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Abstract 

INTRODUCTION: Healthcare organizations are making extensive efforts to improve the patient 

experience. Enhancing patient/client experience and outcomes is crucial for patient-centered care 

and can reveal improvement opportunities. Healthcare settings currently rely on surveys (e.g., 

HCAHPS) and patient feedback to measure patient experience. Studies have identified that 

utilizing patient journey mapping can better capture patient experience throughout all stages of the 

patient's journey and provide quality and process improvement recommendations at specific 

hotspots. However, these measurement techniques are time-consuming and resource intensive.  

AIM: This research aims to measure patient experience of breast cancer patients from social media 

data using natural language processing algorithms.  

METHODS: This study analyzes data obtained from social media (e.g., Twitter and Reddit) 

referent to breast cancer. Natural Language Processing (NLP) algorithms were applied to identify 

latent topics via Latent Dirichlet Allocation (LDA) and sentiments via Sentiment Analysis (SA) 

associated to specific hotspots.  

DISCUSSION: The use of AI to capture patient experience during the patient's journey in the 

healthcare continuum provides valuable insights to improve individualized, empathetic, and 

respectful care in clinical systems. Such patient experience information is invaluable for healthcare 

quality improvement efforts and improving patient-centered care. 



vii 

Table of Contents 

Dedication ...................................................................................................................................... iii 

Acknowledgements ..........................................................................................................................v 

Abstract .......................................................................................................................................... vi 

Table of Contents .......................................................................................................................... vii 

List of Tables ................................................................................................................................. ix 

List of Figures ..................................................................................................................................x 

Chapter 1: Introduction ....................................................................................................................1 

1.1 Background .......................................................................................................................1 

1.2 Motivation .........................................................................................................................2 

1.3 Problem Statement ............................................................................................................3 

1.4 Thesis Objectives ..............................................................................................................3 

1.5 Organization of the Thesis ................................................................................................3 

Chapter 2: Literature Review ...........................................................................................................5 

2.1 Bibliographic Search Process ...........................................................................................5 

2.2 Inclusion and Exclusion Criteria .......................................................................................6 

2.3 Overview of Systematic Review .......................................................................................8 

2.4 Research in Patient Experience .......................................................................................10 

2.4.1 Key Factors for Patient Experience ....................................................................12 

2.4.2 Types of Patient-Reported Measures ..................................................................16 

2.4.3 Approaches for Measuring Patient Experience...................................................18 

2.4.4 Methods for Measuring Patient Experience ........................................................19 

2.4.4 Data Collection Methods ....................................................................................23 

2.4.4.1 Administration Techniques .....................................................................26 

2.4.5 Technological Implementations ..........................................................................27 

2.5 Research in Text Analytics .............................................................................................32 

2.5.1 Sentiment Analysis .............................................................................................32 

2.5.2 Topic Modeling ...................................................................................................34 

2.5.2.1 Latent Dirichlet Allocation (LDA) .........................................................35 



viii 

2.6 Research in Social Media................................................................................................35 

2.6.1 Twitter .................................................................................................................36 

2.6.2 Reddit ..................................................................................................................36 

2.7 Study Contributions ........................................................................................................37 

Chapter 3: Methodology ................................................................................................................38 

3.1 Research Questions .........................................................................................................38 

3.2 Study Design ...................................................................................................................38 

3.2.1 Cohort .................................................................................................................38 

3.2.1.1 Relevance ................................................................................................39 

3.2.2 Dataset Sources ...................................................................................................40 

3.2.3 Toolkit .................................................................................................................41 

3.3 Model Design ..................................................................................................................43 

3.4 Proposed Model ..............................................................................................................44 

Chapter 4: Results ..........................................................................................................................49 

4.1 Model Setup ....................................................................................................................49 

4.2 Research Application .............................................................................................57 

Chapter 5: Discussion ....................................................................................................................59 

5.1 Social Media Limitations .......................................................................................60 

5.2 Study Limitations ...................................................................................................61 

Chapter 6: Conclusion....................................................................................................................63 

6.1 Recommendations for Future Work................................................................................63 

References ......................................................................................................................................64 

Appendix ........................................................................................................................................91 

Vita 95 

 



ix 

List of Tables 

Table 2.1: Initial web search results. .............................................................................................. 5 

Table 3.2.2: Data extraction process with the number of records. ............................................... 40 

Table 4.3.1: Examples of different degrees of polarity from Tweets. .......................................... 55 

Table 4.3.2: Examples of different degrees of polarity from Subreddits. ..................................... 56 

 



x 

List of Figures 

Figure 2.1: PRISMA guidelines for article selection ...................................................................... 7 

Figure 2.2: Number of synthesized articles by year and country (2013-2020). ............................. 8 

Figure 2.3: Concept map with identified research streams of the patient experience. ................. 10 

Figure 2.5.1: Sentiment Analysis Process on Tweets/Comments. ................................................ 33 

Figure 2.5.2: Sentiment Classification Techniques. ..................................................................... 34 

Figure 3.2.1.1: Breast cancer patient journey map. ...................................................................... 39 

Figure 3.3: IDEF3 diagram of the model design. ......................................................................... 43 

Figure 4.1.5: Flow chart of the proposed model. .......................................................................... 44 

Figure 4.1.4: Formula used by TFIDF vectorizer to calculate term weight. ................................ 46 

Figure 4.1: 20 most common words in Tweets (a) and Comments (b)......................................... 49 

Figure 4.1.2: Text-cleaning steps performed to Twitter data set .................................................. 50 

Figure 4.1.3: Text-cleaning steps performed to Reddit data set. .................................................. 50 

Figure 4.1.5: Word Clouds generated from (a) Twitter and (b) Reddit. ....................................... 50 

Figure 4.2: Ten topics obtained from LDA Analysis for (a) Twitter and (b) Reddit. .................. 51 

Figure 4.3: Twitter’s dominant topic with percentage contribution for different documents. ..... 52 

Figure 4.4: Reddit’s dominant topic with percentage contribution for different documents. ....... 52 

Figure 4.3.1: Output data frame from Twitter Sentiment Analysis. ............................................. 53 

Figure 4.3.3: Pie charts with polarity classification from (a) Twitter and (b) Reddit. .................. 54 

Figure 4.3.4: Subjectivity and Polarity plots for Twitter (Blue) and Reddit (Red). ..................... 54 

Figure 4.2: Comments from Twitter (blue) and Reddit (red) linked to the breast cancer PJM. ... 57 

 

 



1 

Chapter 1: Introduction 

The COVID-19 pandemic has caused fundamental shifts in healthcare systems. Some of 

these shifts include patient’s increasing participation in decision-making; the rapid adoption of 

technological and digital innovations; the advancement for interoperable data and data analytics; 

and an unprecedented public and private collaboration [1]. Patients are driving and accelerating 

the pace at which healthcare systems operate [1]. These trends, in addition to the increase in health 

engagement, enhanced using health monitoring devices and the wish of a trusted clinician 

relationship are emphasizing the importance of a patient-centered care at all levels.  

1.1 BACKGROUND 

The Institute of Medicine (IOM) defines Patient-centered care as “providing care that is 

respectful of, and responsive to, individual patient preferences, needs and values, and ensuring that 

patient values guide all clinical decisions.” [2]. According to IOM, understanding patient 

experience is crucial for delivering patient-centered care.  The term “Patient Experience” has been 

defined by the Beryl Institute as “the sum of all interactions, shaped by an organization’s culture, 

that influence patient perceptions across the continuum of care” [3]. Measures of a patient-centered 

care or patient experience are becoming increasingly requested by both government and non-

government payers, as well as by public reporting and health care ranking organizations [4].  

Furthermore, it is also imperative to explain the terms in the definition of “patient 

experience” such as interaction, culture, perception, and continuum of care. Firstly, ‘interaction’ 

indicates the orchestrated touchpoints of people, processes, policies, communication, and 

environment. Secondly, ‘culture’ implies the vision, and values of people at all levels of the 

organization and community. Thirdly, ‘perceptions’ refers to what is recognized, understood, and 

remembered by patients and support people; perceptions may vary based on individual experiences 
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such as beliefs, values and cultural background. Lastly, ‘continuum of care’ is the before, during 

and after the delivery of care. Moreover, one study reported that hospitalized patients see an 

average of 17.8 health professionals during a single hospitalization [5], which can create a complex 

and confusing system to capture patient experience, reliably. 

Patient satisfaction surveys provide baseline information about patient experience from which 

quality can be assessed, analyzed, and interpreted to determine ways in which a service can be 

developed. Several techniques such as patient satisfaction surveys, Hospital Consumer Assessment 

of Healthcare Providers and Systems (HCAHPS) surveys [3], Press Ganey Surveys [4], semi-

structured interviews, patient-reported experience/outcome measures (PREMs/PROMs) [6], and 

patient journey mapping (PJM) [7] can measure patient experience. Nonetheless, it is currently 

unclear whether these types of tools really reflect what is important for patients.  

1.2 MOTIVATION  

Ever since the Institute of Medicine (IOM) published  “Crossing the Quality Chasm: A 

New Health System for the 21st Century” in 2001[2], the attention to patient-centered care has 

been accentuated. This, coupled with fundamental shifts arisen from the COVID-19 pandemic, 

have caused patients to drive and be more participative in their care than ever before. Their 

preferences are pushing the improvement and development of digitally enabled and on-demand 

connected interactions with clinicians, and their expectations are driving a transition from a health 

care encounter to a holistic human-centered experience [1]. Providing these patient experiences 

can only be accomplished by collaborating with patients to understand their perspectives and needs 

towards their care. Existing methods of measuring patient experience are resource-intensive, time 

consuming, and cumbersome. Other issues in patient satisfaction and experience measurement are: 

validity and reliability of surveys; approach (qualitative vs. quantitative); survey design and 

format; administration technique (in-person, telephone surveys, self-administered, online); and, 

timing [8]. With the advent of machine learning and artificial intelligence, such efforts can be 
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automated to improve the staff productivity, provide better care perception to the patients, identify 

gaps in healthcare service perception by the patients, and improve overall healthcare.  

 

1.3 PROBLEM STATEMENT 

Current PREMs rely on simple feedback with a low number of participants. This is unlikely 

to produce significant improvements in care, making these measurements time and resource-

intensive. Automating and improving a way to measure patient experience with Natural Language 

Processing Algorithms following the Patients’ Journey Maps will reduce the time and resources 

spent on patient experience measurements. 

 

1.4 THESIS OBJECTIVES 

The main objective of this thesis is to implement Machine Learning and Natural Language 

Processing Algorithms to efficiently capture patient experiences of breast cancer patients using 

data from social media, i.e., Twitter and Reddit. Furthermore, this data will be analyzed to evaluate 

patient experiences and sentiments at various hotspots of the breast cancer patients’ journey. After 

identifying patient experiences and sentiments are evaluated, recommendations will be provided 

targeting specific hotspots.  

 

1.5 ORGANIZATION OF THE THESIS 

This thesis is structured in six chapters. Chapter 1 starts with the introduction and 

background, motivation, problem statement, and thesis objectives. Chapter 2 continues with the 

literature review on patient experience, text analytics, and social media. This chapter also includes 

the study contributions. Chapter 3 describes the methodology followed and includes the research 

questions, study, and model design and outlines the proposed model. Chapter 4 includes the results 

from the model deployment with an emphasis on the topic modeling, sentiment analysis and the 

relation of the comments with specific hotspots. Chapter 5 covers the discussion and findings from 
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the analyses and includes social media and study limitations. Finally, Chapter 6 contains the 

conclusions and recommendations for future work.  
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Chapter 2: Literature Review 

A systematic review on patient experience was conducted to understand the key elements 

that constitute patient experience, how has patient journey mapping been used to capture this 

experience, and to summarize tools and techniques that capture patient experiences. The review 

follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to summarize the article selection process used for this systematic review and synthesize 

current knowledge on patient experience using patient journey mapping (PJM) as shown in figure 

2.1. This section also includes a literature review on text analytics with an especial focus on topic 

modeling and sentiment analysis. Additionally, research on social media emphasizing the social 

networks of Twitter and Reddit is also included in this literature review.   

 

2.1 BIBLIOGRAPHIC SEARCH PROCESS 

This search queried four databases: Embase, ScienceDirect, PubMed and CINAHL using 

keywords such as “Patient Journey”, “Patient Journey Mapping”, “Journey Mapping”, “Patient 

Experience”, “Process Mapping”, “Patient-centered Approach” and “Patient-centric Approach”. 

Table 2.1 summarizes the web search results. A total of 5092 records were identified through 

database searching and screened for eligibility.  

Table 2.1: Initial web search results. 

 

 
"Patient 

Journey" 

"Patient 

Journey 

Mapping" 

"Journey 

Mapping" 

"Patient 

Experience" 

"Process 

Mapping" 

"Patient 

Centered 

Approach" 

"Patient 

Centric 

Approach" 

Embase 1438 20 52 11660 776 1466 166 

ScienceDirect 2419 10 109 101463 2659 4919 4919 

PubMed 578 8 27 6669 325 1079 106 

CINAHL 449 9 25 4457 182 664 56 
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2.2 INCLUSION AND EXCLUSION CRITERIA 

This study includes all articles published from April 3, 2003, to September 17, 2020. The 

articles comprised by this systematic review examine the patient experience and the use of patient 

journey mapping as a tool for capturing patient experience.  

From the 5092 total articles found, 1309 duplicates were removed. The 3783 remaining 

records were title-screened. The keywords used for inclusion in this screening phase were: “patient 

journey”, “interview(s)”, “survey(s)”, “mapping”, “satisfaction”, “questionnaire(s)”, “patient 

experience”, “semi-structured”, “care pathway”, “process mapping”, “patient-centric”, “patient-

centered”, “patient journey mapping”, “patient-centered approach” and “patient interview”. 

Conference poster abstracts, articles without access to the whole paper, book sections, foreign-

language articles, articles not dealing with patient experience, studies measuring journey mapping 

exclusively from provider/clinician perspective, and animal experiment records were excluded 

from the search, resulting in a total of 3548 excluded records. A total number of 233 full-text 

articles were then assessed for eligibility. There were 138 records in which the abstract was 

irrelevant to the topic, thus excluded. The final number of studies included in the systematic review 

was 95 papers, as illustrated in figure 2.1.  
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Figure 2.1: PRISMA guidelines for article selection 

As shown in Figure 2.2, there has been an increasing interest in patient experience-related 

topics since 2003. For this systematic review, United Kingdom (28) has been the leading research 

country, followed by Australia (21), United States (18), Canada (6), Ireland (5), Netherlands (4), 

New Zealand (2), some other European countries (10) and Nigeria (1). In this paper, only 18.9% 

of the articles reviewed are from the United States.  
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Figure 2.2: Number of synthesized articles by year and country (2013-2020). 

 

2.3 OVERVIEW OF SYSTEMATIC REVIEW 

Although all 95 articles referred to patient experience, they adopted different approaches, 

data collection methods, analyses, administration techniques, technologies and focused on 

different illnesses and diseases. Figure 2.3 presents a concept map which starts with the six 

domains of health care quality proposed by the Institute of Medicine (IOM) in its publication 

“Crossing the Quality Chasm: A New Health System for the 21st Century” [2]. Then, it continues 

with a focus on the patient-centered care, which is divided into Patient-Reported Outcomes (PROs) 

and Patient-Reported Experiences (PREs). The expanding body of research into patient-reported 

experience / outcome measures (PREMs/PROMs) has generated questionnaires and insights for 

general practice [6] . These PROs and PREs are attempts to include patient perspectives in 

designing systems that truly meet their needs and have their corresponding branches to their 
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measures (PROMs and PREMs). To get these measurements, a list of data collection methods is 

included along with the most common administration techniques and health implementations used. 

Data collected through these methods is evaluated to three approaches: qualitative, quantitative, 

and mixed methods (a combination of qualitative and quantitative). Currently, the measurement of 

patient experience leveraging commercial survey tools such as surveys from Press Ganey and other 

vendors has become a standard practice across most large health care organizations [4] .Other 

approaches are considered when performing different analyses and following certain 

methodologies such as: patient journey mapping (PJM), thematic analysis, content analysis, 

interpretative phenomenological analysis (IPA), Glaserian method of grounded theory and 

statistical analyses.  

This review also encompassed the key elements for achieving a good patient experience, 

which are lived throughout the patient journey, thus the connection between these key elements 

and the patient journey mapping techniques (PJM). PJM evaluates the patient experience at 

different “hotspots” during the caregiving experience. These hotspots represent various points 

within the patient journey, such as registration, during transport, and admission to a hospital 

service, and include contact with staff, including physicians, nurses, dieticians, pharmacists, social 

workers, and environmental services. Having a visualization of the patient journey will allow 

patients to provide their comments, suggestions, and feedback throughout the different stages of 

their experience as patients [8]. PJM can also be divided into time-limited and open-ended 

depending on the illness or disease that is being treated. Additionally, PJM embraces different 

types of journeys according to different patient needs. Each patient journey is unique, and this 

methodology serves as a multidimensional framework that considers all aspects pertaining to the 

patients’ experience.  
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Figure 2.3: Concept map with identified research streams of the patient experience. 

 

2.4 RESEARCH IN PATIENT EXPERIENCE 

The quality assessment framework proposed by the IOM includes the six aims for health 

care systems: safe, effective, patient-centered, timely, efficient and equitable [2]. Doyle et al. 

adapted the six aims for healthcare system to constitute the three pillars for the health care quality: 
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effectiveness, safety and patient experience [9]. Patient Experience is an important health quality 

index. It has been demonstrated that patient experience and patient outcomes are correlated; better 

outcomes yield better experiences and vice versa [10]. Health care organizations generally 

emphasize on cognitive assessments and neglect patient emotions. However, it has been 

demonstrated that emotional aspects have an effect on patient satisfaction and clinical outcomes 

[11], [12]. Moreover, policymakers and regulatory bodies have increasingly recognized that the 

lack of patient-centered care results in unmet patient needs, higher costs and ultimately inefficient 

care [13]. 

Even though several studies have focused on the measurement of patient experience, only 

a few have reported the exact approaches used, limiting the information about instrument validity 

and reliability [14]. It is currently unclear whether the current tools for measuring patient 

experience really reflect what really is important to patients [15]. As some clinical effectiveness 

processes are relatively well established, other methods for improving patient experience or a 

patient-centered care are less ingrained and relatively new. The lack of a measurement 

standardization and patient experience instruments has resulted in the inability to nationally 

benchmark hospital performance, monitor effectiveness of interventions, establish hospital 

rankings and secure research funding [16], [17]. 

Patient satisfaction is a frequently used indicator for measuring patient experience, 

however there are some methodological deficiencies regarding the techniques used to address 

these experiences [12]. Satisfaction has erroneously been used interchangeably with patient 

perceptions and is defined as “fulfilling expectations, needs or desires” [18]. From this definition, 

Crow and colleagues [19] have identified two conclusions: (a) Satisfaction does not imply superior 

care, but only acceptable one; and (b) satisfaction is relative. Consequently, it is important to 

differentiate between the term patient satisfaction and patient experience. The latter uses questions 

that relate to actual hospital experiences, which aim to avoid value judgments and expectation 

effects [20]. As a multi-dimensional service, health care should be accounting for different 

attributes of patient experiences [19] such as the cognitive and emotional domains.  
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In addition, patient experience also has strong correlation with key financial indicators. For 

example, good patient experience is associated with lower medical malpractice risk [21]. 

Improving patient and family experiences also results in improving work processes and systems 

that enable clinicians and staff to provide better care which in turn results in higher employee 

satisfaction, reducing turnover [22]. Furthermore, patients keep or change providers based upon 

their experience with their providers, a study found that patients who reported poor relationships 

with their physicians were three times more likely to change providers than patients with high-

quality relationships [23].  

 

2.4.1 Key Factors for Patient Experience 

Since the Institute of Medicine (IOM) presented patient-centered care as one of its six 

objectives for improving health care, many organizations have embraced patient-centeredness as 

a pillar to their strategy and mission [24]. Research by the Picker Institute and the Commonwealth 

Fund presented eight dimensions of patient-centered care [25]. Several authors have also proposed 

their own characteristics of patient-centered care (PCC), but they remain consistent with the Picker 

Institute’s ones.  

1. Respect for the patients’ values, preferences and expressed needs [26]: involve 

patients in decision-making [27], recognizing them as individuals and treating them 

with dignity, respect, and sensitivity; plus, assessing if treatments provided are 

aligned with patients’ goals and values [28]. 

2. Coordination and integration of care [26], [29]–[32]: facilitate the coordination of 

front-line patient care, clinical care, ancillary, and support services [33]. Patient-

centered communication approaches and care coordination are associated with lower 

rates of patients seeking supplemental information from online sources among 

patients with lower levels of education [34].  
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3. Information and education [26], [29], [30], [35]–[38]: provide information about 

clinical status, progress and prognosis; the process of care and information to 

facilitate autonomy and health promotion. Research has found that patient 

information needs vary based on health contexts of chronic illness vs. acute medical 

situations [39].  

4. Physical comfort: pain management, assistance with daily living needs, hospital 

environment. Some other factors that can also be considered as stressors under this 

category are hard work or mobility difficulties and the disappointment or the “it gets 

you down” feeling when patients look at their bodies after injuries [40], [41].  

5. Emotional support and alleviation of fear and anxiety [38], [42]: caregivers need to 

pay special attention to anxiety regarding physical status, treatment [41], prognosis, 

illness and financial impact on patients and their families.  

6. Involvement of family and friends [29], [30]: provide accommodations, involving 

support people in decision-making, support family members as caregivers, 

recognizing the needs of family and friends. One example is, when parents 

relinquish part of their protector role when their child is admitted to a hospital, as 

such, it is always encouraging that parents are working in partnership with 

professionals in the provision of clinical care and the development of services [43].  

7. Continuity and transition [26], [30], [38]: provide patients with quality information 

about physical limitations, dietary needs, medications, and access to different types 

of support [43]; coordinate a plan with ongoing treatments and services after 

discharge [41]. 

8. Access to care [26], [33]: availability of transportation, easy access to the hospital, 

ease of scheduling appointments, clear instructions on how to get referrals, etc.  

Literature has also highlighted the importance of information sharing and communication 

as key facilitators of patient experience [4], [24], [27], [29], [30], [33], [44], [45]. Information 

needs are completely subjective and individual-dependent. For an information need to arise in a 
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person, there needs to be a stimulus (life major change, life-threatening condition, or illness) that 

is perceived as a challenge due to its unpredictability and uncertainty. In response to this event, 

individuals tend to adopt two major coping mechanisms: problem-focused and emotion-focused. 

The problem-focused coping includes this seek for information and direct action [46], [47]. A 

failure to meet this information need can result in detrimental effects as high-stress levels and 

difficulties in coping [42], [48]. With some conditions, the emotional and informational needs of 

family members might surpass the ones of patients themselves [49]. Other issues related to 

unavailable information, information given at a time when the patient is not ready to receive it, or 

receiving non-requested information also represent additional problems in this domain [36]. 

Another key element of patient experience is the patient-health professional relationship. 

Some physicians tend to reduce patients to their disease labels, with little focus or empathy on the 

person behind it [33], [50]. These circumstances have intensified negative encounters and the 

“walking a tightrope” sentiment for patients [36]. Research by Kreuzer et al. [51] illustrated that 

the most “luxurious” aspect of all their study interviewees was receiving “moments of care”, a 

short-lived and prosocial interpersonal interaction experienced with medical staff characterized by 

an authentic presence, balanced power relationship and interpersonal synchrony. The way 

employees and staff interact with patients is critical not only for the experience but for outcomes 

as satisfaction and loyalty [32], [37], [41], [51]. Furthermore, Easton et al. have exhibited that poor 

communication contributed to the majority of medication errors [52]. The dynamic environment 

that characterizes patient care in hospitals requires extensive communication between staff and 

multidisciplinary teams (MDT) [53]. MDT meetings and communication are essential for 

discussing and addressing delays and bottlenecks in the care process [54]. Similarly, the 

collaboration between patients, carers and professionals by itself brings broad benefits and changes 

in the culture for individual services [55].  

When measuring quality, the level of care associated with healthcare service delivery also 

needs to be evaluated. Caring is a highly valued human function that directly influences patient 

satisfaction. Caring is a component of patient-centeredness and involves interpersonal behaviors 
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from all healthcare members, responsible for supporting meaningful communication with the 

patient/client and their family [56]. These behaviors can be referred to as personalization, 

participation and responsiveness when meeting a person’s health and care needs [57]. Previously, 

the level of patient care was only associated with the nursing profession, which also has a high 

correlation with patient satisfaction. The greater the satisfaction with nursing care, the greater 

satisfaction overall. Patients want to be treated as individuals, rather than just any other patient 

[48]. This has been identified by the American Nurses Association as an outcome that should be 

measured and monitored [58]. 

Healthcare continuity is also essential for achieving high-quality patient care and 

experience [59]. Haggerty et al. [60] identified three types of continuity: (1) Informational 

continuity: documented information about the patient and his/her preferences, values and context; 

(2) Management continuity: a consistent and coherent approach to the management of the health 

condition that is responsive to patient changing needs; and, (3) Relational continuity: an ongoing 

relationship between patient and health provider. The operative and postoperative periods from 

surgeries have also proven the value of the outcome of the surgery [32] and continuity of 

communication [61]. Effective communication about medications after discharge is especially 

vital for people from non-English speaking backgrounds (NESB), who might also need an 

interpreter and translated educational materials [62]. Uncertainty is another component that plays 

a role throughout the continuum of care, especially for people with chronic illnesses, where it 

extends to broader life issues [63]. Assisting patients dealing with uncertainty associated with 

chronic health problems is essential for easing their patient journeys [64]. 

Patient accompaniment is another factor that increases the patient ratings for visit 

satisfaction, dimensions of interpersonal rapport, information giving and care quality [65]. 

Evidence shows that the more active family members are in physician visits, the more highly 

satisfied patients are with their care provider [66]. Effective engagement of patients also implies 

allowing the patient’s family to participate in caregiving and express preferences, which creates a 

respectful and empathic environment where individuals feel valued and cared for [9], [44], [67]. 
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Research by Blair et al. demonstrates how by incorporating specialist teams and a family-friendly 

environment can enhance users’ experiences, satisfaction and journeys [68]. 

Many studies also address how patients rate their quality of care. Nonetheless, it is 

important to differentiate between the ones using concepts and measures derived from the 

perspectives of patients versus the ones from staff, administrators, or physicians. Medical 

anthropologists involved in clinical research have detected variations in patient and health 

professional perspectives, which might be attributed to differences in education and socio-

economical background [69]. These variations might represent important implications for the 

management of diseases and conditions [70]. Understanding these variations is crucial to achieving 

a better appreciation of patients’ overviews and “reframe” practices for more patient-centered care 

[71]. 

Additionally, the literature suggests that good experiences are associated with clinical 

effectiveness, adherence to recommended practice and medication, lower lengths of stay (LOS) 

and decreased mortality rates in various settings [9]. Shorter LOS also continue having positive 

impacts on health systems by increasing patient access, flows, and reducing costs [72].  

Sample size also ensures a range of indications, ages, genders, and ethnicities, enabling the 

exploration of patterns and relationships within and between group participants. For instance,  a 

small sample size is the norm in IPA studies, since the analysis of large datasets may result in the 

loss of subtle inflections of meaning [73]. Also, the patient journey approach to sampling is 

sometimes based on a stakeholder perspective, which ensures that professionals “listen” to the data 

from patients [74].  

 

2.4.2 Types of Patient-Reported Measures 

The patient-reported experience measures (PREMs) and patient-reported outcome 

measures (PROMs) are recommended for measuring patient experience within the context of 

health care quality worldwide [75]. The use of patient-reported outcomes (PROs) is an attempt to 
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include patient perspectives in designing systems that truly meet their needs. In PROs, patients are 

the ones reporting on their health statuses and quality of life [76]. PROs are measured by patient-

reported outcome measures (PROMs) [77], which are standardized and validated questionnaires 

that measure patient’s perceptions of their general health in relation to a specific disease and are 

generally delivered pre and post operatively [78]. Traditionally, the choices of PROMs are often 

based on professional judgment versus strong conceptual models creating issues with grouping 

and scoring items into domains [77]. They are generally focused on specific conditions and 

sometimes fail to capture the global impact of health care on the patient’s life. This represents a 

deficiency in the current use of measurement of outcome measures, by ignoring patients’ 

experiences before and during their treatment, which are often associated with the most pain and 

suffering stages [79]. 

On the other hand, patient-reported experiences (PREs) describe how patients experience 

health care throughout the various stages of the care process and are also self-reported 

interpretations from patients and support people [80]. PREs are measured by patient-reported 

experience measures (PREMs) normally in the form of questionnaires as well. PREMs 

differentiate from satisfaction surveys by reporting objective patient experiences. They do not 

measure the outcomes of care, but the impact of care on the overall patient’s experience.  However, 

acquiring patient data can be challenging. For instance, in post-procedures, many patients might 

still be sedated or unable to provide coherent and reliable feedback [81].  

The use of PREMs and PROMs can lead to the recognition and early detection of symptoms 

and time-sensitive diseases such as idiopathic pulmonary fibrosis [75]. In the case of PREMs, the 

NHS (National Health Service) National Quality Board produced a working definition of patient 

experience with eight indicators to guide measurements. These indicators are: respect for patient-

centered values, preferences, and expressed needs; coordination and integration of care; 

information, communication, and education; physical comfort; emotional support; welcoming and 

involvement of family and friends; transition and continuity; and access to care [82].  
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2.4.3 Approaches for Measuring Patient Experience 

This section summarizes approaches used in empirical studies for measuring patient 

experience.  

Qualitative Methods offer an in-depth understanding of patient experiences. This approach 

allows researchers and evaluators to gain a deeper understanding from open-ended questions 

without the quantitative limitations. These questions allow patients to describe their experiences 

in their own words. In doing so, qualitative methods gain better insights of patient perceptions, 

behaviors, and the meaning they assign to certain experiences. As such, methods as semi-

structured interviews, and focus groups represent powerful tools in capturing patient experience 

[83]. Management observation is an example of qualitative technique, it gives the manager the 

opportunity to obtain patient feedback and identify problems. Although, this technique requires 

specialized training and the possibility of influencing providers with the management presence, 

lack of statistical validity and reliability makes it prone to misinterpretation [84]. To ensure 

transparency and credibility, several articles referred to the Consolidated Criteria For Reporting 

Qualitative Research (COREQ) in the reporting aspects of their studies [33], [85], [86]. A 

qualitative data analysis tool that has also been used by many authors is NVIVO 10, 11 or 12, 

which is used to facilitate data management and analysis [35], [37], [87]–[91]. Another qualitative 

statistical software used was ATLASti [45].  

Quantitative Methods such as structured questionnaires measuring PROs are among the 

most common forms of quantitative measures of patient experiences. These questionnaires are 

designed to produce numerical data which can be further analyzed and provide useful insights, 

patterns, associations, and trends to health care systems. These questionnaires or standardized 

surveys ask identical questions to respondents. This approach can be utilized with relatively large 

samples and provide ability for comparison [8]. Nonetheless, the lack of patient expression in 

his/her own words decreases the depth in which experiences should be analyzed [83]. This has led 

survey experts to shift their attention from ratings of satisfaction to reports of experiences. 
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Mixed Methods include both qualitative and quantitative methods to gain broader 

perspectives [83]. The strength of the mixed methods is lies in cross-validating qualitative and 

quantitative data to understand where the findings converge [92].  

Even though these analyses are wide common for studies on patient experience, there is a 

general acceptance that the patient experience incorporates patients’ journey as a whole and it is a 

clinically important concept to measure [83]. Also, by considering and understanding individual 

patients, hospitals can improve the quality of service provided [93]. By gaining insight into 

patients’ experiences, an overview of how certain illnesses are managed and how they are affecting 

patients can be established. This provides background to develop pathways that can guide best 

practices [94].   

 

2.4.4 Methods for Measuring Patient Experience 

Some of the most common methods used to evaluate patient experience after an approach 

was selected and data acquisition performed were:  

Patient Journey Mapping (PJM): This method combines several methods to best 

understand the patient’s experience by dividing the management of a specific condition or process 

into a series of consecutive stages [95]. Central to the process of developing pathways of care to 

deliver services following patients across and within organizations for particular conditions [96], 

“journey maps” are used to reflect the health care service from the perspective of different 

personas. In the case of a patient, a specific condition or treatment is broken down into steps 

(activities, interactions, locations, etc.) and the sequence of these steps can be viewed as the patient 

pathway, patient journey, or process of care [95]. These patient journeys may be time-limited (an 

episodic or acute illness where the patient’s journey begins with the onset and ends with its 

resolution) or open-ended (e.g., chronic illnesses) [96]. This technique considers each touchpoint 

in terms of the relative contribution towards the patient’s outcome taken from his/her own 

perspective. The final result from a patient journey mapping (PJM) is a visual representation of 
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the patient journey: a map showing a timeline indicating all relevant interactions between the 

patient and the health provider in combination with several different aspects of the experience [93], 

[95]. In contrast with care pathways, where all problems are solved from the professional’s 

perspective and in adherence to the principles of clinical governance, the PJM approach brings 

patients’ views into consideration [96].  

Mapping a patient’s journey is a highly complex and time-consuming process [93]. PJM 

focuses on patients’ progress along the health care system and aims to improve patient safety and 

overall health care quality by high pointing patients’ flows in the care process [97].  A very general 

patient journey can be defined in stages as pre-diagnosis, diagnosis, treatment, adherence, and 

management [98], but these steps are broad and vary for every disease and individual. The process 

of mapping patient journeys also allows interactive troubleshooting and encourages the use of 

better databases, which can be augmented to improve diagnosis and provide a framework for 

personalized care. Additionally, there is no standard approach on how to perform the steps in the 

mapping process, as a result, the adoption of this methodology is hindered [99]. From a lean 

perspective, everything that enhances patient experience is adding value and anything else is a 

waste [99], [100].  

Even though internet searches for “patient journeys” are dominated by cancer journeys, 

PJM can be used for any procedure or disease [101]. PJM has been identified by the literature to 

increase communication and establishment of partnerships and also recommended to create care 

pathways [102]. However, it is also a time-consuming activity and readily dependent on patients’ 

recall and ability to distinguish between health professionals and different stages [90]. This 

technique can also be modified and refined to add more dimensions as feelings, treatments [103], 

information needs, symptoms etc. [36]. By examining the patient journey through multiple lenses, 

a granular and insights-rich view of the patient journey can be acquired. This can be done by 

understanding the different journeys the patient goes through, such as the clinical, cost, 

attitudinal/emotional and informational journeys [104]. For instance, a study by McDonald et al. 

[105] about people with unresectable or metastatic gastrointestinal stromal tumors (GIST) patient 
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journey added and emphasized the different emotions felt by patients starting from the diagnosis 

and identified stages of crisis, hope, adaptation, new normal and uncertainty. The uncertainty stage 

in this and many PJM cases is always latent because disease recurrence remains a profound threat, 

which often causes the patient to go back to crisis states again. Crisis and no crisis stages, each 

one offers opportunities for physicians and staff to provide support throughout the patients’ 

journey. 

The remaining part of this section summarizes other methods used in evaluating certain 

aspects of patient experience. 

Content Analysis: Is a method where text is read by all authors and meaning units are 

abstracted and labeled by codes; these codes are then compared and grouped into categories and 

subcategories until consensus is reached. Finally, the latent content of the categories is abstracted 

into a theme [36], [106].  

Glaserian Method of Grounded Theory: This method involves data collection, analysis 

and comparison; analyses involve the construction of codes and categories to finalize in the 

development of theory [107], [108]. Memos are considered essential in this method as they provide 

a repository of ideas for theory development [109].  

Interpretative Phenomenological Analysis (IPA): Is a qualitative method that involves an 

idiographic focus concerned with providing insights into how an individual in a specific context 

makes sense of a specific phenomenon [110]. From the review, research by Flattery et al. [64] 

followed the most common IPA method or Colaizzi’s seven-step process for analysis of 

phenomenological data, which involves (1) reading all transcripts, (2) extracting significant 

statements, (3) creating meanings by coding repetition, (4) aggregating issues into themes, (5) 

writing an exhaustive description, (6) identifying similar concepts and (7) asking participants for 

validation [111].  

Statistical Analysis: Descriptive statistics (mean, standard deviation) and categoric 

(frequency) data analyses were commonly used to characterize the samples. Some articles have 
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used statistical software packages such as the statistical package for social sciences (SPSS) [48], 

[90]. 

Thematic Analysis: is a method for analyzing qualitative data that involves searching 

across datasets to identify, analyze and report patterns. The most widely accepted framework to 

perform it consists in six steps: familiarizing with the data, generating initial codes, searching for 

themes, reviewing themes, defining and naming themes and producing the report [112], [113].   

Integrated Patient Journey Mapping (IPJM): it is based on the concept of PJM, but also 

accounts for the factors of performance improvement, regulatory constraints, and patient 

experience. It offers a structured means of exposing service reforms and facilitating collaboration 

between multidisciplinary teams and different stakeholders [114].  

Subjective Well-Being (SWB): this model uses a SWB assessment during the pre-

treatment, treatment and post-treatment stages [79].  

Clinical Process Redesign: it is a method that focuses on the patient journey as the primary 

involvement locus. It uses process mapping to identify value-adding steps and involves redesign 

teams identifying non-value adding steps to improve patient journey flows. This process involves 

clinicians, managers, patients, carers and multidisciplinary teams [115].  

Business Process Re-Engineering (BPRE): is a business management approach focused 

on the analysis and redesign of workflows and processes with the objective of improving 

“customer experience”, improving efficiency and thereby lowering costs [116], [117].  

Experience Based on Design (EBD): is another patient-focused design process which 

allows designers to create experiences rather than services [118]. 

Service Design: is a novel discipline focused on ideating, defining, and implementing 

services using a consumer-centric approach. The holistic and multidisciplinary approach of this 

technique enables teams to develop services that account for the functional, emotional, tangible 

and intangible aspects of services [119].  Service design approach examines conscious and 

unconscious needs of customers with a range of methods and tools, which provides a deep 

understanding of user experience over time and during service touchpoints [120].  
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Metabolic Phenotyping: Along the same lines of additions to the PJM technique, metabolic 

phenotyping of the patient journey has emerged as a novel idea intended to enhance the patient 

journey, building on clinical diagnostic criteria to improve the sensitivity of diagnoses [101].  

Patient Pathway Models: The detailed modeling of “patient pathways” for specific patient 

groups is another approach compared to PJM. However, patient pathways focus only on addressing 

short-term treatment episodes. They are suitable for modeling curable conditions in large 

homogeneous patient groups [121]. In the case of chronic conditions or multiple chronic conditions 

(which account for over two-thirds of health care costs [122]) most models lack the level of detail 

in process descriptions and resource requirements needed to determine service costs and 

effectiveness.  

 

2.4.4 Data Collection Methods 

Collecting information from patients can better inform decision-making about service 

improvements and play a role in some accreditation programs [123]. Another sign of the attention 

on patient-centered care is the increasing number of surveys about patient perceptions that are 

being developed and collected through different qualitative studies (e.g., Picker surveys). 

Similarly, since 1994 the Agency for Healthcare Research and Quality (AHRQ) has developed the 

CAHPS surveys with the explicit goal of capturing information from consumers and publicly 

report it [12]. CAHPS is a popular and highly used survey that has been applied to different 

domains: hospitals (HCAHPS), home health (HHC CAHPS), clinician and group (CG CAHPS) 

and many more [83]. Categories for measurement in HCAHPS include care from nurses and 

doctors, the responsiveness of hospital staff, hospital environment, communication about 

medicines, experiences at the hospital, discharge information, overall hospital ratings, and patient 

information and demographics [124]. Surveys from Press Ganey and other vendors sometimes 

include additional items (e.g. admission room, meals, treatments, visitors and family, physicians, 

etc.) for a more comprehensive understanding of the patient experience [83]. When developing 
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survey instruments to evaluate patient experience, an acceptable theoretical basis, patient input and 

piloting of surveys need to be done to assess whether those instruments are measuring what they 

are intended to [125].  

Several possible sources of bias might exist on data collection methods depending on for 

example, on the wording of the questionnaire, the questions’ scope for ambiguity, the respondents’ 

mental exertion required to answer, question sequencing, and the respondents themselves [19]. 

Some studies gathered the data from patients, but some others did incorporate the viewpoints of 

professionals and staff.  

The main data collection methods found in this systematic review were: 

• Questionnaires: they typically have a stem and a scale that describes the aspect of 

care respondents are being asked to evaluate and rank [19]. Open-ended questions 

allow patients to freely express their responses and experiences in their own words. 

Closed-ended questions include multiple-choice responses, Likert scales, visual 

scales, or other questions where there is a fixed set of answers to choose from. 

Research suggests that response to closed-ended questions is usually positive, while 

for open-ended questions it tends to be more negative [14].  

• Surveys: generally, in the form of self-completion ones, they are administered after 

different lapses of time from service delivery encounters. Cross-cultural factors 

(translations) and timing might affect results [19]. To gain numerical data for 

analysis and comparison, they sometimes use scales (e.g., Likert scale) [14]. There 

are surveys for specific services, conditions, specified in carers, broad 

communication, hospital care, primary care and more [14].  

• In-depth interviews: generally administered in person or by telephone [14]. They are 

applied to small samples and are fairly effective at assessing quality, yet they require 

significant time, skills and resources [126].  

• Semi-structured interviews (SSIs): this type of interview includes some structured 

and some open-ended questions [19]. SSIs approximately last for 1 hour and are 
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audiotaped [87], [127]. Most interviews were transcribed verbatim prior to analysis 

[29], [36], [37], [40], [64], [89], [103], [128]. Some studies offered interviewees the 

opportunity to read their interview transcripts and add more details [87].  

• Focus Groups/ Group Interviews/ Panels: they assess the complexity of patient 

satisfaction; enable interaction and engagement between participants; the mutual 

stimulation of views can generate solutions, uncover unanticipated issues, and raise 

more issues than an individual interview [14], [19].  

• Comment Cards: they generally focus on negative aspects. They are cheap and 

impersonal [19].  

• Patient Stories/Narratives: they are known for offering a way to make sense of strong 

emotions [129]. Written or videoed patient stories have been used to encourage 

discussion in team/board meetings. Patient diaries capture the record of life as lived, 

including symptoms, medication, experiences of stages of recovery, rehabilitation 

adherence, health care appointments, attitudes and emotions throughout their journey 

[87]. The stories and narratives of patients range from near-misses, lack of 

professionalism, information mishaps to sentinel events [130]. In the same lines of 

storytelling and narratives, the method of “yarning” has also been employed by 

researchers to collect information and establish a relationship with Indigenous 

participants, especially from the Nyoongah culture in Australia [131].  

• Complaints/Claims: they contain the date, diagnostic, procedure, provider 

information, and other data, which creates an overview of services provided and 

reveals a data-driven understanding of how patients traverse the health care system 

[132]. Evidence shows that most complaints are made to protect other consumers and 

start an investigation [133]. Administrative claim data from insurance providers in 

the U.S. offers a uniquely detailed retrospective account of patient perspectives 

[134].  
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• Online Ratings: online ratings can provide valuable insights of the quality of health 

care services. Examining these websites together with other information systems 

may provide important indicators of the overall quality of care [14].  

• Shadowing: studies have reported that it can assess lived experiences from a patient-

centric perspective [135]. It may also have a valuable role in gaining insights into 

complex cross-hospital processes, particularly when dealing with vulnerable people 

who could be excluded from interview studies [29], [136].  

Other techniques used were expert panels and public meetings, which are less generalizable 

and descriptive [14]. Ethnography is another method used for the same purposes and borrowed 

from the social sciences to reveal previously undetected properties of the patient experience [137]. 

It consists of detailed observation and dynamic interviews, then, ethnography documents the 

culture, perspective and practices of individuals and aids in understanding the context in which 

patients operate [138]. In addition to traditional methods, some novel ones such as photovoice and 

guided tours might also help in a better immersion and understanding of patient experience [83]. 

When selecting measurement techniques, it is important to first define what needs to be measured 

and recognize the different aspects of the experience, expectations, and satisfaction [139]. 

 

2.4.4.1 Administration Techniques 

• In-person or personal interviews/surveys might not reflect accurate information due to loss 

of anonymity, timing, or fear on the impact of care. Responses tend to be positive and 

important information might be omitted. Additionally, a lack of structure/format in the 

questions and interviewer skills can result in inconsistent findings [16], [84].  

• Telephone surveys have their special challenges such as timing, the length of interview, the 

establishment of a personal bond, sample representativeness, number of contacts that need 

to be made for each encounter, among others. There are also higher costs associated with 
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this technique due to the number of persons needed, survey inter-rater training and number 

of calls needed to make contact [8], [84].  

• Mail-out or self-administered surveys need to be perfectly designed so they can reach the 

intended audience with no need for human interaction [8]. When valid and reliable surveys 

are sent out to motivated patients, valuable feedback and information is obtained [84]. The 

survey must be visually appealing and a postage-paid return envelope should be included 

as well [16].  

• Online surveys: are increasing in popularity. They are different from web surveys, which 

ask similar questions to paper surveys; online rating sites focus on gaining numerical 

feedback, which is then collated to share a score with specific services and health 

professionals [140]. Other online tools seek to gain qualitative information from 

descriptive feedback [141].  

Timing effects are another consideration when capturing patient experiences. Evaluation 

approaches are generally applied at the time of care or sometime after. For instance, the HCAHPS 

questionnaire is collected after 42 days the patient is discharged. Some other surveys often require 

patients to recall interactions from the previous year(s), which might introduce bias and inaccuracy 

[142]. Research on the effects of survey timing remains contradictory [19]. Bjertnaes found that 

patients report worse experiences for half of the patient-reported experience scales when time 

passed. Individual responses were also negatively impacted by the time increase [143]. One way 

of gaining “real-time” feedback is to use kiosks or electronic devices at the point of care [14]. 

 

2.4.5 Technological Implementations 

The use of health information technology (HIT) as a means for improving health care 

services, decreasing waiting times, and improving the standards of patient care [144], [145] has 

also been proposed in the literature. Furthermore, connected health, defined as “where devices, 

services, or interventions are designed around the patient’s needs, and health-related data is shared, 
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in such a way that the patient can receive care in the most proactive and efficient manner possible” 

[146] has emerged as a promising area of research for addressing today’s health system challenges. 

However, this interconnectedness also requires an understanding of workflows among different 

stakeholders to design health solutions to be fit within the healthcare ecosystem and sustainable in 

the long term[147], [148]. The implementation of visual models such as patient journey mapping 

(PJM), unified modeling language (UML) and others, enables stakeholders to comprehend 

workflow-related issues, make audits and propose improvement processes [95], [149].  

New information systems and technologies have arisen to positively influence clinical 

practice and organizational culture [150]. Although HIT implementations have been demonstrated 

to improve patient experiences, “adapting new information systems to health care has proven 

difficult and rates of use have been limited” [151]. Most of these applications have been centered 

on administrative and financial transactions in health care settings and cost remains the most 

important barrier for its adoption in smaller settings [152].  

Electronic Health Records (EHR): collect patients’ electronically-stored health 

information in a digital format, they provide out-of-the-box solutions for the summary of 

information after patient encounters with health care providers. Epic (Epic Systems Corp) is one 

of the most widely used EHRs and deploys the after-visit summary for use in ambulatory care 

settings [4]. Patients are increasingly accessing their health data as a movement towards patient-

centered care and patient engagement [153].  

Patient Journey Modeling Architecture (PaJMa): is designed specifically for healthcare 

[154]. It enables a visual representation of the processes interactions, technologies and people and 

includes staff roles, processes, information flow, HIT, information technologies (IT), patient 

needs, and metrics [155], [156]. The PaJMa approach involves modeling sessions with system 

stakeholders. The modeling style is explained and then participants use post-it notes and butcher 

paper to describe the current system (there is a special focus on those processes where the patient 

is involved). Following the sessions, the butcher paper models are transferred into the PaJMa 

software and opportunities for improvement are highlighted [154].  
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Patient Journey Record System (PaJR): is an application of a complex adaptive chronic 

care model in which early detection of adverse changes elicits tailored care [157]. The principle 

behind this method is that trained persons telephone patients at high risk of hospitalization, they 

engage in semi-structured conversation about health concerns and well-being [158]. The PaJR uses 

machine learning to evaluate the answers to the questions and free text narratives provided by 

patients about health status and alerts if an intervention might be required [159], [160]. A clinical 

case manager reviews the alerts and if appropriate, transfers the information to health providers.  

Electronic Patient Journey Board (EPJB): patient journey boards are tools for 

coordinating patient care and flow. These boards display relevant patient information at central 

locations [161]. An electronic patient journey board is similar, but offers advantages associated 

with digitalization. EPJB are used as a tool to facilitate team communication across wards and 

improve the efficiency of key hospital processes. These electronic status boards often contain the 

same matrix form as the whiteboards used in health care settings, they are typically positioned on 

large wall-mounted visual display screens and can be manipulated via keyboard and mouse [53], 

[162].  

Electronic Medical Record (EMR): it captures services provided by non-physician 

providers, patient sociodemographic characteristics, and detailed diagnosis information that can 

enable a more complete understanding of the complexities of primary care. When linked with other 

databases, it can become a powerful tool for following the patient’s care journey [163]. 

Nonetheless, in countries like Canada, EMR data is not always structured and is often provider-

centric, making it difficult to share among different healthcare settings [164].   

Artificial Intelligence (AI): studies systems that demonstrate behaviors associated with 

human intelligence. It has developed concepts, methods, and techniques relevant to natural 

language processing (NLP) that are increasingly being recognized as predictive tools in medicine 

and health. The essential elements of machine learning (ML) are an automated approach to 

learning patterns from empirical data using training examples [157]. One of the benefits of NLP, 
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in particular, is its ability to take unstructured data and provide/extract useful insights rapidly 

[165].  

Mixed Reality: it can compile patient-specific data in one anatomic model that can be used 

to educate the patient. A mixed-reality intervention at discharge can provide an overview of the 

importance of medication adherence [166].  

DVD Records: it can represent an important clinical treatment tool by becoming the 

medium through which parents, family, and patients themselves can learn and grow in knowledge 

positively. It can be used as a humanistic approach bringing the clinical facts and experiences with 

the humanity of all the people involved in a common pathway [44].   

Electronic Patient-Reported Outcomes (EPRO): Interest is expanding in the current 

availability of sophisticated, user-friendly electronic platforms for patient self-reporting, such as 

tablet computers, automated telephone calls and web kiosks. These platforms can provide 

actionable links to clinical care such as summary reports in a patient’s EMR and real-time email 

alerts to providers. However, negative feedback has been received regarding the electronic self-

reporting desks due to the difficulty of some patients when using them [31].  

Electronic Health (eHealth): the term eHealth was introduced by Eysenbach [167] as “an 

emerging field in the intersection of medical informatics, public health and business, referring to 

health services and information delivered or enhanced through the internet and related 

technologies”.  

• Hybrid Services (e.g., online hearing screening, online motivational engagement, face-to-

face diagnostic hearing evaluation, hearing aid trial and fitting and audiological 

rehabilitation, counseling and ongoing coaching for a hearing health care hybrid service 

delivery model [168] ) 

• Feedback: healthcare professionals have proposed eHealth solutions that can provide them 

with anonymized patient feedback with suggestions for improvements, which could be 

addressed at the appropriate touchpoint of the patient journey [86]. 
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• Referrals: eHealth solutions to monitor missing information from referrals and detect 

missing mandatory fields to be completed prior to a digital referral from primary to 

secondary care [86].  

• Counseling: health professionals have identified the need of an eHealth solution that can 

support patient counseling by providing general information, checklists and reminders 

about what is required [86].  

• Eligibility: healthcare professionals suggest eHealth solutions that could provide 

suggestions based on health metrics and provide self-care support to decrease risks before, 

during or after surgery and improve eligibility [86].  

• Patient Flow: eHealth solutions can collect information and PROMs before and after 

surgical procedures [86].  

• Healthcare guarantee: eHealth solutions able to collect information as referral status, and 

provide average processing and waiting times, which should be provided to the patient to 

help them prepare and plan [86]. 

• Post-discharge care: an eHealth tool capable of encouraging patients to be involved in their 

rehabilitation by providing personalized targets, reminders for activities, and the ability to 

monitor patient compliance with given instructions [86].  

• Communication: eHealth solution capable of unifying and developing documentation in 

general, plus facilitating the information transfer between teams and organizations. 

The eHealth solution could also include the option to send messages or alternatively some 

kind of bot that can be used as a communication support tool [86].  

Technological applications and devices design, development, deployment, and 

management are key to create an ecosystem that puts the patient at the center. Some examples of 

technological devices that are being used are registration kiosks, directional signage, patient room 

devices, electronic sign-in, notification systems, waiting room technology and monitors, etc. 

Evidence shows an overall increase in patient-reported satisfaction of wait times and courtesy after 

the use of electronics [169]. 
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2.5 RESEARCH IN TEXT ANALYTICS 

Text analytics is the automated process of drawing meaning out of large volumes of 

unstructured text into quantitative data. In a customer experience context, text analytics examines 

written text and finds insights, trends,  patterns and topics of interest. Text mining, text analysis 

and text analytics are terms often used interchangeably [170]. The structured data created by text 

mining can be integrated into databases, data warehouses or business intelligence dashboards and 

used for descriptive, prescriptive, or predictive analytics.  

Text analytics employs a variety of methodologies to process text, one of the most 

important ones being Natural Language Processing (NLP). NLP refers to the branch of computer 

science concerned with giving computers the ability to understand text and spoken words in the 

same way a person can. NLP combines computational linguistics (rule-based modeling of human 

language) with statistical, machine learning, and deep learning models. Together, these 

technologies enable computers to process and understand human language in its full meaning.  

Several NLP tasks break down human text and voice data in ways that help the computer make 

sense of what it's ingesting, some of them are speech recognition, speech tagging (use of a 

particular word according to context), word sense disambiguation, named entity recognition, co-

reference resolution, sentiment analysis, natural language generation and more [171].  

 

2.5.1 Sentiment Analysis 

Sentiment analysis (SA) or Opinion Mining (OM) is a computational study of opinions, 

sentiments, emotions, and attitudes expressed in texts towards an entity [172]. The target of SA as 

shown in figure 2.5.1 is to find opinions, identify expressed sentiments and classify their polarity. 
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Figure 2.5.1: Sentiment Analysis Process on Tweets/Comments. 

Sentiment Analysis can be considered a classification process. There are three 

classification levels in SA: document-level, sentence-level, and aspect level. Document-level 

consist of classifying an opinion document as expressing a positive or negative sentiment, it 

considers the whole document a unit (talking about only one topic). Sentence-level SA classifies 

sentiments expressed in each sentence. The first step performed in this case is identifying whether 

the sentence is objective or subjective. However, there is no fundamental difference between 

document and sentence level classifications because sentences are just short documents [173]. 

Aspect-level SA aims to classify the sentiment for the specific aspects of entities. The first step is 

to identify the entities and their aspects. The opinion holders can give different opinions for 

different aspects of the same entity [172]. Data sets used for sentimental analysis vary from product 

reviews to stock markets [174] and political debates [175].  
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According to Medhat et al., there are multiple sentiment classification techniques as shown 

in figure 2.5.2. This paper will investigate a lexicon-based, corpus-based semantic approach for 

sentiment analysis. Additionally, this paper will examine the use of Latent Dirichlet Allocation 

(LDA) topic modeling to discover latent topics associated with comments from social media 

(Twitter and Reddit).  

Figure 2.5.2: Sentiment Classification Techniques. 

2.5.2 Topic Modeling 

Topic modeling is a type of statistical modeling and unsupervised learning technique 

capable of scanning a set of documents detecting word and phrase patterns within them. It 

automatically analyzes text data to determine cluster words for a set of documents. Topic Modeling 

involves counting words and grouping similar word patterns to infer topics within unstructured 

data.  By detecting patterns such as word frequency and distance between words, a topic model 

clusters feedback that is similar, and words and expressions that appear most often. Thus, it makes 

it easier to deduce what each set of texts are talking about [176]. 
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2.5.2.1 Latent Dirichlet Allocation (LDA) 

Latent Dirichlet Allocation (LDA) is a generative probabilistic model, including a three-

level structure with word, topic, and document [177]. It ignores syntactic information and assumes 

that all words in the document can be assigned a probability of belonging to a topic [176]. In LDA, 

a document is viewed as a distribution over topics, while a topic is a distribution over words. To 

generate a document, LDA firstly samples a document-specific multinomial distribution over 

topics from a Dirichlet distribution; then repeatedly samples the words in the document from the 

corresponding multinomial distribution.  LDA assumes the topic proportions are randomly drawn 

from a Dirichlet distribution, which implies the independence between topics. [177].  

A topic model can extract the latent topic structures by analyzing a large scale of statistical 

data. These structures are hierarchical and corpus-specific. In a good topic structure of LDA, every 

topic is understandable, meaningful, and exclusive to each other. However, finding the optimal K 

or number of topics is difficult and currently, there is no established method for it [177].  

 

2.6 RESEARCH IN SOCIAL MEDIA 

Social media’s infiltration into the lives of internet users has been on the rise for the past 

years. The latest figures from Statista show that there are 3.78 billion social media users worldwide 

in 2021 [178].  Online media and networking sites are used to express and share public experiences 

in the form of product reviews, blogs, discussion forums, and more. Collectively, these media 

contain highly unstructured data combining text, videos, images, and animations that are useful in 

making the public aware of certain issues [179]. Social networking sites and blogs also offer a 

good source of information because users/people share their opinions freely about a wide variety 

of topics [172]. In the case of patient experiences, these facts about people freely expressing 

themselves on social media allow patients to describe their experiences in their own words. 

Storytelling and other trends to invite patients and family members to leave their reviews on online 

platforms like Twitter, and Facebook are also increasing in popularity [14], [180]. This facilitates 
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qualitative methods to gain better insights into patient perceptions, behaviors, and the meaning 

they assign to experiences.  

 

2.6.1 Twitter 

Twitter is an American microblogging and social networking site where users post and 

interact with messages known as “tweets”. Tweets can be up to 280 characters long, including 

spaces, and can include URLs and hashtags [181]. As of the first quarter of 2021, Twitter had 199 

million monetizable daily active users and exhibited a growth of 8% worldwide compared to 

previous years [182]. 

Twitter offers a developer portal or Twitter API where a set of self-serve tools are available 

to developers. In there, developers can create and manage their projects and applications, set up 

developer environments, and learn more about endpoints and features available [183]. Twitter API 

allows you to extract tweets and various tweet components as user name, timestamp, tweet text, 

hashtags, links, embedded media, replies, retweets, favorites, location, and more.  

 

2.6.2 Reddit 

Reddit is a network of communities based on people’s interests. Registered members can 

submit content to the website, which can be voted up or down by other members. This social 

platform attracts 430 million users each month, this represents a 30% increase in monthly active 

users compared to the last two years. This makes Reddit the third platform (after TikTok and 

Pinterest) with the highest increasing rate of monthly active users [182]. Reddit is broken up into 

more than a million communities known as “subreddits,” each of which covers a different topic. 

The name of a subreddit begins with “r/,” which is part of the URL that Reddit uses [184].  
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2.7 STUDY CONTRIBUTIONS 

After exploring the determinant elements of patient experience and identifying the lack of 

a standard method for measuring them according to what is important to patients, this study 

proposes the use of a NLP algorithm to evaluate patient experience following a breast cancer 

patient journey map by using social media data. The data imported from Twitter and Reddit will 

go beyond analysis of comments, taking a patient -centered approach that evaluates latent topics 

and sentiments from users. Findings from this study will practically inform evidence-based 

recommendations.  
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Chapter 3: Methodology 

The methodology followed for this study consisted of extracting tweets and subreddits to 

use them as an input for the model. This model was created to evaluate patient experiences, latent 

topics and sentiments from Twitter and Reddit using Natural Language Processing (NLP) 

algorithms.  

 

3.1 RESEARCH QUESTIONS 

This research aims to answer the following questions: 

• What are the current methods of capturing patient experience through PJM? 

• How to efficiently capture patient experience using Machine Learning 

Algorithms/Natural Language Processing Algorithms? 

• Can text analytics be used for measuring patient experience at various hotspots of 

a patient journey mapping for a breast cancer patient? 

 

3.2 STUDY DESIGN 

From the literature review on patient experience, the need of involving family members 

and support people along with patients in their care was observed. By incorporating tweets and 

comments from Twitter and Reddit users, we are expanding the scope of this study to not only 

patients, but also support people, advocates, and people interested in this topic. Therefore, results 

obtained might not obtain the desired accuracy for mapping the breast cancer patient journey and 

experiences. However, results from this study can identify the latent topics and overall sentiments 

associated with breast cancer. Additionally, this study can provide useful insights for improving 

patients’ and support people’s experiences and give useful advice to them.  

 

3.2.1 Cohort 

Twitter and Reddit users posting/tweeting about breast cancer in the COVID-19 era.   
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Data extraction from both social media websites was performed using keyword search for 

the words “breast” and “cancer”. Data scraping from Twitter was performed on June 15, 2021, 

June 28, 2021, and July 12, 2021, yielding a total of 3,151 tweets. The single data extraction 

performed for Reddit yielded 2,539 records from March 15, 2020, to March 15, 2021. 

 

3.2.1.1 Relevance 

Breast cancer has now overtaken lung cancer as the world’s most commonly diagnosed 

cancer, according to statistics released by the International Agency for Research on Cancer (IARC) 

in December 2020 [185]. 

Breast cancer is the most common cancer in American women, except for skin cancers. 

About 1 in 8 U.S. women will develop invasive breast cancer over the course of their lifetime 

[186]. 

The COVID-19 pandemic has exacerbated the problems of late-stage diagnosis and lack of 

access to treatment, especially in low- and middle-income countries. In addition to having to cope 

with the disruption of services, people living with cancer are also at higher risk of severe COVID-

19 illness and death [185]. 

For reference, a high-level breast cancer patient journey map is shown in Figure 3.2.1.1.  

Figure 3.2.1.1: Breast cancer patient journey map.  
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3.2.2 Dataset Sources 

Twitter: 3,151 records were obtained from three data extractions. The first web scraping 

was performed on June 15, 2021, and yielded 911 tweets. The second one was performed on June 

28, 2021, and gave a total of 1,045 tweets. The third and final data extraction happened on July 

12, 2021, and yielded a total of 1,195 tweets. In total, all three extractions gave a total of 3,151 

tweets. Before being loaded to the NLP algorithm, these tweets went through various text-cleaning 

steps and the total number of records was reduced to 2,292 tweets containing information about 

the author, tweet text, time stamp, and geolocation.  

Reddit: 2,539 subreddits were obtained from the data extraction. The web scraping 

performed for Reddit used a conversion of dates to Unix timestamp units, dates used for the 

extraction were from March 15, 2020, to March 15, 2021. Before being loaded to the final NLP 

code, the subreddits went through text-cleaning and pre-processing steps such as removing null 

values and removed comments. At the end of this process, the number of records was reduced to 

2,028 subreddits containing author, body, and publish date.  

The total amount of records obtained from initial extractions for both Twitter and Reddit 

was 5,690. Nonetheless, as mentioned before, to use the records for text analytics, a series of text-

cleaning steps were performed. This resulted in a new total of 4,320 records. Table 3.2.2 illustrates 

the data extraction process and the number of records obtained.  

 

Table 3.2.2: Data extraction process with the number of records.  

Social 

Media 

Network 

Number of records 

extracted 

Total Number of 

Records 

Extracted 

Number of records 

after text-cleaning 

steps 

Twitter 

First Extraction 911 

3151 2292 Second Extraction 1045 

Third Extraction 1195 

Reddit First Extraction 2539 2539 2028 

    Total 5690 4320 
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3.2.3 Toolkit 

This study was conducted using Python 3.7.4 and Jupyter notebooks, which is a browser-

based interactive computing notebook environment.  

Some Python libraries used to perform the analyses were: 

• NumPy: one of the most used Python packages for scientific computing. It provides 

multidimensional arrays, as well as variations as masks and matrices that are used 

for various math operations [187].  

• Pandas: an open-source Python package widely used for data analysis and machine 

learning. It is used for tasks as data cleansing, normalization, visualization, 

statistical analysis, data inspection, loading and saving data, and more [188].   

• Matplotlib: is a comprehensive library for creating static, animated, and interactive 

visualizations in Python [189]. 

• Seaborn: is a Python data visualization library based on matplotlib. It provides a 

high-level interface for drawing attractive and informative statistical graphics 

[190]. 

• Itertools: The module standardizes a core set of fast, memory-efficient tools that 

are useful by themselves or in combination. Together, they form an “iterator 

algebra” making it possible to construct specialized tools succinctly and efficiently 

in pure Python [191]. 

• Collections: This module implements specialized container datatypes providing 

alternatives to Python’s general-purpose built-in containers, dict, list, set, and tuple 

[191]. 

• Re: This module provides regular expression matching operations [191]. 

• Warnings: Warning messages are typically issued in situations where it is useful to 

alert the user of some condition in a program [191]. For this code, the warnings 

library was used to ignore deprecation warnings.  
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• String: This library contains constants and classes for working with the text [191].  

• NLTK: the most widely used framework for topic modeling and text analytics. It 

provides plenty of corpora and lexical resources to use for training models, plus 

different tools for processing text, including tokenization, stemming, tagging, 

parsing, and semantic reasoning [176].  

• Sklearn/Scikit-learn: is a free machine learning algorithm in Python.  It features 

various algorithms like support vector machine, random forests, and k-neighbors, 

and it also supports Python’s numerical and scientific libraries [192].  

• Pickle: The pickle module implements binary protocols for serializing and de-

serializing a Python object structure. “Pickling” is the process whereby a Python 

object hierarchy is converted into a byte stream, and “unpickling” is the inverse 

operation [191]. 

• Networkx: It is a Python package for the creation, manipulation, and study of the 

structure, dynamics, and functions of complex networks [193]. 

• Wordcloud: This Python’s library allows the creation of word clouds, which is a 

data visualization technique used for representing text data in which the size of each 

word indicates its frequency or importance.  

• Gensim: a robust library that provides a suite of tools for implementing LDA and 

other topic modeling algorithms [176].  

• PyLDAvis: It is designed to help users interpret the topics in a topic model that has 

been fit to a corpus of text data. The package extracts information from a fitted 

LDA topic model to inform an interactive web-based visualization [194]. 

• Pprint: The pprint module provides a capability to “pretty-print” arbitrary Python 

data structures in a form that can be used as input to the interpreter [191]. 

• Os: The OS module in Python provides functions for interacting with the operating 

system. OS comes under Python’s standard utility module. This module provides a 

portable way of using operating system-dependent functionality [191].  
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• TextBlob: This is an open-source Python library for processing textual data. It 

performs different operations on textual data such as noun phrase extraction, 

sentiment analysis, classification, translation, and more [195].  

 

3.3 MODEL DESIGN 

This model design uses Natural Language Processing (NLP) Algorithms to understand, 

interpret and manipulate human language or in this case, text extracted from Twitter and Reddit. 

The model design is illustrated as an IDEF3 diagram in Figure 3.3. The inputs used for the 

“Evaluating Patient Experience” model are the Twitter and Reddit datasets (with 2,292 and 2,038 

records respectively). The mechanisms adopted for this study are the NLP algorithms using 

Python’s Jupyter notebooks. The controls for this model are the NLP parameters applied 

throughout the code. Finally, the outputs given by this model are the results from the LDA and 

Sentiment Analyses. These outputs are the latent topics from the datasets and a data frame in the 

form of a CSV file including the polarity, subjectivity, and overall classification (positive, neutral, 

negative) of each comment/tweet.  

Figure 3.3: IDEF3 diagram of the model design. 
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3.4 PROPOSED MODEL  

Figure 4.1.5 illustrates a flowchart with various steps of the proposed model starting from 

data extraction, cleaning, preprocessing, and topic modeling and sentimental analysis. Each of 

these steps is explained in detail in this section. 

 
Figure 4.1.5: Flow chart of the proposed model.  

I. Data Extraction (Twitter and Reddit) 

This model for evaluating patient experience using Natural Language Processing 

algorithms started with the data extraction from Twitter and Reddit by keyword 

search for the words “breast” and “cancer”.   

II. Data Load/Import 

The extracted messages from Twitter and Reddit containing the keywords “breast” 

and “cancer” were imported to two separate Python’s Jupyter notebooks using the 

library “pandas”. Pandas was also used to drop missing or null values and removed 

content from both datasets. 

III. Exploratory Data Analysis 

Start Data extraction Data Load EAD

Text pre-
processing

Preliminary 
data 

visualizations
Data cleaning

Vectorizing raw 
data

Word cloud
Topic modeling 

(LDA)
Sentiment 

Analysis
End
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Subsequently, an exploratory data analysis (EDA) was performed to analyze and 

investigate data sets and summarize their main characteristics. The first analysis 

performed was regarding text length.  

IV. Text Pre-Processing 

Some discrepancies were found in the number of characters in tweets and 

subreddits, and further investigation suggested that this was due to the use of 

mentions, and URLs. Therefore, the next step was the removal of mentions in the 

case of Twitter and URLs for both data sets with the use of Python’s library “re”. 

V. Preliminary Data Visualizations 

The last step of the EDA was to get visualizations about the 20 most common words 

used in both Twitter and Reddit. 

VI. Data Cleaning 

The first step in this stage consisted in removing punctuation using Python’s library 

“string” and using functions and lambda expressions. Secondly, the tokenization 

step was also performed. Thirdly, stop words were removed by using NLTK’s 

English stop words. All tweets containing a mixture of English and other languages 

were removed in this step. The last step in this phase was the lemmatization, which 

means that words were converted to their meaningful base form (words in the third 

person are changed to first and verbs in past and future tenses are changed into 

present). 

VII. Vectorizing Raw Data 

One of the major steps in text analysis is to convert tokenized texts in to vectors or 

sequences of numbers that classification algorithms can use. For this study, three 

different vectorizing techniques were employed and used for creating their 

corresponding sparse matrices (a matrix in which most entries are zero).  

I. TF-IDF Vectorizer: TF-IDF stands for term frequency-inverse document 

frequency, and the tf-idf weight is a weight often used in information retrieval and 
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text mining. This weight is a statistical measure used to evaluate how important a 

word is to a document in a collection or corpus. This vectorizing technique creates 

a document-term matrix where the columns represent single unique terms 

(unigrams), but the cell represents a weighting meant to represent how important a 

word is to a document. Typically, the tf-idf weight is composed of two terms: the 

first computes the normalized Term Frequency (TF), or the number of times a word 

appears in a document, divided by the total number of words in that document; the 

second term is the Inverse Document Frequency (IDF), computed as the logarithm 

of the number of the documents in the corpus divided by the number of documents 

where the specific term appears. The combined formula used to obtain term weights 

is illustrated in figure 4.1.4. Weights were calculated with the TFIDF Vectorizer 

tool from Python’s ‘sklearn”. 

 
Figure 4.1.4: Formula used by TFIDF vectorizer to calculate term weight. 

II. Count Vectorizer: creates a document-term matrix where the entry of each cell will 

be a count of the number of times that word occurred in that document. This was 

done with the Count Vectorizer tool from Python’s ‘sklearn”.  

III. N-grams Vectorizer: Creates a document-term matrix where counts still occupy the 

cell but instead of the columns representing single terms, they represent all 

combinations of adjacent words of length n in your text. The library used to create 

this vector was also Python’s ‘sklearn” with its feature Count Vectorizer. 

VIII. Word Cloud 

Word clouds, text clouds or tag clouds are a collection or cluster of words depicted 

in different sizes. The bigger and bolder the word appears, the higher frequency 



47 

within a given text and the more important it is. They help to pull out the most 

pertinent parts of textual data, from blog posts to databases, and can also help 

business users compare two different pieces of text [196].  

IX. Topic Modeling (LDA) 

Topic Modeling is an unsupervised type of statistical modeling for discovering the 

abstract “topics” that occur in a collection of documents. Latent Dirichlet 

Allocation (LDA) is an example of topic modeling used to classify text in a 

document to a particular topic. It builds a topic per document model and words per 

topic model, modeled as Dirichlet distributions. The goal of LDA is to determine 

the mixture of topics that a document contains. However, as stated earlier, finding 

the optimal K or number of topics pertaining to a document is difficult, varies 

within different techniques, and currently there is no established method for it 

[177].  

To work on the LDA, the main Python’s libraries used were: Gensim and 

pyLDAvis. The first steps for the LDA were to input the cleaned text and build a 

dictionary, a corpus, and a term frequency from it. Then, the number of topics and 

words in each topic was set to 10 and the LDA model was built. The different stages 

of topic modeling are listed below. 

a. Data Preparation for LDA  

b. LDA Model Build 

c. LDA Model Results --- Output 

X. Sentiment Analysis 

Sentiment Analysis is a sub-field of NLP that measures the inclination of people’s 

opinions within the unstructured text (after all pre-processing steps have been 

performed). As mentioned earlier, Sentiment Analysis can be performed using two 

approaches: Lexicon-based or Machine Learning-based. 
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This paper will investigate a lexicon-based, corpus-based semantic approach for 

sentiment analysis. This is a practical approach to analyzing text without training 

the models. The result of this approach is a set of rules based on which the text is 

labeled as positive/negative/neutral. These rules are also known as lexicons. The 

most widely used lexicon-based approaches are TextBlob, VADER, and 

SentiWordNet. For this sentiment analysis, Python’s TextBlob library will be 

utilized.  

The two most common measures that are used to analyze sentiments are: 

• Polarity: how positive or negative an opinion is. Polarity ranges from -1 to 1, 

where 1 is the range of the most positive opinion, 0 is used to demonstrate 

neutrality and -1 is used to denote the most negative opinion.  

• Subjectivity: how subjective the opinion is. Subjectivity ranges from 0 to 1, 

where 0 denotes an objective opinion and 1 is a subjective one.  
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Chapter 4: Results 

This chapter discusses various results obtained from the text analysts of tweets from twitter 

and sub-reddit messages from the Redditt social media platforms. 

4.1 MODEL SETUP 

The data extraction from Twitter (3,151 records) and Reddit (2,539 records) for messages 

related to breast cancer.  Cleaning the text messages for missing and null values resulted in a 

reduction of 859 records from Twitter and 511 from Reddit.  

Tweets have a limit of 280 characters, and this was also demonstrated by the analysis, 

which showed a mean of 193 characters. For Reddit, the self-post character limit is 40,000 and the 

data set obtained showed a mean of 818 characters. Figure 4.1. summarizes the top 20 most 

common words in both twitter and reddit messages.  

Figure 4.1: 20 most common words in Tweets (a) and Comments (b). 

Stop words and collection words (“breast” and “cancer”) were removed in this step only to 

visualize word frequencies. As illustrated in figure 4.1, common words vary between Twitter and 

Reddit. Twitter users mention more patient journey hotspots and words highly related to breast 

cancer, whereas comments from Reddit users refer more to everyday verbs. This can be due to the 

character limit in both social media websites (280 vs. 40,000 characters).  
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 The next stage of the code was the data or text-cleaning. Data frames displaying the data 

cleaning using all these steps, i.e., removal of punctuation, tokenization, removal of stop words, 

and lemmatization, for the Twitter data set is shown in figure 4.1.2 and Reddit in figure 4.1.3. 

Figure 4.1.2: Text-cleaning steps performed to Twitter data set 

Figure 4.1.3: Text-cleaning steps performed to Reddit data set.  

The output of this data frame is the tokenized form of comments and tweets. These 

tokenized contents are converted to vectors using TF-IDF Vectorizer, Count Vectorizer, and N-

grams Vectorizer. After creating the sparse matrices with three different techniques, the next task 

of the code was to create word cloud visualizations from the lemmatized text. Figure 4.1.5 

illustrates the word clouds obtained from both social media websites and includes 15 of the most 

common words without stop words or collection words.  

Figure 4.1.5: Word Clouds generated from (a) Twitter and (b) Reddit. 
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From the two-word clouds generated, it can be noticed that again Twitter provides more 

concise and breast cancer-related words, whereas Reddit slightly deviates from the main topic with 

the inclusion of some other words like Friday, night, week, one, newly, and almost.  The word 

“old” is considered of value here because in most of the comments when people were explaining 

their situation, they self-identified and included age information and previous conditions.  

Next step was to determine the mixture of topics mentioned in these tweets and comments. 

This topic determination is performed using topic modeling. Figure 4.2 illustrates the 10 topics 

obtained with their word weights. Graphical representation of topics’ word counts, and word 

weights are contained in the Appendix.  

Figure 4.2: Ten topics obtained from LDA Analysis for (a) Twitter and (b) Reddit. 
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In LDA models, each document is composed of multiple topics, and typically, only one 

of the topics is dominant. Figures 4.3 (Twitter) and 4.4 (Reddit) exhibit these dominant topics for 

each sentence and show the weight of the topics and the keywords.  

Figure 4.3: Twitter’s dominant topic with percentage contribution for different documents.  

Figure 4.4: Reddit’s dominant topic with percentage contribution for different documents. 

As illustrated in figure 4.2, words in each topic have different weights, and topics in each 

document have different percentages (figures 4.3 and 4.4). In general, topics touch on different 

elements of breast cancer. For instance, Twitter’s first topic contains the words "cancer", "breast", 

"get", "free", "helped", "site", "clicked", "got", "time", and "need" which after performing a deep 

dive analysis in the dataset demonstrated to be a website where people clicked and helped in the 

breast cancer cause for free. Similarly, Reddit’s first topic containing the words "cancer", "month", 

"breast", "know", "one", "dont", "pain", really", "week", "feel" was more related to people posting 

about detecting a breast pain and narrating how they felt, along with the time stamp of their 

process.  
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As observed throughout the different topics, some of them overlap in the words “breast” 

and “cancer”. Nonetheless, most topics include at least a word containing a hotspot or interaction 

of the breast cancer patient journey. Reddit’s topic number 2 includes “treatment” and “chemo”, 

topic 3 “chemo, topic 4 “lump”, topic 5 “doctor”, topic 6 “biopsy” and “doctor”, topic 7 “chemo” 

and “lump”, topic 8 “chemo”, topic 9 “chemo”, and topic 10 “chemo”. For Twitter, topic number 

2 includes “treatment”, topic 3 “treatment”, “medical” and “research”, topic 4 “survivor”, 

“treatment”, “diagnosed” and “support”, topic 5 “treatment”, “diagnosed”, topic 6 “metastatic”, 

topic 7 “oncology”, “covid”, topic 8 “research”, “treatment”, topic 9 “diagnosed”, topic 10 

“screening”, “diagnosed”, “survivor” and “metastatic”.  

 

To perform this Sentiment Analysis, several functions were created with the use of 

TextBlob to obtain polarity and subjectivity values and to label the text lemmatized according to 

their polarity score. A dataset displaying the clean comments, lemmatized comments along with 

their polarity, subjectivity and classification was the output of this analysis, as illustrated in Figure 

4.3.1 and 4.3.2.  

Figure 4.3.1: Output data frame from Twitter Sentiment Analysis. 

Figure 4.3.2: Output data frame from Reddit Sentiment Analysis. 

A pie chart and other visualizations for comparison were created with the use of the 

matplotlib library. Figure 4.3.3 depicts the pie charts obtained from both datasets.  
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Figure 4.3.3: Pie charts with polarity classification from (a) Twitter and (b) Reddit.  

As depicted by the pie charts above, the percentage of positive polarity tweets is 45.64% 

(n=1,046) compared to 68.05% (n=1,380) from subreddits. Neutral polarity tweets represent more 

than one-third of the records with a percentage of 35.60% (n=816) whereas neutral comments from 

Reddit represent less than one-tenth of the total subreddits with 6.41% (n=130). Finally, negative 

polarity tweets constitute only 18.76% (n=430) of the total tweets, versus a 25.54% (n=518) of 

negative comments from subreddits.  

Further analysis was conducted to comprehend why Twitter and Reddit users would 

comment positively about breast cancer. Polarity and subjectivity distributions for tweets (blue) 

and comments (red) were plotted as part of these analyses, as shown in Figure 4.3.4.  

Figure 4.3.4: Subjectivity and Polarity plots for Twitter (Blue) and Reddit (Red).  
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As observed in these subjectivity plots, there is a higher number of objective comments 

coming from Twitter users (value of 0 with a frequency higher to 650 in the subjectivity chart) 

compared to Reddit ones (value of 0 has a frequency of approximately 90). Higher Twitter 

objectivity is also portrayed by the distribution of Twitter’s subjectivity having a mean of 0.3407 

(std = 0.289), compared to Reddit’s mean of 0.4482 (std = 0.173)   

Regarding the polarity bar charts, it is observed that Twitter’s distribution is skewed to the 

right with a mean of 0.0914 (std = 0.241), whereas Reddit’s distribution has a mean of 0.0694 (std 

= 0.158), denoting for a higher number of positive comments. Even though Twitter’s distribution 

is slightly skewed to the right, the distribution resembles a normal one. Overall, we can observe 

that polarity has a higher density around 0 (neutrality), which implies that despite comments being 

classified as “positive” or “negative”, there are ranges of positivity and negativity.  

To illustrate the degrees of positivity, neutrality, and negativity, some tweets and comments 

from the sentiment analysis outputs are depicted in Tables 4.3.1 and 4.3.2.   

 

Table 4.3.1: Examples of different degrees of polarity from Tweets. 
Cleaned Tweets Subjectivity Polarity Analysis 

Shocking news just found out a friend has been diagnosed 

with breast cancer Reminder to feel those boobies 

1 -1 Negative 

Men and women can both benefit from moderate alcohol 

intake in terms of cardiovascular health but women might 

also suffer from a terrible side effect an increased chance of 

breast cancer If at all alcohol should be drunk in 

moderation by both genders 

0.9 -0.5 Negative 

Study ties vitamin D to health outcomes in breast cancer 0 0 Neutral 

A Womans Diet Might Help Her Avoid Breast Cancer 0 0 Neutral 

I would love this 5k to help with bills while I start my 

breast cancer journey Anything would help 5Gsfor5G 

Contest 

0.6 0.5 Positive 

Ohhh lmdao Its an awesome shirt in support of breast 

cancer 

1 1 Positive 

Come to MD Anderson in Houston TX Best Hospital in the 

world for Breast Cancer 

0.3 1 Positive 
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 Table 4.3.2: Examples of different degrees of polarity from Subreddits. 
Cleaned Comments Subjectivity Polarity Analysis 

Is fatigue the worst part of chemo 1 -1 Negative 

After a lumpectomy and radiation I started anastrozole to 

be taken for five years Ive been on it for about a month and 

its been awful I have headaches every day and terrible 

insomnia every night My doctor has advised me to stop 

taking it for seven days to see how I feel and then well 

discuss next steps Has anyone else had this type of reaction 

to this drug Thank you in advance for any assistance 

0.666667 -0.66667 Negative 

Hi All My mum had stage 1 breast cancer and needed 

surgery last october They removed the tumor and 1 node 

from her armpit Luckily she is now clear however she still 

has pain in her chest and arm area I think this is all nerve 

pain from the surgery and this was confirmer by her 

specialist however she was only prescribed paracetamol 

which does nothing for nerve pain While she tries to hide 

most of her pain I know this is greatly annoying her and 

causing discomfort Due to covid her follow up appointment 

was moved as shes a vulnerable person so she cant really 

get any help re medication for bow In the meantime is there 

something she could use to alleviate the pain such as a 

shoulder heat mat organic cream etc. Suggestions are 

highly appreciated 

0.360714 -0.13214 Negative 

Hello I am 23So for almost 34 years ago I have discovered 

a hard big lump right behind my nipples on my left boob 

And also it is only on my left breast and my left breast is 

larger compared to the right breast And since a year I get 

weird on and off pain in my shoulder back hand and on my 

breast itself left side When I lie down it gets better but it is 

on amp off everyday I am too scared to go for a checkup I 

have been stalling it for years and I have no courage to go 

because I feel it is Breast cancer amp also I am praying it is 

fibrocystic breast since they have kinda same symptoms 

too Please anyone experienced this let me know Please I 

am freaking out so bad 

0.419983 -0.00145 Negative 

Hi allI am trying to prep for an upcoming double 

mastectomy Whats your favorite compression bra 

postsurgery 

0.5 0.25 Positive 

Hello The title says it all I just want to know what should I 

know and educate myself to make sure I can support my 

mom the best as I can Do you also have any advices for me 

as her daughter Is there anything I can do to make her feel 

comfortable What are the steps to come She just been 

diagnosed today Help me please 

0.662963 0.633333 Positive 
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As these tweets and subreddits demonstrate, values of polarity depend on the emotion 

conveyed by the Twitter or Reddit user and what is captured by the lexicon-based sentimental 

analysis algorithm.  

Additionally, as observed in Tables 4.3.1 and 4.3.2, tweets and subreddit comments are not 

necessarily pertaining to a breast cancer patient’s journey map. As mentioned earlier, the use of 

social media scraping opens the possibility of getting information from different users commenting 

about the issue or related issues, as the tweet about “awesome shirt in support of breast cancer”.  

 

4.2 Research Application  

One of the main goals for this research was to link comments from Twitter and Reddit to 

specific hotspots. In this way, experts can provide evidence-based recommendations from social 

media at specific hotspots of the breast cancer patient journey map. Figure from section 3.2.1.1 

was modified to include Twitter and Reddit comments from specific breast cancer patient journey 

hotspots. In figure 4.2, Twitter comments are depicted on the top part in blue, whereas Reddit 

comments are displayed in the bottom part of the figure in red.  

Figure 4.2: Comments from Twitter (blue) and Reddit (red) linked to the breast cancer PJM. 
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As illustrated in Figure 4.2, some recommendations regarding delays with mammograms, 

emotional support for health professionals, support people and patients, and chemotherapy support 

groups can be made to alleviate what people are feeling and commenting about breast cancer. 

Something worth mentioning is that from all those comments, only one was classified with a 

negative polarity, meaning that negative emotions and experiences can be present even in 

positively classified comments.  
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Chapter 5: Discussion  

This study included the analysis of tweets and subreddits with the keyword “breast cancer”. 

Analyzed records from both data sets showed an overall positive sentiment associated with breast 

cancer. There can be many reasons associated with this, first, the degree of polarity. Most 

comments were classified as ‘positive’ due to having a positive polarity, even though they were 

closer to 0 (neutrality) than to 1 (positivity). Secondly, the use of social media data sets by 

keywords allows any Twitter or Reddit user to post about the topic without being a patient or a 

patient’s support person. Therefore, users posting about breast cancer range from patients, support 

people, and health professionals to people organizing fundraisers, volunteering, buying clothes, 

and more. This reason makes it complicated for social media to provide reliable information that 

can be used to map specific hotspots and interactions. Nonetheless, as observed in the results from 

the LDA analysis, latent topics include breast cancer patient journey hotspots and interactions. 

However, the accuracy of these topic’s weights might not be suitable to use as a base for mapping 

a patient journey. Results obtained from the EDA also illustrate the variation of common words 

between Twitter and Reddit. Twitter users mention more breast cancer patient journey hotspots 

and have a higher degree of objectivity, whereas comments from Reddit users include more 

everyday verbs. The reason behind this can be the character limit from both social media websites 

(280 vs. 40,000 characters). Overall, this study using NLP algorithms to evaluate patient 

experience has found more patient hotspots and objective comments from Twitter. However, the 

literature suggests that the ability of patients to explain their experiences in their own words helps 

qualitative methods to gain better insights into patient perceptions, behaviors, and the meaning 

they assign to certain experiences. Based on this, it could be said that Reddit users can express 

themselves more freely in their comments because they do not need to limit themselves to 280 

characters as Twitters users do. Furthermore, the use of AI to capture patient experience throughout 

the patient's journey during the healthcare continuum provides valuable insights to improve 

individualized, empathetic, and respectful care in clinical systems. 
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5.1 Social Media Limitations 

There are many challenges and limitations associated with social media mining, including: 

• Non-standard text/content: social media often involves a combination of text, 

URLs, hashtags, a mix of capitalized words, abbreviations, punctuation, and 

emojis.  

• Text mining: pulling relevant information out of the unstructured text.  

• Lack of consistent geolocation information: not all social media accounts are 

spatially located, or sometimes geolocation is provided in non-standard formats.  

• Large data volumes: collecting tweets or comments can result in millions of records 

to sort through.  

• API limitations: Twitter standard API only allows you to retrieve tweets from 6-9  

days ago and is limited to scraping 18,000 tweets per API call and is divided in 15-

minute windows for requests. Also, using Tweepy’s Twitter API only allows you 

to return up to 3,200 of a user’s most recent tweets [197].  

• Lack of representation: social media is not a representation of an entire population. 

Furthermore, social media does not have the same amount of use and popularity 

among countries.  

• Text length: each tweet is delimited to 280 characters, which might be challenging 

for some users to fully explain what they intend to.  

• Topic accuracy: a method to determine topics is the use of hashtags, nonetheless 

these hashtags are determined by users and might not be accurate.  

• Incorrect English: social media use is informal, and as such, people use incorrect 

English in the form of slang, abbreviations, lengthening of words etcetera, which 

makes it difficult to conduct text analyses and causes incorrect classification of 

sentiments or opinions.  
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• Data sparsity: since many tweets and comments have misspellings or words that 

are not recognized, those words will not be properly accounted for when analyses 

are performed.  

• Negation: detecting sarcasm and other double negatives can be challenging for text 

analytic tools, especially sentiment analysis because if not properly accounted for, 

the result can be the opposite of the message’s true polarity.  

• Multilingual content: social media is used worldwide, therefore tweets or 

comments can be a mix of foreign languages. In this case, additional steps need to 

be added to the extraction process to account for only tweets in the same language 

or to clean tweets including more than one.  

 

5.2 Study Limitations 

Besides social media limitations, this study also found several ones. First, participants of 

this study were Twitter and Reddit users commenting about “breast cancer”. Therefore, the scope 

of this study was not only related to patients, resulting in mixed findings that do not reflect the 

desired accuracy for mapping the breast cancer patient journey and experiences. Secondly, 

descriptive information about sample participants was not collected, limiting the sample 

descriptors to observable data. Thirdly, not all breast cancer patients or support people have access 

to social media and/or comment about this condition online. Also, many patients with breast cancer 

suffer from psychological and cognitive impairments, changes in body image and sexuality, fear 

of reoccurrences, economic stress, poor social support, role functioning constraints and family 

crises throughout their disease journey [198]. These difficulties are associated with their perceived 

health-related stigma, defined by Goffman as an attribute that links an individual to an undesirable 

stereotype or in this case, a disease [199]. Stigmatization includes negative emotions and attitudes 

towards the affected individual, as well as social avoidance [200]. Marlow and Wardle found that 

perceived health-related stigma is associated with certain socio-demographic factors [201]. Being 
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male was one of these factors along with younger ages. For the most part, being male was 

correlated with higher cancer-related stigma, affecting areas as social responsibility, social 

avoidance, and financial discrimination. People with younger ages demonstrated higher scores for 

personal responsibility, awkwardness, social avoidance, and financial discrimination as well. 

Perceived health-related stigma represents another limitation for this study, given that patients who 

are feeling this stigma do not want to receive more negative attitudes and passive avoidances. This 

stigma also influences what people and social media users share about this topic. The lack of free 

expression due to character limit as a barrier to explain themselves as social media users is another 

limitation found for this study. Lastly, the COVID-19 pandemic eliminated the possibility to 

interview and collect data directly from patients, which translated into extracting data from social 

media.  
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Chapter 6: Conclusion 

The analysis of tweets and subreddits from Twitter and Reddit users demonstrated that the 

scope of this study was not only patients, but also support people, breast cancer advocates, and 

people interested in the topic. Results obtained did not reflect the desired accuracy for mapping 

the breast cancer patient journey and experiences. However, results from this study were able to 

identify the latent topics and overall sentiments associated with breast cancer in general. 

Additionally, this work exhibited useful insights and advice for improving patients’ and support 

people’s experiences at breast cancer patient journey hotspots.  

 

6.1 RECOMMENDATIONS FOR FUTURE WORK 

Future work on this thesis can include loading more data records from both social media 

sites and perhaps incorporating some other social media networks. Also, code optimization can be 

done by changing unsupervised to supervised learning. For instance, changing the Topic Modeling 

to Topic Classification and the lexicon-based Sentimental Analysis to supervised Sentimental 

Analysis. The inclusion of more keywords in the data extraction process could also result in a 

higher number of latent topics and the possibility to link those keywords with specific hotspots. 

Another implementation could be the use of the timestamps from both subreddits and tweets to try 

to map a patient’s journey using real timeframes. Above all, if the main objective of future work 

is that of automating and improving a way to measure patient experience with NLP Algorithms 

following the patients’ journey maps, the data source should be obtained directly from patients via 

semi-structured or unstructured interviews for a more robust qualitative analysis and the ability to 

accurately map patient journeys and hotspots. 
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