.9128 and 0.9150 respectively. These are relatively low compared

to the accuracy of 0.9184 achieved by ERRM with IG. Similarly, the ERRM with the

Chi2 method having an accuracy of 0.9160 showed relatively better performance than the
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competitive classifiers ENET and SVM which acquired an accuracy of 0.9122 and 0.9098

respectively. Further, the ERRM classifier with the MRMR method having an accuracy of

0.9174 showed better performance than ENET, SVM, and other top-performing individual

classifiers. While the SVM and ENET classifiers showed promising performance on the

RLFS that had a good number of important features failed to show the same consistency on

the other FS methods where there was more noise. On the other hand, the ensembles ERRM

showed robust behavior, with being able to withstand the noise that helps in attaining

better prediction accuracies and Gmean, not only with the RLFS method but also with

other FS methods such as IG, Chi2, and MRMR.
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Figure 3.3: Boxplot showing the accuracies of Classifiers with FS methods in simulation scenario:

S1. RLFS- Resampling-based lasso feature selection; IG- Information Gain; Chi2- Chi-square;

MRMR- Minimum redundancy maximum relevance; ERRM- Ensembles of regularized regression

models; LASSO: Least absolute selection shrinkage operator; ALASSO: Adaptive lasso; SCAD:

Smooth clipped absolute deviation; MCP: Minimum concave penalty; ENET: Elastic Net; LR:

Logistic regresion; RF: Random Forest; SVM: Support vector machine; AB: AdaBoost
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Table 3.1: Average values taken over 100 iterations in simulation scenario: S1

FS

+

Classifier

Proposed RLFS IG Chi2 MRMR

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Proposed

ERRM

0.8606

(0.049)

0.8626

(0.073)

0.8476

(0.052)

0.8483

(0.079)

0.8538

(0.053)

0.8551

(0.071)

0.8550

(0.049)

0.8552

(0.075)

LASSO
0.8486

(0.052)

0.8504

(0.075)

0.8316

(0.054)

0.8335

(0.083)

0.8310

(0.052)

0.8323

(0.071)

0.8388

(0.051)

0.8393

(0.077)

ALASSO
0.8402

(0.054)

0.8416

(0.077)

0.8198

(0.051)

0.8217

(0.079)

0.8160

(0.053)

0.8171

(0.075)

0.8304

(0.051)

0.8313

(0.079)

ENET
0.8564

(0.048)

0.8584

(0.072)

0.8424

(0.054)

0.8441

(0.081)

0.8494

(0.046)

0.8509

(0.067)

0.8508

(0.052)

0.8508

(0.077)

SCAD
0.8440

(0.054)

0.8457

(0.080)

0.8264

(0.057)

0.8283

(0.086)

0.8226

(0.061)

0.8239

(0.077)

0.8330

(0.056)

0.8336

(0.081)

MCP
0.8078

(0.049)

0.8095

(0.081)

0.8050

(0.062)

0.8074

(0.088)

0.7936

(0.060)

0.7952

(0.085)

0.8110

(0.060)

0.8126

(0.082)

ABOOST
0.8390

(0.051)

0.8224

(0.077)

0.8314

(0.060)

0.8328

(0.080)

0.8422

(0.054)

0.8435

(0.075)

0.8432

(0.054)

0.8437

(0.075)

RF
0.8432

(0.057)

0.8467

(0.084)

0.8414

(0.052)

0.8435

(0.078)

0.8498

(0.053)

0.8520

(0.075)

0.8522

(0.051)

0.8534

(0.077)

LR
0.8474

(0.050)

0.8489

(0.076)

0.8330

(0.053)

0.8346

(0.080)

0.8370

(0.054)

0.8380

(0.073)

0.8394

(0.051)

0..8394

(0.080)

SVM
0.8582

(0.049)

0.8595

(0.070)

0.8312

(0.052)

0.8320

(0.083)

0.8404

(0.054)

0.8416

(0.074)

0.8388

(0.049)

0.8378

(0.084)
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Table 3.2: Average values taken over 100 iterations in simulation scenario: S2

FS

+

Classifier

Proposed RLFS IG Chi2 MRMR

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Proposed

ERRM

0.9256

(0.037)

0.9266

(0.053)

0.9184

(0.039)

0.9195

(0.059)

0.9160

(0.038)

0.9165

(0.056)

0.9174

(0.042)

0.9176

(0.056)

LASSO
0.9146

(0.037)

0.9155

(0.053)

0.9034

(0.045)

0.9046

(0.061)

0.9020

(0.043)

0.9029

(0.063)

0.9066

(0.045)

0.9065

(0.062)

ALASSO
0.9056

(0.039)

0.9062

(0.056)

0.8956

(0.044)

0.8966

(0.065)

0.8948

(0.046)

0.8954

(0.065)

0.8984

(0.046)

0.8982

(0.062)

ENET
0.9244

(0.038)

0.9253

(0.052)

0.9150

(0.044)

0.9163

(0.061)

0.9122

(0.039)

0.9130

(0.060)

0.9158

(0.043)

0.9155

(0.058)

SCAD
0.9102

(0.041)

0.9110

(0.060)

0.8974

(0.046)

0.8986

(0.0630

0.8964

(0.045)

0.8972

(0.065)

0.9030

(0.045)

0.9030

(0.059)

MCP
0.8850

(0.047)

0.8855

(0.066)

0.8798

(0.050)

0.8813

(0.068)

0.8772

(0.045)

0.8782

(0.065)

0.8738

(0.049)

0.8738

(0.070)

ABOOST
0.9158

(0.035)

0.9166

(0.050)

0.9014

(0.046)

0.9027

(0.065)

0.9102

(0.040)

0.9112

(0.060)

0.9072

(0.047)

0.9075

(0.062)

RF
0.9148

(0.039)

0.9166

(0.055)

0.9186

(0.041)

0.9199

(0.059)

0.9154

(0.042)

0.9167

(0.060)

0.9116

(0.043)

0.9127

(0.060)

LR
0.9124

(0.037)

0.9127

(0.054)

0.9054

(0.043)

0.9063

(0.061)

0.9018

(0.045)

0.9024

(0.063)

0.9092

(0.043)

0.9084

(0.060)

SVM
0.9256

(0.038)

0.9261

(0.054)

0.9128

(0.038)

0.9135

(0.056)

0.9098

(0.043)

0.9099

(0.061)

0.9126

(0.045)

0.9120

(0.062)
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Figure 3.4: Boxplot showing the accuracies of Classifiers with FS methods in simulation scenario:

S2

Simulation Scenario (S3): medium correlation 0.8

The data is generated based on high correlation data structure with rho = 0.8. The

performance of proposed combination of RLFS-ERRM is relatively better than the other

combinations of the FS methods and classifiers. The results for simulation scenario S3 are

shown in Figure 3.5. The average accuracy and Gmean for all the FS and classifiers are

noted in the Table 3.3. The SVM and ENET classifiers with all the FS methods showed

a little better performance among all individual the classifiers. However, the accuracy and
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Gmean attained by the proposed ensemble classifier ERRM with the FS methods RLFS, IG

and Chi2 was relatively better compared to the individual classifiers with FS methods. The

best performance is achieved by the proposed RLFS-ERRM combination with accuracy of

0.9586 and Gmean of 0.9596. The second best performing combination is MRMR-SVM.

The lowest performance in terms of accuracy and the Gmean is shown by Chi2-MCP. The

MCP classifier is having the lowest accuracies with all the FS methods. This explains that

the MCP does not perform well when the predictor variables are highly correlated
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Figure 3.5: Boxplot showing the accuracies of Classifiers with FS methods in simulation scenario:

S3

In summary, when we compare all the combinations of the FS methods and classifiers,
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the proposed combination of the RLFS-ERRM is seen performing relatively better than

any other existing combination of FS and classifiers.

Table 3.3: Average values taken over 100 iterations in simulation scenario: S3

FS

+

Classifier

Proposed RLFS IG Chi2 MRMR

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Proposed

ERRM

0.9586

(0.025)

0.9596

(0.039)

0.9556

(0.027)

0.9565

(0.041)

0.9530

(0.034)

0.9544

(0.045)

0.9560

(0.024)

0.9558

(0.037)

LASSO
0.9482

(0.033)

0.9493

(0.050)

0.9442

(0.030)

0.9194

(0.045)

0.9428

(0.037)

0.9447

(0.051)

0.9444

(0.032)

0.9442

(0.042)

ALASSO
0.9420

(0.031)

0.9425

(0.051)

0.9376

(0.030)

0.9379

(0.047)

0.9328

(0.041)

0.9342

(0.056)

0.9388

(0.033)

0.9389

(0.047)

ENET
0.9576

(0.025)

0.9587

(0.039)

0.9538

(0.029)

0.9546

(0.042)

0.9532

(0.034)

0.9546

(0.045)

0.9566

(0.024)

0.9562

(0.036)

SCAD
0.9464

(0.031)

0.9475

(0.049)

0.9422

(0.030)

0.9428

(0.045)

0.9386

(0.043)

0.9401

(0.055)

0.9414

(0.031)

0.9408

(0.043)

MCP
0.9256

(0.040)

0.9270

(0.062)

0.9262

(0.038)

0.9269

(0.055)

0.9210

(0.041)

0.9221

(0.058)

0.9224

(0.034)

0.9223

(0.048)

ABOOST
0.9454

(0.032)

0.9469

(0.047)

0.9494

(0.030)

0.9501

(0.044)

0.9470

(0.034)

0.9482

(0.046

0.9480

(0.029)

0.9481

(0.040)

RF
0.9540

(0.030)

0.9557

(0.043)

0.9560

(0.029)

0.9565

(0.043)

0.9542

(0.032)

0.9556

(0.044)

0.9508

(0.027)

0.9510

(0.039)

LR
0.9478

(0.029)

0.9482

(0.045)

0.9462

(0.030)

0.9469

(0.044)

0.9418

(0.038)

0.9432

(0.050)

0.9438

(0.028)

0.9437

(0.041)

SVM
0.9560

(0.027)

0.9568

(0.041)

0.9522

(0.030)

0.9527

(0.043)

0.9520

(0.031)

0.9526

(0.042)

0.9594

(0.026)

0.9587

(0.037)
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3.4.2 Experimental Results

To test the performance of the proposed combination of ERRM with RLFS, and compare

with the rest of the combinations of FS and classifiers, the gene expression data SMK-CAN-

187 is analyzed. The data includes 187 samples and 19993 genes obtained from smokers,

which included 90 samples with lung cancer and 97 samples without lung cancer. This data

is high-dimensional in nature with the number of genes being 19993. The pre-processing

procedures were performed to handle this high-dimensional data. As first filtering step

to overcome the redundant noisy features, the marginal maximum likelihood estimation

(MMLE) was performed, the genes are ranked based on their level of significance. These

ranked significant genes are further applied on the FS methods as the final filtering step and

final list of truly significant genes are obtained. These significant genes are applied to all

the classification models. The average classification accuracy and Gmean of our proposed

framework is tested. At first, the data was divided into training and testing set with 70%

and 30% of samples respectively. 70% of the training data is given to the FS methods

which rank the genes with respect to their importance and then the top-ranked genes are

selected based on k-SIS condition. The selected genes are applied in all the classifiers. For

standard comparison and mitigating the effects of the data splitting, all of the regularized

regression models were built using the 10-fold cross validation, the models were assessed for

testing the performance using different metrics and averages were taken over 100 splitting

times referred as 100 iterations.

Figure 3.6 shows the box plot of average accuracies taken over 100 iterations for all

the combinations of FS and classifiers. Each of the sub-figures in the figure shows the

classifiers with the corresponding FS method. In simulation studies, we set the number

of true important significant Chi2 when we generate the synthetic data and then after

applying the FS methods, we estimate the average number of true important features.

However, the significant genes cannot be known apriori. But, based on the simulation

results in Section 3.4.1, where we saw that a higher number of significant features in the

model leads to better prediction accuracy. From this, we can see that if the accuracy of
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classifiers is better then there is a higher number of significant genes in the model. The

average number of true important features showed in Figure 3.2 proved that the RLFS

method selects more significant features. Likewise, the RLFS has more significant genes

than the other FS methods, when we see in Table 3.4, the performance of all the individual

classifiers when applied on the RLFS method, the accuracy and Gmean are relatively much

better than the accuracies of the individual classifiers when applied on the IG, Chi2, and

MRMR methods.

When we look at the performance of all the classifiers with the IG method in comparison

to other FS method, there is much variation in the accuracies. The SVM classifier which

attained the accuracy of 0.7026 with the RLFS method drops to 0.6422 with IG method,

this shows that the IG is a very poorly performed FS method among all.

The proposed combination of the RLFS with ERRM classifier achieved the highest av-

erage accuracy of 0.7161 and Gmean of 0.7127. The RLFS method is also a top-performed

FS method on all individual classifiers. However, among the other FS methods, the MRMR

method when applied to all the individual classifiers showed relatively much better perfor-

mance than the application of IG and Chi2 methods to the individual classifiers.

In summary, the proposed combination of the RLFS-ERRM outperformed the rest of

the combination of the FS method and classifier. We can also note that the proposed

combination is much better than other combinations of the existing FS and classifiers. For

example, the proposed RLFS-ERRM is observed to have accuracy of 0.7161 whereas the

other combinations such as Chi2-SVM is recorded with 0.6422. This explains that the

proposed framework performs much better when the predictor variables are significantly

correlated. The second best performed method is the RLFS-ENET combination. The

lowest performance among all the combinations of FS method and classifier is shown by

SVM classifier with the IG method.
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Table 3.4: Average values taken over 100 iterations in SMK-CAN-187 data

FS

+

Classifier

Proposed RLFS IG Chi2 MRMR

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Acc

(SD)

Gmean

(SD)

Proposed

ERRM

0.7161

(0.053)

0.7127

(0.082)

0.6789

(0.056)

0.6791

(0.091)

0.6807

(0.056)

0.6808

(0.091)

0.7035

(0.056)

0.7024

(0.087)

LASSO
0.7073

(0.064)

0.7058

(0.087)

0.6726

(0.060)

0.6725

(0.095)

0.6680

(0.057)

0.6680

(0.090)

0.6859

(0.061)

0.6871

(0.097)

ALASSO
0.6878

(0.065)

0.6869

(0.091)

0.6715

(0.060)

0.6714

(0.094)

0.6696

(0.064)

0.6698

(0.092)

0.6800

(0.059)

0.6803

(0.092)

ENET
0.7138

(0.061)

0.7116

(0.085)

0.6733

(0.057)

0.6722

(0.093)

0.6733

(0.052)

0.6726

(0.090)

0.6998

(0.061)

0.6992

(0.095)

SCAD
0.7114

(0.054)

0.7098

(0.083)

0.6735

(0.056)

0.6732

(0.090)

0.6670

(0.058)

0.6669

(0.091)

0.6894

(0.059)

0.6901

(0.091)

MCP
0.6880

(0.010)

0.6870

(0.082)

0.6673

(0.057)

0.6663

(0.089)

0.6647

(0.059)

0.6639

(0.092)

0.6866

(0.057)

0.6874

(0.089)

ABOOST
0.6991

(0.064)

0.6958

(0.087)

0.6673

(0.054)

0.6634

(0.086)

0.6605

(0.058)

0.6583

(0.094)

0.6929

(0.050)

0.6897

(0.083)

RF
0.6975

(0.056)

0.6933

(0.089)

0.6729

(0.045)

0.6691

(0.078)

0.6738

(0.054)

0.6703

(0.090)

0.6942

(0.055)

0.6902

(0.088)

LR
0.7001

(0.065)

0.6987

(0.089)

0.6761

(0.058)

0.6662

(0.097)

0.6770

(0.059)

0.6769

(0.094)

0.7008

(0.058)

0.7000

(0.086)

SVM
0.7026

(0.058)

0.7014

(0.086)

0.6422

(0.059)

0.6430

(0.099)

0.6459

(0.066)

0.6477

(0.105)

0.6668

(0.058)

0.6658

(0.092)
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Figure 3.6: Boxplot showing the accuracies of Classifiers with FS methods in SMK-CAN-

187 data

For assessing the importance of bootstrapping and FS screening of the proposed frame-

work, we measured the performance of ERRM without FS screening. The results shows

the ensembles method with and without bootstrapping procedure. In the former approach

the bootstrapped samples were used and in the latter technique resampled samples were

used. In Table 3.5 we see that the ERRM with bootstrapping procedure attains relatively

better accuracy in comparison to other ERRM without bootstrapping.

46



Table 3.5: Comparison of proposed ERRM with and without bootstrapping

Bootstrapping Accuracy (SD) Gmean (SD)

ERRM with

FS screening Yes 0.7129 (0.053) 0.7093 (0.091)

ERRM without

FS screening No 0.6947 (0.057) 0.6944 (0.089)

The performance of the regularized regression models used in the proposed ensembles

algorithm is tested with the FS screening step and without FS screening step. In the former

approach, the regularized regression models were built and tested using the proposed RLFS

screening step with selected amount of significant features, whereas in the latter approach,

the regularized models used all the features for building the model. The FS screening step

is necessary for boosting the performance of the model in terms of accuracy and geometric-

mean. The results are shown in Table 3.6.
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Table 3.6: Comparison of regularized regression models used in the ERRM with and without

FS screening

FS screening Accuracy (SD) Gmean (SD)

LASSO Yes 0.7073 (0.064) 0.7058 (0.087)

No 0.6740 (0.061) 0.6752 (0.125)

ALASSO Yes 0.6878 (0.065) 0.6869 (0.091)

No 0.6740 (0.061) 0.6752 (0.125)

ENET Yes 0.7138 (0.061) 0.7116 (0.085)

No 0.6740 (0.061) 0.6752 (0.125)

SCAD Yes 0.7114 (0.054) 0.7098 (0.083)

No 0.6740 (0.061) 0.6752 (0.125)

MCP Yes 0.6880 (0.010) 0.6870 (0.082)

No 0.6740 (0.061) 0.6752 (0.125)

3.5 Discussion

In this research, we proposed the combination of RLFS and ERRM that are used for feature

selection and classification respectively. The RLFS method ranks the features by employing

the lasso method with resampling approach and the k-SIS criteria to set the threshold for

selecting the optimal number of features and these features are applied on the ERRM

classifier, which uses bootstrapping and rank aggregation, to select the best performing

model across the bootstrapped samples and helps in attaining the best prediction accuracy

in a high dimensional setting. The ensembles framework ERRM is built using five different

regularized regression models. The regularized regression models are known for their best

performance in terms of variable selection and prediction accuracy on the gene expression
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data.

To show the performance of our framework we used three different simulation scenarios

with low, medium and high correlation structures that matches the gene expression data.

To further illustrate our point, we also used SMK-CAN-187 data. Figure 3.2 shows the

boxplots of the average number of true important features, where the RLFS shows higher

detection power than the other FS methods such as IG, Chi2, and MRMR. From the results,

of both simulation studies and experimental data, we show that all the individual classifiers

with RLFS method performed much better compared to the IG, Chi2, and MRMR. We

also observed that all the individual classifiers showed a lot of instability with the other

three FS methods. This means that the individual classifiers do not work well with more

noise and less true important variables in the model. The SVM and ENET classifiers

with all the FS methods performed a little better among all the classifiers. However, the

performance was relatively still low in comparison to the proposed ERRM classifier with

every FS method. The tree-based ensemble methods RF and ABOOST with RLFS also

attained good accuracies but were not the best compared to the ERRM classifier.

The proposed ERRM method is assessed with the FS screening and without FS screening

step along with the bootstrapping option. The ERRM with FS screening and bootstrapping

approach works better than ERRM without the FS screening and bootstrapping technique.

Also, the results from Table 3.5 shows that the ensembles with bootstrapping is better

approach on both the filtered and unfiltered data. On comparing the performance of the

individual regularized regression models used in the ensembles, the individual models with

proposed RLFS screening step showed comparatively better accuracy in comparison to the

individual regularized regression models without the FS screening. This means that using

the reduced number of significant features with RLFS is better approach instead of using

all the features from the data.

The ERRM showed better overall performance not only with the RLFS but also with

the other FS methods compared in this study. This means that the ERRM is robust and

works much better on the highly correlated gene expression data. The rule of thumb in
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attaining the best prediction accuracy is that more of the true important variables, better

the prediction accuracy. Thus, from the results of simulation and experimental data we

see that the proposed combination of RLFS-ERRM has a superior compared to the other

existing combinations of FS and classifiers as seen in the Tables 3.1, 3.2, 3.3 and 3.4. The

proposed ERRM classifier showed the best performance across all the FS methods, with

the highest performance achieved with RLFS method. However, the minor drawback in

the framework is that the performance of ERRM would have been much better if the RLFS

method had better selection average in retaining the significant features.

3.6 Conclusion

In this research, through extensive simulation studies, we showed the superior performance

of RLFS with the k-SIS condition has a higher selection average in detecting the true

important features than other competitive FS methods. The ensemble classifier ERRM

also showed better average prediction accuracy with the RLFS, IG, Chi2, and MRMR

compared to other classifiers with these FS methods. On comparing the ensembles, the

proposed ERRM with bootstrapping showed better accuracy in comparison to the ERRM

without bootstrapping. In both the simulation study and the experimental data SMK-

CAN-187, the superior performance was achieved by the proposed combination of RLFS

-ERRM compared to all other combinations of FS and classifiers.
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Chapter 4

Adaptive lasso with weights based on normalized

filtering scores in molecular big data

The content of this chapter has been published in [Patil et al., 2020c]

4.1 Introduction

DNA microarray technology is used to determine the expression levels of thou-

sands of genes at the same time [Honrado et al., 2006] and used in applications

of machine learning [Kim and Halabi, 2016]. The microarray gene expression data

[Bourgon et al., 2010b, Lu et al., 2011b] is widely used for cancer classification and detec-

tion [Algamal and Lee, 2015]. The microarray datasets are high-dimensional with a very

limited number of samples. Some of the problems associated with these datasets include

redundancy, noise, and dimensionality [Kim and Kim, 2019]. To overcome these problems,

many rank-based feature selection (RFS) techniques have been developed over the recent

years. The RFS methods lessen the dimensionality of the data through ignoring irrelevant

genes and provides a consistently improved performance when applied to the classification

methods.

In RFS methods, the genes are ranked with regards to their importance that is

determined through certain criteria [Kim and Kim, 2019, Patil and Kim, 2020], and

the optimal number of top significant genes can be selected with the sure indepen-

dence screening (SIS) [Fan and Lv, 2008] condition. Some of the popular RFS methods

include IG [Quinlan, 1993], FS [UM, 2013], mmle [Algamal and Lee, 2019], and CS

[Iguyon and Elisseeff, 2003]. The advantages of RFS methods is that they are computa-
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tionally less intensive because they do not involve classification step during the training

phase of ranking significant features [Ferreira and Figueiredo, 2012].

The non-parametric and parametric algorithms can be utilized for classification purposes

in the microarray data. The non-parametric methods include random forest and support

vector machines [Breiman, 2001, Hearst et al., 1998, Patil and Kim, 2020]. The parametric

models comprise different variants of sparse regularized regression (SRR) models which

are popular in the high throughput microarray data analysis [Hastie et al., 2009]. The

SRR models are known for performing variable selection and classification at the same

time. The popular SRR models include the lasso [Tibshirani, 1996], alasso [Zou, 2006],

and elastic net [Zou and Hastie, 2005, Wang et al., 2019]. Most of these models suffer

from prediction accuracy when the genes are having high correlation among them. Lasso

has received great success but it suffers from bias and leads to inconsistency in selecting

significant genes [Tibshirani, 1996]. The alasso has received much attention to overcome

this issue. It consistently selects the significantly related variables and has the oracle

properties [Fan and Li, 2001]. However, there is still a lack of performance by the alasso

with standard ridge weights in highly correlated data.

Motivated by these problems, we aim to build an estimator which not just improves

the prediction accuracy but it also gives the best set of truly important genes responsible

for a disease. In this study, we propose alasso with weights from RFS methods. The

RFS methods such as FS, IG, and CS are applied to the data to rank the genes based on

their level of importance and a screening procedure, SIS, to select the top most important

genes. Through this procedure many genes not pertinent to a disease are filtered out and

henceforth the computational time required during the training phase by the classifiers is

reduced. The ranked important variables from the RFS methods have corresponding values

and each of these values are modified as proposed weights and then given to the alasso

method to attain the best measure of various performances with important subset of genes.

The proposed adaptive lasso variants will be compared with some of the existing adaptive

lasso models. The different existing feature selection methods such as ridge estimator,
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MMLE, FS, IG, and CS are discussed in Chapter 2. The traditional lasso and Adaptive

lasso methods have also been discussed earlier in Chapter 2.

4.2 Data

4.2.1 Synthetic data

The synthetic data is produced through a multivariate random normal distribution using

the auto-regressive correlation framework. The correlation matrix Σ is defined as follows:

Σ =


ρ11 ρ12 · · · ρ1g

ρ21 ρ22 · · · ρ2g

...
...

. . .
...

ρs1 ρs2 · · · ρsg

 (4.1)

The binary response variables are generated using the following equation:

π(Yo = 1|t) =
exp(tβ)

1 + exp(tβ)
(4.2)

t is represented as true important variables, and the response variable Yo is gen-

erated by Bernoulli trials as shown in Equation (4.2). Each of the generated syn-

thetic data is having s = 200 and g = 1000 genes. The total number of true

regression coefficients assigned as β were 6. The β was weak signal and is de-

fined as follows: β = (1.036480,−1.073300,−1.250950, 1.138730,−1.128370, 1.145260)

[Pi and Halabi, 2018]. The pairwise correlation between ith and jth feature is defined as

ρij = ρ|i−j| where i, j = 1, 2, ..., g. We generated data with correlations set as ρ = 0.2, 0.5,

and 0.8 respectively through this high-dimensional set up.

The microarray data is usually having high correlation and the synthetic data generated

allows us to evaluate the proposed methods on such types of correlated data. Firstly, we

partition the synthetic data into 70% of train data and 30% of testing data. The training

data is applied to the RFS methods, the genes are ranked according to their significance
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level, and the top-ranked significant genes are chosen with the SIS. The chosen genes are

further given to the proposed alasso method and other methods used in this study. For

measuring the model performance in detail and eliminate the effects of data splittings, the

10-fold cross-validation (CV) was enforced on all of the SRR models, and the computations

were made by taking averages from 100 random partitioning times.

4.2.2 Real data

The data included 62 samples and 2000 genes, which includes 40 samples with colon cancer

and 22 normal samples. The data is partitioned into 70% of data samples for training and

30% of data samples for testing purposes. The training data is used by RFS methods to

ignore the unrelated genes and rank the important genes. The top-most important genes

are selected based on SIS and are given to the various classifiers and the proposed alasso

method with a 10-fold CV employed during model building process. Lastly the test data is

used to estimate the various performance measures. The data was randomly split in every

iteration and the mean values were taken over iterations.

The microarray data can be given by the following data matrix:

X =


x11 x12 · · · x1g

x21 x22 · · · x2g

...
...

. . .
...

xs1 xs2 · · · xsg

 (4.3)

Each value represents the expression level of a particular gene e = 1, ......, g of sample o

is given by xoe.
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4.3 Proposed adaptive lasso with weights from various

rank based feature selection techniques

In the first step, the training data Xk is applied to the RFS methods to lessen the dimension

of the data by ignoring the irrelevant genes and obtain filtered significant gene set Xr. This

step not only helps in improving the classification performance with the help of important

genes but also reduces the computational time required in the next classification step. The

RFS methods used are the FS, IG, and CS.

The equation for the proposed alasso method is given by:

β̂proposed = argmin
β

[
− l(β, Yk) + λ

f∑
e=1

we|βe|

]
, (4.4)

where f is the filtered genes set after RFS step, λ is the tuning parameter, weight vector

is given by we which is based on the proposed normalized weights of the RFS methods.

Calculating proposed weights

The RFS methods are used to assign scores to each of the feature based on their condition.

Using these scores, the features are ranked through their importance. The top-ranked

features are selected using the SIS condition and is defined as follows:

⌈
s

log(s)

⌉
(4.5)

where s is represents total count of samples. Selected features based on SIS are having the

scores, the scores are normalized. Let φi be the scores for f number of features obtained

after RFS step.

we =
|φi|

|1
s

∑f
i=1 φi|

, (4.6)

where we is the normalized scores called as weights for all the f filtered significant genes,

φi are the final scores from the RFS methods such as FS, IG, and CS.
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Next, we divide the filtered training feature set Xr by the calculated proposed weights

we to modify the filtered training feature set Xr

X∗r =
Xr

we
, e = 1, ..., f (4.7)

Finally, use the above updated filtered feature set Xr for training purpose along with

the weights we in the Equation (4.4)

Algorithm 2 The proposed alasso

Step 1: Obtain filtered training dataset Xr having true significant genes based on SIS

approach using the RFS methods.

Step 2: Compute the proposed weights wj for each of the RFS method using the Equa-

tion (4.6).

Step 3: Calculate new filtered training data set X∗r = Xr/we.

Step 4: Obtain βproposed using the Equation (4.4).

Step 5: Apply test data Xq and evaluate various performance metrics.

4.4 Results

4.4.1 Synthetic data results

The RFS method with SIS for correlation data of 0.2, 0.5, and 0.8 are complied as boxplots

described in Figure 5.1. As shown in boxplots, the true variable selection average of the

RFS as FS method is better than the IG and CS methods, which have an overlapping

performance.
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Table 4.1: True variable selection average of filtering methods across synthetic data with

different correlation scenarios. True positive rate (TPR) calculations are based on the mean

and SD taken from 100 times of simulations.

Correlation FS (SD) IG (SD) CS (SD)

0.2 5.29 (0.671) 4.44 (0.924) 4.45 (0.946)

0.5 5.26 (0.733) 4.41 (0.933) 4.43 (0.912)

0.8 5.34 (0.669) 4.49 (1.039) 4.50 (1.039)

SD: Standard Deviation; FS: Fisher score; IG: Information gain; CS: Chi-square

The FS method selected an average of 5.29, 5.26, and 5.34 true variables among the

six true important variables across the three different correlation structures, as recorded

in Table 4.1. Besides, when we observe the SD of FS, IG, and CS, we see that the FS

method is more consistent with less variation in true variable selection average across 100

iterations.
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Figure 4.1: Boxplot showing the true positive rate (TPR) of the variable selection average

of filtering methods in correlated data 0.2, 0.5, and 0.8. Calculations are based on the

averages of true positives taken from 100 times of simulations. RFS: Rank-based feature

selection methods; FS: Fisher score; IG: Information gain; CS: Chi-square
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Figure 4.2: Average accuracy of the classification methods with RFS methods on the

simulated data set with different correlations. PAFS (proposed alasso with fisher score),

PAIG (proposed alasso with information gain), PACS (proposed alasso with chi-square),

LWOF (lasso without filtering), AWOF (alasso without filtering), AR (alasso with ridge

weights), AM (alasso with mmle weights).

Figure 4.2 shows the boxplots of the classification accuracies for the classifiers with

filtering based on SIS and without filtering for three different correlation structures of 0.2,

0.5, and 0.8. We see that the accuracies of PAFS (proposed alasso with Fisher score)

with SIS is better compared to others. The proposed alasso with weights from various

filtering methods such as FS, IG, and CS, the alasso with weights from filtering methods

such as ridge and mmle, lasso and alasso without filtering were run for 100 times with the
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autoregressive correlation structure with 0.2, 0.5, and 0.8. The performances of classifica-

tion accuracy, AUROC, GM-mean, and TP for these variable selection methods with and

without filtering are reported in Table 4.2.

The proposed alasso with the FS as a filtering step with an accuracy of 0.7145 and 0.7183

for correlation of 0.2 and 0.5, respectively, is having better prediction accuracy compared

to the classifiers with and without filtering approaches. From Table 4.1, we saw that the FS

method had the highest count of true positives among the six important variables across

all correlation structures. Similar results were seen on proposed alasso with FS, where the

TP was higher than proposed alasso with IG or CS.
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Table 4.2: Performance of filtering and classification methods in synthetic data with three

types of correlation structures. The calculations are based on the mean and SD of the

performances taken from 100 times of iterations in each of the correlated data.

Corr Methods Accuracy (SD) AUROC (SD) GM-mean (SD) TP (SD)

0.2 PAFS 0.7145 (0.073) 0.7160 (0.071) 0.7126 (0.073) 5.20 (0.752)

PAIG 0.6993 (0.072) 0.7013 (0.071) 0.6964 (0.074) 4.40 (0.953)

PACS 0.6981 (0.072) 0.6999 (0.071) 0.6960 (0.072) 4.45 (0.946)

AR 0.6990 (0.074) 0.7011 (0.072) 0.6975 (0.074) 5.29 (0.607)

AM 0.7036 (0.068) 0.7052 (0.067) 0.7016 (0.070) 5.25 (0.672)

LWOF 0.7035 (0.082) 0.7079 (0.076) 0.6955 (0.105) 4.70 (1.251)

AWOF 0.7113 (0.071) 0.7127 (0.070) 0.7089 (0.073) 5.40 (0.752)

0.5 PAFS 0.7183 (0.073) 0.7180 (0.075) 0.7141 (0.077 5.11 (0.827)

PAIG 0.6968 (0.078) 0.6987 (0.078) 0.6938 (0.081) 4.36 (0.948)

PACS 0.6951 (0.084) 0.6951 (0.084) 0.6896 (0.086) 4.43 (0.912)

AR 0.7066 (0.065) 0.7056 (0.067) 0.7012 (0.070) 5.26 (0.705)

AM 0.7086 (0.076) 0.7077 (0.076) 0.7025 (0.079) 5.28 (0.725)

LWOF 0.7050 (0.094) 0.7076 (0.087) 0.6768 (0.165) 4.68 (1.420)

AWOF 0.7158 (0.069) 0.7148 (0.070) 0.7097 (0.073) 5.41 (0.779)

0.8 PAFS 0.7228 (0.073) 0.7222 (0.074) 0.7190 (0.075) 5.15 (0.770)

PAIG 0.7081 (0.072) 0.7082 (0.073) 0.7051 (0.074) 4.41 (1.064)

PACS 0.7041 (0.072) 0.7043 (0.073) 0.7011 (0.074) 4.47 (1.058)

AR 0.7108 (0.074) 0.7109 (0.074) 0.7079 (0.075) 5.26 (0.733)

AM 0.7143 (0.074) 0.7146 (0.074) 0.7109 (0.076) 5.25 (0.729)

LWOF 0.7185 (0.075) 0.7192 (0.075) 0.6984 (0.131) 4.78 (1.259)

AWOF 0.7250 (0.068) 0.7249 (0.068) 0.7214 (0.069) 5.36 (0.785)
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4.4.2 Application to real data

The real microarray data of colon cancer is used in this study. This dataset had 62 samples

and 2000 genes. To test the estimates of the proposed alasso method with various RFS

methods, alasso with mmle and ridge weights, Lasso and alasso, without filtering, the

colon cancer microarray data is analyzed. Figure 4.3 shows boxplot and density plot of

the pairwise correlation within the genes in colon cancer data. The average correlation

between genes is 0.4275, which is a high correlation and lies between the values evaluated

in the synthetic datasets.
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Figure 4.3: Pairwise correlation coefficients between 2000 genes in colon data. The mean

pairwise correlation value is 0.4275 as shown in the boxplot.
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Table 4.3: Evaluation of classifiers with RFS methods in colon cancer. All values are eval-

uated based on the average and SD of various performances measured from 100 iterations.

Methods Accuracy (SD) AUROC (SD) GM-mean (SD)

PAFS 0.7936 (0.092) 0.7504 (0.115) 0.7094 (0.164)

PAIG 0.7852 (0.087) 0.7307 (0.114) 0.6760 (0.187)

PACS 0.7715 (0.101) 0.7175 (0.119) 0.6417 (0.223)

AR 0.7573 (0.095) 0.6976 (0.113) 0.6166 (0.221)

AM 0.7042 (0.100) 0.6599 (0.122) 0.5727 (0.242)

LWOF 0.7531 (0.093) 0.6815 (0.114) 0.5796 (0.234)

AWOF 0.7115 (0.098) 0.6600 (0.120) 0.5903 (0.209)
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Figure 4.4: Average accuracy of the various classifiers with RFS methods on the Colon

data.
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Table 4.3 shows the averages of accuracy, AUROC, and GM-mean calculated for all the

methods with and without filtering. The proposed alasso with the weights from FS, IG,

and CS as filtering methods had better average accuracy compared to other combinations

of methods measured. The proposed alasso with weights from FS based on SIS attained an

accuracy of 0.7936 while the alasso without filtering and alasso with mmle weights attained

accuracies of 0.7115 and 0.7042, respectively. This variation in the accuracies explains

the importance of the proposed alasso algorithm with the filtering step in achieving better

prediction accuracies in gene expression analysis. The variation of accuracies across 100

data splittings is shown as boxplots in Figure 4.4. There is a clear difference between the

performance of the proposed alasso method with filtering methods such as FS, IG, and CS

and other combinations of methods compared.

The final list of top 10 genes selected by each of the proposed alasso with RFS methods

such as FS, IG, and CS, based on SIS condition, run over 100 times of data splittings are

noted and displayed as Venn diagram in Figure 4.5. We see that there are six common genes

across all three methods. M63391, M76378(3), T71025, X14958, Z50753, and M76378(1)

are the common genes found across the three methods, as reported in Table 4.4.

Figure 4.5: A schematic illustration of genes from various filtering methods across proposed

variable selection method. M1: proposed alasso with FS, M2: proposed alasso with IG,

and M3: proposed alasso with CS.
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The genes M63391, M76378(3), and T71025 are common between proposed alasso with

FS, proposed alasso with IG, and proposed alasso with CS. The M76378 was ranked among

the top 3 genes in all three methods. This shows that it is a very significant gene related

to colon cancer. The genes M63391, M76378(3), H08393, and H55916 selected by pro-

posed alasso with FS were also recorded as genes significantly pertinent to colon cancer

[Kim and Kim, 2019, Wang et al., 2019, Mcdermott et al., 2016].

Table 4.4: The top 10 significant genes selected across three methods of Proposed alasso

with FS, IG, and CS on colon cancer microarray data.

Rank Proposed alasso with FS Proposed alasso with IG Proposed alasso with CS

1 M63391*** J02854 M76378(1)**

2 M76378(3)*** M76378(1) M63391

3 M26697 M76378(3) M76378(3)

4 J05032 H64489 T71025

5 T71025*** Z50753** H05803

6 X14958** M63391 Z50753

7 X63629 T71025 X14958

8 R54097 M82919 R41873

9 H08393 L03840 H23544

10 H55916 T57468 H40137

4.5 Discussion

We proposed alasso with weights based on RFS methods. The RFS methods FS, IG, and

CS, rank the genes, and each of the methods selects top SIS genes. The RFS methods

assign scores to each of the chosen genes. These scores were normalized as proposed new

weights and applied to the alasso to give the best performance of classification and gene
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selection. The RFS methods with SIS helps in removing the unrelated genes which lead to

a reduction in the computational time when applied to the proposed alasso. We compared

the metrics of the proposed RFS with alasso framework with popular filtering approaches

of ridge and mmle whose weights were applied to the alasso, and without filtering where the

lasso and alasso were trained on the 70% of the dataset with all the genes. The performance

of all these combinations of methods was assessed using accuracy, AUROC, and GM-mean.

The proposed alasso with the filtering procedures showed the best performance in all of

these metrics as shown in Table 4.3.

To illustrate the performance of the proposed alasso with RFS methods, we applied

synthetic data with wide range of correlation structures and real microarray data. Firstly,

we showed the superior performance of the RFS as FS method in selecting the true impor-

tant variables in Table 4.1. This shows that the FS is the best RFS method in selecting

more number of true important variables in highly correlated data. Also, the proposed

alasso method with weights based on the FS was the best-performed combination on both

synthetic and real colon gene expression datasets. The minor disadvantage in the pro-

posed framework is that the best performing RFS method as FS retrieved a significantly

higher number of true important features. However, it did not include all the important

features. The performance of the proposed framework would have been still better if all

the important features were added.

Along with the classification accuracy, the role of gene selection by the proposed alasso

with various RFS methods was assessed. There were a total of six common genes found

across three proposed Alssso with RFS methods combinations. Most of the genes se-

lected by these combinations were significantly related to colon cancer [Kim and Kim, 2019,

Wang et al., 2019, Mcdermott et al., 2016]. The three common genes found in all the three

FS-proposed alasso combined methods were found within top-five ranked important genes

of the proposed alasso with an FS. All three genes M63391, M76378, and T71025, were sig-

nificantly related to colon cancer [Yap et al., 2004, Wang et al., 2019, Kim and Kim, 2019].

This also shows that the FS as RFS method, when applied with proposed alasso, is more
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effective in selecting such significant genes.

4.6 Conclusion

In this research, the alasso method with weights from various RFS methods was proposed.

Firstly, the RFS methods such as FS, IG, and CS were employed to remove the redundant

features, and the scores assigned to each feature by these methods were normalized as

proposed weights and applied to the alasso method. The proposed framework of alasso

with RFS methods such as FS, IG, and CS was compared with other existing methods

with filtering and without filtering on synthetic and real gene expression microarray data.

The proposed framework displayed superior performance of accuracy, AUROC, GM-mean,

and gene selection. The genes selected by the proposed alasso method on the colon data

were proven to be the significant genes relating to the cancer. With more relevant genes in

the model, attaining the highest classification performance in terms of various performance

metrics was expected. As a future work, we would focus on developing a methodology of

better feature selection in highly correlated biological data.
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Chapter 5

Improving the classification performance with group

lasso based ranking method in high dimensional

correlated data

The content of this chapter has been published in [Patil et al., 2020b]

5.1 Introduction

The alteration of healthy cells to tumor ones results from the interactions of genetic agents

with extraneous factors such as chemicals and viruses [Celli et al., 2018]. The process of

transformation is complex, and the part of DNA Methylation (DNAmeth) in process of

carcinogenesis is widely seen [Celli et al., 2018]. It is an essential epigenetic mechanism

regulating the direct alteration of DNA, the aberrant DNA is responsible for the devel-

opment of many illness [Patil et al., 2020a, Weber et al., 2007, Jones, 2012]. DNAmeth is

further associated with cell differentiation, genetic reprogramming, and gene expression

[Mikeska and Dobrovic, 2016, Holliday and Pugh, 1975, Choy et al., 2010]. DNAmeth in-

cludes a process where the enzyme DNA methyltransferase is used as an agent in cat-

alyzing the conversion of cytosine to 5-methylcytosine that might alter the activity near

DNA [Patil et al., 2020a, Celli et al., 2018, Liu et al., 2017]. The process is carried out by

adding the methyl group to the fifth carbon in the DNA molecule [Patil et al., 2020a].

The transcription process of genes can be changed by the presence of methyl group

[Stolzenburg et al., 2016] and may lead to the progression of a tumor [Liu et al., 2017,

Kobayashi et al., 2011]. Different types of diseases such as cancer and cardiovascular are

linked with DNAmeth [Kim et al., 2010, Urdinguio et al., 2009]. Hence, the studies on
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DNAmeth may aid in determining biomarker identification and various disease classifica-

tion [Patil et al., 2020a].

Large amounts of DNAmeth data are developed with IIHM technology and are deposited

and made publicly available through online repository of the gene expression omnibus

(GEO) [Teschendorff et al., 2010]. The data sets generated by IIHM 450K are ultra-high

dimensional with over 450K CpGs. The high-dimensional IIHM 27K data sets are having

more than 27000 CpGs called CpG sites [Toyota et al., 1999, Patil et al., 2020a]. The IIHM

27K DNAmeth data is utilized for validating the performance of the models in this paper.

The methylation status [Bibikova et al., 2006] shows the DNA sequence that are methylated

and not methylated and is estimated with β-values. For every CpG site, the β-value is

computed based on ratio of fluorescent signals measured as levels of the alleles that are

methylated denoted by Y and not methylated denoted by N [Sun and Wang, 2012]. The

β-value lies within 0 and 1 which represent the no methylation and methylation status

[Sun and Wang, 2012, Patil et al., 2020a].

β =
max(Y, 0)

max(N, 0) + max(Y, 0) + 100
(5.1)

Many studies have been conducted pertaining to the FS and classifiers in gene

expression data [Patil and Kim, 2020]. However, comparatively fewer statistical anal-

ysis has been conducted for DNAmeth data produced from the IIHM 27K technol-

ogy. Few of the present studies of DNAmeth data analysis includes from supervised

[Patil et al., 2020a, Raweh et al., 2017, Sun and Wang, 2012, Milani et al., 2010] and

unsupervised [Mitra et al., 2002] learning problems. The main difference between the

DNAmeth data and microarray data is that the former is having methylated values that

lie between 0 and 1 with the group correlation structure within genes, and the latter has

continuous values based on the expression levels of each gene [Patil et al., 2020b].

Many different types of high-throughput data are available in bioinformatics, such

as DNAmeth, microarray RNA-seq analysis [Kim and Kim, 2019, Bourgon et al., 2010a].

Dealing with this data type is very difficult problem and it becomes a necessity to re-
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move the unimportant features and lower the dimension of the data by employing various

FS methods [Patil and Kim, 2020, Patil et al., 2020a]. The FS method is applied to rank

the CpGs depending upon their importance, the top-ranked significant CpGs can be se-

lected, ignoring the noisy and unrelated features. There are several popular methods used

for FS in the literature [Hira and Gillies, 2015, Jović et al., 2015], including fisher score

(FIS) [UM, 2013], information gain (ING) [Quinlan, 1993], minimum redundancy maxi-

mum relevance (MRMR) [Peng et al., 2005], random forest variable importance (RFVI)

[Menze et al., 2009, Guyon et al., 2002]. The FS methods are computationally faster and

help to improve classification performance [Patil and Kim, 2020]. These well known FS

methods also do not work accurately on highly correlated grouped data. This effects in

selecting the considerably important features causing a disease. In the highly correlated

grouped DNAmeth data, the FS methods rank the significant CpG sites related to the

disease in higher-order and ignore the unrelated CpG sites. The important CpG sites help

to boost classification performance. For selecting the most significant CpG sites related

to the disease considering the high correlation among the groups of CpG sites in a gene,

it is necessary to develop a novel filtering method applied to classifiers and compare the

proposed RGLR method with the other FS methods with the different classifiers through

simulated and experimental DNAmeth data.

In this chapter, we propose a filtering method called RGLR to obtain filtered DNAmeth

data. The filtered DNAmeth data is applied to various classifiers. The resampling

based method was better FS approach in high-throughput data [Kim and Kim, 2019,

Patil and Kim, 2020]. The proposed RGLR method ranks the significantly important CpG

sites, and these CpG sites are applied to the different classifiers to attain the best accura-

cies [Patil et al., 2020b]. Several popular classifiers such as random forests, support vector

machines, and Naive Bayes were considered for comparison wih proposed models. These

classifiers along with some of the widely used FS methods such as FIS, ING, MRMR, and

RFVI have been discussed in Chapter 2.
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5.2 Data

5.2.1 Simulation data

The simulation dataset is produced from a multivariate normal distribution using the auto-

regressive structure. In order to generate simulation data that is similar to experimental

DNAmeth data, we need to have correlated group variables that lie within 0 and 1. In the

simulation setting, we have 600 genes that have 1-9 CpG sites in a manner that there are

100 genes in the first group with one CpG site each follwed by 150 genes in the second

group, the third to ninth have 50 genes, respectively. Therefore, among the 9 groups, we

have 2500 CpG sites in total [Patil et al., 2020a, Sun and Wang, 2012]. The DNAmeth β

values of the jth gene for ith individual is evaluated as:

Xi,j =
exp(mi,j)

1 + exp(mi,j)
(5.2)

where, mi,j ∼
√
sNfj(µ,

∑
) and fj is the size of the jth gene. s = 4 is a scale

parameter and µ = (−0.1,−0.1,−0.1,−0.1, .... − 0.1,−0.1,−0.1), the methylated values

have 0 for no methylation and 1 for methylated. We chose a total of nine genes from

nine different gene groups [Sun and Wang, 2012]. The corresponding regression coefficients

[Sun and Wang, 2012, Li and Li, 2010] were denoted as follows:

θl,j = (−1)j+1 δ√
l
, for all l = 1, .....,

⌈fj
2

⌉
; j = 1, ....., 9 and δ = 1. (5.3)

Half of the CpGs in the CpG feature set are assigned as true important features related

to the disease [Sun and Wang, 2012]. We selected a total of 25 CpG sites as true important

features among a total of 2500 CpG sites. The binary class variables are generated using,

yi ∼ Bernoulli(p(ti)), p(tti) =
exp(tTi θ)

1 + exp(tTi θ)
(5.4)

where ti = (tTi,1, t
T
i,2, .......t

T
i,599, t

T
i,600)T is the true CpG sites, and θ = (θT1 , θ

T
2 ........θ

T
599, θ

T
600)T .

The DNAmeth data is popular for their strong correlation structures. The correlation

within genes is denoted through the covariance matrix
∑

uv = ρ|u−v|. The autoregressive
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AR(1) is used to generate the correlated variables. Three datasets comprising of low to high

correlation structures set as ρ = 0.1, 0.4, and 0.7, respectively were generated through this

synthetic data setting. In each of the synthetic data, equal number of cases and controls

were obtained contributing to a total of 400 samples. Each of these samples had 2500 CpGs

called as features.

Firstly, we divide the data into a training data and test data having 70% and 30%

of samples, respectively. The training data is applied to the proposed RGLR method

along with the other FS methods; the reduced significant training data is obtained with

significant CpG sites and then is applied to various classifiers. Finally, the test data is

applied to estimate the models performance. To obtain accurate estimates of the proposed

RGLR method and existing FS methods, each of these procedures were carried out for 100

iterations.

5.2.2 Experimental data

To measure the performance of the FS and the classifiers, we obtained the DNAmeth data

from the GEO database with accession GSE26126 [Kobayashi et al., 2011]. The dataset

had 95 prostate tumor samples and 98 healthy prostate samples, making a total of 193

samples generated from IIHM 27K technology. This high-dimensional DNAmeth dataset

with 27578 CpG sites needs to undergo filtering steps to remove the noisy and uninformative

CpG sites. The given DNAmeth data is divided into 70% train and 30% test set respectively.

As an initial pre-processing stage, to remove the uninformative CpG sites, we applied

the marginal maximum likelihood estimation [Kim and Kim, 2019] to the training data,

the CpG sites were ranked based on the mmle criteria. We selected the top 2500 highly

correlated CpG sites based on the ranks assigned by the marginal maximum likelihood

estimator. These top-ranked significant CpG sites are applied to the proposed RGLR

method and the other popular FS methods used in this study. These filtering methods

further evaluate the data and ignore the redundant CpG sites and rank the important CpG

sites. The ranked CpG sites are applied to the various classifiers to fit the models. Finally,
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the test data is applied to the fitted models, and the performances are estimated using the

various metrics. We conducted this procedure for 100 times with random data splittings

at each time.

5.3 Proposed resampling of group lasso based ranking

method

The resampling-based filtering methods are proven to be a better approach than us-

ing the present feature selection methods in microarray data [Kim and Kim, 2019,

Patil and Kim, 2020]. The DNAmeth data is having group correlation among the CpG

sites and they are highly correlated. The proposed RGLR method ranks the CpG sites

based on the selection frequency.

The group lasso method is derived from the groupwise-majorization-descent

[Yang and Zou, 2015] (GMD) algorithm by satisfying the quadratic majorization (QM)

condition [Yang and Zou, 2015, Yang and Zou, 2017]. Let Φ(Yt, β
TXt) be denoted as loss

function that is used by model while training. In this paper, we use DNAmeth data with

binary class labels Yt = (0, 1) coded as Yt = (−1, 1). The group-lasso penalized empirical

loss [Yang and Zou, 2015] formulation is used to estimate β and is computed as follows:

argmin
β

1

u

u∑
t=1

τtΦ(Yt, β
TXt) + λ

B∑
b=1

wb||β(b)||2 (5.5)

where τt ≥ 0 and wb ≥ 0 for all t, b.

Let the training data (Xt, Yt) be defined as DT and L(β|DT ) be empirical loss i.e.,

L(β|DT ) =
1

u

u∑
t=1

τtΦ(Yt, β
TXt) (5.6)

The L(β|DT ) is differentiable as a function of β and is denoted as ∇L(β|DT ). The loss

for logistic regression is defined as follows:
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Φ(Yt, β
TXt) = log(1 + exp(−YtβTXt)) (5.7)

After differentiating we obtain Φ′(Yt, β
TXt) = −Yt 1

1+exp(YtβTXt)

∇L(β|DT ) =
1

u

u∑
t=1

τtYtXt
1

1 + exp(YtXT
t β)

(5.8)

The group-lasso penalized logistic regression model is defined by using the λ values

λ =
max

b=1.....B
||
[
∇Lβ̂|DT

](b)
||2

wb
and wb 6= 0.

β̂glasso = log

( ∑
Yt=1 τt∑
Yt=−1 τt

)
(5.9)

The selection probability S(fa) of the CpG sites with group lasso is as follows.

S(fa) =
1

L

L∑
j=1

1

O

O∑
k=1

I(βjka 6= 0), for a = 1, 2, ..., d. (5.10)

where resampling count is denoted by L, λ values is defined by O, fa is the CpG indexed

as c, and βija is regression coefficient of cth CpG site. For every resampling L, O number

of λ are considered and a 10-fold cross-validation procedure is applied during the model

building process. The true important features referred as CpG sites are ranked based on

their significance level.

Algorithm 3 Proposed RGLR algorithm

Step 1: Obtain 70% of data samples from training data Xt by random sampling with

replacement.

Step 2: The frequency of each CpG sites is counted in the 100 different models of λ

values.

Step 3: Step 1 and Step 2 are repeated for 100 times.

Step 4: Rank the CpG sites based on the scores computed for every CpG site from

Equation (5.10).

Step 5: Apply the top-ranked significant features referred as CpG site to various classifiers

to build predictive models.
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5.4 Results

The synthetic data were generated based on the correlation structures such as 0.1, 0.4,

and 0.7. To illustrate the performance of the method we also used real DNAmeth data

GSE26126.

5.4.1 Simulated data results

The CpGs are ranked with the proposed RGLR method and the other popular current FS

methods. The true positive rate (TPR) rate is calculated based on averages taken over 100

iterations in all the FS methods. The TPR is calculated from 25 to 2500 ranked features

with increment of 25 and is plotted as line plots, as shown in Figure 5.1. From the line

plot, we see that the RGLR is performing better than the other FS methods such as ING,

MRMR, FIS, and RFVI in all the correlation scenarios of 0.1, 0.4, and 0.7. The RGLR

is even successful in selecting the 90% of the true important features within the top 200

ranked features. We also showed the boxplots in the form of percentiles, where we see that

the RGLR method is showing the best performance compared to the other methods by

a larger margin. The boxplots can also be seen in Figure 5.1.The RGLR method, with

average percentiles of 0.06, 0.02, and 0.01 across the three different correlated data, was

the best in comparison to the other FS methods, and it is shown in Table 5.1. Also, when

we consider the SD of all the FS methods, we see that the RGLR is having less variation

in selecting the significant variables on average across 100 times.

Table 5.1: True variable ranking percentile of FS methods on different synthetic data

Correlation RGLR (SD) FIS (SD) ING (SD) RFVI (SD) MRMR (SD)

0.1 0.06 (0.11) 0.29 (0.30) 0.20 (0.25) 0.28 (0.27) 0.32 (0.31)

0.4 0.02 (0.05) 0.22 (0.29) 0.10 (0.17) 0.18 (0.22) 0.23 (0.29)

0.7 0.01 (0.02) 0.19 (0.28) 0.04 (0.10) 0.10 (0.16) 0.14 (0.23)
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Figure 5.1: Line plot and boxplot showing the true positive rate (TPR) of the FS methods

across different correlated synthetic data. The evaluations are made by taking averages over

100 times in each of the correlated data. FIS is Fisher’s score, ING is Information Gain,

MRMR is Minimum Redundancy Maximum Relevance, RGLR is proposed rasampling of

group lasso ranking, and RFVI is Random Forest Variable Importance.

Figure 5.2 shows the line plots and boxplots of the prediction accuracies for various

classifiers with the RGLR and other current methods on the data where the correlation

was set to 0.1. We see that the accuracies of NB, SVM, and RF classifiers with RGLR

are better compared to the other FS methods such as FIS, ING, MRMR, and RFVI. The

line plots show the classification averages calculated at an interval of 25 features among
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the top 200 ranked features. The RGLR on all the classifiers showed consistently superior

performance along with all the top 200 ranked features. The boxplots show the peak

accuracies obtained by the FS methods with different classifiers among the top 200 ranked

features across 100 iterations.
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Figure 5.2: Average ACC of the FS methods with different classification methods on the

simulated dataset when correlation = 0.1. NB is Naive Bayes, SVM is Support Vector

Machines, RF is Random Forests. The evaluations are made by taking averages over 100

times of 0.1 simulated data.

Similar results were seen in simulated data with correlation of 0.4 and 0.7 and the plots
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are shown in Figure 5.3 and Figure 5.4. From the line plots in both figures, we see that

the ACC of various classifiers with RGLR is consistently better than other methods among

the top 200 ranked features. The best performance obtained by each combination of FS

and classification methods was recorded in every iteration and plotted as boxplots for both

datasets and classifiers with RGLR method showed superior performance in both of these

data.
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Figure 5.3: Average ACC of the FS methods with various classification methods on the

simulated dataset when correlation = 0.4

To further estimate the metrics of various classifiers with the proposed RGLR and other
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current FS methods, we made use of SENS, SPEC, and GMM along with the ACC and the

results are reported in Table 5.2. The classifiers of NB, SVM, and RF with the proposed

RGLR method achieved an accuracy of 65.80, 65.50, and 63.90, respectively, has better

accuracy than that of the other FS methods in data with a correlation of 0.1. The SVM

classifier with RGLR method achieved the highest accuracy in the synthetic dataset with

a correlation of 0.7. The RF classifier with MRMR attained an accuracy of 0.671, which

was the lowest among all the combinations of various classifiers with FS methods in the

dataset when the correlation was set as 0.7. Under the data with a correlation of 0.4, all

classifiers with RGLR method outperformed the combination of classifiers with MRMR

with a margin of around 10%.
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Figure 5.4: Average ACC of different classification methods with FS methods on the sim-

ulated data when correlation = 0.7
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Table 5.2: Evaluation of classification methods with FS methods in simulated data with

correlation structures of 0.1, 0.4, and 0.7. The calculations of mean and SD was taken from

100 times of repetitions.

Cors CM Metrics RGLR FIS ING RFVI MRMR

0.1 NB ACC(SD) 0.658(0.054) 0.578(0.053) 0.615(0.061) 0.601(0.049) 0.586(0.048)

SENS(SD) 0.660(0.079) 0.577(0.081) 0.619(0.076) 0.609(0.081) 0.589(0.075)

SPEC(SD) 0.659(0.076) 0.585(0.076) 0.614(0.090) 0.595(0.076) 0.586(0.077)

GMM(SD) 0.657(0.062) 0.578(0.062) 0.614(0.053) 0.599(0.053) 0.585(0.054)

SVM ACC(SD) 0.655(0.054) 0.572(0.044) 0.612(0.048) 0.596(0.042) 0.587(0.049)

SENS(SD) 0.657(0.082) 0.569(0.091) 0.616(0.076) 0.604(0.069) 0.592(0.072)

SPEC(SD) 0.659(0.080) 0.583(0.088) 0.611(0.084) 0.591(0.069) 0.587(0.088)

GMM(SD) 0.655(0.061) 0.571(0.057) 0.610(0.053) 0.595(0.050) 0.586(0.048)

RF ACC(SD) 0.639(0.048) 0.560(0.051) 0.604(0.049) 0.589(0.046) 0.576(0.055)

SENS(SD) 0.635(0.088) 0.561(0.100) 0.604(0.081) 0.594(0.080) 0.580(0.096)

SPEC(SD) 0.650(0.084) 0.570(0.106) 0.610(0.085) 0.589(0.079) 0.580(0.089)

GMM(SD) 0.638(0.059) 0.558(0.046) 0.603(0.048) 0.588(0.052) 0.575(0.059)

0.4 NB ACC(SD) 0.721(0.056) 0.646(0.041) 0.661(0.047) 0.629(0.057) 0.627(0.049)

SENS(SD) 0.720(0.066) 0.644(0.066) 0.660(0.073) 0.634(0.072) 0.629(0.081)

SPEC(SD) 0.724(0.072) 0.650(0.069) 0.666(0.067) 0.627(0.089) 0.630(0.076)

GMM(SD) 0.721(0.062) 0.645(0.048) 0.661(0.062) 0.628(0.062) 0.627(0.051)

SVM ACC(SD) 0.719(0.054) 0.643(0.045) 0.657(0.052) 0.628(0.054) 0.626(0.047)

SENS(SD) 0.718(0.073) 0.644(0.073) 0.662(0.074) 0.633(0.073) 0.630(0.091)

SPEC(SD) 0.723(0.069) 0.647(0.082) 0.656(0.082) 0.628(0.087) 0.631(0.081)

GMM(SD) 0.719(0.060) 0.642(0.054) 0.657(0.048) 0.628(0.065) 0.626(0.048)

RF ACC(SD) 0.696(0.051) 0.625(0.046) 0.645(0.044) 0.616(0.052) 0.608(0.051)

SENS(SD) 0.693(0.077) 0.627(0.084) 0.647(0.082) 0.619(0.083) 0.603(0.102)

SPEC(SD) 0.705(0.080) 0.629(0.081) 0.650(0.087) 0.619(0.083) 0.623(0.091)

GMM(SD) 0.696(0.057) 0.624(0.061) 0.645(0.050) 0.615(0.052) 0.608(0.056)

0.7 NB ACC(SD) 0.765(0.043) 0.714(0.047) 0.726(0.041) 0.703(0.050) 0.703(0.046)

SENS(SD) 0.769(0.063) 0.721(0.063) 0.728(0.067) 0.705(0.068) 0.703(0.065)

SPEC(SD) 0.763(0.064) 0.706(0.067) 0.727(0.059) 0.704(0.071) 0.706(0.067)

GMM(SD) 0.764(0.050) 0.713(0.051) 0.726(0.050) 0.703(0.050) 0.703(0.052)

SVM ACC(SD) 0.775(0.044) 0.712(0.052) 0.729(0.042) 0.700(0.052) 0.697(0.043)

SENS(SD) 0.778(0.070) 0.717(0.071) 0.726(0.073) 0.702(0.074) 0.697(0.077)

SPEC(SD) 0.774(0.062) 0.710(0.073) 0.735(0.066) 0.701(0.073) 0.703(0.078)

GMM(SD) 0.774(0.056) 0.712(0.050) 0.728(0.050) 0.699(0.050) 0.697(0.038)

RF ACC(SD) 0.742(0.044) 0.698(0.049) 0.711(0.046) 0.685(0.047) 0.671(0.054)

SENS(SD) 0.743(0.068) 0.700(0.07) 0.711(0.085) 0.678(0.083) 0.674(0.092)

SPEC(SD) 0.746(0.074) 0.701(0.076) 0.717(0.066) 0.699(0.076) 0.677(0.088)

GMM(SD) 0.743(0.055) 0.698(0.046) 0.711(0.049) 0.685(0.055) 0.671(0.052)
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5.4.2 Application to real data

To estimate the performance of different classifiers with RGLR and other FS methods

the real DNAmeth data of prostate cancer with the accession number GSE26126 is used

in this study. This dataset has 27578 CpG sites, which are reduced to 2500 significant

CpG sites with MMLE as part of initial pre-processing. The absolute pairwise correlation

among CpG sites in prostate cancer data is shown using the density plot and boxplot. The

average absolute correlation between CpG sites is 0.61. This value lies within the range of

correlated data of 0.1 to 0.7 generated in the simulation studies and is shown as a density

plot and boxplot in Figure 5.5.

The variation of accuracies by several classifiers with the FS methods across 100 data

splittings is recorded as boxplots in Figure 5.6. From the line plots, we see that the

performance of the RGLR method, when applied to the classifiers such as NB, SVM, and

RF, outperforms the other combination of classifiers and FS.
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Figure 5.5: Absolute pairwise correlation coefficients between 2500 CpG sites in prostate

cancer data the average is 0.61.

Figure 5.6 also shows the boxplots, where the highest performance attained by different
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classifiers with all the FS methods in each of the iterations are recorded. From these plots,

we see that the proposed RGLR method, when applied on all the classification methods,

is comparatively better than other methods of combination. Table 5.3 shows the averages

of ACC, SENS, SPEC, and GMM calculated for all the methods. The classifiers of NB,

SVM, and RF with proposed RGLR method attained the accuracies of 0.898, 0.906, and

0.910, which were comparatively better compared to other methods of combination.
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Figure 5.6: Average ACC of classification methods with FS methods on the real data

GSE26126.
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Table 5.3: Evaluation of classification and FS methods in real data GSE26126. The metrics

are calculated by taking averages over 100 times of iterations.

CM Metrics RGLR FIS ING RFVI MRMR

NB ACC(SD) 0.898(0.037) 0.897(0.040) 0.893(0.038) 0.894(0.040) 0.896(0.036)

SENS(SD) 0.882(0.058) 0.874(0.065) 0.873(0.065) 0.871(0.061) 0.883(0.057)

SPEC(SD) 0.912(0.050) 0.918(0.046) 0.912(0.051) 0.916(0.052) 0.907(0.051)

GMM(SD) 0.896(0.041) 0.895(0.037) 0.891(0.037) 0.892(0.041) 0.894(0.039)

SVM ACC(SD) 0.906(0.037) 0.904(0.039) 0.902(0.038) 0.904(0.038) 0.902(0.036)

SENS(SD) 0.873(0.060) 0.877(0.063) 0.877(0.061) 0.875(0.059) 0.871(0.061)

SPEC(SD) 0.936(0.041) 0.930(0.043) 0.926(0.046) 0.933(0.043) 0.931(0.043)

GMM(SD) 0.903(0.040) 0.902(0.038) 0.900(0.041) 0.902(0.041) 0.899(0.039)

RF ACC(SD) 0.910(0.039) 0.906(0.037) 0.904(0.038) 0.906(0.039) 0.907(0.037)

SENS(SD) 0.885(0.064) 0.884(0.065) 0.881(0.063) 0.881(0.061) 0.884(0.059)

SPEC(SD) 0.932(0.045) 0.927(0.048) 0.926(0.048) 0.929(0.047) 0.928(0.046)

GMM(SD) 0.908(0.042) 0.904(0.039) 0.902(0.039) 0.904(0.039) 0.905(0.041)

5.5 Discussion

We examined the performance of classifiers such as NB, SVM, and RF with the proposed

RGLR method and other present FS methods like FIS, ING, RFVI, and MRMR using

simulated and real data. The proposed RGLR method ranks the features known as CpG

sites in the context of DNAmeth through resampling of group lasso method. The ranked

features are applied to the classifiers, and the performance is evaluated for top significantly

ranked features. The RGLR method is having the higher performance of true important

feature selection and eventually leading to attain better prediction accuracy with all the

classifiers on DNAmeth data in comparison to other combination of FS with classifiers.
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For training the models, 70% of the training data was used, and the performance of all the

combinations of methods, including the RGLR, was evaluated using ACC, SENS, SPEC,

and GMM. The RGLR showed the best performance in all of these metrics, as seen in

Table 5.2 and Table 5.3.

To exemplify the performance of RGLR method, we used simulation data with three

different correlation structures and real DNAmeth data. The simulation data was having

low = 0.1, medium = 0.4, and high = 0.7 correlation structures. The real data had

a correlation of 0.6, which falls within the range of the simulation setup. At first, we

showed the superior performance of the RGLR in selecting the true important variables in

Figure 5.1 where the TPR of the RGLR is higher than the popular FS methods such as

FIS, ING, RFVI, and MRMR. This shows that the proposed RGLR method is the best FS

method compared to other popular FS methods in selecting more number of true important

features in highly correlated DNAmeth data with group structures. Also, different classifiers

with the RGLR method achieved best performance compared to other methods in both

simulation and real prostate DNAmeth datasets. The various classifiers with FS methods

showed much instability. Therefore, the classifiers have lower performance when there are

fewer true important variables and more amount of noise in the model. The SVM classifier

was relatively consistent in both simulation and real data with all the FS methods.

The proposed RGLR method attained most of the true important features within the

top 50 to 100 ranked features as seen in the line plots and box plots in Figure 5.1. The

positive effect of having such significant CpGs within short-range of ranked CpGs in a

high-dimensional setting is seen in Figures 5.2–5.4. The accuracies described in the form

of plots show that the RGLR method with all the classifiers in all the simulation scenarios

attained the peak accuracies within the top 50 ranked features. The other FS methods,

such as FIS, ING, RFVI, and MRMR, had very low TPR and retrieved all the important

variables when all the features in the data were added. Henceforth, the number of noisy

features that were unrelated to the outcome was added in comparison to the true important

features. This resulted in the downward estimate when higher number of unrelated features
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were added. The RGLR method acquired more number of significant CpG sites compared

to other FS methods. However, the RGLR is computationally intensive because of the

resampling technique. The RGLR method by removing the irrelevant features helps in

boosting classification accuracy and also to reduce the required computation time, as the

number of CpGs is reduced.

5.6 Conclusion

The proposed RGLR method is developed for filtering out the irrelevant CpGs from the

highly correlated DNAmeth data. We show better performance of the RGLR method in

detecting the significant features in comparison to other competitive FS methods through

extensive simulation studies. To illustrate the classification performance, the classifiers such

as NB, SVM, and RF were applied on the top-ranked CpGs obtained from the proposed

RGLR along with the other popular FS methods such as FIS, ING, RFVI, and MRMR. The

various classifiers with the proposed RGLR method showed better performance of ACC,

SENS, and SPEC, and GMM in comparison to other combination of FS with classifiers in

both simulation and real data. However, the proposed RGLR method involves computa-

tionally intensive tasks because of the resampling approach. As future research, we intend

to focus on improving the computational efficiency and significant feature detection power.
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Chapter 6

Identification of Hub Genes and Role of Apoptosis

and Oxidative Stress Related Pathways in Different

Stages of Colorectal Cancer Through Integrated

Bioinformatics Approach

6.1 Introduction

Colorectal cancer (CRC) is diagnosed as the third most common cancer in males and fe-

males in the United States. It is also the third leading cause of cancer-related mortality in

the year 2020 [Siegel et al., 2020]. CRC has become a major health issue, with expected es-

timates showing 147,950 individuals to be diagnosed and 53,200 deaths to be expected from

the disease in 2020 alone [Siegel et al., 2020]. Between 2008 to 2017, the CRC-related mor-

tality in the younger than 55 age group has increased by 1.3% per year [Siegel et al., 2020].

The risk of developing CRC is contingent on certain conditions that can be categorized

into environmental, lifestyle, and genetic factors [Aran et al., 2016], which concur with

tumor initiation, progression and metastasis [Aran et al., 2016, Ding et al., 2020]. Most

of the CRC starts as a polyp that grows on the colon or rectum part’s inner lining.

Depending on the type of polyps, some of them change into adenocarcinoma or car-

cinoma. Colorectal adenocarcinomas form in the glands and can be treated through

surgical or therapeutic procedures such as radiation therapy or chemotherapy. Adeno-

mas or adenomatous polyps are precancerous state polyps that may turn into carcinoma

over a specific time. These adenomas can be removed surgically, and the prognosis is

known to be favorable in the early stages [Brody, 2015]. The early detection of colorec-
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tal polyps through endoscopic screening procedure and their removal before they develop

into cancers is crucial [Thorsteinsson and Jess, 2011]. However, detection of CRC in early

stages is often misdiagnosed as the symptoms are unusual [Xu et al., 2020] and lead to

cancer metastasize to organs, which significantly reduces the survival rate of CRC pa-

tients [Brody, 2015, Yuan et al., 2020]. Therefore, it is of great importance to explore

molecular mechanisms of CRC proliferation and apoptosis [Ding et al., 2020] to improve

diagnosis and treatment by understanding CRC gene expression. Besides, the identi-

fication of multiple genes and pathways that may be involved in the occurrence and

progression of CRC is also important to develop more optimal therapeutic techniques

[Yuan et al., 2020, Chen et al., 2019c].

With the advancement of high-throughput sequencing technology, microarray and next-

generation RNA sequencing (RNA-seq) have become popular in under-standing gene ex-

pression studies [Saito et al., 2018, Deshiere et al., 2019]. The high-throughput gene ex-

pression data is screened through bioinformatics approaches to identify hub genes related

to the CRC. The hub genes were considered important candidates for biomarkers in the

development and progression of CRC [Xu et al., 2020]. Some of the studies conducted

microarray analysis to identify hub genes in CRC [Solé et al., 2014, Zhao et al., 2019,

Chen et al., 2019b]. However, these studies have some limitations. First, most CRC stud-

ies considered a single microarray dataset for finding hub genes but data from a single

microarray platform might not be accurate for identifying hub genes [Solé et al., 2014,

Zhao et al., 2019, Chen et al., 2019b]. Second, some studies used multiple microarray

datasets to find hub CRC genes [Xu et al., 2020, Yuan et al., 2020, Chen et al., 2019c,

Guo et al., 2017]. However, none of these studies compared datasets with samples from

different CRC types, such as adenoma and adenocarcinoma. Lastly, there is a lack of lit-

erature on the role of oxidative stress-induced cellular survival pathways in CRC. These

limitations emphasize the necessity to utilize diverse datasets generated from different high-

throughput technologies containing different tissue sample types. These datasets will be

used to identify potential biomarkers of CRC in this study and discover the associated links
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between hub genes and oxidative stress and apoptosis pathways.

In this study, we used ten microarray datasets obtained from gene expression omnibus

(GEO) and two RNA-seq datasets from the cancer genome atlas (TCGA) to identify hub

genes associated with CRC. The datasets were from different platforms such as GPL570,

GPL16699, GPL4133, GPL3282, GPL15207, and Illumina HiSeq. These datasets were

assigned to three groups, normal tissue vs. adenomas, normal vs. adenocarcinoma, and

normal vs. carcinoma. The differentially expressed genes (DEGs) in each dataset were

identified, and the robust rank aggregation (RRA) algorithm was used to integrate the

gene lists across different groups. A candidate gene list for each group was generated that

had the most significantly expressed genes. Functional enrichment of the candidate genes

in each group was analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways. Further, the protein-protein interactions were

identified with Cytoscape software, and the hub genes for each group were determined

through a clustering approach. The hub genes found in our study were associated with

several important pathways related to CRC, such as the p53 signaling pathway and some

hub genes having a link with oxidative stress and apoptosis pathways were shown. The

potential biomarkers for each group identified in our study may help promote early diagnosis

and treatment of CRC.

6.2 Materials and Methods

6.2.1 Acquisition of Microarray and RNA-seq data.

The gene expression profiles of colorectal cancer (CRC) were obtained from the gene

expression omnibus (GEO) database (http://www.ncbi.nlm.nih.gov) and the cancer

genome atlas (TCGA) database from the genomic data commons (GDC) data portal

(https://portal.gdc.cancer.gov/). The gene expression profiles of 13 CRC datasets

were divided into three groups. The first group (G1) has three datasets that consist of
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colorectal adenoma (CA) samples, group two (G2) had six datasets related to colorectal

adenocarcinoma (CAC) samples. Finally, four of the colorectal carcinoma (CC) datasets

were assigned in group3 (G3). These datasets were chosen such that there were at least ten

samples in cases or control groups. The detailed description of the datasets used in this

study is shown in Table 6.1.

Table 6.1: Description of the datasets used in the study.

Groups Dataset #Samples

(Cases/

Control)

#Genes Source DEGs (UR/DR)

G1 GSE8671 64 (32/32) 54675 [Sabates-Bellver et al., 2007] 5498 (1355/4143)

(CA) GSE20916 69 (45/24) 27697 [Skrzypczak et al., 2010] 2761 (1290/ 1471)

GSE89076 80 (41/39) 58717 [Satoh et al., 2017] 7538 (2844/ 4694)

G2 GSE20842 130 (65/65) 40645 [Gaedcke et al., 2010] 3122 (1432/1680)

(CAC) GSE20916 60 (36/24) 27697 [Skrzypczak et al., 2010] 3556 (1820/1736)

GSE39582 585 (566/19) 54675 [Marisa et al., 2013] 3389 (1582/1807)

GSE110225 34 (17/17) 54675 [E.I. et al., 2019] 1109 (478/631)

TCGAREAD 519 (478/41) 56499 [Muzny et al., 2012] 6703 (3180/3523)

TCGACOAD 176 (166/10) 56493 [Chang et al., 2013] 6813 (3291/3522)

G3 GSE3964 30 (18/12) 23232 [Graudens et al., 2006] 483 (158/325)

(CC) GSE113513 28 (14/14) 49395 Unpublished 2864 (1151/1713)

GSE32323 585 (17/27) 54675 [Khamas et al., 2012] 4671 (4530/141)

GSE21510 148 (123/25) 54675 [Dong et al., 2007] 7720 (4383/3137)
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6.2.2 Identification of differentially expressed genes (DEGs) in

Microarray GEO datasets.

The pre-processing step includes normalization and log2 conversion for each microarray

GEO datasets’ raw matrix data. All the tissue samples were based on the Affymetrix

Array’s different platforms, as shown in Table 1. The Biobase and GEOquery packages in

Bioconductor R were used to load and pre-process the data. The difference in the expression

levels between different cases and control samples for each of the groups (CA vs. normal,

CAC vs. normal, CC vs. normal) were analyzed separately using the linear models for

microarray data (LIMMA) R package [Ritchie et al., 2015] in Bioconductor to select the

statistically significant DEGs. The DEGs were ranked based on the adjusted P-value with

the Benjamini & Hochberg False discovery rate method. We defined the cut-off criteria as

adjusted P-value < 0.05 and | FC (fold change)| > 2 to filter statistically significant DEGs.

6.2.3 Identification of differentially expressed genes (DEGs) in

RNA-seq TCGA datasets.

The RNA-seq samples of data type HTSeq-Counts were used for analysis. The CAC sam-

ples were collected from TCGA Colon adenocarcinoma (TCGACOAD) and TCGA rectal

adenocarcinoma (TCGAREAD) datasets. The TCGAbiolinks package in Bioconductor was

used to obtain the data. The edgeR and Limma packages were used for filtering and identi-

fication of the DEGs. The lowly expressed genes were filtered out using the edgeR package.

Composition biases between the libraries were eliminated using the trimmed mean of m-

values (TMM) normalization. The variance modeling at the observational level (VOOM)

function from the Limma package transforms the read counts into logCPMs (log Counts

per millions). The generalized linear model using weighted least squares method is applied

to the VOOM transformed data to test for differentially expressed genes between CAC vs.

normal samples in the RNA-seq datasets from group G2. The threshold of adjusted P-value

< 0.05 and | FC (fold change)| > 2 is set to filter the statistically significant DEGs in each
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of the RNA-seq datasets.

6.2.4 Integration of ranked lists of DEGs in groups G1, G2, and

G3.

Each dataset had a different number of DEGs (Table 1). We obtained three ranked list of

DEGs for three datasets in G1, six ranked list of DEGs for G2, and four ranked DEGs list for

G3. Next, to integrate the different lists of DEGs into a robust individual list of DEGs for

each group, we applied the robust rank aggregation (RRA) algorithm [Kolde et al., 2012].

The ranked lists of DEGs in a group were considered, and for each gene, the RRA algorithm

looked at how the gene is positioned in the ranked lists of DEGs and com-pared this to

the baseline case where all the preference lists are randomly shuffled [Kolde et al., 2012].

Finally, a P-value is assigned for all the genes. This shows how much better the gene is

positioned in the ranked lists than expected by chance. The P-value for each gene shows

the significance in the final robust ranked list.

Overall, the RRA algorithm is based on a probabilistic model for aggregating the genes

from different datasets into a final robust ranked list. This method is computationally

efficient and statistically robust. The ”RobustRankAggreg” package in R was used to

conduct the gene integration in groups G1, G2, and G3.

6.2.5 Functional and pathway enrichment analysis.

The database for annotation, visualization, and integrated discovery (DAVID, https://

david.ncifcrf.gov/home.jsp, version 6.8) is a publicly available bioinformatics data-

base. This database helps to identify the various biological pathways of DEGs through

a set of functional annotation tools. Gene ontology (GO, http://geneontology.org/)

classifies the description of gene function into three categories: biological process (BP),

cellular component (CC), and molecular function (MF). The Kyoto Encyclopedia of Genes

and Genomes (KEGG, https://www.genome.jp/kegg/) database resource provides an
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understanding of high-level gene functions and biological signaling pathways. The GO

term and KEGG pathway enrichment analyses were performed with the help of the DAVID

bioinformatics tool. The terms with P-value < 0.05 were considered to be statistically

significant.

6.2.6 Protein-Protein Interaction.

The search tool for the retrieval of interacting proteins (STRING-db, https://string-db.

org/, version 11.0) is used to identify the various protein-protein interaction (PPI) net-

works of DEGs based on the confidence score set to medium = 0.7. To analyze the PPI

network from String-db, we used Cytoscape (https://cytoscape.org/), an open-source

bioinformatics software for loading, visualizing, and integrating complex PPI network. The

StringApp plugin in Cytoscape was used to load the PPI network from Stringdb, and the

network analyzer plugin was applied to measure the degree of interaction be-tween nodes

and the network with upregulated and downregulated genes was dis-played. The MCODE

plugin was also applied in Cytoscape to analyze the network further. MCODE uses a clus-

tering algorithm to generate the network clusters to find the densely connected regions.

The key clusters in the network were filtered with degree cutoff = 2., node score cut off =

0.2, k-core = 2, and max.depth = 100.

6.2.7 Hub genes screening and analysis.

We used the network analyzer algorithm to compute the number of connected pairs of

nodes, the average number of neighbors, and node degrees. The node degree represents

the interaction score assigned for each gene. The genes were ranked based on the degree

of interactions among them. The DEGs with highest degree of interaction are defined

as hub genes [Nangraj et al., 2020, Hu et al., 2020]. We determined the hub genes (top

forty DEGs) from each group ranked based on the highest degree of interaction, using

the network analyzer results. Functional enrichment of hub genes was further analyzed
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and noted. We also used MCODE algorithm to verify the hub gene results further. The

MCODE algorithm grouped the genes from the original network into modules and ranked

them based on degrees. The top two clusters were selected from each of the groups to

display the interactions.

6.2.8 Identification of top-ranked significant genes (TSGs) in

GEO datasets using the Resampling-based lasso feature se-

lection (RLFS) approach.

The significantly expressed genes in high-throughput data can also be found using machine

learning approaches [Patil and Kim, 2020, Patil et al., 2020c]. The RLFS method is based

on the lasso penalized regression method and the resampling approach employed to ob-

tain the ranked important features using the frequency [Patil and Kim, 2020]. The RLFS

method was applied to select the TSGs from each of the GEO datasets. The procedure

to select the TSGs from each of the GEO datasets from G1, G2, and G3 is described as

follows: At first, the original data were randomly divided into 75% for the training and

25% for the testing set. As the first filtering step, 75% of the training data were given

to the marginal maximum likelihood estimator (MMLE) to overcome the redundant noisy

genes, and the genes were ranked based on their level of significance. The top 10000 ranked

significant genes were filtered from the MMLE and applied to the RLFS method as the

second filtering step. After filtering through RLFS, the TSGs were obtained. For standard

comparison of the performance of the model and subsidizing the effects of the data split-

ting, the RLFS model was built using the 10-fold cross-validation procedure, and 100 times

of resampling was carried out to rank the genes based on their level of significance. This

procedure was repeated for 100 iterations. The ranked genes in each iteration were taken,

and a majority voting procedure was applied to select the significant genes that appeared in

most of the iterations. The genes that were selected 95 or more times out of 100 iterations

were considered as the TSGs.
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Table 6.2: Description of the Oncomine datasets used in the study.

Groups Dataset #Samples

(Cases/

Control)

Oxidative

stress DEGs

(UR/DR)

Apoptosis

DEGs

(UR/DR)

Oncomine Sabates (GSE8671) 64 (32/32) 29 (21/08) 208 (142/66)

Group-1 Skrzypczak (GSE20916) 69 (45/24) 24 (15/09) 189 (105/ 84)

(CA) Skrzypczak2 (GSE20916) 15 (5/10) 22 (12/10) 176 (90/ 86)

Oncomine Dulak (GSE36458) 122 (62/60) 19 (10/09) 175 (93/82)

Group-2 Gaedcke (GSE20842) 130 (65/65) 39 (23/16) 199 (107/92)

(CAC) Kaiser (GSE5206) 54 (49/5) 37 (20/17) 225 (117/108)

Kurashina (GSE11417) 184 (94/90) 29 (18/11) 173 (111/62)

Skrzypczak (GSE20916) 60 (36/24) 27 (15/12) 187 (101/86)

TCGA CRC 184 (162/22) 38 (21/17) 257 (120/137)

TCGA CRC2 970

(389/581)

33 (17/16) 209 (108/101)

Oncomine Graudens (GSE3946) 30 (18/12) 16 (09/07) 64 (20/44)

Group-3 Hong (GSE9348) 82 (70/12) 28 (16/12) 180 (110/70)

(CC) Skrzypczak2 (GSE20916) 15 (5/10) 30 (15/15) 188 (97/91)

6.2.9 To identify oxidative stress-response and apoptosis associ-

ated genes in CRC with Oncomine.

The Oncomine database (https://www.oncomine.org/) was used to analyze the genes

related to oxidative stress and apoptosis survival pathways. The CRC datasets in Oncomine

were downloaded and grouped into three groups as previously. As shown in Table 2, G1,

G2, and G3 contain the CA, CAC, and CC samples respectively. The concept-based filters
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of response to oxidative stress and apoptosis were applied separately on the datasets to

find the DEGs related to each concept. The threshold of and adjusted P-value < 0.05 and

| FC (fold change)| > 2 is set to filter the statistically significant DEGs related to oxidative

stress and apoptosis.

6.3 Results

6.3.1 Genes differentially expressed in Colorectal Adenoma (G1)

datasets:

The details of the G1 datasets are described in Table 6.1. The DEGs were identified

using the Limma procedure for all the datasets. From Table 6.1, we see that the datasets

GSE8671 and GSE89076 are having more than 5000 DEGs. The Robust rank aggregation

(RRA) method [Kolde et al., 2012] uses a probabilistic model for aggregation robust to

noise and facilitates the calculation of significance probabilities for all the elements in the

final ranking. We applied the RRA algorithm using the ”RobustRankAggreg” package in

R to conduct the gene integration across all the G1 datasets. The P-value cut-off was set

to 0.05 to filter the ranked DEGs. The number of robust DEGs for the G1, G2, and G3

datasets are shown in Table 6.3.

Table 6.3: Robust DEGs (P-value < 0.05) in each group from Table 6.1.

Groups Robust UR Robust DR Total Robust DEGs

G1 (CA) 186 449 635

G2 (CAC) 499 494 993

G3 (CC) 206 79 285
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Figure 6.1: Heatmap of common genes in all groups.

We plotted heatmap to understand the difference in expression levels of common RRA

genes in all groups. In Figure 6.1, we show the change in logFC among the common RRA

genes in Colorectal adenoma, Colorectal adenocarcinoma, and Colorectal carcinoma.

Next, the common genes among the different datasets in upregulated (UR) and down-

regulated (DR) were shown using the Venn diagram. There were 370 UR and 622 DR

commonly found DEGs as displayed in Figure S1A and S1B, respectively. Further, the
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intersection of these common UR and DR genes was taken with the RRA ranked genes to

show the important genes. Finally, we see that the 154 and 403 RRA genes are shown in

Figure 6.2 would be the most significant.

[A] [B]

[C] [D]

Figure 6.2: Results of the Venn diagram and RRA for G1. (A) UR common DEGs from

G1 in the Venn diagram. (B) DR common DEGs from G1 in the Venn diagram. (C) The

intersection of UR genes in Venn and RRA results. (D) The intersection of DR genes in

Venn and RRA results. Abbreviations: RRA, Robust Rank Aggregation.

6.3.2 Genes differentially expressed in Colorectal Adenocarci-

noma (G2) datasets:

The details of the G2 datasets are described in Table 6.1. The DEGs were identified using

the Limma procedure for all the datasets. The TCGA COAD and READ datasets consist

of around 3000 UR and DR genes. 153 UR genes are common to all the datasets in G2, as

seen in Figure 6.3. Among the 153 UR genes, 136 of them were also found in the robust

UR genes, as shown in Figure 6.5.
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Figure 6.3: UpSetR plot showing the intersection of UR genes in G2.

In Figure 6.4, we see that 225 DR genes are unique to all the datasets in G2. Among

these, 213 genes were also selected by the RRA method, as shown in Figure 6.5.

Figure 6.4: UpSetR plot showing the intersection of DR genes in G2.
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[A] [B]

Figure 6.5: Venn diagram showing the intersection of UR and DR RRA genes in G2

datasets.

6.3.3 Genes differentially expressed in Colorectal Carcinoma

(G3) datasets:

The description of the CC datasets can be found in Table 6.1. The count of DEGs for each

of the G3 datasets is mentioned in Table 6.1. Here, we see that the dataset GSE21510

with 7720 DEGs is the largest in this group. The RRA procedure was applied to find the

ranked integrated genes across all the G3 datasets. The P-value cut-off was set to 0.05 to

filter the ranked DEGs. Venn diagram was plotted to show the overlapping genes among

the datasets. There were three and one overlappings of up and downregulated DEGs found

among the G3 datasets, as shown in Figure 6.6.
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[C] [D]

Figure 6.6: Results of the Venn diagram and RRA for G3. (A) UR common DEGs from

G3 in the Venn diagram. (B) DR common DEGs from G3 in the Venn diagram. (C) The

intersection of UR genes in Venn and RRA results. (D) The intersection of DR genes in

Venn and RRA results.

6.3.4 Analyzing the performance of RLFS in all groups.

We applied the RLFS method to all the datasets in their corresponding groups to assess

gene selection. The significant genes for each group were obtained using the RRA algorithm.

We compared the list of RRA-RLFS genes with RRA-DEGs to interpret the results. We

took an intersection of the DEGs found through standard procedures and significant genes

found through the RLFS method to know the overlapping genes. We found all the RLFS

genes in G1 and G2 DEGs, as shown in Figure 6.7. Similarly, we can see that about 22

genes from RLFS were also found in G3 DEGs, as shown in Figure 6.7.
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Figure 6.7: Results of the RLFS method, Intersect approach, and RRA algorithm. (A)

The intersection of RRA DEGs and RRA RLFS genes in G1. (B) The intersection of RRA

DEGs and RRA RLFS genes in G2. (C) The intersection of RRA DEGs and RRA RLFS

genes in G3. Abbreviations: RLFS, Resampling based lasso feature selection.

6.3.5 GO enrichment analysis

The ranked RRA DEGs for each group G1, G2, and G3, including both UR and DR genes,

were submitted separately to DAVID to retrieve the overrepresented GO categories and

KEGG pathways. The summary of GO term enrichment analysis for the RRA UR and DR

genes is shown in Figure 6.8 and Figure 6.9, respectively.
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Figure 6.8: Functional group enrichment analysis of UR RRA genes in G1, G2, and G3.

(A) Analyses of GO functional groups within the G1, G2, and G3. The Y-axis of these

100% stacked columns shows the percentage of genes that fall within each GO, functional

group. (B-D) Common GO functionalities between all groups. (B) The GO biological

process. (C) The molecular function. (D) The cellular component.
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Figure 6.9: Functional group enrichment analysis of DR RRA genes in G1, G2, and G3. (A)

Analyses of GO functional groups within G1, G2, and G3. The Y-axis of these 100% stacked

columns shows the percentage of genes that fall within each GO functional group. (B-D)

Common GO functionalities between all groups. (B) biological process. (C) molecular

function. (D)cellular component.

GO enrichment analysis of UR genes

In the biological process of GO terms, the top 3 UR pathways (Figure 6.10) for G1 were

rRNA processing, purine ribonucleoside monophosphate bio-synthetic process, and ’de

novo’ IMP biosynthetic process, the UR genes in G2 were mainly associated with cell

division, mitotic nuclear division, and DNA replication, and finally in G3 the genes were

associated with rRNA processing, maturation of SSU-rRNA from tricistronic rRNA tran-

script, and purine nucleobase biosynthetic process. Figure 6.10A shows that in G1-UR

(CAC), cell division is significantly enriched, which is not seen in G2-UR and G3-UR. The
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cell proliferation had a count of around 20 in G2-UR is seen to increase in G3-UR. The rRNA

processing is seen in all three groups with the almost same count of genes. However, there

is a change in expression. The G3-UR is highly expressed in comparison to the other two

groups. In the cellular component ontology, the G1-UR genes were mainly enriched in the

nucleolus, nucleoplasm, and cytosol. The G2-UR genes were enriched in the nucleoplasm,

nucleolus, and nucleus. The G3-UR genes were enriched in the nucleolus, nucleoplasm, and

small-subunit processome. We see that the nucleus and cytoplasm have a large number of

genes involved in G2-UR compared to G1-UR and G3-UR (Figure 6.10B). Similarly, nucle-

oplasm is highly expressed in G2-UR compared to the other two groups. In the Molecular

function analysis, the G1-UR genes were significantly enriched in poly(A) RNA binding,

protein binding, Ran GTPase binding, and protein-arginine N-methyltransferase activity.

The G2-UR were seen enriched in protein binding, ATP binding, and poly(A) RNA bind-

ing. The G3-UR were enriched in poly(A) RNA binding, snoRNA binding, and protein

binding. There are more than 200 highly expressed genes (Figure 6.10C) in the protein

binding of G2-UR, whereas, in G1-UR and G2-UR, there is relatively lower expression.

Also, there is ATP binding interaction happening in G2-UR. However, there is no such

activity reported in other groups.
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Figure 6.10: GO and KEGG pathway enrichment of RRA-UR genes. (A) GO enrichment

of Biological process. (B) GO enrichment of Cellular components. (C) GO enrichment of

Molecular function. (D) KEGG pathway enrichment. Abbreviations: UR, Upregulated;

GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.

GO term enrichment analysis of DR genes.

In the biological process, the top G1-DR, G2-DR, and G3-DR genes (Figure 6.11A) were

significantly enriched in the cellular response to zinc ion and negative regulation of growth,

and these pathways are highly expressed in G3-DR compared to other groups. In G1-DR,

many genes are involved in cell adhesion, which is not evident in G2-DR and G3-DR. In

G1-DR, the extracellular exosome, brush border membrane, and apical plasma membrane

was found to be the top significant pathways. The extracellular exosome, extracellular

space, and integral component of the membrane were the top enriched pathways in G2-DR

of the cellular component (Figure 6.11B). The extracellular exosome, chromaffin granule,
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and basolateral plasma membrane were top pathways in G3-DR. The integral component

of the membrane appears to be highly enriched in G2-DR compared to G1-DR. In the

molecular function part (Figure 6.11C), the top pathways for G1-DR were heparin-binding,

chloride channel activity, and carbonate dehydratase activity. The G2-DR were in chlo-

ride channel activity, carbonate dehydratase activity, and steroid-binding. The G3-DR

were in xenobiotic-transporting ATPase activity, guanyl nucleotide-binding, and structural

constituent of the myelin sheath.

Figure 6.11: GO and KEGG pathway enrichment of RRA DR genes. (A) GO enrichment

of Biological process. (B) GO enrichment of Cellular components. (C) GO enrichment of

Molecular function. (D) KEGG pathway enrichment. Abbreviations: DR, Downregulated.
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KEGG pathway analysis

The KEGG pathway analysis was performed to gain insights into the identified RRA-

DEGs further. The target genes of the UR genes from G1 (Figure 6.10D) were significantly

enriched in ribosome biogenesis in eukaryotes, small cell lung cancer, and RNA transport.

The UR genes in G2 were found in the cell cycle, ribosome biogenesis, and oocyte meiosis

in eukaryotes. Finally, the UR genes in G3 were found in ribosome biogenesis in eukaryotes,

RNA transport, and purine metabolism. The ribosome biogenesis pathway was found in all

the groups; however, it was highly expressed in G2-UR. The transcriptional misregulation

in the cancer pathway was found only in G3-UR. The KEGG pathways for the DR genes

(Figure 6.11D) in G1 were mainly enriched in mineral absorption, aldosterone-regulated

sodium reabsorption, and proximal tubule bicarbonate reclamation. In G2, the DR genes

were significantly enriched in mineral absorption, pentose and glucuronate interconversions,

and drug metabolism - cytochrome P450. The target genes of the DR genes in G3 were

enriched in mineral absorption and bile secretion. The mineral absorption is commonly

found in all groups. However, it is highly enriched in G1-DR.

6.3.6 Protein-Protein Interaction (PPI) network construction

and module selection for key genes screening.

PPI network construction and module selection in G1, G2, and G3.

PPI networks of DEGs in G1, G2, and G3 were constructed with the string app in Cy-

toscape. The original PPI network developed for each group had many nodes and edges

among them. The nodes represent the proteins, and the edges are the interactions. The

PPI network for G1 had 615 nodes and 846 edges (Figure 6.13A). The PPI net-work for

G2 had 816 nodes and 3056 edges (Figure 6.14A). Finally, for G3, the PPI network had

280 nodes and 545 edges (Figure 6.15A). As seen in these figures, the networks are very

dense, it is very difficult to interpret important information from these interaction net-

works. Therefore, we applied the network analyzer algorithm to filter the DEGs with a
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high degree of interaction score. The top forty DEGs with high scores were de-termined as

hub genes in each group, similar to that in studies done by Nangraj et al. (2020) and Hu

et al. (2020). To further validate our results, we applied the MCODE algorithm to divide

the original dense networks into modules. The top two clusters with high scores in each

group were considered to be significant.

[A] [B]

[C]

Figure 6.12: (A). Top forty hub genes in G1. (B) Hub genes in G2. (C) Hub genes in G3.

Dark red color- UR; Blue color- DR;

The top forty genes with the highest degree of interaction from the original dense

networks in each group were termed hub genes, the PPI network of hub genes in G1, G2,

and G3 are shown in Figures Figure 6.12A, B, and C, respectively. In general, there were
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more UR hub genes than DR hub genes in all three groups. However, in G1, which is the

colorectal adenoma stage, we see that 35% of hub genes reported were DR (Figure 5A). In

carcinoma stages of G2 and G3, we see that almost 99% of hub genes were UR.

Next, we used the MCODE algorithm to build the modular networks and compare

the results with the hub genes obtained from the network analyzer method. The top

two clusters created with MCODE from the DEGs network were selected based on their

interaction scores. Cluster1 in G1 had 21 nodes and 195 edges (Figure 6.13B), whereas,

cluster2 in G1 had 13 nodes with 77 edges (Figure 6.13C). These two clusters had all the

hub genes determined earlier by the network analyzer methods Figure 6.12A.

[A] [B]

[C]

Figure 6.13: (A). PPI network of DEGs from G1 was constructed in Cytoscape with String-

db. (B-C). The most significant module of DEGs in G1. Cluster1 and Cluster2 were

obtained with MCODE plug-in in Cytoscape applied on the PPI network.

There were about 816 nodes and 3056 edges in G2 PPI network. The MCODE algo-
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rithm generated the clusters, and the top two cluster networks were selected. The cluster1

(Figure 6.14B) in G2 had about 51 nodes and 1078 edges. The cluster2 (Figure 6.14C) had

23 nodes and 251 edges. Considering the high number of interaction scores in cluster1 and

cluster2, the hub genes were determined Figure 6.12B.

[A] [B]

[C]

Figure 6.14: (A). PPI network of DEGs from G2 was constructed in Cytoscape with String-

DB. DEGs- Differentially expressed genes. (B-C). The most significant module of DEGs in

G2. Cluster1 and Cluster2 were obtained with MCODE plug-in in Cytoscape applied on

the PPI network.

There was a total of 280 nodes and 545 edges in the original PPI network for G3. The
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top two clusters created with MCODE from the PPI network were significant. Cluster1

(Figure 6.15B) had about 24 nodes and 252 edges. The cluster2 (Figure 6.15C) had 11

nodes with 43 edges. The nodes in cluster1 and 2 having a greater number of interactions

were considered hub genes Figure 6.12C.

[A] [B]

[C]

Figure 6.15: (A). PPI network of DEGs from G3 was constructed in Cytoscape with String-

db. (B-C). The most significant module of DEGs in G3. Cluster1 and Cluster2 were

obtained with MCODE plug-in in Cytoscape applied on the PPI network.

6.3.7 Functional enrichment of hub genes

The top 40 genes with the highest degree of interaction in each group were termed hub

genes. The KEGG pathways of enrichment in the top 40 hub genes are shown in Table 6.4.

The ribosome biogenesis in eukaryotes, chemokine signaling pathway, pathways in cancer,
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and P13K-Akt signaling pathways are the top pathways for the hub genes involved in group

G1.

In G2, the cell cycle, oocyte meiosis, and p53 signaling pathways are highly enriched.

Some of the key hub genes involved in the cell division pathway were CDK1, CDC6, CDC20,

CDC45, CHEK1, BUB1, and MAD2L1. The hub genes involved in the p53 signaling

pathway were CCNB1, RRM2, CHEK1, CDK1. Some of the hub genes involved in these

two pathways were also part of oxidative stress and apoptosis. The CDC25C, RRM2, and

CDK4 genes were part of the oxidative stress pathway. The hub genes CHEK1, CDK1,

CCNB1, and CDC20, were also enriched in the apoptosis pathway.

Finally, the ribosome biogenesis in eukaryotes with a count of nine genes was the most

significantly pathway in G3 Table 6.4. Additionally, the hub genes RRM2, POLR1B,

POLR1C, and POLR1D are enriched in pyrimidine and purine metabolism pathways in

G3. RRM2 hub gene is also known to be linked to oxidative stress.
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Table 6.4: KEGG pathways related to hub genes.

Groups Term KEGG Pathway Count PValue

G1 hsa03008 Ribosome biogenesis in eukaryotes 7 2.92E-07

hsa04062 Chemokine signaling pathway 7 2.48E-05

hsa05200 Pathways in cancer 8 0.000208

hsa04151 PI3K-Akt signaling pathway 5 0.025838

hsa04727 GABAergic synapse 3 0.032272

hsa05032 Morphine addiction 3 0.036574

hsa04713 Circadian entrainment 3 0.03956

hsa04723 Retrograde endocannabinoid signaling 3 0.044207

hsa04060 Cytokine-cytokine receptor interaction 4 0.045786

G2 hsa04110 Cell cycle 14 2.75E-19

hsa04114 Oocyte meiosis 8 1.01E-08

hsa04914 Progesterone-mediated oocyte maturation 6 2.91E-06

hsa04115 p53 signaling pathway 4 0.000765

hsa05203 Viral carcinogenesis 4 0.01777

hsa05166 HTLV-I infection 4 0.031122

G3 hsa03008 Ribosome biogenesis in eukaryotes 9 1.05E-11

hsa00240 Pyrimidine metabolism 4 0.001799

hsa03020 RNA polymerase 3 0.00273

hsa00230 Purine metabolism 4 0.008596

6.3.8 Analyzing DEGs in oxidative stress and apoptosis.

As mentioned in the previous section we found multiple genes in all three groups related

to oxidative-stress and apopotosis. As a result we wanted to look into the genes from
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the different CRC stages that are related to these pathways, in more detail. The dataset

description for all the groups and the total count of DEGs found using the Limma procedure

for all the datasets from Oncomine are described in Table 6.2. There are three Oncomine

datasets in group-1, seven in group-2, and three in group-3. The total number of oxidative-

stress related DEGs in Sabates, Skrzypczak, and Skrzypczak2 from group-1 were 29, 24,

and 22, respectively. The apoptosis related DEGs were around 200 in these datasets. In

group-2, the oxidative stress DEGs ranged from 19 to 39, and the apoptosis DEGs were

around 200 in all seven Oncomine datasets (Table 6.2). The total oxidative stress DEGs

in group-3 were 16, 28, and 30 for datasets Gradudens, Hong, and Skrzypczak2. The

apoptosis-related DEGs in these datasets were 64, 180, and 188. Overall, more DEGs were

found in the apoptosis pathway compared to the oxidative stress in all the groups. Among

the DEGs in both of these pathways, there were more UR genes than DR in all three groups

(Table 6.2). RRA algorithm was applied to integrate the list of DEGs from both oxidative

stress and apoptosis separately in G1, G2, and G3. The robust integrated list of DEGs

established for each group (G1, G2, and G3) related to oxidative stress and apoptosis

is noted in Table 6.5. A P-value cut-off of 0.05 was assigned to filter the statistically

significant robust DEGs. There is a relatively less number of robust Oxidative stress DEGs

found when compared to apoptosis DEGs. More oxidative stress and apoptosis DEGs were

found in colorectal adenocarcinoma (G2) than the other two groups.

Table 6.5: Robust DEGs related to oxidative stress and apoptosis genes in all groups from

Oncomine.

Groups RRA Oxidative-stress

DEGs (UR/DR)

RRA Apoptosis DEGs

(UR/DR)

G1 04 (02/02) 28 (19/09)

G2 09 (04/05) 47 (23/24)

G3 02 (00/02) 18 (09/09)
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The details of Robust DEGs involved in the oxidative stress pathway are shown in

Table 6.6. Some of the oxidative stress genes are common among these groups. PRDX6 is

present in both G1 and G2. SEPP1 is common between G1 and G3. The G2 had the highest

number of oxidative stress-related genes compared to the other two groups Table 6.6.

Table 6.6: Oxidative stress-related genes from Oncomine that are also found in RRA DEGs.

Groups Common genes between RRA oxidative stress DEGs and

RRA DEGs

Total

G1 GPX2 KIF9 PRDX6 SEPP1 04

G2 FOXM1 GSS NUDT1 PRDX2 ANGPTL7 MSRA

PDLIM1 PRDX6 SCARA3

09

G3 CCL5 SEPP1 02

The number of Robust DEGs in the apoptosis pathway was more compared to oxidative

stress. WDR74 gene is an apoptosis-related gene that was also identified among the top

forty hub genes in G1. CHEK1, CDK1, CCNB1, MCM2, and CDC20 were the apoptosis-

related genes in G2. These genes were also found within the forty hub genes of G2.

6.4 Discussion

Although the death rate of individuals from CRC has dropped over the past decade, CRC

is still the third leading cause of mortality [Siegel et al., 2020]. CRC is the most com-

mon type of malignant tumor of the gastrointestinal tumors, with more than 1.5 million

cases in the US [Siegel et al., 2020, Hong et al., 2014]. The total cases are expected to

be increased by 2030, with 2.2 million new cases [Arnold et al., 2017]. The progression

of CRC is a dynamic process with the expression levels of some molecules changing at

different stages [Moroishi et al., 2015]. Because of its heterogeneity and complexity, early

detection and diagnosis have become increasingly challenging. Effective biomarkers and

115



useful diagnostic approaches for early detection of CRC improve CRC patients’ survival

rate [Murphy et al., 2019, Lech et al., 2016]. Therefore, it is necessary to identify mean-

ingful CRC biomarkers to better understand the molecular mechanism of CRC progression

in different stages [Lech et al., 2016].

High-throughput technology, including microarray gene expression and next-generation

sequencing, is widely used in cancer research [Lin and Tsai, 2016]. The microarray data can

be used to identify hub genes and pathways related to CRC development [Xu et al., 2020,

Solé et al., 2014, Zhao et al., 2019, Chen et al., 2019b]. However, these studies did not

focus on different CRC subtypes, and most of the analysis was conducted on single CRC

data [Solé et al., 2014, Zhao et al., 2019, Chen et al., 2019b]. These limitations highlight

the requirement to conduct studies based on different CRC subtypes with multiple datasets

to identify the hub genes and pathways in CRC.

In this study, we focused on expression profiles of normal vs. cases collected from

several microarray studies and divided them into three groups. The G1 included colorectal

adenoma vs. normal samples from GSE8671, GSE20916, and GSE89076. The G2 contained

Colorectal adenocarcinoma vs. normal samples from GSE 20842, GSE20916, GSE39582,

GSE110225, TCGA COAD, and TCGA READ. The G3 has Colorectal carcinoma vs.

normal samples obtained from GSE3964, GSE113513, GSE32323, and GSE21510. An

RRA approach was applied to integrate the DEGs from multiple datasets into a single list

for each group. A total of 635 DEGs were identified in G1 with 186 UR and 449 DR. The

G2 had 993 RRA DEGs with 499 UR and 494 DR. Finally, 285 RRA DEGs were present

in G3, having 206 UR and 79 DR genes in them. To better understand these DEGs, we

conducted GO enrichment analysis and KEGG pathway analysis for these RRA DEGs. We

identified hub genes associated with CRC through computational techniques.

Studies have shown that the dysregulation of the cell cycle and mitotic nuclear cell divi-

sion plays an important role in the occurrence and progression of CRC [Chen et al., 2019c,

Wang et al., 2018, Cheng et al., 2018, Li et al., 2018b]. We observed that UR DEGs from

G1 and G2 were enriched within the cell proliferation and mitotic nuclear division sub-
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categories of the GO biological processes. It was also observed that the rRNA processing

and cell division genes were highly enriched in G3 and G2, respectively. The UR DEGs in

KEGG pathways showed that cell cycle, p53 signaling pathway, and microRNAs in cancer

pathways are highly enriched in G2 compared to other groups. The enrichment of cellular

response to zinc ion and bicarbonate transport pathways was found in all groups. The

bicarbonate transport pathway plays a vital role in the diagnosis and treatment of many

cancers, including CRC [Xu et al., 2020, Gorbatenko et al., 2014]. The KEGG analysis for

DR DEGs showed that the mineral absorption pathway’s enrichment was decreased from

G1 to G3. The P13K-Akt signaling path-way, bile secretion, and gastric acid secretion

were enriched only in G1. Chen et al. conducted in vitro experiments in CRC and showed

that the cancer cell migration and invasion could be suppressed by epithelial mesenchymal

transition (EMT) via P13K/Akt signaling [Chen et al., 2019a].

A PPI network provides a visual framework for a better insight into the functional

organization of the proteins [Liu et al., 2009]. The RRA DEGs formed dense networks in

each group. The network part that had the highest node interactions was considered and

determined as hub genes using the net-work analyzer algorithm. The MCODE algorithm

was used to obtain clusters that con-tained significant key genes. The results from the

network analyzer when compared with MCODE results for each group, were found to be

highly consistent. Overall, the top forty genes with the highest degree of interaction in

each group were considered to be hub genes. These hub genes in each group were enriched

in several critical path-ways related to cancer reported in Table 6.4.

The top KEGG pathways related to hub genes from G1 were ribosome biogenesis in

eukaryotes, chemokine signaling receptor, pathways in cancer, P13K-Akt signaling pathway,

cytokine-cytokine receptor interaction. The genes involved in the chemokine signaling

pathway are CXCL12, CXCL3, and CCL21. CXCL3 was highly expressed in colorectal

adenomas [Dai et al., 2020, Gong et al., 2020]. The FOXO1 gene was involved in cancer

pathways. Agostini et al. compared the expression levels of FOXO1 in adenoma and

carcinoma tissue and found that the expression levels were significantly higher in adenoma
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compared to carcinoma [Agostini et al., 2008]. This result was consistent with our study,

where FOXO1 is significantly expressed and is part of the top 40 hub genes in G1. However,

it is not significantly expressed in G2 and G3, which are the cancerous stages.

In the adenocarcinoma (G2) datasets, the forty hub genes were mainly enriched in the

cell cycle and p53 signaling pathway. Previous studies have shown that a few of the genes

in cell-cycle-related pathways promote the proliferation of endothelial cells, contributing to

tumor progression and metastasis in colorectal adenocarcinoma [Hong et al., 2009]. The

genes involved in the cell cycle are CDK1, PLK1, TTK, CDC6, CCNA2, CDC20, CCNB1,

CDC45, PTTG1, CHEK1, MCM4, BUB1, MCM2, and MAD2L1. The genes involved in the

p53 pathway are CDK1, CCNB1, RRM2, and CHEK1. We searched the literature to find

the association of these hub genes in colorectal adenocarcinoma. CDK1 gene promotes cell

proliferation by inhibition of the FOXO1 transcription factor [Liu et al., 2008]. The effects

of alteration of the CDK1 gene are seen in many cancer types, including esophageal adeno-

carcinoma, breast cancer, oral squamous cell carcinoma, hepatocellular, and pancreatic

adenocarcinoma [Kim et al., 2008, Hansel et al., 2005, Wu et al., 2019, Piao et al., 2019,

Chang et al., 2005]. Lu et al. argued that the RRM2 gene is overexpressed in colorec-

tal adenocarcinoma [Lu et al., 2012]. The higher expression of RRM2 was correlated with

the tumor node metastasis stage [Lu et al., 2012]. Gan et al. revealed that the expression

of the CCNA2 gene is higher in colorectal adenocarcinoma tissues than in normal samples

[Gan et al., 2018]. The study also revealed that knockdown of CCNA2 could suppress cell

growth by disrupting the cell cycle and inducing cell apoptosis [Gan et al., 2018]. Taka-

hashi et al. showed that PLK1 is overexpressed in CRC [Takahashi et al., 2003]. PLK1 is

also involved in the proliferation, migration, and invasion of CRC cells [Han et al., 2012].

Gali-Muhtasib et al. proved overexpression of CHEK1 was correlated with advanced tu-

mor stages and worse prognosis in CRC [Gali-Muhtasib et al., 2008]. We also searched

the literature for other hub genes in G2 that were not part of the cell cycle and p53

pathways. The MAD2L1 and BUB1 are critical components of the spindle assembly

[Xue et al., 2016] and are known important drivers of carcinogenesis in colorectal adeno-
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carcinoma [Chen et al., 1998, Burum-Auensen et al., 2007]. Ding et al. showed cell growth

suppression by knockdown of MAD2L1, which impaired cell cycle progression and induced

cell apoptosis [Ding et al., 2020]. AURKA and TPX2 gene are also known for carcino-

genesis in CRC by promoting the progression of colorectal adenoma to colorectal ade-

nocarcinoma [Sillars-Hardebol et al., 2012]. Ren et al. revealed that the downregulation

of PTTG1 suppressed cell proliferation and invasion in CRC [Ren and Jin, 2017]. DTL

gene is known for its role in cell proliferation and cell cycle arrest in many cancers such

as breast [Ueki et al., 2008], hepatocellular carcinoma [Pan et al., 2006], and gastric can-

cer [Missiaglia et al., 2009]. NUSAP1 plays an essential role in mitotic spindle assembly

[Song and Rape, 2010]. It induced apoptosis and inhibited proliferation, migration, and in-

vasion in CRC [Han et al., 2018]. KIF11 is another protein required for spindle formation

[Zhu et al., 2005]. The knockdown of KIF11 prevents sphere formation indicating its im-

portance in CRC [Imai et al., 2017]. TOP2A gene causes chromosomal instability in many

different cancers [Simon et al., 2003, ?, Bofin et al., 2003], and its protein expression level

is mainly linked to advanced tumor stages and chemotherapeutic resistance via inhibition

of apoptosis [Coss et al., 2009]. CEP55 enhances cell growth, and its knockdown inhibits

cell growth in the breast and gastric [Tao et al., 2014, Wang et al., 2016].

The top 40 hub genes in G3 were involved in ribosome biogenesis in eukaryotes, rRNA

processing, and pyrimidine and purine metabolism pathways. Previous studies have shown

that the ribosome biogenesis pathway is altered in colorectal cancer. The alterations

lead to increased production of ribosomes linked to the initiation and pro-gression of col-

orectal carcinogenesis [Slimane et al., 2020]. Stedman et al. showed that the dysfunc-

tion of ribosome biogenesis might also lead to p53-mediated apoptosis in some cancers

[Stedman et al., 2015].

We further checked the presence of the oxidative stress and apoptosis pathway related

genes in the Oncomine database. FOXM1, CDC25C, RRM2, CDK4, PRDX1, PRDX2,

GPX2, GPX4, and FHL2 genes were the core genes found to be related to the oxidative

stress pathway. The FOXM1 and RRM2 genes were also found in the cell cycle and p53
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signaling pathway. Slattery et al. (2019) have suggested that the activation of p53 signaling

may be related to cellular stress, which could influence apoptosis, cell cycle arrest and

angiogenesis through the mRNA-miRNA interactions [Slattery et al., 2019]. The PRDX1

and PRDX2 regulate cellular signaling and differentiation. These genes were found to

be UR in our analysis and may serve as a potential therapeutic target. Previous studies

also showed that these genes were UR and promoted metastasis and angiogenesis in CRC

[Li et al., 2018a, Lu et al., 2014]. Verset et al. showed that the higher expression of FHL2

was involved in the progression of CRC [Verset et al., 2013].

The genes linked to the apoptosis pathway were CHEK1, CDK1, CCNB1, GTSE1,

MCM2, MCM10, CDC20, WDR74, and PMAIP1. As described in one of the previous

sections, CHEK1, CDK1, and CCNB1 were involved in p53 signaling. Our analysis demon-

strates that these are some of the major genes related to apoptosis pathways. The tumors

lacking p53 have shown higher levels of expression of CHEK1, which was accompanied by

inability to induce apoptosis [Gali-Muhtasib et al., 2008]. The higher expression of CDK1

and CDC20 in CRC patients is associated with a poorer prognosis [Li et al., 2020]. The

GTSE1 promotes cell growth in breast cancer by activating the P13-Akt pathway and en-

hances metastasis. It could also regulate the p53 to alter the cell cycle [Lin et al., 2019].

PMAIP1 is also known as the NOXA gene. Its expression is regulated by the p53 signaling

and has been involved in p53-mediated apoptosis [Shibue et al., 2003].

As future work, we will be validating the differential expression of the target hub genes

in commercially available cell lines by qRT-PCR. We also plan to check the expression of

these target transcripts during the different stages of CRC. The study of the genes in the key

pathways related to tumorigenesis could lead to targets for novel therapeutic interventions.

6.5 Conclusion

In this study, we used multiple GEO datasets for different CRC types and found forty

hub genes from each group through various bioinformatics approaches. The hub genes
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were found to be enriched in the cell cycle, p53 signaling pathway, mineral absorption,

and many other key pathways related to CRC progression. We also analyzed the genes

involved in stress-survival and apoptosis-related pathways using Oncomine database. Our

findings suggest that hub genes revealed in our study may be considered as biomarkers for

the diagnosis of CRC. Additionally, the genes expressed in stress survival pathways could

be tested as potential therapeutic targets. However, this study primarily being a in-silico

analysis, has its limitations; in vivo and in vitro experiments would be needed to validate

the biological functions of these genes in CRC.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

Gene selection and classification in different high-dimensional biological data are challeng-

ing because of the large number of features present in the model. In this work, I have

presented three algorithms for efficient gene selection and classification in biological data

such as Microarray, DNA methylation, and RNA-seq. The algorithms were built such

that they retrieve significantly expressed genes and achieve better classification accuracy.

The performance of the algorithms was measured by comparing with the existing popular

machine learning models on both synthetic and real data. The R codes for all the three

algorithms are made publicly available [Patil, 2021]. The codes of interest can be easily

incorporated by users in gene expression studies. These algorithms’ development helps us

identify significantly expressed genes in high dimensional data much efficiently. The signif-

icantly expressed genes can be further used for knowing their gene ontology and biological

pathways information from various biological pathway databases. This work will also help

in attaining other important information such as protein-protein interactions from given

data that further helps to gain biological insights of the significant genes.

In the application part, the RLFS method developed earlier was also applied on RNA-

seq datasets along with several microarray datasets related to CRC. The significant genes

selected from the RLFS method were also present in the DEGs found through the traditional

approach showing accurate gene selection accuracy of the RLFS method. The biological

insights such as the expression of genes in different stages of cancer in several key pathways

were gained through the functional enrichment analysis and protein- protein interaction

networks developed using bioinformatics analysis. The genes revealed from the study would
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be biomarkers and explain the CRC development and progression mechanisms.

7.2 Future Research

In this dissertation, three algorithms have been developed for accurate gene selection and

improving classification performance in gene expression data. We also applied some of these

algorithms on the colorectal cancer datasets to identify the hub genes. This section covers

some of the future directions on application of machine learning tools on next-generation

sequencing and third generation sequencing data.

Next-generation sequencing (NGS) technologies is growing rapidly producing a fast

expanding collection of different NGS data types related to different diseases deposited in

public databases. The Single-cell RNA sequencing (scRNA-seq), Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq), and Single-cell Assay for transposase-

accessible chromatin using sequencing (scATAC-seq) are some of the NGS technologies

widely used in biomedical research for whole-genome sequencing in cells and genome-

wide chromatin accessibility, further increasing the size of the data generated. There

are a limited amount of computational tools available to handle these data such as

principal component analysis (PCA) and t-distributed stochastic neighbour embedding

(tSNE) [Angarica and del Sol, 2017, Rostom et al., 2017, Tsompana and Buck, 2014,

Qi et al., 2020, Yan et al., 2020]. Most of the existing tools need improvisation to attain

good efficiency [Kiselev et al., 2019, Petegrosso et al., 2019]. There is an urgent need to

develop machine learning models for prediction purposes in these types of data.

Further, the third-generation sequencing (TGS) technology is currently under active

development. One of the commonly used TGS data is high-throughput chromosome con-

formation capture (Hi-C) data. The Hi-C data is used for genome-wide chromatin orga-

nization and is gaining popularity in the field of epigenetics. The big data challenges and

size and complex structure interactions of these within the genomic data are very challeng-

ing to decipher for most of the existing computational tools [Pal et al., 2019]. There is a
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need for newer computational approaches, including machine learning models, to handle

these complex data. Future research in these directions will help address many complex

biological problems.

In Chapter 6, we identified the hub genes related to different stages of colorectal cancer

and also analyzed their enrichment in different biological pathways and networks. A major

challenge for understanding cancer etiology is overcoming the complexity of gene-gene and

gene-environment interactions contributing to carcinogenesis. As future research, the effects

of variations in the regulatory and coding regions of selected genes can be considered. single

nucleotide polymorphisms (SNPs) within the coding region can exert a direct effect on

gene products and can alter protein expression levels, structure, and function. First, SNPs

associated with key pathway genes can be identified using NCBI’s SNP database (https:

//www.ncbi.nlm.nih.gov/snp/). A computational meta-analysis of genetic associations

between key SNPs in the key genes and colorectal cancer risk can be performed based on

available literature.
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G., Reva, B., Sander, C., Schultz, N., Senbabaoglu, Y., Shen, R., Sinha, R., Sumer,

S. O., Sun, Y., Taylor, B. S., Weinhold, N., Fei, S., Spellman, P., Benz, C., Carlin, D.,

Cline, M., Craft, B., Ellrott, K., Goldman, M., Haussler, D., Ma, S., Ng, S., Paull, E.,

Radenbaugh, A., Salama, S., Sokolov, A., Stuart, J. M., Swatloski, T., Uzunangelov,

V., Waltman, P., Yau, C., Zhu, J., Hamilton, S. R., Getz, G., Sougnez, C., Abbott, S.,

Abbott, R., Dees, N. D., Delehaunty, K., Ding, L., Dooling, D. J., Eldred, J. M., Fronick,

130



C. C., Fulton, R., Fulton, L. L., Kalicki-Veizer, J., Kanchi, K.-L., Kandoth, C., Koboldt,

D. C., Larson, D. E., Ley, T. J., Lin, L., Lu, C., Magrini, V. J., Mardis, E. R., McLellan,

M. D., McMichael, J. F., Miller, C. A., O’Laughlin, M., Pohl, C., Schmidt, H., Smith,

S. M., Walker, J., Wallis, J. W., Wendl, M. C., Wilson, R. K., Wylie, T., Zhang, Q.,

Burton, R., Jensen, M. A., Kahn, A., Pihl, T., Pot, D., Wan, Y., Levine, D. A., Black,

A. D., Bowen, J., Network, T. C. G. A. R., Center, G. C., Center, G. D. A., Center,

S., Center, D. C., Site, T. S., and Center, B. C. R. (2013). The Cancer Genome Atlas

Pan-Cancer analysis project. Nature Genetics, 45(10):1113–1120.

[Chatterjee et al., 2018] Chatterjee, A., Ahn, A., Rodger, E. J., Stockwell, P. A., and

Eccles, M. R. (2018). A guide for designing and analyzing RNA-seq data. In Methods in

Molecular Biology.

[Chen et al., 2019a] Chen, H., Liu, Y., Jiang, C. J., Chen, Y. M., Li, H., and Liu, Q. A.

(2019a). Calcium-Activated Chloride Channel A4 (CLCA4) Plays Inhibitory Roles in

Invasion and Migration Through Suppressing Epithelial-Mesenchymal Transition via

PI3K/AKT Signaling in Colorectal Cancer. Medical Science Monitor.

[Chen et al., 2019b] Chen, J., Wang, Z., Shen, X., Cui, X., and Guo, Y. (2019b). Iden-

tification of novel biomarkers and small molecule drugs in human colorectal cancer by

microarray and bioinformatics analysis. Molecular Genetics and Genomic Medicine.

[Chen et al., 1998] Chen, R. H., Shevchenko, A., Mann, M., and Murray, A. W. (1998).

Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. Journal

of Cell Biology.

[Chen and Ishwaran, 2012] Chen, X. and Ishwaran, H. (2012). Random forests for genomic

data analysis.

[Chen et al., 2019c] Chen, Z., Lin, Y., Gao, J., Lin, S., Zheng, Y., Liu, Y., and Chen, S. Q.

(2019c). Identification of key candidate genes for colorectal cancer by bioinformatics

analysis. Oncology Letters.

131



[Cheng et al., 2018] Cheng, J., Dwyer, M., Okolotowicz, K. J., Mercola, M., and Cashman,

J. R. (2018). A novel inhibitor targets both WNT signaling and ATM/P53 in colorectal

cancer. Cancer Research.

[Choy et al., 2010] Choy, M. K., Movassagh, M., Goh, H. G., Bennett, M. R., Down, T. A.,

and Foo, R. S. (2010). Genome-wide conserved consensus transcription factor binding

motifs are hyper-methylated. BMC Genomics.

[Coss et al., 2009] Coss, A., Tosetto, M., Fox, E. J., Sapetto-Rebow, B., Gorman, S.,

Kennedy, B. N., Lloyd, A. T., Hyland, J. M., O’Donoghue, D. P., Sheahan, K., Leahy,

D. T., Mulcahy, H. E., and O’Sullivan, J. N. (2009). Increased topoisomerase IIα ex-

pression in colorectal cancer is associated with advanced disease and chemotherapeutic

resistance via inhibition of apoptosis. Cancer Letters.

[Cusick et al., 2009] Cusick, M. E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A. R.,

Simonis, N., Rual, J. F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M.,

Yazaki, J., Hill, D. E., Ecker, J. R., Roth, F. P., and Vidal, M. (2009). Literature-curated

protein interaction datasets. Nature Methods, 6(1):39–46.

[Dai et al., 2020] Dai, G. P., Wang, L. P., Wen, Y. Q., Ren, X. Q., and Zuo, S. G. (2020).

Identification of key genes for predicting colorectal cancer prognosis by integrated bioin-

formatics analysis. Oncology Letters.

[Dash, 2020] Dash, R. (2020). A two stage grading approach for feature selection and

classification of microarray data using Pareto based feature ranking techniques: A case

study. Journal of King Saud University - Computer and Information Sciences.

[Datta et al., 2007] Datta, S., Datta, S., Parrish, R. S., and Thompson, C. M. (2007).

Microarray data analysis. In Computational Methods in Biomedical Research.

132



[Datta et al., 2010] Datta, S., Pihur, V., and Datta, S. (2010). An adaptive optimal en-

semble classifier via bagging and rank aggregation with applications to high dimensional

data. BMC Bioinformatics.

[Dayeh et al., 2014] Dayeh, T., Volkov, P., Salö, S., Hall, E., Nilsson, E., Olsson, A. H.,
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Appendix A

Appendix A: The Resampling-based lasso feature

selection and Ensembles of Regularized Regression

method

setwd ( ”/export/home/ a r p a t i l /Desktop/ge/ p a r a l l e l / p a r a l l e l c o r r 05/” )

###################

#####−−−−Import l i b r a r i e s

###################

l ibrary (mvtnorm)

l ibrary ( d o P a r a l l e l )

l ibrary ( class )

l ibrary ( adabag )

l ibrary ( t i d y v e r s e )

l ibrary ( Biocomb )

l ibrary ( prazn ik )

l ibrary ( randomForest )

l ibrary ( glmnet )

l ibrary ( ncvreg )

l ibrary ( e1071 )

l ibrary ( c a r e t )

l ibrary ( RankAggreg )

l ibrary ( ggp lot2 )

################
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#####−−−−−−−−−−−s e t parameters −−−−−−−#################

reps = 100 # number o f i t e r a t i o n s

M = 100 # number o f t r e e s f o r ensemble

r f t r e e = 100 # number o f t r e e s f o r random f o r e s t s

adatree = 100 # number o f t r e e s f o r adaboost

# used f o r conver t s c o r e s f u n c t i o n s ( greedy ensemble ranking )

distance=”Spearman”

# used i n s i d e ensemble f o r s c o r e s

weighted= TRUE

# t r u e number o f important v a r i a b l e s

t rue . imp <− c ( 1 : 2 5 )

# performance metr ic s

v a l i d a t i o n = c ( ” accuracy ” , ” s e n s i t i v i t y ” , ” s p e c i f i c i t y ” )

# a l g o r i t h n s i n s i d e ensemble

a lgor i thms = c ( ” l a s s o ” , ” a l a s s o ” , ” br idge ” , ” scad ” , ”mcp” )

top <− 75

################

##−−−−−−−−−−−−−−−−−− performance metrics−−−−−−

################

accuracy <− function ( truth , p r ed i c t ed )

{

i f ( length ( t ruth ) > 0)

sum( t ruth==pred i c t ed )/length ( t ruth ) else

return (0 )

}
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s e n s i t i v i t y <− function ( truth , p r ed i c t ed )

{

i f (sum( t ruth==1) > 0)

sum( p r ed i c t ed [ t ruth==1]==1)/sum( t ruth==1) else

return (0 )

}

s p e c i f i c i t y <− function ( truth , p r ed i c t ed )

{

i f (sum( t ruth==0) > 0)

sum( p r ed i c t ed [ t ruth==0]==0)/sum( t ruth==0) else

return (0 )

}

conver tScore s <− function ( s c o r e s )

{

s c o r e s <− t ( s c o r e s )

ranks <− matrix (0 , nrow( s c o r e s ) , ncol ( s c o r e s ) )

weights <− ranks

for ( i in 1 :nrow( s c o r e s ) ){

ms <− sort ( s c o r e s [ i , ] , decr=TRUE, ind=TRUE)

ranks [ i , ] <− colnames ( s c o r e s ) [ ms$ i x ]

weights [ i , ] <− ms$x

}

l i s t ( ranks = ranks , weights = weights )

}

###############

##−−−−−−−−− main resampl ing methods −−−−−−−−−−
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###############

f r e q . matrix = function ( t r a i n . x , t r a i n . y , method )

{

i f ( method==” l a s s o ” )

{

f i t = glmnet ( as . matrix ( t r a i n . x ) , t r a i n . y , alpha =1,

family=” binomial ” )

beta . matrix = f i t $beta

}

i f ( method==” br idge ” )

{

f i t = glmnet ( as . matrix ( t r a i n . x ) , t r a i n . y , alpha=(1/2) ,

family=” binomial ” )

beta . matrix = f i t $beta

}

i f ( method==” scad ” )

{

f i t = ncvreg ( as . matrix ( t r a i n . x ) , t r a i n . y ,

family=” binomial ” , pena l ty=”SCAD” )

beta . matrix = f i t $beta[−c ( 1 ) , ]

}

i f ( method==”mcp” )

{

f i t = ncvreg ( as . matrix ( t r a i n . x ) , t r a i n . y ,

family=” binomial ” , pena l ty=”MCP” )
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beta . matrix = f i t $beta[−c ( 1 ) , ]

}

###########################################################

# record f requency wi th max r e g r e s s i o n c o e f f i c i e n t s

r e s u l t . matrix = c o e f s . matrix = matrix (0 ,nrow=ncol ( beta . matrix ) ,

ncol=nrow( beta . matrix ) )

colnames ( r e s u l t . matrix ) = rownames( beta . matrix )

for ( i in 1 :nrow( r e s u l t . matrix ) )

{

idx = which( beta . matrix [ , i ] !=0)

r e s u l t . matrix [ i , idx ] = 1

c o e f s . matrix [ i , idx ] = beta . matrix [ idx , i ]

}

# return f requency matrix

return ( l i s t ( r e s u l t . matrix , c o e f s . matrix ) )

}

resampl ing = function ( t r a i n . x , t r a i n . y , method )

{

## resampl ing

idx = sample ( 1 :nrow( t r a i n . x ) , as . integer (nrow( t r a i n . x )∗ 0 . 7 ) )

s . x = t r a i n . x [ idx , ]

s . y = t r a i n . y [ idx ]

i f ( method==” l a s s o ” )

{

obj = f r e q . matrix ( s . x , s . y , method )

}
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i f ( method==” br idge ” )

{

obj = f r e q . matrix ( s . x , s . y , method )

}

i f ( method==” scad ” )

{

obj = f r e q . matrix ( s . x , s . y , method )

}

i f ( method==”mcp” )

{

obj = f r e q . matrix ( s . x , s . y , method )

}

# return f requency matrix and c o e f i c i e n t s matrix

return ( obj )

}

add = function ( obj .mat , opt ion )

{

i f ( opt ion==” frequency ” ){ s = apply ( obj .mat , 2 ,sum)}

i f ( opt ion==” c o e f ” ){ s = apply ( obj .mat , 2 , function ( x )max(abs ( x ) ) )}

return ( s )

}

#################################################################

resampl ing r e s u l t s = function ( t r a i n . x , t r a i n . y , method )

{

# 100 resampl ing

# re turn two l i s t s

# frequency and c o e f f i c i e n t s
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# f o r each v a r i a b l e s

mat0 = matrix (0 ,nrow=100 ,ncol=ncol ( t r a i n . x ) )

mat1 = matrix (0 ,nrow=100 ,ncol=ncol ( t r a i n . x ) )

colnames ( mat0 ) = colnames ( mat1 ) = colnames ( t r a i n . x )

l e n s = NULL

for ( i in 1 : 100 ) ###########################################

{

# l a s s o

obj0 = resampl ing ( t r a i n . x , t r a i n . y , method=method )

l e n s = c ( l ens ,nrow( obj0 [ [ 1 ] ] ) )

mat0 [ i , ] = add( obj0 [ [ 1 ] ] , ” f requency ” )

mat1 [ i , ] = add( obj0 [ [ 2 ] ] , ” c o e f ” )

}

f r e q . vec = apply (mat0 , 2 ,sum)/sum( l e n s )

coef . vec = apply (mat1 , 2 , function ( x )max(abs ( x ) ) )

return ( l i s t ( f r e q . vec , coef . vec ) )

}

main = function ( t r a i n . x , t r a i n . y , method )#, d i r e c t o r y )

{

r e s u l t s = resampl ing r e s u l t s ( t r a i n . x , t r a i n . y , method )

mu. vec = r e s u l t s [ [ 1 ] ]

max. c o e f s . vec = r e s u l t s [ [ 2 ] ]

s .mu. vec = sort (mu. vec , d e c r ea s ing=T, index . return=T)

rank .mu. vec = mu. vec [ s .mu. vec$ i x ]

return (rank .mu. vec )

}
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#############################################################

##−− code f o r p e n a l i z e d l o g i s t i c r e g r e s s i o n method

##−−−−−−−− l a s s o −−−−−−−−

l a s s o = function (x , y )

{

cv . l a s s o <− cv . glmnet ( y = y , x = x , alpha =1, family=” binomial ” )

return ( cv . l a s s o )

}

##−−−−−−−−−− a l a s s o −−−−−−−−−

a l a s s o = function (x , y )

{

## Ridge Regress ion to c r e a t e the Adaptive Weights Vector

cv . r i dg e <− cv . glmnet ( y = y , x = x , alpha =0, family=’ binomial ’ )

w3 <− 1/abs (matrix ( coef ( cv . r idge , s=cv . r i dg e $lambda .min)

[ , 1 ] [ 2 : ( ncol ( x )+1)] ) )ˆ1 ## Using gamma = 1

## Replac ing v a l u e s es t imated as I n f i n i t e f o r 999999999

w3 [ w3 [ , 1 ] == I n f ] <− 999999999

## Adaptive Lasso

cv . a l a s s o <− cv . glmnet ( y = y , x = x , alpha =1,

family=” binomial ” , pena l ty . factor = w3)

return ( cv . a l a s s o )

}

##−−−−−−−−−−−−−−−−− b r i d g e −−−−−−−−−−

enet = function (x , y )

{

cv . enet <− cv . glmnet ( y=y , x= x , alpha =0.5 , family=” binomial ” )
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return ( cv . enet )

}

##−−−−−−−−−−−−−−−−−−−−−−−−− SCAD −−−−−−−−

scad = function (x , y )

{

cv . scad <− cv . ncvreg (x , y , family=” binomial ” , pena l ty=”SCAD” )

return ( cv . scad )

}

##−−−−−−−−− MCP −−−−−−−−−−

mcp = function (x , y )

{

cv . mcp <− cv . ncvreg (x , y , family=” binomial ” , pena l ty=”MCP” )

return ( cv . mcp)

}

##########

######−−−−−−−−− Simulat ion Data Generation Functions −−−−

##########

data . gen <− function ( )

{

f e a t u r e set = function ( nsample , p , seed . index , beta , c o r s )

{

set . seed ( seed . index )

cor .mat = matrix (1 , nrow = p , ncol = p)

cor .mat [ lower . t r i ( cor .mat)]= co r s

# cor . mat [ upper . t r i ( cor . mat)]= cors

cor .mat=t ( cor .mat)
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cor .mat [ lower . t r i ( cor .mat ) ] = co r s

mu. vec=rep (0 , p )

dat = rmvnorm(n = nsample , mean = mu. vec , sigma = cor .mat ,

method = ”svd” ) # change to e igen or c h o l or svd i f needed

return ( dat )

}

generate response data = function ( nsample , p , cors , theta0 )

{

cnt = 0

case . dat = NULL

control . dat = NULL

# genera te response o f e q u a l c o n t r o l and case

while ( cnt==0)

{

seed . va l = sample (1 : 1000000 ,1 )

data . set = f e a t u r e set ( nsample , p , seed . val , beta , c o r s )

data . set = scale (data . set )

f e t a = data . set%∗%theta0

fprob = exp( f e t a )/(1+exp( f e t a ) )

y = rbinom( nsample , 1 , fprob )

idx = which( y == 1)

i f ( ( length ( idx)==(nsample/ 2 ) ) )

{

r e s u l t = l i s t (y , data . set , seed . va l )

cnt = 100

return ( r e s u l t )
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}

}

}

# Generate d a t a s e t a long wi th response v a r i a b l e

# and t r u e imp v a r i a b l e names

nsample = 200 # number o f samples ( change )

co r s = 0 .5 # c o r r e l a t i o n ( change )

p = 1000 # number o f v a r i a b l e s ( change )

num. beta = 25 # True number o f v a r i a b l e s ( change )

# r e g r e s s i o n c o e f s ( be ta ) v a l u e s f o r the t o t a l number o f b e t a s

beta = runif (num. beta , 2 , 4 )

t rue . c o e f s = beta # Copy the be ta to o ther v a r i a b l e

# i n d i c e s o f the t r u e r e g r e s s i o n c o e f s in the d a t a s e t

t rue . c o e f s . idx = c ( 1 :num. beta )

theta0 = rep (0 , p ) # genera te the empty l i s t o f v a l u e s

# i n s e r t the r e g r e s s i o n c o e f s in the p r e v i o u s l i s t

theta0 [ c ( t rue . c o e f s . idx ) ] = c ( t rue . c o e f s )

obj <− generate response data ( nsample = nsample , p ,

co r s = cors , theta0 = theta0 )

y1 = obj [ [ 1 ] ] # response v a r i a b l e

x1 = data . frame ( obj [ [ 2 ] ] ) # data s e t

df <− data . frame ( x1 , y1 )

colnames ( df)=paste ( ”v” , 1 : ncol ( df ) , sep=”” )

colnames ( df ) [ ncol ( df ) ]<− ”y”

true . var .names = paste ( ”v” , c ( t rue . c o e f s . idx ) , sep=”” )
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return ( df )

}

#########

### Real data g e n e r a t i o n f u n c t i o n

########

data . gen <− function ( )

{

data .SMK CAN 187 <− readMat ( ”SMK CAN 187 . mat” )

x1 <− as . matrix (data .SMK CAN 187$X)

y1 <− as . numeric (data .SMK CAN 187$Y)

y1 <− replace ( y1 , y1==1, 0)

y1 <− replace ( y1 , y1==2, 1)

s . idx <− sample ( 1 :nrow( x1 ) , as . integer (nrow( x1 )∗ . 7 ) , replace = F)

t r a i n . y = y1 [ s . idx ]

t r a i n . x = x1 [ s . idx , ]

t e s t . x = x1[− s . idx , ]

t e s t . y = y1[− s . idx ]

l o g l k = NULL

for ( i in 1 : ncol ( t r a i n . x ) )

{

f i t = glm( t r a i n . y˜ t r a i n . x [ , i ] , family=” binomial ” )

l o g l k = c ( l og lk , −as . numeric ( l ogL ik ( f i t ) ) )

}

s = sort . i n t ( l og lk , index . return=T)

t r a i n . x = t r a i n . x [ , s$ i x ]
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t e s t . x = t e s t . x [ , s$ i x ]

t r a i n . x = t r a i n . x [ , 1 : 1 0 0 0 0 ]

t e s t . x = t e s t . x [ , 1 : 1 0 0 0 0 ]

data . t r a i n <− data . frame ( t r a i n . x , t r a i n . y )

data . t e s t <− data . frame ( t e s t . x , t e s t . y )

return ( l i s t (data . t ra in , data . t e s t ) )

}

f e a t u r e . s e l e c t i o n = function ( method , data )

{

# Resampling method

df <− data

# S p l i t the data i n t o t r a i n i n g and t e s t i n g s e t

bound <− f loor ( (nrow( df )/4)∗3)

df <− df [ sample (nrow( df ) ) , ] #sample rows

df . t r a i n <− df [ 1 : bound , ] #g e t t r a i n i n g s e t

df . t e s t <− df [ ( bound+1):nrow( df ) , ]

#−−−−−−−−−−−−−−−−−−−−−−−−−

t r a i n . x <−data . matrix ( df . t r a i n [ ,−( ncol ( df . t r a i n ) ) ] )

t r a i n . y <− as . numeric ( df . t r a i n [ , ( ncol ( df . t r a i n ) ) ] )

# Test s e t s e p e r a t e d i n t o data matrix and response v a r i a b l e

t e s t . x <− data . matrix ( df . t e s t [ ,−( ncol ( df . t e s t ) ) ] )

t e s t . y <− as . numeric ( df . t e s t [ , ( ncol ( df . t e s t ) ) ] )

# Last column name i s t r a i n . y
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data . t r a i n <− data . frame ( t r a i n . x , t r a i n . y )

# Last column name i s t e s t . y

data . t e s t <− data . frame ( t e s t . x , t e s t . y )

i f ( method == ” resampl ing ” )

{

# f o r l a s s o resampl ing approach

f i n a l l a s s o <− main ( t r a i n . x = t r a i n . x , t r a i n . y = t r a i n . y ,

method = ” l a s s o ” )

set l a s s o <− names( f i n a l l a s s o [ 1 : top ] )

idx <− match( set l a s so , names(data . t r a i n ) )

}

# informat ion gain

i f ( method==” in fo rmat ion ” )

{

# c l a s s l a b e l must be f a c t o r

data . t r a i n [ , ncol (data . t r a i n ) ]<−as . factor (

data . t r a i n [ , ncol (data . t r a i n ) ] )

d i s c<−” equal i n t e r v a l width”

a t t r s . nominal <− numeric ( )

f i t . i n f o = s e l e c t . i n f . ga in (data . t ra in ,

d i s c . method=disc , a t t r s . nominal=a t t r s . nominal )

idx <− as . integer ( f i t . i n f o $NumberFeature ) [ 1 : top ]

}

# chi2

i f ( method==” ch i2 ” )

{

# c l a s s l a b e l must be f a c t o r
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data . t r a i n [ , ncol (data . t r a i n ) ]<−as . factor (

data . t r a i n [ , ncol (data . t r a i n ) ] )

d i s c<−” equal i n t e r v a l width”

a t t r s . nominal <− numeric ( )

f i t . ch i2 <− s e l e c t . i n f . ch i2 (data . t ra in ,

d i s c . method=disc , a t t r s . nominal=a t t r s . nominal )

idx <− as . integer ( f i t . ch i2$NumberFeature ) [ 1 : top ]

}

# mrmr

i f ( method==”mrmr” )

{

# c l a s s l a b e l doesnt matter

f i t . mrmr = MRMR(data . t r a i n [ ,−ncol (data . t r a i n ) ] ,

data . t r a i n [ , ncol (data . t r a i n ) ] ,

k=ncol (data . t r a i n [ ,−ncol (data . t r a i n ) ] ) )

fm<− f i t . mrmr$ s co r e

set <− names( fm ) [ 1 : top ]

idx <− match( set , names(data . t r a i n ) )

}

# return s e t o f f e a t u r e s

return ( l i s t (data . t ra in , data . t e s t , idx ) )

}

# i n s i d e the t e s t f u n c t i o n

t e s t . function <− function ( f e a t u r e . idx , method )
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{

f s <− f e a t u r e . idx

data . t r a i n <− f s [ [ 1 ] ]

data . t e s t <− f s [ [ 2 ] ]

idx <− f s [ [ 3 ] ]

# M = 100

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

reduced . t r a inx <− data . t r a i n [ , idx ]

reduced . t r a iny <− as . factor (data . t r a i n [ , ncol (data . t r a i n ) ] )

t e s t . x <− data . t e s t [ , idx ]

t e s t . y <− as . factor (data . t e s t [ , ( ncol (data . t e s t ) ) ] )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

dat . t r a i n <− data . frame ( reduced . t ra inx , reduced . t r a i ny )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n <− length ( reduced . t r a iny )

nalg <− length ( a lgor i thms )

nvm <− length ( v a l i d a t i o n )

ly <− levels ( reduced . t r a iny )

f i t t edMode l s <− l i s t ( ) #to keep the f i t t e d a l g o r i t h m s

c o e f s .mat = f r e q .mat = matrix (0 ,nrow=M,

ncol=ncol ( reduced . t r a inx ) )

colnames ( c o e f s .mat)=colnames ( f r e q .mat)=

colnames ( reduced . t r a inx )

bes t . methods=NULL

mat . r e s u l t = matrix (0 ,nrow=nrow( t e s t . x ) , ncol=M)
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i f ( method==” ensemble ” )

{

for ( k in 1 :M)

{

repeat

{

s <− sample (n , replace=TRUE)

i f ( length ( table ( reduced . t r a iny [ s ] ) ) >= 2 & length (

table ( reduced . t r a iny [− s ] ) ) >= 2)

break

}

f s <− 1 : ncol ( reduced . t r a inx )

sub . t r a i n i n g x <− reduced . t r a inx [ s , f s ]

sub . t e s t i n g x <− reduced . t r a inx [−unique ( s ) , f s ]

sub . t r a i n i n g y <− reduced . t r a iny [ s ]

sub . t e s t i n g y <− reduced . t r a iny [−unique ( s ) ]

p r ed i c t ed <− l i s t ( )

Res <− l i s t ( )

# t r a i n a l l a l g o r i t h m s on the s u b s e t and f i t the model

# Fi t the model and p r e d i c t

for ( j in 1 : nalg )

{

Res [ [ j ] ]<− switch ( a lgor i thms [ j ] ,

” l a s s o ” = {

f i t . l a s s o = l a s s o ( as . matrix (sub . t r a i n i n g x ) ,

sub . t r a i n i n g y )
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l a s s o . idx = which(abs ( coef ( f i t . l a s s o ) [ ,1 ] ) >0) [− c ( 1 ) ]

l a s s o .m. idx = match(names( l a s s o . idx ) , colnames (

sub . t e s t i n g x ) )

l a s s o . xb = as . matrix (cbind (1 , as . matrix (

sub . t e s t i n g x [ , l a s s o .m. idx ] ) ) )%∗%as . matrix (

coef ( f i t . l a s s o ) [ c (1 , l a s s o . idx ) , 1 ] )

l a s s o . pred = exp( l a s s o . xb )/(1+exp( l a s s o . xb ) )

l a s s o . pred <− i f e l s e ( l a s s o . pred >0.5 , 1 , 0)

p r ed i c t ed [ [ j ] ] <− as . character ( l a s s o . pred [ , 1 ] )

} ,

” a l a s s o ” = {

f i t . a l a s s o = a l a s s o ( as . matrix (sub . t r a i n i n g x ) ,

sub . t r a i n i n g y )

a l a s s o . idx = which(abs ( coef ( f i t . a l a s s o ) [ , 1 ] ) >0 )

[−c ( 1 ) ]

a l a s s o .m. idx = match(names( a l a s s o . idx ) ,

colnames (sub . t e s t i n g x ) )

a l a s s o . xb = as . matrix (cbind (1 , as . matrix (sub . t e s t i n g x

[ , a l a s s o .m. idx ] ) ) )%∗%as . matrix ( coef ( f i t . a l a s s o )

[ c (1 , a l a s s o . idx ) , 1 ] )

a l a s s o . pred = exp( a l a s s o . xb )/(1+exp( a l a s s o . xb ) )

a l a s s o . pred <− i f e l s e ( a l a s s o . pred >0.5 , 1 , 0)

p r ed i c t ed [ [ j ] ] <− as . character ( a l a s s o . pred [ , 1 ] )

} ,

” br idge ” = {

f i t . enet = enet ( as . matrix (sub . t r a i n i n g x ) , sub . t r a i n i n g y )

enet . idx = which(abs ( coef ( f i t . enet ) [ ,1 ] ) >0) [− c ( 1 ) ]
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enet .m. idx = match(names( enet . idx ) , colnames (sub . t e s t i n g x ) )

enet . xb = as . matrix (cbind (1 , as . matrix (sub . t e s t i n g x

[ , enet .m. idx ] ) ) )%∗%as . matrix ( coef ( f i t . enet )

[ c (1 , enet . idx ) , 1 ] )

enet . pred = exp( enet . xb )/(1+exp( enet . xb ) )

enet . pred <− i f e l s e ( enet . pred >0.5 , 1 , 0)

p r ed i c t ed [ [ j ] ] <− as . character ( enet . pred [ , 1 ] )

} ,

” scad ” = {

f i t . scad = scad ( as . matrix (sub . t r a i n i n g x ) , sub . t r a i n i n g y )

scad . idx = which(abs ( coef ( f i t . scad ))>0)[−c ( 1 ) ]

scad .m. idx = match(names( scad . idx ) , colnames (sub . t e s t i n g x ) )

scad . xb = as . matrix (cbind (1 , as . matrix (sub . t e s t i n g x

[ , scad .m. idx ] ) ) )%∗%as . matrix ( coef ( f i t . scad ) [ c (1 , scad . idx ) ] )

scad . pred = exp( scad . xb )/(1+exp( scad . xb ) )

scad . pred <− i f e l s e ( scad . pred >0.5 , 1 , 0)

p r ed i c t ed [ [ j ] ] <− as . character ( scad . pred [ , 1 ] )

} ,

”mcp” = {

f i t . mcp = mcp( as . matrix (sub . t r a i n i n g x ) , sub . t r a i n i n g y )

mcp . idx = which(abs ( coef ( f i t . mcp))>0)[−c ( 1 ) ]

mcp .m. idx = match(names(mcp . idx ) , colnames (sub . t e s t i n g x ) )

mcp . xb = as . matrix (cbind (1 , as . matrix (sub . t e s t i n g x

[ , mcp .m. idx ] ) ) )%∗%as . matrix ( coef ( f i t . mcp ) [ c (1 ,mcp . idx ) ] )

mcp . pred = exp(mcp . xb )/(1+exp(mcp . xb ) )

mcp . pred <− i f e l s e (mcp . pred >0.5 , 1 , 0)

p r ed i c t ed [ [ j ] ] <− as . character (mcp . pred [ , 1 ] )

}
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)

attr ( Res [ [ j ] ] , ” a lgor i thm ” ) <− a lgor i thms [ j ]

}

# compute v a l i d a t i o n measures

s c o r e s <− matrix (0 , nalg , nvm)

rownames( s c o r e s ) <− a lgor i thms

colnames ( s c o r e s ) <− v a l i d a t i o n

for ( i in 1 : nalg )

for ( j in 1 :nvm)

s c o r e s [ i , j ] <− switch ( v a l i d a t i o n [ j ] ,

” accuracy ” = accuracy (sub . t e s t ingy ,

factor ( p r ed i c t ed [ [ i ] ] , levels=ly ) ) ,

” s e n s i t i v i t y ” = s e n s i t i v i t y (sub . t e s t ingy ,

factor ( p r ed i c t ed [ [ i ] ] , levels=ly ) ) ,

” s p e c i f i c i t y ” = s p e c i f i c i t y (sub . t e s t ingy ,

factor ( p r ed i c t ed [ [ i ] ] , levels=ly ) )

)

# Rank a g g r e g a t i o n to s e l e c t the b e s t model

# based on the performance metr i c s

convScores <− conver tScore s ( s c o r e s )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (nvm > 1 && nalg <= 5)

i f (weighted )

f i t t edMode l s [ [ k ] ] <− Res [ [ which( a lgor i thms ==

BruteAggreg ( convScores$ranks , nalg , convScores$weights ,

distance=distance )$top . l i s t [ 1 ] ) ] ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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bestAlg <− unlist ( sapply ( f i t t edMode l s ,

FUN = function ( x ) attr (x , ” a lgor i thm ” ) ) )

newdata<− t e s t . x

p r ed i c t ed sub <− l i s t ( )

Res sub<− l i s t ( )

# b e s t A l g = b e s t . methods

for ( s in 1 : nalg )

{

Res sub [ [ s ] ]<− switch ( bestAlg [ s ] ,

” l a s s o ” = {

r e s l a s s o sub <− predict ( f i t . l a s so ,

newx = as . matrix ( newdata ) , type = ” c l a s s ” )

p r ed i c t ed sub [ [ s ] ]<− r e s l a s s o sub [ , 1 ]

} ,

” a l a s s o ” = {

r e s a l a s s o sub <− predict ( f i t . a l a s so ,

newx = as . matrix ( newdata ) , type = ” c l a s s ” )

p r ed i c t ed sub [ [ s ] ]<− r e s a l a s s o sub [ , 1 ]

} ,

” br idge ” = {

r e s e n e t sub <− predict ( f i t . enet ,

newx = as . matrix ( newdata ) , type = ” c l a s s ” )

p r ed i c t ed sub [ [ s ] ]<− r e s e n e t sub [ , 1 ]

} ,

” scad ” = {

r e s s cad sub <− predict ( f i t . scad ,

X = as . matrix ( newdata ) , type = ” c l a s s ” )
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pred i c t ed sub [ [ s ] ]<− r e s s cad sub

} ,

”mcp” = {

resmcp sub <− predict ( f i t . mcp ,

X = as . matrix ( newdata ) , type = ” c l a s s ” )

p r ed i c t ed sub [ [ s ] ]<− resmcp sub

}

)

}

#s t o r e p r e d i c t e d c l a s s i f i c a t i o n

mat . r e s u l t [ , k ] = Res sub [ [ 1 ] ]

# some output

verbose=T

i f ( verbose )

cat ( ” I t e r ” , k , ”\n” )

}

major i ty . vote = apply (mat . r e s u l t , 1 ,

function ( x )names( table ( x ) ) [ which .max( table ( x ) ) ] )

acc . ens <− accuracy ( t e s t . y , major i ty . vote )∗100

sens . ens <− s e n s i t i v i t y ( t e s t . y , major i ty . vote )∗100

spec . ens <− s p e c i f i c i t y ( t e s t . y , major i ty . vote )∗100

p e r f <− c ( acc . ens , sens . ens , spec . ens )

}

else i f ( method==” l a s s o ” )

{

f i t . l a s s o . ind = l a s s o ( as . matrix ( reduced . t r a inx ) ,
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reduced . t r a iny )

l a s s o . idx . ind = which(abs ( coef ( f i t . l a s s o . ind ) [ ,1 ] ) >0) [− c ( 1 ) ]

l a s s o .m. idx . ind = match(names( l a s s o . idx . ind ) , colnames ( t e s t . x ) )

l a s s o . xb . ind = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , l a s s o .m. idx . ind ] ) ) )%∗%as . matrix ( coef ( f i t . l a s s o . ind )

[ c (1 , l a s s o . idx . ind ) , 1 ] )

l a s s o . pred . ind = exp( l a s s o . xb . ind )/(1+exp( l a s s o . xb . ind ) )

l a s s o . pred . ind <− i f e l s e ( l a s s o . pred . ind >0.5 , 1 , 0)

p r ed i c t ed . l a s s o . ind <− as . character ( l a s s o . pred . ind [ , 1 ] )

acc . l a s s o <− accuracy ( t e s t . y , p r ed i c t ed . l a s s o . ind )∗100

sens . l a s s o <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . l a s s o . ind )∗100

spec . l a s s o <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . l a s s o . ind )∗100

p e r f <− c ( acc . l a s so , sens . l a s so , spec . l a s s o )

}

else i f ( method==” a l a s s o ” )

{

f i t . a l a s s o . ind = a l a s s o ( as . matrix ( reduced . t r a inx ) ,

reduced . t r a iny )

a l a s s o . idx . ind = which(abs ( coef ( f i t . a l a s s o . ind ) [ ,1 ] ) >0) [− c ( 1 ) ]

a l a s s o .m. idx . ind = match(names( a l a s s o . idx . ind ) , colnames

( t e s t . x ) )

a l a s s o . xb . ind = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , a l a s s o .m. idx . ind ] ) ) )%∗%as . matrix ( coef ( f i t . a l a s s o . ind )

[ c (1 , a l a s s o . idx . ind ) , 1 ] )

a l a s s o . pred . ind = exp( a l a s s o . xb . ind )/(1+exp( a l a s s o . xb . ind ) )

a l a s s o . pred . ind <− i f e l s e ( a l a s s o . pred . ind >0.5 , 1 , 0)
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pred i c t ed . a l a s s o . ind <− as . character ( a l a s s o . pred . ind [ , 1 ] )

acc . a l a s s o <− accuracy ( t e s t . y , p r ed i c t ed . a l a s s o . ind )∗100

sens . a l a s s o <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . a l a s s o . ind )∗100

spec . a l a s s o <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . a l a s s o . ind )∗100

p e r f <− c ( acc . a l a s so , sens . a l a s so , spec . a l a s s o )

}

else i f ( method==” br idge ” )

{

f i t . enet . ind = enet ( as . matrix ( reduced . t r a inx ) , reduced . t r a iny )

enet . idx . ind = which(abs ( coef ( f i t . enet . ind ) [ ,1 ] ) >0) [− c ( 1 ) ]

enet .m. idx . ind = match(names( enet . idx . ind ) , colnames ( t e s t . x ) )

enet . xb . ind = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , enet .m. idx . ind ] ) ) )%∗%as . matrix ( coef ( f i t . enet . ind )

[ c (1 , enet . idx . ind ) , 1 ] )

enet . pred . ind = exp( enet . xb . ind )/(1+exp( enet . xb . ind ) )

enet . pred . ind <− i f e l s e ( enet . pred . ind >0.5 , 1 , 0)

p r ed i c t ed . enet . ind <− as . character ( enet . pred . ind [ , 1 ] )

acc . enet <− accuracy ( t e s t . y , p r ed i c t ed . enet . ind )∗100

sens . enet <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . enet . ind )∗100

spec . enet <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . enet . ind )∗100

p e r f <− c ( acc . enet , sens . enet , spec . enet )

}

else i f ( method==” scad ” )

{
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f i t . scad . ind = scad ( as . matrix ( reduced . t r a inx ) , reduced . t r a iny )

scad . idx . ind = which(abs ( coef ( f i t . scad . ind ))>0)[−c ( 1 ) ]

scad .m. idx . ind = match(names( scad . idx . ind ) , colnames ( t e s t . x ) )

scad . xb . ind = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , scad .m. idx . ind ] ) ) )%∗%as . matrix ( coef ( f i t . scad . ind )

[ c (1 , scad . idx . ind ) ] )

scad . pred . ind = exp( scad . xb . ind )/(1+exp( scad . xb . ind ) )

scad . pred . ind <− i f e l s e ( scad . pred . ind >0.5 , 1 , 0)

p r ed i c t ed . scad . ind <− as . character ( scad . pred . ind [ , 1 ] )

acc . scad <− accuracy ( t e s t . y , p r ed i c t ed . scad . ind )∗100

sens . scad <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . scad . ind )∗100

spec . scad <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . scad . ind )∗100

p e r f <− c ( acc . scad , sens . scad , spec . scad )

}

else i f ( method==”mcp” )

{

f i t . mcp . ind = mcp( as . matrix ( reduced . t r a inx ) , reduced . t r a iny )

mcp . idx . ind = which(abs ( coef ( f i t . mcp . ind ))>0)[−c ( 1 ) ]

mcp .m. idx . ind = match(names(mcp . idx . ind ) , colnames ( t e s t . x ) )

mcp . xb . ind = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , mcp .m. idx . ind ] ) ) )%∗%as . matrix ( coef ( f i t . mcp . ind )

[ c (1 ,mcp . idx . ind ) ] )

mcp . pred . ind = exp(mcp . xb . ind )/(1+exp(mcp . xb . ind ) )

mcp . pred . ind <− i f e l s e (mcp . pred . ind >0.5 , 1 , 0)

p r ed i c t ed . mcp . ind <− as . character (mcp . pred . ind [ , 1 ] )
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acc . mcp <− accuracy ( t e s t . y , p r ed i c t ed . mcp . ind )∗100

sens . mcp <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . mcp . ind )∗100

spec . mcp <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . mcp . ind )∗100

p e r f <− c ( acc . mcp , sens . mcp , spec . mcp)

}

else i f ( method==”svm . l i n ” )

{

#−−− Support Vector Machine l i n e a r −−−−−

modelsvm . l i n <− svm( reduced . t ra inx , reduced . t ra iny ,

k e rne l = ” l i n e a r ” )

pred c lasssvm . l i n <− predict ( modelsvm . l i n , t e s t . x )

# From l i b r a r y c a r e t to c a l c u l a t e performance metr i c s

accuracy svm . l i n <− accuracy ( t e s t . y , pred c lasssvm . l i n )∗100

s e n s i v i t i y svm . l i n <− s e n s i t i v i t y ( t e s t . y , pred c lasssvm . l i n )

∗100

s p e c i f i c i t y svm . l i n <− s p e c i f i c i t y ( t e s t . y , pred c lasssvm . l i n )

∗100

p e r f <− c ( accuracy svm . l i n , s e n s i v i t i y svm . l i n ,

s p e c i f i c i t y svm . l i n )

}

else i f ( method==”svm . rad” )

{

#−−−−−Support Vector Machine r a d i a l −−−−−−−−

modelsvm . rad <− svm( reduced . t ra inx , reduced . t ra iny ,

k e rne l = ” r a d i a l ” )

pred c lasssvm . rad <− predict ( modelsvm . rad , t e s t . x )
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# From l i b r a r y c a r e t to c a l c u l a t e performance metr i c s

accuracy svm . rad <− accuracy ( t e s t . y , pred c lasssvm . rad )∗100

s e n s i v i t i y svm . rad <− s e n s i t i v i t y

( t e s t . y , pred c lasssvm . rad )∗100

s p e c i f i c i t y svm . rad <− s p e c i f i c i t y

( t e s t . y , pred c lasssvm . rad )∗100

p e r f <− c ( accuracy svm . rad , s e n s i v i t i y svm . rad ,

s p e c i f i c i t y svm . rad )

}

else i f ( method==” r f ” )

{

#−−−−−−−−−−−− Random Fores t −−−−−−−−−

r fmodel <− randomForest ( reduced . t ra inx , reduced . t ra iny ,

n t r ee= r f t r e e )

pred c l a s s r f <− predict ( rfmodel , t e s t . x , type= ” c l a s s ” )

accuracy r f <− accuracy ( t e s t . y , pred c l a s s r f )∗100

s e n s i t i v i t y r f <− s e n s i t i v i t y ( t e s t . y , pred c l a s s r f )∗100

s p e c i f i c i t y r f <− s p e c i f i c i t y ( t e s t . y , pred c l a s s r f )∗100

p e r f <− c ( accuracy rf , s e n s i t i v i t y rf , s p e c i f i c i t y r f )

}

else i f ( method==” l r ” )

{

#−−−−−−− l o g i s t i c r e g r e s s i o n −−−−−−−−−−−−−−−−−−

glm l r <− cv . glmnet ( as . matrix ( reduced . t r a inx ) , reduced . t ra iny ,

family=” binomial ” )
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pred l r <− predict (glm l r , newx = as . matrix ( t e s t . x ) ,

s = ”lambda . min” , type = ” c l a s s ” )

accuracy l r <− accuracy ( t e s t . y , pred l r )∗100

s e n s i t i v i t y l r <− s e n s i t i v i t y ( t e s t . y , pred l r )∗100

s p e c i f i c i t y l r <− s p e c i f i c i t y ( t e s t . y , pred l r )∗100

p e r f <− c ( accuracy l r , s e n s i t i v i t y l r , s p e c i f i c i t y l r )

}

else i f ( method==”adab” )

{

#−−−−−−−−−−−−−−−−− Ada Boost

model adab <− boost ing ( reduced . t r a i ny ˜ . , data = dat . t ra in ,

boos=TRUE, mf ina l= adatree )

pred adab <− predict (model adab , as . data . frame ( t e s t . x ) )

accuracy adab <− accuracy ( t e s t . y , pred adab$class )∗100

s e n s i t i v i t y adab <− s e n s i t i v i t y ( t e s t . y , pred adab$class )∗100

s p e c i f i c i t y adab <− s p e c i f i c i t y ( t e s t . y , pred adab$class )∗100

p e r f <− c ( accuracy adab , s e n s i t i v i t y adab , s p e c i f i c i t y adab )

}

return ( p e r f )

}

#####−−−−−−−−−−− RUN ALL THE METHODS DEFINED ABOVE IN PARALLEL

start time <− Sys . time ( )

c o r e s <− 8
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c l <− makeCluster ( co r e s ) #not to o v e r l o a d your computer

r e g i s t e r D o P a r a l l e l ( c l )

# run data g e n e r a t i o n f u n c t i o n f o r s p e c i f i e d number o f reps

r e s . data <− f o r each ( i = 1 : reps ,

# . combine=l i s t ,

. packages=c ( ”mvtnorm” ) ) %dopar% {

# s e t . seed ( i )

data . gen ( )

# cat (” I t e r a t i o n Data ” , i , ”\n”)

}

# run f e a t u r e s e l e c t i o n resampl ing f o r s p e c i f i e d number o f reps

f e a t . resampl ing <− f o r each ( i = 1 : reps ,

. packages = c ( ”glmnet” , ” ncvreg ” ) ) %dopar% {

f e a t u r e . s e l e c t i o n ( ” resampl ing ” , r e s . data [ [ i ] ] )

# cat (” I t e r a t i o n resampl ing ” , i , ”\n”)

}

# run f e a t u r e s e l e c t i o n in format ion f o r s p e c i f i e d number o f reps

f e a t . in fo rmat ion <− f o r each ( i = 1 : reps ,

. packages = c ( ”Biocomb” ) ) %dopar% {

f e a t u r e . s e l e c t i o n ( ” in fo rmat ion ” , r e s . data [ [ i ] ] )

}

# run f e a t u r e s e l e c t i o n ch i2 f o r s p e c i f i e d number o f reps

f e a t . ch i2 <− f o r each ( i = 1 : reps ,

. packages = c ( ”Biocomb” ) ) %dopar% {

f e a t u r e . s e l e c t i o n ( ” ch i2 ” , r e s . data [ [ i ] ] )

}

# run f e a t u r e s e l e c t i o n mrmr f o r s p e c i f i e d number o f reps
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f e a t . mrmr <− f o r each ( i = 1 : reps ,

. packages = c ( ” prazn ik ” ) ) %dopar% {

f e a t u r e . s e l e c t i o n ( ”mrmr” , r e s . data [ [ i ] ] )

}

# run a l l m e t h o d s on resampl ing f e a t u r e s

r e s . resampl ing <− f o r each ( i =1: reps ,

. combine=rbind ,

. packages=c ( ” c l a s s ” , ”glmnet” , ” t i d y v e r s e ” ,

” randomForest” , ”glmnet” , ” ncvreg ” , ” e1071 ” ,

” ca r e t ” , ”RankAggreg” , ”adabag” ) ) %dopar% {

r e s . ensemble <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” ensemble ” )

r e s . l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l a s s o ” )

r e s . a l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” a l a s s o ” )

r e s . br idge <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” br idge ” )

r e s . scad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” scad ” )

r e s . mcp <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”mcp” )

r e s . svm . l i n <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . l i n ” )

r e s . svm . rad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . rad” )

r e s . r f <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” r f ” )
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r e s . l r <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l r ” )

r e s . adab <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”adab” )

r e s . rep <− c ( r e s . ensemble , r e s . l a s so , r e s . a l a s so ,

r e s . br idge , r e s . scad , r e s . mcp , r e s . svm . l i n ,

r e s . svm . rad , r e s . rf , r e s . l r , r e s . adab )

r e s . rep

} }

# run a l l methods on in format ion f e a t u r e s

r e s . in fo rmat ion <−f o r each ( i =1: reps ,

. combine=rbind ,

. packages=c ( ” c l a s s ” , ”glmnet” , ” t i d y v e r s e ” ,

” randomForest” , ”glmnet” , ” ncvreg ” , ” e1071 ” ,

” ca r e t ” , ”RankAggreg” , ”adabag” ) ) %dopar% {

r e s . ensemble <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” ensemble ” )

r e s . l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l a s s o ” )

r e s . a l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” a l a s s o ” )

r e s . br idge <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” br idge ” )

r e s . scad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” scad ” )

r e s . mcp <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”mcp” )

r e s . svm . l i n <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,
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method=”svm . l i n ” )

r e s . svm . rad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . rad” )

r e s . r f <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” r f ” )

r e s . l r <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l r ” )

r e s . adab <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”adab” )

r e s . rep <− c ( r e s . ensemble , r e s . l a s so , r e s . a l a s so ,

r e s . br idge , r e s . scad , r e s . mcp , r e s . svm . l i n ,

r e s . svm . rad , r e s . rf , r e s . l r , r e s . adab )

r e s . rep

}

}

# run a l l m e t h o d s on ch i2 f e a t u r e s

r e s . ch i2 <−f o r each ( i =1: reps ,

. combine=rbind ,

. packages=c ( ” c l a s s ” , ”glmnet” , ” t i d y v e r s e ” ,

” randomForest” , ”glmnet” , ” ncvreg ” , ” e1071 ” ,

” ca r e t ” , ”RankAggreg” , ”adabag” ) ) %dopar% {

r e s . ensemble <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” ensemble ” )

r e s . l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l a s s o ” )

r e s . a l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” a l a s s o ” )

r e s . br idge <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,
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method=” br idge ” )

r e s . scad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” scad ” )

r e s . mcp <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”mcp” )

r e s . svm . l i n <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . l i n ” )

r e s . svm . rad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . rad” )

r e s . r f <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” r f ” )

r e s . l r <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l r ” )

r e s . adab <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”adab” )

r e s . rep <− c ( r e s . ensemble , r e s . l a s so , r e s . a l a s so ,

r e s . br idge , r e s . scad , r e s . mcp , r e s . svm . l i n ,

r e s . svm . rad , r e s . rf , r e s . l r , r e s . adab )

r e s . rep

}

# run a l l m e t h o d s on mrmr f e a t u r e s f o r

r e s . mrmr <− f o r each ( i =1: reps ,

. combine=rbind ,

. packages=c ( ” c l a s s ” , ”glmnet” , ” t i d y v e r s e ” ,

” randomForest” , ”glmnet” , ” ncvreg ” , ” e1071 ” ,

” ca r e t ” , ”RankAggreg” , ”adabag” ) ) %dopar% {

r e s . ensemble <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” ensemble ” )
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r e s . l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l a s s o ” )

r e s . a l a s s o <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” a l a s s o ” )

r e s . br idge <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” br idge ” )

r e s . scad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” scad ” )

r e s . mcp <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”mcp” )

r e s . svm . l i n <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . l i n ” )

r e s . svm . rad <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”svm . rad” )

r e s . r f <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” r f ” )

r e s . l r <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=” l r ” )

r e s . adab <− t e s t . function ( f e a t . resampl ing [ [ i ] ] ,

method=”adab” )

r e s . rep <− c ( r e s . ensemble , r e s . l a s so , r e s . a l a s so ,

r e s . br idge , r e s . scad , r e s . mcp , r e s . svm . l i n ,

r e s . svm . rad , r e s . rf , r e s . l r , r e s . adab )

r e s . rep

}

s topClus t e r ( c l )

end time <− Sys . time ( )

t o t a l time <− end time − start time
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##############################

#####−−−− Performance Metr ics −−−−

##############################

p e r f . met r i c s <− function ( r e s u l t s )

{

ens . acc <− r e s u l t s [ , 1 ] ; l a s s o . acc <− r e s u l t s [ , 4 ] ;

a l a s s o . acc <− r e s u l t s [ , 7 ] ; enet . acc <− r e s u l t s [ , 1 0 ] ;

scad . acc <− r e s u l t s [ , 1 3 ] ;

mcp . acc <− r e s u l t s [ , 1 6 ] ; svm . l i n . acc <− r e s u l t s [ , 1 9 ] ;

svm . rad . acc <− r e s u l t s [ , 2 2 ] ; r f . acc <− r e s u l t s [ , 2 5 ] ;

l r . acc <− r e s u l t s [ , 2 8 ] ; adab . acc <− r e s u l t s [ , 3 1 ] ;

model <− data . frame ( Methods = c ( rep ( ” ensemble ” , reps ) ,

rep ( ” l a s s o ” , reps ) , rep ( ” a l a s s o ” , reps ) ,

rep ( ” enet ” , reps ) , rep ( ” scad ” , reps ) , rep ( ”mcp” , reps ) ,

rep ( ”svm . l i n ” , reps ) , rep ( ”svm . rad” , reps ) , rep ( ” r f ” , r eps ) ,

rep ( ” l r ” , r eps ) , rep ( ”adab” , reps ) ) ,

Accuracy = c ( ens . acc , l a s s o . acc , a l a s s o . acc , enet . acc , scad . acc ,

mcp . acc , svm . l i n . acc , svm . rad . acc , r f . acc , l r . acc , adab . acc ) )

ensemble . accuracy <− c (mean( r e s u l t s [ , 1 ] ) , sd ( r e s u l t s [ , 1 ] ) )

ensemble . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 2 ] ) , sd ( r e s u l t s [ , 2 ] ) )

ensemble . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 3 ] ) , sd ( r e s u l t s [ , 3 ] ) )

l a s s o . accuracy <− c (mean( r e s u l t s [ , 4 ] ) , sd ( r e s u l t s [ , 4 ] ) )

l a s s o . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 5 ] ) , sd ( r e s u l t s [ , 5 ] ) )

l a s s o . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 6 ] ) , sd ( r e s u l t s [ , 6 ] ) )
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a l a s s o . accuracy <− c (mean( r e s u l t s [ , 7 ] ) , sd ( r e s u l t s [ , 7 ] ) )

a l a s s o . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 8 ] ) , sd ( r e s u l t s [ , 8 ] ) )

a l a s s o . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 9 ] ) , sd ( r e s u l t s [ , 9 ] ) )

enet . accuracy <− c (mean( r e s u l t s [ , 1 0 ] ) , sd ( r e s u l t s [ , 1 0 ] ) )

enet . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 1 1 ] ) , sd ( r e s u l t s [ , 1 1 ] ) )

enet . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 1 2 ] ) , sd ( r e s u l t s [ , 1 2 ] ) )

scad . accuracy <− c (mean( r e s u l t s [ , 1 3 ] ) , sd ( r e s u l t s [ , 1 3 ] ) )

scad . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 1 4 ] ) , sd ( r e s u l t s [ , 1 4 ] ) )

scad . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 1 5 ] ) , sd ( r e s u l t s [ , 1 5 ] ) )

mcp . accuracy <− c (mean( r e s u l t s [ , 1 6 ] ) , sd ( r e s u l t s [ , 1 6 ] ) )

mcp . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 1 7 ] ) , sd ( r e s u l t s [ , 1 7 ] ) )

mcp . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 1 8 ] ) , sd ( r e s u l t s [ , 1 8 ] ) )

svm . l i n . accuracy <− c (mean( r e s u l t s [ , 1 9 ] ) , sd ( r e s u l t s [ , 1 9 ] ) )

svm . l i n . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 2 0 ] ) , sd ( r e s u l t s [ , 2 0 ] ) )

svm . l i n . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 2 1 ] ) , sd ( r e s u l t s [ , 2 1 ] ) )

svm . rad . accuracy <− c (mean( r e s u l t s [ , 2 2 ] ) , sd ( r e s u l t s [ , 2 2 ] ) )

svm . rad . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 2 3 ] ) , sd ( r e s u l t s [ , 2 3 ] ) )

svm . rad . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 2 4 ] ) , sd ( r e s u l t s [ , 2 4 ] ) )

r f . accuracy <− c (mean( r e s u l t s [ , 2 5 ] ) , sd ( r e s u l t s [ , 2 5 ] ) )

r f . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 2 6 ] ) , sd ( r e s u l t s [ , 2 6 ] ) )

r f . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 2 7 ] ) , sd ( r e s u l t s [ , 2 7 ] ) )

l r . accuracy <− c (mean( r e s u l t s [ , 2 8 ] ) , sd ( r e s u l t s [ , 2 8 ] ) )

l r . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 2 9 ] ) , sd ( r e s u l t s [ , 2 9 ] ) )

l r . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 3 0 ] ) , sd ( r e s u l t s [ , 3 0 ] ) )

adab . accuracy <− c (mean( r e s u l t s [ , 3 1 ] ) , sd ( r e s u l t s [ , 3 1 ] ) )

adab . s e n s i t i v i t y <− c (mean( r e s u l t s [ , 3 2 ] ) , sd ( r e s u l t s [ , 3 2 ] ) )

adab . s p e c i f i c i t y <− c (mean( r e s u l t s [ , 3 3 ] ) , sd ( r e s u l t s [ , 3 3 ] ) )
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ensemble . performance <− l i s t ( ensemble . accuracy ,

ensemble . s e n s i t i v i t y , ensemble . s p e c i f i c i t y )

names( ensemble . performance ) <− c ( ” ensemble accuracy ” ,

” ensemble s e n s i t i v i t y ” , ” ensemble s p e c i f i c i t y ” )

l a s s o . performance <− l i s t ( l a s s o . accuracy ,

l a s s o . s e n s i t i v i t y , l a s s o . s p e c i f i c i t y )

names( l a s s o . performance ) <− c ( ” l a s s o accuracy ” ,

” l a s s o s e n s i t i v i t y ” , ” l a s s o s p e c i f i c i t y ” )

a l a s s o . performance <− l i s t ( a l a s s o . accuracy ,

a l a s s o . s e n s i t i v i t y , a l a s s o . s p e c i f i c i t y )

names( a l a s s o . performance ) <− c ( ” a l a s s o accuracy ” ,

” a l a s s o s e n s i t i v i t y ” , ” a l a s s o s p e c i f i c i t y ” )

enet . performance <− l i s t ( enet . accuracy ,

enet . s e n s i t i v i t y , enet . s p e c i f i c i t y )

names( enet . performance ) <− c ( ” enet accuracy ” ,

” enet s e n s i t i v i t y ” , ” enet s p e c i f i c i t y ” )

scad . performance <− l i s t ( scad . accuracy ,

scad . s e n s i t i v i t y , scad . s p e c i f i c i t y )

names( scad . performance ) <− c ( ” scad accuracy ” ,

” scad s e n s i t i v i t y ” , ” scad s p e c i f i c i t y ” )

mcp . performance <− l i s t (mcp . accuracy ,

mcp . s e n s i t i v i t y , mcp . s p e c i f i c i t y )

names(mcp . performance ) <− c ( ”mcp accuracy ” ,

”mcp s e n s i t i v i t y ” , ”mcp s p e c i f i c i t y ” )

svm . l i n . performance <− l i s t (svm . l i n . accuracy ,

svm . l i n . s e n s i t i v i t y , svm . l i n . s p e c i f i c i t y )

names(svm . l i n . performance ) <− c ( ”svm . l i n accuracy ” ,

”svm . l i n s e n s i t i v i t y ” , ”svm . l i n s p e c i f i c i t y ” )
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svm . rad . performance <− l i s t (svm . rad . accuracy ,

svm . rad . s e n s i t i v i t y , svm . rad . s p e c i f i c i t y )

names(svm . rad . performance ) <− c ( ”svm . rad accuracy ” ,

”svm . rad s e n s i t i v i t y ” , ”svm . rad s p e c i f i c i t y ” )

r f . performance <− l i s t ( r f . accuracy ,

r f . s e n s i t i v i t y , r f . s p e c i f i c i t y )

names( r f . performance ) <− c ( ” r f accuracy ” ,

” r f s e n s i t i v i t y ” , ” r f s p e c i f i c i t y ” )

l r . performance <− l i s t ( l r . accuracy ,

l r . s e n s i t i v i t y , l r . s p e c i f i c i t y )

names( l r . performance ) <− c ( ” l r accuracy ” ,

” l r s e n s i t i v i t y ” , ” l r s p e c i f i c i t y ” )

adab . performance <− l i s t ( adab . accuracy ,

adab . s e n s i t i v i t y , adab . s p e c i f i c i t y )

names( adab . performance ) <− c ( ”adab accuracy ” ,

”adab s e n s i t i v i t y ” , ”adab s p e c i f i c i t y ” )

return ( l i s t ( ensemble . performance , l a s s o . performance ,

a l a s s o . performance , enet . performance , scad . performance ,

mcp . performance , svm . l i n . performance ,

svm . rad . performance , r f . performance ,

l r . performance , adab . performance ,

model ) )

}

resampl ing . met r i c s <− p e r f . met r i c s ( r e s . resampl ing )

in fo rmat ion . met r i c s <− p e r f . met r i c s ( r e s . in fo rmat ion )

ch i2 . met r i c s <− p e r f . met r i c s ( r e s . ch i2 )

mrmr . met r i c s <− p e r f . met r i c s ( r e s . mrmr)
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##### BOXPLOTS

resample .match <− i n fo rmat ion .match <− f s c o r e .match <−

mrmr .match <− ch i2 .match <− l i s t ( )

for ( i in seq along ( f e a t . resampl ing ) )

{

resample .match [ [ i ] ] <−

match( f e a t . resampl ing [ [ i ] ] [ [ 3 ] ] , t rue . imp)

}

for ( i in seq along ( f e a t . in fo rmat ion ) )

{

i n fo rmat ion .match [ [ i ] ] <−

match( f e a t . in fo rmat ion [ [ i ] ] [ [ 3 ] ] , t rue . imp)

}

for ( i in seq along ( f e a t . ch i2 ) )

{

ch i2 .match [ [ i ] ] <− match( f e a t . ch i2 [ [ i ] ] [ [ 3 ] ] , t rue . imp)

}

for ( i in seq along ( f e a t . mrmr) )

{

mrmr .match [ [ i ] ] <− match( f e a t . mrmr [ [ i ] ] [ [ 3 ] ] , t rue . imp)

}

resample . l en <− i n fo rmat ion . l en <− f s c o r e . l en <−
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mrmr . l en <− ch i2 . l en <− vector ( )

for ( i in seq along ( resample .match ) )

{

resample . l en [ i ] <− length ( resample .match [ [ i ] ]

[ ! i s . na( resample .match [ [ i ] ] ) ] ) /length ( t rue . imp)∗100

}

for ( i in seq along ( in fo rmat ion .match ) )

{

i n fo rmat ion . l en [ i ] <− length ( in fo rmat ion .match [ [ i ] ]

[ ! i s . na( in fo rmat ion .match [ [ i ] ] ) ] ) /length ( t rue . imp)∗100

}

for ( i in seq along ( ch i2 .match ) )

{

ch i2 . l en [ i ] <− length ( ch i2 .match [ [ i ] ]

[ ! i s . na( ch i2 .match [ [ i ] ] ) ] ) /length ( t rue . imp)∗100

}

for ( i in seq along (mrmr .match ) )

{

mrmr . l en [ i ] <− length (mrmr .match [ [ i ] ]

[ ! i s . na(mrmr .match [ [ i ] ] ) ] ) /length ( t rue . imp)∗100

}

resample . s e l . avg <− sum( resample . l en )/length ( resample . l en )

resample . s e l . sd <− sd ( resample . l en )

in fo rmat ion . s e l . avg <− sum( in fo rmat ion . l en )/
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length ( in fo rmat ion . l en )

in fo rmat ion . s e l . sd <− sd ( in fo rmat ion . l en )

ch i2 . s e l . avg <− sum( ch i2 . l en )/length ( ch i2 . l en )

ch i2 . s e l . sd <− sd ( ch i2 . l en )

mrmr . s e l . avg <− sum(mrmr . l en )/length (mrmr . l en )

mrmr . s e l . sd <− sd (mrmr . l en )

output1 <− l i s t ( resample . s e l . avg , resample . s e l . sd ,

i n fo rmat ion . s e l . avg , in fo rmat ion . s e l . sd ,

ch i2 . s e l . avg , ch i2 . s e l . sd ,

mrmr . s e l . avg , mrmr . s e l . sd

)

names( output1 ) <− l i s t ( ” resample . s e l . avg” , ” resample . s e l . sd” ,

” in fo rmat ion . s e l . avg” ,

” in fo rmat ion . s e l . sd” ,

” ch i2 . s e l . avg” , ” ch i2 . s e l . sd” ,

”mrmr . s e l . avg” , ”mrmr . s e l . sd”

)

sink ( ’ r e s sim s c e n a r i o 05 . txt ’ )

print ( ”−−−−−−TOTAL TIME−−−−−−−−−−” )

print ( t o t a l time )

print ( ”−−−−−−s e l e c t i o n p robab i l i t y−−−−−−−−−−−−” )

print ( output1 )

print ( ”−−−−−−−−−−−−−−−−−−−−−− resampling−−−−−−−−−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l Accuracy and SD−−−−−−−−−” )

print ( resampl ing . met r i c s )
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print ( ”−−−−−−−−−−−−−−−−−−−−−− i n fo rmat ion gain−−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l Accuracy and SD−−−−−−−−−” )

print ( in fo rmat ion . met r i c s )

print ( ”−−−−−−−−−−−−−−−−−−−−−− chi2−−−−−−−−−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l Accuracy and SD−−−−−−−−−” )

print ( ch i2 . met r i c s )

print ( ”−−−−−−−−−−−−−−−−−−−−−− mrmr−−−−−−−−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l Accuracy and SD−−−−−−−−−” )

print (mrmr . met r i c s )

sink ( )

model . prob <− data . frame ( Methods = c ( rep ( ” resampl ing ” , reps ) ,

rep ( ” in fo rmat ion ” , reps ) ,

rep ( ” ch i2 ” , reps ) , rep ( ”mRMR” , reps ) ) ,

Accuracy = c ( resample . len , in fo rmat ion . len ,

f s c o r e . len , mrmr . len , ch i2 . l en ) )

l e v e l order . prob <− c ( ’ resampl ing ’ , ’ in fo rmat ion ’ ,

’ ch i2 ’ , ’mRMR’ )

# save the box p l o t f o r s e l e c t i o n p r o b a b i l i t y

ggsave ( ” bplot . s e l . prob . png” , ggp lo t (model . prob , aes ( x= factor

( Methods , l e v e l = l e v e l order . prob ) ,

y = Accuracy ) , f i l l = Methods )

+ coord c a r t e s i a n ( ylim = c (0 , 50) ) +
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geom boxplot ( f i l l =c ( ” red ” , ” green ” , ” blue ” , ” pink ” ) ,

alpha =0.5 , o u t l i e r . co l ou r = ” red ” ,

o u t l i e r . s i z e = 0 . 5 , f a t t e n = 1) +

g g t i t l e ( ”True v a r i a b l e s e l e c t i o n average :

c o r r e l a t i o n : 0 . 5 ” ) + xlab ( ”Methods” ) +

ylab ( ”Accuracy ( in %)” ) + theme ( plot . t i t l e =

element text ( f a c e = ” bold ” , h ju s t = 0 . 5 , s i z e= 8)

, axis . text . x = element text ( f a c e = ” bold ” , ang le = 90 ,

s i z e = 8 , h ju s t = 1)

, axis . text . y = element text ( f a c e = ” bold ” , ang le = 0 ,

s i z e = 8 , h ju s t =1)

, legend . p o s i t i o n=”none”

, axis . t i t l e . y =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

, axis . t i t l e . x =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) ) ) ,

width = 3 , he ight = 3 , dpi = 1200 ,

un i t s = ” in ” , dev i c e=’ png ’ )

#####−−−−−−−−− Set parameters f o r box p l o t s −−−−

l e v e l order <− c ( ’ ensemble ’ , ’ l a s s o ’ , ’ a l a s s o ’ , ’ enet ’ , ’ scad ’ ,

’mcp ’ , ’ r f ’ , ’ svm . l i n ’ , ’ svm . rad ’ , ’ adab ’ , ’ l r ’ )

box . col <− c ( ” orange ” , ” green ” , ” blue ” , ” red ” , ” ye l low ” , ” tu rquo i s e ” ,

” purple ” , ” pink ” , ” grey ” , ” black ” , ”brown” )

box . range <− c (60 , 100)

##############################################
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# save the box p l o t f o r resampl ing

ggsave ( ” bplot . resampl ing . png” , ggp lo t ( resampl ing . met r i c s [ [ 1 2 ] ] ,

aes ( x= factor ( Methods , l e v e l = l e v e l order ) , y = Accuracy ) ,

f i l l = Methods ) + coord c a r t e s i a n ( ylim = box . range ) +

geom boxplot ( f i l l = box . col , a lpha =0.5 ,

o u t l i e r . co l ou r = ” red ” ,

o u t l i e r . s i z e = 0 . 5 , f a t t e n = 1) +

g g t i t l e ( ” Cor r e l a t i on 0 . 5 : resampl ing ” ) +

xlab ( ”Methods” )

+ ylab ( ”Accuracy ( in %)” ) +

theme ( plot . t i t l e = element text ( f a c e = ” bold ” ,

h ju s t = 0 . 5 , s i z e= 8)

, axis . text . x = element text ( f a c e = ” bold ” , ang le = 90 ,

s i z e = 8 , h ju s t = 1)

, axis . text . y = element text ( f a c e = ” bold ” , ang le = 0 ,

s i z e = 8 , h ju s t =1)

, legend . p o s i t i o n=”none”

, axis . t i t l e . y =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

, axis . t i t l e . x =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

) ,

width = 3 , he ight = 3 , dpi = 1200 ,

un i t s = ” in ” , dev i c e=’ png ’ )

# save the box p l o t f o r in format ion

ggsave ( ” bplot . in fo rmat ion . png” , ggp lot ( in fo rmat ion . met r i c s [ [ 1 2 ] ] ,
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aes ( x= factor ( Methods , l e v e l = l e v e l order ) , y = Accuracy ) ,

f i l l = Methods ) + coord c a r t e s i a n ( ylim = box . range ) +

geom boxplot ( f i l l = box . col , a lpha =0.5 ,

o u t l i e r . co l ou r = ” red ” ,

o u t l i e r . s i z e = 0 . 5 , f a t t e n = 1) +

g g t i t l e ( ” Cor r e l a t i on 0 . 5 : in fo rmat ion ” )

+ xlab ( ”Methods” ) +

ylab ( ”Accuracy ( in %)” ) + theme ( plot . t i t l e =

element text ( f a c e = ” bold ” , h ju s t = 0 . 5 , s i z e= 8)

, axis . text . x = element text ( f a c e = ” bold ” , ang le = 90 ,

s i z e = 8 , h ju s t = 1)

, axis . text . y = element text ( f a c e = ” bold ” , ang le = 0 ,

s i z e = 8 , h ju s t =1)

, legend . p o s i t i o n=”none”

, axis . t i t l e . y =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

, axis . t i t l e . x =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

) ,

width = 3 , he ight = 3 , dpi = 1200 ,

un i t s = ” in ” , dev i c e=’ png ’ )

# save the box p l o t f o r ch i2

ggsave ( ” bplot . ch i2 . png” , ggp lo t ( ch i2 . met r i c s [ [ 1 2 ] ] ,

aes ( x= factor ( Methods , l e v e l = l e v e l order ) , y = Accuracy ) ,

f i l l = Methods ) + coord c a r t e s i a n ( ylim = box . range ) +

geom boxplot ( f i l l = box . col , a lpha =0.5 ,
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o u t l i e r . co l ou r = ” red ” , o u t l i e r . s i z e = 0 . 5 , f a t t e n = 1)

+

g g t i t l e ( ” Cor r e l a t i on 0 . 5 : ch i2 ” ) + xlab ( ”Methods” ) +

ylab ( ”Accuracy ( in %)” ) + theme ( plot . t i t l e =

element text ( f a c e = ” bold ” , h ju s t = 0 . 5 , s i z e= 8)

, axis . text . x = element text ( f a c e = ” bold ” , ang le = 90 ,

s i z e = 8 , h ju s t = 1)

, axis . text . y = element text ( f a c e = ” bold ” , ang le = 0 ,

s i z e = 8 , h ju s t =1)

, legend . p o s i t i o n=”none”

, axis . t i t l e . y =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

, axis . t i t l e . x =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

) ,

width = 3 , he ight = 3 , dpi = 1200 ,

un i t s = ” in ” , dev i c e=’ png ’ )

# save the box p l o t f o r mrmr

ggsave ( ” bplot . mrmr . png” , ggp lo t (mrmr . met r i c s [ [ 1 2 ] ] ,

aes ( x= factor ( Methods , l e v e l = l e v e l order ) , y = Accuracy ) ,

f i l l = Methods ) + coord c a r t e s i a n ( ylim = box . range ) +

geom boxplot ( f i l l = box . col , a lpha =0.5 ,

o u t l i e r . co l ou r = ” red ” , o u t l i e r . s i z e = 0 . 5 , f a t t e n = 1)

+

g g t i t l e ( ” Cor r e l a t i on 0 . 5 : ch i2 ” ) + xlab ( ”Methods” ) +

ylab ( ”Accuracy ( in %)” ) + theme ( plot . t i t l e =

element text ( f a c e = ” bold ” , h ju s t = 0 . 5 , s i z e= 8)
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, axis . text . x = element text ( f a c e = ” bold ” , ang le = 90 ,

s i z e = 8 , h ju s t = 1)

, axis . text . y = element text ( f a c e = ” bold ” , ang le = 0 ,

s i z e = 8 , h ju s t =1)

, legend . p o s i t i o n=”none”

, axis . t i t l e . y =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

, axis . t i t l e . x =

element text ( f a c e = ” bold ” , s i z e = r e l ( 0 . 7 ) )

) ,

width = 3 , he ight = 3 , dpi = 1200 ,

un i t s = ” in ” , dev i c e=’ png ’ )

##############

#####−−−−−−−−−−−SAVE THE RESULTS

##############

saveRDS ( output1 , f i l e = ”100 i t e r top75 s e l avg . RData” )

saveRDS ( r e s . data , f i l e=”Data 05 . rds ” )

saveRDS ( f e a t . resampling , f i l e=” f e a t resampl ing . rds ” )

saveRDS ( f e a t . in format ion , f i l e=” f e a t in fo rmat ion . rds ” )

saveRDS ( f e a t . chi2 , f i l e=” f e a t ch i2 . rds ” )

saveRDS ( f e a t . mrmr , f i l e=” f e a t mrmr . rds ” )

saveRDS ( r e s . resampling , f i l e=” r e s resampl ing . rds ” )

saveRDS ( r e s . in format ion , f i l e=” r e s in fo rmat ion . rds ” )

saveRDS ( r e s . chi2 , f i l e=” r e s ch i2 . rds ” )

saveRDS ( r e s . mrmr , f i l e=” r e s mrmr . rds ” )

######################################################
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Appendix B

Appendix B: Adaptive lasso with normalized filtering

scores

setwd ( ”/export/home/ a r p a t i l /Desktop/modalasso/ l a s t /ar105 ” )

l ibrary ( glmnet )

l ibrary ( ncvreg )

l ibrary (R. matlab )

l ibrary ( prazn ik )

l ibrary ( PredPsych )

l ibrary ( Biocomb )

l ibrary (mvtnorm)

####

##−−−−−−−−−−− performance metrics−−−−−−−−−−−−−−−−−−−##

######

max. i t e r <− 100

accuracy <− function ( truth , p r ed i c t ed )

{

i f ( length ( t ruth ) > 0)

sum( t ruth==pred i c t ed )/length ( t ruth ) else
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return (0 )

}

s e n s i t i v i t y <− function ( truth , p r ed i c t ed )

{

i f (sum( t ruth==1) > 0)

sum( p r ed i c t ed [ t ruth==1]==1)/sum( t ruth==1) else

return (0 )

}

s p e c i f i c i t y <− function ( truth , p r ed i c t ed )

{

i f (sum( t ruth==0) > 0)

sum( p r ed i c t ed [ t ruth==0]==0)/sum( t ruth==0) else

return (0 )

}

AUC <− function ( truth , probs , plot=FALSE){

# probs − p r o b a b i l i t y o f c l a s s 1

q <− seq (0 , 1 , . 0 1 )

sens <− rep (0 , length (q ) )

spec <− rep (0 , length (q ) )

l y <− levels ( t ruth )

for ( i in 1 : length (q ) ){

pred <− probs >= q [ i ]

pred [ pred ] <− 1

#pred <− f a c t o r ( pred , l e v e l s=l y )
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sens [ i ] <− s e n s i t i v i t y ( truth , pred )

spec [ i ] <− s p e c i f i c i t y ( truth , pred )

}

# make sure i t s t a r t s and ends at 0 , 1

sens <− c (1 , sens , 0)

spec <− c (0 , spec , 1)

trap . r u l e <− function (x , y ) sum( d i f f ( x )∗( y[−1]+y[− length ( y ) ] ) ) /2

auc <− trap . r u l e ( rev(1− spec ) , rev ( sens ) )

i f ( plot ){

plot(1−spec , sens , type=” l ” , xlab=”1−S p e c i f i c i t y ” ,

ylab=” S e n s i t i v i t y ” , main=”ROC Curve” )

legend ( ” bottomright ” , legend=paste ( ”AUC = ” , round( auc , 3 ) ) ,

bty=”n” )

}

auc

}

## Simulat ion data

data . gen <− function ( seed . index )

{

model = function (X)

{

return (exp(X)/(1+exp(X) ) )

}
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m u l t i v a r i a t e normal sampler = function ( cov0 , p , nsample )

{

dat = NULL

for ( i in 1 : p)

{

L = chol ( cov0 )

Z = matrix (rnorm( nsample∗ncol ( cov0 ) ) ,

nrow=nsample , ncol=ncol ( cov0 ) )

X = Z%∗%L

dat = cbind ( dat ,X)

}

return ( dat )

}

# cov matrix

cov .mat = function ( block , rho )

{

tmp . cov = matrix (0 , nrow =block , ncol=block )

for ( i in 1 : b lock )

{

for ( j in 1 : b lock )

{

tmp . cov [ i , j ] = rho ˆ(abs ( i−j ) )

}

}

return (tmp . cov )

}

# one s i n g l e b l o c k AR(1)

f e a t u r e set = function ( nsample , p , rho )
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{

block = c (1 )

dat = NULL

for ( i in b lock )

{

i f ( i ==1)

{

cov0 = cov .mat( block , rho )

tmp . dat = m u l t i v a r i a t e normal sampler ( cov0 , p , nsample )

tmp . dat = model(tmp . dat )

}

dat = cbind ( dat , tmp . dat )

}

return ( dat )

}

s eeds <− seed . index

dat = f e a t u r e set ( nsample= 200 , p = 1000 , rho = 0 . 5 )

dat = scale ( dat )

colnames ( dat)=paste ( ”v” , 1 : ncol ( dat ) , sep=”” )

return ( dat )

}

data . g ene ra to r <− function ( dat )

{

x1 <− dat

## weak
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beta <− c (1 . 036478 , −1.073296 ,

−1.250946 , 1 .138729 , −1.128361 , 1 .145263)

t i v <− sample (colnames ( ( x1 ) ) , replace= FALSE ) [ 1 : 6 ]

## genera te y

pi = (exp( x1 [ , t i v ]%∗%beta ) ) /(1+exp( x1 [ , t i v ]%∗%beta ) )

y1 = rbinom(nrow( x1 ) , s i z e =1,prob=pi )

s . idx <− sample ( 1 :nrow( x1 ) , as . integer (nrow( x1 )∗ . 7 ) , replace = F)

t r a i n . x <− x1 [ s . idx , ] ; t r a i n . y <− y1 [ s . idx ] ;

t e s t . x <− x1[− s . idx , ] ; t e s t . y <− y1[− s . idx ] ;

return ( l i s t ( t r a i n . x , t e s t . x , t r a i n . y , t e s t . y , t i v ) )

}

###########

## r e a l data

# [ Use e i t h e r s i m u l a t i o n or r e a l data . gen () f u n c t i o n each time ]

data . gen <− function ( s eeds )

{

x1 = read . csv ( ” co lon 2000 62 x . csv ” )

y1 = read . csv ( ” co lon 2000 62 y . csv ” ) [ , 1 ]

n1 <− cei l ing (nrow( x1 )/log (nrow( x1 ) ) )

s . idx <− sample ( 1 :nrow( x1 ) , as . integer (nrow( x1 )∗ . 7 ) , replace = F)

t r a i n . x <− x1 [ s . idx , ] ; t r a i n . y <− y1 [ s . idx ] ;

t e s t . x <− x1[− s . idx , ] ; t e s t . y <− y1[− s . idx ] ;

return ( l i s t ( t r a i n . x , t e s t . x , t r a i n . y , t e s t . y , n1 ) )

}
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f e a t u r e . s e l e c t i o n = function ( method , data )

{

t r a i n . x <− data [ [ 1 ] ] ; t e s t . x <− data [ [ 2 ] ] ;

t r a i n . y <− data [ [ 3 ] ] ; t e s t . y <− data [ [ 4 ] ] ;

t i v <− data [ [ 5 ] ] ;

n1 <− 38

## n1 <− c e i l i n g ( nrow ( rb ind ( t r a i n . x , t e s t . x ) )

/log (nrow( rbind ( t r a i n . x , t e s t . x ) ) ) )

data . t r a i n <− data . frame ( t r a i n . x , t r a i n . y )

data . t e s t <− data . frame ( t e s t . x , t e s t . y )

set <− l i s t ( )

## f s c o r e

i f ( method==” f s c o r e ” )

{

data . t r a i n [ , ncol (data . t r a i n ) ]<−as . numeric

(data . t r a i n [ , ncol (data . t r a i n ) ] )

f . s c o r e <− f s c o r e (data . t ra in , c l a s s C o l = ncol (data . t r a i n ) )

s f s <− sort ( f . score , d e c r ea s ing = TRUE)[−1]

s e t1 <− s f s [ 1 : n1 ]

s e t1 <− abs ( s e t1 )/mean(abs ( s e t1 ) )

set <− l i s t ( s e t1 )

}

## informat ion gain

i f ( method==” in fo rmat ion ” )
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{

# c l a s s l a b e l must be f a c t o r

data . t r a i n [ , ncol (data . t r a i n ) ]<−as . factor

(data . t r a i n [ , ncol (data . t r a i n ) ] )

d i s c<−” equal i n t e r v a l width”

a t t r s . nominal <− numeric ( )

f i t . i n f o = s e l e c t . i n f . ga in (data . t ra in , d i s c . method=disc ,

a t t r s . nominal=a t t r s . nominal )

s f s <− f i t . i n f o $ In format ion . Gain

fb <− as . character ( f i t . i n f o $Biomarker )

names( s f s ) <− fb

s e t1 <− s f s [ 1 : n1 ]

s e t1 <− abs ( s e t1 )/mean(abs ( s e t1 ) )

set <− l i s t ( s e t1 )

}

## chi2

i f ( method==” ch i2 ” )

{

# c l a s s l a b e l must be f a c t o r

data . t r a i n [ , ncol (data . t r a i n ) ]<−as . factor

(data . t r a i n [ , ncol (data . t r a i n ) ] )

d i s c<−” equal i n t e r v a l width”

a t t r s . nominal <− numeric ( )

f i t . ch i2 <− s e l e c t . i n f . ch i2 (data . t ra in , d i s c . method=disc ,

a t t r s . nominal=a t t r s . nominal )

215



s f s <− f i t . ch i2$ChiSquare

fb <− as . character ( f i t . ch i2$Biomarker )

names( s f s ) <− fb

s e t1 <− s f s [ 1 : n1 ]

s e t1 <− abs ( s e t1 )/mean(abs ( s e t1 ) )

set <− l i s t ( s e t1 )

}

## mmle

i f ( method==”mmle” )

{

## resampl ing

rc . vec <− NULL

se . vec <− NULL

for ( i in 1 : ncol ( t r a i n . x ) )

{

f i t = glm( t r a i n . y ˜ t r a i n . x [ , i ] , family=” binomial ” )

rc . vec <− c ( rc . vec , as . numeric

(summary( f i t ) [ 1 2 ] [ [ 1 ] ] [ , 1 ] [ − 1 ] ) )

se . vec <− c ( se . vec , as . numeric

(summary( f i t ) [ 1 2 ] [ [ 1 ] ] [ , 2 ] [ − 1 ] ) )

}

names( rc . vec ) <− colnames ( t r a i n . x )

names( se . vec ) <− colnames ( t r a i n . x )

rc . vec1 <− sort (abs ( rc . vec ) , d e c r ea s ing = TRUE)

se . vec1 <− match(names( rc . vec1 ) , names( se . vec ) )
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se . vec2 <− se . vec [ se . vec1 ]

rm( rc . vec , se . vec , se . vec1 ) ;

s e t t <− abs ( rc . vec1 ) / se . vec2 ;

s e t1 <− s e t t [ 1 : n1 ]

set <− l i s t ( s e t1 )

}

## r i d g e

i f ( method==” r idge ” )

{ # type . measure d e f a u l t s to p a r t i a l l i k e l i h o o d f o r cox model

r idge1 cv <− cv . glmnet ( as . matrix ( t r a i n . x ) , t r a i n . y ,

alpha = 0 , family = ” binomial ” , s t andard i z e = F)

## The i n t e r c e p t e s t i m a t e shou ld be dropped .

best r i dg e coef <− coef ( r i dge1 cv , s = r idge1 cv$lambda .min)

bes t r i dg e coef <− abs ( bes t r i dg e coef [ , 1 ] [ − 1 ] )

s e t1 <− sort ( bes t r i dg e coef , d e c r ea s ing = TRUE) [ 1 : n1 ]

set <− l i s t ( s e t1 )

}

## return s e t o f f e a t u r e s

return ( l i s t ( set , t r a i n . x , t r a i n . y , t e s t . x , t e s t . y , t i v ) )

}

#########

##−−−−−−−−−−−− code f o r p e n a l i z e d l o g i s t i c r e g r e s s i o n method

##−−−−−−−−−−−−− l a s s o −−−−−−−

l a s s o = function (x , y )
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{

cv . l a s s o <− cv . glmnet ( y = y , x = as . matrix ( x ) , alpha =1,

family=” binomial ” )

return ( cv . l a s s o )

}

##−−−−−−−−−− Proposed Modif ied Adaptive l a s s o −−−−

mod . a l a s s o = function (x , y , weights )

{

cv .mod . a l a s s o <− glmnet : : cv . glmnet ( y = y , x = as . matrix ( x ) ,

alpha =1, pena l ty . factor = 1/abs ( weights ) , family=” binomial ” )

return ( cv .mod . a l a s s o )

}

##−−−−a l a s s o wi th r idge−−−−

a l a s s o = function (x , y )

{

#r i d g e r e g r e s s i o n w e i g h t s

# type . measure d e f a u l t s to p a r t i a l l i k e l i h o o d f o r cox model

r idge1 cv <− cv . glmnet ( as . matrix ( x ) , y , alpha = 0 ,

family = ” binomial ” )

## The i n t e r c e p t e s t i m a t e shou ld be dropped .

best r i dg e coef <− coef ( r i dge1 cv , s = r idge1 cv$lambda .min)

cv . a l a s s o <− glmnet : : cv . glmnet ( as . matrix ( x ) , y , alpha =1,

pena l ty . factor = 1/abs ( bes t r i dg e coef [ , 1 ] [ − 1 ] ) ,

family=” binomial ” )

return ( cv . a l a s s o )

}
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##−−−−−−−−a l a s s o f o r mmle weights−−−−−

a l a s s o mmle = function (x , y , set mmle)

{

cv . a l a s s o <− glmnet : : cv . glmnet ( as . matrix ( x ) , y , alpha =1,

pena l ty . factor = 1/abs ( set mmle ) ,

family=” binomial ” )

return ( cv . a l a s s o )

}

################

acc .mod . a l a s s o <− auc .mod . a l a s s o <−

gmean .mod . a l a s s o <− vector ( )

tpr t i v <− vector ( )

tpr mod a l a s s o <− tpr l a s s o <− vector ( )

tpr mod <− l i s t ( )

#########

dat<− function ( method , data )

{

f s <− f e a t u r e . s e l e c t i o n ( method , data )

wi <− f s [ [ 1 ] ]

t r a i n . x <− f s [ [ 2 ] ]

t r a i n . y <− f s [ [ 3 ] ]

t e s t . x <− f s [ [ 4 ] ]

t e s t . y <− f s [ [ 5 ] ]

t i v <− f s [ [ 6 ] ]
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for ( i in seq ( wi ) )

{

## For f e a t u r e s e l e c t i o n method

tpr t <− match(names( wi [ [ i ] ] ) , t i v )

tpr t i v [ i ] <− length ( tpr t [ ! i s . na( tpr t ) ] )

red . t r a i n . x <− t r a i n . x [ , names( wi [ [ i ] ] ) ]

red . t e s t . x <− t e s t . x [ , names( wi [ [ i ] ] ) ]

mod . t r a i n . x <− red . t r a i n . x / wi [ [ i ] ] [ col ( red . t r a i n . x ) ]

mod . t r a i n . x <− mod . t r a i n . x [ , apply (mod . t r a i n . x , 2 ,

function ( x ) !any( i s . na( x ) ) ) ]

mod . t e s t . x <− red . t e s t . x / wi [ [ i ] ] [ col ( red . t e s t . x ) ]

mod . t e s t . x <− mod . t e s t . x [ , apply (mod . t e s t . x , 2 ,

function ( x ) !any( i s . na( x ) ) ) ]

##############

##−−−−− Modif ied Adaptive Lasso−−−

##############

mod . a l a s s o cv <− mod . a l a s s o ( as . matrix (mod . t r a i n . x ) ,

t r a i n . y , wi [ [ i ] ] )

mod . a l a s s o . idx = which(abs ( coef (mod . a l a s s o cv ) [ , 1 ] ) >0 )

[−c ( 1 ) ]

mod . a l a s s o .m. idx = match(names(mod . a l a s s o . idx ) ,

colnames (mod . t e s t . x ) )

mod . a l a s s o . xb =
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as . matrix (cbind (1 , as . matrix (mod . t e s t . x

[ ,mod . a l a s s o .m. idx ] ) ) )

%∗%as . matrix ( coef (mod . a l a s s o cv )

[ c (1 ,mod . a l a s s o . idx ) , 1 ] )

mod . a l a s s o . pred = exp(mod . a l a s s o . xb )/

(1+exp(mod . a l a s s o . xb ) )

mod . a l a s s o . pred <− i f e l s e (mod . a l a s s o . pred >0.5 , 1 , 0)

mod . p r ed i c t ed . a l a s s o <− as . character (

mod . a l a s s o . pred [ , 1 ] )

## For modi f ied a d a p t i v e l a s s o

tpr mod <− match(names(mod . a l a s s o . idx ) , t i v )

tpr mod a l a s s o [ i ] <− length ( tpr mod [ ! i s . na( tpr mod ) ] )

acc .mod . a l a s s o [ i ] <− accuracy ( t e s t . y ,

mod . p r ed i c t ed . a l a s s o )

sens .mod . a l a s s o <− s e n s i t i v i t y ( t e s t . y ,

mod . p r ed i c t ed . a l a s s o )

spec .mod . a l a s s o <− s p e c i f i c i t y ( t e s t . y ,

mod . p r ed i c t ed . a l a s s o )

auc .mod . a l a s s o [ i ] <− AUC( as . factor ( t e s t . y ) ,

mod . p r ed i c t ed . a l a s s o )

gmean .mod . a l a s s o [ i ] <−

sqrt ( sens .mod . a l a s s o∗ spec .mod . a l a s s o )

#########

}

return ( l i s t ( acc .mod . a la s so ,

auc .mod . a la s so ,
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gmean .mod . a la s so ,

tpr t iv , tpr mod a l a s s o ) )

}

acc . a l a s s o unknown <− auc . a l a s s o unknown <− vector ( )

gmean . a l a s s o unknown <− tpr t t i v <−

tpr unknown <− vector ( )

dat unknown<− function ( method , data )

{

f s <− f e a t u r e . s e l e c t i o n ( method , data )

wi <− f s [ [ 1 ] ]

t r a i n . x <− f s [ [ 2 ] ]

t r a i n . y <− f s [ [ 3 ] ]

t e s t . x <− f s [ [ 4 ] ]

t e s t . y <− f s [ [ 5 ] ]

t i v <− f s [ [ 6 ] ]

for ( i in seq ( wi ) )

{

tpr t <− match(names( wi [ [ i ] ] ) , t i v )

tpr t t i v [ i ] <− length ( tpr t [ ! i s . na( tpr t ) ] )

red . t r a i n . x <− t r a i n . x [ , names( wi [ [ i ] ] ) ]

red . t e s t . x <− t e s t . x [ , names( wi [ [ i ] ] ) ]

#############################################
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##Adaptive Lasso wi th r i d g e or mmle w e i g h t s

f i t . a l a s s o unknown = a l a s s o mmle( red . t r a i n . x ,

t r a i n . y , wi [ [ i ] ] )

a l a s s o unknown . idx = which(abs ( coef ( f i t . a l a s s o unknown)

[ ,1 ])>0) [− c ( 1 ) ]

a l a s s o unknown .m. idx = match(names( a l a s s o unknown . idx ) ,

colnames ( red . t e s t . x ) )

a l a s s o unknown . xb = as . matrix (cbind (1 , as . matrix

( red . t e s t . x [ , a l a s s o unknown .m. idx ] ) ) )

%∗%as . matrix ( coef ( f i t . a l a s s o unknown)

[ c (1 , a l a s s o unknown . idx ) , 1 ] )

a l a s s o unknown . pred = exp( a l a s s o unknown . xb )/

(1+exp( a l a s s o unknown . xb ) )

a l a s s o unknown . pred <− i f e l s e

( a l a s s o unknown . pred >0.5 , 1 , 0)

p r ed i c t ed . a l a s s o unknown <− as . character

( a l a s s o unknown . pred [ , 1 ] )

## For r i d g e or mmle

tpr r i d <− match(names( a l a s s o unknown . idx ) , t i v )

tpr unknown [ i ] <− length ( tpr r i d [ ! i s . na( tpr r i d ) ] )

acc . a l a s s o unknown [ i ] <− accuracy ( t e s t . y ,

p r ed i c t ed . a l a s s o unknown)

sens . a l a s s o unknown <− s e n s i t i v i t y ( t e s t . y ,

p r ed i c t ed . a l a s s o unknown)

spec . a l a s s o unknown <− s p e c i f i c i t y ( t e s t . y ,

p r ed i c t ed . a l a s s o unknown)
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auc . a l a s s o unknown [ i ] <− AUC( as . factor ( t e s t . y ) ,

p r ed i c t ed . a l a s s o unknown)

gmean . a l a s s o unknown [ i ] <− sqrt ( sens . a l a s s o unknown∗

spec . a l a s s o unknown)

}

return ( l i s t ( acc . a l a s s o unknown ,

auc . a l a s s o unknown ,

gmean . a l a s s o unknown ,

tpr t t i v , tpr unknown ) )

}

tpr l a s s o <− tpr a l a s s o <− vector ( )

acc . l a s s o <− auc . l a s s o <− gmean . l a s s o <− vector ( )

acc . a l a s s o <− auc . a l a s s o <− gmean . a l a s s o <− vector ( )

dat u n f i l t e r<− function (data )

{

t r a i n . x <− data [ [ 1 ] ]

t e s t . x <− data [ [ 2 ] ]

t r a i n . y <− data [ [ 3 ] ]

t e s t . y <− data [ [ 4 ] ]

t i v <− data [ [ 5 ] ]

for ( i in 1)

{

#############

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Lasso−−−−−−−−−
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#############

f i t . l a s s o = l a s s o ( as . matrix ( t r a i n . x ) , t r a i n . y )

l a s s o . idx = which(abs ( coef ( f i t . l a s s o ) [ ,1 ] ) >0) [− c ( 1 ) ]

l a s s o .m. idx = match(names( l a s s o . idx ) , colnames ( t e s t . x ) )

l a s s o . xb = as . matrix (cbind (1 , as . matrix ( t e s t . x

[ , l a s s o .m. idx ] ) ) )

%∗%as . matrix ( coef ( f i t . l a s s o ) [ c (1 , l a s s o . idx ) , 1 ] )

l a s s o . pred = exp( l a s s o . xb )/(1+exp( l a s s o . xb ) )

l a s s o . pred <− i f e l s e ( l a s s o . pred >0.5 , 1 , 0)

p r ed i c t ed . l a s s o <− as . character ( l a s s o . pred [ , 1 ] )

## For l a s s o

tpr l a s <− match(names( l a s s o . idx ) , t i v )

tpr l a s s o [ i ] <− length ( tpr l a s [ ! i s . na( tpr l a s ) ] )

acc . l a s s o [ i ] <− accuracy ( t e s t . y , p r ed i c t ed . l a s s o )

sens . l a s s o <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . l a s s o )

spec . l a s s o <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . l a s s o )

auc . l a s s o [ i ] <− AUC( as . factor ( t e s t . y ) , p r ed i c t ed . l a s s o )

gmean . l a s s o [ i ] <− sqrt ( sens . l a s s o∗ spec . l a s s o )

###############

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Adaptive Lasso−−−−−−−

f i t . a l a s s o = a l a s s o ( as . matrix ( t r a i n . x ) , t r a i n . y )

a l a s s o . idx = which(abs ( coef ( f i t . a l a s s o ) [ ,1 ] ) >0) [− c ( 1 ) ]

a l a s s o .m. idx = match(names( a l a s s o . idx ) , colnames ( t e s t . x ) )

a l a s s o . xb = as . matrix (cbind (1 , as . matrix (

t e s t . x [ , a l a s s o .m. idx ] ) ) )
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%∗%as . matrix ( coef ( f i t . a l a s s o ) [ c (1 , a l a s s o . idx ) , 1 ] )

a l a s s o . pred = exp( a l a s s o . xb )/(1+exp( a l a s s o . xb ) )

a l a s s o . pred <− i f e l s e ( a l a s s o . pred >0.5 , 1 , 0)

p r ed i c t ed . a l a s s o <− as . character ( a l a s s o . pred [ , 1 ] )

## For a l a s s o

tpr a l a s <− match(names( a l a s s o . idx ) , t i v )

tpr a l a s s o [ i ] <− length ( tpr a l a s [ ! i s . na( tpr a l a s ) ] )

acc . a l a s s o [ i ] <− accuracy ( t e s t . y , p r ed i c t ed . a l a s s o )

sens . a l a s s o <− s e n s i t i v i t y ( t e s t . y , p r ed i c t ed . a l a s s o )

spec . a l a s s o <− s p e c i f i c i t y ( t e s t . y , p r ed i c t ed . a l a s s o )

auc . a l a s s o [ i ] <− AUC( as . factor ( t e s t . y ) , p r ed i c t ed . a l a s s o )

gmean . a l a s s o [ i ] <− sqrt ( sens . a l a s s o∗ spec . a l a s s o )

}

return ( l i s t ( acc . l a s so ,

auc . l a s so ,

gmean . l a s so , tpr l a s so ,

acc . a l a s so ,

auc . a l a s so ,

gmean . a la s so , tpr a l a s s o ) )

}

f s c o r e . output <− i n fo rmat ion . output <− ch i2 . output <− l i s t ( )

l a s s o . output <− r i dg e . output <− mmle . output <− l i s t ( )
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## Main f u n c t i o n

main . fun <− function ( )

{

s eeds = set . seed (sample ( 1 : 1 0 0 0 0 0 , 1 ) ) ;

dat <− data . gen ( seeds )

# C a l l a l l the f u n c t i o n s

for ( i in 1 : max. i t e r )

{

data <− data . g ene ra to r ( dat )

## Case 1

f s c o r e . output [ [ i ] ] <− dat ( ” f s c o r e ” , data )

## Case 2

i n fo rmat ion . output [ [ i ] ] <− dat ( ” in fo rmat ion ” , data )

## Case 3

ch i2 . output [ [ i ] ] <− dat ( ” ch i2 ” , data )

## Case 4

## wi thou t f i l t e r i n g l a s s o and a l a s s o

l a s s o . output [ [ i ] ] <− dat u n f i l t e r (data )

## Case 5

## with r i d g e w e i g h t s

r i dg e . output [ [ i ] ] <− dat unknown( ” r i dg e ” , data )

## Case 6

## with mmle w e i g h t s

mmle . output [ [ i ] ] <− dat unknown( ”mmle” , data )

# some output

verbose=T
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i f ( verbose )

cat ( ” I t e r a t i o n Number ” , i , ”\n” )

}

return ( l i s t ( f s c o r e . output , in fo rmat ion . output , ch i2 . output ,

l a s s o . output , r i dg e . output , mmle . output ) )

}

## c a l l the e n t i r e f u n c t i o n

output <− main . fun ( )

# Function to c a l c u l a t e the performance metr i c s

p e r f . fun <− function ( op )

{

d f f <− op

acc .mod . a l a s s o <− auc .mod . a l a s s o <− gmean .mod . a l a s s o <− l i s t ( )

tpr t i v <− tpr mod a l a s s o <− l i s t ( )

for ( i in seq along ( d f f ) )

{

acc .mod . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 1 ] ]

auc .mod . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 2 ] ]

gmean .mod . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 3 ] ]

tpr t i v [ [ i ] ] <− d f f [ [ i ] ] [ [ 4 ] ]

tpr mod a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 5 ] ]

}

tpr t i v . n1 <− vector ( )

for ( i in seq ( tpr t i v ) )
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{

tpr t i v . n1 [ i ] <− tpr t i v [ [ i ] ] [ [ 1 ] ]

}

avg . tpr t i v . n1 <− mean( tpr t i v . n1 ) ;

sd . tpr t i v . n1 <− sd ( tpr t i v . n1 ) ;

tpr mod a l a s s o . n1 <− vector ( )

for ( i in seq ( tpr mod a l a s s o ) )

{

tpr mod a l a s s o . n1 [ i ] <− tpr mod a l a s s o [ [ i ] ] [ [ 1 ] ]

}

avg . tpr mod a l a s s o . n1 <− mean( tpr mod a l a s s o . n1 ) ;

sd . tpr mod a l a s s o . n1 <− sd ( tpr mod a l a s s o . n1 ) ;

av . tpr t i v <− l i s t ( avg . tpr t i v . n1 , sd . tpr t i v . n1 )

av . tpr mod a l a s s o <− l i s t ( avg . tpr mod a l a s s o . n1 ,

sd . tpr mod a l a s s o . n1 )

#################

##−−− Performance metr i c s f o r proposed modi f i ed a l a s s o

## Accuracy

acc .mod . a l a s s o . n1 <− vector ( )

for ( i in seq ( acc .mod . a l a s s o ) )

{

acc .mod . a l a s s o . n1 [ i ] <− acc .mod . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average accuracy f o r modi f i ed a l a s s o

avg . acc .mod . a l a s s o . n1 <− mean( acc .mod . a l a s s o . n1 ) ;

sd . acc .mod . a l a s s o . n1 <− sd ( acc .mod . a l a s s o . n1 )
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## AuC

auc .mod . a l a s s o . n1 <− vector ( )

for ( i in seq ( auc .mod . a l a s s o ) )

{

auc .mod . a l a s s o . n1 [ i ] <− auc .mod . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average aucuracy f o r modi f i ed a l a s s o

avg . auc .mod . a l a s s o . n1 <− mean( auc .mod . a l a s s o . n1 ) ;

sd . auc .mod . a l a s s o . n1 <− sd ( auc .mod . a l a s s o . n1 )

## gmean

gmean .mod . a l a s s o . n1 <− vector ( )

for ( i in seq ( gmean .mod . a l a s s o ) )

{

gmean .mod . a l a s s o . n1 [ i ] <− gmean .mod . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average gmean f o r modi f i ed a l a s s o

avg . gmean .mod . a l a s s o . n1 <− mean( gmean .mod . a l a s s o . n1 ) ;

sd . gmean .mod . a l a s s o . n1 <− sd ( gmean .mod . a l a s s o . n1 )

###########

## Proposed Modif ied Lasso

acc . av .mod . a l a s s o <− l i s t ( avg . acc .mod . a l a s s o . n1 )

acc . sd .mod . a l a s s o <− l i s t ( sd . acc .mod . a l a s s o . n1 )

auc . av .mod . a l a s s o <− l i s t ( avg . auc .mod . a l a s s o . n1 )

auc . sd .mod . a l a s s o <− l i s t ( sd . auc .mod . a l a s s o . n1 )

gmean . av .mod . a l a s s o <− l i s t ( avg . gmean .mod . a l a s s o . n1 )
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gmean . sd .mod . a l a s s o <− l i s t ( sd . gmean .mod . a l a s s o . n1 )

return ( l i s t ( acc . av .mod . a la s so , acc . sd .mod . a la s so ,

auc . av .mod . a la s so , auc . sd .mod . a la s so ,

gmean . av .mod . a la s so , gmean . sd .mod . a la s so ,

av . tpr t iv , av . tpr mod a l a s s o ) )

}

## Function to c a l c u l a t e the performance metr ic s f o r unknown

p e r f . fun u n f i l t e r <− function ( op )

{

d f f <− op

acc . l a s s o <− auc . l a s s o <− gmean . l a s s o <− l i s t ( )

acc . a l a s s o <− auc . a l a s s o <− gmean . a l a s s o <− l i s t ( )

tpr l a s s o <− tpr a l a s s o <− l i s t ( )

for ( i in seq along ( d f f ) )

{

acc . l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 1 ] ]

acc . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 5 ] ]

auc . l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 2 ] ]

auc . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 6 ] ]

gmean . l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 3 ] ]

gmean . a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 7 ] ]

tpr l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 4 ] ]

tpr a l a s s o [ [ i ] ] <− d f f [ [ i ] ] [ [ 8 ] ]
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}

##############

##−−−Performance metr i c s f o r l a s s o

tpr l a s s o . n1 <− vector ( )

for ( i in seq ( tpr l a s s o ) )

{

tpr l a s s o . n1 [ i ] <− tpr l a s s o [ [ i ] ] [ [ 1 ] ]

}

avg . tpr l a s s o . n1 <− mean( tpr l a s s o . n1 ) ;

sd . tpr l a s s o . n1 <− sd ( tpr l a s s o . n1 ) ;

######

##−−−Performance metr i c s f o r a l a s s o

tpr a l a s s o . n1 <− vector ( )

for ( i in seq ( tpr a l a s s o ) )

{

tpr a l a s s o . n1 [ i ] <− tpr a l a s s o [ [ i ] ] [ [ 1 ] ]

}

avg . tpr a l a s s o . n1 <− mean( tpr a l a s s o . n1 ) ;

sd . tpr a l a s s o . n1 <− sd ( tpr a l a s s o . n1 ) ;

av . tpr l a s s o <− l i s t ( avg . tpr l a s s o . n1 , sd . tpr l a s s o . n1 )

av . tpr a l a s s o <− l i s t ( avg . tpr a l a s s o . n1 , sd . tpr a l a s s o . n1 )

##########

##−−−−−−−− Performance metr i c s f o r l a s s o

## Accuracy

acc . l a s s o . n1 <− vector ( )

for ( i in seq ( acc . l a s s o ) )
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{

acc . l a s s o . n1 [ i ] <− acc . l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average accuracy f o r l a s s o

avg . acc . l a s s o . n1 <− mean( acc . l a s s o . n1 ) ;

sd . acc . l a s s o . n1 <− sd ( acc . l a s s o . n1 )

## AuC

auc . l a s s o . n1 <− vector ( )

for ( i in seq ( auc . l a s s o ) )

{

auc . l a s s o . n1 [ i ] <− auc . l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average aucuracy f o r l a s s o

avg . auc . l a s s o . n1 <− mean( auc . l a s s o . n1 ) ;

sd . auc . l a s s o . n1 <− sd ( auc . l a s s o . n1 )

## gmean

gmean . l a s s o . n1 <− vector ( )

for ( i in seq ( gmean . l a s s o ) )

{

gmean . l a s s o . n1 [ i ] <− gmean . l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average gmean f o r l a s s o

avg . gmean . l a s s o . n1 <− mean( gmean . l a s s o . n1 ) ;

sd . gmean . l a s s o . n1 <− sd ( gmean . l a s s o . n1 )

######

##−−−−−− Performance metr i c s f o r proposed a l a s s o
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## Accuracy

acc . a l a s s o . n1 <− vector ( )

for ( i in seq ( acc . a l a s s o ) )

{

acc . a l a s s o . n1 [ i ] <− acc . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average accuracy f o r a l a s s o

avg . acc . a l a s s o . n1 <− mean( acc . a l a s s o . n1 ) ;

sd . acc . a l a s s o . n1 <− sd ( acc . a l a s s o . n1 )

## AuC

auc . a l a s s o . n1 <− vector ( )

for ( i in seq ( auc . a l a s s o ) )

{

auc . a l a s s o . n1 [ i ] <− auc . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average aucuracy f o r a l a s s o

avg . auc . a l a s s o . n1 <− mean( auc . a l a s s o . n1 ) ;

sd . auc . a l a s s o . n1 <− sd ( auc . a l a s s o . n1 )

## gmean

gmean . a l a s s o . n1 <− vector ( )

for ( i in seq ( gmean . a l a s s o ) )

{

gmean . a l a s s o . n1 [ i ] <− gmean . a l a s s o [ [ i ] ] [ [ 1 ] ]

}

# C a l c u l a t e the average gmean f o r a l a s s o
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avg . gmean . a l a s s o . n1 <− mean( gmean . a l a s s o . n1 ) ;

sd . gmean . a l a s s o . n1 <− sd ( gmean . a l a s s o . n1 )

####################

## l a s s o

acc . av . l a s s o <− l i s t ( avg . acc . l a s s o . n1 )

acc . sd . l a s s o <− l i s t ( sd . acc . l a s s o . n1 )

auc . av . l a s s o <− l i s t ( avg . auc . l a s s o . n1 )

auc . sd . l a s s o <− l i s t ( sd . auc . l a s s o . n1 )

gmean . av . l a s s o <− l i s t ( avg . gmean . l a s s o . n1 )

gmean . sd . l a s s o <− l i s t ( sd . gmean . l a s s o . n1 )

## a l a s s o

acc . av . a l a s s o <− l i s t ( avg . acc . a l a s s o . n1 )

acc . sd . a l a s s o <− l i s t ( sd . acc . a l a s s o . n1 )

auc . av . a l a s s o <− l i s t ( avg . auc . a l a s s o . n1 )

auc . sd . a l a s s o <− l i s t ( sd . auc . a l a s s o . n1 )

gmean . av . a l a s s o <− l i s t ( avg . gmean . a l a s s o . n1 )

gmean . sd . a l a s s o <− l i s t ( sd . gmean . a l a s s o . n1 )

return ( l i s t ( acc . av . l a s so , acc . sd . l a s so ,

auc . av . l a s so , auc . sd . l a s so ,

gmean . av . l a s so , gmean . sd . l a s so ,

acc . av . a l a s so , acc . sd . a l a s so ,

auc . av . a la s so , auc . sd . a l a s so ,

gmean . av . a l a s so , gmean . sd . a l a s so ,

av . tpr l a s so , av . tpr a l a s s o ) )

}
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#######################

## case 1

## with f s c o r e f i l t e r i n g

f s c o r e . met r i c s <− p e r f . fun ( output [ [ 1 ] ] )

## Case 2

## with i g f i l t e r i n g

i n fo rmat ion . met r i c s <− p e r f . fun ( output [ [ 2 ] ] )

## Case 3

## with ch i2 f i l t e r i n g

ch i2 . met r i c s <− p e r f . fun ( output [ [ 3 ] ] )

## Case 4

## wi thou t f i l t e r i n g

l a s s o . met r i c s <− p e r f . fun u n f i l t e r ( output [ [ 4 ] ] )

## Case 5

## with a l a s s o wi th r i d g e f i l t e r i n g

r i dg e . met r i c s <− p e r f . fun ( output [ [ 5 ] ] )

## Case 6

## with a l a s s o wi th mmle f i l t e r i n g

mmle . met r i c s <− p e r f . fun ( output [ [ 6 ] ] )

#####−−−−−SAVE THE RESULTS−−−−−#####

sink ( ’ ar105 . txt ’ )

print ( ”−−−−−−−−−−−−− f s c o r e−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print ( f s c o r e . met r i c s )

print ( ”−−−−−−−−−−− i n fo rmat ion gain−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print ( in fo rmat ion . met r i c s )
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print ( ”−−−−−−−−−−−−−−−−−−−−−− chi2−−−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print ( ch i2 . met r i c s )

print ( ”−−−−−−−−−−−−−−−−−−−−−− l a s so−−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print ( l a s s o . met r i c s )

print ( ”−−−−−−−−−−−−−−−−−−−−−− r idge−−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print ( r i dg e . met r i c s )

print ( ”−−−−−−−−−−−−−−−−−−−−−− mmle−−−−−−−−−” )

print ( ”−−−−−−−− Overa l l performance−−−−−−−−−” )

print (mmle . met r i c s )

sink ( )

# Save the r e s u l t s f o r g e n e r a t i n g the p l o t s

saveRDS ( output , f i l e = ” ar105 . rds ” )
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Appendix C

Appendix C: Resampling-based Group Lasso Ranking

method

setwd ( ””/export/home/ a r p a t i l /Desktop/ g g l a s s o /sim )

########################################

# #

# new f e a t u r e s e l e c t i o n method : RGLR #

# #

########################################

new f i l t e r i n g method = function ( co r s )

{

l ibrary ( g g l a s s o )

l ibrary ( SIS )

l ibrary ( glmnet )

l ibrary ( ncvreg )

l ibrary ( c a r e t )

l ibrary ( PredPsych )

l ibrary ( randomForest )

l ibrary ( prazn ik )

l ibrary ( varbvs )

l ibrary ( e1071 )

l ibrary ( nnet )

l ibrary ( Biocomb )
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### p e n a l i z e d r e g r e s s i o n methods f o r

## average ranking wi th resampl ing

# 1. LASSO

l a s s o = function (x , y )

{

cv . l a s s o <− cv . glmnet ( y=y , x= x , alpha =1, family=” binomial ” )

return ( cv . l a s s o )

}

# y shou ld be −1 or 1 f o r g g l a s s o

group . l a s s o = function (x , y , group0 )

{

cv . g l a s s o <− cv . g g l a s s o ( as . matrix ( x ) , y ,

group=group0 , l o s s=” l o g i t ” , n f o l d s =10)

return ( cv . g l a s s o )

}

########### main resampl ing methods

f r e q . matrix = function ( t r a i n . x , t r a i n . y , group0=NULL)

{

f i t = g g l a s s o ( as . matrix ( t r a i n . x ) , t r a i n . y , group=group0 )

beta . matrix = f i t $beta

###########################################################

# record f requency wi th max r e g r e s s i o n c o e f f i c i e n t s

r e s u l t . matrix = c o e f s . matrix = matrix (0 ,

nrow=ncol ( beta . matrix ) , ncol=nrow( beta . matrix ) )
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colnames ( r e s u l t . matrix ) = rownames( beta . matrix )

for ( i in 1 :nrow( r e s u l t . matrix ) )

{

idx = which( beta . matrix [ , i ] !=0)

r e s u l t . matrix [ i , idx ] = 1

c o e f s . matrix [ i , idx ] = beta . matrix [ idx , i ]

}

# return f requency matrix

return ( l i s t ( r e s u l t . matrix , c o e f s . matrix ) )

}

resampl ing = function ( t r a i n . x , t r a i n . y , group0=NULL)

{

## resampl ing

idx = sample ( 1 :nrow( t r a i n . x ) ,

as . integer (nrow( t r a i n . x ) ) , replace=T) #####

s . x = t r a i n . x [ idx , ]

s . y = t r a i n . y [ idx ]

obj = f r e q . matrix ( s . x , s . y , group0 )

# return f requency matrix and c o e f i c i e n t s matrix

return ( obj )

}

add = function ( obj .mat , opt ion )

{

i f ( opt ion==” frequency ” ){ s = apply ( obj .mat , 2 ,sum)}

i f ( opt ion==” c o e f ” ){ s = apply ( obj .mat , 2 ,

function ( x )max(abs ( x ) ) )}
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return ( s )

}

resampl ing r e s u l t s = function ( t r a i n . x , t r a i n . y , group0=NULL)

{

mat0 = matrix (0 ,nrow=100 ,ncol=ncol ( t r a i n . x ) )

mat1 = matrix (0 ,nrow=100 ,ncol=ncol ( t r a i n . x ) )

colnames ( mat0 ) = colnames ( mat1 ) = colnames ( t r a i n . x )

l e n s = NULL

for ( i in 1 : 100 ) ###########################################

{

# l a s s o

obj0 = resampl ing ( t r a i n . x , t r a i n . y , group0 )

l e n s = c ( l ens ,nrow( obj0 [ [ 1 ] ] ) )

mat0 [ i , ] = add( obj0 [ [ 1 ] ] , ” f requency ” )

mat1 [ i , ] = add( obj0 [ [ 2 ] ] , ” c o e f ” )

}

f r e q . vec = apply (mat0 , 2 ,sum)/sum( l e n s )

coef . vec = apply (mat1 , 2 , function ( x )max(abs ( x ) ) )

return ( l i s t ( f r e q . vec , coef . vec ) )

}

main = function ( t r a i n . x , t r a i n . y , group0 )

{

r e s u l t s = resampl ing r e s u l t s ( t r a i n . x , t r a i n . y , group0 )

mu. vec = r e s u l t s [ [ 1 ] ]

max. c o e f s . vec = r e s u l t s [ [ 2 ] ]
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s .mu. vec = sort (mu. vec , d e c r ea s ing=T, index . return=T)

rank .mu. vec = mu. vec [ s .mu. vec$ i x ]

return (rank .mu. vec )

}

##### f i l t e r i n g methods

# F−score

f i s h e r . dat = function (x , y )

{

nump = ncol ( x )

dat = data . frame (y , x )

f = f s c o r e ( dat , c l a s s C o l =1, f ea tu r eCo l=c ( 1 : nump) )

s . p = sort ( f , d e c r ea s ing = T, index . return = T)

new . x = x [ , s . p$ i x ]

return (new . x )

}

# Info . gain

In f o . gain0 = function (x , y )

{

new . x = as . matrix (data . frame (x , y ) )

d i s c = ” equal i n t e r v a l width”

a t t r s . nominal = numeric ( )

f i t = s e l e c t . i n f . ga in (new . x ,

d i s c . method=disc , a t t r s . nominal=a t t r s . nominal )

new . x = x [ , f i t [ , 3 ] ]

return (new . x )

}
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MRMR0 = function (x , y )

{

obj = MRMR(x , y , k=ncol ( x ) )

#rank based on s c o r e s

names0= names( obj [ [ 2 ] ] )

m. idx = match( names0 , colnames ( x ) )

new . x = x [ , c (m. idx ) ]

return (new . x )

}

# random f o r e s t

r f s = function (x , y )

{

x = data . frame ( x )

f i t=randomForest ( factor ( y )˜ . , data=x ,

importance=T, proximity = T, nt ree =100)

f i t = f i t $ importance

#g i n i index

f i t = f i t [ order ( f i t [ , 4 ] , d e c r ea s ing = T) , ]

m. idx = match(rownames( f i t ) , colnames ( x ) )

new . x = x [ ,m. idx ]

return (new . x )

}

# bayes ian v a r i a b l e s e l e c t i o n

bv . s e l e c t i o n . data = function (x , y )

{

l ibrary ( varbvs )

f i t = varbvs (X=as . matrix ( x ) , y=y , Z=NULL, family=” binomial ” )
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f i t 1 = summary( f i t , nv=ncol ( x ) ) $top . vars

names = f i t 1 $variable

m. idx = match(names , colnames ( x ) )

new . x = x [ , c (m. idx ) ]

return (new . x )

}

############################## metr ic s

accuracy <− function ( truth , p r ed i c t ed )

i f ( length ( t ruth ) > 0)

sum( t ruth==pred i c t ed )/length ( t ruth ) else

return (0 )

s e n s i t i v i t y <− function ( truth , p r ed i c t ed )

# 1 means p o s i t i v e ( p r e s e n t )

i f (sum( t ruth==1) > 0)

sum( p r ed i c t ed [ t ruth==1]==1)/sum( t ruth==1) else

return (0 )

s p e c i f i c i t y <− function ( truth , p r ed i c t ed )

i f (sum( t ruth==0) > 0)

sum( p r ed i c t ed [ t ruth==0]==0)/sum( t ruth==0) else

return (0 )

AUC <− function ( truth , probs , plot=FALSE){

# probs − p r o b a b i l i t y o f c l a s s 1

q <− seq (0 , 1 , . 0 1 )

sens <− rep (0 , length (q ) )
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spec <− rep (0 , length (q ) )

l y <− levels ( t ruth )

for ( i in 1 : length (q ) ){

pred <− probs >= q [ i ]

pred [ pred ] <− 1

#pred <− f a c t o r ( pred , l e v e l s=l y )

sens [ i ] <− s e n s i t i v i t y ( truth , pred )

spec [ i ] <− s p e c i f i c i t y ( truth , pred )

}

# make sure i t s t a r t s and ends at 0 , 1

sens <− c (1 , sens , 0)

spec <− c (0 , spec , 1)

trap . r u l e <− function (x , y ) sum( d i f f ( x )∗

( y[−1]+y[− length ( y ) ] ) ) /2

auc <− trap . r u l e ( rev(1− spec ) , rev ( sens ) )

i f ( plot ){

plot(1−spec , sens , type=” l ” , xlab=”1−S p e c i f i c i t y ” ,

ylab=” S e n s i t i v i t y ” , main=”ROC Curve” )

legend ( ” bottomright ” , legend=

paste ( ”AUC = ” , round( auc , 3 ) ) , bty=”n” )

}

auc

}

##################### methods f o r performance check
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# 1. Naive Bayes C l a s s i f i e r

NB0 = function ( t r a i n . x , t r a i n . y , t e s t . x , t e s t . y )

{

m. idx = match(colnames ( t r a i n . x ) , colnames ( t e s t . x ) )

t e s t . x = t e s t . x [ ,m. idx ]

x = data . frame ( t r a i n . x , t r a i n . y )

model = naiveBayes ( t r a i n . y˜ . , data=x )

pred . v = predict (model , t e s t . x , type=”raw” )

probs = pred . v [ , 2 ]

p r ed i c t ed = apply ( pred . v , 1 , function ( x )

as . numeric ( x [1]<x [ 2 ] ) )

acc = accuracy ( t e s t . y , p r ed i c t ed )

sens = s e n s i t i v i t y ( t e s t . y , p r ed i c t ed )

spec = s p e c i f i c i t y ( t e s t . y , p r ed i c t ed )

auc0 = AUC( t e s t . y , probs )

G.mean = sqrt ( sens∗ spec )

r e s u l t = l i s t ( acc , sens , spec ,G.mean, auc0 )

return ( r e s u l t )

}

# 2. Support Vector Machine

SVM0 = function ( t r a i n . x , t r a i n . y , t e s t . x , t e s t . y )

{

m. idx = match(colnames ( t r a i n . x ) , colnames ( t e s t . x ) )

t e s t . x = t e s t . x [ ,m. idx ]

x = data . frame ( t r a i n . x , t r a i n . y )

model = svm( t r a i n . y ˜ . , data=x , type =
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’C−c l a s s i f i c a t i o n ’ , k e rne l=” r a d i a l ” , p r o b a b i l i t y=TRUE)

pred i c t ed = predict (model , newdata=t e s t . x )

p r ed i c t ed = as . numeric ( as . matrix ( p r ed i c t ed ) )

probs = predict (model , newdata=t e s t . x , p r o b a b i l i t y=TRUE)

probs = attr ( probs , ” p r o b a b i l i t i e s ” ) [ , 2 ]

acc = accuracy ( t e s t . y , p r ed i c t ed )

sens = s e n s i t i v i t y ( t e s t . y , p r ed i c t ed )

spec = s p e c i f i c i t y ( t e s t . y , p r ed i c t ed )

auc0 = AUC( t e s t . y , probs )

G.mean = sqrt ( sens∗ spec )

r e s u l t = l i s t ( acc , sens , spec ,G.mean, auc0 )

return ( r e s u l t )

}

# 3. Random Forest

RF0 = function ( t r a i n . x , t r a i n . y , t e s t . x , t e s t . y )

{

m. idx = match(colnames ( t r a i n . x ) , colnames ( t e s t . x ) )

t e s t . x = t e s t . x [ ,m. idx ]

t r a i n . x = data . frame ( t r a i n . x )

x = data . frame ( t r a i n . x , t r a i n . y )

f i t = randomForest ( factor ( t r a i n . y )˜ . , data=x ,

importance=T, proximity = T, nt ree =100)

p r ed i c t ed = predict ( f i t , newdat=t e s t . x )

p r ed i c t ed = as . numeric ( as . matrix ( p r ed i c t ed ) )

probs = as . numeric ( predict

( f i t , newdata=t e s t . x , type=”prob” ) [ , 2 ] )

acc = accuracy ( t e s t . y , p r ed i c t ed )

sens = s e n s i t i v i t y ( t e s t . y , p r ed i c t ed )
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spec = s p e c i f i c i t y ( t e s t . y , p r ed i c t ed )

auc0 = AUC( t e s t . y , probs )

G.mean = sqrt ( sens∗ spec )

r e s u l t = l i s t ( acc , sens , spec ,G.mean, auc0 )

return ( r e s u l t )

}

#4. Neural network

NN0 = function ( t r a i n . x , t r a i n . y , t e s t . x , t e s t . y )

{

m. idx = match(colnames ( t r a i n . x ) , colnames ( t e s t . x ) )

t e s t . x = t e s t . x [ ,m. idx ]

f i t = nnet ( t r a i n . x , t r a i n . y , maxit =200 , s i z e =5,

MaxNWts = 20000)

probs = predict ( f i t , t e s t . x , type=”raw” )

pred i c t ed = as . numeric ( probs >0.5)

acc = accuracy ( t e s t . y , p r ed i c t ed )

sens = s e n s i t i v i t y ( t e s t . y , p r ed i c t ed )

spec = s p e c i f i c i t y ( t e s t . y , p r ed i c t ed )

auc0 = AUC( t e s t . y , probs )

G.mean = sqrt ( sens∗ spec )

r e s u l t = l i s t ( acc , sens , spec ,G.mean, auc0 )

return ( r e s u l t )

}

##### Simulat ion Data

model0 = function (X)

{

248



return (exp(X)/(1+exp(X) ) )

}

response = function (X,B)

{

return (exp(sum(X ∗ B) ) / (1 + exp(sum(X ∗ B) ) ) )

}

m u l t i v a r i a t e normal sampler = function ( cov0 ,num. gene , nsample )

{

dat = NULL

for ( i in 1 :num. gene )

{

L = chol ( cov0 )

Z = matrix (rnorm( nsample∗ncol ( cov0 ) ) ,nrow=nsample ,

ncol=ncol ( cov0 ) )

X = Z%∗%L

dat = cbind ( dat ,X)

}

return ( dat )

}

#f o r g e n e r a t i n g each o f data o f b l o c k s

cov .mat = function (num.CpG, rho )

{

tmp . cov = matrix (0 ,nrow =num.CpG, ncol=num.CpG)

for ( i in 1 :num.CpG)

{

for ( j in 1 :num.CpG)
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{

tmp . cov [ i , j ] = rho ˆ(abs ( i−j ) )

}

}

return (tmp . cov )

}

l ibrary (mvtnorm)

f e a t u r e set = function ( nsample , rho )

{

#rho = 0.2

#nsample = 500

s = 4 # s c a l e parameter

scale p = sqrt ( s )

num. genes = c (100 ,150 , rep ( 50 , 7 ) )

num. CpGs = c ( 1 : 9 )

dat = NULL

for ( i in num. CpGs)

{

#Block1 : 2 CpG s i t e s f o r each o f 150 genes

i f ( i ==1)

{

tmp . dat = scale p∗matrix (rnorm( nsample∗num. genes [ i ] ) ,

nrow=nsample , ncol=num. genes [ i ] )

tmp . dat = model0 (tmp . dat )

}

#Block2−9

i f ( i >1)
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{

num. gene = num. genes [ i ]

num.CpG = num. CpGs [ i ]

cov0 = cov .mat(num.CpG, rho )

tmp . dat = scale p∗

m u l t i v a r i a t e normal sampler ( cov0 ,num. gene , nsample )

tmp . dat = model0 (tmp . dat )

}

dat = cbind ( dat , tmp . dat )

}

return ( dat )

}

c a l c u l a t e t rue c o e f s = function ( al l , d e l t a )

{

i f ( a l l == TRUE)

{

theta = NULL

num.CpG = 1:9

for (Pg in num.CpG)

{

for ( k in 1 : Pg)

{

tmp . theta = ((−1)ˆ(Pg+1)∗de l t a )/sqrt (Pg)

theta = c ( theta , tmp . theta )

}

}

}
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i f ( a l l == FALSE)

{

theta = NULL

num.CpG = 1:9

for (Pg in num.CpG)

{

for ( k in 1 : cei l ing (Pg/2) )

{

tmp . theta = ((−1)ˆ(Pg+1)∗de l t a )/sqrt (Pg)

theta = c ( theta , tmp . theta )

}

}

}

return ( theta )

}

generate response data = function ( nsample , rho , theta0 )

{

cnt = 0

case . dat = NULL

control . dat = NULL

# genera te response o f 250 c o n t r o l and 250 case each

while ( cnt==0)

{

seed . va l = sample (1 : 1000000 ,1 )

data . set = f e a t u r e set ( nsample , rho )

data . set = scale (data . set )

f e t a = data . set%∗%theta0
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fprob = exp( f e t a )/(1+exp( f e t a ) )

y = rbinom( nsample , 1 , fprob )

idx = which( y == 1)

i f ( ( length ( idx)==(nsample/ 2 ) ) )

{

r e s u l t = l i s t (y , data . set , seed . va l )

cnt = 200

return ( r e s u l t )

}

}

}

grouping = function ( g=9)

{

g1 = rep ( 1 : 10 0 , each=1)

g2 = rep ( c ( 101 : 250 ) , each=2)

g3 = rep ( c ( 251 : 300 ) , each=3)

g4 = rep ( c ( 301 : 350 ) , each=4)

g5 = rep ( c ( 351 : 400 ) , each=5)

g6 = rep ( c ( 401 : 450 ) , each=6)

g7 = rep ( c ( 451 : 500 ) , each=7)

g8 = rep ( c ( 501 : 550 ) , each=8)

g9 = rep ( c ( 551 : 600 ) , each=9)

group = c ( g1 , g2 , g3 , g4 , g5 , g6 , g7 , g8 , g9 )

return ( group )

}

### end o f data g e n e r a t i o n
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### t r u e p o s i t i v e r a t e from

## ranked f e a t u r e s wi th increment o f 25

tpr = function ( t rue . var .names , rank . bv , rank . f , rank . i n fo ,

rank . rf , rank . g l a s so , rank . mrmr)

{

d1=d2=d3=d4=d5=d6=NULL

r1=r2=r3=r4=r5=r6=NULL

seqs = seq (25 ,2500 ,25)

# number o f t v i n c l u d e d in each ranking s e t s

for ( i in seqs )

{

d1 = c ( d1 , length ( intersect ( t rue . var .names ,

colnames (rank . bv [ , 1 : i ] ) ) ) )

d2 = c ( d2 , length ( intersect ( t rue . var .names ,

colnames (rank . f [ , 1 : i ] ) ) ) )

d3 = c ( d3 , length ( intersect ( t rue . var .names ,

colnames (rank . i n f o [ , 1 : i ] ) ) ) )

d4 = c ( d4 , length ( intersect ( t rue . var .names ,

colnames (rank . r f [ , 1 : i ] ) ) ) )

d5 = c ( d5 , length ( intersect ( t rue . var .names ,

colnames (rank . g l a s s o [ , 1 : i ] ) ) ) )

d6 = c ( d6 , length ( intersect ( t rue . var .names ,

colnames (rank . mrmr [ , 1 : i ] ) ) ) )

}

r e s u l t 0 = data . frame ( d5 , d2 , d3 , d6 , d4 , d1 )

colnames ( r e s u l t 0 ) = c ( ” g l a s s o ” , ” f ” , ” i n f o ” ,

”mrmr” , ” r f ” , ”bv” )

254



# each o f 25 v a r i a b l e s ’ ranking p o i s t i o n

r1 = match( t rue . var .names , colnames (rank . bv ) )

r2 = match( t rue . var .names , colnames (rank . f ) )

r3 = match( t rue . var .names , colnames (rank . i n f o ) )

r4 = match( t rue . var .names , colnames (rank . r f ) )

r5 = match( t rue . var .names , colnames (rank . g l a s s o ) )

r6 = match( t rue . var .names , colnames (rank . mrmr) )

r e s u l t 1 = data . frame ( r5 , r2 , r3 , r6 , r4 , r1 )

colnames ( r e s u l t 1 ) = c ( ” g l a s s o ” , ” f ” , ” i n f o ” ,

”mrmr” , ” r f ” , ”bv” )

r e s u l t 0 1 = l i s t ( r e su l t 0 , r e s u l t 1 )

return ( r e s u l t 0 1 )

}

sim . study = function ( de l ta , nsample , rho ,

top f . idx , theta0 , group0 )

{

de l t a = de l t a

############## genera te 2500 CpG s i t e s and response

nsample = nsample

rho = rho ############## change

obj = generate response data ( nsample , rho , theta0 )

y1 = obj [ [ 1 ] ]

x1 = data . frame ( obj [ [ 2 ] ] )

colnames ( x1)=paste ( ”V” ,1 : 2500 , sep=”” )
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idx = which( y1==0)

g g l a s s o . y1 = NULL

g g l a s s o . y1 = y1

# (−1 ,1) i s used i n s t e a d o f (0 ,1)

g g l a s s o . y1 [ idx ] = −1

g g l a s s o . y1[− idx ]= 1

s . idx <− sample ( 1 :nrow( x1 ) ,

as . integer (nrow( x1 )∗ . 7 ) , replace = F)

t r a i n . y = y1 [ s . idx ]

gl . t r a i n . y = g g l a s s o . y1 [ s . idx ]

t r a i n . x = x1 [ s . idx , ]

t e s t . x = x1[− s . idx , ]

t e s t . y = y1[− s . idx ]

gl . t e s t . y = g g l a s s o . y1[− s . idx ]

# ranked data across f i l t e r i n g methods##############

### g l a s s o based b o o t s t r a p f i l t e r i n g

a0 = main ( t r a i n . x , gl . t r a i n . y , group0 )

m. idx = match(names( a0 ) , colnames ( t r a i n . x ) )

rank . g l a s s o = t r a i n . x [ ,m. idx ]

### f−score

rank . f = f i s h e r . dat ( t r a i n . x , t r a i n . y )

m. idx = match(colnames (rank . f ) , colnames ( t r a i n . x ) )

### Info . gain
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rank . i n f o = In fo . gain0 ( t r a i n . x , t r a i n . y )

m. idx = match(colnames (rank . i n f o ) , colnames ( t r a i n . x ) )

### random f o r e s t

rank . r f = r f s ( t r a i n . x , t r a i n . y )

m. idx = match(colnames (rank . r f ) , colnames ( t r a i n . x ) )

### Maximum r e l e v a n c e Minimum redundancy

rank . mrmr = MRMR0(data . frame ( t r a i n . x ) , t r a i n . y )

m. idx = match(colnames (rank . mrmr) , colnames ( t r a i n . x ) )

### Bayesian v a r i a b l e s e l e c t i o n

rank . bv = bv . s e l e c t i o n . data ( t r a i n . x , t r a i n . y )

m. idx = match(colnames (rank . bv ) , colnames ( t r a i n . x ) )

############################################

# output 1 : True p o s i t i v e r a t e s

# from 25 to 2500 wi th increment o f 25

op1 = tpr ( t rue . var .names , rank . bv ,

rank . f , rank . i n fo , rank . rf ,

rank . g l a s so , rank . mrmr)

# combine a l l data s e t wi th top 100 f e a t u r e s

## with the order o f as f o l l o w s .

op2 = l i s t (rank . g l a s s o [ , t op f . idx ] ,

rank . f [ , t op f . idx ] , rank . i n f o [ , t op f . idx ] ,

rank . r f [ , t op f . idx ] , rank . mrmr [ , t op f . idx ] ,

rank . bv [ , t op f . idx ] )
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r e s u l t = l i s t ( op1 , op2 , t r a i n . y , t e s t . x , t e s t . y )

return ( r e s u l t )

}

method . performance = function ( obj , t r a i n . y , t e s t . x , t e s t . y ,

method , tv . idx )

{

pf = NULL

for ( i in 1 : length ( obj ) )

{

tmp . dat = obj [ [ i ] ] [ , c ( 1 : tv . idx ) ]

i f ( method==”NB” )tmp . r e s u l t = as . numeric (NB0(tmp . dat ,

t r a i n . y , t e s t . x , t e s t . y ) )

i f ( method==”SVM” )tmp . r e s u l t = as . numeric (SVM0(tmp . dat ,

t r a i n . y , t e s t . x , t e s t . y ) )

i f ( method==”RF” )tmp . r e s u l t = as . numeric (RF0(tmp . dat ,

t r a i n . y , t e s t . x , t e s t . y ) )

i f ( method==”NN” )tmp . r e s u l t = as . numeric (NN0(tmp . dat ,

t r a i n . y , t e s t . x , t e s t . y ) )

pf = rbind ( pf , tmp . r e s u l t )

}

# row i s method name and column i s performance :

# ACC, SENS, SPEC, G−mean , and AUC

r e s u l t = pf

return ( r e s u l t )

}

# main f u n c t i o n o f s i m u l a t i o n s tudy
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de l t a=1

# 45 and 25

t rue . c o e f s= c a l c u l a t e t rue c o e f s ( a l l=TRUE, de l t a )

h a l f . t rue . c o e f s = c a l c u l a t e t rue c o e f s ( a l l=FALSE, de l t a )

#d i s e a s e r e l a t e d CpG s i t e s :

#18 d i s e a s e genes out o f 600 genes

#t r u e . c o e f s . i d x = c (1 , 101 :102 ,401:403 ,551:554 ,

751 :755 ,1001 :1006 ,1301 :1307 ,1651 :1658 ,2051 :2059)

h a l f . t rue . c o e f s . idx = c (2 , 103 , 404 :405 ,555 :556 ,

756 :758 ,1007 :1009 ,1308 :1311 ,1659 :1662 ,2060 :2064)

theta0 = rep (0 ,2500)

t rue . idx = c ( h a l f . t rue . c o e f s . idx )

theta0 [ t rue . idx ]=c ( h a l f . t rue . c o e f s )

idx = which(abs ( theta0 )>0)

t rue . var .names = paste ( ”V” , idx , sep=”” )

group0 = grouping ( g=9)

var . n = paste ( ”V” ,1 : 2500 , sep=”” )

group0 = data . frame (var . n , group0 )

########################################

r e s u l t = sim . study ( de l t a =1,nsample =400 ,

rho= cors , t op f . idx =1:2500 , theta0 , group0 [ , 2 ] )

ranking = r e s u l t [ [ 1 ] ] [ [ 1 ] ]

t rue . l o c = r e s u l t [ [ 1 ] ] [ [ 2 ] ]

t r a i n . y = r e s u l t [ [ 3 ] ]

t e s t . x = r e s u l t [ [ 4 ] ]

t e s t . y = r e s u l t [ [ 5 ] ]
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#Check the performance o f Top 25 , 50 , 75 , 100

# us ing Bayesian C l a s s i f i e r , SVM, Random Forest ,

and Neural Network

top . v = seq (10 ,200 ,by=10)

nb2 = svm2 = r f 2 = nn2 = NULL

for ( k in 1 : length ( top . v ) )

{

nb2 = cbind ( nb2 , method . performance ( obj=r e s u l t [ [ 2 ] ] ,

t r a i n . y , t e s t . x , t e s t . y , method=”NB” , top . v [ k ] ) )

svm2 = cbind ( svm2 , method . performance ( obj=r e s u l t [ [ 2 ] ] ,

t r a i n . y , t e s t . x , t e s t . y , method=”SVM” , top . v [ k ] ) )

r f 2 = cbind ( r f2 , method . performance ( obj=r e s u l t [ [ 2 ] ] ,

t r a i n . y , t e s t . x , t e s t . y , method=”RF” , top . v [ k ] ) )

nn2 = cbind ( nn2 , method . performance ( obj=r e s u l t [ [ 2 ] ] ,

t r a i n . y , t e s t . x , t e s t . y , method=”NN” , top . v [ k ] ) )

}

tpr . r e s u l t = rbind ( nb2 , rbind ( svm2 , rbind ( r f2 , nn2 ) ) )

obj = l i s t (rank = ranking , t r u e l o c = true . loc ,

tpr = tpr . r e s u l t , data = r e s u l t [ [ 2 ] ] ,

t r a i n . y = t r a i n . y , t e s t . x=t e s t . x ,

t e s e t . y=t e s t . y , t rue . var .names=true . var .names)

return ( obj )

}

## packages f o r p a r a l l e l computing

l ibrary ( p a r a l l e l )
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l ibrary ( f o r each )

# l i b r a r y (doSNOW)

## Much b e t t e r than doSNOW l i b r a r y when working on windows

## reduces computat iona l time

## as i t works b e s t between the cores o f one node

l ibrary ( d o P a r a l l e l )

r eps = 5

start time = Sys . time ( )

# cores <− de tec tCores ( )

co r e s <− 3

c l <− makeCluster ( co r e s −1) #not to o v e r l o a d your computer

r e g i s t e r D o P a r a l l e l ( c l )

# run data g e n e r a t i o n f u n c t i o n f o r s p e c i f i e d number o f reps

r e s . data01 <− f o r each ( i = 1 : reps ,

# . combine=l i s t ,

. packages=c ( ” g g l a s s o ” , ”SIS” , ”glmnet” , ” ncvreg ” ,

” ca r e t ” , ”PredPsych” , ” randomForest” , ” prazn ik ” ,

” varbvs ” , ” e1071 ” , ” nnet ” ) ) %dopar% {

new f i l t e r i n g method ( 0 . 1 )

}

r e s . data04 <− f o r each ( i = 1 : reps ,

# . combine=l i s t ,

. packages=c ( ” g g l a s s o ” , ”SIS” , ”glmnet” , ” ncvreg ” ,

” ca r e t ” , ”PredPsych” , ” randomForest” , ” prazn ik ” ,

” varbvs ” , ” e1071 ” , ” nnet ” ) ) %dopar% {
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new f i l t e r i n g method ( 0 . 4 )

}

r e s . data07 <− f o r each ( i = 1 : reps ,

# . combine=l i s t ,

. packages=c ( ” g g l a s s o ” , ”SIS” , ”glmnet” , ” ncvreg ” ,

” ca r e t ” , ”PredPsych” , ” randomForest” , ” prazn ik ” ,

” varbvs ” , ” e1071 ” , ” nnet ” ) ) %dopar% {

new f i l t e r i n g method ( 0 . 7 )

}

s topClus t e r ( c l )

Sys . time ( ) − start time

save ( r e s . data01 , f i l e = ”sim r e s u l t 100 0 . 1 . RData” )

save ( r e s . data04 , f i l e = ”sim r e s u l t 100 0 . 4 . RData” )

save ( r e s . data07 , f i l e = ”sim r e s u l t 100 0 . 7 . RData” )
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